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Abstract

In this paper, we analyze the e¤ects of the interaction between national and local policies

designed to reduce an environmental externality that causes environmental damages both na-

tionally and locally. We formulate a theoretical model to develop hypotheses regarding the

combined e¤ects of such policies on the stringency of the local policies and on �rms�emissions

reductions. To test our hypotheses, we use actual data for Sweden, where emissions of nitrogen

oxides from combustion plants are subject to a heavy national tax and to individual emissions

standards set by county authorities. Our analytical �ndings suggest that it is unlikely that

local regulators will impose emissions standards stringent enough to achieve further reductions

than those induced by the national tax. This is con�rmed in our data, where most emissions

reductions can be attributed to the national tax and the e¤ects of the emissions standards are

not signi�cant.
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1 Introduction

The economic literature on regulatory federalism indicates that regulatory measures should, in

principle, be the responsibility of the lowest level of government whose jurisdiction encompasses

the relevant bene�ts and costs associated with the regulated activity. In some cases, like air quality,

there are not only local e¤ects of pollution control, but also spillover e¤ects into other jurisdic-

tions. The implementation of national policies may partially internalize spillovers, but impose

uniform incentives ignoring local heterogeneity. When there are interjurisdictional spillovers, the

literature typically �nds that decentralized policymaking produces socially ine¢ cient outcomes as

interjurisdictional spillovers are simply more important than local heterogeneity (see e.g., Banzhaf

and Chupp 2012 who �nd that decentralized policymaking of US air pollution loses 31.5% of the

potential �rst-best bene�ts, whereas a uniform national policy loses only 0.2%).

Cooperation across jurisdictions is an alternative and appealing approach to addressing envi-

ronmental spillovers. But such cooperation is not always easy to come by if �a race to the bottom�

in environmental quality occurs as states compete for new investments or if states free ride (see e.g.,

Oates and Schwab 1998, and Markusen et al. 1995).1 Thus, spillover e¤ects across jurisdictions

present us with a fairly complex set of policy alternatives in practice. The �rst-best measures of

economic theory may simply not be feasible. The available alternatives then include policy mixes

where not only central regulations but also local regulations that in some cases might override fed-

eral environmental regulations with tighter regulations of their own are implemented. This is the

case in, e.g., the United States and Europe, where environmental regulations are enacted and man-

aged at all levels of government: federal (i.e., national), state, and local. The regulations pertaining

to many major environmental problems� for example, clean air, clean water, and hazardous waste

management� are typically passed at the national level. Local regulators then pass regulations

that may restrict pollution beyond national requirements to address environmental problems for

which the local bene�ts are high (see, e.g., Chupp 2011, who studies the ability of US states to

respond to local conditions through implementation of local policies).

1See also List and Gerking (2000) and Sigman (2005). List and Gerking (2000) test whether environmental

quality declined when President Reagan�s policy of new federalism returned the responsibility for many environmental

regulations to the states. They �nd no evidence of a race to the bottom. In contrast, Sigman (2005) estimates the

costs of free riding among U.S. states under the Clean Water Act. Her results indicate that free riding gives rise to

a 4% degradation of the water quality downstream of authorized states, costing about $17 million annually.
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The interaction of policies raises important questions regarding the e¤ects of national actions

on the implementation and stringency of local regulations and viceversa. In particular, if the inter-

action between national and local policies a¤ects a country�s ability to achieve emissions reductions

and whether the policy overlapping leads to potentially ine¢ cient regulatory competition. The an-

swers to such questions certainly depend on the nature of the overlap between the two regulations,

their relative stringency as well as the types of instruments utilized. In the case of climate change,

the literature has shown, for instance, that the interaction between national and local regulations

becomes problematic if the national policy involves restrictions on aggregate emissions quantities.

That is, since the emissions reductions accomplished by a subset of local governments reduce pres-

sures on the constraints posed by the national policy, facilities are encouraged to increase emissions

in other states leading to "emissions leakage" and a loss of cost-e¤ectiveness at the national level.

In contrast, when the national policy involves �xed prices, more aggressive local policies in a subset

of states would generally lead to di¤ering marginal abatement costs across local jurisdictions and

reduced cost-e¤ectiveness (see e.g., Goulder and Stavins 2011).

In this paper, we analyze the e¤ects of the interaction between national and local policies

designed to reduce local air pollution in Sweden, where emissions of nitrogen oxides (NOx) from

combustion plants are subject to a heavy national tax and most (but not all) are also subject

to individual emissions standards set by county authorities. These policies were implemented

to control the serious soil acidi�cation and water eutrophication problems that Sweden faced in

the 1980s, which were caused partly by NOx emissions from combustion processes in transport,

industry, and power generation. In 1992, Sweden introduced a high tax on NOx emissions from

large combustion sources (e.g., power plants, industrial plants, and waste incinerators). The tax

was initially set at a rate of 40 SEK per kilogram of NOx emitted from any stationary combustion

plant producing at least 50 megawatt hours (MWh) of useful energy per year. This corresponds

to 6,000 USD/metric ton, which is much higher than the hundreds of dollars commonly seen in

the US programmes for NOx permits (Sterner and Höglund-Isaksson, 2006). Individual emissions

standards for NOx (so-called emission limit values, ELVs) had also been introduced in the late

1980s, and thus for some combustion plants ELVs were already in place when the charge was

introduced (Sterner and Höglund-Isaksson 2006). This is to say, the regulations were additive

and the plants that were subject to both types of regulations had to comply with both. We set

up a theoretical model to develop a series of hypotheses regarding the combined e¤ects of such

3



policies on the stringency of the emissions standards and on �rms�emissions reductions. We use

actual data to test our hypotheses. Since there is no centralized comprehensive information on the

emissions standards and how they have developed over time, we collected such information from

each of the county authorities and merged it with the Swedish Environmental Protection Agency

(SEPA) database, which covers the combustion plants monitored under the Swedish NOx tax.

Thus, we built a unique database that allows us to investigate the e¤ects of the implementation of

the national tax on the stringency of the ELVs and the combined e¤ects of the national and local

policies on abatement e¤orts.

To the best of our knowledge, the closest paper to ours is the one by Williams III (2012)

who investigates the growing state-federal con�icts in environmental policy. He argues that the

observed patterns of regulation in the United States where federal legislation serves as a minimum

�oor beyond which states can move ahead and set stricter regulations can be explained by a shift in

the type of regulation used at the federal state, from command-and-control toward incentive-based

regulation. This shift implies that a state imposing a tighter regulation will bear only part of the

additional cost - and thus has a stronger incentive to tighten regulation than it does under federal

command-and control. Thus, Williams III (2012) concludes that for a pollutant that causes any

local damage, the average state will want to impose its own tax.

In contrast to Williams III (2012), who focuses on the case where both national and local

governments regulate emissions via the same instrument, we study the case of a mixed policy

instrument with a tax at the national level and command-and-control at the local level. In such

a setting, we �nd that even though the stringency of the standards increases when standards are

combined with a national tax, it is unlikely that local regulators will impose emissions standards

stringent enough to achieve further reductions than those induced by the national uniform tax.

Such a result is also observed in our data, where most emissions reductions can be attributed to

the national tax and the e¤ects of the ELVs are not signi�cant. Hence, our paper provides evidence

of the e¤ects of interactions between national market-based policies and local regulations, showing

that not all mixes of policies create positive interactions that lead for further levels of environmental

protection, and thus the choice of policy mix has important implications in terms of environmental

outcomes.

The paper is organized as follows. The next section sets out the theoretical model conceptualiz-

ing how the implementation of the national tax might a¤ect the stringency of the local regulations.
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The empirical strategy is described in the subsequent section, followed by a description of the data

used to set up the study case. Next, we describe the main results and conduct a number of robust-

ness tests. The �nal section presents the main conclusions and discusses the policy implications of

our results.

2 The Model

Assume one country made up of n counties. In each county there is a polluting �rm that emits

a pollutant that causes environmental damages both nationally and locally. Pollution damage in

county i can be represented as Di(ei; E), where E is the nationwide level of emissions given by

E =
Pn
i=1 ei. Thus, environmental regulation will have local and national bene�ts.

2 The function

Di(ei; E) is twice di¤erentiable and convex in both arguments. The cost of emissions reductions in

county i is given by the function Ci(ei), which is twice di¤erentiable, decreasing and strictly convex

in ei.3

In this setting let us start by analyzing (i) �rst-best regulation, followed by the case where

(ii) only national or local governments regulate emissions, and then conclude with the case of (iii)

policy overlapping where both national and local regulators implement policies to reduce emissions.

Like Williams III (2012), we assume that governments incur some cost of imposing a policy, yet this

cost is arbitrarily small. To mirror the Swedish context, we focus on the case where the national

regulator sets a uniform emissions tax and the local regulators set command-and-control regulations

in the form of emissions limits. Moreover, the national regulator commits to maintain the tax rate

once it has been set. Thus, local regulators cannot a¤ect the level of the tax via their choices of

2As described by Williams III (2012), making damages a function of both local and national emissions allows this

model to represent cases where a pollutant has only local e¤ects (in which case, @Di=@ei > 0 and @Di=@E = 0), only

national e¤ects (in which case, @Di=@ei = 0 and @Di=@E > 0), and both local and national e¤ects (in which case,

both partial derivatives are positive). This last case could be a single pollutant with both local and national e¤ects,

or two pollutants that are highly correlated and identically a¤ected by e¤orts to reduce emissions. For instance, the

environmental impact of chemically reactive air pollutants on both local air quality (smog) and the regional ecosystem

(acid rain) is well established, i.e., NOx concentrations, in both polluted cities and the remote troposphere, play the

dominant role in tropospheric ozone production. Moreover, ozone can be transported by wind currents and cause

health impacts far from the sources.
3Note that the cost of emissions reductions in one state does not depend on emissions reductions in any other

state, which rules out any cost-side spillovers.
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stringency of local emissions standards (only the level of abatement by the local �rm).

2.1 First-Best vs. Decentralized Policies

Let us assume that the national regulator�s objective is to minimize the sum of all pollution damage

and the costs of reducing emissions in all counties:

min
ei

nX
i=1

[Ci(ei) +Di(ei; E)] ;

which leads to the following FOC for ei:

�@Ci(ei)
@ei

=
@Di(ei; E)

@ei
+

nX
j=1

Dj(ej ; E)

@E
; (1)

for j = 1; :::; n. That is, optimal emissions in each county i are such that the marginal cost

of emissions reductions in that county equals the marginal damage from pollution emissions in

county i plus the national-level e¤ects of emissions of county i on all counties. It is well known

in the literature that the �rst-best regulation can be implemented through di¤erentiated emissions

standards per county - set at the level de�ned by equation (1) - or through di¤erentiated tax rates

� i equal to:

� i =
@Di(ei; E)

@ei
+

nX
j=1

@Dj(ej ; E)

@E
: (2)

Note that under di¤erentiated taxation, the stringency of the local regulations will be larger in

counties where the local damages of pollution are greater and counties that cause larger inter-state

spillover e¤ects on other counties. However, as discussed before, di¤erentiated �rst-best policies

might not be politically or legally feasible. In practice, the majority of existing and planned market-

based emissions regulations are implemented as spatially uniform undi¤erentiated policies where

all regulated emissions are penalized at the same tax rate. Hence, let us assume that the national

regulator decides on a uniform tax rate T and that polluting �rms in each county want to minimize

the sum of abatement costs Ci(ei) and tax payments Tei. The national regulator solves:

min
ei

nX
i=1

[Ci(ei(T )) +Di(ei(T ); E(T ))] ;

subject to the �rms�implicit reaction function:

�@Ci(ei)
@ei

= T 8 i: (3)

6



It is easy to show that the uniform tax rate T corresponds to the average marginal damage

across counties. Indeed, the FOC determining the optimal level of emissions in each county i is

given by equation (1). Summing up these FOCs for all counties, we obtain that

nX
i=1

�@Ci(ei)
@ei

=

nX
i=1

@Di(ei; E)

@ei
+

nX
i=1

nX
j=1

@Dj(ej ; E)

@E
:

Furthermore, given the �rms�implict reaction function in equation (3) we know that

nX
i=1

�@Ci(ei)
@ei

= nT;

and thus:

T =
1

n

nX
i=1

@Di(ei; E)

@ei
+

nX
j=1

@Dj(ej ; E)

@E
: (4)

Comparing equations (2) and (4) it is straighforward that the uniform tax rate is only optimal

when the marginal damage from pollution is the same for all states. Otherwise, it will not yield

the �rst best: the uniform tax would be too low for those counties where local damages are high

and too stringent for those counties where local damages are low.

Let us now consider the case of decentralized policy implemented in the form of emissions

standards bei: County i0s objective is to minimize the local cost of reducing emissions plus pollution
damages to the county,

min
ei
Ci(ei) +Di(ei; E); (5)

which yields the following FOC:

�@Ci(ei)
@ei

=
@Di(ei; E)

@ei
+
@Di(ei; E)

@E
: (6)

From equation (6), we know that counties set emissions standards bei such that marginal cost
equals marginal damage (including only damages within the county and not damage to other

counties). Moreover, comparing the marginal costs in equations (4) and (6) of emissions reductions

under a uniform tax and decentralized emissions standards, it is straightforward that the emissions

reductions achieved in those cases where local governments implement decentralized emissions

standards will generally be smaller than the emissions reductions achieved when only the national

government regulates emissions by means of a uniform tax. Indeed, the only exception to this is the

case where the local environmental damages of pollution are very high and the inter-jurisdictional
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spillovers are small (e.g., the second term on the right hand side of equation (7) is negligible), such

that the following condition holds:

@Di(ei; E)

@ei
>

1

n� 1

nX
j 6=i

@Dj(ej ; E)

@ej
+

�
n

n� 1

� nX
j 6=i

@Dj(ej ; E)

@E
(7)

That is, the local damages to jurisdiction i must be larger than the average local damages

in all other jurisdictions plus the sum of damages of the interjurisdictional spillovers caused by

jurisdiction i on all the other jurisdictions. Consistent with the empirical literature that �nds that

decentralized policymaking produces larger welfares losses than a uniform national policy since

interjurisdictional spillovers are more important than local heterogeneity of damages, we argue

that cases where condition (7) holds are rare and characterized by large heterogeneity in damages

across counties (e.g., pollution hot spots) and small spillovers. In contrast, if we would assume that

all counties are symmetric in terms of the damages of air pollution and costs of emissions reductions,

it would be easy to show that the emissions reductions would be larger under the uniform national

tax (see Appendix A).

2.2 Policy Overlapping

Let us now analyze the case where the national regulator decides on a uniform tax rate T and

the local regulator sets (or revises) emissions standards bei after observing the uniform tax rate

set by the national regulator. Thus, the timing of the regulatory game is as follows. First, the

national regulator sets the uniform tax rate T to minimize nationwide pollution damages and costs

of pollution control. Second, local regulators set emissions standards bei. Finally, �rms decide
on pollution abatement. By backwards induction, we know that if both levels of government

implement regulations, �rms� emissions will be determined by the tighter regulation, and thus

ei = min [ei(T ); bei], where ei(T ) corresponds to the solution to the �rm�s implicit reaction function
in equation (3) and bei corresponds to the local emissions standards.4

Given the tax T , the local regulators set emissions standards bei to minimize the cost of reducing
emissions and pollution damages to the county, plus the national emissions tax paid by the local

�rm to the national government, net of any revenue returned to it as a lump sum. Let ri represent

the share of national emissions tax revenues that are returned to county i (which is assumed to be

exogenous). County i0s objective function can now be represented as:
4Firms now minimize the sum of abatement costs Ci(ei) and tax payments Tei subject to the constraint ei � bei.
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min
ei
Ci(ei) +Di(ei; E) + Tei � ri

nX
j=1

Tej ; (8)

which yields the following FOC:

�@Ci(ei)
@ei

=
@Di(ei; E)

@ei
+
@Di(ei; E)

@E
+ T [1� ri] : (9)

From equation (9), we know that counties set emissions standards bei such that the marginal cost
equals the marginal damage (including only damages within the county and not damages to other

counties) plus the national emissions tax rate (net of return transfers to the county). Thus, com-

pared with the FOCs in the case of decentralized policy given by equation (6), we should expect

emissions standards to be more stringent in the case of overlapping policies since a more stringent

standard incentivizes increased emissions reductions, allowing counties to reduce the tax payment

to the national government. The increased incentive due to tax payments is the largest when there

is no tax redistribution (and thus, ri = 0, implying that the county pays the full tax) and disappears

if ri = 1, since then the county gets the tax fully returned.

So far we have shown that emissions standards become more stringent when they are combined

with a uniform tax rate, but if they are not stringent enough to be binding, they will have no e¤ect

on the level of emissions reductions by the �rm. This is to say, min [ei(T ); bei] = ei(T ). In such a
case, the emissions reductions will be determined by equation (3), and the unique Nash-equilibrium

tax rate T is then de�ned by equation (4).

Let us now analyze the case where the emissions standards bei are binding (at least for a subset of
counties). Then, the marginal cost of abatement to the �rm in county i is equal to �@Ci(ei)

@ei
bbei> T .

Making use of such an inequality allows us to represent equation (9) as:

@Di(ei; E)

@ei
+
@Di(ei; E)

@E
> Tri: (10)

By substituting equation (4) into equation (10) we �nd a condition determining when emissions

standards are binding under overlapping policies compared with the case where only standards are

in place:

@Di(ei; E)

@ei
>

�
ri

n� ri

� nX
j 6=i

@Dj(ej ; E)

@ej
+

�
nri
n� ri

� nX
j 6=i

@Dj(ej ; E)

@E
�
�
n [1� ri]
n� ri

�
@Di(ei; E)

@E
: (11)
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Note that if ri = 1, condition (11) simpli�es to that in equation (7). Hence, policy overlap would

have no e¤ect on the stringency of the emissions standards since there are no additional bene�ts of

increased stringency in the form of reduced tax payments because the tax is fully refunded. If we

instead assume that ri = 0, the emissions standards become binding as increased stringency reduces

pollution damages and tax payments. Finally, let us assume that counties are symmetric in terms

of the damages of air pollution and costs of emissions reductions. As shown in Appendix B, under

such assumptions there is a critical refund r� that determines whether the emissions standards

become binding. If ri > r�, the emissions standards will not be binding, while the opposite holds

for ri < r�.

All in all, our analytical results suggest that emissions standards are more likely to be binding

when combined with a uniform tax that is not fully refunded to the county. As explained before, un-

der such policy overlapping, local regulators have an additional incentive to increase the stringency

of standards to incentivize more abatement and a reduced tax payment to the national government.

Thus, in line with Williams III (2012), our results suggest that the use of a market-based national

regulation leads local regulators to impose tigher regulations. However, the mechanism is slightly

di¤erent in his paper since when local regulators implement taxes, local regulators imposing a

tighter regulation will only bear part of the additional cost of the tax. In contrast, in our case,

local regulators implement tighter emissions standards (than they would have in the absence of the

national regulation) to reduce the tax payment to the national government.

Hence, we can conclude that when the national and local regulators implement regulations to

restrict emissions, the emissions standards set by local regulators might become more stringent

than in the case where they are the only policy in place. It is unclear, however, whether they will

be stringent enough to achieve further reductions beyond those induced by the national uniform

tax. This is likely to happen in cases where local environmental damages are large and pollution

spillovers are small.

3 NOx emissions regulations in Sweden

For geological reasons, Sweden is particularly vulnerable to acidi�cation, causing negative impacts

on lake and forest ecosystems. Consequently, NOx emissions have been an important environmental

policy target in Sweden. For instance, in 1992, a tax on NOx emissions from large combustion plants
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was introduced. The tax was accompanied by a refund according to the amount of useful energy

generated to ensure that facilities with low NOx emission intensities would be net bene�ciaries of

the scheme (see Bonilla et al. 2018). At the time when the tax was implemented, close to 25%

of Swedish NOx emissions came from stationary combustion sources and the tax was seen as a

cost-e¢ cient way to reduce NOx emissions. Regulated entities belong to the heat and power sector

(from 1992 to 2012 on average of 50.5% of all boilers), the pulp and paper industry (14.1%), the

waste incineration sector (11.8%), and the chemical (6.8%), wood (9.8%), food (5.5%) and metal

industries (1.5%). Initially, the tax requirement only covered boilers and gas turbines with a yearly

production of useful energy of at least 50 GWh. However, because of its e¤ectiveness in reducing

emissions and simultaneously falling monitoring costs, in 1996 the tax system was extended to

include all boilers producing at least 40 GWh of useful energy per year, and in 1997 the limit was

again lowered to 25 GWh (Sterner and Höglund-Isaksson 2006). From 1992 to 2007, the tax was

40 SEK/kg NOx, but in 2008 the tax was raised to 50 SEK/kg NOx following a series of reports

from the Swedish EPA indicating that the impact of the tax system had diminished over the years

(SEPA 2012). In real terms, the tax had decreased over time and the increase to 50 SEK in 2008

was in practice a mere restoration of the tax to the real level in 1992.

SEPA manages the tax on NOx emissions at a small administrative cost amounting to 0.2�

0.3% of the total revenues. The entire remaining tax revenue is refunded to the same collective

of polluters in proportion to their output of useful energy. Useful energy produced has been

accepted as a relevant and neutral yardstick for measuring output from this heterogeneous group

of industries since the main goal is to a¤ect combustion technologies. For power plants and district

heating plants, it is equal to the energy sold. For other industries, the energy is de�ned as steam,

hot water, or electricity produced in the boiler and used in production processes or heating of

factory buildings (see Sterner and Höglund-Isaksson 2006).

Individual emissions standards for NOx emissions from stationary sources (hereinafter, ELVs)

were introduced in the late 1980s and thus, for many boilers (but not all), they were already in

place when the tax was introduced. They are determined case-by-case either by either one of the 21

regional County Administrative Boards (CABs) or one of the �ve Environmental Courts.5 There

5We restricted the period under study to 1980�2012 because after June 1, 2012, coordination across counties

was enhanced since only 12 CABs were responsible for issuing the operating licenses (instead of 21: see, e.g., SFS

2011:1237).
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is no legal limit for how long an ELV speci�ed in an operating license is valid, though the common

practice seemed to have been that operating licenses and ELVs are revised about every ten years.

Firms must, however, apply for a new operating license if they make large changes to the operations

(e.g., if they install a new boiler or retro�t a boiler to use a di¤erent type of fuel). In addition,

there can be appeals that change the original permissions, or postpone the implementation of

requirements speci�ed in the operating license. Regarding enforcement, if a �rm violates the ELV

speci�ed in the operating license, it risks criminal charges and could face �nes determined in court.

Unfortunately, there is no comprehensive data on the ELVs and how they have developed over

time. Therefore, for the purpose of the present research we collected information about boiler-

speci�c ELVs (speci�ed in the operating licenses of the plants) for the �rms regulated under the

NOx tax. In particular, the gathering of ELVs data proceeded as follows. We gathered information

for all �rms included in the NOx database over the period 1992�2012. These corresponded to 392

�rms whose operations were distributed across 434 plants located all over Sweden. We contacted

all of the CABs hosting the 434 plants from October 2013 to June 2014. We provided each CAB

with a list of the plants of interest and asked them to provide all the permissions connected to all

boilers operating at that plant over the period 1980�2012.6

Figure 1 shows the average highest wintertime annual ambient concentration of NOx per county

1986�2012. As can been seen, the ambient concentration of NOx varies across counties, with the

highest concentrations found in the most populated counties (e.g., Stockholm, Västra Götaland

and Skåne) and the lowest concentrations found in Jämtland and the southeastern part of the

country (e.g., Blekinge, Kalmar, Kronober, Södermanland, and Gotland). According to the Swedish

Environmental Quality Standards, the binding upper limit for ambient NO2 concentration is 40

�g/m3 as a yearly average (SEPA, 2014). From 1986 to 2012, this limit was exceeded in �ve Swedish

counties, namely, Stockholm, Västra Götaland, Skåne, Västerbotten och Västernorrland.

Table 1 summarizes the number of boilers subject to ELVs and the NOx tax. In total, there

are 935 boilers included in the dataset. Out of these, 240 have only been subject to ELVs, 116

6Moreover, in Sweden, all environmentally hazardous activities that require environmental permission for operation

must on a yearly basis provide the monitoring agency with an annual environmental report in which they describe

their environmental impact and in what ways they comply with the regulations and restrictions that apply to them.

For the purpose of tracking permissions over the years, these reports were used to double check that no permissions

had been overlooked by the CAB or other authorities.
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Figure 1: Average Highest Wintertime Ambient NOx Concentration per County 1986-2012
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have only been subject to the tax, while 579 have been subject to both ELVs and the NOx tax at

least one year since 1992. ELVs are, however, expressed in di¤erent units and in order to perform

our empirical analysis we focus mainly on emissions standards expressed in mg NOx per MJ added

energy to make it comparable to the unit used for the NOx tax. Thus, our empirical analysis will

be based on 867 boilers, out of which 741 have been subject to ELVs and 516 have been subject to

both regulations.

As shown in Table 1, the stringency of ELVs has increased signi�cantly over time (by about

44%, decreasing from an average of 187.05 mg/MJ before the implementation of the tax in 1992 to

104.86 mg/MJ after that). Moreover, the increased stringency is more pronounced for the group

of boilers subject to both regulations than for those only subject to ELVs , e.g., a 48% vs a 31%

reduction, respectively (see also Figure 4 in the Appendix for a plot of the trends over time).

ELV Stringency (mg/MJ)

N Nmg=MJ Before 1992 After 1992

ELV-Tax 579 516 193.23 101.05

Only ELV 240 225 165.17 113.90

Total 819 741 187.05 104.86

Actual Emissions Concentration (mg/MJ)

Nmg=MJ 1992-2012

ELV-Tax 516 65.82

Only Tax 116 80.88

Total 632 68.2

Table 1: Number of boilers subject to ELVs/Tax

Regarding actual emissions concentrations, unfortunately we only observe this information from

the year 1992 onward for the boilers subject to the NOx tax (as such information is only available

from the SEPA NOx tax database). We can see, however, that the actual emissions concentrations

for the boilers subject to both regulations is about 19% lower than that for the boilers subject only

to the tax.

Figure 2 illustrates the distribution of the values of ELVs and actual emissions concentration
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Figure 2: ELVs vs. Actual Concentration by County 1992-2012.

(both expressed as mg/MJ) per county for all observations 1992�2012. In the sample of 857 boilers,

the counties with the largest numbers of boilers are Västra Götaland (136 boilers), Skåne (117)

and Stockholm (99). Gotland, Jämtland and Uppsala are the counties with the fewest boilers (4,

12 and 18, respectively).

Figure 2 is consistent with a fair deal of variation in the stringency of ELVs across counties. The

average ELV stringency for all boiler observations within counties varies between approximately 95

and 213 mg/MJ, with a mean of about 104 mg/MJ. Boilers in Jämtland seem to be, on average, the

most leniently regulated, whereas boilers in Södermanland and Östergötland seem to be slightly

more stringently regulated. We also observe that there is a lot of within-county variation in the

stringency as well. In Jämtland, for example, the stringency ranges from 60 to 300 mg/MJ. The

smallest variation in stringency is observed for Gotland, yet this is also the county with the fewest

observations.

Furthermore, from Figure 2, it appears as if ELVs have not been binding over the period,

on average (e.g., the average actual emissions concentration across counties varies from 45 to 87
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Figure 3: Total NOx Tax Revenues Refunded to Counties 1992-2012.

mg/MJ, with a mean of about 68.2 mg/MJ). However, we cannot rule out the possibility that the

ELVs were binding for some boilers at some point in time.7

Finally, Figure 3 illustrates the distribution of shares of the tax revenues refunded to the

counties. Note that if tax revenues were to be distributed evenly across counties, each should

receive around 5% of the tax revenues. From the �gure, it is clear that the distribution is uneven,

with the counties with the largest number of boilers (Västra Gotaland, Skåne and Stockholm)

receiving much larger shares of the refunds. The �gure also shows that the distribution of tax

revenues refunded to each county varies across the years.

What hypotheses can be derived from our analytical framework? One is that ELVs are more

7 Indeed, out of 4,616 observations for which an ELV (mg/MJ) and the NOx tax apply simultaneously, the actual

NOx concentration exceeds the maximum limit speci�ed by the ELV in a given year only for about 485 observations

(10.5%). This observation is consistent with evidence from the Swedish Protection Agency (SEPA), which in 2003

evaluated of the e¤ect of the ELVs for the period 1997�2001 and concluded that, because emissions were generally

much below the ELVs, the NOx tax was more e¤ective than the ELVs in reducing NOx emissions.
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stringent for boilers subject to both regulations than for boilers only subject to ELVs. A second

hypothesis is that since ELVs are not expected to be binding, most emissions reductions have been

achieved thanks to the implementation of the national tax.

In what follows, we verify the empirical validity of these hypotheses.

4 Econometric Model

We wish to evaluate i) the impact of the introduction of the NOx tax on the stringency of the ELVs.

Moreover, ii) we wish to analyze whether the actual emissions concentrations are driven mainly by

the NOx tax or the ELVs. Below, we explain our methodological approach in each case.

4.1 Evaluating the e¤ects of the NOx tax on the stringency of the ELVs

Since di¤erent boilers were a¤ected by the NOx tax at di¤erent points in time (as the size threshold

changed in 1996 and 1997), we divide our boilers into three groups. Group 1 (G1) includes all boilers

with a yearly production of useful energy of at least 50 GWh. G1 began being regulated by the tax

already in 1992. Group 2 (G2) includes all boilers with a yearly production of useful energy in the

]50; 40] GWh range. G2 became regulated by the tax in 1996. Finally, Group 3 (G3) includes all

boilers with a yearly production of useful energy in the ]40; 25] GWh range, which became subject

to the tax in 1997. Table 2 presents statistics of the mean ELV stringency before and after the

treatment for each group. In all cases, the stringency of ELVs after the treatment is statistically

higher than the stringency of the ELVs after the treatment. Nevertheless, as shown in the table,

the increased stringency is larger for G1 than for boilers in G3 and G2.

ELV Stringency (mg/MJ)

Group N Before Treatment After Treatment Di¤.

G1 380 199.65 100.03 99.62���

G2 37 123.54 106.64 16.90���

G3 99 123.25 101.21 24.03���

Table 2: Number of Boilers per Treatment

For the sample of all boilers in operation by 1992 (hereinafter, OldBoilers), we estimate a
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di¤erence-in-di¤erence model to analyze the e¤ect of the implementation of the tax on G1 by using

the information available from 1980 to 1995. For this group, we observe the ELVs in two time

periods, D_92 = 0, 1, where 0 indicates years before G1 received treatment (i.e., before 1992) and

1 indicates a time period after G1 began receiving treatment (i.e., 1992�1995). The control group

includes all boilers in operation by 1992 that were never subject to the tax plus the boilers in G2

and G3 (before they became subject to the tax).

The outcome variable Yijt corresponds to the ELV that applies to boiler i located in county j

at time t (expressed in mg NOx per MJ added energy). It is modeled as:

Yijt = �+ �D_92i + G1 + �D_92i �G1 +
LX
l=1

�lZil +
MX
m=1

{mXim +
PX
p=1

'pWjp + �j + "ijt; (12)

where � is the time trend common to control and treatment groups,  is the treatment group speci�c

e¤ect (which accounts for average permanent di¤erences between treatment and control), and � is

the true e¤ect of treatment de�ned as the di¤erence in average outcome in the treatment group

before and after treatment minus the di¤erence in average outcome in the control group before and

after treatment. Moreover, Z is a vector of L boiler characteristics (e.g., size and type of fuel), X

is a vector of M �rm characteristics (e.g., industrial sector, number of boilers and plants owned by

the �rms, and ownership type), and W is a vector of P county characteristics (e.g, severity of NOx

pollution and importance of regulated �rms for economic activity).8 Moreover �j are county-�xed

e¤ects that account for non-observable characteristics of the county that may a¤ect the stringency

of the ELVs, and "ijt is the error term.

For the sample of all boilers that were in operation by 1997, we estimate a di¤erence-in-di¤erence

model with multiple time periods, which allows us to verify that the e¤ect of the treatment is not

driven by a particular set of treated �rms and that it is similar across time periods. The outcome

variable Yikjt (i.e., boiler i in group k = 1; 2; 3, located in county j at time t) is now modeled as:

Yikjt = �+ Gk + �Dikt +
LX
l=1

�lZil +
MX
m=1

{mXim +
PX
p=1

'pWjp + �j + "ijt; (13)

where Gk are group �xed e¤ects and Dikt is an indicator on whether boiler i in group k was

subject to the tax by time t (i.e., interaction between treatment and treatment having occurred by

8There are some indications from SEPA (2003) that the individual emissions standards are set di¤erently for

di¤erent industry sectors, with the heat and power sector and waste incineration possibly being subject to more

demanding emissions standards.
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period t).

Regarding boiler characteristics, from interviews with decision makers at the CABs, it was

suggested that larger boilers (in terms of installed capacity) generally provide better combustion

conditions and can have more advanced abatement technology installed enabling larger emissions

reductions. We therefore hypothesize that larger boilers obtain more stringent emissions standards

than smaller boilers. We control for this e¤ect by means of the variable Size, which measures the

installed capacity in MW. We also control for number of boilers located in the plant and for the

number of plants owned by the �rm. Our hypothesis is that ELVs for the boilers located in plants

with several boilers (or owned by �rms that have several plants) generally are more stringently

regulated.

The type of fuel and the sector in which the boiler is operated might also a¤ect the stringency

of the ELV. In particular, the EU directives for boilers used in waste incineration and at large

combustion plants specify that gas fuels (which are associated with relatively lower levels of NOx

emissions) are more stringently regulated than solid and liquid fuels (which are associated with

relatively higher levels of NOx emissions). The reason for this is that a larger share of emission

reduction percentage-wise can be achieved in boilers that use less NOx intensive fuels. We therefore

hypothesize that boilers that use relatively less NOx intensive fuels are more stringently regulated.

Firm ownership might also a¤ect environmental performance. The theoretical literature has

identi�ed three major determinants of environmental performance associated with ownership: eco-

nomic e¢ ciency, willingness to internalize environmental externality, and bargaining power with

governments (see e.g., Wang and Wheeler 2005). Compared with public companies, private �rms

may exhibit greater economic e¢ ciency, less bargaining power to elicit the stringency of environ-

mental regulations, and fewer incentives to internalize environmental externalities. To capture

di¤erences in the regulatory process between private and public �rms we make use of the vari-

able Public, which takes a value of one for boilers owned by municipal/national �rms, and zero

otherwise.

Regarding variation across counties, we hypothesize that decision makers impose more stringent

emissions standards in counties with more severe NOx associated environmental damages. The

decision makers may also impose less stringent standards in counties where there is greater concern

about economic activity and employment. We proxy the �rst e¤ect by means of the highest

wintertime yearly average urban NOx concentration in the air measured in �g=m3. We argue
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that it is a good proxy variable since it captures variations in the exposure of people and the

environment to NOx emissions. As a variable intended to capture the potential bargaining power

of a �rm, we use the share of employees per sector out of all employed people in the county. The

assumption is that in counties where the sector in which a �rm�s boiler belongs is of relatively large

importance employment-wise, the �rm has a higher bargaining power vis-à-vis the decision maker.

Although the importance of a single �rm (measured by the number of employees) would have been

a more direct measure, it was not possible to use due to lack of data.

Since a great deal of technological development in the areas of NOx reducing technologies has

taken place over time (see e.g., Bonilla et al. 2015 and 2018), we should expect the stringency of

ELVs to have increased across revisions. To account for this we include �xed e¤ects per order of

the ELV (i.e., �rst ELV, second ELV, etc.) and also run separate regressions for the subsample of

�rst ELVs (as the factors a¤ecting regulatory stringency might be more prominent the �rst time

a boiler is regulated). Finally, we estimate equations (12) and (13) with robust standard errors

clustered at county level to account for the potential correlation of the ELV decisions made by a

given county.

4.2 Evaluating the e¤ects of ELVs on actual emissions concentrations

Regarding the methodological approach to address our second research question, as previously de-

scribed, we only observe information regarding emissions concentration from the year 1992 onward

as such information is only available for the panel of �rms subject to the NOx tax. Thus, we cannot

control for the value of the outcome variable before the treatment and only have information for

treated boilers. Hence, to test the hypothesis that emissions concentrations are mainly driven by

the NOx tax, we modify our methodological approach to a simple regression analysis. Our depen-

dent variable, which now corresponds to the actual concentration of NOx (expressed in mg NOx

per MJ added energy) is modeled as:

Cijt = �+ �D_Yijt�1 +
LX
l=1

�lZil +

MX
m=1

{mXim +
PX
p=1

'pWjp + �j + "ijt; (14)

where Cijt corresponds to the actual emissions�concentration for boiler i located in county j at

time t (expressed in mg NOx per MJ added energy). Our variable of interest is D_Yijt�1, which

corresponds to the lagged value of a dummy variable that takes a value of one if the boiler was
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subject to an ELV in the previous year and zero otherwise. If the ELVs have an e¤ect incentiviz-

ing further reductions on actual emissions concentration that those induced by the NOx tax, the

coe¢ cient � should be negative and statistically signi�cative.

As before, we control for boiler, �rm, and county characteristics as well as county �xed e¤ects.

Moreover, we estimate equation (14) with robust standard errors clustered at boiler level, and run

separate regressions for the sample of boilers already in operation by 1992 and the sample of all

boilers in operation by 1997.

Regarding boiler characteristics, the Swedish NOx database contains information about the

availability of technologies to reduce NOx emissions. Therefore, among the covariates we also

include a dummy variable accounting for the availability of such technologies.

4.3 Data

The data consists of an unbalanced pooled cross-section over time panel of boilers, where boilers

are observed every year from the year when they obtain the �rst ELV (or from the �rst year in the

NOx dataset in case of no ELV). In our sample, each boiler has received (on average) 1.80 ELVs,

and 294 boilers have obtained only one ELV during the whole sample period. The boilers that have

received more than one ELV have received (on average) 2.6 ELVs, and the average number of years

between revisions is 6.59.

Regarding the data sources, information about ELVs over the period 1980�2012 speci�ed in

the operating licenses of combustion plants was obtained from county authorities. The information

on NOx emissions and production of useful energy necessary to establish the NOx tax liabilities

and refunds over the period 1992�2012 comes from the Swedish NOx database, which is a panel

covering all boilers monitored under the tax system. The NOx database also includes information

on whether NOx abatement technologies are installed at each boiler, boiler capacity, and shares

of di¤erent fuels in the fuel mix. Information about �rm ownership was obtained from the Orbis

database.

County-level variables were collected from several di¤erent sources. A variable for the ambient

NOx concentration in a county was obtained from the Swedish Research Institute IVL Air Quality

Database (IVL, 2015). It includes data for most counties and years from 1986 and 2012. Data

concerning the share of employees per sector per county was also obtained from Statistics Sweden.
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See Table 2 for a description of the variables.
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Variable N Mean Std.Dev. Min Max

ELV mg/NOx 11477 110.77 50.22 21.90 300

NOx Concentration mg/NOx 7276 70.70 35.58 0.25 277

Treated 1 if subject to NOx tax; 0 otherwise 18386 0.66 0,47 0 1

OldBoiler 1 if existed in 1992; 0 otherwise 18386 0.57 0.49 0 1

Entrants92-96 1 if entered 1992-1996; 0 otherwise 18386 0.16 0.36 0 1

Entrants96-97 1 if entered 1996-1997; 0 otherwise 18386 0.06 0.24 0 1

# ELV # of ELV (1: �rst ELV) 11477 1.67 0.91 1 7

Boiler Characteristics

Size Installed boiler e¤ect in MegaWatts 15503 51.42 89.92 1.3 825

Technology 1 if technology installed; 0 otherwise 11479 0.55 0.50 0 1

Gas Fuel 1 if boiler uses mainly gas fuel; 0 otherwise 12275 0.18 0.38 0 1

Liquid Fuel 1 if boiler uses mainly liquid fuel; 0 otherwise 12275 0.19 0.39 0 1

Solid Fuel 1 if boiler uses mainly solid fuel; 0 otherwise 12275 0.16 0.36 0 1

Biofuel 1 if boiler uses mainly biofuel; 0 otherwise 12275 0.47 0.50 0 1

Firm Characteristics

Waste 1 if waste sector; 0 otherwise 18386 0.10 0.30 0 1

Food 1 if food sector; 0 otherwise 18386 0.06 0.23 0 1

Heat and Power 1 if heat and power sector; 0 otherwise 18386 0.55 0.50 0 1

Pulp and Paper 1 if pulp and paper sector; 0 otherwise 18386 0.11 0.32 0 1

Metal 1 if metal sector; 0 otherwise 18386 0.03 0.16 0 1

Chemicals 1 if chemicals sector; 0 otherwise 18386 0.06 0.24 0 1

Wood 1 if wood sector; 0 otherwise 18386 0.09 0.28 0 1

# Boilers No. of boilers per plant 18386 4.07 3.64 1 21

#Plants No. of plants per �rm 18386 3.64 5.61 1 29

Public 1 if publicly owned; 0 otherwise 18386 0.46 0.50 0 1

County Characteristics

NOx County Highest wintertime concentration air, �g/m3 17053 27.38 14.68 0.6 63.4

EmployeesSector % employees in sector in which boiler is used 18386 6.66 2.11 0.82 12.8

Table 3: Summary Statistics
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Table 3 shows that 70% of our observations have been subject to the NOx tax at some point,

and that 79% were in operation by 1997. Moreover, there is large variation in the stringency of

ELVs and NOx emissions concentrations. Such variation re�ects di¤erences in, e.g., boiler size, fuel

mix, sector, and availability of technology. Most boilers have NOx-reducing technologies installed

(55%), the most common fuel used by boilers is biofuel (47%), and most of the boilers in the

dataset belong to the heat and power sector. Furthermore, 46% of the boilers in the sample are

owned by public companies (i.e., by municipalities or the national government). Regarding county

characteristics that might a¤ect the stringency of the ELV setting process, the highest wintertime

ambient NOx concentration ranges from 0.6 to 63.4 �g/m3 across counties, with a mean of about 27

�g/m3. As described before, values over 40 �g/m3 are consistent with exceedances of the Swedish

Environmental Quality Standards. Finally, on average, 6.66% of the people employed in each

county works in the sectors in which the boilers in the sample are used.

5 Results

In what follows, we discuss the results of the econometric models.

5.1 ELVS are more stringent for boilers subject to the national tax

We �rst compare the stringency of ELVs in G1 to the control group to verify the hypothesis that

ELVs are more stringent for boilers subject to both the standards and the tax. In cols (1) and

(2) of Table 4, we present the results of the di¤erence-in-di¤erence model speci�ed in equation

(12), focusing on the boilers already in operation by 1992 (using only the information available

over the period 1980�1995). In col (1) we present the results for the subsample of �rst ELVs

regulating the boilers in operation by 1992, while col (2) shows the results for the whole sample of

ELVs for the boilers in operation by 1992 (controlling for the order of the ELVs). Moreover, cols

(3)�(5) present the results of the di¤erence-in-di¤erence model speci�ed in equation (13), focusing

on the boilers already in operation by 1997 (and using the information available for the period

1980�2012). Col (3) refers again to the sample of �rst ELVs while cols (4)�(5) refer to the whole

sample of ELVs for the boilers in operation by 1997. Col (4) refers to boilers in all counties, while
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col (5) includes only boilers located in the �ve counties where the Swedish Environmental Quality

Standards have been exceeded (e.g., it includes only the ELVs for the counties where ambient NOx

emissions concentration are higher than the legal limit to investigate whether the results are more

salient in counties with higher levels of pollution and industrial activity).

A negative sign of the coe¢ cient indicates that the determinant makes the ELV more stringent.

We observe that the di¤erence-in-di¤erence estimator Did_Gi is negative and statistically signi�-

cant in almost all speci�cations in cols (1)�(5). This is to say, the stringency of the ELVs for those

boilers in G1 subject to the NOx tax increased after they became subject to the tax, and the same

holds for the stringency of the ELVs for boilers in G2 in speci�cations (4)�(5) and the stringency

of the ELVs for boilers in G3 in speci�cations (3)�(4).

Let us focus on the analysis of the results in cols (1)�(2). As shown in the table, after the

treatment, the stringency of the ELVs for the boilers subject to the tax increased by 41.34 mg in

col (1) and by 42.53 mg in col (2). Moreover, the simple pre versus post estimator �+ � in cols (1)

and (2) is also negative and statistically signi�cant. This �nding is in line with our expectations as

the stringency of the environmental legislation is likely to have increased over time and the average

ELV stringency should follow this trend. Note that  is positive and statistically di¤erent from

zero, indicating permanent average di¤erences in ELV stringency between the treatment groups

(in particular, in the absence of treatment, boilers exceeding the threshold of production of useful

energy to become subject to the NOx tax were allowed less stringent ELVs than boilers that produce

lower amounts of useful energy).9 However, such a di¤erence disappeared after the treatment since

 + � (the simple treatment versus control estimator that ignores pre-treatment outcomes) is not

statistically di¤erent from zero.

Regarding cols (3)�(5), in col (3) the di¤erence-in-di¤erence estimator Did_Gi is negative not

only for boilers in G1 but also for boilers in G2 and G3. However, the increased ELV stringency for

boilers regulated under the tax is only statistically signi�cant for boilers in G1 and G3. In relative

terms, the size of G2 is small (6.6% of our observations, vs. 64% and 14% for G1 and G3), and

in col (3) we only analyze the subsample of �rst ELVs. In cols (4) and (5), the sample includes

all ELVs for the boilers in operation by 1997, and the di¤erence-in-di¤erence estimator becomes

9Note that in randomized experiments, where subjects are randomly selected into treatment and control groups,

 should be zero as both groups should be nearly identical. However, in most program evaluation problems seen in

economics there is selection into the treatment.
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statistically signi�cant also for boilers in G2. Moreover, in line with the summary statistics in

Table 2, the results for the di¤erence-in-di¤erence estimators in col (4) indicate that the increased

stringency of ELVs after the treatment is larger for G1 than for G3, and larger for G3 than for G2.

Thus, even if the e¤ect of the treatment is observed for all our three groups of boilers, the e¤ect is

the largest for the �rst group of boilers being treated, followed much behind in magnitude by G3.

Regarding covariates, in cols (3)�(5) we observe that the lagged value of the county-level con-

centration of NOx is a statistically signi�cant determinant of ELV stringency in period t, but this

e¤ect is not observed in cols (1)�(2). Interestingly, the e¤ect of the ambient concentration of NOx

on ELV stringency is larger in the counties where the Swedish Environmental Quality Standards

have been exceeded; see col (5).

The share of employees per sector working in the regulated �rms seem to only have mattered

when setting the �rst ELV; see col (3). In such case, a larger share of employees working in regulated

�rms translated into less stringent ELVs. In contrast, boiler size is an important determinant of

the ELVs in all speci�cations. The results indicate that larger boilers obtain more stringent ELVs,

probably because they have better capacity to reduce emissions.

Regarding �xed e¤ects for fuel, using the least NOx-intensive fuels (gas fuel) as the reference

dummy variable, we observe that, on average, the more NOx-intensive a fuel is, the less strictly

regulated it tends to be. Finally, in speci�cations (2), (4), and (5) we also control for the order

of the ELVs. These �xed e¤ects are all negative and statistically signi�cant, indicating that the

stringency of the ELVs has increased across revisions. As discussed before, this is to be expected

due to learning, technological progress, and adoption of NOx dedicated abatement technologies.
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ELVs (1) (2) (3) (4) (5)

D_92 -3.59 4.58

G1 34.70�� 43.12��� 86.47��� 87.65��� 78.36���

Did_G1 -41.34��� -42.53��� -67.51��� -78.48��� -71.93��

G2 34.14��� 28.99�� 18.58

Did_G2 -17.31 -11.90� -11.45��

G3 42.70�� 22.95� 4.64

Did_G3 -24.94�� -21.12�� -12.81

Size -0.06�� -0.07�� -0.07�� -0.07��� -0.11���

Boilers per Plant 1.67 -2.29 0.43 -0.25 1.16

Plants per Firm -0.21 -2.73 0.02 -0.83�� -0.42

Public Firm -10.38 -8.74 -10.54 -8.18 -1.84

NOx County_1 -0.02 0.91 -0.55��� -0.36�� -0.67���

EmployeesSector_1 -2.56 -0.04 12.45�� -1.38 -8.31

FE Fuel YES YES YES YES YES

FE Sector YES YES YES YES YES

FE County YES YES YES YES YES

FE # ELV � YES � YES YES

#Obs 590 821 2137 5020 2837

#Boilers 135 159 220 327 175

R2 0.68 0.56 0.56 0.46 0.48

Table 4: Di¤erence-in-Di¤erence Model

Thus, we can conclude that the results provide empirical support to our hypothesis that the

ELVs are more stringent for boilers that are subject to the national tax. Moreover, the magnitude
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of the e¤ect of the tax on the ELV stringency seems to be larger for the group of boilers that �rst

became subject to the tax.

5.2 Emissions Reductions are not driven by ELVS

Table 5 presents the results of the regression model speci�ed in equation (14). In cols (1)�(4), we

present the results for the sample of boilers subject to the NOx tax that were in operation by 1992,

while cols (5)�(6) present the results for the sample of boilers subject to the NOx tax in operation

by 1997.

Regarding cols (1)�(4), emissions concentrations are expected to decrease either through the

adoption of abatement technologies or if revisions of ELVs would impose further requirements on

boilers. In col (2), we control for the e¤ect of the availability of technology at time t�1 on emissions

concentrations at time t. In col (3), we also control for the e¤ects of ELV revisions through �xed

e¤ects accounting for the order of the ELVs. Finally, since our theoretical model suggests that

ELVs are more likely to be binding when the share of tax revenues refunded to a county is small,

in col (4) we run the speci�cation in col (3) only for the subsample of counties with lower shares

of the refunds (i.e., we exclude boilers located in Stockholm, Västra Götaland and Skåne since as

shown in Figure 3, they receive much larger shares of the refunds than other counties). Finally, in

col (5), we run the same speci�cation as in col (3) for all boilers in operation by 1997, while col (6)

only includes the sample of boilers in operation by 1997 located in counties with low shares of the

NOx refunds.

The results in cols (1)�(4) consistently indicate that when analyzing the sample of boilers

in operation by 1992, the only two variables a¤ecting �rms�emissions reductions are size and the

existence of installed abatement technology. Indeed, in all speci�cations, we observe no statistically

signi�cant emissions-reducing e¤ect of the ELVs. These results also hold when analyzing the

full sample of boilers in operation by 1997 (see col 5), but the e¤ect of the ELV on emissions

concentrations turns out to be slightly statistically signi�cant in col (6), which corresponds to the

sample of boilers in operation by 1997 in counties that receive lower shares of the NOx tax revenues.

Thus, the results seem to con�rm our theoretical prediction that it is unlikely that ELVs induce

further emissions reductions than those induced by the NOx tax, and if so, this might happen in

counties that receive a low share of the tax refunds.
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Regarding covariates, in all speci�cations we observe that boilers making using liquid and solid

fuels generate higher emissions concentration than boilers using natural gas and biofuels and boilers

in the pulp and paper sector generate higher emissions concentrations than boilers in other sectors.

The fact that emissions concentrations are mainly driven by boiler size, technology, and fuel

type is consistent with the �rms�implicit reaction function described in equation (3), which provides

support to our hypothesis that the NOx tax is the policy driving emissions reductions.

NOx Concentration (1) (2) (3) (4) (5) (6)

Lag_D_ELVt -6.79 -4.00 -6.89 -5.70 -6.79 -8.24�

Size -0.06��� -0.05��� -0.05�� -0.04� -0.06��� -0.07��

Boilers per Plant -1.31��� -1.08��� -1.20��� -1.17 -0.73 -0.75

Plants per Firm -0.28 -0.19 -0.11 -0.03 -0.43� -0.08

Technology Installed_l -7.76��� -8.14��� -11.71��� -7.69��� -9.13���

Public Firm -2.19 0.96 1.18 -0.72 -3.31 -5.70

NOx County_1 -0.07 -0.03 -0.05 0.09 -0.11 -0.03

EmployeesSector_1 0.56 -0.28 -0.35 -4.90 2.22 -1.12

FE Fuel YES YES YES YES YES YES

FE Sector YES YES YES YES YES YES

FE County YES YES YES YES YES YES

FE # ELV NO NO YES YES YES YES

#Obs 3297 3297 3156 1662 4388 2514

#Boilers 274 274 263 143 403 233

R2 0.24 0.27 0.27 0.35 0.21 0.26

Table 5: Drivers of Emissions Reductions
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6 Conclusions

Air quality control is often undertaken by means of policy mixes where not only national but also

local regulations are implemented. In this paper, we study the e¤ects of the interaction of national

and local policies on NOx emissions in Sweden, analyzing whether the coexistence of national and

local policies has increased the country´s ability to achieve emissions reductions. We conclude

that the implementation of the national tax has brought along stricter emissions standards over

time. Counties set more stringent emissions standards in response to the implementation of a

national uniform tax since stricter standards incentivize increased emissions reductions by local

�rms, allowing counties to reduce the tax payment to the national government. However, the

increases in stringency of the local emissions standards have not been aggressive enough to induce

any reductions in emissions beyond those induced by the national uniform tax.

Why is the tax more e¤ective reducing emissions? Because a national uniform tax is set to a

level that is high enough to internalize air pollution spillovers across counties. In contrast, when

a county decides on the stringency of the local policies, it takes into account only local pollution

damages and abatement costs. Thus, the tax is simply more stringent than the standards, except

in the cases when the local damages of air pollution are quite high and the spillovers quite small.

When both policies are combined, local regulators have an incentive to increase the stringency of

the local standards as a means to reduce tax payments to the national government. Therefore, the

national tax leads local governments to internalize part of the e¤ects of their pollution in other

counties. However, for this mechanism to work, the revenues from taxing emissions should not

be fully refunded to the county. Otherwise, the incentive to increase the stringency of the local

standards in order to reduce the payment of the national tax disappears from the local regulators�

objective.

The model in this paper is simpli�ed in a number of respects to keep the analysis tractable.

For example, in reality, pollution spillovers are characterized by a much more complex pattern of

interregional relations than assumed in this paper. Such relations can be represented through a

pollution dispersion matrix that is a function of several climatic, geographic and technical factors,

such as the direction and average speed of the wind, the size of the region, the height of the source

of the emissions, and air turbulence. In this paper we disregard such complexities. Although this

simpli�cation might a¤ect the conditions that de�ne when the standards are binding (as pollution
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from close neighbors would have a larger impact in a county than pollution from counties located

farther away), the analysis provides a useful starting point for assessing the economic incentives

provided by policy mixes. Finally, our paper provides a �scal motivation to the response of the local

regulators to a national tax on polluting emissions. However, when deciding on the level of strin-

gency regulators face asymmetric information regarding the �rms�abatement costs. Thus, a further

area of research concerns the informational value of the policy overlap. In particular, how local

regulators could make use of the information on the �rms�costs provided by the implementation

of the tax to better target the standard on the �rms�true cost.
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Appendix A

To compare aggregate emissions reductions under a uniform national tax vs. decentralized

emissions standards, we assume that counties are symmetric in terms of the damages of air pollution

and costs of emissions reductions. Thus, we assume that Di(ei; E) = D(e;E) and Ci(ei) = C(e) 8

i; such that ei = e and E = ne. Under such assumptions, the uniform tax rate T in equation (4)

can be represented as:

T =
�
1 + n2

� @D(e;E)
@e

; (15)

and county i0s emissions reductions under the uniform tax rate T are determined by the solution

to:

�@C(e)
@e

=
�
1 + n2

� @D(e;E)
@e

: (16)

In contrast, from equation (6) it holds that emissions reductions under decentralized emissions

standards will be determined by the solution to:

�@C(e)
@e

= [1 + n]
@D(e;E)

@e
: (17)

Comparing equations (16) and (17), it is straightforward to say that emissions reductions under

the uniform tax rate are larger than under decentralized emissions standards, as the stringency of

the uniform tax takes into account the existence of interjurisdictional externalities.
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Appendix B
To investigate whether ELVs become the most restrictive policy instrument when combined

with a uniform national tax, we assume that counties are symmetric in terms of the damages of

air pollution and costs of emissions reductions. Thus, we assume that Di(ei; E) = D(e;E) and

Ci(ei) = C(e) 8 i; such that ei = e and E = ne. Under such assumptions, the uniform tax rate T

can be represented as:

T =
�
1 + n2

� @D(e;E)
@e

; (18)

Moreover, county i0s emission reductions under policy overlapping in equation (9) are deter-

mined by the solution to:

�@C(e)
@e

= [1 + n]
@D(e;E)

@e
+ T [1� ri] : (19)

Substituting equation (15) into equation (19), it holds that �@C(e)
@e > T if:

[1 + n] >
�
1 + n2

�
ri;

or:
1 + n

1 + n2
> ri:

Let r� = 1+n
1+n2

. ELVs will become binding when ri < r�, while the uniform tax would be the

binding policy if ri > r�: Moreover, note that since r� > 1
n , refunding tax liabilities uniformly

allocated across counties will lead to binding ELVs.
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Figure 4: Stringency of ELVs Over Time
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