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ABSTRACT 

Introduction: Mean systemic filling pressure (MSFP) is the equilibrated 

vascular pressure at zero flow. Venous return (VR) driving pressure (VRdP) is 

the difference between MSFP and right atrial pressure (RAP). In clinical 

research, MSFP can be estimated: MSFPinsp_hold is the zero-flow extrapolation 

of RAP-cardiac output data-pairs from inspiratory hold maneuvers; MSFPa is 

a dynamic analogue computed from clinically available hemodynamics. 

However, results are controversial and fundamental concepts of VR 

physiology are questioned. We aimed to test experimentally the concept of 

VRdP in dynamic conditions and validate estimates of MSFP against zero-flow 

measurements. 

Methods: We compared estimates of MSFP against zero-flow measurements 

from right atrial balloon occlusion (MSFPRAO), or from intermittently paused 

venoarterial extracorporeal membrane oxygenation (ECMO), in three porcine 

models exposed to changing blood volumes and vasoconstriction. 

Results: Changes in RAP resulted in immediate and directionally opposite 

changes in VR. Temporary VR and ECMO flow imbalance resulted in 

dynamically changing VRdP and RAP. In euvolemia, MSFP was increased by 

increased airway pressure. A moderate increase in positive end-expiratory 

pressure increased RAP, MSFPRAO and VRdP. Resistance to VR did not 

change. Changing blood volume led to concordant changes in RAP, MSFPRAO, 

VRdP and flow. Vasoconstriction and volume expansion increased MSFP and 

maximum achievable ECMO flow with similar effects on oxygen delivery. 

MSFPinsp_hold overestimated MSFPRAO in euvolemia due to flow restoration 

predominantly occurring in the inferior vena cava. Methods for MSFP 

estimation had an accuracy that was dependent on volume status. All methods 



 

tracked changes in the reference method concordantly. However, with the 

possible exception of MSFPa, the bias was clinically unacceptable. 

Conclusion: If pressure effects from volume shifts are accounted for, the 

concept of VRdP is valid also during dynamic conditions. VR physiology can 

explain the responses of volume expansion and vasoconstriction on 

venoarterial ECMO flow. Inspiratory hold maneuvers are unsuitable for the 

estimation of MSFP due to clinically significant bias.  

Keywords: mean systemic filling pressure, venous return, right atrial pressure, 

positive pressure ventilation, extracorporeal membrane oxygenation  
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SAMMANFATTNING PÅ SVENSKA 

Om kroppens blodflöde plötsligt upphör sker en tryckutjämning mellan artär- 

och venbäddar och det systemiska medelfyllnadstrycket (MSFP) kan 

uppmätas. Detta tryck är oberoende av hjärtats aktivitet och bestäms helt av 

blodvolymen, kärlbäddarnas storlek och deras elasticitet. MSFP är därmed ett 

uttryck för cirkulationssystemets volym-status. Venöst återflöde (VR) drivs av 

tryckskillnaden (VRdP) mellan MSFP och höger förmakstryck (RAP). I 

klinisk forskning kan MSFP uppskattas genom att man i samband med 

inblåsningsmanövrar hos respiratorbehandlade patienter registrerar de 

förändringar i RAP och VR som uppstår när trycket i bröstkorgen tillfälligt 

ändras. Man kan då beräkna MSFP genom att extrapolera det linjära sambandet 

till flöde noll. En annan metod baseras på matematisk modellering av 

kretsloppet och beräknar en analog till MSFP utifrån uppmätt RAP, 

medelartärtryck och blodflöde. Resultaten från kliniska studier är dock 

inbördes motsägelsefulla och det råder också sedan lång tid oenighet kring helt 

grundläggande koncept som rör fysiologin för venöst återflöde. Vårt mål har 

varit att pröva konceptet med drivtryck för venöst återflöde (VRdP) 

experimentellt och att utvärdera kliniskt användbara metoder för uppskattning 

av MSFP mot mätningar gjorda med referensmetoder vid nollflöde. Vi har 

genomfört tre försöksserier på gris, under skiftande blodvolym och under 

behandling med kärlsammandragande läkemedel och vätskeinfusion, där dessa 

referensmätningar kunnat göras då cirkulationen tillfälligt stoppats genom 

ballongocklusion av höger förmak eller genom korta pauser i behandling med 

hjärtlungmaskin (ECMO). 

Vi har kunnat visa att förändringar av höger förmakstryck leder till omedelbara 

men kortvariga förändringar i motsatt riktning av venöst återflöde. Tillfällig 

obalans mellan venöst återflöde och ECMO-flöde förflyttar blodvolym mellan 

områden belägna uppströms och nedströms vilket ger dynamiska förändringar 

av både drivtrycket för venöst återflöde och höger förmakstryck. Vi kunde 

också visa att MSFP ökar med ökat luftvägstryck – åtminstone vid normal 

blodvolym. Ökning av respiratorns slut-expiratoriska tryck (PEEP; används 

kliniskt för att öka den luftförande delen av lungan) gav en ökning i RAP, 

MSFP och VRdP. Förändringar i blodvolym ledde till förändringar i RAP, 

MSFP, VRdP och venöst återflöde i samma riktning, utan ändring av  

flödesmotståndet för venöst återflöde. Behandling med kärlsammandragande 

läkemedel och behandling med vätskeinfusion ledde båda till ökat MSFP och 

möjliggjorde högre maxflöde under ECMO-behandling, med likartad effekt på 

syrgasleverans till kroppens vävnader. Metoden för att uppskatta MSFP via 

inblåsningsmanövrar överskattade MSFP mätt genom höger förmaksocklusion 



 

– men bara vid normal blodvolym. Detta förklarades delvis av en 

kompensatorisk flödesökning i den nedre hålvenen under pågående 

inblåsningsmanöver. Alla undersökta metoder för uppskattning av MSFP var 

behäftade med mätfel vars omfattning växlade med volym-status. Förmågan 

att följa förändringar i referensmetoden växlade mellan de undersökta 

metoderna. Med möjligt undantag för den matematiska modellanalogen, så var 

även mätfelet gentemot förändringar i referensmetoden för stort för att vara 

kliniskt acceptabelt. 

Vår slutsats blir att konceptet med drivtryck för venöst återflöde är tillämpbart 

även under dynamiskt skiftande förhållande, så länge man tar hänsyn till de 

volymskiften som uppstår. Den fysiologiska modellen för venöst återflöde kan 

förklara behandlingseffekten för kärlsammandragande läkemedel och 

vätskeinfusion avseende högsta möjliga flöde vid ECMO-behandling. 

Inblåsningsmanövrar är inte lämpliga för att uppskatta MSFP då de är 

behäftade med betydande mätfel. Den matematiska modellanalogen förtjänar 

fortsatt utvärdering inom ramen för klinisk forskning.  
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1 INTRODUCTION 

1.1 WHAT IS THE VOLUME STATE? 

At the bedside of a hemodynamically unstable patient, clinicians try to 

characterize the patient’s volume state in terms of normovolemia, hypovolemia 

or hypervolemia. This is not primarily done by measurement or assessment of 

the actual blood volume, but rather by interpreting the indirect effects of the 

present stressed blood volume on variables like heart rate, blood pressure, 

filling pressures, vessel collapse, cardiac output and capillary refill time. The 

total blood volume and the size and stiffness of all vessel beds determine the 

stressed blood volume, i.e. the fraction of blood volume that distends the 

vasculature. All three factors are highly regulated by homeostatic mechanisms 

that in turn can be subject to numerous pathophysiological changes. Stressed 

volume thereby integrates biological information on the actual blood volume, 

input and output to the neuro-humoral nervous system (cardiovascular 

reflexes), as well as collective effects upon these systems caused by sedative, 

analgesic and anaesthetic (including inhalational, intravenous, neuraxial and 

regional anaesthesia) and vasoactive medications or vasoplegic disease states 

such as sepsis. Complex, each in their own right, all these phenomena converge 

into setting the stressed volume. By this reasoning, the stressed volume is a 

representation of the volume state. The relation between stressed volume and 

total blood volume, and the interaction between stressed volume and cardiac 

function, provides additional information. If the stressed volume could be 

estimated or measured clinically, it would provide useful information to guide 

treatment. 
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1.2 VASCULAR PRESSURE AT ZERO FLOW 

If the heart is brought to a sudden standstill, all vascular pressures will 

equilibrate, as the arterial compartments expel most of their pressurized 

contents downstream, thereby distending the highly compliant venous system. 

This shift of volume will cause arterial pressures to fall and venous pressures 

to rise. When all pressures have equilibrated, flow has ceased as no driving 

pressure remains. In the functioning organism, the arterial hypotension would 

lead to a massive sympathetic discharge, aimed at increasing venous return, 

cardiac function and perfusion pressures. Even if the heart remained 

unresponsive, this sympathetic activation would lead to vasoconstriction in all 

vascular beds. Without a functioning heart, local differences in vascular 

response could still cause small additional volume shifts, i.e. transiently 

reappearing antegrade and/or retrograde flow, but the main effect would be a 

further rise in intravascular pressures. However, if the experimental setup 

includes measures that either abolish the cardiovascular reflexes, and/or a large 

arteriovenous shunt that could be opened to hasten the process and allowing 

full pressure equilibration before the onset of reflex mediated vasoconstriction, 

this equilibrated pressure could be measured anywhere in the circulation. 

Imagine again the cardiovascular system at zero flow and pressure 

equilibration. Imagine also that the entire blood volume could be drained into 

an external reservoir (in reality impossible) causing the vascular walls to 

collapse. If this process of total exsanguination is reversed, we can now refill 

the system while monitoring the intravascular pressure. At a certain point, the 

vasculature will again precisely be filled, but not distended. The transmural 

pressure remains zero as the ‘unstressed blood volume’ (Vu) fills the 

vasculature. At this point, volume will be divided between vascular 

compartments according to their respective unstressed capacitance. However, 

the external reservoir still contains about 25-30% of the total blood volume 

(65). As we pump this remaining volume into the vascular system, pressure 

starts to build up as blood now distends the vessel walls. The rise in pressure 

will be proportional to the infused volume and the average vascular elastance. 

If the walls are stiff (the vascular elastance is high which is equivalent to a low 

compliance), the pressure will rise quickly. When all blood has been returned, 

the intravascular pressure is determined by the distending or ‘stressed volume’ 

(Vs) and the average compliance of the vascular system (Cvasc).  

P=Vs/Cvasc  (1) 

This (transmural) pressure is a manifestation of the potential energy stored in 

vessel wall recoil. It is a pressure representation of the stressed volume. The 
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normal circulatory zero-flow pressure is approximately 7 mmHg in mammals 

(87). At zero flow, the stressed volume is partitioned between vascular 

compartments solely according to their relative compliances, and venous 

vessel beds will therefore contain more blood than arterial beds. 

When the heart resumes work, right atrial pressure (RAP) will decrease, 

forming a pressure gradient in relation to upstream areas, thereby recreating a 

driving pressure for venous return. Left ventricular stroke work will add 

volume and increase pressure in the arterial compartment. In transition from a 

state of zero flow and pressure equilibrium, the working heart will shift volume 

from the venous to the arterial side. As a consequence of the arterial 

compartment having a low compliance and high out-flow resistance, the 

volume-displacing work of the heart results in a considerable rise in pressure. 

Conversely, as the venous compartment is characterized by high compliance 

and low resistance to flow, the venous pressure drop will be small. At zero 

flow, approximately 70% of the blood volume will reside in the venous 

compartment. This decreases to 60% when blood flow is restored as a 

consequence of volume shift from the systemic venous compartment, into the 

pulmonary compartment (60, 64). In a state of flow, the distribution of blood 

will be determined by the relative in- and outflow resistances and the 

respective compliances of vascular beds. The pulmonary vasculature contains 

approximately 12-14% of the total blood volume (60). In case of right or left 

ventricular failure, the proportion of central to peripheral volume may decrease 

or increase, respectively (66). Acute onset of biventricular failure (as in a 

ventricular fibrillation model) may leave the proportion unchanged (72).  
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1.3 HISTORICAL BACKGROUND  

The concept of a zero-flow circulatory filling pressure was formulated by 

Weber in 1851 (101). In 1912, the Danish zoophysiologist August Steenberg 

Krogh gave an account on how resistances and active and passive recoil of 

vessel beds modulate flow on both organ and body level. He described the 

function of the portal system and concluded that it “acts as a general regulator 

on the pressure in the central veins and thereby on the output of the heart” 

(49). Starling had referenced both Weber and Krogh before he gave his famous 

Linacre lecture on the Law of the Heart (79). Starling and Patterson wrote “It 

thus follows that the neutral point in the vascular system, where the mean 

systemic pressure is neither raised nor lowered by the inauguration of the 

circulation, lies considerably on the venous side of the capillaries – at any rate, 

in most parts of the body”. Starling and Patterson realized that the portal vein 

operated at or near this pressure. Starling commented on the neutral point that 

“the pressure is neither raised nor lowered and where, therefore, the pressure 

is independent of the cardiac activity” (91). The essential consequence of this 

statement is that the mean filling pressure is unrelated to cardiac function and 

determined solely by stressed volume and the vascular elastic properties.  

Figure 1 – Heart preparation of Patterson and Starling (79). Venous 

return was gradually increased by elevating the venous reservoir or 

unscrewing the clip on the tubing leading into the superior vena cava. 

Reproduced with permission from John Wiley and Sons. 
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The Frank-Starling law (also honouring the German physiologist Otto Frank) 

explains how the heart, based on the mechanism of pre-contraction fibre length 

setting the contractile force, can servo-control stroke volume (output) to match 

venous return (input). “The output of the heart is equal to and determined by 

the amount of blood flowing into the heart, and may be increased or diminished 

within very wide limits according to the inflow” (79). However, it was clear to 

Starling and co-workers that the demand for flow was dictated by the metabolic 

needs of the tissues. Importantly, they never claimed that the body controlled 

systemic flow by regulating the work of the heart. The experimental setup 

leading to the formulation of the “Law of the heart” is shown in Figure 1. The 

inflow to the right atrium was controlled by varying the height of the venous 

reservoir or simply unscrewing a clip around the venous tubing. As inflow and 

output gradually increased, there was a slight curved increase in central venous 

pressure. When the functional capacity of the heart was exceeded, the 

ventricles became over-distended which resulted in falling output, and rapidly 

increasing venous pressure (Figure 2). The classical plot of cardiac function, 

nowadays presented with filling pressure on the x-axis, originally appeared 

with central venous pressure on the dependent axis, and flow on the 

independent axis. 

  
Figure 2 – The original plot of Patterson and Starling showing the effect of gradually increasing 

inflow on central venous pressure. When the functional limit of the ventricle is exceeded, there 

is a drop in output with a marked continuous increase in venous pressure, as blood is dammed 

up in the atrium. A contemporary version of a ‘cardiac function curve’ or family of ‘Starling 

curves’ is presented with the axes flipped: filling pressures (as surrogate for end-diastolic 

volume) appear on the x-axis, and flow or stroke volume on the y-axis (79). Reproduced with 

permission from John Wiley and Sons. 
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1.4 GUYTON’S CARDIOVASCULAR MODEL 

1.4.1 THE MEAN CIRCULATORY FILLING 
PRESSURE 

In the 1950s, Arthur Guyton pioneered the studies of the factors determining 

venous return (VR). In the initial experiments, involving more than 100 dogs, 

he determined the ‘mean circulatory filling pressure’ (MCFP) at zero flow 

caused by ventricular fibrillation, vagal stimulation or ligation of the 

pulmonary artery (PA), and found it to be ~7 mmHg (40, 42). Rapid 

arteriovenous equilibration was assisted by the use of a roller pump, and reflex 

activation was abolished by instituting total spinal anaesthesia and restoring 

the arterial pressure with infusion of epinephrine. Total spinal anaesthesia 

without epinephrine gave a MCFP just below 5 mmHg. Attempts to increase 

MCFP with increasing infusion rates of epinephrine revealed a ceiling effect 

at about 16 mmHg, above which the effect of further vasoconstriction was 

counteracted by extensive fluid leakage. [We reproduced this finding in an 

experiment using modern venoarterial extracorporeal membrane oxygenation 

(VA-ECMO) – see Paper III (section 4.3)]. Measurement of MCFP after PA 

ligation, as compared to ventricular fibrillation, resulted in slightly higher 

values due to volume shift from the cardio-pulmonary compartment into the 

systemic compartment from continued stroke work (see also section 1.5.1). 

Figure 3 – Right-heart bypass system used by Guyton for controlling 

right atrial pressure and venous return (40). Reproduced with 

permission from the American Physiological Society. 
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1.4.2 THE VENOUS RETURN CURVE 

In a landmark series of experiments (39-41), Guyton explored the properties 

of the vascular circuit and the volume state. In a highly cited and debated paper, 

Guyton describes the use of a right-heart bypass preparation - the details of 

which can only be fully understood from later publications (Figure 3) (40). 

Briefly, venous return was completely drained via a right atrial cannula and led 

through a horizontal segment of thin, collapsible rubber tubing (a Starling 

resistor) to a pump and flowmeter, before being returned into the PA. The 

pressure in the right atrium (RA) was measured with a mercury manometer. 

The experiment consisted of exposing the circuit to a series of short excursions 

of increased RAP, while recording the resulting flow. This was achieved by 

elevating the Starling resistor, increasing the RA hydrostatic pressure and 

simultaneously adjusting the pump rate to maintain the rubber tubing in a semi-

collapsed state. The resultant RAP and flow could be read within 8-10 seconds, 

before the system was again returned to a negative RAP and maximal pump 

speed. Pressure-flow data points were presented in what has since been termed 

‘venous return plots’, with RAP on the x-axis and flow on the y-axis (see 

Figure 4). 

Guyton recognized intravascular RAP as the backpressure for VR. Lowering 

RAP in relation to MCFP allowed an increase in flow proportional to the 

pressure difference between MCFP and RAP. The maximum flow was found 

at zero RAP. In the open chest experiments, a decrease of RAP below sub-

Figure 4 - Venous return curves recorded from 12 normal open-chest dogs. 

Guyton (40). Reproduced with permission from the American Physiological 

Society. 
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atmospheric pressure (i.e. to negative transmural pressures) caused the large 

venous vessels to collapse, limiting further flow increase. Venous return could 

also be increased by adjusting the upstream MCFP by blood infusion, or by 

infusion of epinephrine (Figure 5). In a later experiment, Cowley demonstrated 

that pacemaker-controlled increase of the heart rate only augmented cardiac 

output if the experimental conditions permitted an increase in venous return 

(22). Returning to Guyton, he predicted and experimentally verified that RAP 

could not be elevated above MCFP. An increase in blood volume, apart from 

elevating MCFP also distended the vessels and lowered the impedance to VR. 

An induced resistance between the left ventricle and the main vascular 

reservoirs, although causing a major increase in afterload, only had a minor 

effect on VR. In contrast, the slightest increase in venous compartment 

vascular resistance, downstream of the vascular reservoirs, greatly decreased 

VR. 

Figure 5 - Venous return curves illustrating the effect of RAP on 

VR when the MCFP was maintained at different levels. Guyton 

(39). Reproduced with permission from the American 

Physiological Society. 
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1.4.3 EQUATING VENOUS RETURN AND CARDIAC 
OUTPUT 

By superimposing venous return curves with cardiac response curves and 

acknowledging that at equilibrium, VR is equal to CO, Guyton showed how 

properties of the vascular circuit and the cardiac function interact to determine 

flow and RAP. 

CO = VR = (MCFP-RAP)/RVR = VRdP/RVR (2) 

RVR = resistance to venous return. 

The consequence was that RAP, as a node for cardiac-circuit interaction, was 

both a determinant of flow, and determined by flow. The dual nature of RAP – 

acting backpressure to oppose VR, and being an effect of the volume shifting 

work of the right heart – is integrated in Guyton’s cardiovascular model. This 

is often overlooked and seemingly hiding in plain sight in the middle of the 

infected debate on the correct interpretation of Guyton’s experiments (see 

section 1.4.5). 

Figure 6 – Equilibration of various venous return curves with 

different cardiac response curves. Guyton (39). Reproduced with 

permission from the American Physiological Society. 
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1.4.4 A GUYTONIAN VIEW OF THE CIRCULATION 

To summarize, a ‘Guytonian’ view of the circulation would stress that: 

 The role of the heart is to keep RAP low to enhance venous 

return, and to restore the energy needed for peripheral 

perfusion by left ventricular stroke work. 

 Mean circulatory filling pressure is a representation of the 

stressed volume and the upstream pressure for venous return. 

 Flow is controlled primarily by modulating the properties of 

the circuit. The exception is cases of heart failure where flow 

also can be augmented by therapeutic interventions that 

increase heart function in order to decrease a pathologically 

elevated RAP. 

 Since the venous side of the circulation stores the main part 

of the blood volume, it is important to understand to what 

extent therapeutic interventions target the veins. 
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1.4.5 CRITIQUE OF THE MODEL 

In 1979, Levy presented a mathematical analysis and repeated the right-heart 

bypass experiment of Guyton, but treated flow as the independent experimental 

variable (52). He omitted the Starling resistor and simply operated the pump 

rate and recorded the resulting flow and pressures. Although his results were 

identical to those of Guyton, he came to the opposite conclusion regarding 

cause and effect. According to Levy’s view, pressure gradients found along the 

circuit were a consequence of flow, not determinants of flow. Regarding RAP, 

he concluded, “It probably is not an important determinant of ‘venous return’ 

by virtue of any ‘back-pressure’ effects”. Since then, there is ongoing and at 

times infected debate on the validity, interpretation, and application of 

Guyton’s circulatory model (3, 7, 16-18, 59, 62). The interpretations of Levy, 

adopted by Brengelmann, Beard and Feigl, stress that venous return is caused 

by the energy provided by the left ventricle. They reject the idea of flow being 

driven by the pressure gradient between average upstream pressure (MCFP) 

and downstream pressure (RAP) and point out that energy stored as recoil 

pressure in MCFP must not be seen as source of energy. Magder, a proponent 

of Guyton’s model, argue that the pressure drop from MCFP to the right atrium 

indeed represents the driving force for venous return, but underlines that the 

energy store is refilled stroke-by-stroke by left ventricular work. Since the pre-

capillary resistance is high and actively regulated, venous return cannot be 

described by the pressure fall in the arterial compartment. Although both sides 

have certainly made their points, any consensus is out of sight. Critics of the 

model argue that the basic interpretations are flawed, and that Guyton confused 

cause and effect. Others state that the model may correctly describe a steady 

state, but that it should not be applied to explain changes in venous return. 

In essence, this means that proponents see the pressure difference between 

MCFP and RAP as a de facto driving pressure for venous return. The 

opponents, on the other side, state that MCFP may be a valid measure of 

vascular recoil at zero flow, but that RAP is solely determined by the work of 

the heart and the pressure difference to upstream areas is caused by flow. Both 

sides have accused the other of reasoning that would violate the laws of 

conservation of mass and conservation of energy. Retrospectively, both sides 

appear guilty of deliberately misinterpreting each other. Tyberg took a more 

reconciling position and concluded that both views are model based and 

internally consistent, “and difficult or perhaps impossible to ‘prove’ at the 

expense of the other” (94). In the debate, the opposing views describe RAP as 

either a consequence of heart work, or a determinant for VR. This controversy 

is not merely academic in nature. If RAP does not act as backpressure for 

inflow to the right heart, widely used models explaining how positive pressure 
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ventilation impedes circulation become invalid. Guyton’s cardiovascular 

model is also used as a framework for understanding shock states at the 

bedside, in particular to delineate pump factors from circuit factors (31, 32). If 

the model is invalid, it should not be applied for decision making in patients. 
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1.5 TERMINOLOGY AND DEFINITIONS 

1.5.1 MCFP OR MSFP? 

The terminology used in the field is inconsistent. In some sources, ‘mean 

circulatory (filling) pressure’ and ‘mean systemic (filling) pressure’ appear 

interchangeably. This was true also for Guyton who used the term MCFP for 

the equilibrated pressure measured at zero flow caused by both ventricular 

fibrillation and by pulmonary artery ligation (42). If the measurement setup 

with some certainty can claim to achieve vascular equilibrium also including 

the cardiopulmonary compartment, the term ‘mean circulatory filling pressure’ 

is often used (MCFP). If the equilibrium rather refers to the systemic 

circulation, ‘mean systemic filling pressure’ (MSFP) is used instead. 

Regardless of experimental design, it is often impossible to verify the precise 

degree of vascular equilibrium. Even if arterial and venous pressures approach, 

this does not preclude locally obstructed vessel beds upstream of the site of 

measurement. MCFP is sometimes reported as being slightly higher than 

MSFP – in the range of ≤ 1 mmHg (60, 64). It is however crucial to realise that 

any method that attempts to estimate the mean filling pressure in the systemic 

circulation during ongoing circulation, will be affected by potential volume 

shifts occurring between the cardiopulmonary and systemic compartments. A 

temporary imbalance between venous return and cardiac output, like the ebb-

flood tide of pulmonary blood volume over the respiratory cycle (see section 

1.8.2), will at least theoretically be associated with an MSFP changing over 

time. 
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1.5.2 THE PIVOTAL PRESSURE OF THE 
CIRCULATION 

There has been some discussion on the possible anatomical location of MCFP. 

Early investigators such as Bayliss, Starling and Krogh realized that MCFP 

had many characteristics of a ‘venous pressure’ (6, 49, 79). In his excellent 

review, Rothe summarizes that it is “less than capillary pressure, is closely 

similar to the portal venous pressure and the venule pressure of most tissues, 

is at the location of the ‘pivot pressure’, and is more than the central venous 

pressure” (87). If the change in MCFP (or MSFP) after a change in blood 

volume is used to determine the mean circulatory or systemic compliance, it 

becomes clear that this value is close to the compliance of the systemic veins 

(see Figure 19 in section 3.5.2). Stated differently, total body vascular 

compliance is the sum of all regional compliances, and is highly dominated by 

systemic vein compliance (61). The pivotal pressure represents the idea of a 

point along the vasculature with constant pressure, regardless of flow state. 

With changing flow, volume is shifted around this pivot (see Figure 7) (97). In 

reality however, as the circulation consists of myriad parallel paths, each will 

have its own pivot pressure, most of which will be located in the early post-

capillary venules. It is important to understand that the locations of these points 

are constantly changing up and down the flow path along with flow, vasomotor 

tone, vascular diameter, and changing rheological factors. 

Figure 7 – Physical and graphical model of venous return from Versprille (97). The tube at the 

bottom represents the capillary and venous parts of the model. The top diagram gives the 

changes in pressure fall in the tube when central venous pressure (Pcv) is increased. The average 

Psf (MSFP) in the experiment was 6.4 mmHg and is marked by the horizontal line. Reproduced 

with permission from Springer Nature. 
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If MSFP is estimated, the pressure will always be numerically close to that of 

a systemic vein, but conceptually it represents the average of all vascular 

elements in the entire systemic compartment – venous as well as arterial. A 

fluid bolus leading to an increase in stressed volume and MSFP will move the 

average vascular element downstream (76). In the studies that form the base of 

this thesis, we have preferred the interpretation of MSFP as the average 

pressure in the entire systemic compartment, rather than using it as a surrogate 

for venous compartment pressure. Conceptually, when estimating MSFP, we 

are not interested in the pressures at the pivots, but rather seek a measure of 

the stressed volume of the system. Therefore, rearranging equation 2 gives: 

RVR = VRdP/VR (3) 

Resistance to venous return (RVR) represents the resistance encountered by 

the average element on returning to the right atrium. It will be numerically 

similar to the unmeasured resistance in the venous compartment (Rv). But - 

however tempting, it is incorrect to imagine that Rv can be calculated by 

dividing flow by the pressure drop MSFP-RAP: 

Rv ≠ (MSFP-RAP)/VR 

Brengelmann, an outspoken critic of the use and interpretation of Guyton’s 

cardiovascular model (including our interpretations), repeatedly fails to 

recognise this distinction (15), which has led to many unnecessary deviations 

in the debate. With that said, it is my personal view that attempts to ascribe 

values of resistance to particular vascular sub-segments located upstream or 

downstream of the theoretical pivot by use of a measure of MSFP are 

conceptually flawed. Such examples can be seen with Geerts and Maas (34, 

53) (Figure 8). MSFP and RVR are best restricted to represent the average 

characteristics of the entire systemic compartment. Over-interpretation will 

spur further (and then justified critique) of the entire concept of venous return. 

Figure 8 – A conceptually flawed model, with the intended use of computing resistances 

upstream (Ra) and downstream (Rv) of mean systemic filling pressure (Psf), estimated using 

inspiratory hold maneuvers. From (34). Reproduced with permission from Springer Nature. 
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1.6 EXPERIMENTAL METHODS OF ZERO-
FLOW PRESSURE DETERMINATION 

In animal models, induced ventricular fibrillation and subsequent defibrillation 

of the heart can been used to achieve repeated episodes of circulatory arrest. 

As both ventricles stop pumping simultaneously, there is no active transfer of 

blood between the cardiopulmonary and systemic compartments. Arterial and 

central venous pressures change asymptotically towards a common plateau. An 

injection of potassium chloride can be used as an effective but irreversible way 

of inducing fibrillation. Acetylcholine can be used to stop the heart by asystole 

that usually lasts for 5 s or more. Full recovery requires about 10 min and 

repeated doses may cause respiratory failure. MCFP and MSFP are expected 

to be equal with all three methods. Intermittent mechanical obstruction to flow 

with intact circulation can be achieved by external occlusion of the PA, or by 

inflating an endovascular balloon in the RA, blocking flow into the right 

ventricle (RV). These methods allow the beating ventricle/-s to shift some 

blood from the cardiopulmonary to the systemic compartment, from the time 

of vascular obstruction until pressure equilibrium. As the average vascular 

compliance of the systemic compartment is high (~3 mL×kg-1×mmHg-1), the 

pressure effect of this volume shift will be small (72). In a porcine model with 

right atrial balloon occlusion and pump-assisted arteriovenous (AV) volume 

equilibration, MCFP at baseline was (mean ± SD) 12.3 ± 1.3 mmHg, compared 

to 12.0 ± 1.9 mmHg at circulatory arrest from injection of potassium chloride 

(72). The equilibrated pressure measured in a central vein after a RA or PA 

occlusion is therefore representative of both MSFP and MCFP, with the caveat 

that pressures may increase as a consequence of central to systemic volume 

shift. 
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1.6.1 INCOMPLETE ARTERIOVENOUS PRESSURE 
EQUILIBRATION 

If volume transfer is not assisted at circulatory arrest, a certain arteriovenous 

pressure difference will persist at the time of best equilibrium. In the 

experiment cited above, MCFP from right atrial balloon occlusion without 

volume transfer was 11.0 ± 1.1 mmHg, and underestimated the value obtained 

by volume transfer by 1.3 mmHg. Attempts have been made to estimate the 

additional rise in central venous pressure, which would have occurred provided 

complete AV equilibration. A correction factor can be calculated using the 

ratio of arterial pressure decay to central venous pressure increase, assuming 

that venous compliance is the major component of total vascular compliance. 

In experiments using RA balloon occlusion with and without volume transfer, 

applying the correction factor still led to an underestimation of true MCFP 

(72). However, an elegant study on dogs using a right-heart bypass technique 

compared the MSFP (measured at the venous pressure plateau) obtained with 

and without pump-assisted AV volume transfer. MSFP of both methods were 

found to be identical, irrespective of different remaining AV pressure gradient 

at the time of venous pressure plateau (35). This is probably explained by the 

fact that the remaining volume of blood associated with a zero-flow arterial 

pressure of ~20-30 mmHg is quite low, and the compliance of the venous 

compartment high enough to make the final contribution to equilibrated 

pressure almost insignificant. It is also worth noting that some volume might 

be trapped on the arterial side due to vascular waterfalls (physiological Starling 

resistor mechanism). Volume contained by such a mechanism would be 

excluded from pressure equilibration regardless of how long time is allowed 

(63, 90). It should be noted that the relation between estimates taken at 

incomplete equilibration vs. pressures measured after full equilibration might 

depend on the underlying volume state. This has not been experimentally 

verified. 
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1.7 INVASIVE METHODS IN HUMAN 
RESEARCH 

In two studies, MCFP has been determined in human patients undergoing 

testing of implantable cardioverter/defibrillator devices (ICDs). As part of the 

clinical procedure, fibrillation-defibrillation sequences (FDSs) are induced to 

confirm the operability of the device. At the onset of ventricular fibrillation, 

the asymptotic merging of arterial and venous pressures can be documented. 

Arrhythmias were always successfully terminated before full pressure 

equilibrium, or any signs of reflex mediated vasoconstriction occurred. The 

study by Jellinek (46) primarily investigated the influence of an immediate 

change in airway pressure (PAW) on MCFP and VRdP. The PAW was set 5 s 

prior to FDS by either disconnecting the ventilator, or performing an 

inspiratory hold maneuver. MCFP (n=13), taken as the central venous pressure 

(CVP) 7.5 s into the FDS, was found to be 10.2 ± 3.5 mmHg and 12.7 ± 3.2 

mmHg at PAW of 0 and 15 cm H2O, respectively. The remaining AV pressure 

difference was 20 ± 7 and 18 ± 4 mmHg. If a correction factor based on 

estimated AV compliance ratio was used, the estimated MCFP increased by 

1.2 mmHg to 11.4 ± 3.6 and 13.9 ± 3.4 mmHg, respectively, at the two levels 

of PAW. Venous return driving pressure was ~ 4 mmHg, and did not change 

with PAW. Schipke studied patients undergoing in total 323 FDSs (90). In all 

patients, 13 s into ventricular fibrillation, a pressure difference of 13 ± 6.2 

mmHg remained. The MCFP reported for 36 patients undergoing in total 141 

FDSs, was 11.0 ± 5.4 mmHg. The estimated value of MCFP at full equilibrium 

was ~ 12 mmHg. CVP prior to FDS was 7.5 ± 5.2 mmHg, and VRdP would 

have been ~ 4.5 mmHg. Regrettably, values of airway pressure or ventilator 

regime was not reported. The study focus was on the estimated time constants 

for the approximately exponential change in vascular pressures. The initial 

rapid pressure change, occurring during the first 10 s, could be characterized 

by a mono-exponential function. At 20 s, the time constant for arterial pressure 

decay became significantly longer, which supports the idea of a waterfall 

mechanism: as more vessels begin to close at the lower arterial pressures, the 
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overall resistance for emptying increase. The two studies are very interesting 

for the following reasons: First, they represent measurements actually 

performed at zero flow in contrast to methods that estimate zero-flow pressures 

during ongoing circulation. Second, the subjects studied were patients (and not 

healthy animals) with elevated central venous pressures reflecting a 

combination of heart failure and pathological and perioperative volume 

loading. In this setting, both studies report MCFP in the range of 10-13 mmHg 

with venous return driving pressure (although not reported) in the range of 4-

4.5 mmHg. 

Figure 9 - An example of a Fibrillation-Defibrillation Sequence (FDS) from Schipke (90). After 

the induction of ventricular fibrillation, the arterial pressure decreased and the venous pressure 

increased. At the end of fibrillation, both pressures had not reached an equilibrium pressure 

(note the different scales). With permission from the author. 
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1.8 ESTIMATION OF ZERO-FLOW PRESSURE 
FROM AIRWAY PRESSURE MANEUVERS 

In the following subchapter, the development leading to the currently used 

clinical concept for estimation of MSFP is described (‘MSFP estimated by 

inspiratory hold’ or MSFPinsp_hold) 

1.8.1 INSTANTANEOUS VENOUS RETURN CURVE 

In a landmark study presented in two separate papers 1984, Pinsky advanced 

the understanding of circuit-heart-lung interactions by a comprehensive 

characterization of right ventricular (RV) working conditions and provided an 

estimate of MSFP available without circulatory standstill (81, 82). Using what 

he called “instantaneous venous return curves”, he demonstrated that RV 

stroke volume (SVRV) was inversely proportional to the cyclically changing 

RAP caused by tidal ventilation. Dogs were mechanically ventilated with 

intermittent positive pressure breathing (IPPB) and tidal volumes between 5-

10 mL/kg. An arteriovenous fistula could be opened to assist pressure 

equilibration at circulatory arrest from ventricular fibrillation, for the 

determination of a reference MSFP (‘stop flow Pms’). Data-pairs consisting of 

beat-to-beat, right ventricular stroke volume (SVRV; measured with an 

electromagnetic flowprobe around the PA) and RAP from the preceding beat 

(measured at the onset of QRS complex) were used to describe the venous 

return function. Zero-flow extrapolation of the linear regression for this 

relation (answering the question: “at what level of RAP would venous return 

cease?”) provided ‘instantaneous Pms’. The relationship was highly linear and 

‘instantaneous Pms’ agreed well with ‘stop flow Pms’: (mean ± SE) 8.4 ± 0.7 

and 8.1 ± 0.8 mmHg, respectively. Correlation between the two methods was 

high, with a slope not different from one, and the x-intercept not different from 

the origin. Volume loading of the animals shifted the instantaneous VR curves 

to the right and appeared to increase instantaneous and stop flow Pms by the 

same degree. 

Pinsky stressed some important conditions that needed to be fulfilled for the 

assumptions to be valid. For changes in SVRV and RAP during tidal ventilation 

to accurately reflect venous return, RAP must be the effective downstream 

pressure, and SVRV must proportionally reflect changes in venous return. 

Vascular collapse during the respiratory cycle would introduce a waterfall 

mechanism and dissociate the pressure-flow relationship. In that case, the 

measured RAP would not represent the effective downstream pressure. The 

assumption that SVRV reflects venous blood flow requires heart rate to remain 

constant, and that the relation between preload and SV is independent of the 
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respiratory phase. Pinsky had shown that the only determinant of RV output, 

in the context of small tidal volume positive pressure ventilation, was the RV 

filling pressure. Although venous return was shown to vary during respiration, 

Pinsky concluded that the upstream pressure was essentially constant during 

IPPB: First, the absolute value of SVRV variation was small (<10 mL) in 

relation to the entire high-compliance systemic vascular volume. Second, since 

the time constant for vascular smooth muscle contraction was longer than the 

respiratory cycle, there could be no dynamic response of autonomic or reflex 

mediated control of vascular tone to these changes (89). 

This comment may be a convenient way of disputing possible reflex interaction 

without access to kinetic data for the reflex arch - but it also draw focus away 

from another issue: Do volume shifts between the cardiopulmonary and the 

systemic compartment affect upstream and/or downstream pressures in a way 

that changes venous return driving pressure? The answer should later turn out 

to be ‘yes’, as we showed in Paper II (see sections 4.2 and 5.2). However, this 

does not make Pinsky’s contribution less valuable, but an analysis, already in 

this stage, of the possible impact of positive pressure ventilation on the 

dynamic components of VRdP, might have made the investigators (with whom 

Pinsky collaborated during the following years) less prone to neglect the 

influence of volume state on estimates of MSFP. More problematic was the 

claim that “Volume loading causes a parallel shift of the instantaneous venous 

return curve to the right without significantly changing its slope”. This 

important conclusion was not supported by any quantitative data. The method 

section is devoid of statistics that could test the possible agreement between 

instantaneous Pms and stop flow Pms over changing volume state. 
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1.8.2 THE HEMODYNAMICS OF AIRWAY PRESSURE 
MANEUVERS 

Versprille and Jansen examined the hemodynamic response during inspiratory 

hold procedures described as a cycle length of 12 s with an inspiratory pause 

of 7.2 s (97). The experimental model used piglets with flow measured by 

electromagnetic (EM) flowprobes mounted around the PA and ascending aorta 

(QPA and QAO respectively). End-expiratory QPA was constant during tidal 

ventilation. Central venous pressure (CVP) was increased to varying levels by 

lung inflation to tidal volumes between 25-300 mL applied in random order. 

The PEEP level was kept at 2 cmH2O. During the last 5 s of the inspiratory 

pause, CVP and venous return (measured as QPA) were found to be stable and 

mean values were fitted to a linear equation. As PAW was increased, CVP 

increased concomitantly and QPA fell, “recovering slightly to a plateau during 

the inspiratory hold” (97). With an average delay of 3 beats, aortic flow and 

pressure followed the decrease in RV output. No signs of reflex activation was 

observed during the maneuvers. An average of 7 inspiratory hold procedures 

were applied per animal, and the pressure-flow relation was linear. The zero-

flow extrapolations for the normovolemic animals were (mean ± SD) 10.5 ± 

2.3 mmHg, and were interpreted as representing MSFP. As CVP was 0.8 ± 1.0 

mmHg, VRdP (although not presented in the paper) would have been ~9.7 

mmHg, which is a high value compared with measurement at zero flow. The 

authors comment on the phenomenon of venous loading: “During insufflation 

venous capacitance will be loaded due to the increasing central venous 

pressure, which causes an extra fall in venous return and RV output”. To avoid 

errors in the estimation of MSFP, they recommend measuring pressure and 

flow at “short periods of steady state circumstances”, i.e. at the end of the 

inspiratory pause. The authors argue against Levy by stressing the order of 

events in hemodynamic changes following a step change in airway pressure. 

As the rise in CVP was immediately coupled to a decrease in VR, and the 

decrease in LV output followed after a delay, they showed that, in this moment, 

VR was driven by the pressure difference between MSFP and downstream 

pressure, and not by arterial perfusion pressure. 

Versprille and Jansen continued with two comprehensive studies (96, 98) that 

quantified the effect of increased intrathoracic pressure on VR, CO and 

pulmonary blood flow. Using the same model as above, but also evaluating 

aortic pulse contour cardiac output as a surrogate for invasive flowprobes on 

the left side, they could measure inflow and outflow to the pulmonary 

compartment. Changes in pulmonary blood volume as well as shifts between 

systemic and pulmonary compartments were quantified. A maximal shift of 

blood, amounting to ~1 mL/kg, out from the lungs and into the systemic 
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circulation, was estimated to occur at tidal volumes of 20 mL/kg. An important 

finding was that both QPA and QAO quickly reached steady states during the 

end-expiratory phase of tidal ventilation as well as a few seconds into an 

inspiratory paus. Since one aim of the study was to develop a method of MSFP 

estimation, this finding was reassuring. It is notable that only the first study 

included data sampling over changing blood volumes - and then only during 

tidal breathing. The impact of changing blood volume on the flow recovery 

during inspiratory pauses was not studied. The authors did however note that 

during tidal ventilation, the inspiratory shift of pulmonary blood volume into 

the systemic circulation was significantly lower in hypervolemia than in 

normo- and hypovolemia. There was no definitive explanation for this pattern. 

The finding of a pulmonary blood volume shift affected by the volume state 

should have been a warning sign: the observation that pulmonary and aortic 

flows reach new steady states in the end-inspiratory paus suddenly becomes 

less reassuring for someone with the goal of estimating steady state venous 

return. As we later show (Paper I), the degree of flow recovery turns out to be 

dependent on the underlying volume state. 

In the same period, Pinsky and Vincent published a related study describing 

the effect of positive pressure and PEEP on RV function (83, 85). Apart from 

being valuable descriptions of heart-lung-interactions in a general sense, these 

studies were necessary for the development of airway pressure maneuvers for 

the estimation of MSFP that was to follow. One of many results from these 

studies was a synthesis on how positive pressure insufflation causes a cyclic 

ebb-flood tide of blood volume shifting out from the pulmonary compartment 

and into the systemic compartment during inspiration, and that an overlapping 

similar modulation with higher frequency occur as a consequence of cardiac 

contractions. This is of special relevance for this thesis - in particular papers I, 

II and IV. 
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1.8.3 LOADING OF VENOUS CAPACITANCE 

The previously described method for the construction of a VR curve requires 

a time consuming series of inspiratory pause procedures (IPPs) to several 

levels of PAW. As a possible alternative, den Hartog together with Versprille 

and Jansen, evaluated the performance of a slow inflation procedure (SIP) (25). 

If the instantaneous VR curve of Pinsky used cyclic changes during tidal 

ventilation, the idea with a SIP was to perform a beat-to-beat analysis of QPA 

matched with mean CVP from the previous beat, for all consecutive beats 

falling under a slow increase in PAW. As an increasing backpressure is 

associated with volume loading in upstream vessels, the concept acknowledges 

that each data pair in a SIP will slightly underestimate steady state VR at that 

level of CVP. In a variant of the pig model described above (EM flowprobe 

around the PA, PEEP 2 cmH2O), slow inflation procedures of 2.4, 4.8, 7.2, 9.6, 

and 12 s were performed to tidal volumes of 15 and 30 mL/kg. As a reference, 

MSFP was calculated as the zero-flow extrapolation from linear regression of 

IPPs (inflation time 2.4 s, inspiratory pause 12 s, and expiration during 3.6 s 

with data collected as mean values of the last 5 s; ‘Psf, IPP’) to tidal volumes 

between 0-30 mL/kg. Determination of Psf, IPP was performed at baseline and 

repeated after the SIPs. Psf, IPP = 12.9 ± 1.9 mmHg, and the 95% repeatability 

coefficient was 0.75 mmHg [the least true change detectable with a 95% 

probability (73)]. The result confirmed that use of SIP underestimated MSFP 

as determined with IPP, but this was less pronounced at the longer inflation 

times. At an inflation time of 12 s, mean values from SIP was ~1 mmHg lower 

than the reference method. After fitting an exponential function to the data, the 

theoretical inflation time needed to reduce the difference between Psf, SIP and 

Psf, IPP to ≤0.75 mmHg, was estimated to 18 s. A long inflation time holds the 

additional benefit of including more data points. However, even if the SIP was 

less time consuming than a standard inspiratory hold procedure, an inflation 

time of 18 s could risk reflex activation. If a reliable measure of SVRV would 

become available at the bedside, automated data extraction during slow 

inflation in sedated patients was suggested as a future possibility. 

In my opinion, the merit of the study lies in exploring the mechanisms and 

quantifying the impact of upstream volume loading on the estimation of MSFP. 

It is a pity that the authors already seemed to perceive MSFPinsp_hold as an 

established reference method. If the authors would have included a zero-flow 

reference method and extended the protocol to include changing blood volume, 

the results could have changed the following 15 years of research. 
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1.8.4 TOWARDS CLINICAL APPLICATION 

The final step in validation of the inspiratory hold model for clinical estimation 

of MSFP was to compare the performance of right- and left-sided measures of 

flow during the steady state phase of inspiratory pause. A second objective was 

to determine the effects of reducing the number of airway pressure levels 

included in the estimate. These questions were addressed in an animal 

experiment by Maas (54). In 10 piglets, ventilated at PEEP 2 cmH2O, flow was 

measured with EM probes on the PA and ascending aorta (COr and COl, 

respectively). In addition, flow was estimated by pulse contour cardiac output 

(COpc) from the arterial pressure waveform measured in the aorta (Modelflow 

technique modified for pigs, FMS, Amsterdam, the Netherlands). The relation 

between CVP and flow during inspiratory maneuvers was evaluated twice in 

normovolemia, separated by 50 min. Inspiratory hold maneuvers lasting 12 s 

were applied with tidal volumes between 0-300 mL. Mean values for pressure-

flow data were extracted during the last 5 s of inspiratory pause. An example 

is presented in Figure 10. A total of 133 paired measurements were examined. 

When pooled data taken during tidal ventilation was compared, no difference 

was seen between COr and COl, but small significant differences were found 

between COr and COpc, and COl and COpc respectively. Interestingly, the bias 

between COr and COpc was 0.32 mL×s-1, with limits of agreement (LoA) -1.24 

to 1.88 mL×s-1, compared to a mean of methods of 11.06 mL×s-1. Although not 

reported, this amounts to a percentage error of 28%. All pressure-flow relations 

were highly linear. The zero-flow extrapolations resulted in a Pmsf (COl) = 10.8 

± 1.0 mmHg and Pmsf (COpc) = 10.4 ± 1.1 mmHg. Bias was 0.40 ± 0.48 mmHg 

with LoA -0.56 to 1.35 mmHg. The repeatability coefficients were 0.67 and 

0.63 mmHg respectively. With a CVP of 3.7 ± 0.5 mmHg, VRdP was ~6.7-7.1 

mmHg. 

From a methodological point, comparison between Pmsf (COpc) and Pmsf (COr) 

would have been more appropriate, as the hypothesis was that a left-sided flow 

measurement could be used to assess the right-sided process of venous return. 

To put the method agreement into physiological perspective (my note), a LoA 

of 1.91 mmHg amounts to ~28% of normovolemic VRdP, which is a lot. 

Reducing the number of inspiratory holds performed from 7 to 2 did not appear 

to change the method agreement between Pmsf (COl) and Pmsf (COpc), but data 

supporting this claim was not presented. The authors conclude that MSFP can 

be estimated using changes in CVP and pulse contour cardiac output from 

inspiratory hold maneuvers to 3-4 levels of airway pressure. Left without 

comment is the obvious difference in early phase inspiratory hold flow 

restoration between the PA and aorta that can be seen in Figure 10. A dynamic 

decrease and restoration can be observed in the PA (see also Figure 18), with 
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considerable less action visible on the left side. This phenomenon was 

described in section 1.8.2 and is associated with volume shift from the 

cardiopulmonary compartment to the systemic compartment, with the potential 

to affect the estimation of MSFP.  

Figure 10 – Effects of an inspiratory hold on aortic pressure (Pao), central venous pressure (Pcv), 

airway pressure (Pt) and beat-to-beat cardiac output (CO) with a probe around the pulmonary 

artery (COr), around the aorta (COl) and by pulse contour analysis (COpc). Preceding the hold, 

the effects of a normal respiratory cycle are plotted. From Maas (54). Note the difference in 

beat-to-beat changes in flow as measured by COr and COl or COpc – especially during the first 

2 s of increasing Pt. Reproduced with permission from Springer Nature. 
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1.8.5 INSPIRATORY HOLD MANEUVERS IN THE ICU 
The first patient study on the technique was published 2009 by Maas and co-

workers (55). The study included 12 sedated and mechanically ventilated 

patients after cardiac surgery. Flow was measured as pulse contour cardiac 

output (Modelflow, FMS, Amsterdam, the Netherlands), and CVP was 

measured with a central venous catheter. The method assumes that changes in 

VR is transmitted to the left side, and that a new steady state can be measured 

during the last 3 s of a 12 s inspiratory hold (Figure 11). Central venous 

pressure was increased by inspiratory hold maneuvers to airway plateau 

pressures of 5, 15, 25 and 35 cmH2O, separated by 1 min intervals (PEEP levels 

were not reported). A linear equation was fitted to mean values of CVP and 

CO from the four levels, and MSFP was estimated by extrapolation to zero 

flow. The inspiratory hold maneuvers were performed under three volume 

Figure 11 - Effects of an inspiratory hold maneuver on arterial pressure (Pa), central venous 

pressure (Pcv), airway pressure (Pvent), and beat-to-beat cardiac output (COmf). Preceding the 

hold maneuver, the effects of tidal ventilation can be seen. From Maas (55). Reproduced with 

permission from Wolters Kluwer. 
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states: baseline, in relative hypovolemia induced by anti-Trendelenburg tilt, 

and after volume expansion with 500 mL of hydroxyethyl starch 

(hypervolemia). The effects of an inspiratory hold maneuver and examples of 

VR curves for one individual can be seen in Figures 11-12. Pmsf was 18.8 ± 4.5, 

14.5 ± 3.0, and 29.1 ± 5.2 mmHg at baseline, hypovolemia and hypervolemia, 

respectively. CVP at baseline was 6.7 ± 2.3 mmHg, and the resulting VRdP 

(with changing CVP and MSFP over volume states) was 12.0 ± 3.7, 10.5 ± 2.3, 

and 19.4 ± 6.9 mmHg, at baseline, hypovolemia and hypervolemia, 

respectively. This is surprisingly high compared to VRdP of ~ 7 mmHg, 

obtained with the same technique in the porcine model described above, but is 

left without comment in the paper. When compared to the estimated values of 

VRdP ~ 4-4.5 mmHg from the ICD studies of Jellinek and Schipke, the VRdP 

estimated with the inspiratory hold method is remarkably high. The authors 

still conclude this to reflect the true volume status in postoperative patients. 

 

Figure 12 – Relationship between venous return (COmf) and central venous 

pressure (Pcv) for an individual patient. Venous return curves are plotted for three 

conditions: baseline (a), hypovolemia (b), and hypervolemia (c). From Maas (55). 

Reproduced with permission from Wolters Kluwer.  
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1.9 THE IMPACT OF AIRWAY PRESSURE ON 
ZERO-FLOW PRESSURES 

1.9.1 THE EFFECT OF PEEP 

The use of positive end-expiratory pressure (PEEP) as an adjunct to ventilator 

therapy is associated with a decrease in CO. The main effect was first thought 

to be a decrease in venous return driving pressure caused by the elevated RAP. 

Fessler showed that PEEP did increased RAP, with an associated decrease in 

flow and arterial pressure (30). However, within a minute, VRdP had been 

restored by a compensatory increase in MSFP. The fact that VR still was 

decreased compared to the situation with zero PEEP, was explained by an 

increase in the resistance to venous return (RVR). The alternative explanation 

was that the increase in PEEP level was associated with development of 

vascular waterfalls that decoupled RAP from VR, so that the effective 

backpressure was exerted further upstream from the RA. This would mean that 

true VRdP was decreased. 

Fessler’s study included three groups of six anesthetized dogs each, all 

ventilated with tidal volumes of 15 mL/kg. All animals were examined at PEEP 

levels of 0 and 15 cmH2O. Cardiac output was measured by thermodilution and 

MSFP was determined at zero flow induced by ventricular fibrillation 

(unassisted AV equilibration and no correction factor used). The effect of 

increased and decreased abdominal pressure was studied by binding the 

abdomen, or exposing the exteriorized intestines to atmospheric pressure, 

respectively. In the first group, cardiovascular reflexes were left intact. In the 

second, group the reflex arch was cut by carotid sinus and vagal denervation 

(CSV), and in the third group total spinal anaesthesia was induced and arterial 

pressure restored by infusion of epinephrine (SAE). With intact reflexes, 

altering the abdominal pressure had no effect on the rise in MSFP during PEEP. 

CSV attenuated the rise in MSFP by 17% and SAE did so by 49%. The 

conclusion was that the PEEP-associated increase of MSFP was caused by both 

reflex mediated changes in vascular capacity, and mechanical effects of central 

to peripheral translocation of blood. Stated differently, the initial fall in arterial 

pressure caused by the added PEEP led to activation of the sympathetic 

nervous system. The resulting vasoconstriction decreased vascular 

capacitance, recruited stressed volume (Vs) and thereby increased MSFP. 

Importantly, more than 50% of the increase in MSFP was unrelated to reflex 

activation: simply pressurizing the thorax led to a shift of blood volume to the 

periphery. A shift of volume from regions of high compliance to low 

compliance will increase stressed volume and MSFP, even if the capacitance 

is unchanged. 
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Fessler verified the results of increased RVR on PEEP in a bypass experiment 

where VR was uncoupled from cardiac function at PEEP levels of 0 and 10 

cmH2O (29). PEEP increased the backpressure for VR in both SVC and IVC 

circulations, and in SVC, it also decreased venous conductance. 

Nanas and Magder studied the effect of increasing PEEP from 0-10 and 10-20 

cmH2O in 13 splenectomised dogs, with tidal volumes (TV) 12-15 mL/kg. 

MCFP was determined at zero flow induced by right atrial balloon occlusion 

(unassisted AV equilibration and no correction factor used). The ventilator was 

turned off while the RA balloon was inflated, but it was not specified if this 

was done in a defined phase of the respiratory cycle. The impact of airway 

pressure on the measured MSFP is therefore unclear. Blood volume (BV) was 

estimated with Evans blue dye dilution technique. Vascular compliance (Cvasc) 

was determined in 3-point pressure-volume plots (P-V plots or elastance 

curves) where MCFP was determined immediately after blood volume 

expansion in two steps (adding 4 and 8 mL/kg blood from donor dogs). 

Increasing levels of PEEP increased CVP and decreased CO, with VRdP 

preserved (at ~ 8 mmHg) by concomitant increases in MCFP. At PEEP levels 

10 and 20 cmH2O, the elastance curve was shifted to the left (slope 

unchanged). Since the blood volume was stable, this implied recruitment of Vs. 
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1.9.2 THE EFFECT OF POSITIVE PRESSURE VS. 
SPONTANEOUS BREATHING 

Chihara studied the effect of spontaneous vs. intermittent positive pressure 

ventilation (IPPV) on MSFP and VRdP in rats (21). MSFP was determined by 

RA balloon occlusion with a correction factor of AV compliance ratio used to 

adjust for incomplete pressure equilibration. CO was determined by trans-

pulmonary thermodilution and BV was determined by dilution of 51Cr-labeled 

erythrocytes. Three groups of tracheotomised animals under anaesthesia were 

studied in the transition from spontaneous to controlled ventilation at zero 

PEEP and TV 15 mL/kg. CVP increased (0.7 ± 1.3 vs. 3.2 ± 1.2 mmHg), and 

CO decreased when IPPV was started. MSFP increased from 7.1 ± 1.2 to 8.6 

± 1.1 mmHg and VRdP decreased from 6.4 ± 1.1 to 5.4 ± 0.9 mmHg (all data 

as mean ± SD). Total peripheral resistance (TPR) increased but RVR was 

unchanged. IPPV caused a parallel shift of the VR curve to the right. 

Maintained arterial pressure in spite of decreased CO (i.e. increased TPR) 

indicated vasoconstriction by activation of the sympathetic nervous system. 

Cvasc and BV were unchanged between ventilation modes and therefore Vs had 

been recruited. Vasoconstriction and central-to-peripheral volume shift were 

thought to have increased MSFP. As the increased intra-thoracic pressure 

associated with positive pressure ventilation is also transmitted to the 

abdominal compartment (14, 30), the blood would be shifted preferentially to 

extra-abdominal regions of the systemic compartment, where vascular 

compliance is low (21). 

To summarize so far, Versprille quantified the dynamic central-to-peripheral 

volume shifts during tidal ventilation and found them to have negligible effects 

on upstream pressure (96, 97). The findings of Fessler, Nanas and Chihara (21, 

30, 71) all showed that a sustained increase in PAW was associated with 

increases in both downstream pressure (RAP) and upstream pressure – i.e. 

stressed volume and MSFP. Part of that increase was mechanical in nature, 

related to volume shifts from the central compartment to the periphery. 

Importantly, the increase from volume displacement was unrelated to reflex 

activation and most likely effective immediately. This is supported by the 

finding of Jellinek, where an inspiratory hold started 5 s prior to the FDS 

resulted in an increase of MCFP by 1.2 mmHg. This has implications for the 

estimation of MSFP by airway pressure maneuvers. 
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1.9.3 THE EFFECT OF IMMEDIATE CHANGES IN 
AIRWAY PRESSURE 

In 2017 (just after Paper II of this thesis was submitted), Repessé published a 

study on the impact of positive pressure ventilation on MCFP. Right atrial and 

mean arterial pressures were measured in 112 critically ill patients, within one 

minute after death, while still on mechanical ventilation (Figure 13). Data 

representing end-expiration and inspiration, on and off PEEP (8.2 ± 2.6 vs. 0 

cmH2O) was recorded and extracted off-line. Off ventilator, the RAP 

(representing MCFP), was ~ 10 mmHg. Tidal ventilation (6.6 ± 1.6 mL/kg) 

increased RAP by 2.4 mmHg, and the (acute) application of PEEP increased 

RAP by 1.2 mmHg. Since no time was allowed for the possibly intact reflexes 

to act, only mechanical effects on stressed volume could explain the 

documented changes in vascular pressures. Therefore, what the authors 

actually investigated was the impact on zero-flow pressure of four levels of 

acutely changing PAW, rather than two levels of PEEP levels with 

superimposed tidal inflations, in the sense understood by Fessler or Nanas. 

Although the absolute value of MCFP has to be interpreted in context of a 

mixed population of critically ill patients just after death, the effect of changing 

PAW on MCFP was reproduced. 

Figure 13 – Illustration of the design of the study with the different experimental conditions 

along a time scale. Tidal ventilation and PEEP induced increases in arterial (Part) and central 

venous (Pra) pressures. The continuous vertical line represents the cursor for measurement 

during inspiration and the dotted vertical line the cursor for measurement during end-

expiration. From Repessé (86). Reproduced with permission from the American Physiological 

Society. 
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1.10 DYNAMIC ANALOGUE OF STATIC FILLING 
PRESSURE 

Parkin and Leaning developed a dynamic analogue of MSFP for the intended 

use within a clinical decision support system (76-78). It is based on a two-

compartment model of the systemic circulation. It is not related to any 

intervention on the patient and therefore does not interfere with the system 

under examination. The underlying static (or zero-flow) systemic filling 

pressure is calculated from the prevailing (dynamic) steady state values of 

RAP, MAP and CO, in the running circulation. Assuming that normal 

venoarterial compliance ratio is 24:1, the dynamic analogue of systemic filling 

pressure (Pmsa) is calculated as: 

Pmsa = 0.96×RAP+0.04×MAP+c×CO (4) 

where ‘c’ is 0.96×Rv, and Rv=resistance in the venous compartment. The factor 

‘c’ has the dimensions of resistance and scales the flow component of Pmsa to 

fit the subject. By assuming that the normal arteriovenous resistance ratio is 

25:1, Rv is estimated as SVR / (25+1), using normal values for age-dependent 

MAP and age- and size-dependent CO. As a consequence, ‘c’ varies between 

~0.3 in a large young patient to ~1.2 in a small, elderly patient. A normal Pmsa 

for a young healthy person with a c=0.5 mmHg×min×L-1, a RAP of 0 mmHg, 

a MAP of 100 mmHg and a CO of 6 L×min-1 would be: 

Pmsa = 0.96×0+0.04×100+0.5×6 = 0+4+3 = 7 mmHg (5) 

In clinical use, ‘c’ is calculated once for each patient and the continuously 

updated Pmsa, incorporating the changing values of RAP, MAP and CO, relies 

on the assumption that true Rv remains constant. Pmsa therefore is a composite 

variable, where the true and unknown values of MSFP and Rv are combined 

and presented as an ‘effective upstream filling pressure’. It reflects clinical 

reality where, based on the available central hemodynamics, it is impossible to 

distinguish a falling VR caused by increased Rv and preserved MSFP, from a 

falling VR caused by unchanged Rv and decreased MSFP (e.g. “is the surgeon 

compressing the vena cava, or is the patient hypovolemic?”). 

A derived variable of global heart efficiency can be calculated from Pmsa as: 

Eh = (Pmsa-RAP)/Pmsa  (6) 

Eh is a dimensionless number between 1 and 0, that quantifies the heart’s ability 

to keep RAP low in respect to the upstream pressure. In the clinical decision 
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support system, anthropometric data is entered together with the desired goals 

for MAP and CO. At any time point, the patient’s current position in relation 

to the set target is presented on a screen and provides a graphic guide to the 

interpretation of the inotropic, resistive and volumetric state of the circulation. 

The model was tested in a closed-loop control of fluid replacement to ten 

patients receiving continuous haemodiafiltration (75). Pmsa was continuously 

calculated using cardiovascular variables acquired from the bedside monitors, 

and compared to a target value. A computer-controlled clamp, where the input 

signal was the difference between current and target values of Pmsa, guided 

gravitational fluid replacement to the dialysis circuit. Closed-loop fluid 

replacement was associated with hemodynamic stability and considered safe. 

Gupta assessed the response to fluid boluses in 61 cardiac postsurgical patients, 

mechanically ventilated (PEEP 5 cmH2O and TV 6-8 mL/kg) and CO 

measured by thermodilution in triplicate (38). For both responders (defined as 

an increase in CO ≥10%) and non-responders, baseline RAP was 11 ± 4 mmHg 

and Pmsa was 17 ± 3.7 and 17 ± 3.6 mmHg respectively. VRdP was 5.7 ± 0.8 

and 6.6 ± 1.1 mmHg and CO 4.4 ± 0.9 and 5.6 ± 1.6 L×min-1 respectively. 

Although not commented on in the paper, the values for RAP are clearly 

pathological, but for this group of patients together with an acceptable CO, it 

represents a common postoperative finding. The combination of surgical 

trauma, perioperative volume treatment, mechanical ventilation with PEEP 

and an unspecified amount of temporarily decreased heart function commonly 

presents with an increased RAP. In the calculation, RAP will always affect Pmsa 

by a factor 0.96. Importantly, VRdP is in the range of what can be expected 

from human data reported by Jellinek and Schipke (4-4.5 mmHg), and invasive 

animal data from Fessler (~4 mmHg) and Nanas (~8 mmHg) (30, 46, 71, 90). 
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1.11 TRANSIENT STOP-FLOW – THE ARM-
OCCLUSION TECHNIQUE 

If the circulation in the arm could be immediately isolated from the remaining 

body by means of a rapidly inflating tourniquet, the vascular pressures within 

the arm would equilibrate to MSFP. The vascular compartments of the arm 

must behave like an integral part of the total systemic compartment, and since 

pumps do not separate them, their equilibrated pressures must be equal. Per 

definition, if the zero-flow pressures would not be the same, the arm and the 

remaining systemic circulation would not have been in equilibrium prior to the 

inflation, but rather in the midst of volume shift, expanding or decreasing the 

total volume of the arm. The technique, as described by Anderson and Pang 

(2, 74), requires the use of a narrow blood pressure cuff, in order to avoid 

displacement of blood volume distally into the arm. The pressures measured in 

the radial artery and a peripheral vein can be seen to equilibrate within 30 s 

(Parm) (Figure 14). Persistent flow via incompletely occluded vessels will affect 

the measurement. 

The method has been tested by Maas and Geerts (33, 56, 58), and its precision 

was evaluated by Aya (5). The later study included 23 patients following 

cardiac surgery (mechanically ventilated with TV 7 ± 2 mL/kg at PEEP 5 ± 1 

Figure 14 - Radial artery pressure and peripheral venous pressure 

during the course of occlusion of the upper arm of a patient. The effect 

of mechanical ventilation on both pressures can be seen before and after 

occlusion. From Maas (58). Reproduced under the terms of Creative 

Commons Attribution License. 
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cm H2O). Mean CVP was 11.1 ± 2.9 mmHg. Mean Parm was 22.4 ± 7.7 mmHg. 

Although not reported, the group mean VRdP would have been ~11 mmHg. 

The least significant change (LSC, equivalent to 95% repeatability coefficient) 

was reported as 14% or 6.2 mmHg. If four measurements were averaged, the 

LSC was still 3 mmHg, corresponding to 27% of the reported VRdP. With such 

low precision the method becomes practically useless. 

In the study by Geerts, 24 postoperative cardiac surgery patients under 

mechanical ventilation (PEEP 5 cm H2O, TV 8-10 mL/kg) received a fluid 

bolus of 500 mL of hydroxyethyl starch. If CO (as measured by Modelflow, 

FMS, Amsterdam, the Netherlands) increased >10%, the patient was classified 

as a responder. Responders (n=17) had baseline values of RAP 8.6 ± 2.6 

mmHg, CO 5.1 ± 1.3 L×min-1, and Parm 16.2 ± 6.3 mmHg. Although not 

reported, the group average VRdP would have been 7.5 mmHg. Only seven 

patients were non-responders with baseline values of RAP 9.9 ± 2.5 mmHg, 

Parm 24.3± 8.2 mmHg, and CO 5.5 ± 1.3 L×min-1. The group average VRdP 

would be ~14 mmHg. After fluid infusion, non-responders had a mean Parm 

~30 mmHg. 

The combination of un-physiologically high values of VRdP and a low 

precision raise serious concerns regarding the method. Judging from the results 

presented here, the method in its current form does not qualify for clinical use. 
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1.12 METHOD COMPARISON IN CLINICAL 
POPULATION 

In a very illustrative study, Maas compared the estimation of MSFP in 

postoperative cardiac surgery patients with three methods (58). Eleven 

mechanically ventilated patients (the same settings as in Geerts above) were 

examined at baseline, at 30º head up tilt (HUT), and after volume loading with 

500 mL of colloid (VOL). Estimation of MSFP was done with inspiratory hold 

to four levels (Pmsf), by arm occlusion (Parm), and with the dynamic analogue 

of Parkin (Pmsa). The study design focused on assessment of method agreement 

and did not report VRdP. Hemodynamic variables, MSFP and VRdP are 

compiled in Table 1. VRdP has been calculated from group means of MSFP 

and CVP.  

 Baseline HUT VOL 

 
 

VRdP 

(mmHg) 
 

VRdP 

(mmHg) 
 

VRdP 

(mmHg) 

Pcv (mmHg) 7.1 ± 2.0  4.4 ± 1.8  10.4 ± 1.3  

CO (L×min-1) 5.8 ± 1.6  4.8 ± 1.2  7.0 ± 1.7  

Pmsf (mmHg) 19.7 ± 3.9 ~12.6 16.2 ± 3.0 ~11.8 28.3 ± 4.0 ~17.9 

Parm (mmHg) 18.4 ± 3.7 ~11.3 15.4 ± 3.1 ~11.0 27.1 ± 4.0 ~16.7 

Pmsa (mmHg) 14.7 ± 2.7 ~7.6 10.9 ± 2.0 ~6.5 19.2 ± 1.1 ~8.8 

 

Table 1 – Hemodynamic variables, MSFP and venous return driving pressure for three volume 

states. Table compiled with data from Maas (58). Venous return driving pressures (VRdP) was 

not reported in the original study, but calculated from mean values of MSFP and CVP. 

The authors conclude that Pmsf and Parm are interchangeable and that changes 

in volume status are similarly tracked by all three methods. They also conclude 

that the absolute difference between Pmsf and Parm of – 1.0 ± 3.1 mmHg was not 

clinically relevant, even though the LoA was -7.3 to 5.2 mmHg. The authors 

do not comment on the fact that Pmsf and Parm produce values of MSFP far 

above what was found by Jellinek and Schipke in patients at zero flow. The 

related driving pressures for venous return either suggest a state of 

hyperdynamic circulation, or a remarkably high resistance to flow. In contrast, 
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the Parkin dynamic analogue reports reasonable estimations of both MSFP and 

VRdP, when compared to animal and invasive human data. What is lacking is 

a discussion regarding the intended use of the measured MSFP. Without this, 

the result from the method comparison cannot be interpreted. What is clinically 

relevant? In our Paper IV we chose to define a desirable method agreement as 

≤10% of euvolemic VRdP. This corresponds to a 10% change in flow which 

is a commonly used threshold for evaluation of hemodynamic response from 

volume expansion. 

In a systematic review of 17 prospective cohort studies, published in 2018 

(before study III of this thesis was submitted), Wijnberge (103) characterized 

the three clinically used methods for estimation of MCFP: Pmcf hold, Pmcf arm 

(=Parm), and Pmcf analogue (=Pmsa). Pmcf hold ranged from 14-33 mmHg. The 

authors conclude Pmcf “to accurately follow intravascular fluid administration 

and vascular compliance following drug-induced hemodynamic changes”. 

Since none of the three methods were compared to a zero-flow reference, 

accuracy was actually not assessed at all. All estimates however increased and 

decreased as could be expected from the hemodynamic interventions. The 

authors called for studies to determine cut-off values to allow MCFP to trigger 

therapeutic interventions, as well as to determine its clinical value. 
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1.13 SUMMARY – FROM GUYTON TO THE ICU 

 Mean systemic filling pressure (MSFP) is a function of blood 

volume and the size and stiffness of the vasculature. 

 MSFP can be measured at zero flow. 

 In Guyton’s cardiovascular model, venous return is driven by 

the pressure difference between MSFP and right atrial 

pressure (RAP). 

 Fundamental critique of the concept remains, and the 

controversy has not been resolved in ongoing theoretical 

debate. The main objection concerns whether RAP exerts 

active backpressure for venous return, or if it should only be 

seen as a consequence of the volume redistributive work of 

the heart. A second matter of conflict is whether Guyton’s 

model should be confined to a descriptive role for steady 

states, or if it can be applied to changing conditions. 

 At zero-flow measurement, a remaining arteriovenous 

pressure difference reflects an incomplete equilibration. 

Assisted volume transfer confers only a marginal further 

increase in venous pressure, which is explained by the relative 

compliances of the arterial and venous compartments. 

 An extensive series of experimental work has led to the 

development of a method for estimation of MSFP by zero-

flow extrapolation from inspiratory hold maneuvers 

(MSFPinsp_hold). This method has been used in several clinical 

studies on postcardiac surgery patients and general ICU 

patients, including those with septic shock. 

 MSFP can be estimated in patients using an arm-occlusion 

technique (Parm). 

 A dynamic pressure analogue of MSFP (Pmsa) can be 

calculated from mean values of RAP, MAP and CO measured 

with running circulation.  

 Application of PEEP leads to an increase in MSFP, involving 

activation of cardiovascular reflexes, and a shift of central 

blood volume into the systemic compartment. Conflicting 

results exist whether the PEEP-associated decrease in venous 

return is primarily caused by a decreased driving pressure for 

venous return (VRdP), or an increase in resistance to VR. 

 Since acute changes in airway pressure are transmitted to 

vascular pressures and cause volume shifts, they affect 

MSFP. 
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 The range of values from MSFPinsp_hold maneuvers and Parm 

occlusion techniques considerably exceeds that which can be 

expected based on animal data and zero-flow measurements 

in patients undergoing ICD testing. 

 Values of MSFP estimated using the dynamic analogue Pmsa 

are in the same range as data from patients undergoing ICD 

testing, but also include higher values in volume loaded 

postoperative patients. 
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2 AIM 

The venous return physiology of Guyton has been introduced into clinical 

research, with interesting albeit sometimes unexpected results. At the same 

time, the underlying physiology with possible interaction between airway 

pressure maneuvers and stressed volume, is partly unexplored. Fundamental 

controversies regarding the determinants of venous return are still unresolved. 

Many of the remaining questions can only be addressed with direct access to 

zero-flow measurements of MSFP, which requires experimental animal 

models. Since the concept of MSFP was brought from Guyton’s physiology 

laboratory into the ICU, the overall aim of the studies included in this thesis, 

was to bring it back to the lab again. 

2.1 MSFP – FROM GUYTON TO THE ICU, AND 
BACK AGAIN 

Paper I addresses the following questions: 

 Do changes in PEEP, volume status, and tidal breaths alter 

MSFP and the slope of the venous return curve? 

 Does MSFP estimated by inspiratory hold maneuvers 

correspond to MSFP measured at zero-flow caused by right 

atrial occlusion? 

 Do inspiratory hold maneuvers per se modify the 

hemodynamic variables of the venous return function? If they 

do, are these responses dependent on PEEP level and/or 

volume status? 

Paper II addresses the following questions: 

 If all technical and design issues of Guyton’s original 

experiments, highlighted in the ongoing debate, are addressed 

- can RAP be experimentally proven to act as backpressure 

for venous return? 

 Guyton’s cardiovascular model was formulated for steady 

state. Temporary imbalance between venous return and 

cardiac output is associated with volume shifts. Which 

qualitative and/or quantitative modifications are necessary for 

the model to be applicable during dynamic transition from 

one steady state to the next?  
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Paper III addresses the following questions: 

 In severe cardiorespiratory failure, venoarterial 

extracorporeal membrane oxygenation (VA-ECMO) can be 

lifesaving. Volume expansion is the most common means to 

increase a clinically inadequate flow, but positive fluid 

balance is associated with worsening prognosis. As an 

alternative to volume expansion, can stressed volume be 

increased by vasoconstriction, to augment driving pressure 

for venous return and thereby increase maximum ECMO 

flow? 

Paper IV addresses the following questions: 

 MSFP estimated by inspiratory hold maneuvers 

overestimated MSFP measured during right atrial balloon 

occlusion in euvolemic conditions, but not in hypervolemia 

or after bleeding. This was explained by different degrees of 

flow restoration during the static increase in airway pressure. 

Could the method agreement be improved if the inspiratory 

hold technique is modified to minimise the impact of flow 

restoration, using instantaneous VR curves and zero-flow 

extrapolation from nadir flow data-pairs? 

 The dynamic model analogue of static filling pressure Pmsa is 

non-interventional. We adapted the model for use in pigs. 

What is the method agreement vs. MSFP estimated with right 

atrial balloon occlusion over changing volume state? 
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3 METHODS 

Condensed detailed descriptions of the experimental methods can be found in 

the Method sections of Papers I-IV, respectively. The purpose of the following 

section is to give a general orientation of the methods used, and provide 

comparisons of experimental techniques between sub-studies. 

3.1 ETHICAL CONSIDERATIONS 

The four papers included in this thesis are based on three series of animal 

experiments, all performed in the Experimental Surgery Unit, Department of 

Clinical Research, University of Bern (Bern, Switzerland). The studies 

complied with the Guide for the Care and Use of Laboratory Animals (USA, 

1996) and were approved by the Commission of Animal Experimentation of 

Canton Bern (Bern, Switzerland) (BE7114, BE8315, and BE1617). Results are 

reported according to the ARRIVE Guidelines (1). We used a total of 38 

domestic pigs from a trusted local farmer. The first two-three animals in each 

series were used in pilot studies to establish the instrumentation and confirm 

feasibility of the procedures. The animals (females and castrated males) 

weighed ~40 kg, at twelve weeks of age. They were brought to the Animal 

Hospital of the University of Bern for a three-day quarantine under veterinary 

observation. After fasting 12 h with free access to water, one animal per day 

of experiment was delivered to the Experimental Surgery Unit (‘ESI’) into the 

care of a veterinary assisted by properly trained study personnel. 

The animals were premedicated with intramuscular ketamine and xylazine, 

followed by establishment of vascular access via a peripheral vein in the ear. 

Anaesthesia was induced intravenously using midazolam and atropine, and 

maintained with infusions of propofol and fentanyl. Adequate depth of 

anaesthesia was checked at regular intervals, by examining the response to a 

standardized nose pinch. As an additional means of monitoring (Paper III), we 

targeted a bispectral index <60 (BIS Quatro, Covidien, Mansfield, MA, USA). 

If necessary, additional injections of fentanyl and/or midazolam were given 

before muscle relaxation was induced with rocuronium. At the end of study 

measurements, the animals were killed in deep anaesthesia by injecting 

potassium-chloride (experimental series reported in Paper I and IV) or by 

withdrawal of the ECMO support (Papers II-III). 

In order to test the hypotheses in question, the experimental model had to be 

based on repeated episodes of circulatory arrest. To study the dynamic 

response to airway pressure maneuvers, venous and arterial flows were 
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measured invasively with high fidelity perivascular probes. In experimental 

series II and III, venoarterial ECMO was established and the native circulation 

was interrupted by ligation of the pulmonary artery, or by inducing ventricular 

fibrillation, respectively. For obvious reasons, human testing was not an 

option. Computer modelling, although highly valuable within the research 

field, could likely not simulate the complex and desired reflex modulation 

associated with changing PEEP levels and blood volume. Rodent models were 

not considered feasible due to the small size and incompatibility to available 

extracorporeal devices. A porcine model was a suitable compromise for several 

reasons, including existing experience within the research group. Translating 

the findings into human context was not expected to be problematic. Finally, 

power calculations were performed to estimate a reasonable sample size (see 

further in section 3.11). The resulting data sets have proved to be of high 

quality and will likely allow further hypotheses to be tested in separate papers. 

Overall, the principles of replacement, refinement or reduction (the 3Rs) have 

been honoured. 
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3.2 MEASUREMENTS AND DATA 
ACQUISITION 

Flow was measured using appropriately sized ultrasonic transit time 

flowprobes, mounted around individual vessels and on the ECMO reperfusion 

tubing (PAU and ME9 PXL Tubing sensors, respectively; Transonic, Ithaca, 

NY, USA). Flowprobes around the superior and inferior vena cava (SVC and 

IVC) were positioned as close to the right atrium as possible, downstream of 

the vena azygos when this vessel could be identified. For the size of animals 

used (~40 kg), the IVC required a probe size of 16-20 mm, the SVC 14-16 mm, 

the pulmonary artery (PA) 16 mm, and the descending (intrathoracic) aorta 14-

16 mm. An ascending aortic flowprobe position was not possible due to 

interference with the arterial reperfusion cannula. A 12×20 mm balloon 

catheter (Tyshak II, Numed, Canada) was fixed in the pericardium at the level 

of the right atrium. An oesophageal balloon catheter (Sidam, Mirandola, Italy) 

was orally inserted. A cystostomy was established to drain the urinary bladder. 

Intravascular, oesophageal, pericardial and airway pressures were measured 

using transducers (xtrans, Codan Medical, Lensahn, Germany) and a modular 

multiparameter monitor (S/5 Critical Care Monitor, Datex-Ohmeda, GE 

Healthcare, Helsinki, Finland), also displaying ECG, peripheral oxygen 

saturation and end-tidal carbon CO2. Correct positions of the pericardial and 

oesophageal balloons were confirmed by chest compression during an 

expiratory hold (84). Transmural caval pressures were calculated as [Pcaval_vein–

Poesophagus], and transmural right atrial pressure as [RAP–Ppericard]. Since the 

reliability for the absolute values of oesophageal and pericardial pressures are 

notorious, we use instead the change in transmural pressures between 

conditions (10, 36, 37). Mixed venous blood gases were sampled via the 

venous drainage tubing in the ECMO experiments (series II-III). Arterial 

pressure and blood gases were measured via a catheter in the right carotid 

artery, with the tip advanced to the aortic arch. Blood gases were analysed on 

a standard bedside monitor (ABL90 Flex, Radiometer Medical, Brønshøj, 

Denmark) while haematocrit was analysed separately in an assay suitable for 

pig blood (Clinical laboratory of the Animal Hospital, University of Bern). 

The output from pressure transducers and flowmeters were recorded at 100 Hz 

using a data-acquisition system (LabVIEW, National Instruments, Austin, TX, 

USA). Offline processing was done using a customized analysis software 

(Soleasy, Alea Solutions, Zürich, Switzerland). The correct position of the tip 

of the catheter used for measuring RAP was verified either by lateral-lateral 

fluoroscopy, or manually by the surgeon during open chest procedures. The 

level of the RA was marked on the external aspect of the chest. Pressure 
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transducers and the level of the venous inlet port of the ECMO (series II-III) 

were vertically aligned to the RA using a spirit level. 

Pressure transducers were zeroed and two-point calibrated against atmospheric 

pressure and a U-manometer. Flowmeters were zeroed and calibrated 

electronically before the study measurements. Baseline drift for both pressures 

and flows was checked at the end of the experiment. During experimental 

series II-III (ECMO setup, Papers II-III), duplicate transducers connected to 

the same catheter lumen were used to measure RAP. If relevant baseline drift 

was noted in the offline analysis, the channel with least signal drift was chosen. 

The recorded data sets were corrected for offset and scale factors prior to 

analysis. 
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3.3 ZERO-FLOW MEASUREMENTS 

3.3.1 RIGHT ATRIAL BALLOON OCCLUSION 

In the first experimental series (Paper I), we used the technique of right atrial 

balloon occlusion (RAO) as a means to induce reversible circulatory arrest, as 

described by Ogilvie [section 1.6 and reference (72)]. Via an introducer sheath 

in the right femoral vein, a catheter with a 50×34 mm inflatable high 

compliance balloon was advanced to a position distal to the IVC flowprobe 

(Amplatzer sizing balloon, St. Jude Medical, St. Paul, MN, USA). At the time 

of zero-flow measurement, the catheter was advanced further, under 

fluoroscopic control, to lie within the right atrium (RA). To measure MSFPRAO, 

the balloon was filled with a mixture of radiocontrast and saline with the 

ventilator in expiratory hold. Circulatory arrest was confirmed as PA flow 

dropped to zero. Rapid pressure equilibration followed and central venous 

pressures reached a clear plateau (Figure 15). To avoid possible interference 

between the catheter for RAP measurement and the balloon, MSFPRAO was 

taken as the mean value of SVC and IVC pressures during 3 s of venous plateau 

pressure. The effects of sympathetic activation was seen as a secondary sharp 

increase in all vascular pressures. The venous pressure plateau was reached 

around 9 s after balloon occlusion and always prior to reflex activation. Since 

both ventricles continued to beat, volume was shifted between the 

Figure 15 – Right atrial balloon occlusion. The arrow marks balloon inflation. MSFP was taken 

as the mean value of pressures in superior and inferior vena cava during 3 s of venous pressure 

plateau. The effects of sympathetic activation can be seen as a secondary increase in pressures 

~10 s later. From Paper I. 
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cardiopulmonary and systemic vascular compartments, as well as within the 

systemic compartment (as arteries emptied into venous vessel beds). After 

deflation of the balloon, hemodynamics quickly normalised. At least 3 min 

were given for heart rate and arterial blood pressure to return to baseline levels. 

The remaining arteriovenous pressure difference at the time of MSFP 

measurement was (n=43, all volume states, mean ± SD) 10.8 ± 5.4 mmHg, 

ranging from 0 to 22 mmHg. This represents an almost full equilibrium as the 

remaining AV pressure differences in the experiments of Ogilvie (72) and 

Jellinek (46) were 22 and 18-20 mmHg respectively. Based on his and 

supported by the study of Green (35), we did not apply any correction factor. 
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3.3.2 VENOARTERIAL BYPASS AND LIGATED 
PULMONARY ARTERY 

In the second experimental series, we wished to examine the determinants of 

venous return excluding any interference from cardiac factors. The 

experimental setup was that of a closed-chest venoarterial, total heart-bypass 

model, with ligated pulmonary artery. The ventilator was not used for gas 

exchange, but as a means of controlling the intrathoracic pressure. The heart 

was still beating, but the circulation was fully dependent on extracorporeal 

membrane oxygenation (ECMO). We used a conventional venoarterial ECMO 

circuit (Cardiohelp, HLS Set Advanced 5.0, Maquet, Rastatt, Germany) with 

an added arteriovenous shunt between the arterial and venous tubing (see 

Figure 16). The shunt was kept closed with a clamp. Venous return was drained 

through a right-angle metal tip 28 Fr venous cannula, and the arterialised blood 

was reperfused thru a wire-reinforced 18 Fr arterial cannula (Medtronic, 

Minneapolis, MN, USA). The ECMO unit generated non-pulsatile flow by use 

of a centrifugal pump. Venous pulsations were still visible since the 

contracting right ventricle affected RAP - in many animals also with signs of 

tricuspid regurgitation. Flow mas measured in the SVC, IVC, in the arterial 

reperfusion tubing, and in the descending thoracic aorta as described in section 

3.2. Intermittent heparin boluses were used to keep an activated clotting time 

>180 s. 

In the stop flow maneuvers, the arterial and venous tubing was clamped 

simultaneously. If the shunt was kept closed (CS), pressure equilibration 

occurred in antegrade direction only, as the arterial compartment emptied into 

venous vessel beds. If the shunt was opened (OS), pressure equilibration 

occurred in both antegrade and retrograde directions (including directly from 

the aorta into central veins). The protocol also included stop flow maneuvers 

performed with the ventilator either in expiratory hold or inspiratory hold, as 

well as with ongoing tidal ventilation. Flow was resumed after 30 s, or earlier 

if reflex-mediated increase in arterial blood pressure (ABP) was seen on the 

bedside monitor (see Figure 17). 

MSFP was taken as the mean value of RAP during three beats of equilibrium, 

defined from the ABP nadir. With open shunt (OS) in expiration, the remaining 

pressure difference at time of best equilibrium was (n=29, all volume states, 

mean ± SD) 0.1 ± 1.4 mmHg – i.e. not different from zero. With closed shunt 

(CS) in expiration, the corresponding value was (n=29) 2.9 ± 2.3 mmHg. 
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Figure 16 – Extracorporeal membrane oxygenation (ECMO) circuit used in Paper II, including 

cannulas, arteriovenous (AV) shunt, and sites for flowprobes and RAP measurement. Items 

below the grey dashed line were located outside the chest. In Paper III, the pulmonary artery 

was left intact and ventricular fibrillation was induced. To evacuate blood accumulating 

upstream from the failing left ventricle, a left atrial vent was added. This cannula was connected 

to the main venous tubing, upstream of the venous clamp. 
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Figure 17 – A stop flow maneuver. The black line marks the beginning of the maneuver where 

ECMO tubing was clamped and the shunt opened in expiratory hold. Arterial and right atrial 

pressures can be seen to approach asymptotically. MSFP was taken as mean RAP during three 

beats of equilibrium defined from ABP nadir (purple bar). The rationale was to ensure full 

equilibrium as well as avoiding influence from reflex activation. From Paper II. 
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3.3.3 VENOARTERIAL BYPASS AND VENTRICULAR 
FIBRILLATION 

In the third experimental series (Paper III), we examined the determinants of 

venous return and VA-ECMO flow, in a porcine model of ventricular 

fibrillation. We compared the effects of volume expansion with Ringer’s 

lactate and vasoconstriction with norepinephrine on ECMO blood flow and 

delivery of oxygen (DO2). Ventricular fibrillation was induced with high rate 

pacing (1000 bpm, ventricular electrical output 18 mV via epicardial 

electrodes, Pace 203, Osypka, Berlin, Germany). The ECMO setup was similar 

to what was described in section 3.3.2, but the pulmonary artery was left intact 

(see Figure 16). Venous return was drained via a 3-stage venous cannula (29 

Fr MC2X) and blood was returned in the ascending aorta (18 Fr elongated one-

piece arterial cannula). In addition, a left atrial vent was added to drain blood 

accumulating upstream of the severely failing left ventricle (16 Fr DLP; all 

cannulas by Medtronic, Minneapolis, MN, USA). The vent was connected to 

the main venous tubing. Flowprobes were mounted around the PA (to confirm 

total loss of right-to-left pump function) and on the arterial ECMO tubing. 

In the stop flow maneuvers, all performed in expiratory hold, the arterial and 

venous tubing were clamped simultaneously and the AV-shunt opened, which 

also ceased drainage via the left atrial vent. MSFP was taken as the mean value 

of RAP during 2 s of equilibrium defined from ABP nadir. From offline 

analysis, the duration from clamping to the end of the 2 s of MSFP 

measurement was determined to be (n=122, all volume states, mean ± SD) 13 

± 4 s, ranging from 7 to 30 s. Pressure equilibrium was excellent and the 

remaining pressure difference at time of equilibrium was (n=123, all volume 

states, mean ± SD) 0.0 ± 1.2 mmHg, range -4.1 to 3.3. 

Interestingly, in the pilot studies the preparation was highly unstable. The 

animals lost plasma volume to such an extent that ECMO pump speed had to 

be successively lowered to avoid right atrial and venous vessel walls being 

pushed into the cannula. The resulting flow was inadequate to support a stable 

preparation. Post mortem examination revealed massive pulmonary oedema. 

When we added the left atrial vent, we regained the excellent stability seen in 

the first experimental series, using VA-ECMO and ligated PA (Paper II). 
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3.4 ESTIMATION OF ZERO-FLOW PRESSURE 

3.4.1 INSPIRATORY HOLD MANEUVERS 

In the first experimental series (Paper I) we estimated MSFP by airway 

pressure maneuvers to stepwise increasing levels of plateau airway pressure. 

The animals were ventilated in a volume-controlled mode with tidal volumes 

of 300 mL (7.7 ± 0.3 mL/kg, FIO2 0.3, inspiration-to-expiration ratio 1:2) 

(Servo-I, Maquet Critical Care, Solna, Sweden) at PEEP 5 or 10 cmH2O 

according to the protocol. Before each series of airway pressure maneuvers, 

the approximate tidal volumes needed to reach plateau pressures of 15, 20, 25, 

and 30 cmH2O, were titrated. After 1 min of undisturbed tidal ventilation, the 

ventilator was set to expiratory hold for 30 s, followed again by 1 min of tidal 

ventilation. The maneuver was repeated with inspiratory holds to the target 

plateau pressures using the previously defined tidal volumes, all separated by 

1 min of tidal ventilation (see Figure 18). 

The mean values for pulmonary artery flow (QPA) and RAP of the first three 

beats occurring 9 s into the maneuver were extracted. The time point of 9 s was 

chosen to match the settings used by Maas et al (55). Not all animals tolerated 

the inspiratory hold to 30 cmH2O. In order to maximise the number of complete 

data sets, only holds up to 25 cmH2O were included in the analysis. 

MSFPinsp_hold was defined as the zero-flow extrapolation of pressure-flow data-

pairs (using linear regression) for each animal and condition. A proportion of 

variance (Pearson correlation coefficient squared; r2) > 0.7 was required for 

inclusion in analysis. 

The inspiratory maneuvers led to an immediate increase in RAP, with a 

reciprocal decrease in caval vein flows. In beat-to-beat analysis, the respective 

beats with nadir values of mean flow for caval veins and PA were identified. 

Caval vein nadir flow was always seen in the beat with maximally increased 

RAP, approaching or at peak airway pressure. Nadir PA flow beat followed 

immediately after caval nadir beat, or in some instances with a delay of one 

beat. During the following few beats, there was a marked restoration of caval 

vein and PA flows, as described by Versprille (97). To quantify the decrease 

of flow, we compared flow ratios at nadir to the mean values of all beats during 

one respiratory cycle preceding the inspiratory hold steps (baseline). In the 

same manner, restoration of flow was quantified as the ratio of [three beats 9 

s into the hold] to [baseline]. 
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Figure 18 – A series of airway pressure maneuvers. MSFPinsp_hold was estimated as the zero-flow 

extrapolation of data-pairs consisting of mean values for pulmonary artery flow (QPA) and right atrial 

pressure (RAP) of the first three beats occurring 9 s into the maneuver. To quantify the decrease and 

restoration of flow during the maneuver, mean values for all beats during one respiratory cycle 

preceding the maneuver (baseline - blue) were compared to nadir flow in caval veins and pulmonary 

artery (purple) and the three beats 9 s into the maneuver (green). See main text for details. 
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3.4.2 NADIR HOLD EXTRAPOLATIONS 

As can be seen in Figure 18, an inspiratory hold maneuver to a static plateau 

pressure is associated with dynamic decrease and restoration of venous return. 

Versprille, Jansen and Maas came to the conclusion that the later part of the 

hold maneuver represented a new steady state VR. We found in our first 

experimental series (Paper I), that the degree of flow restoration was related to 

the underlying volume state. In Paper IV we introduced a new method for zero-

flow estimation based on pressure-flow data-pairs at nadir QPA. The beat 

displaying nadir mean QPA was matched to mean RAP of the preceding beat. 

Linear regression and zero-flow extrapolation of data-pairs from expiratory 

hold up to plateau pressures of 30 [sic] cmH2O yielded an MSFP estimation 

conceptually unaffected by differential flow restoration (MSFPnadir_hold). 
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3.4.3 INSTANTANEOUS VENOUS RETURN 

The concept of venous return being inversely proportional to the changing 

RAP over the respiratory cycle was introduced by Pinsky (82), as described in 

section 1.8.1. By beat-to-beat analysis, pressure-flow data-pairs are extracted 

from the data set. Depending on where the flow is measured, it is matched to 

RAP from the same (in case of caval veins) or the preceding beat (pulmonary 

artery). We have used this approach in Paper II and IV. 

In Paper II (VA-ECMO with ligated PA) we analysed three consecutive 

respiratory cycles of tidal ventilation (tidal volume 7 mL/kg, PEEP 5 cmH2O) 

at baseline pump speed. Data-pairs of mean values of RAP and venous return 

flow (QVR; the sum of caval vein flows) were extracted. One breath, including 

at least two beats in inspiration and two beats in expiration, was integrated into 

a common venous return curve. The rationale was to test the hypothesis that, 

within the same volume state, pressure-flow data-pairs from different 

interventions (“airway pressure maneuvers” and “pump speed maneuvers” – 

see section 3.7) operated on a common VR curve. 

In Paper IV, we expanded the data analysis from experiment I. A zero-flow 

estimate of MSFP (MSFPinst_VR) was calculated from the linear regression of 

beat-to-beat data-pairs consisting of mean values from single beat QPA matched 

with mean RAP from the preceding beat over three respiratory cycles of 

undisturbed tidal ventilation preceding RA balloon inflation. 

In both papers (II and IV), we used the same arbitrary criterion as for the 

MSFPinsp_hold maneuvers: an r2 > 0.7 was required for inclusion in analysis. 
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3.4.4 DYNAMIC ANALOGUE OF STATIC FILLING 
PRESSURE 

The dynamic model analogue of static filling pressure, Pmsa, formulated by 

Parkin, has previously been adapted for animal use. Lee and Pinsky examined 

the performance of Pmsa compared to instantaneous VR curves in a model of 

endotoxemic dogs (51). To fit the numeric value of “dog Pmsa” to the expected 

normal value for a healthy human (7 mmHg), the authors adjusted the equation 

for the factor ‘c’ by setting the animal age to 15 and the length to 250 cm. 

Between the six animals studied, factor ‘c’ therefore only varied slightly 

according to actual weight. 

With the ambition to represent better the original model characteristics, we 

chose a different approach (in Paper IV, using data from experimental series 

I). In the original equation, factor ‘c’ = 0.96×Rv, where 0.96 is a function of 

the chosen estimate of VA compliance ratio [0.96 = 24/(24+1)] and Rv is the 

resistance in the venous compartment. If an AV resistance ratio of 25 is 

chosen, Rv can be estimated as normal SVR/(25+1). Our pigs were abnormal 

in the sense that the cardiovascular system was affected by anaesthetic 

medications and positive pressure ventilation. We have discussed in section 

1.9 how increased IPPV and PEEP lead to an increase in both RAP and MSFP. 

True porcine MSFP in this setting is therefore likely >7 mmHg. However, our 

experimental protocol was designed to create normovolemia at the start of 

measurements. Judging from the hemodynamics and blood volumes, this goal 

was probably reached. Therefore, we assumed that the animals all had a normal 

SVR at PEEP 5 cmH2O and euvolemic conditions. We calculated MSFPa (‘a’ 

for analogue) as: 

MSFPa = 0.96×RAP+0.04×MAP+0.96×[(normal SVR)/(25+1)]×QPA (7) 

Normal SVR was calculated for once each individual animal from the 

respective mean values of MAP, RAP, and QPA from 10 beats of tidal 

ventilation at PEEP 5 cmH2O, under steady state conditions. In each 

experimental condition, MSFPa was then calculated using data from steady 

state conditions where QPA is equal to CO. 
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3.5 BLOOD VOLUME DETERMINATION 

3.5.1 TOTAL BLOOD VOLUME 

Plasma volume was measured using the indocyanine green (ICG) dye dilution 

technique (45) (whole blood method). Before each measurement, blood was 

taken for a two-point calibration in vitro against two artificially determined 

ICG concentrations. Starting two min after a bolus injection of dye (0.25 

mg/kg), ten blood samples were then taken at 20 s intervals using a 

standardized three-person procedure with stopwatch timing. Plasma dye 

concentration was determined via spectrophotometry. The theoretical plasma 

volume at t0 was calculated from the dye disappearance rate, assuming a mono-

exponential elimination kinetic during the first 5 min. Finally, blood volume 

was calculated using the mean value of arterial and venous haematocrit 

obtained prior to the dye bolus. 
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3.5.2 STRESSED AND UNSTRESSED VOLUMES 

MSFP can be plotted as a function of blood volume in a pressure-volume 

vascular capacitance plot (71, 87). Using linear regression, the pressure-

volume relationship can be solved. Extrapolation to zero pressure gives the 

unstressed volume (Vu) at the specific volume state. The slope of the line has 

the units of vascular elastance (mmHg/∆mL). Vascular elastance assumes an 

independent role of volume and a dependent role of pressure. The inverse slope 

of the line has the units of vascular compliance (mL/∆mmHg). Vascular 

compliance (Cvasc) assumes an independent role of pressure and a dependent 

role of volume. When the experimentally controlled variable is a change in 

total blood volume [with secondary reflex adjustments of vascular capacitance 

and stressed volume (Vs)], it makes sense to describe the relationship in terms 

of pressure-volume or vascular elastance. The same applies if the focus is 

redistribution of volume (volume shifts). However, in the research field it is 

customary to report distensibility in terms of systemic vascular compliance. 

Figure 19 – A pressure-volume plot from an individual animal (Study I). MSFPRAO is plotted as 

a function of changing blood volume measured with ICG. The slope of the line equals vascular 

elastance. The equation for the line for this individual was MSFP = -19.94 + 0.0077× blood 

volume. r2 = 0.988. Vascular compliance [=1/(elastance)] was 130 mL×mmHg-1 or 3.2 

mL×mmHg-1×kg-1. 
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3.5.3 TWO-POINT VASCULAR ELASTANCE – RAPID 
BLEEDING MANEUVERS 

In the third experimental series (VA-ECMO and ventricular fibrillation, Paper 

III), we constructed two-point vascular elastance plots using the difference 

between MSFP measured before and immediately after a rapid bleeding 

sequence. Vascular elastance was assumed to be linear in the pressure-volume 

range studied (4, 12, 26, 69, 71), and was calculated as Evasc= ∆MSFP/∆blood 

volume. Blood volume had been determined with the ICG dye dilution 

technique and MSFP as described in section 3.5.1. Rapid bleeding was started 

by directing all ECMO output into a bleeding bag resting on an electronic scale, 

while the reperfusion tubing was clamped to prevent arterial backflow. Venous 

return was continuously drained into the ECMO circuit until approximately 9 

mL/kg of blood had entered the bag. At that point, the venous tubing was 

clamped and the AV-shunt opened to immediately determine MSFP in a stop 

flow maneuver. The actual weight of the shed blood was noted, and the exact 

volume (363 ± 26 mL) could be calculated using the blood density obtained at 

the end of the experiment. As soon as the stop flow maneuver was complete, 

flow was resumed and the blood was returned to the circulation. The entire 

sequence from start of bleeding to measurement of MSFP took 21 ± 4 s, 

ranging from 14 to 31 s (n=18, mean ± SD, time determined in offline 

analysis). Reflex activation did not visibly interfere with the measurement of 

pressure equilibrium. 
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3.6 TITRATING MAXIMUM ECMO FLOW 

As ECMO pump speed is progressively increased, at some point the vascular 

walls will collapse around the venous cannula. This occurs because the 

pressure on the outside of the vessel is greater than on the inside, and the vessel 

walls are being pushed into the cannula orifice. The transmural pressure has 

become negative, and a Starling resistor or vascular waterfall has been 

established (80). Some or all of the cannula inlet orifices will be occluded, and 

the resistance to flow increases dramatically. As drainage suddenly drops, 

volume will again accumulate around the cannula and flow is temporarily re-

established. This oscillating process is referred to as ‘staccato flow’ (102). It 

illustrates that the transmural pressure is one of the determinants of maximum 

flow. At all times however, venous return down to the point of the vascular 

collapse will be determined by the pressure difference between upstream and 

downstream intravascular pressures. When the pump operates at a level of 

vascular collapse, depending on the relative locations of the site of pressure 

measurement and vessel collapse, RAP may or may not represent the actual 

backpressure to VR. 

At the bedside, vascular collapse can sometimes be realised as fluttering of the 

venous ECMO tubing. Increased intrathoracic pressure will decrease the 

transmural pressure in the RA and susceptible parts of the caval veins. In the 

second experimental series (Paper II) we defined maximum pump speed as the 

highest possible speed that allowed an inspiratory hold without signs of RA 

collapse. This was a pragmatic approach of finding the approximate upper 

inflection point of the VR curve. Focus lay on the descending, clearly linear 

part of the VR curve. In the third experimental series (Paper III) we actively 

pursued the upper limit of maximum achievable ECMO flow, as this was the 

main experimental outcome. This was done by titrating short excursions of 

increased pump speed during expiratory hold, while observing the measured 

ECMO flow online for signs of flutter. However, if one operates too long at a 

high pump speed, there may be risk of damage to the caval and/or right atrial 

walls, as well as risk of haemolysis. Furthermore, the resulting high flow and 

arterial pressure may affect the output from the baroreceptors, potentially 

leading to vasodilation with decreased stressed volume and lower venous 

return driving pressure. It may therefore be impossible to sustain the high flow 

over time.  
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3.7 VENOUS RETURN CURVES FROM PUMP 
SPEED MANEUVERS 

In the experimental series II-III (Papers II-III), we constructed VR curves by 

stepwise changing the ECMO pump speed and recording the resulting 

pressure-flow data-pairs. First, maintenance (or ‘baseline’) pump speed was 

adjusted to achieve an ECMO flow resulting in a mixed venous saturation 

(SVO2) of 50% [the lower normal range for pigs (43)]. The pump speed 

maneuvers consisted of 30 s excursions to higher and lower levels, starting 

from and returning to maintenance pump speed. The maneuvers had to be brief 

in order to prevent baroreceptor activation from the changing arterial pressure. 

Any sustained decrease or increase in pump speed and arterial pressure would 

lead to reflex adjustment of the vascular tone to increase or decrease stressed 

volume and MSFP. 

Data was extracted as mean values for three beats (or two seconds in the 

ventricular fibrillation model) 9 s after ECMO flow had reached its new level. 

In series II, the pump speed maneuvers were performed during both expiratory 

and inspiratory hold, in randomized order. In series III, the maneuvers were 

Figure 20 – An example of a pump speed maneuver from Paper II. Starting in expiratory hold, 

the pump speed was rapidly adjusted to a predefined level. The ECG trace (at the bottom, in 

pink) was used to select the three first beats to follow 9 s after ECMO flow (QECMO) had reached 

its new level. 
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only performed in expiratory hold. Depending on the relationship of interest, 

data-pairs from pump speed maneuvers and stop flow maneuvers were used to 

construct plots of RAP vs. pump speed, flow vs. pump speed, and venous return 

curves of flow vs. RAP. The different plots were used to illustrate the volume 

shifting work of the pump, pump performance characteristics, or the circuit 

characteristics of the systemic vascular compartment, respectively. 

Figure 21 – Pump speed maneuvers from Paper II. Brief excursions to higher and lower levels 

of pump speed (revolutions per minute, rpm) were made in expiration and inspiration (the order 

randomized). Here the resulting right atrial pressure (RAP) is plotted as a function of pump 

speed. For the experimental series III (Paper III), Maintenance, Maximum and 80%, 60%, and 

50% thereof were applied. 
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3.8 TESTING THE BACKPRESSURE 
HYPOTHESIS 

The protocol for the second experimental series (Paper II, VA-ECMO with 

ligated PA) included maneuvers where we changed airway pressure with the 

ventilator, while keeping pump speed constant (“airway pressure maneuvers).  

Venous return flow (QVR) was calculated as the sum of caval vein flows 

(measured by individual flowprobes on SVC and IVC – see Figure 16). To 

ensure that dynamically changing venous flow would not be limited by vessel 

collapse, pump speed was set to 75% of maximum (for definitions – see section 

3.6 and 3.7). For the inspiratory hold maneuver, after 10 s of expiratory hold 

at PEEP 5 cmH2O, the ventilator was set to inspiratory hold for 10 s. After this, 

tidal ventilation was resumed for 1 min. For the zero PEEP maneuver, after 10 

s of inspiratory hold, the ventilator circuit was disconnected (zero PEEP). 

Pressure-flow data (mean values) was extracted for the last three beats 

preceding the hold (“pre”), for the beat displaying maximum caval flow change 

(“∆QVCmax”), for the three following beats (“early”), and for the last three 

beats before tidal ventilation and baseline pump speed were resumed (“late”) 

(Figure 22). 

With constant ECMO pump function, acute changes in airway pressure, 

transmitted to the RAP would lead to a transient imbalance between inflow and 

outflow from the right atrium (97), associated with volume shifts between the 

right atrium and the systemic compartment. To estimate these volume shifts, 

we integrated the difference between inflow and outflow to the right atrium 

during the four beats of “∆QVCmax” and “early”, assuming that ECMO flow 

was constant. 
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Figure 22 - Airway pressure maneuvers from Paper II. ECMO speed was kept at 75% of 

maximum throughout both maneuvers. For the inspiratory hold maneuver (left), after 10 s of 

expiratory hold at PEEP 5 cmH2O, the ventilator was set to inspiratory hold. Mean values were 

selected for the three last beats preceding the hold (“pre”, blue shade), for the beat in which 

maximum change in caval flow was seen (“∆QVCmax”, red), for the three following beats 

(“early”, purple), and for the last three beats of the hold (“late”, green), after which pump 

speed was reset and tidal ventilation resumed. 
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3.9 CROSS CORRELATION 

Cross correlation is defined as the correlation between two variables as a 

function of time shift. It allows analysis of the dynamic behaviour and time 

delay between two signals, recorded simultaneously with the same sample 

frequency. The correlation between the two signals is calculated repeatedly by 

introducing a successive time shift between the two. In this process, one data 

set is “dragged thru” the other and the resulting correlation is plotted as a 

function of time shift. A data set composed of 500 samples will therefore result 

in 999 sets of progressively increasing and decreasing overlap. 

In Paper II, we analysed the behaviour of acutely changing QVR (the sum of 

caval flows) and RAP elicited by changing airway pressure. Data from the 

beginning of “pre” to the end of “early” (3+1+3 beats) was used. In order to 

focus on the time shift, the amplitudes of QVR and RAP was individually 

normalised from -1 to +1. All data sets included the same number of beats, but 

a varying number of samples. The cross correlation was first performed 

individually for each animal in all three volume states using a customised 

analysis software (Soleasy, Alea Solutions, Zürich). To allow averaging of all 

animals, the time axis was then normalised to 1000 samples for the 

construction of summary plots. 

Prior to the cross correlation analysis, the raw data set had to be corrected for 

any signal propagation delay inherent to the measurement and data acquisition 

systems (pressure transducer and flowprobe/monitors, and different 

connections to the recording computer, respectively). This technical 

propagation delay of pressure vs. flow in the measurement setup was quantified 

experimentally using a roller pump and low-compliance closed tube circuit, 

with data recorded at 1000 Hz sample rate. Clamping the tube caused 

simultaneous changes in flow and pressure. The reference point for flow 

change was visually estimated as a step change in the slope from baseline. The 

pressure change was estimated as an increase of >2 SDs from baseline. The 

signal propagation delay of pressure vs. flow in the measurement setup was 

quantified to (n=5) 41 ± 7.5 ms. The data set from the main experiment 

(recorded at 100 Hz) was therefore corrected by shifting the RAP signal four 

samples ahead of QVR before the cross correlation analysis. 
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3.10 STUDY PROTOCOLS 

3.10.1 STUDY PROTOCOL - PAPER I 

We used an intact circulation, porcine model with mechanically ventilated 

animals under propofol and fentanyl anaesthesia to address the following 

questions: 1) Do changes in PEEP, volume status, and tidal breaths alter MSFP 

and the slope of the venous return curve? 2) Does a measurement of MSFP 

obtained with inspiratory hold maneuvers correspond to MSFP measured at 

zero flow induced by right atrial balloon occlusion? 3) Do inspiratory hold 

maneuvers per se modify the hemodynamic variables of the venous return 

function, and do PEEP and volume status modify these responses? The animals 

were ventilated in a volume-controlled mode at PEEP 5 cmH2O, FIO2 of 0.3 

and tidal volumes of 300 mL (7.7 ± 0.3 mL/kg) with respiratory rate adjusted 

to maintain an end-expiratory PCO2 of 40 mmHg. Surgery was followed by 90 

min of stabilisation. A bolus of 100 mL HES was administered to replace 

potential perioperative volume deficit. If QPA increased >10%, one further 

bolus was given. At this point, the animals were considered euvolemic and 

baseline determination of plasma volume was performed. The study protocol 

is represented graphically in Figure 23 (and in detail in Paper I). Measurements 

and interventions have been described in the previous sections. 
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Figure 23 – Protocol summary for experimental series I (Paper I). The first part examined the 

effects of changes in PEEP on the venous return function. The second part assessed the effects 

of volume changes. 
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3.10.2 STUDY PROTOCOL - PAPER II 

This closed chest, heart-bypass model used VA-ECMO and a ligated 

pulmonary artery. We hypothesised that RAP acts as backpressure for venous 

return. This was tested by examining the response of RAP, VR, and MSFP to 

acute changes in airway pressure (airway pressure maneuvers, see section 3.8), 

and the effect of acute changes in ECMO flow on RAP and VR (pump speed 

maneuvers). We could thereby evaluate separately the effects of RAP and 

pump function on VR, and whether Guyton’s model of VR would be valid 

during dynamic changes, if the effects of transient volume shifts on MSFP and 

RAP were accounted for (section 3.3.2 for details on the preparation). Volume-

controlled ventilation at PEEP 5 cmH2O and tidal volumes of 7 mL/kg was 

continued also on bypass. Perioperative blood loss was replaced by HES. After 

closing the chest, QECMO was adjusted during tidal ventilation to achieve a SVO2 

of 50%. If necessary, HES boluses were given to allow an inspiratory hold 

without RA collapse (sections 3.6 and 3.7). This pump speed (baseline rpm) 

resulted in a baseline QECMO in Euvolemia. After volume expansion with 9.75 

mL/kg HES, the pump speed was again adjusted to a new baseline, under tidal 

ventilation, to reach the SVO2 target (at Volume Expansion). After bleeding up 

to 19.5 mL/kg or until MAP decreased to 35 mmHg (Hypovolemia), pump 

speed was reduced under tidal ventilation to allow an inspiratory hold without 

RA collapse, abandoning if necessary the SVO2 target. In each volume state, a 

further attempt was made to increase the ECMO pump speed from baseline 

until just below RA collapse during inspiratory hold. This was considered as 

the maximum (maximum rpm) for each volume state and was used for 

reference in the pump speed maneuvers (see Figure 21). Pump speed and Stop 

flow maneuvers were performed both during expiratory and inspiratory holds, 

with the internal order randomised. Airway pressure maneuvers were 

performed at constant pump speed. Cross correlation analysis was performed 

on data from the airway pressure maneuvers (see section 3.9). Measurements 

and interventions have been described in the previous sections.  

Figure 24 – Abbreviated experimental protocol (Paper II). 
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3.10.3 STUDY PROTOCOL - PAPER III 

This model of ventricular fibrillation and VA-ECMO compared the effects of 

volume expansion with Ringer’s lactate and vasoconstriction using 

norepinephrine on maximum ECMO flow (Maximum QECMO) and oxygen 

delivery (DO2). The same ventilator settings were used, as previously 

described for Paper II. For details on the preparation – see section 3.3.3. 

Perioperative blood loss was supplemented by HES. Rapid pacing induced 

ventricular fibrillation. The ECMO pump speed was adjusted to reach an SVO2 

of 50% during tidal ventilation. If necessary, HES was added in boluses of 50 

mL. After this state, defined as Euvolemia (where also blood volume was 

determined with ICG dye dilution), no further HES was given. The protocol 

consisted of eight conditions. Euvolemia was followed by three conditions of 

stepwise increasing rates of norepinephrine infusion [0.05, 0.125, and 0.2 

µg×kg-1×min-1, each beginning with a bolus of 5 µkg-1 (Vasoconstriction 1-3)]. 

After this, norepinephrine was discontinued and the animal entered a state of 

Post Vasoconstriction. This was followed by three levels of stepwise Volume 

Expansion (VE 1-3) where 10 mL×kg-1 of Ringer’s lactate was infused over 

three min at each step. The study measurements were started after 5 min at 

each step. Pump speed and stop flow maneuvers were performed in expiratory 

hold only, but in all eight conditions. In Vasoconstriction 3 and Volume 

Expansion 3, blood volume determination was repeated and vascular elastance 

was determined by rapid bleeding and retransfusion (see section 3.5.3). The 

stability of MSFP over time was determined by repeating the stop flow 

maneuver three times over 40 min. Changes in plasma volume were estimated 

based on haematocrit and haemoglobin concentrations using Beaumont’s 

method (44) at time points in the protocol when no ICG measurements were 

available. 
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3.10.4 STUDY PROTOCOL - PAPER IV 

In this study of method agreement, data of the zero-flow reference MSFPRAO 

from the volume states Euvolemia, Bleeding, and Hypervolemia from the first 

experimental series were reused, and compared to three estimates of MSFP 

obtained with a running circulation. Instantaneous VR (MSFPinst_VR) was 

calculated from three respiratory cycles of undisturbed tidal ventilation 

preceding the right atrial occlusion maneuver (see section 3.4.3). Nadir-flow 

extrapolation (MSFPnadir_hold) was calculated from the nadir QPA early in the 

inspiratory hold maneuvers to plateau pressures of 15, 20, 25, and 30 cmH2O 

(see section 3.4.2). The dynamic model analogue adapted to pigs (MSFPa) used 

data of RAP, MAP and QPA from 10 beats of undisturbed tidal ventilation 

preceding right atrial occlusion (see section 3.4.4). In order to assess the impact 

of changing resistance in the venous compartment (Rv), and/or changing 

arteriovenous resistance ratio on the calculation of MSFPa we compared the 

value of ‘c’ calculated at Euvolemia to a ‘c’ calculated anew from the current 

SVR in each experimental condition. Method agreement for absolute values 

between each of the estimates and the reference MSFPRAO, as well as change 

in test methods vs. change in the reference method were analysed using 

repeated measurements ANOVA and Bland-Altman for repeated 

measurements. An a priori desired agreement between change in test method 

vs. change in reference method was set to ≤10% of venous return driving 

pressure in Euvolemia (23). 
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3.11 STATISTICAL CONSIDERATIONS 

A type I error is the probability of falsely rejecting the null-hypothesis. If 

statistical significance is accepted for p<0.05, this probability is 5%. A type II 

error is the probability of failing to reject a false null-hypothesis. The statistical 

power equals one minus the probability for a type II error. Stated differently, 

the statistical power is the probability, given a specified significance level, to 

correctly identify a true difference, if such a difference exists. 

The sample size will always be a compromise between on one hand the wish 

to minimise (for ethical and economic reasons) the number of animals used, 

and, on the other hand, to maximise the statistical power. In the preparations 

for the first study, we considered the data of Ogilvie (72): MSFPRAO for pigs 

was reported to be (mean ± SD) 12.3 ± 0.5 mmHg. We estimated the SD for 

change to ~1 mmHg, and wished to detect a physiologically relevant change 

in VRdP of 1 mmHg. With a significance level of 0.05 and a power of 0.80, 

the sample size was calculated to 8 animals. We added two animals as a safety 

margin to account for unanticipated problems such as technical errors in the 

measurement setup, or loss of animals. The calculated power relates to the 

primary outcome of change in VRdP. We did not attempt to a priori calculate 

the related power of detecting multi-level associations of interaction between 

methods of MSFP estimation and experimental conditions. 

The robustness of any statistical test is dependent on the sample size. As in 

most animal experiments, our sample sizes were small (n<10). The two main 

tests used in the studies were paired t-tests and repeated measurements analysis 

of variance (ANOVA) – both comparing means. The tests assume equal 

variances (i.e. homoscedasticity) and normal distribution of data. Formal tests 

for equal variance between groups rely on normal distribution, are not robust 

when this assumption is violated, and do not perform well in small sample sizes 

(70). Formal tests for normal distribution of data, such as Kolmogorov-

Smirnov and Shapiro-Wilks, are also reported to be appropriate only in larger 

sample sizes (95). 

We relied on a combination of graphical assessment of data and formal testing. 

Assumptions of equal variances and normal distribution were assessed as 

Studentized residuals < ± 3, visually by Q-Q plots and histograms, and by use 

of Kolmogorov-Smirnov and Shapiro-Wilks testing. In the repeated 

measurements ANOVA, the assumption of sphericity (i.e. equal variance 

between all combinations of levels of within-subjects factor) was tested ad 

modum Mauchly. If this assumption was violated, the degrees of freedom was 

adjusted by using the Greenhose-Geisser correction. In case outliers were 
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identified, sensitivity analysis was performed by repeating the tests with the 

outlier excluded. If this did not change the significance levels, the outlier was 

kept in the main analysis. When the assumption of normality was violated, 

non-parametric tests were used as appropriate (e.g., Wilcoxon signed ranks test 

and Friedman’s test replacing paired t-test and one-way repeated 

measurements ANOVA, respectively). 

Guyton did not use statistical modelling at all. Traditionally, the venous return 

function has been characterised by VR plots of data-pairs, described by least 

squares linear regression. Data sets composed of multiple zero-flow 

extrapolations can be compared as groups. In Papers II-III we used Generalized 

Estimating Equations (GEE), to describe the venous return function, the pump 

function and the time-dependent decay of MSFP from groups of animals, 

where each animal was represented by multiple data-points. GEE is a marginal 

model where the estimate is based on the population average. It is related to 

Generalized Linear Mixed Models (GLMM). When a linear model is chosen 

in the GEE, the results from GEE and GLMM analyses will often be similar. 

The GEE model is versatile, easy to use and can handle repeated measurements 

of two continuous variables with possible interaction of a categorical covariate. 

The data structure was approximated to a first order auto-regressive correlation 

matrix (AR1). In Paper III, all analyses eventually presented as GEE were also 

performed in the form of GLMM. The choice of model did not affect 

conclusions, and slopes and intercepts varied only marginally. 

In Paper IV, we assessed agreement vs. the reference method MSFPRAO for 

estimates of MSFP using the Bland-Altman method. The analysis included 

repeated measurements from each animal. If this data structure is not taken into 

account, the variance of the differences is underestimated which leads to 

progressively serious underestimations of the limits of agreement (LoA), of the 

variance of the bias, of the variance of the LoA, and finally resulting in too 

narrow confidence intervals (CIs) (73).  

Data is presented as mean ± SD [or mean (SD) depending on journal style] or 

median (range), as appropriate. The results of statistical tests are reported 

including both the effect size (different group means) and the actual p-value 

(rather than a binary statement of significant/not significant).  

Physiological studies typically generate a multiplicity of data. Multiple tests 

increase the overall risk of type I errors. To control for the experiment-wise 

error rate (ERR), we restricted the statistical testing to hypothesis driven 

analyses. Instead of using multiple separate paired comparisons, we used 

global tests like ANOVA (9). Post hoc paired comparisons were done with the 
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Bonferroni correction for multiple testing (either by multiplying the obtained 

p-value or by reducing the significance level by division). Although the 

Bonferroni method is often seen as overly conservative, we think its use in this 

context is appropriate in light of the very small sample sizes. Additional post 

hoc exploratory analyses, not part of the pre-analysis plan, was motivated by a 

clear physiological rationale. 
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4 RESULTS 

In this chapter, the main results from Papers I-IV are presented. 

4.1 RESULTS – PAPER I 

Of the 10 animals studied, one died from a combined RA/SVC rupture caused 

by the balloon occlusion, and a second animal developed intractable 

ventricular fibrillation before measurements at Euvolemia were completed. 

Nine animals weighing 39 ± 1.5 kg were included in the analysis. Of the 50 

planned MSFPRAO measurements, 43 were performed. As a consequence of the 

study design, with PEEP levels randomized and volume states performed in 

fixed order, 42 MSFPRAO measurements were included in the analysis. In the 

general description of the method found in section 3.3.1, further details are 

given. 

Table 2 - Data is mean ± SD. Variables were calculated as a mean of 10 cardiac cycles before 

right atrial balloon occlusion during volume controlled ventilation; tidal volume 300 mL (7.7 ± 

0.3 mL×kg-1) at PEEP 5 unless stated otherwise. MAP: mean arterial pressure; PAP: 

pulmonary arter pressure; RAP: right atrial pressure; ∆RAPtmexp: change in mean value of RA 

transmural pressure from 5 end-expiratory beats (preceding right atrial balloon occlusion) 

between the experimental conditions (n=8: one animal excluded due to local hematoma around 

pericardial catheter); QPA: pulmonary artery blood flow; MSFPRAO: mean systemic filling 

pressure at zero flow caused by right atrial balloon occlusion in end-expiration; VRdP: venous 

return driving pressure (VRdP= MSFPRAO-RAP); RVR: resistance to venous return 

(RVR=VRdP/QPA). Blood volume after bleeding calculated as volume measured before bleeding 

– volume of shed blood. Paired t-tests for PEEP levels; repeated measurements ANOVA, within-

subjects effect volume state. 
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At the end of the stabilization period, the coefficients of variation for heart rate, 

MAP, PAP, RAP, and QPA for end-expiratory beats over 10 consecutive 

respiratory cycles, were ≤ 6%. Increasing PEEP from 5-10 cmH2O led to an 

increase in both RAP and MSPRAO. As RAP increased more than MSPRAO, 

VRdP decreased. RVR remained unchanged. QPA decreased slightly, but the 

change was not statistically significant. There was no significant change in 

end-expiratory RAPtm between PEEP levels. 

Figure 26 – The effect of PEEP and changing blood volume on the venous return function. Mean 

values of RAP and QPA measured for 10 beats during tidal ventilation preceding right atrial 

balloon occlusion are connected with solid lines to mean values of MSFPRAO measured as the 

mean of caval vein pressures during 3 s of venous plateau at zero flow in expiratory hold. Error 

bars indicate 1 SD. 

Figure 27 – Effect of tidal ventilation on the venous return function. RAP and QPA were measured 

for 10 beats during tidal ventilation and during an expiratory hold. Mean pressure-flow values 

are plotted with the MSFPRAO (measured at expiratory hold). Solid lines for end-expiration, 

dotted lines for tidal ventilation. Panel A: effect of tidal ventilation at PEEP 5 and 10 cmH2O: 

RAP, p<0.001; QPA, p<0.001. Panel B: effect of tidal ventilation at changing blood volumes: 

RAP p<0.001; QPA, p<0.001. Values are shown as means, error bars indicate 1 SD. 
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RAP, MSFPRAO, and VRdP changed in parallel with acute changes in blood 

volume. RVR did not change. The relationship of QPA vs. VRdP was linear 

[n=8, median (range) r2=0.977 (0.729-0.9999)]. The volume state had a 

significant effect on the change in RAPtm. 

RAP increased and QPA decreased slightly but significantly in tidal breathing 

as compared to expiratory hold, for all experimental conditions. When data 

was plotted against the reference VR curve and connected to MSFPRAO, the VR 

curve of tidal ventilation was shifted slightly to the right. Under the assumption 

that true MSFP did not change with the transition to tidal ventilation, RVR was 

consequently lower under tidal ventilation than during static expiratory hold.  

Systemic vascular compliance, Cvasc, was 3.2 ± 0.7 mL×mmHg-1×kg-1. The 

stressed volume in Euvolemia was 42 ± 9 mL×kg-1, or 43 ± 10 % of the total 

blood volume, respectively.  

Paired comparisons between MSFPinsp_hold and MSFPRAO were available for 

n=37 over all conditions. MSFPinsp_hold overestimated MSFPRAO: 16.5 ± 5.8 vs. 

13.6 ± 3.2 mmHg respectively (p=0.001). The difference between methods was 

significant for both PEEP levels, but not significant for the three volume states 

(Table 3).  

Figure 28 – Venous return at end-expiratory and inspiratory holds. Mean values of RAP and 

QPA were taken for 3 beats 9 s into hold. Their zero-flow extrapolations represent MSFPinsp_hold 

(not included in the plot). End-expiratory values and the respective MSFPRAO were used as the 

reference VR function (solid lines). Values shown as mean, error bars indicate 1 SD. Inspiratory 

hold data-pairs are shifted to the right of the reference VR curve at PEEP 5 and Euvolemia. 
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When the methods were compared in each volume state, the difference was 

significant only in Euvolemia. When the VR curves from inspiratory hold 

maneuvers were plotted together with the reference VR curve from MSFPRAO, 

the inspiratory hold VR curves were shifted to the right in euvolemic 

conditions only (=both PEEP levels and Euvolemia), but not in Bleeding or 

Hypervolemia. 

Inspiratory hold was associated with a rapid initial decrease in QPA, which 

partially recovered during the static hold. The maximum decrease in flow was 

different between SVC and IVC, and was modified by PEEP level and 

inspiratory plateau pressure. QIVC decreased more than QSVC, and was lowest 

after bleeding. The difference between vessels was most prominent at PEEP 5 

cmH2O and in Euvolemia. QIVC recovered more at lower plateau pressures, and 

Table 3 – Effect of PEEP level and volume state on the two methods of MSFP measurement. 

Data is mean ± SD (mmHg). Paired t-tests for PEEP levels. Repeated measurements ANOVA (* 

or Friedman’s test if appropriate) for volume state (within-subjects factor volume state). 

Pairwise comparisons with Bonferroni adjustment. Significant difference marked as:  a Bleeding 

vs. Euvolemia, b Bleeding vs. Hypervolemia, c Hypervolemia vs. Euvolemia. 

Table 4 – Effect of method, PEEP level and volume state on MSFP. Data is mean ± SD (mmHg). 

Two-way repeated measurements ANOVA, within-subject factors method and PEEP level, and 

method and volume state respectively. Sensitivity analysis excluding the outlier (MSFPinsp_hold 

for animal 8 in Hypervolemia) gave the same result (albeit at n=5) - effect of volume state 

p<0.0005. 
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more than QSVC – regardless of volume state. The decrease and recovery were 

similar between both vessels in Bleeding and Hypervolemia. 

The variable of MSFPinsp_hold contained one outlier in Hypervolemia: 

MSFPinsp_hold for animal 8 was 43.7 mmHg. As a sensitivity analysis, all 

comparisons between the two methods were performed with and without the 

outlier included. The difference between methods was consistent. 

The inspiratory hold maneuvers led to progressively negative transmural 

pressures in SVC and IVC, with increasing plateau pressures. The relationship 

between change in transmural pressure and caval vein flow was linear with a 

negative slope. 

 

Figure 29 – Mean values of respiratory changes in SVC transmural pressure plotted 

against the SVC flow at PEEP 5 and 10 cmH2O. Transmural pressures became 

progressively more negative at increasing airway plateau pressures. 
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4.2 RESULTS – PAPER II 

One animal died at start of bypass, and post mortem examination revealed 

complex heart malformations. Ten animals were included in the study, 

weighing 42 ± 2.1 kg. In spite of the preceding volume expansion, in all 

animals, the bleeding had to be discontinued due to hypotension. The actual 

bled volume was [mean (range)] 12 (9-17) mL/kg. 

Zero-flow pressure equilibration was always more complete with open shunt. 

In Euvolemia, inspiratory hold increased MSFP, but not in Volume Expansion 

or Hypovolemia (Table 6). Systemic vascular compliance, Cvasc, was 4.3 ± 1.8 

mL×mmHg-1×kg-1. 

Table 5 - Data is averaged over three heart beats in expiratory hold at PEEP 5 cmH2O and 

Baseline pump speed, SVO2 and lactate was sampled at Baseline pump speed in the beginning 

of each volume state. Data is mean (SD), or median (range) if not normally distributed (†). p-

values: repeated measurements ANOVA for effect of volume state or Friedman’s test (†) was 

performed as appropriate. Post hoc analysis with Bonferroni correction is indicated as: a 

Euvolemia vs. Volume Expansion (p = 0.002); b Volume Expansion vs. Hypovolemia (p ≤ 0.001; 
c for RVR p = 0.029); d Hypovolemia vs. Euvolemia (p ≤ 0.012). rpm= revolutions per min; 

RAP= right atrial pressure; QECMO= ECMO flow; QVR= venous return flow (sum of caval vein 

flows); MAP= mean arterial pressure; MSFP= mean systemic filling pressure; VRdP= venous 

return driving pressure (VRdP=MSFP-RAP); RVR=resistance to venous return 

(RVR=VRdP/QVR). 
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The RAP-pump speed relation was highly linear, independent of volume state 

and respiratory cycle (expiration/inspiration). However, despite efforts of 

setting the maximum ECMO speed as the highest without RA collapse, 

negative values of RAP were detected during offline analysis in two animals. 

This may be associated with vessel collapse upstream of the venous cannula, 

thereby dissociating the pressure-flow relation. 

Instantaneous VR curves incorporating beat-to-beat data pairs from one 

respiratory cycle and the open shunt expiratory MSFP were highly linear. 

Nine animals had complete sets of airway pressure maneuvers for all volume 

states (Figure 30). A change in airway pressure resulted in a change in RAP in 

the same direction. During the hold maneuvers, RAP returned towards its “pre” 

levels earlier than did airway pressure. When RAP was changed by means of 

changing airway pressure, there was an immediate, transient change in VR in 

the opposite direction. During the inspiratory hold maneuvers, VR partially 

recovered already during the three first beats (“early”) after the maximum 

decrease in VR, while RAP still remained elevated. During the zero PEEP 

maneuvers, this pattern was reversed. 

The transient imbalance between inflow to the RA (=VR) and outflow from 

the ECMO (=cardiac output), caused by the airway pressure maneuvers, was 

associated with volume shifts out from, or into the RA. VR decreased during 

inspiratory hold, and increased during zero PEEP maneuvers. The aortic flow 

was unchanged or even slightly increased (during inspiratory hold in 

Euvolemia). During the first four beats (“∆QVCmax”, and “early”), the median 

volume shifted upstream was 9 (-2 to 35) mL in inspiratory hold, and the 

Table 6 - MSFP was taken as the mean value of RAP during three beats of equilibrium defined 

from ABP nadir. p-values: repeated measurements ANOVA, within-subject factors; respiratory 

cycle and shunt state. Hypovolemia: n=9 as one animal lack valid MSFP Expiration Open 

Shunt. 
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median volume shifted downstream in expiratory hold at zero PEEP, was 12 

(4-68) mL. 

When QVR-RAP data-pairs from pump speed maneuvers (in expiration and 

inspiration), tidal ventilation (all beats in one breath), the immediate effects of 

the airway pressure maneuvers (inspiratory hold and zero PEEP maneuvers; 

“pre” and “∆QVCmax”), and the stop flow maneuvers (MSFP; open shunt in 

expiration and inspiration) were combined, the overall relationship was linear. 

Figure 30 – Behavior of RAP and venous return (QVR) during inspiratory hold (left) and zero 

PEEP maneuvers (right). Repeated measurements ANOVA († or Friedman’s test as 

appropriate), within-subjects effect time. * p<0.05 for post hoc pairwise comparison vs. “pre” 

level, with Bonferroni correction. 
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The effect of experimentally controlled variable (pump speed vs. airway 

pressure) on the VR-RAP relation was analysed using GEE. Two animals 

showing signs of caval collapse were excluded from this analysis (animal 10 

in Volume Expansion and Hypovolemia, and animal 11 in inspiration in 

Euvolemia and Hypovolemia). The control variable had no effect on the 

pressure-flow relationship (Figure 31). 

Figure 31 – Venous return plots. QVR-RAP data-pairs from pump speed and stop flow 

maneuvers, representing changing pump effect (filled symbols), and the corresponding data-

pairs obtained during tidal ventilation and the immediate effect of airway pressure maneuvers 

representing changing RAP (open symbols). Using GEE, interaction of the controlled variable 

(change in pump speed vs. change in RAP) on the QVR-RAP relationship was studied over 

volume states. GEE model parameters including 95% CIs are drawn as thick and thin lines. Due 

to markedly negative RAPs and possible caval collapse, animal 10 was excluded from analysis 

in Volume Expansion and Hypovolemia; animal 11 was excluded in Euvolemia and 

Hypovolemia. 
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The cross correlation analysis revealed a peak negative correlation between 

RAP and QVR close to zero time lag. Changes in RAP preceded changes in QVR 

with at least 1.2 samples (=12 ms) for increasing and decreasing airway 

pressure in all volume states. 

Figure 32 – Cross correlation analysis between RAP and QVR during seven beats of acutely 

changing VR caused by airway pressure maneuvers. RAP and QVR were normalized in amplitude 

(-1 to +1). For the (summary) plots above, time was normalized to 1000 samples to allow 

averaging of all animals. Changes in RAP preceded changes in QVR: mean ± SD (samples) 

Euvolemia: 3.2 ± 2.7; Volume Expansion: 1.7 ± 3.4; Hypovolemia: 2.4 ± 3.2. 
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4.3 RESULTS – PAPER III 

Ventricular fibrillation resulted in complete cessation of pulmonary artery 

blood flow for all animals (n=9, weight 40 ± 2.1 kg). The pump function 

(expressed as mL/revolution) was linear for individual animals in all 

experimental conditions and pump speeds [median (range) r2 0.9999 (0.811 to 

1.0)]. MSFP increased with increasing intensity of both treatments. For the 

doses used, the effect was more pronounced for Volume Expansion than for 

Vasoconstriction. The treatments led to haemodilution and 

haemoconcentration respectively. Blood lactate levels increased together with 

oxygen consumption (VO2) throughout the experiment, despite maintenance 

of the target SVO2. Urine output was stable during both Vasoconstriction and 

Volume Expansion at 2.6 ± 1.1 vs. 2.7 ± 1.4 mL×kg-1×h-1 (p=0.832). Factors 

defining venous return (MSFP, maintenance QECMO, rpm, RAP, VRdP, and 

RVR) were not different between Euvolemia and Post Vasoconstriction. 

Maximum QECMO increased with increasing intensity of both treatments. For 

the doses used, the maximum achievable QECMO was higher following Volume 

Expansion, but due to concomitant haemodilution, this did not translate into 

higher DO2 as compared to Vasoconstriction. 

A total of 360 pump speed maneuvers were performed at the five pump speeds 

higher than zero. During offline analysis (performed independently by three 

investigators), signs of vascular collapse were seen in 17% of maneuvers, with 

equal distribution between treatments. There was a negative linear relation 

between changing QECMO and RAP over all conditions [median (range) r2 0.975 

(0.626-1.000)]. Both treatments increased MSFP and flow, and the respective 

VR curves were shifted to the right (Figure 33). VRdP was not different 

between conditions and at maintenance speed. The response of RVR at 

different levels of vasoconstriction was highly variable, with an equal 

distribution of increasing, unchanged and decreasing values for individual 

animals. In contrast, Volume Expansion consistently and progressively 

lowered RVR. 

The relation between generated pressure head (MAP-RAP) vs. QECMO was 

highly linear in all conditions. The resistance needed to be overcome by the 

pump was lower in Volume Expansion 3 than in Euvolemia and 

Vasoconstriction 3. 
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Vasoconstriction increased MSFP and decreased total blood volume, 

compared to Euvolemia, due to extravasation of plasma. Volume Expansion 

restored and increased the blood volume slightly over the baseline level of 

Euvolemia due to plasma expansion. Vasoconstriction increased vascular 

elastance compared to Volume Expansion. Vasoconstriction led to a leftward 

shift of the pressure-volume as unstressed volume was recruited into stressed 

volume. Volume Expansion shifted the pressure-volume plot back to the right 

with direct increases in both stressed and unstressed volumes (Figure 35). 

Figure 33 - Venous return curves after exclusion of closing conditions. Upper panel shows 

Euvolemia and Vasoconstriction 1-3, lower panel Post Vasoconstriction and Volume Expansion 

1-3. Lines indicate the mean slopes from GEE. 
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At the highest levels of Vasoconstriction and Volume Expansion, repeated 

measurements over 40 minutes showed a mean MSFP decay of 1.7 mmHg 

[equivalent to mean (CI) slope = -0.043 (-0.065 to – 0.021) mmHg×min-1], 

with no difference between conditions. The changes in plasma volume were 

small, with no difference between conditions. 

 

Figure 35 - Pressure-volume plots of vascular elastance derived from the rapid bleeding 

maneuvers in Vasoconstriction 3 (dashed line) and Volume Expansion 3 (solid line). 

Figure 34 – Venous return curves per protocol (including closing conditions). Upper panel 

shows Euvolemia and Vasoconstriction 1-3, lower panel Post Vasoconstriction and Volume 

Expansion 1-3. Lines indicate the mean slopes from GEE. Data-points within circles were 

identified as closing conditions. 
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4.4 RESULTS – PAPER IV 

  Venous return driving pressure was 6.8 ± 2.4 mmHg in Euvolemia (n=9 in 

Euvolemia). The desired method agreement for changes in MSFP thereby 

corresponded to ≤0.7 mmHg. When all volume states were compared together, 

no difference was found between MSFPinst_VR and MSFPRAO, but MSFPnadir_hold 

and MSFPa underestimated MSFPRAO. The respective agreement between 

indirect estimates of MSFP and the reference method was influenced by the 

underlying volume state (method × volume state interaction p≤0.020) (Table 

10). Post hoc paired methods comparison for separate volume states showed a 

trend of MSFPinst_VR underestimating MSFPRAO in Bleeding only (see Paper IV: 

Table V). 

Table 10 - MSFP with four methods over changing volume state. Data is mean ± SD. MSFPRAO: 

see section 3.3.1; MSFPinst_VR: instantaneous VR - see section 3.4.3.; MSFPa: dynamic analogue 

of static MSFP using mean values from 10 beats during tidal ventilation before RAO – see 

section 3.4.4. Repeated measurements ANOVA, within-subject factor volume state and pairwise 

comparisons with Bonferroni adjustment. Significant difference marked as a Bleeding vs. 

Euvolemia, b Bleeding vs. Hypervolemia, c Hypervolemia vs. Euvolemia. 

Table 11 - Data is mean ± SD. Two-way repeated measurements ANOVA, within-subject factors 

method and volume state. 
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Resistance to venous return calculated with the reference method did not 

change over volume states: RVRRAO (n=8) 2.49 ± 0.60, 2.60 ± 0.58, and 2.50 

± 0.52 mmHg×min×L-1 in Euvolemia, Bleeding, and Hypervolemia 

respectively (p=0.489). However, RVR calculated from MSFPinst_VR decreased 

in Bleeding: RVRinst_VR (n=8) 2.25 ± 0.48, 1.46 ± 0.40, and 2.96 ± 1.28 

mmHg×min×L-1 respectively (p=0.009; pairwise comparisons significant 

between Bleeding-Euvolemia at p=0.019 and Bleeding-Hypervolemia at 

p=0.031). 

For absolute values, the lowest bias compared to the reference method 

MSFPRAO was seen for MSFPinst_VR [bias (95% CI): -0.6 (-2.3 to 1.0) mmHg], 

with wide limits of agreement (LoA) and CIs (Table 12). Four-quadrant plots 

showed that all test methods tracked changes in the reference method 

concordantly with high correlation (see Paper IV; Figure 3). Bland-Altman 

analyses for changes in methods showed lowest bias between ∆MSFPa vs. 

∆MSFPRAO [bias (95% CI): -0.4 (-0.7 to -0.0) mmHg]. The limits of agreement 

was -2.9 to 2.1 mmHg, exceeding the desired agreement of 10% VRdP in 

Euvolemia (0.7 mmHg) (Table 13). 

The factor ‘c’ for MSFPa derived from SVR at Euvolemia was 0.78 ± 0.18 

mmHg×min×L-1 (range 0.51-1.02). The corresponding values calculated anew 

from SVR at Bleeding and Hypervolemia were (n=8) 0.77 ± 0.22 and 0.63 ± 

0.19 mmHg×min×L-1 respectively (main effect of volume state p=0.002; 

pairwise comparisons between Euvolemia-Hypervolemia and Bleeding-

Hypervolemia significant at p≤0.017). The model assumption of a non-

changing Rv resulted in an overestimation of the dynamic filling analogue by 

0.48 mmHg, or 3.8 ± 2.3% in Hypervolemia. 
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Figure 36 - Bland-Altman plots. Left hand panels represent [difference between test method 

and reference method] vs. absolute values of MSFPRAO (Euvolemia – circles; Bleeding – 

downward pointing triangles; Hypervolemia – upward pointing triangles). Right hand panels 

represent [difference between ∆test method and ∆MSFPRAO] vs. ∆MSFPRAO. Method bias in 

red, upper and lower LoA in green and blue, dashed lines CIs. 
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5 DISCUSSION 

5.1 DISCUSSION - PAPER I 

There were three main findings in Paper I: First, a moderate increase in PEEP 

level from 5 to 10 cmH2O was associated with an increase in MSFPRAO that 

partly defended venous return. However, the VRdP decreased and RVR was 

unchanged. The steady state QPA, and therefore cardiac output, decreased 

slightly, but this change did not reach statistical significance. Second, changes 

in blood volume were associated with concordant changes in MSFPRAO, RAP, 

and VRdP. Again, there were no changes in RVR. Third, inspiratory hold 

maneuvers shifted the VR curve to the right as compared to the reference curve 

of MSFPRAO in euvolemic conditions, but not in Bleeding or Hypervolemia. 

Consequently, MSFPinsp_hold overestimated MSFPRAO in euvolemic conditions. 

To explore the right-shift of the VR curve, we examined flow dynamics of the 

caval veins and the pulmonary artery in the early and late phases of the 

inspiratory hold maneuver. We found that the patterns of decrease and 

recovery of blood flows differed between the IVC and the SVC in euvolemic 

conditions. The pattern of caval flow recovery therefore matched the pattern 

of right-shifted VR curve over the experimental conditions. The flow recovery 

occurred within heartbeats after initiation of the static hold maneuver, and 

seemed to be completed as flows reached new steady states well before nine 

seconds into the maneuver. Reflex activation within this period is unlikely. 

However, a vascular waterfall mechanism located in the splanchnic region, 

could offer a possible explanation for the observed difference over volume 

states (68, 80). 

The vascular drainage of the liver has a vascular waterfall mechanism that can 

be overcome when the outflow pressure (RAP) exceeds ~5 mmHg. Above this 

pressure, the internal flow resistance of the liver decreases with passive 

distension of the venous system. In studies on isolated porcine livers, the 

distensibility appeared to be maximal at outflow pressures above 10 mmHg (8, 

19, 68). As RAP is acutely increased by the inspiratory hold maneuver, the 

vascular waterfall is first overcome, followed by upstream distension in the 

liver, resulting in decreased flow resistance. This mechanism could defend the 

hepatosplanchnic and IVC venous return during acute increases in RAP. 

In hypervolemia, the elevated RAP would already act as the true downstream 

pressure (having inactivated the waterfall) and a lesser reserve of decreased 

flow resistance from further vascular distension would remain as the 
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inspiratory hold maneuver began. In hypovolemia, the splanchnic reservoir 

would, to varying extent, already have been mobilized by passive and reflex 

mediated mechanisms. Once the vascular waterfall was opened by inspiratory 

hold, there would remain less splanchnic blood volume available for flow 

recovery. It is unknown to what extent the hepatic arterial buffer response 

could upregulate arterial inflow to the liver during the course of an inspiratory 

hold maneuver. 

Fessler showed in dogs that vascular waterfalls can develop in both caval veins 

as a consequence of PEEP (28). If present also in pigs, this would further 

modulate the flow dynamics described above. 

To summarize, in the early phase of increased airway pressure, upstream areas 

will be volume loaded and the inflow to the right atrium will underestimate the 

steady state venous return. In the later phase of a static increase in airway 

pressure, vascular waterfalls and modulation of hepatic flow resistance will be 

activated to an extent that is dependent on the underlying volume state. It is 

therefore impossible to know if the new steady state flow, present 10-20 

seconds into the hold maneuver, is representative of the steady state VR or not. 

The degree of dynamic flow restoration will remain an unknown factor. 

Importantly, the agreement (or lack thereof) between an inspiratory hold 

estimation and a true zero-flow measure of MSFP will only become apparent 

when they are compared over changing volume states. 

The site of flow measurement, be it the caval veins, the pulmonary artery or 

the aorta, will determine how much of the actual dynamic flow restoration that 

becomes apparent to the investigator. However, the choice of site does not 

obviate the need for method comparisons over changing volume states. 

As we measured MSFPRAO only in expiratory hold, it is impossible from this 

study to answer whether true MSFP changes within the respiratory cycle, or if 

it changes with acutely increased airway pressure (as opposed to the “chronic” 

change in PAW seen for example after one minute at a new PEEP level). Our 

VR reference curve connected data from 10 beats of expiratory hold with 

MSFPRAO measured in expiratory hold. The pressure-flow data-point 

representing mean values from 10 beats of tidal ventilation, plotted in the same 

graph, was shifted down and to the right, and fell slightly but significantly to 

the right of the reference curve. From the present experiment, it is not possible 

to deduce if true MSFP would have been shifted to the right, if there was a true 

isolated decrease in RVR, or even a combination of increased MSFP and 

increased RVR. 
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As discussed previously (section 3.3.1), since we did not actively transfer 

blood between arteries and veins, an arteriovenous pressure difference of ~10 

mmHg remained at zero flow and time of best equilibrium. Compared to the 

results of Ogilvie (same technique and species) and Jellinek (ICD testing in 

patients), the zero-flow measurements from the present experiment likely 

represents a high degree of equilibration – albeit not total. This translates into 

a slight underestimation of MSFP. However, between the onset of right atrial 

balloon occlusion and the time of best equilibrium, the beating heart will 

transfer volume from the pulmonary compartment to the systemic 

compartment. This volume shift will theoretically increase the stressed volume 

in the systemic compartment, but since the overall compliance is high, the 

resulting increase in MSFP was estimated to around 1-2% (data not shown). 

Taken together, it is unlikely that our measure of MSFPRAO greatly 

underestimates the true MSFP. 

In agreement with previous investigators, we report an increase in MSFP from 

increased PEEP. However, in contrast to the studies by Fessler and Nanas (29, 

30, 71), we found that increasing PEEP level was associated with a decrease 

in VRdP and unchanged RVR. This is the same pattern of change that Chihara 

reported for rats in the transition from spontaneous to controlled positive 

pressure ventilation (both conditions under anaesthesia)  (21). Compared to the 

previous studies, we used lower levels of PEEP and moderate tidal volumes, 

which may have less impact on the circulation. One of the afferent signals 

leading to a reflex adjustment of PEEP is a decrease in arterial blood pressure. 

With reflexes abolished, the PEEP-associated increase in MSFP was 

diminished (30). In the present study, as PEEP increased from 5 to 10 cmH2O, 

QPA decreased slightly (but not significantly) and MAP was unchanged. This 

could mean that the afferent signal from the baroreceptors was weak, and that 

the observed PEEP-associated increase in MSFP was mainly an effect of 

central-to-peripheral volume shift, with less adjustment of vascular 

capacitance. 

Upon publication, Paper I was accompanied by a Letter to the Editor written 

by Brengelmann (15), entitled “Why persist in the fallacy that mean systemic 

pressure drives venous return?”. We answered all questions in a point-by-point 

response, largely by citing ourselves and what we actually had written (11). It 

was obvious that we had entered a minefield and were assumed ‘guilty by 

association’ of numerous ideas previously advocated by ‘our side’. As an 

example, Brengelmann incorrectly ascribed to us the belief that MSFP “exists 

physically within some significant sub-compartment at the upstream end of the 

venous resistance”. It was also clear that the unresolved debate on ‘RAP as 

backpressure for venous return’ loomed over all issues related to venous return 



Mean systemic filling pressure 

98 

physiology. This motivated us to design the protocol of Paper II, in order to 

address the backpressure issue comprehensively and using contemporary 

clinical ECMO equipment. 
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5.2 DISCUSSION - PAPER II 

There were four main findings of this study: First, there was an inverse 

relationship between RAP and VR, present regardless of whether RAP was 

altered by means of airway pressure or pump speed. Second, changes in VR in 

response to changes in RAP were immediate, but transient. Any disturbance of 

the steady state of the system simultaneously initiated volume shifts and flow 

restoration. Third, the volume shifts changed both downstream, upstream and 

consequently the driving pressure for venous return. Fourth, increased airway 

pressure was associated with increased MSFP in Euvolemia only. 

We conclude from the first three findings that RAP acts as backpressure for 

venous return. It also implies that VR driving pressure is dynamically changing 

in the transit between steady states, mainly due to changes in RAP. The study 

shows that RAP is both a result of the volume shifting work of the pump, and 

a determinant for venous return. It illustrates that RAP is the node of 

interaction between the systemic circuit and the cardiopulmonary circuit, and 

is in line with the earlier findings of Versprille and Pinsky (82, 97) with beating 

heart preparations as well as the original bypass experiments by Guyton (40, 

41). The dual nature of RAP is well described by Parkin (77): 

“Thus the right atrial pressure, often used as a preload measure, is in fact a 

complex signal dependent upon the intrathoracic and intrapericardial 

pressures and their determinants, atrial compliance and unstressed volume, 

biventricular performance and itself. Right atrial pressure only measures the 

volume state when the heart is stopped”. 

The linear decrease of RAP with increasing pump speed is a result of volume 

shift away from the right atrium, where increased pump speed is equivalent to 

improved cardiac function (13, 79). The proof of the backpressure role of RAP 

rests on the experimental setup, with independent control of RAP and pump 

function - and not in the subtleties of cross correlation analysis (the result of 

which obviously supports the conclusion). In the airway pressure maneuvers, 

the choice of controlled variable (airway pressure) and the chain of events (the 

sequence begins when the experimenter operates the ventilator) provide the 

frame for interpretation. This was already present in the experiments by 

Versprille and Jansen (and in our Paper I), where airway pressure maneuvers 

in the form of inspiratory holds elicited the now familiar acute decrease and 

restoration of VR. What this study provides in addition is an experimental 

setup where any possible effects that increased airway pressure may have on 

the right ventricle become irrelevant, since flow forward from the RA was 

strictly controlled by the ECMO. 
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The dynamic change in caval flow seen in the airway pressure maneuvers, 

occurred despite a constant aortic flow. This was confirmed in three animals 

where ECMO flow was monitored with a high-resolution flowprobe (data not 

shown). Therefore, the initial decrease in VR was a consequence of increased 

RAP from the inspiratory hold maneuver. In the zero PEEP maneuver, the 

initial increase in VR was a result of acutely decreased RAP. As venous return 

decreased in the inspiratory hold maneuvers, volume was shifted out from the 

RA by the constant pump flow. Conversely, in the zero PEEP maneuvers, 

volume was shifted into the RA by increased caval flow. These volume shifts 

are (at least partly) responsible for the return of RAP in spite of a sustained 

PAW towards the level preceding the maneuver. The transient imbalance of 

decreased inflow and constant RA drainage, initiated by the inspiratory hold, 

will shift volume within the systemic compartment, from downstream to 

upstream areas. The reverse process is seen when airway pressure decreases 

and volume is shifted from upstream to downstream areas. These volume shifts 

will act to partially restore both RAP and the driving pressure for venous 

return, to the levels preceding the onset of imbalance. This constitutes a 

hydraulic, physical, self-regulating mechanism of the cardiovascular system, 

that is unrelated to any active homeostatic adaption. 

Volume shifts caused by respiratory maneuvers are small, as reported by us in 

Paper I, and others (20, 96). The upstream pressure effect of the transient 

volume shifts by the end of the “early” phase of increased PAW was <5% of 

MSFP (regardless of whether we used data for Cvasc from Ogilvie or from the 

present study). It was of a similar magnitude as the increase in MSFP seen 

during static inspiratory hold in Euvolemia. The overall high compliance of the 

systemic vasculature diminishes the upstream pressure effect on MSFP (64). 

The downstream pressure effect of the volume shift is larger, as seen by the 

return of RAP towards the level preceding the maneuver. The explanation is 

likely that the compliances of the RA and adjacent large veins are lower than 

the average vascular component of the systemic vasculature. Therefore, the 

predominant mechanism for restoring VRdP and VR is attributed to the 

restoration of RAP in the downstream area. 

If Guyton’s cardiovascular model should be applied to dynamic situations, the 

effect of transient volume shifts need to be acknowledged. In dynamically 

changing venous return following airway pressure maneuvers, we could show 

that the pressure effect in the systemic compartment was small, and the 

estimates of MSFP remain relatively robust. 

The effect of acutely increased airway pressure on the zero-flow pressure has 

been demonstrated by Jellinek and Repessé, in patients at ICD testing and 



Per Werner Möller 

101 

immediately after death (46, 86). In the present study, MSFP was higher in 

inspiration than in expiration, regardless of shunt state – but only in Euvolemia. 

An example of a stop-flow maneuver with ongoing tidal ventilation can be seen 

in Figure 37 (unpublished data from experimental series II). Atrial and arterial 

pressures vary with airway pressure, and all flows oscillate around zero with a 

tide-and-ebb effect from respiration visible for caval flows. 

The reported value for systemic vascular compliance was larger here than in 

the first experimental series, or in the study by Ogilvie (72): 4.3 ± 1.8 vs. 3.2 ± 

0.7 vs. 3.5 ± 2.4 mL×mmHg-1×kg-1, respectively. As we did not measure 

plasma volume, we may have overestimated the true Cvasc, if part of the infused 

colloid was redistributed to the extravascular space and/or if Hypervolemia 

was associated with vasodilation. Leakage may have been enhanced due to 

systemic inflammation, but compliance may also have been increased by a 

vasoplegic state – both phenomena which are associated with extracorporeal 

circulation (88). 

Figure 37 – Stop-flow maneuver caused by clamping the ECMO tubing with open shunt and 

tidal ventilation continued. Pulsatility is present, but the average flows over time are not 

different from zero. Atrial and arterial pressures vary with changing airway pressure. There is 

net retrograde caval flow on inspiration, with antegrade flow in expiration (tide-and-ebb effect). 

The caval flow profile is inversely proportional to RAP, as confirmed by cross correlation 

analysis during the airway pressure maneuvers. 
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Paper II was accompanied by an Editorial by Kamiya (47), discussing our 

results within the interesting context of the ‘extended Guyton model”, as 

formulated by Sunagawa (92). This model incorporates left arterial pressure 

and handles volume shifts between the cardiopulmonary and systemic 

compartments. Kamyia concludes that neither RAP nor venous return should 

be seen as a cause of the other. Instead, they are both determined by 

’unmeasurable properties’ of the cardiovascular system, such as total stressed 

blood volume, pump function, and systemic arterial resistance. It is of course 

possible to include any number of higher-level hierarchies in a model. We 

chose to accept RAP as a reasonable surrogate for the stressed blood volume 

in the RA, and therefore conclude that RAP acts as backpressure for venous 

return. However, one can argue that in our experiment, this was in turn affected 

by the changing airway pressure, which was in turn affected by the ventilator, 

which was operated by the experimenter, et cetera, et cetera in absurdum.  
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5.3 DISCUSSION - PAPER III 

The study was an application of the principles of venous return to modern 

venoarterial ECMO treatment. The main finding was that both 

Vasoconstriction with norepinephrine, and Volume Expansion with Ringer’s 

lactate, increased MSFP and the maximum achievable ECMO flow, with 

similar effects on oxygen delivery. Volume Expansion had a larger effect on 

blood flow than Vasoconstriction. Since pump-performance was constant 

between treatments and intensities, our results represent solely changes in the 

properties of the vascular circuit. 

The maximum ECMO flows were associated with imminent vascular collapse 

in all experimental conditions, which could not be observed clinically, but 

became evident in the offline analysis. The vascular waterfall that forms at 

collapse will dissociate the QECMO-RAP relationship, as RAP no longer 

represents the downstream pressure for VR. Depending on the site of RAP 

measurement, data-points representing flow rates at or above closing 

conditions, can either move leftwards to increasingly negative pressures, or 

drift off to the right, if the pressure is measured in a position where drainage is 

partially obstructed by downstream cannula-vessel interaction. The latter was 

a more frequent observation in our experiment where data-points at closing 

conditions displayed increasing RAP (as seen in Figure 34). Closing conditions 

were recognized as the main limit to flow increase in the studies by Guyton 

(40, 41). The study endpoint of maximum achievable QECMO is unrelated to 

whether closing conditions occurred or not – the highest flow that can be 

generated will be valid. However, in the clinical context, operating at or near 

maximum will carry risks of haemolysis, vascular damage and/or sudden loss 

of flow. When closing conditions were excluded, the VR plots were linear, as 

predicted by Guyton’s cardiovascular model. 

The study had a serial treatment design. Both Vasoconstriction and Volume 

Expansion increased MSFP, allowed for an increased maximum QECMO, and 

thereby shifted the VR curves to the right. In addition, Volume Expansion 

decreased resistance to venous return for all animals in proportion to the 

treatment intensity. In contrast, the response of flow resistance to 

vasoconstriction was highly heterogeneous. 

When compared to Euvolemia, Vasoconstriction led to a decrease in total 

blood volume (seen as a leftward shift of the pressure-volume curve) and an 

increase in MSFP from recruitment of unstressed into stressed volume. 

Vascular elastance was higher under norepinephrine in this study than during 

euvolemic conditions in studies I-II. Vascular elastance was not determined in 
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Euvolemia and we therefore cannot quantify the change, but increased values 

under vasoconstriction have been reported (4, 27). An increased elastance 

would increase MSFP for the given vascular capacitance (93). Compared to 

Euvolemia, as vascular capacitance decreased and stressed volume was 

recruited, approximately 20% of the plasma volume was lost. Plasma leakage 

may have been enhanced by inflammation associated with extracorporeal 

circulation (67). Volume Expansion shifted the pressure-volume curve to the 

right. Both stressed and unstressed volumes were increased, but to a lesser 

extent than expected from the large amount infused. 

The individually variable response to norepinephrine has been reported earlier 

(57) and is of clinical importance when VA-ECMO is used to support a failing 

left ventricle, as increases in afterload may have negative effects. Recruitment 

of stressed volume via vasoconstriction can occur without increase in RVR 

(24, 26). This was reproduced in our study and the average slopes of the VR 

curves were unchanged between Euvolemia and Vasoconstriction. On a group 

level, increasing intensity of Vasoconstriction led to increased maximum 

QECMO, without any measureable change in VRdP or RVR. One mechanism 

behind the increase in maximum flow could be decreased cannula tip-vessel 

wall interaction, via centralisation of blood volume from vasoconstriction. This 

explanation is supported by the parallel increase in RAP and MSFP with 

increasing treatment intensity, but it was not possible in the present study to 

determine whether RAP measured at the border of vascular collapse truly 

represented the downstream pressure for venous return. To strengthen the 

analysis and exclude possible artefacts from dissociated QECMO and RAP, we 

also estimated the increase in QECMO at standard levels of RAP for each 

condition, which confirmed the increase in flow and curve shifts. 

The linear pump function over the range of pump speeds and afterload 

conditions studied, illustrates that flow/rpm will depend on the variables of the 

Hagen-Poiseuille equation. It states that flow is proportional to the pressure 

gradient and the fourth power of vessel radius, and inversely proportional to 

viscosity and tubing length (48). In Volume Expansion, the resulting pump 

pressure head (=MAP-RAP) and RVR would have been affected by all these 

factors, with the possible exception of tubing (or total vessel) length. As a 

physical result of plasma expansion, the average vessel radius increases, 

further modulated by baroreflex adjustments of vascular diameter in both 

arterial and venous compartments. As a consequence of volume expansion, the 

average vascular element will move downstream. Finally, haemodilution will 

lower viscosity. In our sequential treatment approach, weaning from 

norepinephrine, and progressive SIRS may also add to the vasodilation. 
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The sequential approach used was a pragmatic compromise in study design 

that does not allow the evaluation of treatment benefit of one approach over 

the other. The main determinants of venous return (RAP, MSFP, VRdP and 

RVR) were not different between the two baseline conditions Euvolemia and 

Post Vasoconstriction. We show that both volume expansion and 

vasoconstriction, used in moderate doses, increase the maximum achievable 

ECMO flow with similar effects on oxygen delivery. We conclude that ECMO 

flow is dependent on factors that determine venous return, i.e. closing 

conditions, stressed vascular volume, and elastic and resistive vascular 

properties. 
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5.4 DISCUSSION - PAPER IV 

The main finding of this study was that the relationships between the indirect 

estimates and the reference method of MSFPRAO were influenced by the 

underlying volume state. All methods tracked changes in MSFPRAO 

concordantly. In this study, we have modified the inspiratory hold techniques 

in order to minimize the volume state related impact on venous return, but this 

effect could still not be eliminated. The effect was manifest as a significant 

bias for changes between the respective indirect method and the reference 

method. Poor tracking ability of changing volume state is problematic, since 

this is the context where access to a reliable measurement of MSFP would be 

clinically most useful. In a review of clinical studies using inspiratory hold 

maneuvers for the estimation of MSFP, values between 19-33 mmHg were 

reported (103). Even considering the increased values of RAP associated with 

volume loading, this is far above what can be expected from animal data. The 

developing theoretical and experimental framework for the inspiratory hold 

maneuver has been described in section 1.8. However, to the best of our 

knowledge, the methods have not been properly evaluated against a zero-flow 

measure over changing volume state, prior to our study. A comparison against 

the arm-occlusion technique is available, and both methods reported high 

values (58). As commented previously (section 1.12), the resulting venous 

return driving pressures were also very high, and suggestive of a grossly 

increased RVR, as the patients were not generally hyperdynamic. The high 

values of MSFP may therefore be related to the methods themselves. 

MSFPnadir_hold is conceptually unaffected by flow restoration. Although the 

pressure-flow data-pairs obtained at nadir flow should underestimate steady 

state VR, the accuracy vs. the reference method could potentially be constant 

over changing volume states. In this study, we showed that MSFPnadir_hold 

underestimated MSFPRAO, and with a significant bias and wide limits of 

agreement for changes: [bias (CI)] -1.0 (-1.9 to -0.1) mmHg, LoA -4.0 to 1.9 

mmHg. The primary reason for the underestimation is likely due to upstream 

volume loading during increased airway pressure (Figure 38). Three additional 

mechanisms may contribute: First, if airway pressure led to vessel collapse 

upstream from the RA, this would dissociate the pressure-flow relationship and 

shift the zero-flow estimate to the left. Second, venous vessel distensibility and 

interaction with vascular waterfalls (as described in Paper I) could vary with 

changing volume state and in part explain that volume state changed the 

agreement vs. MSFPRAO. Third, transmural RAP increased between the beat 

preceding nadir QPA beat, and the nadir beat, in 62 of 93 cases (67%) (data not 

shown). This suggests that inspiration increased right ventricular afterload (50, 
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98, 100) with possible distention, further adding to the discrepancy between 

measured flow and steady state VR. 

MSFPinst_VR integrates pressure-flow data-pairs from tidal ventilation. The 

absence of interventions (such as static hold maneuvers) has the benefit of not 

disturbing the system. The volume loaded in upstream vessels as a 

consequence of increasing RAP during inspiration will be released into the 

right atrium as vessels recoil during expiration (Paper II and (25)). In the data 

analysis of the present study, it became apparent that the effects of vessel 

Figure 38 - Venous return plots for animal 5 in Bleeding. The VR reference line connects the 

RAP-QPA data-point (square; representing mean values of 10 beats during tidal ventilation 

before RA balloon occlusion) with MSFPRAO. Filled circles represent individual beat mean QPA 

matched with mean RAP from the preceding beat, obtained during three respiratory cycles of 

tidal breathing. Green and red circle data-points, representing inspiration and expiration, are 

displaced downwards and upwards in respect to the reference VR line because of distention and 

recoil of compliant vessels upstream from the RA. The dashed regression line extrapolates to 

MSFPinst_VR. Blue triangle data-points represent the mean values of individual beat nadir QPA, 

matched with mean RAP from the preceding beat, caused by inspiratory hold to increasing levels 

of airway pressure. They are displaced downwards in respect to the reference VR line because 

of upstream vessel distention, and the dotted regression line extrapolates to MSFPnadir_hold. 
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distention and recoil on the zero-flow estimate do not cancel, but act additively 

(see Figure 38). Compared to a venous return plot unaffected by volume shifts, 

vessel distention will displace high RAP-low flow data-pairs from inspiration 

downwards, and vessel recoil will displace low RAP-high flow data-pairs from 

expiration upwards. The result is a clockwise rotation of the regression line, 

with a leftward shift of the zero-flow intercept. 

The original study by Pinsky compared MSFPinst_VR to MSFP at zero flow from 

ventricular fibrillation at baseline and after volume expansion, and reported no 

interaction between volume state and method (82). In contrast, we found that 

the accuracy of MSFPinst_VR vs. MSFPRAO was influenced by the volume state, 

and MSFPinst_VR showed a trend of underestimation MSFPRAO in Bleeding. 

Calculation of RVR using MSFPinst_VR resulted in a reduced RVR in Bleeding, 

which is physiologically unlikely, and was not seen for RVRRAO. The reason 

for MSFPinst_VR underestimating MSFPRAO in Bleeding may be found among 

factors that enhance the rotation of the regression line. In hypovolemia, 

inspiration promotes transient vessel collapse (99), which dissociates the 

pressure-flow relationship and temporarily stores all venous inflow into 

distended vessels. When the vessels reopen, enhanced flow from recoil will 

displace pressure-flow data-points upwards and enhance the rotation and the 

leftward zero-flow shift. 

The dynamic model analogue Pmsa, here adapted for pigs as MSFPa, also 

showed an agreement vs. MSFPRAO that was influenced by the underlying 

volume state. The clinical relevance of this cannot be judged with certainty, as 

MSFPa tracked changes in MSFPRAO with a low bias, albeit with wide limits 

of agreement – exceeding the desired 0.7 mmHg. As the within-method 

variability is unknown, we cannot assess the relative contributions of variance 

in MSFPRAO and MSFPa, to the LoA. The dynamic model analogue is expected 

to differ from static zero-flow pressure if the actual venoarterial compliance 

and/or arteriovenous resistance ratios deviate from the assumptions (78). We 

chose not to set factor ‘c’ using an approach that deliberately adjusts the 

calculated model analogue to 7 mmHg (51). Instead, we believe that one of the 

advantages of the Parkin equation is its simplicity, and the transparent selection 

of physiologically reasonable VA compliance and AV resistance ratios. The 

effect of incorporating changing SVR and Rv in factor ‘c’ during the course of 

the experiment, became statistically significant only in Hypervolemia. The 

clinical impact would be moderate with the model assumption of a non-

changing Rv overestimating the dynamic filling analogue by 0.48 mmHg or 3.8 

± 2.3% in Hypervolemia. 
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A derived variable like MSFPa is mathematically coupled to the precision of 

the entering signals RAP, MAP and CO. The accuracy of the ultrasonic 

flowprobes used in this study is reported as ± 10%. With the average flow in 

Euvolemia, this error was equal to ± 0.28 L/min. With the average value for 

‘c’= 0.78 ± 0.18 mmHg×min×L-1, this translates into an error in the pressure 

signal of ± 0.2 mmHg in MSFPa. A cardiac output monitor used in clinical 

practice and calibrated by thermodilution would have an accuracy in the range 

of 6-10 %. Nevertheless, the high tracking ability and non-interventional 

nature of the dynamic analogue MSFPa is favourable. 

In the clinical setting, the absolute values of MSFP, regardless of method used, 

are likely to be less relevant than the tracking ability vs. changes in MSFP. 

For all indirect methods, the accuracy vs. the reference method was dependent 

on the underlying volume state. For this reason, comparisons between the 

indirect methods were not performed. Instead, to assess the relative 

performances of the indirect methods, the most relevant information is the 

ability of each individual method to track changes in MSFP as measured with 

the reference method (Table 13). The bias of MSFPinst_VR against MSFPRAO 

was higher (non-overlapping 95% confidence intervals) than the respective 

biases of MSFPnadir_hold and MSFPa. There were no statistical differences in bias 

or LoA in the performance between MSFPnadir_hold and MSFPa. The high 

tracking ability and non-interventional nature of the dynamic analogue MSFPa 

is favourable in the clinical context. 

A serious limitation to this method comparison is the of lack repeated 

measurements for each method under conditions where the true value can be 

assumed to remain constant. Since the within-method variability (i.e. precision 

or repeatability) cannot be determined, the relative contributions of test and 

reference methods to the reported agreement remain unknown. In the end, the 

study protocol reflects a compromise to avoid excessive physiological stress 

and a potentially unstable preparation.  



Mean systemic filling pressure 

110 

6 CONCLUSION 

In this thesis, I have shown that RAP is simultaneously a function of volume 

redistribution and the backpressure determinant for venous return. In the 

dynamic transit between steady states, temporary imbalance between venous 

return and cardiac output is associated with volume shifts. In the intact 

circulation, these volume shifts will occur between the cardiopulmonary and 

systemic compartments, as well as within the systemic compartment. The 

related pressure effects are predominantly seen in the downstream area and 

will act to restore RAP and VRdP to the levels preceding the onset of 

imbalance. The is also a pressure effect in the upstream area, but due to the 

large compliance, it is small. If these pressure effects are accounted for, 

Guyton’s cardiovascular model can be applied also to dynamic conditions. As 

indicated by almost forty years of debate, this is a major physiologic finding. 

The maximum achievable ECMO flow can be increased by both 

vasoconstriction with norepinephrine, and volume expansion with Ringer’s 

lactate. The two treatments increased stressed vascular volume and MSFP via 

different mechanisms. Increased flow between conditions was not associated 

with increased venous return driving pressure, as RAP and MSFP increased in 

parallel. Instead, with increasing levels of volume expansion, the resistance to 

venous return decreased. We speculate that the flow increase observed with 

vasoconstriction may be related to improved venous cannula-vessel wall 

interaction following centralisation of blood volume. 

When moderate tidal volumes were used, an increase in PEEP from 5-10 

cmH2O was associated with an increase in MSFP that partially compensated 

for the increase in RAP. The decrease in pulmonary artery flow was small, and 

did not reach statistical significance. VRdP decreased and RVR was 

unchanged. 

I present data from two separate porcine experiments, with intact circulation 

and using VA-ECMO, indicating that acutely changed airway pressure is 

translated to MSFP, probably from central-to-peripheral redistribution of 

stressed volume. This is supported by a recent study in critically ill patients 

examined just after death (86). 

Airway pressure maneuvers provide valuable insights into the complex 

physiology of circuit-heart-lung-interactions. However, they are unsuitable for 

the estimation of MSFP, since the accuracy compared to zero-flow 

measurements is affected by the underlying volume state. 
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Zero-flow extrapolation using pressure-flow data-pairs early in the hold 

maneuver underestimated steady state VR and MSFP, due to upstream volume 

loading and vessel distention. 

Zero-flow extrapolation using pressure-flow data-pairs 9-12 seconds into the 

hold maneuver overestimated steady state VR and MSFP in euvolemic 

conditions, due to flow restoration preferentially seen in the inferior vena cava. 

This mechanism may involve activation of vascular waterfalls in the 

splanchnic circulation. 

Zero-flow extrapolation of instantaneous venous return using pressure-flow 

data-pairs from undisturbed tidal ventilation showed a trend of 

underestimating steady state VR and MSFP in hypovolemia, since flow 

decrease and flow restoration from vessel distension and recoil introduced a 

rotation of the regression line, as compared to steady state VR. 

Although indirect estimates of MSFP from airway pressure maneuvers tracked 

changes in the reference method of MSFPRAO concordantly, the limits of 

agreement were too wide to detect a 10% change in VRdP at euvolemia. 

The dynamic model analogue of static filling pressure was adapted to pigs 

(MSFPa). The accuracy compared to MSFPRAO was influenced by the 

underlying volume state. The clinical relevance of this finding is uncertain, as 

MSFPa tracked changes in MSFPRAO with a low bias, but with limits of 

agreement exceeding 10% of VRdP at euvolemia. 
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7 FUTURE PERSPECTIVES 

Instead of conducting further clinical studies using inspiratory hold maneuvers 

for the estimation of MSFP, researchers are encouraged to repeat our studies 

regarding the agreement between inspiratory hold estimates and zero-flow 

measurements of MSFP over changing volume states. The relevance of liver 

haemodynamics to the flow restoration should be explored further. A future 

study on the impact of acutely changing airway pressure on MSFP could 

institute zero flow at varying airway plateau pressures. There is need for data 

on the within-method precision, or repeatability, of MSFPRAO. The theoretical 

framework and derived measures from the Parkin dynamic model analogue are 

indeed appealing. For a measure that is in itself non-invasive and non-

interventional, the tracking ability of MSFPa for changes in MSFPRAO is 

impressive.  

However, since no patient will ever improve from monitoring alone, it is now 

time to study the possible outcome benefits of hemodynamic management 

guided by applied venous return physiology, as compared to standard care. 
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Søren Søndergaard Renaissance man: linguist, humanist, entrepreneur, 

engineer, physiologist, physician, and friend. It was your generosity and 

counselling that brought me to Switzerland in the first place.  

Mattias Sköld My best friend. I may have showed you how to tie shoelaces, 

but you led by example the way to research, to skiing in the tracks of Karl 

Molitor, and generally shared your way of enjoying life.  

Helena and Eric Werner For support and love in everyday life. 

Gunilla and Göran Möller For life-long love, care, support, engagement and 

interest. For being clear. For sharing and building enthusiasm. For being there 

for us and for the children – also when I was working during holidays. 

Otto and Hedda I will not pretend that this book was written for you. The truth 

is that it was a time-thief - but still it made me happy. You have both already 

written books of your own, and most likely more will follow in the future. In 

the meantime, let us continue working and playing together! I love you. 

Anna Werner My love! The meaning of life - from Sävelången to Sense, and 

back again. 
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