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ABSTRACT

The aim of this thesis is to validate methods for estimation of intracranial
volume in magnetic resonance images and to improve our understanding of
the effect of intracranial volume normalization.

To achieve the first part of the aim, 62 gold standard estimates of intracranial
volume were generated by manually segmenting 1.5 T T1-weighted magnetic
resonance images. These estimates were then used to validate a more work-
efficient manual method that is frequently used in neuroimaging research. We
also proposed an even more work-efficient method for situations where only
a strong linear association between estimate and gold standard are required
(rather than a strong agreement). Finally, we evaluated the validity of a
frequently used automatic method for estimation of intracranial volume. To
achieve the second part of the aim, we presented mathematical functions that
predict the effect of intracranial volume normalization on the mean value and
variance of the brain estimates and their Pearson’s correlation to intracranial
volume.

We found that segmentations of one intracranial area every 10" mm in
magnetic resonance images will result in valid estimates of intracranial volume
(intra-class correlation with absolute agreement to gold standard estimates
>0.998). The segmentation of two intracranial areas and the estimation of the
perpendicular intracranial width will result in estimates with strong linear
association to gold standard estimates (Pearson’s correlation >0.99). It was
also shown that FreeSurfer’s automatic estimates of intracranial volume risk
being biased by total brain volume. Further, the presented mathematical
functions closely predicted the effect of intracranial volume normalization on
certain statistics of brain estimates, both in a simulation and compared to
actual data from other studies. All these findings contribute to an improved
intracranial volume estimation and a better use of intracranial volume in
regional brain volume normalization.

Keywords: magnetic resonance imaging, intracranial volume, normalization



SAMMANFATTNING PA SVENSKA

Den héar avhandlingen har tva syften. Det forsta syftet ar att validera metoder
for estimering av skallhalans volym i magnetkamerabilder. Det andra syftet ar
att utoka var forstdelse inom medicinsk bildanalys for vad som sker vid
normalisering for skallhalans volym.

For att uppfylla det forsta syftet i avhandlingen gjordes manuell utlinjering av
volymen av 62 skallhalori 1.5 T T1-viktade magnetkamerabilder. Detta gjordes
med en ytterst utforlig metod for att fa referensvolymer att anvéanda vid
validering av andra mer anvandarvanliga metoder. Dels utvdrderade vi en
manuell metod som anvands flitigt i hjarnavbildningsforskning, dels en metod
som vi sjalva foreslar for det fall man endast efterfragar estimat av skallhalans
volym med starkt linjart samband till referensvolymer (snarare an en stark
likhet). Slutligen validerade vi ocksa en automatisk metod for estimering av
skallhdlans volym som ofta anvédnds i hjarnavbildningsforskning. For att
uppfylla det andra syftet presenterade vi matematiska funktioner som
forutsager effekten av normalisering for skallhdlans volym pa estimat av
regionala volymer. De matematiska funktionerna beskriver hjarnestimatens
forvantade medelvarde, varians och Pearsons korrelationskoefficient till
skallhalans volym efter normalisering.

| var forsta studie fann vi att segmentering av areor av skallhalan med 10 mm
mellanrum ger valida estimat av dess volym (intraklasskorrelation till vara
referensvolymer >0.998). | var andra studie fann vi att estimat baserat pa tva
areor av skallhalan samt skallhalans bredd hade ett starkt linjart samband till
vara referensvolymer (Pearsons korrelation >0.99). | den tredje studien visade
vi att FreeSurfer-estimat av skallhdlans volym, som erhalls automatiskt, ar
beroende av den totala hjarnvolymen och darfor kan vara vilseledande vid fall
av hjarnatrofi. | var fjarde studie visade vi att de matematiska funktioner som
presenterades val kunde predicera effekten av normalisering for skallhdlans
volym. Prediktioner gjordes bade pa simuleringar och faktiska data fran
tidigare studier. Sammantaget bidrar alla dessa fynd till att forbattra
estimeringen av skallhdlans volym utifran magnetkamerabilder samt dess
anvandning for normalisering av regionala hjarnvolymer.
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BET Brain extraction tool (software tool)

CDR Clinical dementia rating (clinical rating scale)

Cl Confidence interval (statistical estimate)
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DICOM image Digital imaging and communication in medicine image (file format)
Etal. Et alii/and others

eTIV Estimated total intracranial volume (estimate from FreeSurfer)
EXIT Executive interview (cognitive testing)

FAST FMRIB automated segmentation tool (software)

FLAIR Fluid-attenuated inversion recovery (MRl sequence)

FMRIB Oxford center for functional MRI of the brain

FSL FMRIB software library (software package)

GDS Global deterioration scale (clinical rating scale)

ICA Intracranial area

ICV Intracranial volume

|-FLEX Investigation of flexibility (cognitive tests)

ITK-SNAP Insight segmentation and registration toolkit-SNAP (software)
MATLAB Matrix laboratory (software package)

MCI Mild cognitive impairment

MIDAS Medical image display and analysis software

MIST Medical image segmentation tool (software)

MMSE Mini-mental state examination (cognitive tests)

MNI Display Montreal neurological institute Display (software)

MNI305 Montreal neurological institute 305 (a head atlas)

MR Magnetic resonance

MRI Magnetic resonance image

n Number of observations

Nifti image Neuroimaging informatics technology initiative image (file format)
NLSS Non-local spatial STAPLE (ICV estimation method)

OPLS Orthogonal projections to latent structures (statistical method)
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PhD
PIVUS

p-value

RBM
SPM
STAPLE
STEP

T

T1-w

T2-w

Proton density-weighted (MRI sequence)

Philosophiae doctor

Prospective investigation of vasculature in Uppsala seniors (study cohort)
Probability of an observation given a null hypothesis (statistical estimate)
Pearson’s correlation coefficient

Reversed brain mask (software tool)

Statistical parametric mapping (software package)

Simultaneous truth and performance level estimation (MRI analysis tool)
Stepwise comparative status analysis (cognitive tests)

Tesla (unit for magnetic field strength)

T1-weighted (MRI sequence)

T2-weighted (MRI sequence)

Variables used in equations

b, by by,
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ny, My
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b,tcv
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2

2
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bnorm
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Brain estimates: all, from sample 1, from sample 2

Intracranial volume estimates: all, from sample 1, from sample 2
Number of observations in sample 1, and in sample 2

Coefficient of variation for brain and intracranial volume estimates
Mean value of brain and intracranial volume estimates

Standard deviation of brain and intracranial volume estimates
Variance of brain and intracranial volume estimates

ICV normalized brain and intracranial volume estimates

Mean of ICV normalized brain estimate

Pearson’s correlation between brain and intracranial volume estimates

z value from a standard normal distribution
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NIKLAS KLASSON

1 INTRODUCTION

This thesis is about the estimation and use of intracranial volume (ICV) in
neuroimaging and more specifically in structural magnetic resonance (MR)
imaging. While the topic is broad and applicable to a number of areas in
psychiatry and neurology, my interest came through dementia research. My
PhD studentship has been in a research group specialized in dementia diseases
where | was to analyze an existing set of medical images. However, initial
discussions with coworkers sparked my interest in ICV. Brain volumes differ
between individuals due to the size of the head. Larger heads naturally contain
larger brains. In dementia disease research, we want to separate the healthy
from the ill before the illness is obvious and one way we try to achieve this is
by using the size of regional brain volumes. However, as the size of these
volumes vary with the size of one’s head, we instead risk ending up separating
those with large heads from those with small heads. This risk is often
accounted for in dementia research by entering ICV into the statistical
analyzes, but how this is done varies and seems to be poorly understood. While
my goal for long was to continue with analyzing the medical images to learn
more about dementia diseases once | understood how we should use ICV to
account for head size variability, eventually these plans were put on ice. My
entire thesis ended up being just about ICV. Still, as my interest in ICV came
from research about dementia diseases, | will introduce my research to the
reader through this context.

1.1 DEMENTIA DISEASES

Dementia refers to a syndrome of pronounced cognitive impairment beyond
what is expected by normal aging and that reduces the capacity to perform
activities of daily living. There are a number of causes of dementia, such as
traumatic brain injury, infections, drug misuse, and more commonly dementia
diseases™?. The most common dementia diseases are Alzheimer’s disease,
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mixed dementia and

disease),

vascular dementia, (combined  Alzheimer’s

cerebrovascular Lewy-body dementia,

and frontotemporal
dementia. No common denominator separates the dementia diseases from
other causes of dementia. However, the dementia diseases generally include
progressive cognitive decline along with progressive neuropathological

changes?. In Table 1, | present some typical characteristics of some of the

dementia diseases.

Table 1. Characteristics of dementia diseases

Disease Symptoms Brain damage
Impaired memory and impaired learning
ability are early signs of Alzheimer’s disease. .
. . Hippocampal and
) , Later on, fine motor skills (movement), ]
Alzheimer’s - ) ) parietotemporal
) language ability, and eventually social skills )
disease . atrophy are early signs
may also be affected. Depression, apathy, ) L
o o of Alzheimer’s disease.
irritability, and agitation are also common
symptoms.
Behavioral changes and/or language
impairments. For example, lessened interest Atrophy in the frontal
in socializing, less restraints, impaired lobe, the anterior
Frontotemporal . o - )
q i planning/organizing ability, poor judgement. temporal lobe, and
ementia
Difficulties with findings words or sometimes the parietal
understanding single words. Grammatical lobe.
errors and limited vocabulary.
Reduced cognitive processing speed.
Impaired sustained, selective and otherwise
Vascular complex attention. Impaired executive Infarcts, hemorrhages,
dementia cognitive functions (such as problem white matter lesions.

solving). Personality and mood changes and
depression are other symptomes.

Typical characteristics of three common dementia diseases?.
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As brain damage is irreversible and dementia diseases typically are
progressive, it is important to detect these diseases as early as possible,
preferably before they affect the patient’s daily life. By early detection,
potential treatments will have a greater impact on the patient’s life. Many of
the patients that are referred to a dementia specialist have an impaired
cognitive function that does not yet substantially affect their daily living. Such
cognitive impairment is called mild cognitive impairment. Even though
patients with mild cognitive impairment do not get a dementia disease
diagnosis at the time of examination, about 5-10% of them will be diagnosed
with a dementia disease for each year to come?. Still, after five years, about
60% of these patients have not progressed in their cognitive impairment® and
many will remain in mild cognitive impairment long after that.

In accordance with the definition of dementia, differences in cognitive function
have been detailed using basic cognitive testing* or more advanced
neuropsychological tests®. Differences have also been shown using regional
brain volumes estimated from MR images® and traces of AB42 (a certain
peptide) and tau (certain proteins) found in cerebrospinal fluid” and on
positron emission tomography®. When using these markers to try to predict
conversion to dementia (or to some dementia disease), a strong diagnostic

911 However, the diagnostic accuracy tends to be

accuracy is often seen
weaker in the earlier stages of disease. For example, a lower diagnostic
accuracy has been shown using neuropsychological tests in patients with
subjective cognitive impairment compared to patients with objective cognitive

impairment*?.

There are ways to improve our markers for dementia diseases. One way is
simply to redefine the diseases. For example, including presence of AB42 as a
necessary diagnostic criterion for possible Alzheimer’s disease will increase the
specificity (ability to tell who are not diseased) of AB42 as a marker for this
diagnosis. It is also possible to come up with new markers through new
technology or by applying existing technology in a new way. Lastly, it is possible



INTRACRANIAL VOLUME IN NEUROIMAGING

to improve existing markers by improving methodology, either how we
measure the markers or how we use them for analysis. This thesis focus on the
latter approaches and more specifically on the estimation and use of ICV to
improve brain volume estimates as markers for disease.

1.2 STRUCTURAL MAGNETIC RESONANCE
IMAGING

At the diagnosis of dementia diseases, computed tomography or structural
magnetic resonance (MR) imaging can be used to rule out other causes of
dementia. These other causes might for example be brain tumor or subdural
hematoma. MR imaging may also strengthen specific dementia diagnoses, for
example by the presence of atrophy in the temporal lobe (sign of Alzheimer’s
disease) or white matter changes (sign of vascular disease).

The quality (resolution, signal-to-noise ratio and image contrast) in MR images
mainly depends on the strength of the magnetic field of the MR scanner and
the time used to do the scan. With longer scanning time, better image quality
is achievable®®. However, with longer scanning sessions comes the risk of the
patients moving in the scanner. Movements may drastically lower the image
quality and result in image artifacts. The strength of the magnetic field is
measured in tesla (T) where one tesla is about 20,000 times the strength of
the earth’s field at the surface®®. In today’s clinical settings, 1.5 T and 3 T MR
scanner are used, but the 1.5 T scanners are being phased out.

The scan parameter settings in MR acquisition determine how tissues appear
in the resulting images. Two main types of scan sequences are the T1- and T2-
weighted ones. T1-weighted images are generally thought to be optimal for
maximizing the contrast in the images between gray and white brain matter,
but does less well in separating the skull from the cerebrospinal fluid. T2-
weighted images have an inverted grayscale and lower contrast between gray
and white brain matter than T1-weighted images, but separate the skull from
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the cerebrospinal fluid better and is useful for visualizing white matter changes
and brain tumors. A T1-weighted MR acquisition is visualized in Figure 1 on the
next page.

During an MR examination, a number of MR acquisitions with different scanner
settings are usually produced. Each acquisition takes about 2—6 minutes and a
full examination in dementia disease evaluation about 30 minutes. Such an MR
examination costs about 5000 Swedish kronor (year 2018).

MR acquisitions are often converted into in an image format called DICOM
(Digital Imaging and COmmunication in Medicine) when analyzed outside of
the clinical setting. Other image formats exist as well, such as the NIfTI
(Neuroimaging Informatics Technology Initiative) format. However, from here
on we will simply refer to DICOM images from a MR examination as MR images.

A MR acquisition is often saved as a set of MR images where each image
represents a slice of the three-dimensional structure that was scanned (see
Figure 1). Besides the image data, the MR images contain information about
for example how distance in the images is related to distance in real space.
While the smallest element in a normal digital image is called a pixel, the
smallest element in a MR image is called a voxel. This difference is due to the
three-dimensionality of the MR images. Just as with grayscale pixels, each
voxel does only contain one color value. The color value of a voxel is often
visualized as a grayscale intensity that is related to, but not specific to, some
tissue type in the brain/head. What tissue a grayscale intensity represents will
depend on the scanner setting and scanner variability.
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Figure 1. 3D visualization of a MR acquisition. The lefthand image shows a representation of
the whole MR acquisition that is constituted by many millions of voxels (small rectangular
boxes). In the middle image, the scanned brain is revealed (by removing voxels). In the
righthand image, one transversal (1), sagittal (2), and coronal (3) MR image is shown. It is
common to examine MR acquisitions through MR images in one of these three orientations.

1.3 ANALYSIS OF STRUCTURAL MAGNETIC
RESONANCE IMAGES

To get a medical opinion guided by the findings in the MR images, the images
are visually analyzed by a radiologist. As the quality of the analyzes varies
depending on who did them, the medical opinion is in danger of varying in
quality too. To minimize this risk in dementia disease evaluation, it has been
suggested to use certain rating scales when visually analyzing medial temporal
lobe atrophy, global cortical atrophy, and white matter changes**. By using the
suggested rating scales during the visual analysis, one gets criteria for what
should be analyzed and how.

Visual rating scales often give only a rough assessment of the state of the brain
while manual or automatic segmentations can be used to get continuous
measures that enable a higher level of differentiation. Segmentation refers to
the demarcation of a specific structure in the MR images by which for example
the volume or area of a structure can be calculated. Manual segmentations are
often performed by demarcating the structure using some drawing software
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specialized for MR images. There are also program packages that automatically
segment MR images. The higher differentiation achievable by MR
segmentations makes them useful in neuroimaging research. However,
segmentations only give estimates of the absolute size of brain regions or
lesions. With visual rating scales, change in a brain region may also be gathered
from a single MR acquisition. This is possible by a visual comparison of the
brain region of interest to other regions in the brain and by knowledge about
how the region “should look” under different circumstances. The possibility to
estimate change (for example brain atrophy) with visual rating scales is
probably one reason why they still are used in clinical settings.

The accuracy of both manual segmentation and visual rating scales depends
on the rater’s ability to follow guidelines in the assessment reliably. Even from
the most skillful raters, some errors can be expected. With automatic
segmentation, the procedure of the segmentation can be described and
followed rigidly. Thus, with automatic software it is possible to achieve perfect
reliability of segmentations. The use of automatic software also reduces the
workload and time needed to do the segmentations. Yet another advantage is
that automatic software are not affected by visual illusions (see Figure 2 on the
next page). However, today’s automatic software generally depends in several
ways on visual assessments of the MR images with all its flaws. Visual
assessments are needed for constructing/training the software, to evaluate it,
and to check for gross errors in the segmentation process. Still, automatic
segmentations have already replaced manual segmentation in neuroimaging
research. Three reasons to the widespread use of automatic software are 1)
big data sets are often being analyzed, which would be painful to analyze
manually, 2) automatic methods have enabled more people (non-experts) to
perform brain segmentations, and 3) research is much easier to replicate when
automatic methods are being used.
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Figure 2. Visual illusion. The middle rectangle in the left part of the image might seem brighter
than that in the right part. However, both rectangles are equally bright (it is just the context
that differs). Similar visual illusions might interfere with our ability to, for example, correctly
differentiate tissue types in visual/manual ratings of magnetic resonance images.

14 INTERPRETATION OF STRUCTURAL BRAIN
SEGMENTATIONS

It is common to segment MR images in order to estimate the volume, area, or
length of a brain region. Less commonly, other features of the brain region are
estimated too, such as texture® or shape!®. All these estimates will vary by
artificial variance due to estimation (user or method related) errors and
fluctuations in the MR imaging. They will also vary due to physiological factors
such as cell density, water content, presence of protein assemblies,
inflammation and more. For brain estimates from structural MR images, we
can presently only speculate on how all these factors come into play.

Let us say that we detect a 1 ml difference between two estimates of
hippocampal volume and that the MR acquisitions are from the same
participant who was examined twice within an hour using the same MR
scanner. We cannot know why the estimates differ. One possible
interpretation, given the short amount of time between the examinations and
that the same participant is studied, is that the difference is due to estimation
error. If the same difference was detected between two MR acquisitions from
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different participants where one participant was scanned two years later than
the first (but on the same MR scanner), we might prefer a different
interpretation. Let us say that the participant with the larger hippocampal
volume is a 23-year-old healthy male while the other participant is an 85-year-
old female with Alzheimer’s disease. One possible interpretation of the volume
difference still is estimation error. Other interpretations are loss of neurons
due to Alzheimer’s disease, loss of neurons due to age, dehydration due to
age, different head sizes due to gender, imaging artifacts due to fluctuations
in the MR scanner and so on. All these factors will potentially affect the brain
estimates. With so many potential explanations, a brain estimate is hard to
interpret, especially so without knowing its context. Using other MR
techniques such as magnetic resonance spectroscopy or magnetic resonance
fingerprinting?’ further information is possible to gain about the specific brain
regions.

Still, it is also possible to investigate the association of brain estimates to other
factors. If, for example, we estimate hippocampal volume in a large sample of
participants, we expect variation in the estimated volumes due to a lot of
factors. We might hypothesize that one such factor is hearing ability. If we also
measure hearing ability in the sample, we can evaluate if the variability in this
ability is associated with the variability of the hippocampal volumes. In this
way, we might come to the conclusion that the size of hippocampal volume is
associated with hearing ability. However, if we do find such an association it
does not mean that the one affects the other. A third factor, such as age, could
affect both hearing ability and hippocampal volume and cause the association
found between these estimates. Further, just because an association is seen in
our sample, there is not necessarily an association in the population (but the
probability of that can be evaluated using statistical tests).

When evaluating associations to brain estimates, it is often possible to
calculate the amount of variability in the brain estimates that a certain factor

explains in the sample. For example, in a study by Barnes et al.8

, gender
explained about 17% of the total variance in total brain volume in their sample.

Thus, about 83% of the total variance was still unexplained. Another possibility
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is to describe, with some mathematical function, how the brain estimates
depend on the factor of interest. In the same study, Barnes et al.2® showed that
increased age was associated with reduction in hippocampal volume by a
factor of 0.36%/year (after adjusting for gender, ICV, and MR scanner
upgrade). Yet another way to interpret the brain estimates is in terms of how
it affects the probability of having a disease. This is made possible by
expressing the proportion of diseased participants compared to the number
of healthy participants in the sample as a function of the size of the brain
estimates. By doing so, the size of the brain estimates becomes a marker of
disease. By deciding at which probability an individual should be considered
diseased, brain estimation can even be transformed into a yes-or-no diagnostic
tool. The diagnostic accuracy of such a tool is often judged by its sensitivity
(percent of diseased participants correctly diagnosed) and specificity (percent
of healthy participants considered healthy). The diagnostic accuracy that is
achievable using a certain brain estimate depends on how much variability of
the estimate that can be explained by diagnostic status (or interchangeably
how well the estimate explains the variability in diagnostic status).

18,19 18,20

Besides gender!®'®, age'®?0 and psychiatric diseases??, the size of different
brain estimates have been shown to be associated to a number of different
factors. Factors such as heritability??, chronic stress?3, aerobic fitness?*, bipolar
disorder?®, becoming a taxi driver in London?® or a medical student in Munich?’.
While the causality of some of these associations might be questionable, yet
another association that is not controversial is that between regional brain

volume and whole brain volume.

ICV is often seen as a proxy for the size of the whole brain at its peak
(premorbid brain volume). About 10-50% of the variance in regional brain
structures can be explained by ICV!*®?8 For example, it has been shown that
ICV explains about 5-15% of the variance in the volume of nucleus
accumbens?®, 9-15% in hippocampal volume!®?8, 15-25% in the volume of
amygdala'®® and 40-50% in the volume of thalamus?®. ICV also explains about
15-35% of the variance in most neocortical volumes®.

10
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1.5 INTRACRANIAL VOLUME NORMALIZATION

In its broadest sense, ICV normalization is done to adjust brain estimates for
interindividual differences related to head size/premorbid brain volume. A
reasonable clarification of this statement is that

ICV normalization is done to reduce the proportion of the
total variance of a brain estimate that is predicted by ICV,
using some statistical model that supposedly describes some
true relationship between ICV and the brain region.

It is through this perspective that | will discuss ICV normalization. | will often
refer to the reduction of variance mentioned above as a reduction of
“unwanted” variance.

By reducing unwanted variance in a brain estimate, we might improve upon
our understanding of some phenomenon under study in relation to the brain
region. The effect of the reduction will differ depending on whether the
unwanted variance is independent of the phenomenon under study or not.

By reducing independent unwanted variance by ICV normalization, we might
facilitate the detection of a difference between two samples or an association
between the phenomenon under study and the brain estimate. This allows for
the use of smaller samples or for making a statistical inference based on more
subtle associations or differences (with retained sample sizes). The opposite
risks being true if we reduce unwanted variance that is dependent on the
phenomenon under study. This might still be useful. When all variance that is
explained by ICV is removed, we can draw conclusions about the phenomenon
as if ICV were a constant.

As seen in Section 1.4, between 10-50% of the total variance in a regional brain
volume is explained by ICV (when using linear regression), and can potentially
be removed by ICV normalization. It might seem unnecessary to remove as
little as 10% of the total variance in the estimated volume, but it could have a
large impact on a research study.
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For example, let us assume that we want to compare the volume of nucleus
accumbens between two samples. We expect that the mean volume in one of
the samples is about 440 mm? with a standard deviation of 70 mm? (from
Voevodskaya et al.?®). In the other sample, we expect a similar standard
deviation, but want to evaluate if there is a difference in mean volume
between the two samples of 5% or more. Then, for a statistical power of 0.8
and using an independent samples t-test (with pooled variance), 160
participants would be needed in both samples. However, if just 10% of the
variance in both samples are explained by ICV?, the expected standard
deviation after a successful normalization would roughly be 67 mm?3 (= (70% *
0.9)%%). With this smaller standard deviation (and assuming that the
normalization would not affect the mean volumes), we would instead need
147 participants in each sample. After ICV normalization, we would thus need
26 participants less in total. Just for the MR examinations, we would be able to
save 130,000 SEK (at a cost of 5000 SEK/examination). It would also save some
discomfort for 26 individuals that the study otherwise could have brought
them.

In research, it has been common to use one of three ICV normalization

29,30
, 2

methods. These methods are 1) least-squares normalization ) inferred

least-squares normalization®"32, and 3) proportion normalization3*34,

Using least-squares normalization, a simple linear regression is deployed with
ICV as the independent variable and the brain estimates as the dependent
variable. From this regression analysis, the regression coefficient is used to
normalize the brain estimates. This is done using the function

binorm = b; — k(icv; — 1cv)

Here b; norm is the normalized brain estimate i, b; the unnormalized estimate
i, k the regression coefficient, icv; the ICV from the same participant, and tcv
the mean ICV in the whole sample. A similar way of applying least-squares
normalization is to analyze the residuals from the simple linear regression. One
slight difference compared to using the above function is that the above
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function adjusts the residuals so that the mean of the brain estimates is
unchanged by the normalization. Another slight difference is that when not
using the above function, it is common to add further covariates to the
regression analysis at once. However, | will refer to both these procedures as
least-squares normalization.

Using inferred least-squares normalization, the same function is used as for
least-squares normalization, but the regression coefficient is calculated from a
subsample before normalizing the whole sample. This method is commonly
preferred over least-squares normalization when it is believed that the
phenomenon of interest is associated with ICV in some part of the sample
(even if just by chance). The regression coefficient is calculated in a subsample
where this association is believed to be absent or otherwise negligible. By
doing so, one avoids the risk of reducing variance of interest during ICV
normalization. Often, the regression coefficient is calculated using a sample of
healthy controls before normalizing the whole sample.

Using proportion normalization, the brain estimates are simply divided by ICV.
An advantage with proportion normalization over the least-squares methods
is that it can be done for single individuals without needing a sample for which
to calculate the regression coefficient. As mentioned by O’Brien et al.®, the
interpretation of proportion normalized brain estimates depends on the
relation between the units of the numerator (the brain estimates) and the
denominator (ICV). If both are measured in mm?, the proportion normalized
estimates will be unitless and could be interpreted as percentages of the
intracranial volume. However, if the regional brain estimates are areas (mm?)
or thicknesses (mm), the proportion normalized estimates will have a unit of
mm™ or mm™2 respectively. These units are less easy to interpret. Using least-
squares or inferred least-squares normalization, the unit of the brain estimates
will remain the same after normalization.

Further, when using least-squares normalization, the interpretation of the
normalized brain estimates is made as if ICV was constant between individuals.
When using inferred least-squares normalization, the interpretation of the
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normalized brain estimates is as if ICV was constant between individuals if not
for the phenomenon of interest. For proportion normalization, no such
reservation needs to be made® and can probably only be legitimately made if
there is a proportional relationship between the brain estimates and ICV.

Unnormalized Least-squares Inferred least-squares Proportion
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Figure 3. Examples of three different normalization approaches. In the left column are
scatter plots of three different samples (one sample in each row) from simulated data. The
x-axis shows the intracranial volume (ICV) of the participants in the samples and the y-axis
a certain brain volume. The solid black line shows the association between ICV and the
brain volume in the total sample. The slope of this line is the regression coefficient used
during least-squares normalization. All three samples have been divided randomly into two
subsamples (gray and black dots). The solid gray line shows the association seen between
ICV and the brain volume in the gray subsample and the dashed black line the association
seen in the black subsample. In this example, the slope of the solid gray line is the
regression coefficient used during inferred-least squares normalization. As seen in the
second column, the slope of the black line is zero after least-squares normalization. As
seen in the third column, the slope of the gray line is zero after inferred least-squares
normalization. In the fourth column, proportion normalization is used.
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As exemplified in Figure 3 on the previous page, the effect of the different
normalization approaches on brain estimates is quite complex. Many studies
have therefore explored how the different ICV normalization approaches
affect for example the linear association of the brain estimates to ICV%,
variance reduction®, diagnostic accuracy?® and reliability®’. | will mention
some of these studies in more detail in Section 5 (Discussion). In Paper IV, we
try to describe the expected effect of the different ICV normalization
approaches.

1.6 MANUAL ESTIMATION OF INTRACRANIAL
VOLUME

The skull consists of three layers, namely the outer table, the diploé and the
inner table. While the diploé, a porous layer containing red bone marrow, is
easy to detect in T1-weighted MR images (as a bright layer) both the outer and
the inner table are dark and indistinguishable from cerebrospinal fluid. This
complicates the demarcation of the inner surface of the skull. Instead, the dura
mater is used to trace this border whenever possible. The dura mater is closely
attached to the skull and is often easy to detect in T1-weighted images as a
white contour where the brain is separated from the skull by cerebrospinal
fluid. When the brain is close to the skull the contour of the brain is
demarcated instead since the dura mater cannot be distinguished from the
brain tissue there. In Section 3.6.2, a sagittal MR image with the mentioned
landmarks is displayed.

The estimation of ICV in MR images is mainly done using T1-weighted images
even though it is easier to separate the skull from cerebrospinal fluid in T2-
weighted images (and possibly in proton density weighted images too®). The
reason for this is that T1-weighted images are almost exclusively used when
segmenting regional brain volumes. By also estimating the ICV in the T1-
weighted images, one avoids the inclusion of an extra MR acquisition during
the MR examination. Whitwell et al.*° also point out that by estimating the ICV

15
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on the same acquisition as the brain estimates, one avoids the risk that the ICV
and the brain estimate will diverge due to different “image-acquisition
factors”.

It is fairly straightforward to segment the intracranial vault following the dura
mater, but at some locations the segmentation becomes a bit ambiguous. One
example is at the foramen magnum, an opening in the occipital bone through
which the spinal cord passes. In a sagittal view, it can be hard to tell exactly
where one should draw the line traversing the foramen magnum. By using
guidelines for what to do at such locations, the segmentations will become
more reliable and easier to replicate. Probably the most used guidelines for
manual segmentation of the intracranial vault are those included in a study by
Eritaia et al.*° (described in Section 3.6.2). Other less common guidelines exist
as well and new ones are often introduced too. In Table 2, | cite three different
guidelines, two of which are used in more than one study. To my knowledge,
there is no guideline published with the stated intention to be used as such by
others. Rather, the guidelines are actually just descriptions of how the ICV
segmentations were performed in the respective studies.

Manual segmentation of the whole intracranial vault is burdensome. Using the
guidelines by Eritaia et al.*° in MR images with 1 mm? voxels, one segmentation
takes about 2.5 hours. To reduce the time needed, several less burdensome
estimation methods have been developed. For example, Mathalon et al.?” use
a method where the height of the intracranial vault is estimated in an
unspecified coronal MR image and an area of the intracranial vault (ICA)
estimated in one transversal MR image (referred to as the index slice). The two
estimates are then combined by the function 4/3*(height/2)*area to get an
estimate of ICV. A similar method based on four ICAs is used in Eckerstrom et
al.*'. One ICA or an average of a few ICAs have also been used as estimates of
ICV4%44 Further, it has been common to use head circumference as a proxy for
premorbid brain volume*>46.
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Table 2. Guidelines for manual segmentation of intracranial volume

MR
From sequence Orientation Guidelines

“The inner boundary of the calvarium, which
includes the brain, meninges, and
Jenkins et cerebrospinal fluid, was outlined...”, “The
1.5TT2-w Transversal . ) )
al.?’ inferior plane through brainstem was...
[determined by] the level of the lowest slice

that included cerebellar tissue.”

“include all brain tissue and CSF
[(cerebrospinal fluid)] inside the skull;

include all dural sinuses; exclude the
Nordenskjold

P 1.5T PD-w Transversal bilateral cavernous sinus and trigeminal
etal.

cave; stop and do not include the brain stem
when the occipital condyles are clearly
visible”

“[Draw] along the outer surface of the dura
mater using the lowest point of the

cerebellum as the most inferior point. ...no
Hansen et

36 1.5TT1-w Transversal active exclusion of sinuses or large veins.
al.

The pituitary gland was excluded by drawing
a straight line from the anterior-to-posterior
upper pituitary stalk.”

Examples of three different guidelines for ICV segmentation in the research literature. The sequences used
were either T1-weighted (T1-w), T2-weighted (T2-w) or proton density weighted (PD-w).

Perhaps the most frequently used manual ICV estimation method is to
segment the intracranial vault in every x" image and then multiply the total
volume of the segmented slices by x**°1. By doing so, the time needed to
segment an ICV will approximately be reduced by a factor x. For example,
segmenting the intracranial vault in every 10" image would take about 15
minutes instead of 2.5 hours. Eritaia et al.*° evaluated how the validity of such
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estimates depends on x. The evaluation was done for estimates based on
segmenting every second sagittal MR image up to every 50" sagittal MR image.
The conclusion was that estimates of ICV will be almost as good as a full
segmentations of the intracranial vault if at least every 10" sagittal MR image
is segmented (the intra-class correlation with absolute agreement between
these estimates and full segmentations was >0.999). Since the publication by
Eritaia et al., estimates by every 10" sagittal MR image have even been used
when evaluating ICV estimates using other methods®%>3.

395458 sed some modified version of the method evaluated in

A few studies
Eritaia et al.?’. For example, Whitwell et al.?° used every 10™ transversal ICA
and linear interpolation to estimate ICV. They refer to Eritaia et al.*° to justify
their own ICV estimation approach. However, there are two important
differences that make this justification questionable. First, Eritaia et al.
evaluated the use of every 10" sagittal ICA, not transversal ones. There is less
symmetry between transversal ICAs from the most superior to the most
inferior point of the intracranial vault than there is between sagittal ICAs from
one lateral point of the intracranial vault to the other. This could potentially
make ICV estimates calculated from every 10" transversal ICA less valid than
those calculated using every 10" sagittal ICA. Secondly, Eritaia et al. used
nearest neighbor interpolation (also known as piecewise constant
interpolation) and not piecewise linear interpolation. It is likely that linear
interpolation is a better option than nearest neighbor interpolation. We
investigate this in Paper |.

In Table 3 on the next page, | list a number of different manual ICV estimation
methods that have been described in the research literature.
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Table 3. Manual estimates of total intracranial volume

Method

Software

MR
sequence

Correlation to
whole ICV

Inter-
rater

Intra-
rater

Every 10"
transversal
ICA>®

10
midcranial
transversal
ICA%°®

10
midcranial
transversal
ICA>®

Every
transversal
|CA%>®

Every
transversal
ICA%>®

Every
transversal
ICA®®

Every
transversal
ICA3®

Manually
edited ICV
from FSL®,*

11

11

11

11

11

40

10

Analyze

Analyze

Analyze

Analyze

Analyze

SmartPaint

ITK-SNAP

FSL/ITK-
SNAP

15TTl-w

1.5TPD-w

15TT2-w

1.5TPD-w

15TT2-w

1.5TPD-w

15TTl-w

3TTl-w+
T2-w

The table continues on the next side.

0.999¢

>0.91?

0.965°

0.997°

0.999%

0.998°

0.994b

0.999°¢

0.99¢

>0.91°
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One
midsagittal 23/47F MRlIcro 15T T1-w 0.89 0.97° 0.96"
ICA*

2-4
midsagittal 23 MRIcro 15TTl-w 0.93-0.95 - -
ICAs*

One
midsagittal 40/10° Analyze 19TT1l-w 0.88 0.976° -
ICAs*?

Examples of manual estimates and (for some) their Pearson’s correlation to segmentations of the whole
intracranial vault (whole ICV). Many of the methods reported are already whole ICV estimates since every
intracranial area (ICA) was segmented. Intra- and interrater reliabilities are reported as Pearson’s
correlations if not otherwise noted. The sequences used were either T1- (T1-w), T2- (T2-w) or proton density
weighted (PD-w). n is the number of MR acquisitions used. Midsagittal ICA: the ICA in sagittal orientation in
the middle of the brain where the cerebral aqueduct is most prominent. When “2—4 midsagittal ICAs” is
stated, the two, three or four sagittal ICA closest to the midsagittal plane are included.

9semi-automatic approach

bintra-class correlation (possibly without absolute agreement)
‘probably Pearson’s correlation

dintra-class correlation with absolute agreement

¢ ICV segmentations were retrieved automatically by the software tool set FMRIB Software Library (FSL)®°
before being manually edited.

f23 MR acquisitions were used for the comparison to full segmentations, 47 MR acquisitions were used for
the intra- and interrater reliability calculations

940 MR acquisitions were used for the comparison to full segmentations, 10 MR acquisitions were used for
the interrater reliability calculation

1.7 AUTOMATIC ESTIMATION OF INTRACRANIAL
VOLUME

As the dura mater (a thin bright but inconsistent line) is what guides the
manual segmentations of the intracranial vault in T1-weighted MR images, it
is not an easy task to create an automatic segmentation equivalent. Rather,
automatic segmentation approaches have avoided the use of the dura mater.
One common approach is to add together the estimated total brain volume
and an estimate of the subarachnoid cerebrospinal fluid volume. This
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approach is often used via the tissue classification acquired when using
SPM*56861 - Another common way is to estimate the intracranial volume based
on how the MR images are scaled in size when aligned to a head atlas (such an
atlas is roughly speaking a volume of MR images from one [or multiple] head
scans). This approach is for example used in FreeSurfer*®°%62 As it is hard to
separate the skull from the cerebrospinal fluid, the first approach risks
including parts of the skull and excluding cerebrospinal fluid that should have
been included in the segmentation. The other approach risks being dependent
on other things than the intracranial vault. What these other things might be
depends on what mainly guides the alignment of the MR images to the head
atlas.

In Table 4 on the next page, | present results from some comparisons between
automatic and manual ICV estimation. Generally, ICV estimates from
automatic methods tend to have a strong linear association to manual
estimates of ICV. However, it is easy to achieve ICV estimates with rather high
correlations to manual segmentations. Even if it estimates total brain volume
rather than ICV, the Pearson’s correlation to the manual segmentations will be
about 0.9 (= the correlation between ICV and total brain volume®). Also, just
by segmenting one ICA (compared to about 140 ICAs for a full segmentation
of the intracranial vault), Pearson’s correlations around 0.88-0.89 can be
expected****. Therefore, a fair estimate of ICV should at least have a Pearson’s
correlation of 0.9 to thorough manual segmentations. Finally, depending on
how the estimates are to be used, it is not necessarily enough to just have
estimates with strong linear association to the actual ICV. A good volumetric
agreement might also be necessary.

Hansen et al.%° point out that it is easy to think naively that more accurate ICV
estimates would automatically result in more effective ICV normalization. In
other words, poor accuracy does not by default imply poor ICV normalization
performance. In their study, Hansen et al. found that the least accurate
method (eTIV [estimated total intracranial volume] from FreeSurfer) was the
best at reducing variance in many regional brain volumes when using least-
squares normalization. However, if the ICV estimate is not accurate, do we

21



INTRACRANIAL VOLUME IN NEUROIMAGING

really normalize by ICV? In the example from Hansen et al., does eTIV only
reduce variance explained by ICV or does it also reduce variance due to
something else (which the more accurate ICV estimates does not estimate)?
We investigate this possibility in Paper IlI.

Table 4. Automatic compared to manual estimates of intracranial volume

Manual Pearson’s  Percentage
Software MR sequence reference n correlation error
FreeSurfer 4.5.0% % 15T Tl-w Every 30 0.965 7.343.7¢
transversal ICA
FreeSurfer 5.1.0% 15T Tl-w Every PD-w 399 0.94 ~5.94
transversal ICA
FreeSurfer 5.3% 3TTLw Manually edited 80 - ~6.9+11.0
ICV from FSL
FreeSurfer 5.3.0% T1-w Every 25 0.84 —2.317.8
transversal ICA
th
FreeSurfer 5.3.0°7 15T Tl-w Every 10 286 0.90 3.745.2
transversal ICA
FreeSurfer® T1-w Semi-manual 20 0.95 5.9+3.2¢
ICV estimation
th
FSL (BET)®*? 3TTLw Every 10 5 0.99% 0.542.4¢
sagittal ICA
th
FSL (BET)®*? 15T Tl-w Every 10 5 0.95% —4.242.4¢
sagittal ICA
FSL 5.0.4 (atlas Ti-w Every 25 0.92 157436
scaling)®® transversal ICA
FSL (atlas scaling)®* T1-w Semi-manual 20 092 -

ICV estimation

The table continues on the next side.
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NLSS® T1-w Semi-manual 20 0.99 1.441.5°¢

ICV estimation

Every 10"

SPM5 (RBM) &3 3TT1-w 5 0.99° 0.4+1.7¢
sagittal ICA
th
SPMS (RBM) &5 15T Tlw Every 10 5 0.98" ~0.9433°¢
sagittal ICA
i ef th
SPMS5 (sum tissue) 15T T1-w Every 10 5 0.885 _3.0+8.8¢
3 sagittal ICA
i ef th
SPMS5 (sum tissue) 3T T1-w Every 10 5 0.82b 9.542.0¢
>3 sagittal ICA
SPM8 (RBM)?® 1.5 T T1-wiT2-w Every Tl-w 30 0.99° 0.11.7°
transversal ICA
SPMS (RBM)*® 1.5T T1-w Every 30 0.97° —0.6+2.7°
transversal ICA
SPMS (sum tissue)®® Tlw Every 25 0.94 2.243.6
transversal ICA
SPMS (sum tissue)® 15T Tlw Every PD-w 399 0.86 ~20.9¢
transversal ICA
th
SPMS (sum tissue)®’ 15T Tlw Every 10 288 0.76 13.9+8.3
transversal ICA
th
SPM12 (sum tissue)®’ 15T Tl-w Every 10 288 0.97 28425
transversal ICA
SPM12 (sum tissue)® T1-w Semi-manual 20 0.95 3.6+2.3¢

ICV estimation

Estimates of intracranial volume (ICV) from automatic methods compared to manual reference segmentations.

The sequences used were either T1- (T1-w) or T2- (T2-w) weighted. FSL is a tool set for analysis of medical images®.

o1 “sum tissue

”

BET in FSL estimates the inner surface of the skull. SPM is a tool set for analysis of medical images
implies that a sum of tissue classes is used. RBM estimates ICV through a rough brain mask created in SPM that is
aligned to the head in native space®. NLSS®* segments ICV as an image mask. ICA: intracranial area

@ did not include results from modified methods

b intra-class correlations (possibly without absolute agreement)

‘ not ordinary percentage errors;

¢ calculated from mean values

¢l only present the results from the case when “FAST” bias field correction was applied

fonly with the default settings
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1.8 KNOWLEDGE GAPS

In year 2000, Eritaia et al.?’ evaluated the use of ICV estimates based on the
segmentation of every x" sagittal ICA. Many studies have since segmented
every 10" sagittal ICA to estimate ICV, as proposed by Eritaia et al.. Estimates
of every 10" sagittal ICA have even been used to validate other ICV estimation
methods®°3. As the study by Eritaia et al. is so heavily relied on, it would be
desirable to replicate it to confirm their results. Further, many variants of the
proposed method have also been used over the years, for example segmenting
every 10" transversal ICA. These variants needs to be evaluated too.

A number of automatic ICV estimation methods have been suggested over the
years and many of them are found to have fair to good validity compared to
manual segmentations. However, many of these methods differ in how ICV is
estimated. Depending on the estimation approach, errors that we do not
expect in manual estimates might be present in the automatic ones. The
automatic methods should be evaluated with this in mind.

It is still unclear exactly how brain estimates are affected by the different
normalization approaches. Knowledge about how the mean value, variance,
and Pearson’s correlation to ICV of regional brain estimates tend to be affected
by normalization would help in a number of situations. Firstly, it may help
settling which method is optimal in which settings. Secondly, it would increase
our ability to interpret the effect of the different normalization methods. This
would for example make it easier to compare findings from studies that use
different normalization methods. Last but not least, we could include the
probable effects of ICV normalization in our power calculations.

Some specific questions are raised by earlier findings. Arndt et al.® and
Mathalon et al.?” both showed that the reliability of brain estimates was
reduced by ICV normalization. However, at least some of the reduced
reliability seemed to be due to reduced true score variance. The question is
how much the reduced reliability is due to an introduced estimation error and
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how much of it is due to such reduced true score variance. Does the answer
differ between the normalization methods?

Sanfilipo et al.®® found that least-squares normalization was not affected by
ICV estimation errors, but they did not evaluate errors affecting the Pearson’s
correlation between the brain estimates and ICV. It is important to evaluate
the effect of such errors too. If, indeed, least-squares normalization is not
affected by estimation errors, then the reduced reliability in least-squares
normalized brain estimates would solely be due to reduced true score
variance.

Inferred least-squares normalization is applied when it is believed that the
association between brain estimates and the phenomenon under study is to
some degree explained by ICV. Therefore, after inferred least-squares
normalization, we expect that some association will remain between the brain
estimates and ICV, which has also been shown?®. However, we do not know if
the remaining association is related to the phenomenon under study or if it is
association left by chance (or a combination of both). By not knowing which is
true, it is hard to assess the value of an inferred least-squares normalization.
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2 AIM

The general aim of this thesis is to validate methods for ICV estimation using
MR images and to improve our understanding of the effects of ICV
normalization in neuroimaging research.

2.1 SPECIFIC AIMS

Paper | — To validate a commonly used method for manual ICV estimation.

Paper Il — To determine if the segmentation of one or two ICAs is enough to
achieve adequate estimates of ICV.

Paper Ill — To show certain shortcomings in a commonly used method for
automatic ICV estimation.

Paper IV —To describe how certain statistics (mean, variance, and Pearson’s
correlation to ICV) of brain estimates are affected by ICV normalization.
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3 MATERIAL AND METHODS

In this section, | will describe the material and methods used in Papers I-IV. |
will do so in twelve steps. In the first ten steps, | will describe the process of
the three first studies. These studies all spring from the same manual estimates
of ICV made from MR examinations from the Gothenburg MCI study. In the
two last steps, | will describe the fourth study and the statistics used in all four
studies. The twelve steps are illustrated below and include brief information
about: 1) The Gothenburg MCI study. 2) The participants of the Gothenburg
MCI study. 3) The MR examinations made. 4) The sample selection made. 5)
The preprocessing of the MR images. 6) The manual segmentation of the
intracranial vault. 7) Conversion of the manual segmentations into image
masks. 8) The first study in which we evaluate the use of equidistant ICAs to
estimate ICV. 9) The second study in which we evaluate the use of one or two
ICAs to estimate ICV. 10) The third study in which we evaluate the use of
FreeSurfer to estimate ICV. 11) The fourth study in which we present
composite functions that describe the probable effect of ICV normalization on
certain statistics. 12) A summary of the statistics used in all four reports.

27



INTRACRANIAL VOLUME IN NEUROIMAGING

3.1 THE GOTHENBURG MCI STUDY

The Gothenburg MCI study is a longitudinal study initiated in 1999 to learn
more about the different phases of dementia diseases. The study includes
patients from a memory clinic in MéIndal, Sweden, and healthy controls. Since
its start, participants have been followed through five separate examinations
over 10 years, first at inclusion and then 2, 4, 6, and 10 years after inclusion.
The participants are examined using MR imaging, neuropsychological
evaluation, cerebrospinal fluid sampling, and blood sampling. For a full
description of the study design and a review of its previous findings, see Wallin
et al.®”%8. Some information about the study participants and the MR imaging
is presented below.

The Gothenburg MCI study follows the declaration of Helsinki and the study is
approved by the ethical review board in Gothenburg (diary number L091-99,
1999; T479-11, 2011).

3.2 STUDY PARTICIPANTS

32.1 HEALTHY CONTROLS

Healthy controls are mostly recruited through seniors’ organizations, but a few
are relatives to the patients included in the Gothenburg MCI study. To be
included as a healthy control, the person must not have objective or subjective
cognitive decline. A nurse establishes the cognitive status of the person before
inclusion by the use of basic cognitive tests and by asking about subjective
impairments. When there are any uncertainties, the nurse also consults
medical doctors. Further, the persons must be between 50 and 79 years old to
be included as a healthy control and have a mini-mental state examination®
(MMSE, see Section 3.2.2) score above 26.
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3.2.2 PATIENTS

Patients are included after being referred to the memory clinic in Mélndal,
Sweden. The physicians at the clinic decide which patients should be asked to
participate. Patients might for example be too ill to participate in such an
extensive study. To be included, the patient must be 50-79 years old, have a
MMSE score above 18, and have an ongoing cognitive decline since at least six
months. The cognitive decline may either be self-reported or reported by
informants.

The patients are classified into one of four groups following the global
deterioration scale’®’! (GDS). Patients classified as GDS 1 are regarded as
having no cognitive impairment and are not included in the study. GDS 2 is
described as subjective cognitive impairment and GDS 3 as mild cognitive
impairment. In the original scale, GDS 4 means mild dementia and the scale
then continues up to GDS 7 with more severe stages of dementia. In the
Gothenburg MCI study, GDS 4 is used as the end stage. Thus, in Papers I-lll,
GDS 4 refers to dementia and not just to mild dementia. However, most of the
patients classified as GDS 4 in the study have mild rather than more severe
dementia.

Reisberg et al. give examples of characteristics that patients of each GDS stage
may have’’. A patient with GDS 3 may for example have problems with
demanding work or with getting lost in new areas, while a patient with GDS 4
may have problems recalling recent events and handling finances. However,
Reisberg et al. does not say how precisely to classify a patient to either of the
stages. To be able to do the classification in a systematic way, the Gothenburg
MCI study applies an in-house classification algorithm. Scores from four
different tests that capture cognitive and daily living capacity are used in the
algorithm. The tests are MMSE®®, investigation of flexibility (I-FLEX, a modified
EXIT-test’?), stepwise comparative status analysis’® (STEP), and clinical
dementia rating’#’® (CDR).

MMSE was designed to assess cognitive function in patients with cognitive
impairment. It consists of eleven tests that among other things include asking
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the patient to state where the examination is being held, to recall a few words,
and to follow some simple instructions. EXIT was designed to assess executive
cognitive function in patients that might have impaired such function. I-FLEX,
which is a modified version of EXIT, consists of seven tests covering counting
the number of instances of a given object in a picture, naming in one minute
as many words as possible that begin with a given letter, and following simple
instructions. STEP was designed to assess symptoms in mild to moderate
dementia and to connect these symptoms to different brain syndromes that
the patient might suffer from. STEP consists of 50 questions about the patient’s
symptoms that are each to be graded from zero to three by the rater. In the
GDS algorithm, only the scores from question 13—20 in STEP are used. These
guestions cover among other things if the patient is able to remember objects
that have been shown 5 minutes earlier, if she is able to mention similarities
between two objects that are named (for example car and bicycle), and if she
seems to have a reduced vocabulary and/or is talking slowly. CDR was designed
to rate the stage of dementia by cognitive dysfunction. CDR consists of six
cognitive and behavioral categories that are scored from zero to three in six
steps. To determine the score of a given category, the rater follows certain
guidelines for describing the state of the patient, but the guidelines are not
explicit on how to make the assessments. The sum of the six scores are then
used to assess the cognitive function of the patient’®.

Patients classified as GDS 4 (or above) are further classified as having either
Alzheimer’s disease, vascular dementia, mixed dementia, frontotemporal
dementia, Lewy-body dementia, primary progressive aphasia, or dementia non
ultra descriptus. The latter diagnosis is used when no specific dementia
diagnosis is suitable. Mixed dementia is a diagnosis used when sufficiently
many signs or symptoms of both Alzheimer’s disease and vascular dementia
are present. A physician performs the classification by taking into account the
patient’s medical history, clinical symptoms and cerebral white matter lesion
burden. The different diagnostic criteria are given in®’.
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3.2.3 EXCLUSION CRITERIA

Both healthy controls and patients are excluded from the Gothenburg MCI
study if they have a systemic disease, somatic disease or psychiatric disorder
that may affect their cognitive functioning. Alcohol or substance abuse, and
confusion caused by drugs are further exclusion criteria.

3.3 MR EXAMINATION

Between 1999 and 2004, MR examinations were performed in the Gothenburg
MCI study using a 0.5 T MR scanner. From 2005, 1.5 T scanners were used.
With a few exceptions, the latter examinations were done using a Siemens
(Healthineers, Erlangen, Germany) Symphony scanner. The MR examinations
were done at Moindal’'s Hospital, Mdéindal, Sweden and took about 30
minutes/examination. Only examinations from the 1.5 T Symphony scanner
were used in Papers I-lll. A number of scanner sequences were available
including a three-dimensional T1-weighted sequence, a two-dimensional
FLAIR sequence, and a two-dimensional T2-weighted sequence. Of these, we
only used the three-dimensional T1-weighted sequence. This was for three
reasons. First, none of the other sequences includes the whole intracranial
vault. Secondly, a T1-weighted sequence was used in the study replicated in
Paper |. Thus, by using a T1-weighted sequence, any difference found between
the original and our replication study should less likely be due to choice of
image sequence. Lastly, the automatic method evaluated in Paper Ill requires
a T1-weighted sequence.

The T1-weighted sequence we used was a magnetization-prepared, rapid
gradient echo sequence. The acquisition parameters were: inversion time 820
ms; repetition time 1610 ms; echo time 2.38 ms; flip angle 15°; field of view
250 x 203 mm; matrix 512 x 416; acquisition pixel spacing 1.0 x 1.0 mm;
reconstruction pixel spacing 0.49 x 0.49 mm; slice thickness 1 mm; spacing
between slices 1 mm (no interslice gap); receiver bandwidth 220 Hz/pixel;
number of slices 192; acquisition time 1.7-2.4 minutes; coil type body
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transmit. The examinations were performed between year 2005 and 2008. All
MR images were anonymized.

34 SAMPLE SELECTION

The Gothenburg MCI study uses convenience sampling to include participants.
In Paper I-lll, a subsample was selected using stratified random sampling from
the larger sample of participants in the Gothenburg MCI. This subsampling was
made with two inclusion criteria. First, that 1.5 T MR acquisitions should be
available. Secondly, that FreeSurfer results for these acquisitions should be
available. Erik Olsson stratified the participants that met the inclusion criteria
into healthy controls, patients with dementia, and other patients. After the
stratification, Olsson made a random selection such that half of the
participants would be healthy controls and half participants with dementia.
Olsson did this selection so that | would be blinded to participant age,
patient/control status, gender, and cognitive status when manually
segmenting ICV.

The two inclusion criteria were chosen for two reasons. We chose the first
criterion as we, in Paper |, were to replicate a study that used T1-weighted
images. The second criterion was chosen to take advantage of the fact that we
already had FreeSurfer segmentations on most T1-weighted images,
segmentations that | already had corrected for gross errors. Using these
segmentations, the evaluation of the estimation of ICV in FreeSurfer (in paper
[I) would need a bit less work.

When performing a replication study, it is recommended to have a larger
sample than the original study’”’®. The study by Eritaia et al.*° was done on 30
normal controls. Therefore, we wanted to include at least 60 participants in
our sample. Considering the risk of having to exclude participants later for
various reasons, we settled for a primary sample size of 70 participants.
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The inclusion of both healthy controls and participants with dementia was
done in order to be able to evaluate if FreeSurfer’s estimates of ICV may be
affected by brain atrophy. While healthy elderly certainly will have some brain
atrophy, a wider range of atrophy is secured by also including demented
participants.

Unfortunately, only 32 healthy controls and 27 patients with dementia were
available with 1.5 T T1-weighted MR images and with successful FreeSurfer
analyses at the time. Therefore, 11 participants with subjective or mild
cognitive impairment were included too.

34.1 PARTICIPANT DEMOGRAPHICS

Eight of the 70 participants were eventually excluded, as the whole intracranial
vault was not captured in their MR images. The demographics of the remaining
participants are presented in Table 5. The demographics of the excluded
participants are presented in Table 6.

When comparing the remaining and excluded participants, there was no
statistically significant difference in age, education or MMSE. However, there
was a significant difference in gender. A majority of the remaining participants
were females while most of the excluded participants were males. This
difference could be due to the exclusion criterion that the whole intracranial
vault is not covered in the T1l-weighted MR images. As males have larger
intracranial vaults and the image matrix has a given size, there is an increased
risk for males not to get the whole intracranial vault covered.

Due to the small number of excluded participants, we must consider the risk
of type Il errors (not rejecting the null hypothesis when it is false) in the above
comparisons. However, besides the gender inequality, we did not see any
further reasons to suspect that there actually are differences also in age,
education or MMSE between the remaining and excluded participants.
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Among the remaining 25 GDS 4 patients, ten were diagnosed as having
Alzheimer’s disease. Further, six had dementia non ultra descriptus, two had
mild cognitive impairment (rather than dementia), two had mixed dementia,
two had frontotemporal dementia, one had vascular dementia, and one had
primary progressive aphasia. Finally, one patient did not retrieve a dementia
diagnosis due to complex medical history (and was at later examinations
classified as GDS 3 and 2). Among the excluded participants, one of the GDS 4
participants had vascular dementia and the other dementia non ultra
descriptus.

Of the remaining 62 participants, 26 had been examined at inclusion (year 0),
22 at year two, 12 at year four, and two at year six. Of the excluded
participants, four had been examined at inclusion, one at year two, and three
at year four. No participant had more than one examination included in the
sample.

Table 5. Study demographics for remaining participants

Group belonging n Gender (m/f) Age Education MMSE
All participants 62 23/39 66.1+8.0 11.0(6.0,23.0) 28.5(16,30)
Healthy controls 29 8/21 66.4+7.5  11.5(7.0,15.0) 30 (27,30)

Patients, GDS2-3 8 4/4 66.7+8.2 12.0 (6.5, 20) 28.5 (26, 29)
Patients, GDS 4 25 11/14 65.5¢8.8  10.0 (6.0, 23.0) 25 (16,30)

Age is presented as mean age in years and standard deviation. Education in years and mini-mental state
examination (MMSE) score are presented as medians followed by minimum and maximum values. GDS =
global deterioration scale; n = number of participants; m = number of males; f = number of females.
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Table 6. Study demographics for excluded participants

Group belonging n Gender (m/f) Age Education MMSE
All participants 8 6/2 66.1£9.7 11.5(8.0,18.0) 28 (22, 30)
Healthy controls 3 2/1 70.0£10.8 12.0(11.0,14.0) 28 (28,30)

Patients, GDS2-3 3 2/1 59.9+10.5 11.0(11.0,18.0) 29 (28,29)
Patients, GDS 4 2 2/0 69.6+3.6 10.0(8.0,12.0) 25(22,28)

Age is presented as mean age in years and standard deviation. Education in years and mini-mental state
examination (MMSE) score are presented as medians followed by minimum and maximum values. GDS =
global deterioration scale; n = number of participants; m = number of males; f = number of females.

3.5 IMAGE PREPROCESSING

Before starting the segmentation of the ICV, the T1-weighted images were pre-
processed. The pre-processing consisted of a reformatting of the voxels and
intensity adjustments.

The first step of the pre-processing was a reformatting of the voxels from
0.49x0.49x1 mm voxels to cubic 1 mm? ones. In the expression for voxel size,
0.49x0.49 is the pixel spacings and x1 the spacing between slices. The
reformatting was done using the MATLAB (Mathworks, Natick, MA, USA)
function interp3 with linear interpolation. We did the reformatting for three
reasons. 1) To get an image resolution similar to that of the study by Eritaia et
al.*° where the voxel dimensions were 0.938x0.938x1.5 mm. 2) To be able to
talk about the position in the MR images in mm and in slices interchangeably.
This was useful as Eritaia et al. talked about the position in slices while we
figured it would be less ambiguous to talk about it in mm. A segmentation of
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every 10" slice will give different reliabilities depending on whether the slice
thickness is 1 mm or 2 mm. 3) To reduce the number of ICAs to segment.
Without the reformatting, an MR acquisition would require about 5 hours of
segmentation instead of 2.5 hours (which was the case now). Linear
interpolation was chosen to reformat the voxels as it is easy to understand and
as we thought that intensity errors in a few voxels due to the interpolation
would have only a small impact on the segmentation of the whole intracranial
vault (where about 1500 000 voxels are included). With knowledge that we
have since acquired about the pros and cons of the different interpolation
methods, we would probably have used a more advanced interpolation
method. For the visualization of the images on the computer screen, we used
cubic interpolation, which is probably a better option.

After the reformatting of the voxels, each MR acquisition was intensity
adjusted so that its mean intensity was close to the mean intensity of all MR
acquisitions. The 10% darkest and brightest voxels were not included when
calculating the means. The mean intensity would otherwise vary between MR
acquisitions depending on the size of the participants’ heads (the dark
background occupies more space the smaller the head). The adjustment was
done by first finding the maximum intensity in each MR acquisition (Max;). We
then multiplied Max; with 0.1 and 0.9 (we assumed that the intensity range is
continuous) to get the 10" and 90™ percentiles of the intensity range. The
mean of the intensity range within the 10" and 90™ percentiles was then
calculated (=Max,19_g0). An equivalent mean was calculated for the
intensities within these percentiles in all MR acquisitions (=Max; 19—90)-

Max, 10-90

Lastly, the intensity of each voxel was multiplied by . We did this

Max a11,10-90
intensity adjustment to reduce the risk of getting segmentations that varied

because of differences in the overall brightness of the MR acquisitions. The
effect of this intensity adjustment is illustrated in Figure 4 on the next page.
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Figure 4. Intensity adjustment. The left half of both MR images is from participant A and the

right half from participant B. The left image shows the original image brightnesses and the
right image the brightnesses after the initial intensity adjustment.

A second intensity adjustment was done by manipulating the color map of the
images. The intensities of grayscale images can be seen as indices to a given
palette of colors. The palette of colors is also called a color map. The T1-
weighted images used in Papers I-lll had a range of intensities with values
between 0 and 4095. Normally, the value O is used as an index for black and
the highest value (in this case 4095) as an index for white. The intensity values
between 0 and 4095 are then indices for different shades of gray. By
manipulating the color map, the intensity values of the original image is kept
intact while their visualization/interpretation is changed. In Figure 5a, | give an
example where | have altered the color map so that the intensity values of the
image become indices for a range of colors (and not just shades of gray). The
actual adjustment of the color map for the study was made to make the dura
mater easier to detect. This was done by altering the color map so that the
intensity values of the 10% of the voxels with smallest and largest intensity
values were set to indices for black and white respectively. The indices of the
remaining 80% of the voxels were then linearly distributed to shades of gray
(Figure 5c). By this change, the contrast between these intensities will

37



INTRACRANIAL VOLUME IN NEUROIMAGING

increase, which makes them easier to tell apart from each other. While the
intensity values in the upper and lower 10% of the voxels become
indistinguishable, | judged this a tolerable loss of information when
segmenting ICV.

The color map was also gamma corrected (Figure 5d). A gamma correction
transforms the relationship between the brightness of the shade of gray and
the indices from a linear to a non-linear relationship. We chose to use the

0.8
gamma functiony = 12 * (f—z) , Where y is the new shade of gray, 12 is the

bit depth of the MR images, x is the previous shade of gray, and 0.8 is the
gamma value. When the gamma value is less than one, the overall brightness
of the image will increase. The gamma correction was made to make it easier
to tell the dark cerebrospinal fluid apart from dark (dense) bone. It made the
noise in the cerebrospinal fluid become more distinct relative to the fairly
noise free bone.

As the adjustments to the color map do not affect the actual image data, | had
the possibility to switch between the original color map and the adjusted color
map during the segmentation of the intracranial vault. This helped me to do
more well-informed choices in ambiguous areas. | performed the pre-
processing steps using the software MIST (see 3.6.1).
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Figure 5. Color map adjustment. An MR image with four different color
maps and a histogram of the number of voxels in the whole MR
acquisition as a function of the voxel intensities (0—4095). The color
maps are: a) intensities mapped to colors. b) intensities mapped to
matching shades of gray. c) map b after compressing the 10% darkest
and brightest voxels (outside of the orange lines). d) map b with the
compression and the gamma correction (the color map that we used).
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3.6 MANUAL SEGMENTATION

The whole intracranial vault was segmented on 62 MR acquisitions. The
segmentations were done by me and took about 2.5 hours per acquisition. On
average, 136 sagittal images were segmented for each acquisition. The
segmentation of one image constitutes a border that essentially follows the
inner surface of the intracranial vault. The border encircles an area, which we
refer to as an intracranial area (ICA). To calculate the ICV in the simplest
possible way, one has just to multiply the sum of all ICAs by the image
thickness. During all segmentations, including intra- and inter-rater
segmentations, the raters had no knowledge about the participants (for
example no information about age, gender, or cognitive status). In the
following subsections, | will describe the segmentation of ICV in more detail.
The volume of the manual segmentations of the whole intracranial vault will
be referred to as the gold standard ICV in comparison to other methods.

3.6.1 SEGMENTATION TOOL

The segmentations of the whole intracranial vault were made using MIST
(Medical Image Segmentation Tool). MIST is a tool for manual segmentation
of MR images that | developed with input from Erik Olsson. The development
of MIST started as updates of a previous, similar software called Hipposegm,
first created by Magnus Borga, that Helge Malmgren’s research team in
Gothenburg used between 2000 and 2013. MIST is written in MATLAB and
includes features such as image rotation, brightness and contrast adjustment,
and three-dimensional visualization of segmentations. The development of the
software has been on hold for some time, but | might come to publish the
source code in the future. Until now, only Erik Olsson and | have been using
MIST in research. Erik Olsson and Carl Eckerstrom have also used the earlier
software, Hipposegm. MIST is used in”® and in Paper |, while Hipposegm is used
in?104180 \We chose to use MIST as segmentation tool as we are familiar with
it, it is user friendly and we can adapt it depending on the purpose. Most
manual segmentation tools should be able to reach a similar accuracy in the
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segmentations, but the effort and time needed to do so might vary between
these tools. With MIST we knew that high accuracy was reachable without too
much effort.

Figure 6. The left image shows the intracranial vault (ICV) segmented on every intracranial

area (ICA) in a low-resolution magnetic resonance acquisition. The middle image shows the
ICV segmented on every 10" ICA and the right image two ICA with the perpendicular diameter
of the intracranial vault.

When segmenting the intracranial vaults, | used a Wacom DTU-2231 display.
On the screen, each image was visualized in sagittal orientation and scaled to
a quarter of its true area. That is, one mm on the screen represents 2 mm in
the imaged space. The screen interpolation was done using the interp3
function in MATLAB. We used cubic interpolation that gives a smoother feel to
the images compared to when using nearest neighbor or linear interpolation.
The scaling in size when visualizing the images was chosen to reduce the time
needed for the segmentation while keeping the precision of the
segmentations at a high level. The segmentations were done at screen
resolution, which is higher than the image resolution. Segmentation at screen
resolution makes it easier to segment areas as one wishes. It also allows for an
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indirect way to correct for partial volumes effects (tissues with different
intensities within one voxel making the voxel intensity a mixture of the actual
tissue intensities) in the MR images, as fractions of voxels can be included in
the segmentation.

3.6.2 SEGMENTATION PROTOCOL

When segmenting the whole intracranial vault, we followed the guidelines
described by Eritaia et al.?’. To our knowledge, these guidelines are the most
frequently used guidelines for manual ICV segmentation in MR images (151
citations according to Scopus 2018-10-29). As we were to replicate the study
by Eritaia et al. in Paper |, it was also the obvious choice of guidelines for us.
The guidelines consists of a visualization of a midsagittal ICA (the intracranial
area in sagittal orientation where the cerebral aqueduct is most prominent)
where a few landmarks are pointed out. | replicate this visualization in Figure
7 on the next page. The most useful landmarks for the segmentation are the
dura mater, the cerebral contour, the undersurface of the frontal lobe, the
dorsum sellae, clivus, and the posterior and anterior arch of the atlas. Further
landmarks that Eritaia et al. mention are the scalp, the diploé, and the outer
and inner table of the skull. When doing the segmentations, | start at the
midsagittal ICA and then continue laterally. In the preparation for the
segmentations, | made a pictorial guide over Eritaia’s guidelines including a few
other landmarks, such as the cerebral agueduct. The pictorial guide is included
in Appendix A.
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A

Figure 7. Segmentation landmarks. a) scalp, b) diploé, c) inner table of
the skull, d) dura mater, e) outer table of the skull, f) undersurface of
the frontal lobe, g) dorsum sellae, h) clivus, i) anterior arch of the atlas,
Jj) posterior arch of the atlas.

3.6.3 INTRA- AND INTER-RATER RELIABILITIES

Three intra- and inter-rater reliabilities were assessed in Paper | and Il. In Paper
|, we assessed the rater reliabilities when segmenting every 10" ICA and every
40™ |CA respectively. In Paper I, we assessed the rater reliabilities when only
segmenting one midsagittal ICA. We did not assess the rater reliabilities when
segmenting the whole intracranial vault, as it would take more time than we
had at our disposal. We also figured that if the rater reliabilities when using
every 10" ICA were high, they should be high when segmenting the whole
vault as well. We thought so for two reasons. First, the more areas that are
segmented, the likelier it is that the average error is not due to chance.
Secondly, odd images that might be hard to segment will have less impact on
the estimate when segmenting more areas. For the same reasons, there also
is a risk that the reliability drops when one segments fewer than every 10" ICA.
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That is why we wanted to evaluate the rater reliability for every 40" ICA and
for only one midsagittal ICA.

| did the intra-rater segmentations six months after the initial segmentations.
Before beginning, | randomly divided the 62 MR acquisitions into two equal
batches. On one batch, | was to segment every 10" ICA and on the other batch
every 40" ICA. For the segmentations, | used the already preprocessed MR
images. The rater reliability will not differ between using already preprocessed
images and redoing the preprocessing. Once it is decided what preprocessing
to do, it is performed just by running a MATLAB script. The segmentations of
every 10™ |CA took about 13.5 minutes and every 40™ ICA about 4.5 minutes.

| started the segmentations of every 10" and 40™ ICA on the midsagittal ICA.
Thus, | was able to use these midsagittal ICAs to assess the intra-rater reliability
when only segmenting one midsagittal ICA (which was done in Paper Il).

Inter-rater segmentations were done by Simon Skau. Before this, Skau had no
previous experience of MR image segmentation. To start with, Skau was
trained by first introducing the pictorial guide for ICV estimation and by making
him familiar with MIST. Skau got a few MR acquisitions that were not included
in the study to practice with at home. As an evaluation, | also let Skau segment
the intracranial vault on four MR acquisitions that were not included in the
study sample. Skau was to segment the whole intracranial vault on one of
these acquisitions, every second ICA on another acquisition, and every 10" [CA
on the remaining two acquisitions. Afterwards, | examined the segmentations
for errors and discussed places with Skau where | would have done it
differently as well as steps that he thought were ambiguous. As Skau’s
segmentations were of high quality, Skau started to segment the MR
acquisitions included in the sample. The segmentations were done on already
preprocessed images and in the same batches that | used. The segmentations
of every 10" ICA took Skau about 22.5 minutes/acquisition. The segmentations
of every 40" ICA took him about five minutes/acquisition.
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Skau was instructed to begin the segmentations at the midsagittal area. Thus,
| was able to use these midsagittal ICAs to assess the inter-rater reliability when
only segmenting one midsagittal ICA (which was done in Paper Il).

Intra- and inter-rater reliabilities were calculated by comparing the new
segmentations to the same subsamples of ICAs from the initial segmentations
of the whole intracranial vaults.

Figure 8. Example of the original segmentation of a
midsagittal intracranial area (green) with the intra-
(pink) and inter-rater (blue) segmentations overlaid.

3.7 IMAGE MASKS

The segmentations of the whole intracranial vault were reconstructed into
binary image masks. These masks were used in Papers |-l as they enabled us
to divide the whole segmentation into coronal, sagittal or transversal ICAs.
Doing so, we were able to evaluate, not only different sets of ICAs to estimate
ICV, but also how the orientation of these ICAs affects the estimation.
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A binary image mask is a binary matrix with the same size as the original image.
A one in the matrix tells that the object of interest is present in the given voxel.
A zero tells that the object is not present in the given voxel. The segmentations
were reconstructed into image masks using the MATLAB function inpolygon
for each ICA. Inpolygon finds all voxels inside the border of the segmented
object of interest. The found voxels are set to ones in the binary image mask.
The process continues until all ICAs have been gone through. By doing this
reconstruction, the resolution of the segmentation is lowered to the resolution
of the images. However, the absolute percentage errors of the image masks
compared to the actual segmentations were very small. The average absolute
percentage error was 0.07%. In Figure 9, a segmentation of an ICA and its
reconstructed image mask is shown.

Figure 9. A segmented intracranial area (left image) and the binary image mask of this

segmentation (right).

3.8 PAPERI

In Paper |, we evaluate whether estimates based on every second up to every
50" ICA are enough to get valid estimates of ICV when using MR images with
1 mm?3 voxels. We designed the study to replicate a study by Eritaia et al.%°, but
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with two additions. In contrast to the study by Eritaia et al., who only evaluated
the use of sagittal ICAs, we also added an evaluation of the use of coronal and
transversal ICAs. Further, Eritaia et al. used a nearest neighbor interpolation in
order to get a volume estimate from the equidistant ICAs. In our study we also
investigated whether better estimates could be achieved with either piecewise
linear interpolation or a cubic spline interpolation. With fewer ICAs, the choice
of interpolation method could have a great impact on the validity of the
estimates as more information has to be estimated through interpolation.

3.9 PAPERII

In Paper Il, we evaluate whether it is enough to segment one or two ICAs to
get valid estimates of ICV. We did this evaluation using four different methods.
1) Using only the midsagittal ICA as an estimate of ICV. To use one ICA as an
estimate of ICV has already been suggested by Ferguson et al.*> and Nandigam
et al.*. 2) Using one ICA multiplied by the intracranial width perpendicular to
the ICA. 3) Using the sum of two ICAs with the same orientation multiplied by
the intracranial width perpendicular to the ICAs. 4) Using two ICAs and a shape-
preserving piecewise cubic interpolation. Except for the first case, it is not
given where in the intracranial vault to segment the ICAs. Therefore, for
methods 2—4, the 62 MR acquisitions were randomly divided into a training
and an evaluation set. Using the training set, the validity when using each
possible combination of ICAs was evaluated. The combination that resulted in
the most valid estimate (according to certain chosen criteria) in the training
set had its validity recalculated using the evaluation set.

In Paper |, when segmenting every 50" ICA, about 2—3 ICAs were segmented
at total to estimate an ICV. In Paper Il, we thus continued the evaluation of
estimating ICV with a small number of ICAs. An important difference is that we
dropped the requirement of equidistant ICAs. That is, we did not require that
there is a distance of 50 mm between the ICAs.
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3.10 PAPERIlI

In Paper Ill, we examine FreeSurfer’s® estimate of ICV (eTIV®?, estimated Total
Intracranial Volume). The calculation of eTIV is based on a method proposed
by Buckner et al.>2. Using this method, ICV is approximated by how much the
MR images are scaled in order to align them to a head atlas. Roughly speaking,
a head atlas is a set of MR images of one (or multiple) MR acquisition(s) that
cover the head.

As eTIV is calculated based on the alignment of the head in the MR images to
a head atlas, there is no underlying segmentation. Further, as this alignment is
done using information about the whole head®, the variability in eTIV will
depend on more than just the intracranial vault. As the brain constitutes a
large part of the head, it is likely to affect the alignment and therefore eTIV.
With such a dependence, eTIV risks becoming biased by total brain volume and
possibly by global atrophy. Such a bias could have negative effects in for
example dementia research, where we expect global atrophy to occur. To
evaluate this risk in Paper Ill, we used the gold standard ICV, eTIV from
FreeSurfer, and estimates of the total brain volume from FreeSurfer. While it
would probably have been even better to use manual estimates of total brain
volume, total brain volume estimation in FreeSurfer is based on a more
rigorous method than eTIV; the brain is actually segmented in the MR images.
For this reason, it was also possible to do some error correction to these
segmentations to improve the estimated total brain volume.

When planning for the study, we had FreeSurfer analyses available from
FreeSurfer version 5.1.0. During my work with the study, FreeSurfer was
updated, so | decided to rerun the analyses. In Paper lll, FreeSurfer version
6.0.0 was used on a MacPro 3.1 with two quad-core Intel Xeon processors and
Mac OS X version 10.8.5. Both eTIV and total brain volumes were obtained
from the aseg.stats files that are generated during the Freesurfer analyze.
There are two options for the choice of total brain volume estimate in the
aseg.stats file. We chose to use the output BrainSegVol as the estimate of total
brain volume. BrainSegVol includes the cerebrum, the cerebellum, all
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ventricles, some cerebrospinal fluid, the optic chiasm, and vessels, but not the
brain stem or the dura mater®®. The other option is BrainSegVolNotVent, which
will not include the ventricles, cerebrospinal fluid or choroid plexus®.
BrainSegVol was used over BrainSegVolNotVent as we thought that a
shrinkage of the outer perimeter of the brain relative to the intracranial
surface would have the most influence on eTIV. BrainSegVolNotVent will also
be affected by ventricular enlargement and thus relatively less by cortical
atrophy.

3.11 PAPER IV

In Paper IV, which is a manuscript, we introduce mathematical functions that
predict the mean, variance, and Pearson’s correlation to ICV of brain estimates
normalized by ICV. As arguments, the functions take statistical properties of
the brain estimates and the ICV prior to normalization, such as mean and
variance. The functions differ depending on the normalization approach. In
Paper IV, we focused on three common normalization approaches: 1) least-
squares normalization, 2) inferred least-squares normalization, and 3)
proportion normalization. The mathematical functions are presented in Table
7 on page 51.

Besides introducing the mathematical functions, we also evaluated their use
in predicting data from a simulation and from two previous studies that also
evaluated the effects of ICV normalization. Our evaluation served two
purposes. First, to show that the functions actually predict the mean, variance,
and Pearson’s correlation to ICV after normalization. Secondly, to get a feeling
of what kind of prediction uncertainty and errors to expect when using the
functions. The two studies, the results of which we predict, were chosen as
they report all values needed for making the predictions and for comparing
them to the actual results.
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The simulation was done by creating a family of one million bivariate normal
distributions that describe hypothetical populations with two given variates, a
regional brain volume and ICV. Each bivariate distribution was created by
randomly determining the mean and variance of the two variates, as well as
the Pearson’s correlation between the variates. The randomness was
constrained so that the two variates would resemble a brain estimate and ICV
to some degree. Then, from each bivariate distribution, two samples were
drawn, each with a random size between 10 and 1000. For the whole family of
such sample pairs, we first predicted what would happen when normalizing
the first variate by the other, and then evaluated what actually happened. In
Figure 10, | have visualized an example of a bivariate normal distribution and
a sample drawn from it.

Frequency

Regional brain volume

Intracranial volume

cranial volume

e o Intr

Figure 10. Randomly created bivariate normal distribution. The black lines in the left graph
shows two normal distributions where mean, variance and Pearson’s correlation have been
set randomly but constrained to resemble the distributions of a regional brain volume and
intracranial volume in a population. Together these two distributions form a bivariate
normal distribution, also illustrated as a blue surface. From the bivariate normal distribution,
a sample of 232 cases has been drawn randomly. The frequency distribution of the sample is
illustrated by the bars. In the right graph, the regional brain volume in the sample is plotted
as a function of the intracranial volume.
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Table 7. Composite functions from Paper IV
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Proofs for the composite functions in Table 7 that give point estimates in the
cases of least-squares and inferred least-squares normalization are presented
in Appendix B. The composite functions for inferred least-squares
normalization that give confidence intervals were derived by finding functions
that best explained simulated data. These functions are only preliminary. The

composite functions for proportion normalization were retrieved from?+%¢.

3.12 STATISTICS

In Paper -1V, we used a number of different statistical methods. These were
1) chi-square test of independence, 2) Mann-Whitney U test, 3) t-tests, 4)
Kruskal-Wallis test, 5) Pearson’s correlation, 6) partial correlation, 7) intra-class
correlation, 8) Jaccard index, 9) confidence intervals for differences between
Pearson’s correlations, and 10) delete-x Jackknife resampling. | will describe all
these things in short before continuing with our use of them.

1) The chi-square test of independence is a non-
parametric test with regard to frequencies of
observations when classified by two categorical
variables. The test is used to evaluate if the two
variables are independent. The null hypothesis is
that the two variables are independent.

2) The Mann-Whitney U test is a non-parametric test
used to test if two independent samples come
from populations with different values of a given
property. The null hypothesis is that the samples
come from populations with exactly the same
values of the given property.

3) The t-test is a parametric test that can be used
both to test if two independent samples come
from populations where the mean values of a
given property differ (independent samples t-test)
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and if the mean values of two measures differ in
the same population (paired samples t-test). The
null hypothesis in the independent samples t-test
is that the samples are from populations with the
same mean value. The null hypothesis in the paired
samples t-test is that the difference in mean value
is zero between the two measures in the
population.

The Kruskal-Wallis test is a non-parametric test to
test if the values in multiple independent samples
come from populations with different values of a
given property. The null hypothesis is that the
samples come from populations with exactly the
same values of the given property.

The Pearson’s correlation is a measure of linear
association between two continuous variables.
The Pearson’s correlation can be used in a
parametric test to test if there is any linear
association between two variables in a population.
The null hypothesis is that there is no linear
association between the two variables in the
population.

Partial correlation is a measure of linear
association between two continuous variables
when ruling out the influence of a third continuous
variable. Partial correlation can be used in a
parametric test to test if there is a linear
association between two variables in the
population when ruling out the influence of the
third variable. The null hypothesis is that there is
no linear association between the two variables in
the population that is not explained by the third
variable.
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7)

10) Delete-x Jackknife resampling

Intra-class correlation is a measure of association
or agreement and has a number of different
configurations®”. We have used a variant of intra-
class correlation called the two-way random
effects model for single measurements and
absolute agreement. Using this intra-class
correlation, both the linear association and the
agreement between estimates may be assessed in
one index (that will range from —1 to 1 as with
Pearson’s correlation). The intra-class correlation
can be used in a parametric test to test if this index
is zero in the population. The null hypothesis is
that there is no agreement/association in the
population (that the index is zero).

Jaccard index is the ratio of the intersect of two
measurable objects divided by their union. The
index range from O to 1 where 1 indicates an exact
similarity. The index is often used to calculate the
similarity between segmentations, but can also be
used to calculate the similarity between vectors®®
(which is what we do).

Confidence intervals for differences between
overlapping Pearson’s correlations®® can be used
to test the difference between two Pearson’s
correlations that involve a common variable. This,
is a parametric test. The null hypothesis is rejected
if the 95% confidence interval of the difference
contains zero. The null hypothesis is that there is
no difference between the two correlations in the
population.

%91 is a method
where subsamples are created by removing x
observations from the total sample of
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observations. This is done so that all possible
combinations of subsamples are created. For
example, if applying a delete-one Jackknife
resampling on a total sample of 100 observations,
100 unique subsamples are created with 99
observations in each.

Papers I-lll are based on the same sample of 70 participants. We chose to
include 70 participants with Paper | in mind, the replication study. When doing
a replication study it is recommendation to have a larger sample size than the
original study’”’8. In the original study by Eritaia et al.%°, 30 participants were
included and we figured that twice the sample size would be enough. Thus, we
did not determine the sample size by a power calculation, which would have
been better. Further, as we thought about Papers II-lll already during the
sample selection, we should have made power calculations for these studies
too, to see if 70 participants were enough. We did not plan for these studies
in that extent, but just perceived them as potential bonus studies.

While we included 70 participants, eight participants had to be excluded
because their intracranial vault was not fully covered in the MR images. To see
if the underlying population of the remaining and excluded participants
differed, statistical tests were performed on four demographic variables.
These variables were the participants’ age, education, MMSE, and gender. If
there is a statistical significant difference between the excluded and remaining
participants, there has been a systematic exclusion and the remaining sample
is no longer random (if it ever was). For gender, a chi-square test was used. For
the three other variables, Mann-Whitney U tests were used. Even if age and
education might be normally distributed, normality is hard to assess for the
small number of excluded participants. Histograms of the participants’ age,
education, MMSE, and gender are shown in Figure 11 (on the next page). The
alpha value was set to 0.05 for all these tests and no correction for multiple
comparisons was done. Correction for multiple comparisons might even be
unwise in the above tests, as it would increase the risk of type Il errors when
this risk is already substantial due to the small sample of excluded participants.
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Not correcting for multiple comparisons does increase the risk of a type | error
(rejecting a true null hypothesis), but an incorrect rejection would only make
us overly cautious in the interpretation of following results. A type Il error
would on the other hand make us less cautious in our interpretation (when
there is a need for cautiousness).

Remaining participants Excluded participants
Age Age
15 g 15 g
10 10
5 5
o = 0 Mo, 0.0
40 50 60 70 80 90 40 50 60 70 80 90
Years Years
Education Education
15 15
10f 1 10}
0 | 0 ﬂ_‘ﬂ_ﬂ_ﬂ iml
5 10 15 20 25 5 10 15 20 25
Years Years
MMSE MMSE
20 T g 20 v .
10 ’_Hi 10f
b= [ 11 ] H-\ 0 o lnod
15 20 25 30 15 20 25 30
Scores Scores
Gender Gender
40 = 40
20 H 1 20+
0 0 [ o
male female male female

Figure 11. Characterization of the remaining (left column) and excluded (right
column) participants shown as histograms of four variables (age, education,
MMSE score and gender)
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After manually segmenting the whole intracranial vault, we assessed the
validity and reliability of these segmentations. Validity was assessed by three
tests. The first test was the Pearson’s correlation between the estimated
volumes and age. The ICV should be robust to aging®® and we expected that
any such correlation in the sample would be small enough to be ruled out by
chance alone. That is, that the correlation would not be statistically significant.
The second test was made to evaluate if the average ICV differed by gender.
This test was done using an independent samples two-tailed t-test. Here, we
did expect a difference, as males generally have larger heads than females.
Lastly, we evaluated if there was any difference in ICV between healthy
controls, GDS 2, GDS 3, and GDS 4 patients. This test was performed using the
Kruskal-Wallis test for all participants, but also for both genders separately.
While we do expect that at least GDS 4 patients have smaller brain volumes
than healthy controls due to brain atrophy, we do not expect such a difference
in ICV. Therefore, this last test gives a rough indication whether the manually
segmented ICV might be biased by brain atrophy. However, such an
interpretation is a bit bold, as we might not even detect a statistically
significant difference in total brain volume between the different groups. In
the early stages of dementia, the atrophy is small and local. Therefore, to
actually detect a statistically significant difference in brain volume between
the groups, one might have to use regional brain volume and, in the statistical
analysis, account for other factors that may affect the regional brain volume,
such as gender or age.

Intra- and inter-rater reliability were calculated for segmentations of every 10"
ICA, every 40" ICA, and for the midsagittal ICA. The reliabilities were calculated
using intra-class correlation using a two-way random effects model for single
measurements and absolute agreement. In Paper |, we write that a two-way
mixed effects model for single measurements and absolute agreement is used.
However, using either of these methods, the exact same analysis is done and
the difference between the two models lies in how to interpret the results®’.
The mixed effects model does not allow for generalization of the found rater
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reliabilities to other raters, which we do want. It was a mistake to say that
these intra-class correlations were of mixed rather than random effects.

The alpha values in all these tests were set to 0.05. No correction for multiple
comparisons was done in the above tests, which increases the risk of us making
a type | error. As we do not expect any statistically significant Pearson’s
correlation between ICV and age, a type | error would make us question the
validity of the ICV, examine the segmentations in more detail, and be more
careful in interpreting associations to these segmentations. The same is true
for the Kruskal-Wallis test where we neither expect any statistically significant
difference. However, for the test of a gender difference, where we expect a
statistically significant difference, a type | error would make us ignore the
mentioned precautions.

In Paper |, we compared estimates of ICV based on subsamples of equidistant
ICAs to the gold standard ICV. We did these comparisons using Jaccard index,
Pearson’s correlation, percentage error, and intra-class correlation using a
two-way random effects model for single measurements and absolute
agreement. We included intra-class correlation as it was used in the study by
Eritaia et al.*C. Pearson’s correlation and percentage errors were included as
these measures are used in many other studies evaluating methods for ICV
estimation. Jaccard index was included upon request of a reviewer. For each
linear spacing, image orientation, and interpolation method that was
evaluated, 2000 sets of 62 estimates (one for each MR acquisition) were
chosen. The estimates in these sets varied through a random choice of the first
ICA in the series of ICAs from the given MR acquisition (which also determines
which the rest of the equidistant ICAs will be). The 95 percentiles of these
comparisons (2000 for each linear spacing, orientation, and interpolation
method), presented in Paper | thus describe how the validity of the estimates
varies due to the random choice of the start ICA. No significance tests were
performed for any of these comparisons.

In Paper I, the difference in mean absolute percentage errors between using
cubic spline interpolation and nearest neighbor interpolation for estimating a
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volume from the segmented subset of ICAs was evaluated using paired
samples two-tailed t-test. One t-test was done for each possible orientation of
the ICAs (coronal, sagittal, and transversal) as well as for each spacing between
ICAs (from 2 mm between areas to 50 mm between areas). The alpha value
was set to 0.05. At total, 147 (3*49) t-tests were done, but no correction for
multiple comparisons was done. Instead of probability values (p-values), 95%
confidence intervals of the differences were presented. If zero is not within the
95% confidence interval of a difference, the difference is statistically
significant. Such a difference implies that there actually is some difference in
the underlying population too. However, as no correction for multiple
comparisons was done, the confidence intervals are narrower than they would
have been with such a correction. Therefore, it might be wise to interpret the
results from this analysis with care. In addition, just because there is a
difference between methods, it is not necessarily of interest. One also has to
judge the size of the difference.

In Paper Il, the validity of ICV estimates from four different manual methods
were evaluated in comparison to the segmentations of the whole intracranial
vault. These comparisons were done using Pearson’s correlation and
percentage error calculations. We were primarily interested in finding out
whether estimates from these methods had a strong linear association to the
gold standard ICV. The percentage errors were calculated more for descriptive
purposes. No significance tests were performed for the found Pearson’s
correlations, but their confidence intervals were reported. Confidence
intervals were also calculated for the differences between the correlations®
found between methods 2—4 and the gold standard ICV. This was done upon
request of a reviewer. A total of 72 such confidence intervals were reported.
None of the reported confidence intervals were corrected for multiple
comparisons.

In Paper Ill, our null hypothesis was that there is no partial correlation between
eTlV and total brain volume after controlling for gold standard ICV. The
variance left after such controlling is our estimate of the error in eTIV. If eTIV
is not biased by a certain factor, the estimated error should be independent of
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that factor. Thus, if our null hypothesis is rejected, one interpretation is that
eTlVis biased by total brain volume. Another interpretation is that FreeSurfer’s
estimate of total brain volume is biased by eTIV.

As the gold standard ICV also contains some error (for example rater error),
the variance left in eTIV after controlling for gold standard ICV could also be
due to the error in gold standard ICV. To take this risk into account, we
assumed that the Pearson’s correlation between gold standard and true ICV
should be similar to the correlations found between estimates of ICV using only
a few ICAs and the gold standard ICV (~0.99, Paper Il). With this in mind, we
made a simulation to evaluate the risk of committing a type | error in the partial
correlation analysis if eTIV is not biased by total brain volume. Through the
simulation we confirmed that the risk of a type | error should be about 5%
when using an alpha value of 0.05, using a delete-two Jackknife resampling®®°!
and performing the statistical significance test on the Jackknife replicate with

the lowest partial correlation.

Instead of using a delete-two Jackknife resampling, we could have adjusted the
alpha value to make sure that the risk of a type | error would be around 5%.
However, as partial correlation is sensitive to outliers, we thought that the
delete-two Jackknife resampling would be a better way to make the
adjustment.

In Paper Ill, we also calculated the Pearson’s correlations between ICV, total
brain volume, and eTlV, but we did not perform significance tests for these
correlations. We also assessed the difference between eTIV and the manual
ICV. These differences were also not statistically tested.

In Paper IV, Pearson’s correlations and percentage errors were calculated
between actual and predicted statistics. We thought that the Pearson’s
correlation and percentage errors complemented each other in that if the
agreement is bad, then there still is a chance that there is a good linear
association. If intra-class correlation with absolute agreement is used, a low
correlation may indicate either a low linear association, a low volumetric
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agreement or both. We did not do any significance tests for the comparisons
in Paper IV.

We calculated all statistics in Paper I-IV using different versions of MATLAB.
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4 RESULTS

In Papers I-lll, a sample of 70 participants was included. Eight of these
participants were excluded because their intracranial vault was not covered in
the MR images. No statistically significant differences were seen between the
remaining and excluded participants regarding age (p-value = 0.789),
education (p-value = 0.407) or MMSE (p-value = 0.933). However, a significant
difference was seen in the proportion of males (p-value = 0.041).

The whole intracranial vault was segmented for each of the 62 remaining
participants. The validity of these segmentations was assessed by statistically
evaluating three different properties. First, there was no statistically significant
Pearson’s correlation between age and the volume of the segmentations (p-
value = 0.376). Secondly, a highly significant difference in mean volume was
seen between males and females (p-value < 0.001). Lastly, the size of the
volumes could not be shown to differ between the healthy controls, GDS 2,
GDS 3, and GDS 4 patients (p-valuea = 0.977, p-valuemaies = 0.672, p-valuefemales
= 0.458). All these results were in line with our expectations.

Intra- and inter-rater reliability were calculated for segmentations of every 10"
ICA, every 40" ICA, and for the midsagittal ICA. The intra-rater intra-class
correlations for segmenting every 10" ICA and every 40" ICA were both 0.996.
For the inter-rater segmentations, these intra-class correlations were 0.991
and 0.987 respectively. For the segmentation of the midsagittal ICA, the intra-
and inter-rater Pearson’s correlations were 0.997 and 0.995 respectively.

4.1 PAPERI

In Paper |, we evaluate if estimates based on every second up to every 50" ICA
are enough to get valid estimates of ICV when using MR images with 1 mm?3
cubic voxels. We found not only that with larger spacing between the ICAs, the
validity of the ICV estimates got worse, but also that the choice of start position
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for the segmentations had a larger impact with larger spacing (see the
distribution of the percentile curves in Figure 3, Paper I). The way in which the
validity worsened varied depending on the orientation of the ICAs and on the
interpolation method used when estimating ICV. At small linear spacings,
below 10 mm between the ICAs, there was not much of a difference in validity
between the different configurations of the method. At linear spacings beyond
10 mm, estimates calculated using piecewise linear interpolation started to
underestimate ICV and by that also got worse intra-class correlation with
absolute agreement to our gold standard ICV. For estimates calculated using
nearest neighbor interpolation, there was rather a drop in the Pearson’s
correlation to the gold standard ICV, which was also reflected in the intra-class
correlation. When using cubic-spline interpolation, both a good absolute
agreement in volume and a high Pearson’s correlation were maintained at
larger linear spacings. Using cubic spline interpolation, the validity of the
estimates at larger linear spacing (>15 mm) was better when using coronal or
sagittal ICAs than when using transversal ICAs. This observation is
strengthened by the t-tests of the difference in mean absolute percentage
error of estimates when using cubic spline compared to nearest neighbor
interpolation. For both coronal and sagittal ICAs, the percentage error at larger
linear spacings were consistently smaller when using cubic spline
interpolation. For transversal ICAs, which of the interpolation methods that
resulted in estimates with the smallest percentage errors varied somewhat
irregularly with linear spacing.

4.2 PAPERII

In Paper Il, we evaluate whether it is enough to segment one or two ICAs to
get valid estimates of ICV. Four different methods were evaluated. In Method
1, a single midsagittal ICA is used as an estimate of ICV. In Method 2, a single
ICA is multiplied by the intracranial width perpendicular to the ICA. In Method
3, the sum of two ICAs with the same orientation is multiplied by the
intracranial width perpendicular to the ICAs. Finally, in Method 4, two ICAs and
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a shape-preserving piecewise cubic interpolation is used. For Method 1, the
Pearson’s correlation to our gold standard estimates was 0.904. For Methods
2—-4, the correlations ranged between 0.951 and 0.970, between 0.992 and
0.998, and between 0.989 and 0.997 respectively, depending on the
orientation of the ICAs. The strongest correlations found for Methods 3 and 4
were found when using sagittal ICAs. For Method 3, the optimal positions of
the two sagittal ICAs was at 17.5% and 64% of the perpendicular intracranial
width. For Method 4, the two sagittal ICAs should be at 12% and 64% of the
perpendicular intracranial width. Estimates from Method 4 using coronal ICAs
had the lowest mean percentage error (—1%) compared to the gold standard
ICV. However, the standard deviation of these percentage errors was slightly
larger than that of estimates using sagittal ICAs. The Pearson’s correlations for
estimates from Method 4 using coronal ICAs to the whole ICV segmentations
were about 0.99. The difference in correlation found between the estimates
from Method 4 when using sagittal and coronal ICAs seems to be statistically
significant, however, this is when not correcting for multiple comparisons.

4.3 PAPERIII

In Paper lll, we evaluate if eTIV from FreeSurfer is biased by total brain volume.
Our null hypothesis was that no partial correlation between eTIV and total
brain volume should remain after controlling for gold standard ICV. To test this
null hypothesis, 1891 partial correlations were calculated using a delete-two
Jackknife resampling. Then, the Jackknife replicate with the lowest partial
correlation was selected in order to do the significance test. The partial
correlation between eTIV and total brain volume in this replicate was 0.290,
which was statistically significant (p-value = 0.026). Therefore, we rejected our
null hypothesis. The median partial correlation for all Jackknife replicates was
0.355. The Pearson’s correlation between eTIV and gold standard ICV was
0.960. The Pearson’s correlation between eTIV and total brain volume was
0.923. The Pearson’s correlation between gold standard ICV and total brain
volume was 0.921.
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44 PAPER IV

In Paper IV, we introduced composite functions of three statistics and three
ICV normalization functions. The statistics were the mean, variance and
Pearson’s correlation to ICV. The ICV normalization functions were those for
least-squares, inferred least-squares, and proportion normalization. For
inferred least-squares normalization, two types of composite functions were
presented. First, functions that predict the mentioned statistics of the
normalized data as single values and require information from both the sample
from which the regression coefficient is calculated and the sample to
normalize. Secondly, functions that predict confidence intervals and require
information only from the sample from which the regression coefficient is
calculated. In total, twelve composite functions were presented. Using these
composite functions, we predicted the mean, variance, and Pearson’s
correlation to ICV of brain estimates normalized by ICV, using data from two
previous studies and a stochastic simulation. The predicted statistics were then
compared to the actual post-normalization statistics from these studies and
the simulation, using Pearson’s correlation and absolute errors. The predicted
and actual statistics differed only slightly. The largest deviation between
predicted and actual statistics was found for the composite function for
variance after proportion normalization. In comparison to actual data from
one of the previous studies, these predictions had a mean absolute percentage
error of 4.22% and a Pearson’s correlation to the actual variance after
normalization of 0.981. In comparison to actual data from the simulation, the
mean absolute percentage error was 1.10% and the Pearson’s correlation
1.000. The predictions from the other composite functions had Pearson’s
correlations to the actual statistics of above 0.99. The mean absolute errors
for these predictions were also small. For the composite functions of statistics
after inferred least-squares normalization that predicted confidence intervals,
93.1-94.1% of the actual statistics were within the predicted 95% confidence
intervals.
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5 DISCUSSION

All four papers included in this thesis include method validation. In the first
part of this discussion, | will therefore focus on some general aspects of such
validation. In the second part of the discussion, | will look at the evaluations of
manual ICV estimation methods in Papers |-l and the evaluation of
FreeSurfer’s ICV estimate (eTIV) in Paper lll. Finally, in the last part of the
discussion, | will discuss the effects of ICV normalization and its use in
neuroimaging research. | will do so in relation to our findings in Paper IV.

5.1 METHOD VALIDATION

In method validation, validity and reliability are important properties to
consider. Validity tells us if estimates are close to the true value. Reliability tells
us how similar the estimates are when estimating the same thing a number of
times. Often the true value is unknown, and the validity impossible to tell. Then
it is common to evaluate the agreement of the method with some reference
(or “gold standard”) method with supposedly high validity. Agreement is
essentially the same thing as validity but closeness is assessed compared to
other estimates rather than to true values.

In Paper |, we evaluate the agreement between certain estimates and a gold
standard and in Paper IV the validity of certain predictions compared to the
true values. To assess the agreement/validity we use a number of different
methods including Pearson’s correlation. However, it should be noted that
Pearson’s correlation is a measure of linear dependence and not of agreement.
Bland and Altman®® list a number of reasons why Pearson’s correlations are
inappropriate when assessing the agreement between two methods. Instead,
they suggest the use of what is known as the Bland-Altman plot.

Three other measures of agreement are intra-class correlation with absolute
agreement, Jaccard index and percentage error. These three are all used in
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Paper |. The Jaccard index is especially useful when assessing the agreement
of image masks in structural MR images. For example, if two objects that
should agree have the same volume, the percentage error will be 0%, but the
Jaccard index of these objects will vary depending on their spatial overlap in
image space. The estimation methods evaluated in Papers I-Il do not result in
image masks. Therefore, we do not use Jaccard index for such masks. In Paper
[, we instead used another variant of the Jaccard index that measures the
overlap of paired elements between two vectors®®. The two vectors in this case
consists of the new ICV estimates and our gold standard ICV.

For some purposes, it is enough that estimates have a strong association to
gold standard estimates while a strong agreement is not necessary. In Paper Il,
our interest was in finding work-efficient methods to get estimates that are to
be used in linear regression models, such as least-squares normalization.
When a covariate is added in a linear regression just to correct the model for
it, it is enough if the linear association between the covariate and the true
value (or gold standard) is strong.

When evaluating the validity of eTIV in Paper lll, it was also just linear
association that was considered. The linear association evaluated was to an
external variable (total brain volume) when controlling for our gold standard
ICV (using a partial correlation analysis). We hypothesized that the linear
association between eTIV and our gold standard ICV should explain any linear
association between eTIV and total brain volume.

Evaluations of method reliability were only included in Papers I-Il. In Paper |,
this was done by mapping the variability related to the random selection of
which ICA to start the segmentation with (see Section 5.2). Intra- and interrater
reliabilities were also calculated for segmenting every 10" and every 40" ICA.
In Paper I, we only included intra- and interrater reliabilities for one of the four
evaluated methods, which is a limitation. In Paper Ill, we were only interested
in a specific aspect of eTIV and did not attempt to evaluate its reliability.
However, as the eTIV calculation is automatic and to our knowledge without
any influence from any random factor, the same eTIV should be produced
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every time the same set of MR images are analyzed. Therefore, eTIV should
have perfect reliability. For the same reason, the composite functions
evaluated in Paper IV should also have perfect reliability.

In the following subsections, | will discuss the interpretation of validity
assessments.

5.1.1  SIGNIFICANCE TESTING

In Papers I-Il and IV, most validity assessments were done without testing for
statistical significance. This might seem worrisome as significance tests are
standardly used to draw conclusions about the population. We could for
example have used significance tests to test the Pearson’s correlations and
volumetric differences that we report. By such statistical tests we could have
answered the questions “Given that there is no correlation/difference in the
population, what is the probability to get the detected or a stronger/larger
correlation/difference in a random sample of our sample size?”. If the p-value
is low enough, we would reject the null hypothesis that the
correlation/difference in the population is zero.

Theoretically, there almost certainly is some correlation/difference between
any two different estimates in any two samples (and in the population)®*. And
even the slightest correlation/difference between two estimates will be
statistically significant if the sample size is large enough. Thus, if we fail to
reject the null hypothesis that there is no correlation/difference in the
population, it is a sign of a too small sample given the effect size seen in it. If
we on the other hand do reject the null hypothesis, we only learn the direction
of correlation/difference in the population.

If, prior to the significance test, we believe that the correlation/difference in
the population could actually be zero, the rejection of the null hypothesis
would tell us that our observation is unlikely given a zero difference. However,
such knowledge is of little use when comparing methods that should estimate
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the same quantity. As Bland and Altman®® puts it about significance tests of
Pearson’s correlations in this context, “The test of significance may show that
two methods are related, but it would be amazing if two methods designed to
measure the same quantity are not related. The test of significance is irrelevant
to the question of agreement.”.

5.1.2 EFFECT SIZE

To examine agreement or association between estimates, it is important to
use effect size. By the effect size, we can judge the amount of agreement or
association. For example, given that the difference in estimated hippocampal
volume between two estimation methods is normally distributed, our best
estimate of this difference in the population is the mean difference in our
sample. If the residuals from a simple linear regression between these two
types of hippocampal volume estimates are normally distributed, our best
estimate of their Pearson’s correlation in the population is the Pearson’s
correlation in our sample. In Paper |, we report effect sizes of our estimates of
agreement/association.

Even if the mean difference and the Pearson’s correlation in our sample are
our best estimates of the corresponding values in the population, we cannot
be sure that they are correct. The smaller sample we have, the less certain we
can be about the correctness of our estimates. To make this uncertainty more
apparent, one should include the confidence intervals for the effect sizes. A
95% confidence interval is the result of applying an interval estimate statistics
such that with repeated sampling, 95% of the found intervals would in the long
run contain the true population value. The width of a 95% confidence interval
is not a perfect measure of uncertainty (as it will vary between samples), but
may at least give some understanding of the uncertainty (especially when
intervals are available from a number of studies).

A good agreement in the population might also be insufficient evidence of
overall agreement. There could be a small average difference between the
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estimates and gold standard estimates in the population, but a large variability.
If the difference is normally distributed, our best estimate of its variance in the
population is its variance in our sample. It tells us something about how much
the difference between estimates will vary in the population. It is also possible
to calculate confidence intervals for the variance®. This kind of analysis was
not included in any of the papers.

Confidence intervals were included for at least some of the effect sizes in all
papers except in Paper Ill. In Paper lll, we were interested in knowing whether
there was a significant partial correlation at all rather than in assessing the size
of such a correlation. Still, we should have included the confidence intervals
from the partial correlation analysis. In the other papers, we included
confidence intervals when we thought this was appropriate, but we should
have included them for all effect sizes.

5.1.3 ADJUSTMENT FOR MULTIPLE COMPARISONS

When using statistical significance testing one can correct for the use of
multiple statistical comparisons to avoid an increased risk of committing type
| errors. This comes with the drawback of an increased risk of committing type
[l errors. It is common to accept this trade-off, as we rather prefer not to draw
conclusions to drawing premature and false ones.

As mentioned in Section 5.1.2, to interpret effect size, we should include
confidence intervals to specify our uncertainty. For this specification of
uncertainty to be correct, we should also adjust it for the number of
comparisons made. To adjust the confidence intervals for multiple
comparisons, the alpha value can be adjusted. One possibility is to use
Bonferroni correction. Then, the alpha value is divided by the number of
comparisons®.
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We did not correct any of the confidence intervals presented in Papers I-IV.
Due to lack of correction, the presented confidence intervals are smaller than
should otherwise be expected.

For Pearson’s correlations that are as strong as those described in Papers I-|
and 1V, the corresponding confidence intervals will not be affected much by
correction for multiple comparisons (as long as the sample sizes are not very
small). For example, if the Pearson’s correlation is 0.99 in a sample of 50
participants, the 95% confidence interval is between 0.982—-0.994. By using
Bonferroni correction on the alpha value (0.05) for 1000 comparisons
(corrected alpha = 0.05/1000), the new confidence interval becomes 0.968—
0.997. By correcting for 100,000 tests, the new confidence interval becomes
0.957-0.998. However, the effect of correction is much more apparent if the
correlations or sample sizes are small.

5.14 SAMPLE SELECTION

One of the cornerstones of statistical analysis is randomly drawn samples. It is
by having random samples that we can assume that the mean difference in
our sample is a fair estimate of the mean difference in the population we aim
to study. It also makes the questions asked during significance testing
meaningful (see examples of questions in Section 5.1.1). Most statistical tests
or measures that are used to generalize a finding to the underlying population
assume that one uses random samples.

While we used a stratified random sampling approach for the data included in
Papers |-lll, this sampling was done from a larger convenience sample.
Further, eight participants had to be excluded as the whole intracranial vault
was not covered in their MR images. The proportion of males was significantly
larger in the group of excluded participants compared to the remaining ones.
Both these factors lead to concerns about how well statistical inference is
applicable using the data (as the sampling error not necessarily is by chance).
A problem with convenience samples is for example that they tend to be less
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variable than the population®. The exclusion of more males also brings
concerns about the representativeness of the current sample.

Despite the sample selection, | do think that the findings in Papers I-lll are both
trustworthy and generalizable. | can of course not be sure of this. A weak sign
of the adequacy of the data in Paper | is that our results agreed well with those
of the study that we replicated®’. Of course, we might have “benefited” from
a smaller variability in the sample (compared to the population) due to the use
of a convenience sample. For Paper Ill, I think that the presence of a theoretical
explanation of a bias in eTIV supports the validity of the study results. While a
theoretical framework does not improve the quality of the data, it may help in
the reasoning about for example the generalizability of the findings (rather
than just being limited to statistical inference).

5.2 MANUAL ESTIMATION OF INTRACRANIAL
VOLUME

One of the most frequently used manual estimation methods in neuroimaging

1.4 where every 10" sagittal ICA is

research is one evaluated by Eritaia et a
segmented to estimate the ICV. As the study by Eritaia et al. has had such an
impact on ICV estimation in neuroimaging and still had never been replicated

before, our aim in Paper | was to replicate it.

In our replication study, the results were very similar to those presented by
Eritaia et al.*. The similar results in both studies support the use of every 10"
sagittal ICA as a valid ICV estimation procedure. We also found that when
segmenting at least every 15" |[CA, neither the orientation of the
segmentations nor the interpolation method used played any crucial role for
the validity of the estimates. As most studies that use linearly spaced ICA to
estimate ICV segment every 10" ICA, the orientation of the ICAs or the
interpolation method used will not matter much.
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In our evaluation, the slice thickness of the MR images was one mm and there
was no slice gap between the images. Therefore, in our evaluation, the
segmentation of every 10" ICA is equivalent to the segmentation of one ICA
every 10" mm. Slice thickness and slice gap are important to have in mind
when estimating ICV using linearly spaced ICA. For example, if the MR images
have a slice thickness of 2 mm and no slice gap, the use of every 10" ICA will
be roughly equivalent to segmenting one ICA every 20" mm when using one
mm thick MR images. | say “roughly equivalent”, as thicker images generally
are less noisy but have larger partial volume (see explanation on page 42)
effects than thinner images (which could affect the validity in some direction).

As both we and Eritaia et al.?? found an intra-class correlation with absolute
agreement close to one (>0.999) between gold standard ICV and estimates
based on every 10" ICA, it seems reasonable to use the latter estimates as gold
standard when evaluating new methods (which has been done already®>>3).
However, the reported intra-class correlations in our study and the study by
Eritaia et al. do not take into account estimation errors (user or method
related). When evaluating the intra- and interrater reliabilities for estimates
based on every 10" ICA, we found the intra-class correlation (with absolute
agreement) to be around 0.991-0.996. Thus, one should remember that the
actual validity of these estimates will be restrained by any estimation error

introduced by the raters.

With larger linear spacing between the ICAs, both we and Eritaia et al.“° found
that the ICV estimates become less reliable. In Figure 3 in Paper |, the reduced
reliability is seen as widened percentile curves of the different validity
measures with increased linear spacing. The main reason for the reduced
reliability with larger linear spacing is probably the random choice of the
position of the first ICA to segment. Let me exemplify. Our segmentations of
the whole intracranial vault in average contained 136 sagittal ICAs. When using
every second ICA to estimate ICV, the position of the first ICA to segment is
determined randomly to be either the first or the second ICA in the intracranial
vault (from either the right or the left side of the head). If we by chance are
directed to start our segmentation at the first ICA in the intracranial vault, then
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our ICV estimate will include 68 ICAs on average. If we are directed to start the
segmentation at the second ICA, our ICV estimate will include the same
number of ICAs on average. Further, these two possible sets of ICAs will include
very similar area sizes. However, when using every 50" ICA to estimate ICV,
the position of the first ICA to segment is determined randomly between the
first and 50" ICA in the intracranial vault. If we then are directed to start the
segmentation at the first ICA, our ICV estimate will include three ICAs on
average. If we are directed to start at the 50" ICA, our ICV estimate will include
two ICAs on average. Further, the different sets of ICAs will probably include
differently sized areas. Therefore, if we do not let chance direct which ICA to
start the segmentation at, it is probable that the reliability does not drop as
much with increased linear spacings.

In Paper I, some of the combinations of every 50" ICA reached intra-class
correlations with absolute agreement beyond 0.98 to gold standard ICV.
Possibly, even higher levels of intra-class correlation can be expected if the
position of the first ICA to segment is determined by a given position in the
intracranial vault. Further, the validity might also increase by not using linearly
spaced ICAs but rather defining the position of all ICAs that should be included
in the ICV estimate. Then the segmentation of two ICAs could be enough to
get valid estimates of ICV. In Paper Il, we evaluated this possibility.

We found that the sum of two ICAs segmented at optimal locations multiplied
by the perpendicular intracranial width can result in estimates with very good
Pearson’s correlation to gold standard ICV. Irrespective of the orientation of
the ICAs, Pearson’s correlations above 0.99 were found. The strongest
Pearson’s correlation (of 0.997) was found for estimates using sagittal ICAs.
This can be compared to a Pearson’s correlation of 0.88—0.89 previously found
when segmenting one ICA*** and 0.93-0.95 when segmenting 2-4
midsagittal ICAs**. When using sagittal ICAs, the optimal location were found
at 17.5% and 64% of the perpendicular intracranial diameter (the width of the
intracranial vault from the participant’s right side of the head to her left side).
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We choose to describe the location of an ICA in the intracranial vault as a
percentage of the diameter of the intracranial vault perpendicular to the ICA.
We did so assuming that the intracranial vaults are somewhat similar in shape
between individuals. Then, similar locations in the intracranial vaults should be
found at similar percentage values. As the validity of the estimates was
evaluated in a separate subsample from the one used to find the optimal
locations, our assumption seems to be correct. However, the assumption
might not hold in samples/populations where the shape of the skull might
deviate from the general population. For example, in patients with earlier skull
trauma or with hydrocephalus.

The fact that the optimal positions of sagittal ICAs were at opposite sides of
the intracranial vault could be by chance, but could also be a consequence of
bilateral asymmetry in some of the intracranial vaults included in the study. If
allintracranial vaults had been perfectly symmetrical, a solution with both ICAs
at the same side of the midline would have been equally good. When using the
position indices from either the right or the left side of the head randomly
between the participants, the Pearson’s correlation to gold standard ICV did
drop slightly, which could also be an indication of some bilateral asymmetry in
the intracranial vault. To what extent the found optimal solution can handle
more obvious asymmetries is a matter for further research.

In Paper I, we only aimed at finding simple estimates with high Pearson’s
correlation to gold standard ICV. We did so, as such estimates would be
applicable in linear regression models where an ICV estimate should be
included, such as least-squares normalization. We also thought that if absolute
volume differences were of interest, then other estimates of ICV would be
better. Still, smaller volumetric errors than those presented in Paper Il could
be achievable for the four methods evaluated using some other way to
combine the basic quantities into one single estimate. For example, when only
segmenting one ICA and estimating the perpendicular diameter, the algorithm
used by Mathalon et al.?” could be applied. Then the estimate would be

calculated as 4/3*(diameter/2)*ICA instead of just by ICA*diameter.
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5.3 ESTIMATION OF INTRACRANIAL VOLUME
USING FREESURFER

One of the most commonly used estimates of ICV is eTIV from FreeSurfer. eTIV
is calculated based on the alignment of MR images to a head atlas and not on
a segmentation of the images. As the alignment is done to the whole head®%%2,
it is not unlikely that the variability in eTIV will depend on more than just the
intracranial vault. When eTIV is used in research it is hardly an active choice of
the best ICV estimation method, but more likely a passive choice as it is
included among the other estimates provided when using FreeSurfer. Often
the ICV estimate is not of particular interest (other as a potential adjustment
factor) so one might pay less attention to how it is actually determined.

A somewhat unfair, but illustrative example of how eTIV is calculated can be
constructed by removing parts of the head in the MR images to be analyzed
and evaluate how this affects eTIV. The unfairness with this illustration is that
FreeSurfer expects the whole head to be included in the MR images, hence we
must not expect perfect estimates when this is not the case.

Nonetheless, using the 62 MR acquisitions included in Papers I-lll, | ran two
new analyzes using FreeSurfer. In the first analysis, | provided FreeSurfer with
MR images where the intensities of all voxels more than 10 mm beyond the
border of the manual ICV segmentation had been set to zero. This mainly
removed intensities in the throat and neck. In the second analysis, intensities
of voxels more than 3 mm beyond the manual segmentations had been set to
zero, removing most of the head outside of the dura mater. In Figure 12, |
visualize an example of the MR images in this experiment (before and after
setting intensities to zero) and how the atlas alighment in FreeSurfer was
affected.

In the first analysis, the correlation between ICV and eTIV increased from 0.960
to 0.963. The absolute percentage error of eTIV decreased from 4% to 3.6%.
The removal of the throat and neck from the MR images seems to improve
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eTIV slightly. The throat and neck are not included in the atlas, hence removing
them from the MR images might have made the alignment a bit more accurate.

In the second analysis, the correlation between ICV and eTIV decreased from
0.960 to 0.923. The absolute percentage error increased from 4% to 12% and
went from an overestimation of ICV in the initial analysis to an
underestimation. The reason for this is probably that the alignment tries to fit
the whole atlas to the intensities in the images to analyze, which now do not
contain any non-zero intensities outside the skull. The result was that fat and
skin in the atlas were aligned to the dura mater in the images to analyze.

Figure 12. Column a) a T1-weighted image of a participant with frontal lobe dementia;
Column b) the MINI305 atlas aligned to the T1-weighted image; Column c) the T1-weighted
image with the aligned atlas overlaid and the atlas intracranial surface demarcated (pink

contour); and Column d) the T1-weighted image with the brain surface (blue contour), the
atlas intracranial surface (pink contour), and the actual intracranial surface (green contour)
demarcated. The first row illustrates the initial analysis, the second row illustrates the
analysis where intensities more than 10 mm beyond the borders of the manual ICV
segmentations were set to zero in the T1-weighted images, and the third row where
intensities more than 3 mm beyond the manual segmentations were set to zero.
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As the brain constitutes a large part of the head, it is likely to affect the atlas
alignment and with that eTIV. With such a dependency, eTIV risks becoming
biased by total brain volume. Further, as eTIV derives from a linear alignment
of the input MR images to the MNI305 atlas®?, it is not unlikely that the error
in eTIV is linearly related to the difference between brain volume and ICV. In
Paper Ill, we empirically showed that there is an association between total
brain volume and eTIV that cannot be explained by gold standard ICV. Our
interpretation of this association was that eTIV is indeed biased by total brain
volume. However, an association does not entail a causal relationship. The
association we found could as well be due to the estimation of eTIV somehow
being affected by (or affecting) the estimation of total brain volume in
FreeSurfer (in a way that cannot be explained by gold standard ICV). Another
possibility is that some third variable acts as a confounder.

The MR images included in the study were from examinations made between
year 2005 and 2008. Due to the time span between the examinations there is
a risk that the MR images vary due to scanner variability. It could be that eTIV
and total brain volume are affected by this scanner variability in a way that the
gold standard ICV is not (or the other way around). If so, the found partial
correlation could be due to a scanner artifact in combination with a
susceptibility to this artifact either in the estimation of eTIV and total brain
volume or in the gold standard ICV. When inspecting the data, | noticed that
there were in fact significant Pearson’s correlations (r = 0.27-0.31) between
acquisition date and both eTIV and gold standard ICV, but no significant
correlation between date and total brain volume (r=0.21). Thus, | should have
adjusted for acquisition date in my analysis. To test if such an adjustment
would have had any effect on our conclusion about eTIV, | reran the analysis
adjusting for acquisition date. The delete-two Jackknife replicate with the
lowest correlation had a correlation of 0.311 (p-value < 0.02) between eTIV
and total brain volume after correcting for gold standard ICV. The median
partial correlation of all Jackknife replicates was 0.383. Thus, the results
presented in Paper IV holds also when adjusting for scanner variability.
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Total brain volume explained 85% of the variance in eTIV (=0.921? * 100).
However, after controlling for gold standard ICV, total brain volume only
explained 1% of the variance in eTIV ([1-0.96°] * 0.355%). This tells us that
between 1 and 85% of the variance in eTIV in our sample could be due to total
brain volume (rather than to ICV). The high correlation between eTIV and ICV
is the reason behind the large uncertainty. Due to this uncertainty, other
studies must be conducted in order to determine to what extent eTIV is
affected by total brain volume. Our study merely points out a theoretical bias
in eTIV and shows that it is indicated empirically. It would be better to evaluate
the possibility of a bias using longitudinal data. Then the association between
change in brain volume and change in eTIV can be evaluated more directly.

Two longitudinal studies had previously been published that evaluated if
change in total brain volume was associated with change in eTIV*°°
Nordenskjold et al.#¢ examined this association in 53 elderly participants that
had MR examinations made at an age of 75 years and then five years later.
Pengas et al.’® examined the association in 11 patients with semantic dementia
that were followed 1.62 years on average (range was 1-3 years). Nordenskjold
et al. detected a decrease in total brain volume of 2.51% on average while
Pengas et al. noted a decrease of 3.22% (1.99%/year * 1.62 years). Neither
Nordenskjold et al. nor Pengas et al. found any association between change in
brain volume and change in eTIV. In the study by Pengas et al., the Pearson’s
correlation of 0.515 between the two was just non-significant (the presented
p-value is 0.05) and they interpret this as a “trend toward correlation”. While
it is not correct to interpret a small p-value as showing a trend towards
something, it does tell us that it is fairly improbable to see such a correlation
in the sample if there is no correlation in the population.

In Paper Ill, we discuss how the different study samples might result in
different findings and our concern with how the MR scanner upgrade might
have affected the findings in the study by Nordenskjold et al.*é. Yet another
example is that Nordenskjold et al. evaluate how absolute change in ICV is
associated to relative change in brain volume. | think it would have been better

79



INTRACRANIAL VOLUME IN NEUROIMAGING

to either evaluate the association between relative or absolute changes (and
not some combination of them).

In my opinion, to be sure about the existence of a total brain volume bias in
eTlV, further studies must be conducted. In the meantime, the use of a more
study specific brain atlas might improve the overall validity of eTIV. A better
morphological similarity between the data to be analyzed and the atlas should
improve the overall alignment, which could benefit eTIV too. Further, the
average difference between the volume of the intracranial vault and the total
brain volume will be similar in the atlas and the MR images to analyze, which
in average should reduce any total brain volume bias in eTIV. The effect of
different atlases on a predecessor to FreeSurfer’s eTIV is mentioned in a paper
by Buckner et al.>?. There they state that when using an atlas of only young
people the older participants tended to get overestimated ICV. For this reason,
Buckner et al. used an atlas based on both young and old adults. FreeSurfer on
the other hand use the MNI305 atlas®? that is based on only young people”’.
Therefore, one could expect that eTIV from FreeSurfer would benefit from a
change of atlas when estimating ICV of people with possibly atrophied brains.
With the potential influence of the brain volume on eTIV remaining, individual
cases still would risk getting poor estimates.

54 EFFECTS OF INTRACRANIAL VOLUME
NORMALIZATION ON BRAIN ESTIMATES

A number of previous studies have evaluated the effect of ICV normalization
on brain estimates. In the present section, | will describe some of these studies
and how the composite functions presented in Paper IV might help to interpret
the previous findings. | will also use the composite functions to prove certain
properties of the different ICV normalization approaches. Remember that the
composite functions for proportion normalization are only approximate, so the
proofs including these functions will also only have approximate conclusions.
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Further, this is ongoing research and Paper IV will be revised before it is
submitted for publication.

The provisional nature of this section is actually one reason why it is so long
compared to other parts of the discussion: | need feedback on my ideas.
Another one, of course, is that the possibility of normalization with ICV is one
of the main rationales for estimating ICV.

541 REDUCED COEFFICIENT OF VARIATION

While | (in Section 1.5) defined ICV normalization in short as the adjustment of
brain estimates to reduce the proportion of total variance that is explained by
ICV, a reduction of the variance per se is not necessarily an indication of a
successful normalization. If it was, we could simply divide our brain estimates
with a number larger than one. The larger the value we would choose, the
more successful would the normalization be. As proportion normalization is
division by a large number (or more correctly a large variable), it will
automatically cause a large drop in variance. To evaluate if proportion
normalization actually reduces variance in any interesting way, the coefficient
of variation could be used instead (a measure of variance relative to the mean).
As the least-squares normalization does not affect the mean value of the brain
estimates, both the variance and the coefficient of variation can be used to
evaluate variance reduction due to the normalization.

Hansen et al.%®

evaluated how proportion and least-squares normalization
decrease the sample size needed to detect a 2% difference in the mean volume
between two samples. They made the evaluation for eleven brain regions
using hypothetical samples based on real data. Further, the evaluation was
made using a number of automatic estimates of ICV (including eTIV from
FreeSurfer). Their calculation assumed that the difference is still 2% of the
mean volume after normalization. Consequently, the lowest sample size will
be achieved by the normalization with the largest reduction of the coefficient

of variation.
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It was found that least-squares normalization reduced the sample size needed
with either of the automatic ICV estimates. Proportion normalization reduced
the sample sized needed in all cases but one. The exception was hippocampal
volume normalized with eTIV. With least-squares normalization by eTlV, the
sample size needed to detect a 2% difference in hippocampal volume was
reduced from 406 to 284 participants. With proportion normalization by eTIV,
the sample size was increased to 412 participants. The reduction in sample size
generally tended to be larger after least-squares normalization than after
proportion normalization. Thus, it seems as if least-squares normalization
tends to reduce the coefficient of variation more than proportion
normalization does.

Through the composite functions presented in Paper IV, we can help in the
interpretation of these findings. For example, it might seem surprising that in
order to detect a difference in hippocampal volume between two samples,
larger sample sizes are required after proportion normalization using eTIV, but
not when normalizing other brain estimates. As the sample size calculations in
the study by Hansen et al. will only depend on which method that reduces the
coefficient of variation most, we begin with looking at the variance of a brain
estimates (b) after proportion normalization (the variables are explained in the
Abbreviations section and in Section 3.11 [Table 7]):

cv?sg + b2sf, — 2bTCUTy iy SpSicy

cvt
This function can be rewritten as

2

icv

2 122 _ 9hie
Sj N b?s 2b1CVTY 0y SpSicw
icv? icvt

We then see that the proportion normalization has two effects upon the
variance of the brain estimate (sg). The first effect is that it is scaled by 1cv?

Ezsizw—zf)lc.vrb,icvsbsiw As we are

and the second effect is the addition of —
Lcv
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interested in a reduction in the coefficient of variation and not in a scaling of
the variance due to a constant (the mean ICV), the function may be simplified
by multiplication by Tcv?. We then get

2 2 _
b Sicv — Zblcvrb,icvsbsicv

sy + —
b Icv2

It is now obvious that the coefficient of variation of the brain estimate will be

reduced by proportion normalization only if

b%sZ., < 2bicvry icySpSicy

This tells us that as long as the Pearson’s correlation between the brain
estimates and ICV is negative, the coefficient of variation and the sample size
needed to detect a given difference in mean volume will be increased by
proportion normalization. However, if the Pearson’s correlation is positive,
which it will be in real data, there might be a reduction in both the coefficient
of variation and the sample size. Assuming that the Pearson’s correlation is
positive, we rewrite the above function to

Then, we notice two things. Firstly, that the coefficient of variation is more
likely to be reduced by proportion normalization if the (positive) Pearson’s
correlation is above 0.5 and less likely to be reduced if it is below 0.5. Secondly,
that proportion normalization is more likely to reduce the coefficient of
variation (and hence the sample size needed for a t-test) for brain volumes
with a small mean and a large variance, compared to brain volumes with a
large mean and a small variance (given the same Pearson’s correlations).

Unfortunately, Hansen et al.%° did not report all the factors needed for us to
tell exactly why their proportion normalization of hippocampus by eTIV

Sicv

implied a larger sample size needed. Either must be larger in eTIV
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compared to the estimates from the other methods, or the Pearson’s
correlation between eTIV and hippocampal volume smaller (or both).

Hansen et al.®® did also notice that least-squares normalization reduced the
needed sample size more than proportion normalization. Is that always so? As
noted above, when the change in coefficient of variation is of interest, we can
rewrite the composite function for variance after proportion normalization as

h2 o2 R
b Sicv — Zblcvrb,icvsbsiw

2
Sy +
b Icv2

Then we notice that the component that reduces the coefficient of variation
in the brain estimates is

> 2 _
+ b Sicy — 2blcvrb,icvsbSicv

Icv2

This can be compared to the component that reduces the coefficient of
variation (and the variance) in brain estimates when using least-squares
normalization (see Table 7 in Section 3.11), which is

2 2
_rb,icvsb

Then, is it possible for the adjustment factor of proportion normalization to be
smaller (has a larger negative value) than the adjustment factor of least-
squares normalization? We can test this by examine the relationship

— 5 -

bzsicv - Zblcvrb,icvsbsicv

2 2
~TbicvSh

cv2

2 2 —
b Sicv — 2bwvrb,icvsbSicv 2
“Ibjicv

——2.2
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= 2 _
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ICU2Sp1E iy + b2Siey, — 2DTCUTY iy SpSicy

2

— <0
1cv?sj

(lC_VSb Th,icv — ESiCV)Z

TcD252
1cv?sj

<0

As neither the denominator nor the numerator of the left-hand side of the
equation can be negative, this equation is always false. Proportion
normalization cannot reduce the coefficient of variation more than least-
squares normalization does. This, and the assumption that normalization will
not affect the relative mean difference in brain volumes between two samples,
explains why Hansen et al.*® found that the sample size was reduced more by
least-squares normalization than by proportion normalization.

While not noticeable in the study by Hansen et al.>® there will be occasions
when the proportion and least-squares normalization will reduce the
coefficient of variation with the same amount. This will be the case when the
expression

_ — 2
(lcvrb,icvsb - bsicv) _
Icv2sf

is true, which it will be when 1cUTy ;0 Sp = bSicy-

542 REDUCED LINEAR ASSOCIATION TO INTRACRANIAL VOLUME

As expected, least-squares normalization has been shown to remove any linear
association between the brain estimates and ICV?%%’. In contrast, when using
inferred least-squares normalization, the linear association was only fully
removed in the sample from which the regression coefficient was calculated?®.
This is also wanted, as inferred least-squares normalization is used to avoid
that variance is reduced too much by normalization. The rationale is that some
of the association between the brain estimates and ICV might be related to a
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phenomenon of interest in some subsample and so is an association that we
want to keep. The Pearson’s correlation left after inferred least-squares
normalization varied between —0.2 and 0.15 in the study by Voevodskaya et
al.. The question is if this remaining association is there by chance or if it is
related to a phenomenon of interest? In Paper IV, the composite function for
Pearson’s correlation after inferred least-squares normalization (see Table 7 in
Section 3.11) gives a clue to the answer of this question. The composite
function gives the confidence interval for the remaining Pearson’s correlation
after inferred least-squares normalization. The function assumes that the
regression coefficients do not differ between controls and patients in the
population(s). Still, the composite function shows that we should expect some
Pearson’s correlation to remain in the patient sample after applying inferred
least-squares normalization (just by chance). In Paper IV, we found that 93.9%
of the Pearson’s correlation found by Voevdodskaya et al. after applying
inferred least-squares normalization were within the 95% confidence interval
for the predictions using the composite function (and the interval was not
adjusted for multiple comparisons). This indicates that many, if not all, of the
remaining Pearson’s correlations that Voevodskaya et al. did find are there just
by chance.

In Figure 13 (on the next page), | illustrate the relationship between sample
size and the remaining Pearson’s correlation between ICV and a brain estimate
after using inferred least-squares normalization.
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Figure 13. 95% confidence intervals of the remaining
Pearson’s correlation in a patient sample after applying
inferred least-squares normalization. The y axis shows the
confidence intervals and the x axis the sample size of the
patient sample (n;). The solid lines show the reduced
Pearson’s correlation at different sizes of the control sample
(n,, varies from 10 to 500). The two outermost solid lines are
at n;1=10 and the two next at n,=20 and so on. The dotted
lines mark a Pearson’s correlation of +0.1.

For proportion normalization, we expect that some association will remain
after normalization, at least if the relationship between ICV and the brain
estimate is not exactly proportional before normalization®. Voevodskaya et
al.?8 also found that after proportion normalization, most brain estimates had
a negative association to ICV. The few exceptions were ventricular and
cerebrospinal fluid volumes that still had a positive association to ICV. The
Pearson’s correlation left after proportion normalization varied between —0.5
and 0.4 (in normal controls and patients with mild cognitive impairment or
Alzheimer’s disease). Mathalon et al.3” also found the remaining Pearson’s
after proportion normalization to range somewhere between —0.38 and 0.42
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(in - normal controls). All proportion normalized effects reported by
Voevodskaya et al. were predictable by the composite function for Pearson’s
correlation after proportion normalization in Paper IV (see Table 7 in Section
3.11). The function shows that the effect of proportion normalization on the
linear association will depend on three factors: the coefficient of variation of
the brain estimates, the coefficient of variation of the ICV, and the Pearson’s
correlation between the brain estimates and ICV.

Proportion normalization will never reduce the linear association more than
least-squares normalization, as the latter always removes this association.
However, proportion normalization will also remove any linear association if

2
bicv Cb Cicv - Cicv

=0
Cicv\/cg + Cizcv - Zrb,icvcb Cicv

For this equation to be true, the numerator must equal zero. That is
2 _
Tb,ichbCicv - Cicv =0

_ r2
rb,icvcb Cicv - Cicv

r _ Cicv
bjicv —
) Cb

LCVTy icvSp = bsicy,
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Thus, when 1cvTy icySp = bs;., is true, proportion and least-squares
normalization will both remove the linear association between the brain
estimates and ICV and will reduce the coefficient of variation equally much
(see Section 5.1.1).

It should be noted that the reduction of the linear association when using
least-squares normalization is for the data set as a whole. If one for example
divides the data set after normalization into a control and a patients sample
one will still detect some linear association in these two samples separately.
The confidence intervals for the remaining association in the separate samples
depend on the sample sizes in a way similar to that of inferred least-squares
normalization. This function will also be like that illustrated in Figure 13, but
with narrower confidence intervals. It is possible to adjust for the difference
between samples by including a group*ICV interaction term in the regression
analysis. However, the inclusion of an interaction term may lead to overfitting
and potentially to type | errors (due to overly reduced variance). As estimates
of the linear association in the population will vary between samples, the
differences between the subsamples and the total data set are not surprising.
The estimate from the total data set should be less uncertain compared to
those from the subsamples, as the total data set includes more observations.

543 REDUCED ESTIMATION RELIABILITY

In 1990, Arndt et al.® raised a concern about normalization by total brain
volume in neuroimaging studies. They showed that both proportion and least-
squares normalization reduce the reliability of regional brain estimates. They
did so by evaluating how the interrater reliability dropped for a number of
regional brain estimates when normalizing them by total brain volume using
either proportional or least-squares normalization. The drop in reliability was
very similar for proportion and least-squares normalization. Arndt et al. also
showed that theoretically, this reduction of reliability is expected when using
proportion normalization and should become larger the larger the Pearson’s

89



INTRACRANIAL VOLUME IN NEUROIMAGING

correlation to the denominator is before normalization. Therefore, Arndt et al.
guestion whether normalization of brain estimates should be used at all.

Mathalon et al.?” replicated the work by Arndt et al.®* for ICV normalization
with the same results. Both proportion and least-squares normalization by ICV
lowered the reliability of the brain estimates. However, Mathalon et al. clarify
that the reduced reliability seen after normalization has two possible sources.
Firstly, the reduced reliability might be due to an introduced estimation error
from the ICV estimates. Secondly, the reduced reliability might be due to a
reduced true score variance in the normalized brain estimates. True score
variance is variance in the brain estimates that is not due to estimation error.
When applying ICV normalization, the aim generally is to reduce the
proportion of total true score variance that is explained by ICV. Mathalon et al.
also point out that we can expect a reduced true score variance when using
either least-squares or proportion normalization. They also show that the
reduction of variance in the brain estimates (when using either of the
normalization approaches) will be stronger the higher the Pearson’s
correlation between the brain estimates and ICV is before normalization
(independently of estimation errors).

One of the statistical tests that Mathalon et al.?” performed was to calculate
the Pearson’s correlation between seven regional brain volumes and age. This
was done both before and after normalization. Through previous studies,
Mathalon et al. expected that some regional brain volumes would be linearly
associated with age. The rationale for once again evaluating such an
association was the following. If the reduced reliability after ICV normalization
is due only to an increased estimation error, we would expect one of two
things (assuming that the estimation error is independent of age). If the sample
size is large enough, we expect the Pearson’s correlation between the regional
brain volume and age to be unaffected by normalization. We also expect the
Pearson’s correlation to be lower the larger the estimation error is (relative to
the sample size). In neither of these cases, we expect the Pearson’s correlation
to increase. However, if the reduced reliability is due to a reduced true score
variance, we rather expect the Pearson’s correlation to be unaffected or
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possibly to increase in size. Mathalon et al. found that the Pearson’s
correlation between volume and age was unaffected or reduced for most of
the seven brain regions included in their study after normalization. However,
for gray matter volume, the Pearson’s correlation increased from about —0.48
to —0.65 after proportion normalization and to —0.66 after least-squares
normalization. These results indicate that both proportion and least-squares
normalization may in fact result in a reduced true score variance. The question
then becomes to what extent the reduced reliability in normalized brain
estimates depends on an introduced estimation error from the ICV estimates
and how much it depends on the reduced true score variance.

A similar question evaluated by Sanfilipo et al.?® is whether different kinds of
errors in the ICV estimates will affect normalized brain estimates differently
depending on the chosen normalization approach. Sanfilipo et al. evaluated
this by systematically introducing two types of artificial errors in a set of 36 ICV
estimates and belonging estimates of total brain parenchymal volume. The
errors were introduced to either the ICV estimates, the estimates of total brain
parenchymal volumes or both. After introducing the errors, the total brain
parenchymal volumes were normalized after which their mean volume and
standard deviation were calculated. The first type of error introduced was a
change in mean volume in six steps from —6% to +6%. This change was done
so that the standard deviation would be unaffected. The second type of error
introduced was a change in the standard deviation in six steps from —45% to
+45%. This change was done while keeping mean volume and the Pearson’s
correlation to ICV unaltered.

The introduced errors to the ICV estimates had no effect on the least-squares
normalized brain estimates®. For proportion normalization, both kinds of
errors affected both the mean and the standard deviation of the normalized
total brain parenchymal volume. When an equal error was introduced to both
the brain estimates and ICV, proportion normalization cancelled out the errors
in the mean volume of the normalized brain estimates (while the standard
deviation was slightly affected). Using least-squares normalization, the error
introduced to the brain estimates remained after normalization. To
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summarize, least-squares normalization seemed to be unaffected by the two
types of errors introduced while both affected proportion normalization. In
Paper IV, we were able to predict all these results through the composite
functions presented there (see Table 7 in Section 3.11).

Through the composite functions in Paper IV, we know that both least-squares
and proportion normalization are related to the Pearson’s correlation between
the brain estimate and ICV. Errors that affect this Pearson’s correlation will
therefore affect both these normalization methods. As estimation errors often
has a random component, they do risk affecting all three normalization
methods. Sanfilipo et al.’® seem to know about this possibility (see their
limitations section), but left it out in their evaluation.

Using the composite functions from Paper 1V, it is possible to express how
different errors will affect the results of the different normalization
approaches. Then, it should also be possible to express to what degree the
reduced reliability after normalization is due to a reduced true score variance
and to an introduced estimation error, respectively.

5.5 EFFECTS OF INTRACRANIAL VOLUME
NORMALIZATION ON A THIRD FACTOR

When ICV normalizing brain estimates, the purpose often is to improve the
analysis of the estimates in relation to some third factor. By reducing the
proportion of total variance explained by ICV in the brain estimates, we might
affect the association between the brain estimates and some third factor of
interest. In some cases the association will get stronger and in others weaker.
The composite functions presented in Paper IV are not enough to understand
the effect of ICV normalization on the association of a brain estimate and a
third factor. One also has to take into account the relationship between the
brain estimate and the third factor and the relationship between the third
factor and ICV. Further, one must consider the statistical tool used to evaluate
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the relationship between the brain estimate and the third factor. While all this
is possible to do, | will just shortly speculate about the effect of ICV
normalization when evaluating gender differences in the brain and when using
brain estimates as a diagnostic tool. Of course, this latter example is of great
interest in research about dementia diseases.

55.1 GENDER DIFFERENCES

When investigating gender differences in regional brain measures, it is
common to try to answer the question “Is there a difference between genders
with respect to these measures?”. To answer this kind of question,
unnormalized and ICV normalized brain estimates have been used with
different results®®. Generally, it is found that unnormalized brain volumes tend
to be larger in males compared to females'®92%38  After using proportion
normalization, females tend to have larger volumes than males!*%38 And
after least-squares normalization the difference between genders is

d19,38

reduce or completely removed?®.

As mentioned in Section 5.1.1, not finding a statistically significant difference
between two samples is just a sign of too small samples. This also applies to
the above findings about gender differences (regardless of ICV normalization
or other circumstantial differences). A better kind of question than that above
therefore is: “Is there a meaningful difference between genders, when
calculated in this way?”. We must then state what we regard as meaningful
and what the procedure is for arriving at the results. This second question is
not answerable just by a statistical significance. The observed difference must
also be considered. It is through this second question that we can understand
the effect of different ICV normalization methods on gender differences. First,
ICV normalization will affect what we can constructively state as a meaningful
difference. Using unnormalized brain volumes, 10 mm? could be a meaningful
difference, but not using proportion normalized brain estimates (where the
amount of dissimilarity is better expressed as a fraction). Secondly, ICV
normalization will also change the comparison from “between unnormalized
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brain estimates” to for example “between brain estimates of persons with the
same size of ICV”. As the question changes by ICV normalization, the likelihood
for a statistical significant difference changes too. This is why a difference in
hippocampal volume might be statistically significant when comparing
unnormalized volumes, but not after using least-squares normalization.

To understand how the likelihood for a statistically significant difference
changes by ICV normalization, power calculations may be done using the
composite functions in Table 7 (Section 3.11). However, one must remember
that different questions are asked when applying different ICV normalization
methods and that a statistically significant difference is not per se meaningful.
I will give two examples from the literature where the interpretation of the
effect of ICV normalization is a bit problematic. The second of these examples
are closely related to what | just discussed.

In a study by Barnes et al.?®, the effect of normalization on gender difference
was evaluated in a sample of 78 normal controls with an age of 61 +14 years.
Before adjusting for ICV, gender explained about 17% of the variance in total
brain volume compared to 5-15% in regional brain volumes. The least variance
was explained in hippocampus where only 1% was explained by gender. When
including age and ICV as covariates in the linear regression, the variance that
was explained by gender dropped to between 0-4% for all volumes but
hippocampal volume. For hippocampal volume, the variance that was
explained by gender increased to 2% after the adjustment. As mentioned by
Nordenskjold et al®®, gender and ICV are highly associated and
multicollinearity becomes a problem when both gender and ICV are included
as covariates in a regression model. Due to multicollinearity, the estimated
effect of gender and ICV in the regression model risks becoming incorrect.
With this in mind, the variance in the regional brain volumes that is explained
by gender after including ICV should be interpreted cautiously.

In year 2014, Voevodskaya et al.?® concluded that “...residually corrected data
effectively removed... the differences in cerebral substructures between men
and women”. When testing the effect of ICV normalization, they had seen that
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for 51 different brain regions, none showed a statistically significant gender
difference after least-squares normalization. One year later, Nordenskjold et
al.® did find that some volumes actually are significantly larger in females also
after least-squares normalization (thus in contrast to what Voevodskaya et al.
conclude). Nordenskjold et al. only included five brain regions in their
evaluation, two of which were also included in the study by Voevodskaya et
al., namely corpus callosum and hippocampus. While neither study found a
statistically significant difference in the volume of corpus callosum after least-
squares normalization, Nordenskjold et al. did find a statistically significant
difference in hippocampal volume. Thus, it could seem as if the effect of least-
squares normalization differs between these two studies although both
studies use almost the exact same data set from the PIVUS cohort. One
difference between the two studies is that Nordenskjold et al. normalize by a
manual estimate of ICV while Voevodskaya et al. use eTIV. Another difference
is that Voevodskaya et al. evaluate the effect of normalization on the average
hippocampal volume while Nordenskjold et al. evaluate the effect on
hippocampal volume separately for the two hemispheres. However, the main
cause of the contradicting findings is probably an adjustment for multiple
comparisons. The difference in hippocampal volume between genders after
least-squares normalization in the study by Nordenskjéld et al. is about 2.5%.
While Voevodskaya et al. do not report the effect sizes, they should have seen
the same difference (as basically the same data are being evaluated). However,
as Voevodskaya et al. applies a correction for multiple comparison (with at
least 51 comparisons being adjusted for), this difference is not statistically
significant. This highlights the importance of considering effect sizes (and not
just statistical significances) when evaluating the effect of ICV normalization
on a third factor, such as gender differences.

552 DIAGNOSTIC ACCURACY

Using logistic regression, both Bigler et al.”® and Voevodskaya et al.?® evaluated
the change in diagnostic accuracy of brain estimates after ICV normalization.
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Bigler et al. did so using proportion normalization, trying to distinguish controls
(237 normal controls and 120 with traumatic brain injury) from patients with
dementia and patients with some other cognitive disorder (85 participants
with Alzheimer’s disease and 90 other). Voevodskaya et al. used both
proportion and inferred least-squares normalization to classify healthy
controls (n=223), participants with mild cognitive impairment (n = 325), and
participants with Alzheimer’s disease (n=175). While Bigler et al. evaluated the
diagnostic accuracy of a number of brain estimates, Voevodskaya et al. did so
only for hippocampal volume.

Voevodskaya et al.?% found that proportion normalization and inferred least-
squares normalization had only a minor impact on the diagnostic accuracy of
hippocampal volume. This was true when trying to differentiate healthy
controls from patients with mild cognitive impairment, but also from patients
with Alzheimer’s disease, and when trying two differentiate the two patient

1.%8 did not find any apparent effect of proportion

groups. Similarly, Bigler et a
normalization on diagnostic accuracy for hippocampal or temporal horn
volume. They did however find a slight positive effect when normalizing total

parenchymal brain volume and an unspecified ventricular volume.

Possibly, the positive effect of proportion normalization on total parenchymal
brain volume and ventricular volume, but not on hippocampal or temporal
horn volume could be that the two former have a stronger Pearson’s
correlation to ICV. As shown in Section 5.4.1, there is an increased chance that
proportion normalization will reduce the coefficient of variation with stronger
Pearson’s correlation between the brain estimate and ICV. By reducing the
proportion of total variance that is explained by ICV, a larger proportion of the
variance in the brain estimate will be explained by the disease. Then, the
diagnostic accuracy should increase. However, there could be a lot of other
explanations too.

Why the inferred residual normalization only had a minor effect on the
diagnostic accuracy of hippocampal volume is less easy to understand. All
samples had much lower Pearson’s correlation to ICV after normalization,
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which indicates that the coefficient of variation was lowered in all samples.
Then disease should explain a larger degree of the total variance after
normalization and thus the diagnostic accuracy should increase. The diagnostic
accuracy does increase, but just slightly. As the Pearson’s correlation between
hippocampal volume and ICV in this case was reduced to almost zero in all
samples, | do not think that different results would have been found if least-
squares normalization had been used. Then, why did the normalization not
increase the diagnostic accuracy more?

Another interesting finding was that while Bigler et al.?® did not find that
proportional ICV normalization increased the diagnostic accuracy of
hippocampal volume, they did find that the diagnostic accuracy increased
when normalizing by total brain parenchymal volume instead. Then the
specificity increased from 79% to 87% and the sensitivity from 81% to 86%.
One reason could be that total brain parenchymal volume still was largely
unaffected by the cognitive disorder while having a stronger Pearson’s
correlation to hippocampal volume (than ICV had). Another reason could be
that total brain parenchymal volume also had some diagnostic value that was
included through the proportion normalization. Larger total brain volume is a
plausible sign of normality.

Westman et al.?’ also evaluated the use of proportion normalization (as far as
we can tell) when trying to differentiate patients with mild cognitive
impairment that latter convert to Alzheimer’s disease to those who do not.
This was done by creating OPLS (orthogonal projections to latent structures)
models based on different types of brain estimates (subcortical volumes,
cortical volumes, and cortical thickness estimates). The models were created
using MR images from healthy controls and patients with Alzheimer’s disease
and then evaluated using MR images from 287 patients with mild cognitive
impairment of which 87 converted to Alzheimer’s disease within 1.5 years. The
model that achieved the highest diagnostic accuracy during evaluation was
that in which all three types of brain estimates were included, but only the
subcortical and cortical volumes were proportion normalized. This model had
an increased specificity of 66.5% compared to 64.0% when only unnormalized
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brain estimates were used. The sensitivity, of 75.9%, was not affected by
normalization. Similarly, the effect of proportion normalization on the
diagnostic accuracy of all other models evaluated overall was slight or none.
According to Westman et al., the small effect of proportion normalization on
diagnostic accuracy in the OPLS models could be that the use of multiple brain
estimates for prediction is robust enough to not benefit from ICV
normalization.

The effect of ICV normalization on diagnostic accuracy is hard to assess, but is
of large interest not least for studies of dementia diseases. Through an
understanding of what happens in different scenarios, maybe with the use of
the composite functions presented in Table 7 (Section 3.11) and some more
thought, a clearer picture of the effect of different ICV normalization
approaches will be possible to get. Current findings do however indicate that
the effect of ICV normalization on diagnostic accuracy of brain estimates in
dementia classification is limited.

5.6 FINAL THOUGHTS

In Section 1.5, | described the purpose of ICV normalization by

ICV normalization is done to reduce the proportion of the
total variance of a brain estimate that is predicted by ICV,
using some statistical model that supposedly describes some
true relationship between ICV and the brain region.

Least-squares, inferred least-squares, and proportion normalization all are
means to fulfill this purpose. However, with both proportion normalization and
inferred least-squares normalization there is a risk that the variance explained
by ICV is increased. For inferred least-squares normalization, there is a
theoretical reasoning behind taking this risk, which might be sound. Still, the
potential benefit should be evaluated more thoroughly than has been done up
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to date. For proportion normalization, the reasoning behind the choice is
unclear to me and it is questionable as normalization method due to the
varying effect. | recommend referring to proportion normalization as “division
by ICV” to not put any misleading emphasis on normalization. If it is reasonable
to expect a normalizing effect, one should show this (for example using the
composite functions in Table 7). Further, to make least-squares normalization
more graspable for most scientists, | think it is better referring to it as
“controlling for ICV”.

When applicable, | would use multiple linear regression (or a generalized linear
regression) with ICV as a covariate to control for ICV, instead of using the
(least-squares) function presented in Section 1.5. | base this choice on the facts
that the exact same results should be achievable through both methods (with
different configurations), and that linear regression models are well known in
the scientific community. By using ICV as a covariate in regression analyzes, it
also becomes natural to follow existing guidelines about how to perform good
regression analyzes.

When controlling for ICV in linear regression models, or when applying inferred
least-squares normalization, it is enough if the ICV estimate has a strong linear
association to gold standard ICV. However, if the size of the effect of ICV also
is of interest, an estimate with good agreement with gold standard ICV is
necessary. For the first purpose, the segmentation of two ICA as proposed in
Paper Il will do fine. When possible, | would avoid the use of FreeSurfer’s eTIV
as it has a weaker correlation with gold standard ICV. Additionally, eTIV might
be biased by total brain volume. With that said, | am not entirely against the
use of eTIV. The correlation is strong enough to reduce most of the association
between brain estimates and ICV and the potential bias might not be too
problematic in most situations. Another automatic ICV estimation might still
be preferable. Finally, when an estimate with good agreement to gold
standard ICV is desirable, | would use manual segmentations of every 10" ICA.

When using proportion normalization (division by ICV), ICV estimates having
strong agreement with gold standard ICV are necessary.

99



INTRACRANIAL VOLUME IN NEUROIMAGING

Two assumptions are often made when using ICV normalization. First, that the
association between the phenomenon under study and the brain estimate to
normalize is independent of ICV. In dementia research, such an assumption is
sometimes questioned by a concept called “brain reserve”. The concept
suggests that larger premorbid brain volume is a protective factor against
cognitive impairment. There are a number of studies addressing the brain
reserve issue, but the results differs?”1%0102 |n developmental psychiatric
disorders, it is also possible that the premorbid brain volume becomes affected
by the disorder during growth. For example, patients with autism seem to have
a different brain growth curve than do healthy controls'®.

The second assumption made when using ICV normalization is that the
intracranial vault is constant throughout adulthood (and therefore a good
proxy for premorbid brain volume). This is not always the case. For example,
in cases of hyperostosis frontalis interna, the intracranial vault will become
smaller due to thickening of the inner surface of the frontal bone!®.

It is important that the two mentioned assumptions are considered when
using ICV normalization in order to avoid misinterpretations of normalized
brain estimates in cases when the assumptions might not hold.

Throughout the thesis, | have discussed ICV normalization in the perspective
of cross-sectional settings. This is the most common case as longitudinal
studies focus on intraindividual variability over time and ICV should in general
be stable over time (in adulthood). Hence, it will not explain much of the
intraindividual variability. Despite this, ICV normalization might actually be of
value in longitudinal studies too. Whitwell et al.*° point out that when trying
to find subtle changes in brain volumes over time, the possibility to detect
these differences may decrease by changes in the MR acquisition. One such
change that they mention is that of voxel size due to scanner drift. They also
hypothesize that such a change might be controlled for in longitudinal studies
by adjusting brain estimates for ICV.
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6 CONCLUSION

In the present thesis, it was shown that a frequently used method for
estimation of ICV, where every 10 ICA is segmented, is valid. This supports
the findings previously shown by Eritaia et al.*°. We also showed that the
orientation of the ICA or the interpolation method used did not affect the
validity of the estimates in any practical sense (when every 10" ICA is
segmented). The intra-class correlation with absolute agreement was above
0.999 compared to gold standard ICV. When considering rater estimation
errors, a slightly lower agreement was found.

It was also shown that ICV estimates with very strong linear association to gold
standard ICV were achievable by segmenting two selected ICAs and measuring
the intracranial diameter perpendicular to the orientation of the ICAs. The
Pearson’s correlation was shown to be 0.997.

eTlV from FreeSurfer was investigated and both theoretical and empirical
considerations revealed a potential bias by total brain volume. In the sample,
at least 1% of the variance in eTIV was explained by total brain volume after
controlling for gold standard ICV, but it could be up to 85%. As the study design
was cross-sectional, causality could not be tested.

In the thesis, | present composite functions that predict the variance, mean,
and Pearson’s correlation to ICV after different ICV normalization procedures.
These composite functions may help to improve our understanding of ICV
normalization. For example, it was shown that proportion normalization
increases the coefficient of variation for some brain estimates and reduces it
for others. It was also shown that when proportion normalization reduces the
coefficient of variation, this reduction will never exceed that of least-squares
normalization. Further, after inferred least-squares normalization, some
Pearson’s correlation to ICV will likely remain just by chance.
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7 FUTURE PERSPECTIVES

It should be established exactly how the reduced reliability in brain estimates
after ICV normalization depends on a reduced true score variance and an
introduced estimation error (of ICV) respectively. This should be possible by
the use of the composite functions in Table 7 (Section 3.11).

Some of the association that will remain between ICV and inferred least-
squares normalized brain estimates is likely to be there by chance. To
understand the use of inferred least-squares normalization, it should be
evaluated if this expected random error is outweighed by the benefit of the
remaining variance of interest (which would have been removed using least-
squares normalization).

There are indications of that eTIV from FreeSurfer is biased by total brain
volume. These indications should be followed up to confirm/reject the
presence of such a bias. Similarly, other frequently used automatic estimates
of ICV need to be examined with regard to the risk of biases related to how
they estimate ICV.

The role of biomarkers in diagnosis of dementia diseases is becoming stronger.
Therefore, it will become even more important to optimize the diagnostic
accuracy of such biomarkers. There are reasons to believe that ICV
normalization will increase the diagnostic accuracy of brain estimates from MR
images. In previous studies, the effect of ICV normalization on diagnostic
accuracy seems to be small. The causes of this should be investigated and the
theoretically possible gain with ICV normalization in this context established.
The composite functions in Table 7 (Section 3.11) will help in such an effort.
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APPENDIX

A PICTORIAL GUIDE FOR SEGMENTATION OF
INTRACRANIAL VOLUME

To make it easier for new raters to segment the intracranial volume and to
keep a high intra- and interrater reliability throughout my work, | made a
pictorial guide for segmentation of the intracranial vault. The guide is based on
the landmarks described by Eritaia et al. [2000] (see Section 3.6.2), but
includes a few more landmarks. The additional landmarks are the cerebral
aqueduct, epidermis, foramen lacerum, jugum sphenoidale, maxillary sinus,
pituitary gland, and sphenoid sinus.

In the guide, | begin with describing and illustrating most of the landmarks. The
guide then continues with an example segmentation of about half an
intracranial vault. The intensity setting in the images is the one described in
Section 3.5 except that the images are made a bit darker. The pictorial guide is
made for segmentation in sagittal orientation, preferably guided by the other
orientations too.

Cerebral Aqueduct

The demarcation is easiest to carry out starting near the longitudinal fissure,
where the cerebral hemispheres meet each other, and continue laterally in
both directions until the last traces of the meninges disappear. At the lateral
ends, it can be hard to distinguish the meninges from the skull without
considering the surrounding slices. Starting at one of the lateral ends makes it
easy to miss a slice where the meninges are visible or to demarcate areas that
should not be included in the intracranial volume.
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The cerebral aqueduct (a) is used as a landmark for the slice where to begin
the segmentation. To find this slice, scroll through the sagittal slices to the slice
where the cerebral aqueduct is most pronounced. The cerebral aqueduct is a
passage between the third and the fourth ventricles and is filled with
cerebrospinal fluid. In T1-weighted images, it appears as a dark line in sagittal

orientation.

Dura Mater

The dura mater (b) is a thick layer of collagenous connective tissue and is the
outermost layer of the meninges. The dura mater is closely attached to the
inner surface of the skull and is seen in T1-weighted images as a bright line
separated from the brain by cerebrospinal fluid. When the brain lies against
the dura mater, they are hard to distinguish from each other. In the image
below, it is for example hard to separate the dura mater from the brain
posteriorly.
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Dorsum Sellae

Dorsum sellae (c) is a part of the sphenoid bone and lies posterior to the
pituitary gland (d) that is located in a small depression formed by the sella
turcica. During the segmentation, the pituitary gland is excluded from the
intracranial volume by drawing across the sella turcica from the dorsum sellae
to the jugum sphenoidale (e) that connects the two lesser wings of the
sphenoid bone.
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Clivus
Clivus (f) is a part of the posterior cranial fossa and slopes from dorsum sellae

to foramen magnum. The clivus is demarcated all the way from foramen

magnum up to dorsum sellae.

Foramen Magnum

At foramen magnum, the large hole in the occipital bone, the demarcation line
is drawn across the spinal cord at the position of the posterior arch of atlas (g)
to the position of the anterior arch of atlas (h). Atlas is the superior cervical
vertebra and supports the skull.

Undersurface of the frontal lobe

The undersurface of the frontal lobe (i) lies above the anterior cranial fossa
and the sphenoid bone. It is outlined, as the rest of the brain contour, when

the dura mater is not visible.
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Foramen lacerum

Foramen lacerum (j) is an opening between the sphenoid and temporal bone
lateral to the sella turcica and through which for instance the internal carotid
artery runs. Superior to the foramen lacerum is the cavernous sinus that
creates a small cavity of veins. Foramen lacerum is used as a landmark to end
the narrow demarcation used to exclude the pituitary gland. The demarcation
line is drawn across the foramen lacerum at its most superior part and then
follows the structure of the sphenoid bone.

In the image below epidermis (k), the outer table of the skull (1), the diploé (m)
and the inner table of the skull (n) are marked besides foramen lacerum (j).

Example Segmentation

In the following pages, an example segmentation is illustrated for a bit more
than half an intracranial vault. The left column shows the MR images before
the segmentation and the right column after the segmentation.
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b) dura mater, i) undersurface of the frontal lobe, o) maxillary

sinus
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n)foramen Iacerum ‘open”, p) sphen0|d sinus, q)foramen
lacerum “closed”
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a) cerebral agueduct, c) dorsum sella, f) clivus, g) posterior arch
of Atlas, h) anterior arch of Atlas
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n) foramen lacerum “open”
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B MATHEMATICAL PROOFS

Here, | will show mathematical proofs for the composite functions in Table 7
(Section 3.11) that give point estimates in the cases of least-squares and
inferred least-squares normalization. The proofs relies on the following
properties:

Properties of variance (s?) where X and Y are variables
and o and B constants

Stux+py) = asg + Bsy + 2aBcov(X,Y)
SCax—pyy = asg + Bsy — 2aBcov(X,Y)
s2=0

Properties of covariance (cov) where X and Y are
variables and o and B constants

cov(aX,BY) = afcov(X,Y)
cov(X,X) = s
cov(X,a) =0

Properties of the regression coefficient (k) from a simple
linear regression and the Pearson’s correlation (ry y) from
the same regression analysis. X and Y are variables.

_cov(X,Y) rxySy

2
Sx Sx

cov(X,Y) ksx

r =
xr SxSy Sy
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Proofs for the least-squares normalization composite functions

When using least-squares normalization, the values of the brain estimates in
the sample (b) after normalizing by intracranial volume (icv) will be

bnorm = b — k(icv — 1cv)

Here b,orm is the normalized brain estimates and 1cv the mean icv in the
sample. Then the mean of the normalized brain estimates is

brorm = b — k(icv — 1cv)

brorm = b — k(icv — 1cv)

bnorm = b — k(icv — 1cD)

bnorm = b —k(0)

bnorm = b

The variance (s?) of the normalized brain estimates is

2 )
Sbnorm — Sb—k(icv—Tcv)

2

Shporm = sE+ s,%(m,_m) — 2cov(b, k(icv — 1cv))
borm = Sb + k28— — 2kcov (b, (icv — Tcv))
sp. = sp+k*(sh, + sk — 2cov(icv, V)
— 2k(cov(b,icv) — cov(b,1cv))
sy =5sp+k*(sh, +0—0) = 2k(cov(b,icv) — 0)
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st =sk+k?s2, — 2kcov(b,icv)

bnorm

2
Ty icvS Th icpyS
2 ) b,icv>b 2 b,icv°b .
Sbuorm — Sb T ( S0 ) Sicy = 2 ( s, cov(b,icv)
icv icv
Ty icvS
2 _ 2 2 2 b,icv°b
Sbnorm — Sb + ThicvSh — 2( Sicy )Tb,icvsbsicv
2 2 2 2 o2 2
Sbnorm =sp + Th,icvSb 2rb,icvsb
2 — 2 2 2
bnorm Sp — rb.icvsb

The Pearson’s correlation (ry y) between the normalized brain estimates and

icvis
cov(bporm, ICV)
T Jicv —
norm Sbnormsicv
cov(b — k(icv — 1cv), icv)
1; . =
bnorm.,icv SbygrmSicv
cov(b,icv) — cov(k(icv — 1cv), icv)
Tbnormricv - S S:
bnorm®icv
cov(b,icv) — kcov((icv — 1cv), icv)
rbnormricv - s S:
bnorm®icv
cov(b,icv) — k(cov(icv, icv) — cov(icy, icv))
Tp Jicv —
norm Sbnorm Sicw
cov(b,icv) — k(sizcv - 0)
1; . =
bnorm,icv Sbnormsicv
cov(b, icv) — ksz,
rbnormricv =

Sbnorms icv

131



INTRACRANIAL VOLUME IN NEUROIMAGING

cov(b,icv) — <M> s?

2 icv
r _ Sicv
b. Jcv —
norm Sbnormsicv
cov(b,icv) — cov(b,icv)
rbnorm'icv =

SbrormSicv

Thnormicv = 0

Proofs for the inferred least-squares normalization composite functions

For inferred least-squares normalization, the regression coefficient (k) is
calculated from one subsample and then used to normalize a second
subsample. It is not certain that the regression coefficients between the two
subsamples are equal to each other and we therefore denote them as k4 and
k, in the following equations. Then the values of the normalized brain
estimates of the second subsample will be

bnorm = by — kq(icv, —1cvy)

Here b, are the unnormalized brain estimates from the second sample, ky is
the regression coefficient calculated from the first sample, icv, is the
intracranial volume estimates from the second subsample, and Tcv; is the
mean intracranial volume from the first sample (from which k; was
calculated). Then, the mean of the inferred least-squares normalized brain
estimates is

bnorm = by — k1 (1cv, —1cvy)

bnorm = by — k1 (icv; — tcvy)

2

7 rbl,icvl Sb1
bnorm -

)(W—W)

Sicvy
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The variance of the inferred least-squares normalized brain estimates is

2 2
Sbnorm - sz_kl(icvz_wvl)

2 _ 2 2 _ . Jp—
Sbnorm - sz + Skl(icvz—wvl) ZCOU(bZJkl (lcvz lCUl))
2 — 2 2.2 , e
Shuorm = Shy T K1Sicv,—tevp) — 2k cov(b,, (icv, —1cvy))
2 — o2 2(.2 2 . —
brorm — Sby, T ki (sicv2 + Sizo; — 2cov(icv,, lCUl))
— 2k, (cov(b,, icv,) — cov(b,,1cvy))
2 — o2 2( 2 _ , _
s =sp +ki(siy, +0—0) =2k (cov(by,icv;) — 0)
2 — 2 2.2 _ .
Shnorm = Sb, T KiSicy, — 2kycov(by, icv;)
2 — o2 2.2 ;
Sbnorm — Sb, + kl Sicv, Zklcov(bz, lcvz)
2
2 _ 2 rbl,icvlsbl 2 _ Tbl,icvlsbl . Sy S
Sbnorm - sz s, icv, S Th,,icv,Sb,Sicv,
icvq icvq
Ty, i 2 1
2 _ SZ + bl,lcv15b1 S-Z —2 bl,chlsbl eSS
bporm — °b2 S: icv, S by, icv,°byPicy,
icvq icvq
2 2 .2
2 2 rbl,icvlsblsicvz zrbl,icvlrbz,icvzsblsbzSicvz
Sbnorm - sz 2 s;
Sicv1 icvy

And the Pearson’s correlation between the normalized brain estimates and
icv, is

cov(bporm, icV;)

T' .
bporm.icv; S S:
bnormicv,

cov(by — k4 (icv, — 1cvy), icvy)

T' .
bporm.icv; Sp S:
LCD:
norm 2
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cov(b,,icvy) — cov(kq(icv, — 1cvy), icvy)

Tbnorm:icvz S S:
bnorm=icv;

cov(b,,icvy) — kicov((icv, — 1cvy), icvy)

rbnorm'icvz S S:
bporm?icv;

cov(b,,icvy) — ki (cov(icv,, icv,) — cov(icvy, icv,))

rbnorm'icvz S S:
bnorm”icv;

cov(b,,icvy) — kq (s-z - O)

icv,

Thnormicv, .
Sbnorm Slcvz

2

cov(by,icvy) — kySicy,

7ﬂbnorm'icvz s S:
bporm®icv;

Thy,icv1Shy \ 2
Th,,icv,SbySicv, — Sicv Sicvz
1

’r' .
bnorm,icvy S S:
bporm>icv;

Tby,icv;Sh
Tp. i Sp, — s Vads Wis Ty I 8
,Lcv . icv
2 2702 S; vy 2

Tbnorm,icvz Sp
norm

(rbz,iC'UZ sz Sicvl) _ <rb1,ic171 Sbl SiCUz )

S icvy S icvy

rbnorm'icvz s
bnorm

_ Th,,icv,SbySicv, — Tby,icvy SbySicv,

’r' .
bnorm,icv S: Sp
LCV1 " Dnorm

As we know sgnorm from the above proof, we can replace sp, . and get

rbz,icvz sz Sicv1 - rbl,icvl Sbl SiCVz

7ﬂbnorm'icvz -

2 2 o2
s: SZ + rbl,icvlsblsiCVZ _ Zrbl,icvlrbz,ic'vzSblsbzsicvz
lcvq by 2 S
Sicv1 icvq
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