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Abstract 
This thesis describes an approach to handle word sense in natural language processing. If we 
want language technologies to handle word ambiguity, then machines need proper sense 
representations. In a case study on Danish ambiguous nouns, we examined the possibility of 
building an appropriate sense inventory by combining the distributional information of a word 
from a vector space model with knowledge-based information from a wordnet. 

We tested three sense representations in a word sense disambiguation task: firstly, the 
centroids (average of words) of selected wordnet synset information and members, secondly 
the centroids of wordnet sample sentence alone, and thirdly the centroids of un-labelled sample 
sentences clustered around the wordnet sample sentence. Finally, we tested the features of the 
cluster members and evaluation data in supervised machine learning classifiers. 

The sense representations in all experiments generally beat the random baseline 
significantly, but not the most frequent sense as default. The representations made from selected 
wordnet synset information and synset members proved to generally give the best result, 
especially for those target words with rich synset information. The machine learning classifiers 
outperformed the sense representations significantly on the word sense disambiguation task. 
The best classifiers were those trained and tested on either the clustered data or the evaluation 
data. We conclude that the combination of word embeddings and wordnet associated data used 
to build a proper sense representation seems promising. However, we suggest some 
improvements for future work, specifically on the extracted information from wordnet sample 
sentences. 

 



 

 

Preface 
I would like to thank my supervisor, Asad Sayeed, for great guidance, discussions and for 
taking the challenge of understanding the Danish language. 
 
I will also thank Bolette S. Pedersen, as my local supervisor at Centre for Language 
Technology (CST), Copenhagen University, for supporting and co-supervising the project, 
guide me through Danish computational linguistics and data, and welcoming me at CST. 
 
I thank Nicolai H. Sørensen, Society for Danish Language and Literature, for developing and 
sharing the word embedding model. 
 
Thanks to Luis Nieto Piña, PhD, Språkbanken, for valuable discussions in the initial phase of 
deciding the approach of the thesis. 
 
Finally, for being incredibly strong and patient under the circumstances throughout my thesis 
work, and for always wanting to discuss linear algebra, I want to thank my partner, Laurits. 



 

 

Contents 
 
1 Introduction ...................................................................................................................................... 1 

1.1 Focus ...................................................................................................................................... 1 
1.1.1 Problem statement .............................................................................................................. 2 

Hypothesis.................................................................................................................................... 2 
1.2 Motivation .............................................................................................................................. 2 
1.3 Contributions .......................................................................................................................... 3 
1.4 Roadmap ................................................................................................................................. 3 
1.5 Terminology ........................................................................................................................... 4 

2 Background ...................................................................................................................................... 5 
2.1 Computational Semantics ....................................................................................................... 5 

2.1.1 Lexical Semantics .............................................................................................................. 5 
WordNet: A Lexical Semantic Resource ..................................................................................... 6 

2.1.2 Meaning Representation .................................................................................................... 7 
2.1.3 Distributional Semantics .................................................................................................... 9 
2.1.4 Vector Space Models ....................................................................................................... 10 
2.1.5 Obtaining Word Sense Representations ........................................................................... 13 
2.1.6 Evaluation of Semantic Analysis Systems ....................................................................... 15 

Baselines and ceilings ................................................................................................................ 17 
2.1.7 WSD Evaluation Metrics ................................................................................................. 17 

Kullback-Leibler divergence ..................................................................................................... 18 
2.1.8 Word Sense Disambiguation with Machine Learning ..................................................... 19 

2.2 Computational background .................................................................................................. 20 
2.2.1 The K-means algorithm ................................................................................................... 20 
2.2.2 Support Vector Machine .................................................................................................. 22 
2.2.3 Feed-Forward Neural Network ........................................................................................ 22 

3 Materials ........................................................................................................................................ 24 
3.1 The target words ................................................................................................................... 24 
3.2 Word Embeddings ................................................................................................................ 25 
3.3 DanNet .................................................................................................................................. 25 
3.4 Evaluation data: SemDaX .................................................................................................... 25 
3.5 Korpus DK ........................................................................................................................... 26 
3.6 Software packages ................................................................................................................ 26 

4 Methods.......................................................................................................................................... 27 
Practical challenges .................................................................................................................... 27 
Pre-processing ............................................................................................................................ 27 



 

4.1 From Dictionary Label to Synset id ..................................................................................... 28 
4.2 From Word Embeddings to Sense Embeddings ................................................................... 29 

4.2.1 Experiment 1: Sense Embeddings from Synset Members ............................................... 30 
4.2.2 Experiment 2:  Sense Embeddings from Synset Sample Sentence .................................. 33 
4.2.3 Experiment 3: Sense embeddings by cluster centroids .................................................... 34 

4.3 Evaluation: Word Sense Disambiguation task ..................................................................... 36 
4.3.1 Evaluation statistics .......................................................................................................... 39 

Accuracy .................................................................................................................................... 39 
Kullback-Leibler divergence ..................................................................................................... 40 

4.4 Classification Task for Machine Learning Algorithms ........................................................ 42 
4.4.1 Experiment 4: Classifier – SVM and FFNN .................................................................... 42 

The SVM .................................................................................................................................... 44 
The FFNN .................................................................................................................................. 44 

5 Results ............................................................................................................................................ 46 
Experiment 1 to 3 ............................................................................................................................... 46 
Experiment 4 ...................................................................................................................................... 49 

6 Analysis and Discussion ................................................................................................................ 53 
6.1 Experiment 1-3 ..................................................................................................................... 53 
6.2 Experiment 4 ........................................................................................................................ 55 
6.3 Linking from Dictionary Senses to DanNet Synsets ............................................................ 56 
6.4 WSD: Quality as Performance ............................................................................................. 57 
6.5 Data ...................................................................................................................................... 58 
6.6 Manipulating Vectors and Averaging Information .............................................................. 59 
6.7 The KL-divergence Metrics ................................................................................................. 59 
6.8 Approach Assumptions ........................................................................................................ 60 
6.9 Limitations and prospects ..................................................................................................... 60 

7 Conclusion ..................................................................................................................................... 62 
Future work ........................................................................................................................................ 62 

References .............................................................................................................................................. 65 
 



 

 1 

1 Introduction 
A word can have several meanings. We can choose to represent those meanings in different 
ways: by translations, vectors, drawings, sound, dictionary entries or by other lexical resources. 
We as humans and members of a language society (e.g. the English speaking world) know 
intuitively that the following sentences use the word ‘model’ in different ways: 
  

The model stood up, and smiled to the camera. 

The forecast model predicts rainy weather tomorrow. 

If we were to teach computers to capture word senses as humans do, where should we start? 
And how would we know whether the machine considers word senses that correspond to what 
we as humans find meaningful? This thesis work is a step towards answering these questions 
on a case study on Danish word senses. 
 
The question of how to handle meaning in a meaningful way has challenged philosophers, 
linguists, and their fellow scientists for hundreds of years. One challenge is to determine what 
meaning fundamentally is, another is to find a meaningful way to represent meaning. Yet 
another challenge is the question of whether we can create a system, which can process meaning 
the way humans do. Though it might not be possible to teach a machine to grasp meaning as 
we do, we can at least try to make it seem that way. That the machine can distinguish word 
senses, and not only word forms. As a stepping stone for this thesis, it is assumed that there 
exists an ideal quantifiable sense representation, by which computers can process word senses, 
and thereby overcome word ambiguity. The system creates sense representations, whose quality 
are determined by how well they can be used to disambiguate ambiguous words. The sense 
representations are created by combining knowledge-based information of words from a lexical 
resource with the distributional information of the word found in a corpus by using deep 
learning. 
 

1.1 Focus 
The aim of this thesis is to determine the quality of word sense representations created from 
Danish corpora in combination with a lexical semantic resource. This paper examines a word 
sense representation system that takes a word2vec space (Mikolov 2013) and the Danish 
wordnet, DanNet (Fellbaum 1998, Pedersen et al. 2009) as input, and outputs sense 
embeddings, which are evaluated in a word sense disambiguation (WSD) task. Finally, the 
sense representations will be tested in a number of supervised machine learning classification 
tasks. The focus will be on whether a NLP-based approach to represent word sense with 
wordnet senses and word embeddings is appropriate for Danish sense tagging, as well as on the 
challenge of evaluating the quality of a word sense representations for a relatively low-
resourced language, and thereby provide a pilot project for further work on semantic processing 
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within Danish NLP. Consequently, the focus is not on optimizing the different models and 
algorithms, but rather on getting an idea of whether the approach of this project is desirable for 
future development in the field. 

1.1.1 Problem statement 
 
This thesis intends to determine the quality of a word sense representation approach, where 
different wordnet associated information and word embeddings are used to represent Danish 
word senses. These sense representations are evaluated in a WSD task on a human annotated 
test set. The problem statement is therefore as follows:  
Is it possible to create appropriate word sense representations by combining wordnet-based 
information with the distributional information of a word? 

Hypothesis  
 
It is expected that wordnet associated data provides useful information for the word sense 
representation system, but it is not expected that the system will beat the performance of auto-
tagging with the most frequently annotated sense, as that usually is a very strong baseline in 
terms of accuracy. As the task of WSD of some of the most ambiguous nouns in the Danish 
language is rather difficult, also for humans, it is not expected for the system to perform 
perfectly, however, significantly better than by chance. Furthermore, it is expected that the 
WSD works better on the words with fewer senses. 
 

1.2 Motivation  
Computational semantic analysis systems are useful for NLP since they automatically analyse 
meaning in natural language. Language technology can by information of meaning (to a certain 
extent) tackle e.g. senses of various linguistic units, similarity and meaning relations, intended 
meanings, metaphors, irony etc. This possibility can first and foremost solve WSD and word 
sense induction (WSI) tasks, that provide the possibility of developing sense-taggers. Such a 
tagger can, besides getting access to sense distribution statistics, also improve other 
downstream applications like automatic translation, information retrieval, question-answering 
systems, and speech recognition. An implementation of a word sense representation system 
using word embeddings and DanNet is useful for further work towards that purpose within 
Danish NLP. This paper contributes with an idea of the quality of the sense representations 
created, and the thesis work can provide a starting-point for further research on WSI methods 
in Danish computational semantics and NLP in general. 
 
This thesis idea was conceived during my time at Centre for Language Technology (CST), 
Copenhagen University, working on a project (Pedersen et al., 2018). The project was a study 
on how well word senses clustered by their wordnet ontological type were meaningful and 
useful, and whether a machine learning model could learn the features of the clusters in order 
to classify dictionary sense annotated sentences. This rather human-driven approach of 
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clustering word senses, raises the question of how Danish word senses behave and cluster in 
raw data, without any human supervision or decisions. With the knowledge of that behaviour, 
a word sense distribution can be found (and hence the most frequent sense, that shows to be a 
strong baseline), a comparison of the clusters made by lexicographers and clusters in raw data 
is possible, and development of new evaluation data can take place on that foundation. As 
evaluation data is a must to determine the quality of any semantic analysis system, it is not 
possible at this stage to evaluate a completely unsupervised WSI system for Danish with curated 
open-source data. However, a knowledge-based system is possible to evaluate and compare 
with the before mentioned work, and will therefore be the product of this thesis work. This 
work is the first study on building Danish word sense representations from word embeddings 
using wordnet associated data. 
 
One might wonder why researchers bother to investigate representations, similarities and 
relations of word senses, if the most frequent sense is a high-achieving baseline. Firstly, if 
sense-taggers or machine translation tools were developed based on most frequent sense, the 
sense-tagged corpora or translations would not contain the nuances of word senses that are 
present in language. It would not truly be more informative to always tag with the most frequent 
sense, than to simply stay on word level. Secondly, the wide-ranging applicability of knowledge 
on sense-level, will be limited by the performance of the most frequent sense, e.g. in 
information retrieval, where the results will be less accurate if one searched for a sense of a 
word, that was not the frequent sense. It is of course possible to use the most frequent sense as 
the default, and then change some sense-tags with some algorithm if needed – but the algorithm 
should know the possible improvements. 
 

1.3 Contributions  
This thesis work contributes to the following: 

- Pilot project and implementation of word sense representation system for WSD on 
Danish corpora incorporating the lexical semantic resource DanNet and a word 
embedding model trained on big amounts of raw Danish data 

- Quality measure of the chosen method 
- A key from the dictionary senses (evaluation data labels) to DanNet synset id’s  
- Significant step towards finding word sense frequencies 

1.4 Roadmap 
The overall structure of the thesis takes the form of seven chapters, including this first 
introduction chapter.  

Chapter 2 introduces the background of computational semantics, where theories on 
meaning representation, lexical semantics, word sense detection and representation, and WSD 
is introduced. Related work on supervised machine learning classifiers for WSD are also 
presented. In the second half of chapter 2, the theoretical dimensions of the computations and 
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algorithms are laid out, more specifically the theory behind word embeddings, evaluation 
methods and the chosen machine learning algorithms.   

Chapter 3 presents the applied material and software packages.  
Chapter 4 is concerned with the methodology used for this study. This chapter is structured 

in two parts: One regarding the first three experiments, and the evaluation thereof, and one 
regarding the fourth experiment, which, in its nature, is significantly different from the former 
experiments. 

Chapter 5 presents the findings of the experiments, focusing on the performance of the 
WSD which is used to evaluate the word sense representation system.  

Chapter 6 is an analysis and discussion of the results presented in the previous chapter. 
Alongside, a discussion of advantages and downsides of the method, possible improvements 
and alternative methods are discussed. 

Chapter 7 concludes on the thesis work, as well as suggesting further work on this research 
and the field. 
 

1.5 Terminology 
 
KL-divergence – Kullback-Leibler divergence 
 
NLP – natural language processing 
 
Sense vector is used interchangeably with sense embedding and sense representation. It refers 
to the vectors produced by the WSI system within the word embedded space. 
 
Vector space model is used interchangeably with word embedding model. It refers to the model 
of word senses created on the basis of raw Danish text data with the word2vec software package 
(Mikolov, Chen, Corrado, & Dean, 2013). 
 
Word vector is used interchangeably with word embedding and word representation. It refers 
to the vector in the word2vec model that goes together with the word form of interest.  
 
WSD - word sense disambiguation 
 
WSI - word sense induction 
 
wordnet will be used to refer to any of the semantic lexical resources where the word senses are 
interlinked in a web formation (Fellbaum, 1998), such as the specific Danish wordnet DanNet 
(Pedersen et al., 2009). 
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2 Background 
This chapter introduces the theoretical background of computational semantics, related work 
on word sense detection and representation, and WSD, followed by the relevant computational 
theory of the algorithms applied in this thesis work. 

2.1 Computational Semantics   
Semantics is the study of meaning in language. Computational semantics is therefore the study 
of meaning in language through computations, and is a sub-field of NLP, where computer 
science meets semantics, most often formal semantics. How to represent meaning is one of the 
core challenges in computational semantics, and the heart of this present thesis work: exploring 
word sense representations. The following section briefly introduces lexical semantics, which 
is often utilized in computational semantic systems, followed by a section with more on 
meaning representation. Afterwards, distributional semantics and vector space models are 
introduced to prepare for the sections on computational background. 

2.1.1 Lexical Semantics 
 
Lexical semantics is the study of meaning of words. The classic lexical semantics are concerned 
with topics on lexical ambiguity and semantic relations like synonymy, hyponymy, meronymy, 
polysemy, homonymy, etc. (Cruse, 1986; Adam Kilgarriff, 1997), which are those subjects this 
thesis work adresses. 

Two words are synonymous, if they mean nearly or exactly the same. Hyponymy is a 
hierarchical semantic relation between a generic term (hypernym) and a particular instance of 
that (hyponym). Meronymy refers to the semantic relation of something being a part of a whole: 
a meronym is something that is a part of something else. Differently, polysemy refers to the 
relation between a word form, and the various, but related, senses it can have. Closely related 
is the relation of homonymy: a set of homonyms share word form, but have different, not related 
meanings. The etymology of the words can reveal whether we are dealing with polysemy or 
homonymy. All these semantic relations between word senses is contained in the lexical 
database WordNet, which will be introduced shortly. 
 
Lexical semantics is tied together with word meaning in dictionaries, wordnets (Fellbaum, 
1998), and framenets (Baker, Fillmore, & Lowe, 1998) as their resources and area of research. 
Computational lexical semantics aims at finding the semantic relations and behaviour with NLP 
techniques, and use that knowledge to improve e.g. NLP applications like question-answering 
systems, automatic translations, etc. As high-quality computer software and open-source large 
corpora has become more available, the possibility to perform computational lexical semantics 
with less supervised methods is greater. This thesis work is a part of computational lexical 
semantics, as it aims to benefit from lexical resources to represent word meaning in an 
automatic and computable, yet meaningful way. The resource is the Danish wordnet, DanNet 
(Pedersen et al., 2009). 
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WordNet: A Lexical Semantic Resource 
WordNet (Fellbaum, 1998) is a lexical semantic resource consisting of a network of so-called 
synsets. The synsets represent concepts, and are interlinked with several types of semantic 
relations (synonyms, hypernyms, hyponyms, etc.). This entails, that if a word is polysemous, 
then the word form is a member of several synsets. As opposed to a dictionary, where senses 
are structured into main and sub-senses, WordNet is rather unstructured, and has a flat structure 
by treating each synset equally. 
 
Here is a visualization of a synset of the word ‘model’ (as in a prototype model), where the 
semantic relations and a definition are shown. 

 
Figure 1: ’model’ in DanNet in WordTies in its 'prototype/construction' sense and with semantic relations.  

Wordnets are a valuable resource for semantics in NLP, since it provides a web of the semantic 
relations and structures in a formal language across word meanings in a language. The WordNet 
source is used across many languages, e.g. the Danish WordNet, DanNet. See section 3.3 for 
details on DanNet. DanNet was compiled semi-automatically from the Danish dictionary Den 
Danske Ordbog (E. Hjorth et al. 2005), but is slightly more coarse-grained than the dictionary. 
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2.1.2 Meaning Representation 
 
Various systems to and theories of how to formally represent meaning have been proposed.  
In the following section, theories of representing linguistic meaning is briefly given. Firstly, the 
logic-based approaches, secondly by distributional models and formal lexical semantics.  
 
An example from traditional formal semantics is Montague semantics (Montague, 1970). This 
approach and position states that there is no theoretical difference between natural languages 
and formal languages (like formal logic and programing languages), and they can be treated the 
same way. Formal logic is the study of inference, where the structure, relations and form of an 
expression is analysed in a strict mathematical way to determine its validity (Carnap, 1947; 
Frege, 1892; Kripke, 1980; Wittgenstein, 1921) Regardless of what the different entities 
(variables) in the expression refer to, their relative roles and how they affect each other is 
studied. Expressions are formalised with quantifiers, predicates, connectives etc. The meaning 
of a sentence formalised this way will therefore have more to do with how the variables relate, 
than what the variables are, as the variables can be interchanged with some of the same kind. 
Consequently, and broadly speaking, NLP techniques using formal logic or lambda calculus, 
like cooper storage (Barwise & Cooper, 1981), is better at handling the semantics of function 
words, rather than the semantic similarity of the variables, as these are “just” variables.  

Vector space models (see more in 2.1.4) of distributional semantics (see next section) 
is a very different and rather data-driven way to model semantics, and are widely used in 
semantic analysis systems in NLP. Here, linear algebra is used as a tool to geometrically model 
the similarity of linguistic units such as words, sentences or documents. The closer the units 
appear in the model, the more they co-occur in the training corpus. Performing computational 
semantics this way more easily allows similarity measurements of the linguistic entities 
compared to how logic treats meaning. In other words, it is better at handling the “content” of 
words. A disadvantage is, that as function words are non-significant in this design, they are 
harder to semantically analyse. Nevertheless, some work and discussion on this issue in NLP 
does exists (Tang, Rao, Yu, & Xun, 2016). 

An approach, which to an extent integrates both the logic-based semantics and 
distributional semantics, is the Combinatory Categorical Grammar (CCG) (Steedman, 2000). 
This grammar formalism facilitates an interface between syntactic structures and the underlying 
semantic representations. The semantic representations can be combined in a way that are true 
to the syntactic properties of a given sentence. This formalism has been implemented in various 
parsers, but as Clark (2014) states, it is still an open question whether logical inference or other 
fundamental concepts from semantics can be integrated into vector space models in a 
meaningful, functioning way. 

Traditionally, logic-based semantics have dealt more with function words than content 
words, but another perspective is to distinguish between the approaches that deal with entities 
(e.g. lexical entities), or the combinations of it. Lexical semantics and compositional semantics 
(and the before mentioned distributional approach) have dealt more with the meaning content 
of the words, or the meaning content of the composition of the words. Generative semantics is 
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a formal approach to access the meaning content of lexical items which claim there is a deep 
semantic structure by which words subsequently are arranged (Lakoff, 1971). Differently, 
interpretative semantics claim that meaning is derived from the set of rules that control the 
surface structure (syntax) (Chomsky, 1971). 
 
So, various theoretic positions in semantics would face and represent meaning in different ways, 
as they focus on different aspects of word meaning: content/function words, syntax/semantics, 
knowledge-based/data-driven, lexical units/compositions etc. As mentioned before, lexical 
semantics deals with words and word senses. This could suggest that lexical semantics focus 
on words as entities, but this is not necessarily so. In the following section, such an example 
from lexical semantics is given. Here, the meaning of a word is suggested to be found through 
interpretation of other related relevant words. Again, this influences how a formal 
representation of word sense would look. 
 
The final important theoretic framework from formal lexical semantics is Pustejovsky’s theory 
of Qualia Structure (Pustejovsky, 1995). This interpretation of word meaning has its origin in 
Aristotle’s theory of causality, known as the doctrine of the four causes. Here, the main idea is 
that a successful analysis of the world around us requires a thorough understanding of causes. 
The intuition is that these four factors constitute our basic understanding of an object. 
Pustejovsky defines the lexical semantic structure by the four interpretive levels (or formal 
roles), which constitute the Qualia Structure for a word: 
 

1. Formal: taxonomic information.  What kind of thing is it, what is its nature?  
2. Constitutive: information of parts. What is it a part of, what are its constituents? 
3. Telic: information of on purpose and function. What is it for, how does it function? 
4. Agentive: information about origin. How did it come into being, what brought it 

about? 
(Pustejovsky, 1995) 

These qualia indicate different aspects of a word’s meaning, based on the relation the concept 
has to another word that the concept evokes. For example, the noun child activates conceptual 
relations such as having parents, being little, existing, growing, crying, playing etc. The qualia 
roles of child are those that are relevant for how child is used in language, which can be 
understood as our world-knowledge of the word. The type of this information is defined by how 
it impacts the word in use. According to this framework, the meaning of a word can be found 
by looking at the word’s interpretation in context, and by exploring how these interpretations 
can be derived from underlying meanings when decomposing the lexical meaning into more 
primitive constituents (Pustejovsky & Jezek, 2016). 
 
Pustejovsky’s concept of word meaning is strongly aligned with how WordNet is built. As 
Figure 1 shows, the semantic relations by which concepts are linked in the semantic web 
(domain, used-for, made-by, used-for (object), hyper- and hyponyms), correspond to the 
semantic roles in the Qualia Structure. The higher you go in the concept hierarchy in a wordnet, 
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the closer you get to the basics of the original concept, and the meaning of the concepts in a 
wordnet are defined by their semantic relations. A wordnet is a knowledge-based resource 
containing concepts which lexicographers have chosen as having a relevant semantic role for 
each concept. Following the Qualia Structure theory of word meaning, and if the wordnet is of 
good quality, it would suggest that the words in the wordnet are important for the meaning of 
the concepts used in language. The distributional pattern of a word, how it is used in context, 
might shed light on whether the hand-picked words in the wordnet have relevant semantic 
relations according to language use in data. This is put to a test in the method of this thesis. Not 
in the Generative Lexicon framework, but with the underlying approach to word meaning. See 
more motivation and details on this method in 4.2.  Distributional semantics is described in the 
following section. 
 

2.1.3 Distributional Semantics 
 
Distributional semantics is a field in NLP that studies methods for identifying semantic 
similarity of linguistic units by looking at how they appear, behave and relate to each other in 
large corpora. Much research has been done in the field of distributional semantics since Z. S. 
Harris’ distributional hypothesis (Harris, 1954), saying that words occurring in the same 
context tend to have similar meanings - you should know a word by the company it keeps as 
Firth (1957) later put it. The traditional theories of meaning considered meaning to refer to 
something, either in the external world or some mental states or intentions. The late 
Wittgenstein turned against this theory by stating, that meaning is its use in language 
(Wittgenstein, 1953). If possible at all, then meaning can be ascribed to a whole language, not 
to single units. This thought lies perfectly in line with the distributional hypothesis, which is a 
suitable theory of meaning for NLP techniques that aims at grasping meaning in an automatic 
way by finding patterns and relations in languages, in corpora.  
 
Psycholinguistic studies support that human cognition treats word sense similarly as how the 
distributional word sense is considered in distributional semantics. It is known that if you are 
to identify a word, it speeds the process up if you are exposed to a semantically similar word 
beforehand. This phenomenon, called semantic priming, can be shown by various tasks, such 
as word completion tasks (Graf & Schacter, 1985) or lexical decision tasks (Meyer & 
Schvaneveldt, 1971). An example of a computational system handling and representing 
semantic similarity in line with the notion of semantic priming, is Latent Semantic Analysis 
(LSA) (Landauer, Folt, & Laham, 1998). This technique assumes that words that are 
semantically similar appear in similar text sections: similarity is tied to co-occurrence. The wide 
usage of LSA, e.g. in the field of information retrieval, supports the distributional hypothesis. 
Another NLP technique to handle similarity is the vector space model. These models are 
perfectly aligned with the distributional hypothesis, and are similar to the technique used in this 
thesis work to model word similarities. A deeper introduction to these vector space models is 
found below some final words on meaning representation and sense inventories. 
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The meaning of a word can be represented in various ways. Reasonably, the translation-sense 
of a word is the translation of the word meaning into a different language. This is useful in 
many everyday multilingual situations, but is not anchored in any external meaning 
representation.  Dictionaries provide high quality and typically fine-grained definitions of word 
senses, and enrich many NLP tasks. Yet, dictionary senses are limited by not covering all the 
words used in the language, and by being rather expensive and time-consuming to create and 
maintain. The distributional word sense is attractive for automatic approaches in NLP by 
defining the word sense from a given corpus. In this way, the distributional approach to word 
sense representation is more perceptive to current language use, sociolinguistic analysis etc., 
since the input directly determines the outcome. Defining word senses this way is effective, but 
raises the problem of measuring the quality of these meaning representations: the lesser we as 
humans control or make the sense definitions, the more we need to make sure that a machine 
do with senses what we find meaningful.  
 
When it comes to appropriate sense inventories, Agirre & Edmonds (2006) highlights the three 
Cs: clarity, consistency and complete coverage. Whether a sense inventory is appropriate or not 
depends of course on the application, but the inventory must be precise, have distinct 
representations for each sense, and ability to cover the senses apparent in language in order to 
disambiguate appropriately. Sense granularity is a crucial consideration to make when creating 
sense inventories - whether too coarse or too fine, it will cause errors. For both annotators and 
machines. 

2.1.4 Vector Space Models 
 
Linear algebra is a preferred tool in distributional semantics, as the linguistic units can be 
represented relative to each other as vectors in a geometric space, the vector space. More 
precisely, a vector space is a multi-dimensional space consisting of vectors, that can represent 
e.g. text documents, sentences, words or other instances. For example, a word vector in a vector 
space model, would represent a word as a point in a continuous space. The dimensions stands 
for a context item and the coordinates of the word represent the context counts of the word (Erk, 
2012). This means, that word vectors close by each other in the space, have similar contexts – 
and according to the before mentioned distributional hypothesis, therefore also carry similar 
meanings. 

More formally, a vector space model can be defined by four elements: a set of basic elements 
or dimensions (words, documents, sentences, etc.), a similarity measure between the vectors 
(like cosine angle, dot product, Euclidean distance), a weighting function applied to the counts, 
and finally a transformation of the vector space (typically dimensionality reduction to make it 
computationally efficient) (Lowe, 2001). So, the vectors, often called embeddings, represent 
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the linguistic items with a low-dimensional real-valued vector.1 

Regardless of what the vectors represent in a vector space model, they can be manipulated with 
the tools from linear algebra making these models attractive for computational linguists 
concerned with similarity and distance measures. By making use of the geometric notion of 
distance and linear algebra in linguistics, it is possible to make a computer handle the meaning 
and reasoning occurring in natural language (Clark, 2014). 

A downside to these models is that we cannot interpret the dimensions of the word vectors, as 
it is possible to do with word context vectors (one-hot encoding) and co-occurrence vectors. 
For this reason, we cannot directly compare the vectors in different models over time and across 
different text types. An advantage is that a vector can be trained for any word, and is therefore 
better at handling new language use, and to include most words used in a language (given they 
appear in data). 

An early usage of vector space models was in the information retrieval system SMART (Salton, 
1968). A popular model to build word embeddings today is the Word2Vec model (Mikolov et 
al., 2013), which is used to make the vector space model for this thesis work, and can be 
accessed with the Gensim (Rehurek & Sojka, 2010) software package. The Word2Vec model 
is a feed-forward fully connected neural network (See more on neural networks at 2.2.3). The 
network comes in two architectures: the continuous bag-of-words (CBOW) and Skip-gram. The 
CBOW predicts the current word based on its given context in the data. The context words in 
(the input layer) are projected into the same point (the projection layer), and the correct middle 
word is to be classified. The Skip-gram model is a mirror-image of CBOW, as it tries to predict 
context words within a certain range of a given input word. The distant words from the middle 
word are given less weight, as these usually are less related to the middle word. (Mikolov et al., 
2013). 

                                                
1 No transformation is of course also possible, although these are not generally considered 
’embeddings’. 
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Figure 2: The CBOW architecture predicts the current word based on the context, and the Skip-gram predicts surrounding 
words given the current word. (Picture and caption from Mikolov et al. 2013, p5) 

CBOW is more computationally effective than Skip-gram, and treats all words in the window 
equally, but is worse at handling rare words. Skip-gram is slower, but better on less training 
data and at rare words and phrases. The main choices to make when training a Word2Vec model 
are the training algorithm (CBOW or Skip-gram), sub-sampling size (high frequency words are 
sub-sampled, as they often carry little information), dimensionality (of the word vectors, 
typically between 100 and 1000), and finally the size of the context window (5 recommended 
for CBOW, 10 for Skip-gram) (Google, 2013)2.  
 
Vector space models are usually used in information retrieval, e.g. in search engines. A 
simplified case: When a user types in a query, the relevant information given can be found via 
a vector space model where the possible documents, words or sentences are ranked by similarity 
to the query. Furthermore, if the query contains any polysemous words, the search engine would 
return more relevant information if it disambiguated the word senses at first. Each possible 
sense of a word can be compared to the context in which the word appears in, and hereby find 
the most suitable word sense. These sense representations can be induced from a vector space 
model (e.g. by clustering of context vectors (Schütze, 1998)). In this thesis work, sense 
representations are created from a model trained on a large Danish corpus, together with a 
lexical resource. Background on inducing and representing word sense is given in the following 
section. 
 

                                                
2 Google authors’ (Mikolov et al.2013) notes on the Word2Vec project: 
www.code.google.com/archive/p/word2vec/  
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2.1.5 Obtaining Word Sense Representations  
 
One thing is to automatically induce word senses (WSI) and their representations from data. 
Such algorithms group word usages according to their shared meaning. Another thing is to built 
them with help from lexical ressources, as in this thesis work. The task of WSI and building 
word sense representations is related to, but not like the task of WSD. WSI is the task of 
inducing word senses – to find the senses apparent in given input data of some kind. Differently, 
WSD is “deciding” on a sense and assign it to the given word. Sense representations, induced 
or built, can conveniently be tested by how well they disambiguate given words. 
 
Several WSI and word sense representation methods have been proposed, either supervised or 
unsupervised, and with different input sources. Firstly, important related work on representing 
and inducing word sense representations is briefly introduced, and secondly the evaluation of 
such computational semantic analysis systems is given. 
 
The task of automatically inducing word senses from corpora involves both to select the context 
features by which word similarity should be compared, and to use some technique to cluster the 
similar words. The word clustering technique ‘clustering by committee’ (Pantel & Lin, 2002) 
computes the top-k similar elements (word co-occurrence features) using pointwise mutual 
information (PMI) score, finds committees and assign the elements to the committee clusters. 
Another clustering technique using phrase coordination (Dorow & Widdows, 2003) where co-
occurrences within phrases were considered has also been proposed. Graph-Based techniques 
for WSI has been proposed as well (Klapaftis & Manandhar, 2008), where edges between words 
is considered for clustering rather than words on their own. A different direction for WSI 
techniques are translation oriented (Apidianaki, 2008), where the word contexts in one language 
is supplemented with the equivalent features in another language. (Denkowski, 2009). 

Schütze (1998) presented the first approach to automatically and unsupervised cluster 
context vectors (word embeddings), word sense discrimination, with the Expectation-
Maximization-algorithm (EM). See description below in 2.2.1. He found centroids of clusters 
of dimensionality reduced word context vectors. The intuition of semantic similarity here is 
similar to the one in the Lesk algorithm (Lesk, 1986) for dictionary-based WSD, which choose 
the word sense whose dictionary definition share most words with the target word’s surrounding 
words. The approach of this thesis work is to use wordnet associated data to create sense 
representations in a word embedded space, and test them in a WSD task. This approach is 
therefore familiar to Schütze’s by grouping context vectors, but defines the word senses from a 
lexical resource as Lesk does. The next section will cover more recent approaches more similar 
to this present thesis work. 
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The unsupervised WSI system SenseGram (Pelevina et al. 2017) was recently proposed and 
contributes to the highly active area in computational lexical semantics that focuses on 
representing and deriving word meaning in an automatic way using raw data.   
The technique takes a raw corpus or an existing word2vec space and automatically induces 

word senses of a target word by ego-network clustering (learn word embeddings, make a graph 
of nearest neighbours). It performs comparably to state-of-the art WSD of the SemEval2013 
data set (see more on evaluation methods below). A downside is that the system needs a set 
number of senses to derive. A related technique (Song, Wang, Mi, & Gildea, 2016)  
automatically induces sense embeddings for each polysemous word, and disambiguates a test 
instance by finding the nearest sense embedding in the embedded space to the instance as a 
contextual vector. Another related sense representation technique is the Instance-context-
embedding (ICE) (Kågebäck, Johansson, Johansson, & Dubhashi, 2015) where context 
embeddings are created based on word embeddings and context-word embeddings computed 
using the Skip-gram model, and assign different weights to the context words based on how 
they influence the meaning of the target words of interest. This assumes that context words that 
tend to correlate with the target word are more important to the meaning of that word. The 
context embeddings are then clustered with the k-means algorithm.  
 
Another, and significantly different, approach is as Johansson and Nieto Piña’s (2015), whose 
system “splits” the word embeddings to sense embeddings while training with information from 
a Swedish semantic resource (SALDO), and keeps the found sense vectors similar to its network 
neighbours. It is evaluated extrinsically in a classifier for creating lexical units for FrameNet 
frames. This approach is similar to Bhingardive et al. (2015)’s wordnet affected system who 
also plug-in a resource, WordNet, to obtain word sense representations in a vector space. Note, 
the task in Bhingardive et al. (2015) is not WSD, but most frequent sense detection. Both 
approaches bootstrap the sense representations by creating them based on a lexical semantic 
resource, as in this thesis work. They are significantly different from the above mentioned 
unsupervised approaches, as they use a lexicon for obtaining word sense representations. 

Figure 3:Visualization of the clustering technique of vector neighbours 
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When using a large lexical resource to represent word senses, there is a risk of over-representing 
rare word senses: all the senses in the lexical resource are equally represented, even though they 
are not equally distributed in data (or generally used in language). Another risk is to miss 
corpus-specific senses. These risks make the unsupervised WSI techniques attractive. 
Nevertheless, lexical resources are often of good quality, and do contain information of rare 
words. The task at hand is therefore to identify which method to use and whether bootstrapping 
of the unsupervised WSI is possible. 
 

2.1.6 Evaluation of Semantic Analysis Systems 
 
Human handcrafted semantic data is expensive, but evaluation data of some kind is a must to 
determine the quality of any semantic analysis system. Computational semantic analysis 
systems are typically evaluated on the data sets from the ongoing series of SemEval – 
International Workshop on Semantic Evaluation (A Kilgarriff & Palmer, 2000). WSI systems 
has typically been evaluated by comparing to a Gold Standard or in a WSD task measuring the 
quality by performance (Agirre & Soroa, 2007). The evaluation data produced for SemEval 
2013 task 13: Word Sense Induction for Graded and Non-graded Senses3 is the standard data 
used to test WSI systems, and gives a common ground for fair comparison. The above 
mentioned related work is mostly tested on SemEval 2013 task 13 data.  

The SemEval 2013 task 13 was to explore the possibility of perceiving multiple senses 
in a single contextual instance. Participating systems were asked to annotate nouns, verbs and 
adjectives in sentence instances using WordNet 3.1 (Fellbaum, 1998). One sense or several 
weighted senses could be assigned. This means that instances potentially could be labelled with 
multiple senses and with weights. The trial data were annotated with ratings of all senses, where 
each sense and instance combination were treated as a separate element to score. The systems 
were evaluated in two settings: (1) in a traditional WSD task (comparison of wordnet sense 
labels), and (2) in cluster-based evaluation (comparison of induced sense inventories to wordnet 
inventories)  

The WSD task contained three steps. Firstly, the systems should detect the relevant 
applicable senses for the given instances. The Jaccard Index was applied as evaluation measure. 
Secondly, the detected senses should be ranked by their applicability. Here, the evaluation 
measure was the Kendall’s τ similarity. Thirdly, the agreement between the ratings and human 
annotators should be measured by weighted Normalized Discounted Cumulative Gain. 

In the cluster-based evaluation setting, the sense clusters induced by the systems were 
compared to the sense clusters annotated by humans by the Fuzzy B-cubed and Fuzzy 
Normalized Mutual Information measure. (Jurgens & Klapaftis, 2013). 

  

                                                
3 https://www.cs.york.ac.uk/semeval-2013/task13.html Retrieved 10.04.18 
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As the systems induce several senses, considering the aspect that one sentence might be 
assigned more than one correct sense, and rank them by possibility, the task is highly 
comparable to the work of this thesis. Furthermore, the test data produced for SemEval 13 task 
13 is also annotated with WordNet senses. Different from the SemDaX data used in this thesis 
work, the words to disambiguate were not as ambiguous and there was higher inter-annotator 
agreement. Another and crucial difference is, that the senses in SemDaX are not ranked. 
Annotators for SemDaX were asked to assign one sense to the given instance. The inter-
annotator agreement is relatively low (see Chart 1), which possibly (and partly) is due to the 
fact that more than one sense is applicable. To include and consider all annotations in SemDaX, 
all the annotations are considered correct (but unranked). The word sense representation system 
of this thesis work (see more details on method in chapter 4), represents all possible wordnet 
senses in a vector space. The representations can then be ranked by a similarity measure to a 
given test instance represented in the vector space, and the representation with the highest 
similarity score can be chosen for a disambiguation guess. The system of this thesis do not 
detect a group of relevant senses, but merely rank by similarity and/or pick the most similar 
sense. Since the test data SemDaX do not contain ranked senses, and the word sense 
representation system of this thesis do not choose a set (or cluster) of relevant senses, a direct 
comparison to the systems developed for SemEval 2013 task 13 with the same measures is not 
straight forward. However, it is possible to compare the n-sized set of un-ranked annotations in 
the test data SemDaX with the set of n-nearest sense representations in the vector space with 
the Jaccard Index. It is also possible with this measure to directly compare the single system 
guess to the (unranked) annotated senses in SemDax (though this would result in a low score 
for instances with many sense tags). This evaluation would be similar to the first step in the 
SemEval 2013 task 13 WSD task: detecting which senses are applicable. 
 
The before mentioned SenseGram induced word senses given a raw corpus or a trained 
word2vec model, and was tested on the SemEval 2013 test data. This method is attractive by 
being highly applicable to other languages, but there is no open-source curated data at this stage 
for testing such a Danish WSI system.4  Data for this kind of evaluation requires a set or cluster 
of words (or word representations) which the induced senses can be compared to. For whatever 
sense representation created un-supervised or semi-supervised, the senses need to be anchored 
to a sense label or some external criterion in order to be evaluated. Extrinsic evaluation on a 
specific application is also possible. The system can e.g. auto-tag new data or machine translate, 
and then be evaluated by users on how well the system solved the task. Internal evaluation of 
e.g. induced sense clusters would include scores of the quality of the clusters in themselves in 

                                                
4 A set of relevant words for each sense in an annotated corpus can of course be extracted. It 
would be possible to do this for the SemDaX data, though it would not be clear to what 
extend the relevant words within the corpus are those which are relevant globally (or in the 
training data for creating word embeddings). Extracting such data for testing WSI systems for 
Danish would be a relevant future project. 
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terms of class purity or silhouette coefficient, which compares the average distance of elements 
within a cluster to the average distance to elements in other clusters. 

Baselines and ceilings 
 
The obvious baseline to compare WSD system performance to is the frequency of the most 
frequent sense. Often, the first sense in a lexical semantic resource is the most frequent one – 
as in WordNet. It can also be found by counting the senses in a labelled corpus, as in this thesis 
work.5 The most frequent sense is usually a hard baseline to beat, and is therefore often used as 
the default sense. Also, the before mentioned Lesk algorithm is a used baseline (Jurafsky & 
Martin, 2009). Finally, the random baseline where senses are chosen randomly by chance, is 
also used. 

Human inter-annotator agreement is considered as the upper bound. At least two annotators 
annotate a corpus, and an agreement score is calculated. A measure, e.g. the Fleiss score or 
Krippendorffs alpha, is afterwards usually applied to take care of the fact that it is easier to 
agree on a few senses than on many. As humans tend to disagree, and we want a human created 
gold standard, we should not expect a better result from a machine. We need to trust the quality 
of the annotated data in order to rely on the models created from or tested on the data. The inter-
annotator agreement is therefore a measure of this quality. This score is usually set to at least 
.80, but for systems disambiguating highly ambiguous words, lower agreement score is 
acceptable. As Poesio & Artstein (2008) writes, word sense tagging is more challenging than 
e.g. POS-tagging and dialogue act tagging. The same categories can be used to classify all units, 
but different categories must be used for each word when annotating senses: a precise coding 
manual specifying examples for all categories for annotators is hard to make. A help is to tag 
with e.g. dictionary senses, but the granularity and architecture of the sense inventories can vary 
across dictionaries. Again, the task at hand help identifying which inventory to use. 
Improvement of the inter-annotator agreement score can be reached for instance by applying a 
coaser grained sense inventory by collapsing dictionary entries (Bruce and Wiebe, 1998; 
Palmer, Dang, and Fellbaum 2007; Pedersen et al. 2018) or by letting profesional 
lexicographers annotate the data (Kilgarriff, 1999).  

2.1.7 WSD Evaluation Metrics  
 
The quality of WSD of test data can be measured with various statistics: accuracy, precision, 
recall, F-score etc. of how accurate the system guess matches the gold standard. Sometimes 
there are more than one correct class per instance. That is the case in this thesis work, where all 
annotations are considered correct when annotators disagree. In the SemEval 2013 task 13 the 
same idea motivated the task, namely that there can be more than one sense assigned to a target 
word. To include the fact that some incorrect disambiguations are better than other senses when 

                                                
5 If counting annotated senses in data, it is still an open question whether that sense distribution is generally 
accurate, or just the case in the specific sense annotated data. 
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evaluating the system quantitatively, the induced senses can be weighted. In the work of Song 
et al. (2016), each induced sense is compared to the test sentence centroid by Euclidean 
distance, where this thesis work instead uses the cosine similarity as a distance measure6. The 
similarity scores for each sense can be weighted by the distance, and utilized in the decision of 
which sense to choose. An example of this in use is Google Translate, that ranks possible 
translation alternatives when clicking on the proposed translation.  

The weighted outcome of a WSI or word sense representation system can be compared 
to a gold standard. In the next section a distance measure between two weighted sets of elements 
is introduced. 

Kullback-Leibler divergence 
The weighted outcome of the sense representation system of this thesis is compared to the 
annotations that humans labelled the senses with. As the created sense representations can be 
weighted, they can be represented by a probability distribution. The annotations are also 
represented by a probability distribution, incorporating the fact that each instance can have 
multiple classes. A classic way to compare probability distributions through is the Kullback-
Leibler divergence (KL-divergence), also called relative entropy. 
 
The KL-divergence, 𝐷"#, is given by 

𝐷"#(𝑞||𝑝) = 	 𝑞 𝑥- ∙ 𝑙𝑜𝑔
𝑞 𝑥-
𝑝 𝑥-

2

-34

,	 

where q is the probability distribution and p is the approximating distribution. It measures the 
difference between one distribution and the other. If the KL-divergence is very low, the 
distributions are very similar. The measure is not symmetric, (and therefore not a distance 
measure, see Figure 4) and there has been some discussion on choosing p or q as the 
approximating distribution (Goodfellow, Bengio, & Courville, 2016).  

Figure 4:  KL-divergence example for P||Q and for Q||P shows that the KL-divergence score is asymmetric. Figure from 
Goodfellow et al., (2016) 

                                                
6 The Euclidean distance could just as well be applied in this work as the cosine similarity. Intuitively 
speaking, the difference is that the cosine similarity cares about direction of the vectors, not considering the 
length of the vectors. The length influences the Euclidean distance though. When averaging vectors as in 
this work, the length of the vectors matters less. But if vectors are added, the choice of distance measure is 
more important. As always, the task at hand can help identifying the right distance measure. 
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Either way, the KL-divergence score is a measure of how off one distribution is to another. In 
this thesis setting it is how off the annotations are from the system-built senses.  
 
Before moving on to the computational background related to this thesis, a final section on 
related work is found. An additional experiment using machine learning classifiers for WSD is 
carried out in this work. In the following section an overview of related work on dealing with 
word ambiguity and WSD with machine learning models is given. 
 

2.1.8 Word Sense Disambiguation with Machine Learning 
 
There are several approaches to WSD, which mainly fall into two groups: knowledge-based 
and supervised (or semi-supervised). One approach is to compare by some measure sense 
representations (induced from data or built from lexical resources) to the context item where 
the ambiguous targetword is located, as the majority of the experiments of this thesis work (see 
details in chapter 4). Another approach is to train machine learning models on annotated data 
and disambiguate new ambigous words with those models.  
 
When inducing or building sense representations, words in multiple word items are often 
concatenated into one single sense representation. A consequence of this is that information of 
syntax and sequence is lost. To handle this problem Yuan et al. (2016) suggests an approach to 
WSD using neural models, namely a Long Short Term Memory (LSTM) network (Hochreiter 
& Schmidhuber, 1997). They presented a supervised WSD algorithm and a semi-supervised 
algorithm. Besides the most frequent sense as a baseline, they implemented a classifier, where 
they compute sense embeddings by averaging the context embeddings (produced with 
word2vec) of the sentence instances with that sense label. Also as in this thesis work, they use 
cosine similarity to compare the sense embeddings with the context embedding. This baseline 
is similar to the approach of this thesis, but they created sense embeddings based on labeled 
sentences, not from a lexical resource.7 Their supervised LSTM model for an all-words WSD 
task is trained to predict a held-out word in a sentence, given the surrounding context. Their 
semi-supervised WSD classifier labeled unlabeled sentences from the web based on how 
similar they are to labeled sentences. The models outperformed the baselines significantly.  
 
Kågebäck & Salomonsson (2016) also presented a sequence modelling approach to WSD using 
a neural LSTM model, though a bidirectional one. That means the classifier gets and stores 
information both from the left (past) and right (future) when predicting a sense for a word. Each 
word in the text was represented by a word embedding (not concatenated) to not miss out on 
sequential and syntactic information, as well as avoiding to depend on handcrafted features or 
external resources. The model computes a probability distribution of the possible senses of the 
word given in a given document. The model is trained with a limited number of word sense 

                                                
7 A future project to this thesis work could be to test this approach to represent sense 
embeddings: to take the average of sense-labeled instance vectors. 



 

 20 

labeled instances, and is evaluated on lexical sample WSD tasks of the SemEval 2 (Kilgarriff, 
2001) and 3 (Mihalcea et al. 2004). Differently, Yuan et al. (2016)’s model can generally be 
used for any word, and can therefore better achieve high performance on all-words WSD tasks.  
 
Raganato et al. (2017) approached WSD with a different perspective. They did not view the 
task of WSD as a classification problem, as Yuan et al. (2016) and Kågebäck & Salomonsson 
(2016), but trained models with sequence learning. In this way, there is not one model trained 
for every target word, but one single model trained at once on the sense annotated input text. 
The target words are then disambiguated jointly. They developed various neural model 
architectures of bidirectional LSTM taggers and Sequence-to-Sequence models. The models 
were compared to the best knowledge-based (version of Lesk, Basile et al. (2014), UKB, Agirre 
et al. (2014) and Babelfy (Moro et al. (2014)) and supervised systems (Context2Vec, Melamud 
et al. (2016); It Makes Sense, Zhong & Ng (2010); Iacobacci et al.(2016)) tested on the same 
framework. Though Raganato et al. (2017)’s approach did not rely on so-called word-expert 
classifiers (models trained for single words), the performance achived state-of-the-art results. 
 
The above-mentioned method of Zhong & Ng (2010), as well as Shen et al. (2013), are 
traditional supervised WSD approaches where local features around a target word are extracted 
and used for learning in a classifier. These are more similar to the classifiers trained for a lexical 
sample WSD task in this thesis work, which are trained on extracted surrounding information 
for each targetword, namely context vectors concatenated from word embeddings of the context 
words. The classifiers of this thesis work is therefore in the category of word-expert models. 
 

2.2 Computational background 
In this section, the algorithms applied in the word sense representation system of this thesis 
work is briefly introduced. Namely the k-means algorithm for clustering sentences, the machine 
learning algorithms used for classifiers trained on the clustered instances and evaluation data.  
 

2.2.1 The K-means algorithm  
 
The EM algorithm is the skeleton in the k-means algorithm (Forgy, 1982; Hartigan & Wong, 
1979; Lloyd, 1982; MacQueen, 1967), which is used to cluster embeddings in this thesis work. 
The EM-algorithm (Dempster, Laird, & Rubin, 1977) is an iterative method to find parameters 
to distinguish groups in data consisting of un-known variables. The algorithm consists of two 
steps: The E-step where data points are assigned to generated hidden values (expected 
parameters), and the M-step where the likelihood is maximised to fit the observed data points.  
 
The k-means algorithm is a classic unsupervised clustering algorithm. It is unsupervised as the 
data points do not have a pre-assigned class. The algorithm requires a set number, k, of clusters, 
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C, to group the given data by. The algorithm seeks to separate groups of equal variances by 
minimizing the inertia: 

min
µ8∈:

(||𝑥; − µ-||
=)

>

-3?

 

 
where x are the data points, µ the mean of the samples. In other words, it is the sum of squared 
distances to the cluster centroid. The clusters are described by the mean of their member data 
points, called the centroid. The algorithm alternates between assigning data points to clusters, 
and updating the placement of the centroid. The initial centroids are random (or given seeds as 
in this thesis work), and the algorithm iterates till the same data points are clustered in the same 
cluster regardless of the initial centroids. 
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2.2.2 Support Vector Machine 
 
The support vector machine (SVM) (Vapnik & Lerner, 1963) is a classical machine learning 
algorithm for classification tasks. The model is a supervised learning model which seeks to find 
a perfect hyperplane in a vector space by which the classes of the given data points are 
separated. The method is to maximize the magnitude of the distance (the functional margin) 
between the support vectors separating the classes.  This assumes that the classes are linearly 
separable, and that a hard margin can be found. But if some data points are mingling with the 
class on the other side of the current hyperplane, a soft-margin is helpful. A hinge-loss function 
adds tolerance to the hard-margin, and the values of this function considers the distance from 
the mingling points to the margin. With the kernel-trick introduced (Boser, Guyon, & Vapnik, 
1992) the SVM can also handle non-linearly separable classes. 

2.2.3 Feed-Forward Neural Network 
 
Neural networks are increasingly popular supervised machine learning algorithms capable of 
modelling non-linear patterns in data. Though neural networks have been known for decades 
(Farley & Clark, 1954; Rochester et al., 1956; Rosenblatt, 1958), lately, deep architectures are 
widely popular due to increased available computing powers (e.g. GPU’s). The network is good 
at recognizing patterns as it can handle much more information at the same time than what 
humans can handle and calculate. The model is brain-inspired as it consists of a network of 
nodes taking input and gives output, according to certain activation rules. The links between 
the nodes are given weights, which activates through the network leading to the output of what 
the network once learned such an input should end up as. The network needs a certain amount 
of training data to learn those patterns and weights in order to output the correct things when 

Figure 5: SVM. The green lines in the left system are possible hyperplanes, and the green line in the right system is the 
optimal hyperplane as this has maximized the margin of the support vectors. Figure from 
https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47 
22.09.18 
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tested on evaluation data. Neural networks have proved useful for a range of tasks from 
bioinformatics to NLP, sound, and vision. 
 
A feed-forward neural network is the first developed deep learning model, and only sends 
information one way through the network and do not allow nodes later in the network to update 
weights in earlier layers at the same training step, as recurrent neural networks does. Continous 
activation functions are used to activate the nodes. The loss function tells how well the network 
models the given data. The knowledge of the gradients of this loss function, gives access to the 
speed of the loss changes when changing the weights through the network. Backpropagation 
(Rumelhart et al., 1986) is a method to calculate the gradient of the loss function, and it 
distributes the loss (found at the output layer) back through the network layers. The weights 
can be updated accordingly. 

 
 
 

 
 
 

Figure 6:Neural network with one hidden layer. The circles are nodes, the arrows are the connections with 
given weights.Figure from https://hackernoon.com/artificial-neural-network-a843ff870338  
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3 Materials 
We now present the materials used in this study. Firstly, the polysemous target words, then the 
vector space model, the Danish wordnet DanNet, the evaluation material SemDaX, the 
additional Danish corpus Korpus DK, and finally an overview of software packages is found. 

3.1 The target words 
The words of interest in this work is 17 of the most polysemous Danish nouns. That is, members 
of the set of nouns in the Danish dictionary having the highest number of main and sub-senses. 
The number of word senses varies from 8 to 30. The nouns, translations and number of senses 
can be seen in Table 1. By taking highly ambiguous words into account, it is possible to access 
how the WSD performs on a highly challenging task. Performance on the hardest task will set 
the bar for the quality of the approach, since the performance will increase on easier tasks. 
Noun Translation Senses 
Ansigt Face 16 
Blik* Look, glance, tin 8 
Hold Team, side, gang 10 
Hul Hole, gap, leek 22 
Kort Card, map, plan 21 
Lys Light, candle, lamp, glare 30 
Model Model, pattern, type, design 9 
Plade Plate, sheet, disc 13 
Plads Room, space, square, post 21 
Skade* Harm, injury, damage, magpie, ray 12 
Slag* Battle, stroke, cape, roll 28 
Stand State, condition, shape, sales pitch, 

booth, stand 
11 

Stykke Piece, part, length, paragraph 22 
Top Top, peak, apex 12 
Vold Violence, bank 10 
Kontakt Contact, switch, touch 9 
Selskab Company, party, association 11 

Table 1: Target nouns, their translation and number of senses encpuntered in SemDaX. * = homonym 

The selection of nouns corresponds to the target nouns of the available evaluation data, 
SemDaX (see below).8  

                                                
8 except for 3 words: kurs, skud, and tang.  The manual data linking from dictionary sense labels to DanNet 
synsets (see section 4.1 for more details) resulted in too coarse a granularity for the nouns to be as 
polysemous as this thesis work aims to investigate. 
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3.2 Word Embeddings 
The word2vec model is created by Society for Danish Language and Literature to use in another 
project (Sørensen & Nimb, 2018). They used Gensim and Python to train a word2vec model on 
a corpus of roughly 920 million running words (mostly newspaper articles, but also magazines, 
speeches and discussions from the Danish parliament, fiction, etc. from 1982 to 2017). The 
corpus had 6.3 million token types, where 5 million occurred less than 5 times. 
The dimensions of the word embeddings are 500, a window size of 5, and a threshold for rare 
word on 5. The CBOW algorithm is applied.  

3.3 DanNet 
DanNet (Pedersen et al., 2009) is the Danish version of Princeton WordNet (Fellbaum, 1998). 
It is freely available9, and can easily be browsed with the application WordTies.10  DanNet was 
compiled from the Danish dictionary (Hjorth & Kristensen, 2005). At this point, DanNet 
consists of 66.308 concepts that are fixed by 326.566 inter-related semantic relations. 
The data extracted for this thesis work is all the synsets that belong to the target nouns. For each 
synset, the sample sentence, the definition, and the semantic relations (hypernyms, hyponyms, 
domain, synonyms, near-synonyms, made-by, made-of) are extracted. The super-senses are not 
extracted, as those are described in English, and not in Danish words. 
 

3.4 Evaluation data: SemDaX 

The SemDaX corpus (Pedersen et al., 2016) is extracted from the 45 million words CLARIN 
Reference Corpus (Asmussen, 2012) and consists of different text types: blogs, chat forums, 
newspaper, magazines, discussions and speeches from the Danish parliament. The size of the 
semantically annotated corpus is 90.000 words, where newspapers make up the major part 
(48%).  

The exact SemDaX data extracted for this thesis work is the 6012 sentences containing the 
target nouns, which are annotated with dictionary senses by 2-6 annotators, who are advanced 
students and researchers. There are 355 sentences per target noun on average, where the more 
senses the noun has, the more sentences are extracted. A window of 5 context words is 
considered, stopwords are removed, but no text normalization. 

                                                
9 https://cst.ku.dk/projekter/dannet/ Retrieved 11.11.18 
10 http://wordties.cst.dk/wordties-dannet/ (developed by Anders S. Johannsen & Mitchell 
Seaton). Retrieved 20.06.18 
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3.5 Korpus DK  
Korpus DK (Society for Danish Language and Literature11) is a corpus of different text types 
in Danish, and has a size of 56 million words. It consists of relatively recent language and 
mostly every-day language use.  
 
For each target noun in this thesis work, around 1000 sentences containing that noun is 
extracted. A window of 5 words (left and right), stopwords are removed, and no normalization 
is chosen in line with the pre-processing of other data in this project. 
 

3.6 Software packages 
• Python (van Rossum, 1995) is used to code the system implementation 
• Sci-kit Learn (Pedregosa & Varoquaux, 2011) software packages is used for the 

clustering and machine learning tasks  
• SciPy (Jones, Oliphant, Peterson, & others, 2001) for NumPy, Matplotlib, and Pandas 

is used for data handling and plotting 
• Keras (Chollet, 2015) is used for deep learning implementation. Tensorflow (Abadi et 

al., 2015) is used backend. 

 
 

                                                
11 Retrieved from https://ordnet.dk/korpusdk 15.05.18 
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4 Methods 
The aim of the thesis is, as stated in the introduction, to examine whether it is possible to create 
appropriate sense representations with wordnet based information and word embeddings. An 
appropriate sense representation is in this context one that adequately can perform WSD on 
evaluation data. In the beginning of this chapter minor practical challenges are mentioned, as 
they effect the method of this thesis work. Then, the data processing decisions are presented, 
before the mapping between the two datasets DanNet and SemDaX is described. Afterwards, 
experiment 1-3 of this work are described, followed by the evaluation method and statistics 
used to measure the quality of the outcome of these experiments. Finally, experiment 4 is 
presented. 

Practical challenges 
As for much other research, the method of this present thesis work is rather influenced by the 
data available. It would indeed be very interesting and valuable to explore how fully 
unsupervised and automatic induced word senses look and behave in the Danish language, but 
there is no available evaluation data for such sense representations for Danish at this stage. See 
more on evaluation methods in 2.1.6. However, the dictionary word sense-annotated data 
SemDaX, as described in the previous chapter, is available. In this work, SemDaX is used as 
evaluation data and the objective (See method details in second half of this chapter).  
The Danish dictionary is not available open-source. But the source to the Danish wordnet 
DanNet is (to a certain extent) available for download. To make use of this lexical resource in 
this thesis work, a key between the dictionary labels and DanNet synsets needs to be 
established. DanNet was compiled on the basis of the Danish dictionary, and a key does exist – 
but is not available for research. For this reason, a key is created manually. See details in section 
4.1. 

Pre-processing 
As described in the previous chapter, the evaluation data SemDaX, the corpus Korpus DK and 
the DanNet is used (besides the provided word2vec model). 
All the text data used in this work is pre-processed equally. The relevant part of SemDaX 
consists of a number of sentence-instances per target noun. All the instances are word tokenized, 
as we are interested in the words in the sentence. The context with a window of 5 words is 
considered, just like the word2vec model processed the input data. The words are collected in 
a bag-of-words, without any punctuations or stopwords12, to avoid less informative information, 
and is then represented as a vector as the mean of each word vector in the word2vec model. 
Korpus DK is processed in the same way. The sentences from DanNet, e.g. the sample sentence 
and definition, is processed in the same way, except that the context window of 5 is not 
considered. The reason is that the exact target word is not always in the same word form in the 
sample sentence, and not necessarily a part of the definition, which makes it difficult to place 

                                                
12 The stopwords were removed by the NLTK package (Bird, Loper & Klein, 2009) 
 



 

 28 

the window at first. Another sub-optimal pre-processing step is that the word2vec model was 
built on data (context windows) not considering sentence boundaries. The context window in 
SemDaX and Korpus DK do not extend sentence boundaries. This situation slightly influences 
the word embeddings, but probably not greatly, if each part of the sentences not in interest, 
contains an equal amount of white noise, or is simply – and reasonably - considered as more 
context. 
 
In summary, after pre-processing, each sentence or bag-of-words becomes a vector representing 
that instance in the word embedded space.  

4.1 From Dictionary Label to Synset id  
The evaluation data SemDaX is, as written above, annotated with dictionary senses. A key from 
these senses to the corresponding senses in DanNet is necessary to bootstrap the senses created 
from DanNet. 
For each target noun, and for each sense of these nouns, a DanNet synset id is found. For 17 
target nouns 159 links are found, with an average on 9.4 senses. The DanNet granularity is 
slightly coarser than that of the dictionary. For this reason, some dictionary labels are linked to 
the same synset. See discussion of this in chapter 6. 
Table 2 provides an overview of the sense numbers before and after the linking, the number of 
idiomatic expressions and the number of the senses apparent in the evaluation data. 

Noun Senses in 
dictionary 

Senses encountered in 
data 

Idiomatic 
expressions 

Senses after linking to 
DanNet Synsets 

Ansigt 22 16 9 6 
Blik 9 8 2 6 
Hold 11 10 2 8 
Hul 25 22 9 13 
Kort 22 21 13 10 
Lys 33 30 18 16 
Model 9 9 1 8 
Plade 20 13 3 13 
Plads 25 21 9 10 
Skade 16 12 7 6 
Slag 32 28 13 15 
Stand 17 11 7 4 
Stykke 33 22 6 16 
Top 14 12 6 5 
Vold 16 10 2 7 
Kontakt 10 9 0 7 
Selskab 11 11 1 9 

Table 2: Overview of sense numbers in the dictionary (annotation options), the senses used in data (chosen annotations), the 
idiomatic expressions in the chosen annotations, and the resulting number of senses when linked to DanNet. 

Several decisions need to be made in the manual data linking. Firstly, numerous times the 
dictionary labels represent a figurative sense, especially when used in an idiomatic expression. 
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Most of the dictionary labels, that do not have a direct corresponding DanNet synset, are of this 
kind. As the evaluation data contains many idiomatic expressions, it would be a waste of data 
to leave these instances out. Therefore, the dictionary labels of the target noun in the figurative 
expressions are merged with the synset that corresponds to the literal sense of the noun. An 
example is ‘kaste lys over’ (‘shed light on’), where the noun ‘lys’ (‘light’) is used figuratively 
for ‘attention’, ‘awareness’ or the like. In such cases the literal sense “within” the metaphor is 
chosen. This also follows the principle of annotation of idiomatic expressions or other figurative 
speech in the before mentioned work of Pedersen et al. (2018) where the annotation of the 
SemDaX data is described, and also used in a WSD task. As this thesis follows the same 
principle, a fair comparison of the two methods is more reachable in future development. 
 
Secondly, if a dictionary label for a given target word does not have a direct corresponding 
DanNet synset (of the same word form), then a synonym or near-synonym of the target word is 
used. It is preferable to find a synonym or very-close synonym than pointing to the same synset 
more than necessary to get the variety of dictionary labels represented most accurately, and to 
save as much data as possible. An example is the noun ‘slag’ (battle, stroke, cape, roll, beat), 
understood as in a roll of a dice. This word sense was not directly found in the entries of the 
possible DanNet synsets under ‘slag’ – but the synonym ‘terningekast’ (dice roll) was found, 
and is therefore chosen as corresponding synset. While linking from dictionary senses to 
DanNet synsets of these target word samples, it was never the case that DanNet was more fine-
grained. DanNet has been semi-automatically compiled from the Danish dictionary, so the 
number of senses generally corresponds (not taking idiomatic expressions into account). 
 
Thirdly, 12 synsets do not have a given sample sentence in DanNet. Instead, sample sentences 
are retrieved from the website of the Danish dictionary13 , Den Danske Ordbog, for each 
corresponding sense. In one case, the definition of the word sense is filled in, as no sample 
sentence is given.  
 
The key is available at the GitHub page14 of this thesis work, where more examples and 
comments on each link is given. The key from dictionary labels to DanNet synsets is a necessity 
for the approach of this thesis. The details of the approach and motivation for the four 
experiments of this work are given in the next sections. 

4.2 From Word Embeddings to Sense Embeddings 
Since the word embeddings carry information about similarity of words at word level, the word 
sense embeddings need to be built to yield similarity information at sense level. This can be 
done in various ways (see also section 2.1.5). The main idea in this thesis work is to find a sense 
representation of each DanNet synset of each of the target nouns, since the labels in the 
evaluation data can be linked to DanNet synset id’s. The sense representation is made with 

                                                
13 https://ordnet.dk/ddo/ordbog?query=ansigt Retrieved 10.05.18  
14 https://github.com/idaroermann/danish_nouns  
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various information extracted from and with DanNet (experiment 1-3). As mentioned in the 
introduction, the quality of the sense representations is evaluated in a WSD task on the 
evaluation data SemDaX. Finally, the robustness of the representations found in experiment 3 
are tested in a machine learning classifier.  
 
The idea to extract knowledge-based information from DanNet to use in combination with the 
distributional word sense in the word embedded space is not only motivated by the availability 
of materials. As presented at the end of 2.1.2, wordnets contain hand-picked words, that play 
important semantic roles to every concept, to every synset. This also follows e.g. Pustejovsky’s 
theory on Qualia Structure, that argues that the meaning of a word can be found by examining 
the kind of relation the relevant surrounding words have to the target word. If the synset 
members in DanNet are important to the concept’s use in language, then the collections of those 
words in a distributional model as the word2vec model, is reasonable, since such a model 
models word similarity based on the distribution of words used in data. If there is a 
correspondence between how the high-quality knowledge-based information in DanNet is 
distributed and how the distributional information of the words looks in the vector space model, 
it could be useful for creating sense representations on the basis of the given lexical resource. 
When sense representations (for sense-tagging) are built independently of semantic annotated 
evaluation data, the scope of the approach reaches all the words contained in the input resource, 
and not only those words encountered in annotated data. 
 

4.2.1 Experiment 1: Sense Embeddings from Synset Members 
 
Input:  DanNet synset information (as words) + word embedding model 
Output: One sense embedding per word sense per target noun 
 
The idea of the first experiment follows Bhingardive et al. 2015 (see 2.1.5) where the wordnet 
synset neighbours (members) are collected in a “sense-bag”. The sense-bag of each synset 
consists of the nodes linking to the synset by different semantic relations (hypernyms, 
hyponyms, synonyms etc.), as well as the sample sentence (the word used in context). In this 
thesis work, the definition of the sense is added to the sense-bag as well. The mean of the word 
embedding vectors (from the word2vec model) of the words in the sense-bag are taken, and that 
new vector is the sense embedding of that given synset. In this way, all the words associated 
with the target word in the wordnet are put together, and the sense embedding for the given 
synset is the mean of the corresponding vectors in the word2vec model.  

Though the task of Bhingardive et al. 2015 work (to find most frequent sense) is 
different than the task of this thesis work (WSD), the argument for representing senses this way 
is the same. The semantic relations linking to the synset members from the word in the middle 
are words describing main senses, examples of the senses, the domain, what they are used for, 
what they are made of etc. For example, consider the word ‘model’. ‘Model’ can have 
something to do with a mathematical representation (as a vector space model or climate change 
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prognosis), as well as with the employed person working in fashion at a photoshoot. The words 
associated with the former sense are more similar in meaning than to the words associated to 
the latter sense, which again has more in common in the contexts they are used in. If the 
associated words in the two groups mostly are used in two significantly different contexts, then 
their created sense embeddings would probably reflect that in the word2vec model. Experiment 
1 is therefore a test of whether the selected knowledge-based information from DanNet in 
combination with the distributional representation of the words in the sense-bags can construct 
an appropriate sense representation. 
 

More formally, a sense-bag is a set, 𝐵 = {𝑤4, . . 𝑤>}, where n is the number of words in B, and 
the w’s are the words selected to be considered. Each word, wi, in B, can be represented by a 
vector 𝑊-, using the word2vec model. From these vector representations, a mean vector, 𝑀, 
can be calculated by 

𝑀	=
𝑊-

𝑛
 

A reason to take the mean of the word vectors is to treat each word equally, and to keep the 
length of the vectors. See discussion on this matter in chapter 6.  
 
The information extracted from the wordnet to put in the sense-bag to create the sense 
embeddings comes from different sources, as mentioned above. In experiment 1 several 
combinations of information are tested. The different components are shown in Table 3.  
 

(1) Local synset members 
(2) Hypo- and hypernym synset members  
(3) Sample sentence  
(4) Definition 
(5) The definitions in synsets of hypernyms and hyponyms 

Table 3: The five components that are extracted from DanNet synsets. 

Figure 7: Visualization of experiment 1. The squares represents DanNet synsets, the half-circles represents the sense-bags 
where selected information from the synsets are stored, and finally a 2D example of how each sense-bag is represented in the 
word embedded space.   
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The results in the following experiments will be compared to the WSD performance of the best 
sense embeddings, namely those created with (1), (3), (4) and (5). 
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4.2.2 Experiment 2:  Sense Embeddings from Synset Sample Sentence 
 
Input:  DanNet synset sample sentence (as words) + word embedding model 
Output: One sense embedding per word sense per target noun 
 
The nature of this second experiment is similar to that of the first experiment. The idea, though, 
is to exclusively use the sample sentence given in DanNet to create the sense embeddings. As 
before, the words in the sample sentence are collected in a sense-bag, and the mean of the 
word2vec vectors in the sense-bag is taken. The motivation is to see how well a sense 
representation made solely on the basis of the target word used in a context (as vectors) 
corresponds to the instances (as vectors) in the evaluation data. On the one hand this could work 
well, since the DanNet sample sentences are hand-picked by lexicographers who consider the 
sample sentence as a good example, and since the two instances that is compared (the sample 
sentence and the test instance) is both made of bag-of-words of a sentence where the given 
word is used. On the other hand, it could work less well than experiment 1, as more hand-picked 
associated words are gathered in the sense-bag, which could reinforce the right direction of the 
sense embedding in the word2vec model.  
 

Formally, experiment 2 is like experiment 1, where the sense-bag is a set, 𝐵 = {𝑤4, . . 𝑤>}, 
where n is the number of words in B, and the w’s are here the words exclusively originating 
from the sample sentence. Each word, wi, in B, can be represented by a vector 𝑊-, using the 
word2vec model. From these vector representations, a mean vector, 𝑀, can be calculated by 

𝑀	=
𝑊-

𝑛
 

 
As in experiment 1, this procedure creates one single sense embedding in the vector space per 
word sense per target noun. These sense embeddings are later used to disambiguate the test 
sentences. The creation of the sense embeddings in experiment 3 is described first, before 
details on the WSD method is given. 

Figure 8: Visualization of experiment 2. The squares represents DanNet synsets, the half-circles represents the sense-bags 
where the sample sentence from the synsets are stored, and finally a 2D example of how each sense-bag is represented in the 
word embedded space. 
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4.2.3 Experiment 3: Sense embeddings by cluster centroids 
 
Input:  Sense embeddings from exp. 2 + unlabelled Korpus DK instances (as embeddings) 
Output: One sense embedding per word sense per target noun, 
 Sense-labelled Korpus DK instances 
 
The idea of experiment 3 is to re-use the sense embeddings found in experiment 2 (created from 
the wordnet sample sentence), and then tune the sense embeddings by adding more data than 
merely information from one sample sentence. The new data is unlabelled instances (containing 
the target words) which is clustered with the k-means algorithm (see section 2.2.1 for 
computational theory). Each cluster is evolved from a given seed, namely the (labelled) sense 
embeddings from experiment 2, which bootstrap the clusters to a category. In this way, the 
location of the centroids (initially the seeds) in the vector space is adjusted when given more 
data, and the un-labelled instances are hereby auto-tagged. The sense embeddings created in 
this experiment are the centroids of the clusters.  

The motivation for adding more data is to avoid the sense embedding exclusively to 
be based on the single sample sentence. It is to test whether the fine-tuned sense embeddings 
represent the senses more similarly to the human annotated evaluation data, than just the sample 
sentences alone in experiment 2, or the synset members and neighbours in experiment 1. Yet a 
reason is to see if the raw data can be clustered on the basis of the seeds at all, in a way that can 
perform WSD. If this experiment works well, it can be used for bootstrapping more 
semantically tagged evaluation data. 

The new data is from Korpus DK, described in section 3.5. Every sentence containing 
the target words is extracted, and a context window of 5 words to the left and right of the word 
is chosen. For each target word around 1000 instances is considered.  
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Each sense embedding from experiment 2 is used as a seed in the k-means algorithm applied 
with the software package SciKit-learn (Pedregosa & Varoquaux, 2011). Usually, the algorithm 
repeats the procedure of assigning data points to clusters with initial random centroids, until the 
same data points are assigned to the clusters. In this thesis work, the initial centroids are given, 
namely the seeds, so the procedure only runs once. 

 
 

Figure 9: Overview of method of experiment 3. The unlabelled Korpus DK instances are represented in the 
word2vec space. These instances are clustered around the sense embeddings from experiment 2 with the k-means 
algorithm, resulting in clustered – labelled - Korpus DK instances. The centroids of these clusters are the sense 
embeddings created in this experiment. 
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The clustered Korpus DK instances for the target word ’top’ is shown in Figure 10 as a 2D 
representation. Each colour represents a word sense. 

 
Figure 10: 2D representation of clustered Korpus DK instances for the target word 'top'. Dimensionality reduction with 
PCA. The black crosses in the central area are the original seeds. Plots for other target words shows a bigger distance 
between the seeds, though the clusters overlapped more. The plot for ‘top’ were chosen for explanatory reasons, not for 
analysis.  

The centroids of the clusters are the sense embeddings created in this experiment. The new 
labelled instances from this experiment are further used and tested in a machine learning 
classification task in the final experiment. First, the evaluation method of experiment 1-3 is 
presented in the following section. 
 

4.3 Evaluation: Word Sense Disambiguation task 
 
Input:  Sense embeddings from experiment 1-3 
Output: One sense prediction per test instance 
 
The method of evaluation in these experiments is WSD. The reason is that the data available 
for Danish semantic NLP at this stage is sense annotated sentences and super-sense annotated 
senses, but not ranked senses, as used in the before mentioned SemEval 13 task, or sets of 
relevant words, which is suitable for unsupervised WSI evaluation. The scope of this thesis of 
course also limits the possibility to create new evaluation data. See alternative evaluation 
methods in 2.1.6 and discussion on this choice in chapter 6. 
The quality measure of the system made in this thesis, is how good the system is to word sense 
disambiguate the evaluation data SemDaX. As stated in the beginning of this chapter, all the 
sentence instances are represented as vectors. All the senses each instance can have, is also 
represented by a vector: One vector for each sense of each target noun. The disambiguation 
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procedure is simply to compare the sentence vector to each possible sense representation, and 
let the system choose the most similar sense representation to the sentence vector. A distance 
measure to compare similarity needs to be chosen. The similarity measure used, 𝐷, is the cosine 
value to the angle between the vectors: 

𝐷 = cos 𝜃 =
𝐴 ∙ 𝐵

∥ 𝐴 ∥∥ 𝐵 ∥
=

𝐴-𝐵->
-34

𝐴-	=>
-34 𝐵-	=>

-34

, 

where A and B are the vectors to compare, 𝜃 is the angle between the A and B, and n the 
dimensionality. The smaller the angle is, the higher similarity. The similarity (or distance) 
measure is usually the distance between the endpoints of the vectors, the dot product, the angle 
or the cosine between the angles. When choosing cosine to the angle, then the lengths of the 
vectors are outbalanced, and the value is kept between 0 and 1. 

The results of the WSD are compared to the performance of experiment 1, the most 
frequent sense, as well as the random choice. 
 
The system computes vectors representing senses and sentences. Now, an example is given in 
words, and not vectors, to simulate what the WSD task would look like if a human were to 
disambiguate with the same information as the system has in vectors. 
The target noun ‘model’ (roughly same word and senses as in English) has 9 senses encountered 
in the data and 1 idiomatic expression. See Table 4. The words in bold are not very common 
words and therefore those which probably influence the location of the sense embeddings the 
most. The idiomatic expression ‘stå model til’ 15 has been collapsed with sense 5, as the closest 
in meaning, since idiomatic expression generally do not appear in wordnets. 
 
Three test sentences from SemDaX for the word ‘model’ are shown below. 

• ”Og så havde vi kursister den luksus også at have fire fantastiske modeller at 
arbejde med” 
 (“and we as participants then had the luxury of having four fantastic models to work 
with”) 
 

• ”Men sådan er prisklassen konkret, og de fleste modeller bliver ofte kun produceret 
i et meget lille antal” 
(”But that is how the price level actually is,  and most models are produced in a very 
limited amount”) 
 

• ”Jeg bryder mig ikke om ordet model” 
(”I do not like the word model”) 

Which senses would you choose from Table 4, if you only consider the last column, and mainly 
the bold words? Note, the words should be considered out of order as in a bag-of-words. 

                                                
15 Direct translation: ”stand model to” . Means to put up with/stand for/be the one to accept something.  
’model’ refers here to the hypothetic person who accepts something. 
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Table 4: Information from DanNet for the noun ’model’. The information corresponds to what the system gets as input to 
solve the WSD. The table shows the possible senses for ’model’, the DaNNet sample sentence, and the English translation. 
Bold words are considered most influential (as being neither function words nor very common words). The system is only 
presented with the last column in bag-of-words and builts a sense embedding for each possible sense. 

Sense of ‘model’  DanNet sample sentence Synset members  
1. Representation of 
something (sometimes 
on a smaller scale) 

Færgen er en model i 1:4 
The ferry is a model 1:4 

Effekt, videnskab, fremstille, figur, afprøve, gengive, 
pynte, arbejdsmodel, gine, globus, globus, mockup, 
modelbygning, modelfly, skalamodel, skibsmodel, 
modeljernbane, modelbil, modelskib, modeltog, 
kirkeskib 
Effect, science, produce, figure, test, represent, 
decorate, working model, gine, globus, mock-up, 
model building, airplane model, scale model, ship 
model, traintrack model, car model, ship model, 
train model, church ship 

2. Form of procedure, 
method or norm 

Social- og sundhedsforvaltningen har 
udarbejdet en model for løsningen af de 
administrative opgaver  
The administration of social and health 
affairs has prepared a model to solve 
the administrative tasks 

Fremgangsmåde, psykologi, automat, 
løsningsmodel, opskrift, skabelon, analysemodel, 
beregningsmodel, budgetmodel, finansieringsmodel, 
fortolkningsmodel, identifikationsmodel, 
samfundsmodel, standardmodel, styringsmodel, 
udviklingsmodel 
Procedure, psychology, automat, model to find 
solutions, recipe, model for calculation, model for 
making budgets, model for financing, model to 
interpret, model for identification, solution model, 
calculi, budget model, financing model, 
interpretation model, identification model, standard 
model, model for leading, development model 

3. Type or edition of a 
certain product 

fabrikkens største model D 9000 Jumbo 
.. er Europas største konventionelle 
mejetærsker  
The biggest model of the factory, D9000 
Jumbo, is Europe’s biggest 
conventional combine harvester 

Handelsvare, industri, handlende, køber, sælge, 
købe, bordmodel, demonstrationsmodel, 
produktionsmodel, slimlinemodel, unisexmodel 
Goods, industry, dealers, buyers, sellers, buy, table 
model, demonstration model, production model, 
slimline model, unisex model 

4. Schematic 
description or 
illustration of an 
abstract, complicated 
thing or relation 

Watson og Crick fremsatte deres model 
af DNA-molekylet som en dobbeltspiral, 
der kan visualiseres som en vredet stige  
Watson and Crick presented their 
model of a DNA molecule like a 
double-spiral, that can be visualized 
like a twisted latter   

Anskueliggørelse, videnskab, atommodel, 
forklaringsmodel 
Visualization, science, atom model, explanation 
model 

5. A person who poses 
for a photographer or 
painter or sculptor + 
idiomatic expression 
”stå model til” 

Edwards flyttede ind hos Bacon, der 
benyttede ham som model i mange af 
sine højt betalte malerier  
Edwards moved in at Bacon’s place, 
who used him as a model in many of his 
highly-valued paintings 

Person, kunst, tale, tænke, leve 
Person, art, speak, think, live 

6. A person who is 
employed by a 
company to wear its 
products  

Erik Mortensen førte selv bruden frem 
på podiet til klapsalver fra både de 
øvrige modeller og publikum  
Erik Mortensen led the bride to the 
stage under applauses from the other 
models and audience 

Person, reklame, job, tale, tænke, leve, mannequin 
Person, advertisement, job, speak, think, live, 
mannequin  

7. Person, object or 
phenomenon that 
functions as a role 
model 

Den barmhjertige samaritan, der tager 
sig af de nødstedte, er blevet en model 
for den gode handling  
The good Samaritan, who takes care of 
the people in need, has become a model 
for the good choice 

Person, psykologi, tale, tænke, leve, rolle, 
aktantmodel 
Person, psychology, speak, think, live, role, actantial 
model 

8. Person who 
(professionally) let 
themselves be 
photographed 

Hun har været [..] topløs model på 
britiske vodkaannoncer  
She has been [a] top-less model on 
British vodka-adds 

Person, foto, job, tale, tænke, leve, topmodel, 
nøgenmodel 
Person, photo, job, speak, think, live, top-model, 
nude model 
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4.3.1 Evaluation statistics  
 
Two evaluation measures are used to estimate the performance of experiment 1-3, namely the 
accuracy score and the Kullback-Leibler divergence (KL divergence) score. 

Accuracy  
The accuracy score is a simple measure to show how correct the system guesses on average.  
The accuracy is the count of correct disambiguations, T, out of the total count of instances, N: 

Accuracy = 	
𝑇
𝑁

 

As the annotators of the evaluation data, SemDaX, sometimes disagree, there can be several 
annotated sense tags in the data. This means that there possibly are multiple (correct) classes 
per instance, as every instance is considered correct in this setting. The annotators are not 
ranked, nor are e.g. the most frequent annotation picked per instance. A reason for low inter-
annotator agreement is many of the sentences lack context to fully tell which sense is used16. 
Therefore, all the annotations are saved, also to reflect the disagreement among annotators. This 
means that there might be more than one correct answer (annotation) per instance, which gives 
the system an advantage. The accuracy score results therefore need to be analysed with the 
inter-annotator agreement, which will be presented alongside the results. 
 
An F-score is not directly accessible. There are several classes per instance, and the combination 
of classes might change at every instance. The accuracy score can usually be calculated from 
finding the true positives (TP), true negatives (TN), false negatives (FN) and false positives 
(FP). To find these sets, one class needs to be fixed. For every instance, that fixed class can be 
truly guessed, truly not guessed etc. But as each possible class is considered correct in the 
evaluation setting here, the size of TP, TN and FP can be misleading, which affects the 
calculation of precision and recall. A FP might actually, in this setting, belong to a “TP”, if that 
guess is among the correct guesses, though not being the fixed class. Similarly, a TN might be 
a TP. For example: we can fix the class A in the set of classes A, B, and C. The correct guess is 
A and C, and the system guesses C. This guess will usually be a FN, if A is encountered as the 
only correct class. But with several correct classes, then C should be encountered in a set of 
True’s. A possible work-around is to represent the annotations of each instance in binary form: 
a matrix of all the instances and their annotations per sense as one-hot vectors can be compared 
to a similar matrix representing the guesses by the system. This would again lead to a biased 
score as the system only guesses one class, but there are several correct answers in the 
annotation matrix, which would lower the similarity between the two matrices. Nevertheless, it 
is possible to calculate whenever the system guesses incorrectly or capture one of the possible 
classes, which is why the accuracy score is considered in this work. 
 

                                                
16 Another reason is the rather fine-grained sense inventory 



 

 40 

Kullback-Leibler divergence  
 
The KL-divergence is also used as an evaluation measure. This is to incorporate the fact that 
the guesses by the system can be more or less precise: the predictions can be weighted for all 
classes per instance, as some senses are more similar to the guess than other. This measure will 
also assist the abovementioned difficulty where there are several correct classes, but only one 
prediction. 
 
As described in 2.1.7, KL-divergence is usually used to compare probability distributions. In 
this work, the KL-divergence is used to compare the distribution of the distances between the 
built sense representations and the test instances (‘distance distribution’), to the distribution of 
annotations of the test instance (‘annotation distribution’). That is to take the KL-divergence of 
the normalized score from the normalized distribution represented by the ground truth (the 
annotations). 
 
The distance distribution is the cosine similarities, from each sense representation (built by the 
word sense representation system) to the test instance vector, converted to a probability 
distribution. The smaller distance (high similarity), the higher a probability value. 

 

 
The procedure to determine the distance distribution starts by calculating the cosine similarities, 
Di. These measures are then transformed to all lie between 0 and 1 using  

𝐷-U =
1
2
𝐷- +

1
2
	, 

where, 𝐷-U, is the transformed measure.  
The sum of all 𝐷-U are then calculated, 𝑆 = 𝐷-U, and the frequency, 𝑝- , is calculated: 

Figure 11: The distribution of sense embeddings along with the test instance vector. The smaller angle between the 
senses and the test instance, the higher a probability score, P. 
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𝑝- =
𝐷-U

𝑆
 

 
The set of 𝑝-  is used as an estimate of the probability distribution, where the most similar 
sense representations (to the test instances) are assigned the highest probability score.  
As the probability values are the normalised distances from the test instance to each of the sense 
representations, the probability values can never be 0: there will always be a distance in the 
geometric vector space (unless if, hypothetically, the test instance representation and the sense 
representation is identical). 
 
The annotation distribution is the annotations converted to a probability distribution. The 
frequencies, 𝑞- , of annotation of each sense, 𝑎- are calculated by 

𝑞- =
𝑎-
𝑎
+ 𝜀 

where a small value, 𝜀, is added to avoid division by zero when calculating the KL-divergence 
below. 
 
The KL-divergence, 𝐷"#, is given by 

𝐷"#(𝑞||𝑝) = 	 𝑞 𝑥- ∙ 𝑙𝑜𝑔
𝑞 𝑥-
𝑝 𝑥-

2

-34

,	 

where p is the probability distribution (‘distance distribution’), q is the approximating 
distribution (‘annotation distribution’), and N is the size of the distributions (number of senses). 
In other words, it calculates how far the true outcome (annotations) are from the output of the 
system (built word senses). If  𝐷"# = 0 , then p=q , which means that the two distributions are 
identical. For this reason, the lower a KL-divergence, the better a fit for the system to human 
annotations.   
The situation where each built sense (pi’s) has equal probability is used as a baseline. 
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4.4 Classification Task for Machine Learning Algorithms 
The last experiment is different than the previous ones as it does not seek to find a sense 
representation of the synsets, but rather a function from features to a sense label. The task is 
still WSD of the evaluation data, but this time with supervised machine learning classifiers. 

4.4.1 Experiment 4: Classifier – SVM and FFNN 
 
Input:  sense-labelled data: (to train four individual classifiers)  

(1) SemDaX 
(2) Labelled Korpus DK 
(3) SemDaX + labelled Korpus DK  
(4) labelled Korpus DK (train) à SemDaX (test) 

Output: One sense prediction per test instance (for all four models) 
 
The idea of the final experiment is to train and test two machine learning classifiers (the 
traditional SVM and a simple feed-forward neural network) on the new-labelled auto-tagged 
Korpus DK instances from experiment 3, on the SemDaX evaluation data, on both data sets in 
a mix, and on labelled Korpus DK (for training) and SemDaX (for testing).  
 
The motivation is to see whether it is possible for a machine to find and distinguish features 
of the classes in and across both data sets. If it is difficult to find a function from the data to 
predict a class, the data within each class is hard to distinguish, and therefore not distinct. If 

Figure 12: Probability distributions P (”distance” distribution) and Q (”annotation distribution”) for the sentence ”bliv 
oplyst om Facebooks sande ansigt her” (”be enlightened about the true face of facebook”. The values in P are 
normalized distances from the induced word senses to the centroid of the test instance sentence. Both sense 1 and 5 is 
annotated, resulting in equal 0.5 probability per sense in the annotations (Q) in purple. 
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the clustering of the unlabelled instances from Korpus DK in experiment 3 does not separate 
the sense-classes similarly as the annotators did in the evaluation data, the function the 
classifier seeks to find is messier, and the results will be correspondingly less attractive. If the 
experiment works well, it would seem as if the locations of the seeds (sense embeddings) 
from experiment 2 match the centroids of the clusters from experiment 3, and that there is a 
correspondence to the sense annotations in the evaluation data.  
 Another motivation for this experiment is to compare feature selections with the 
previous WSD of the exact same evaluation data (Pedersen et al. 2018). Here, the features are 
the context lemmas of the sentence encoded as one-hot vectors, but not represented in the 
word2vec model. They also used the SVM algorithm, which makes room for reasonable 
comparison. The FFNN is tested as well to simply try how well deep learning as the state-of-
the-art method solves the same task on SemDaX. 
 
The SemDaX data is slightly modified for this final experiment. As annotators can disagree on 
which sense to tag with, and no ranking of the annotations are made, there can be multiple 
classes per instance. Following the same principle as the approach of Pedersen et al. (2018), the 
instance is repeated as many times as there is different annotations, and each repetition goes 
with a unique label from the set of possible annotation labels. This will undoubtedly be a 
function harder to find for the algorithm between features and classes. Nevertheless, if the 
machine is in doubt due to this fact, it corresponds well to the human disagreement on the same 
matter. Table 5 shows the size of the data before and after this procedure. 
 

Noun Number of 
annotated 
instances 

Number of 
repeated 
instances 

Ansigt 430 841 
Blik 261 507 
Hold 258 500 
Hul 406 786 
Kort 452 902 
Lys 543 1055 
Model 239 472 
Plade 380 752 
Plads 422 838 
Skade 498 965 
Slag 494 969 
Stand 317 620 
Stykke 549 1602 
Top 263 523 
Vold 325 637 
Kontakt 175 345 
Selskab 216 419 

Table 5: SemDaX data size before and after repetition per class 
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Besides training and testing on the SemDaX (1), a classifier is also trained and tested on the 
cluster-labelled Korpus DK in itself (2). The motivation is to test whether there within each 
cluster are distinguishable features for the algorithms to identify and classify on the basis of.  

Yet a classifier is trained from a mix of the two data sets (3).  The motivation is to 
examine whether the class features are distinguishable for the algorithm, which would suggest 
a feature consistency – also across data sets.  

Finally, a classifier is trained on the clustered Korpus DK data (4) , and tested on 
SemDax. The motivation is, as above, to examine whether the class features are 
distinguishable for the algorithm, which would suggest a feature consistency – also across 
data sets. The classifier might have a harder task here, compared to (3), as it has not seen data 
from SemDax at all under training. If the previous classifier performs well, this will 
supposedly work well too. If this is not so, this experiment will underline the differences of 
features within each sense class between the data sets. 
 
The SVM  
In this experiment, a Linear Support Vector Machine is built and trained using the module 
Scikit-Learn (Pedregosa & Varoquaux, 2011) from Python. The Scikit-Learn Dummy 
Classifier is tested as well, to access the performance by chance. 
 
A k-fold cross validation is used to test if the classifiers work sufficiently, and is usually used 
to check whether features in the train/test set is representative for the whole data set. When data 
is split in train/test, and a machine learns the features in the training set, then predict classes in 
the test set, it is assumed that the training set is representative for the whole data set. If the 
features are significantly different in the test set from the training, it can explain a low 
performance.  
 A 5-folded cross validation is chosen, as the case is in the before mentioned work on 
SemDaX by Pedersen et al. (2018), that would be preferable to compare to. The reason to 
choose k=5, and not the usual k=10, is due to the size of the corpus: There is around 400 
sentences for each target noun, and the classes to predict can be many. Hence, 5 folds gives 
more sentences in each fold. A low K decreases computational time, but a downside is that the 
classifier gets less training data. 

The FFNN 
 
Keras (Chollet, 2015), a neural network API with Tensorflow (Abadi et al., 2015) backend, is 
used to build the network.  
The network is a simple feed-forward network visualized in Figure 13. 
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The vectors representing each training instance is given as input. Output is the class to predict 
for each instance. One hidden dense layer of size 164 with rectifier activation. A dropout of 0.2 
to avoid overfitting, and finally the last softmax layer with the size of possible classes. Again, 
a 5-fold cross validation is applied. 
 
In summary, there are two classifiers, trained and tested on SemDaX, the clusters from Korpus 
DK, on a combination of the two, and finally and most interesting one trained on the clusters 
and tested on SemDax. 

Figure 13: FFNN visualization. Input layer is ready for all the sentence vectors with 500 dimensions, a hidden dense layer of 
164 nodes with rectifier activation. Then a dropout and finally the output layer with the size of possible word sense classes. 



 

 46 

5 Results 
In this chapter we present the results. As mentioned, the sense embeddings created in the 
experiments are tested in a WSD task on annotated data.  
 
In case of annotator disagreement, it is decided to treat each annotation equally, so that the 
WSD is counted as a correct instance if the guess of the system is among the annotations. The 
results presented in this chapter should therefore be compared to the table below showing the 
inter-annotator agreement across all words. Krippendorff’s alpha, a, is applied. a = 0 means 
the agreement is not better than chance agreement,  a = 1 means total agreement.  Note, the 
nouns are highly ambiguous, so the usual requirement in annotation tasks of an a ³ 0.80 is hard 
to reach here. The related work of Pedersen et al. (2018) finds an a ³ 0.67 useful, which is 
mostly met in the agreement statistics: 
  

 

 

Experiment 1 to 3 
The word sense representation method in experiment 1 extracts various wordnet information 
per word sense. The WSD performance of a selection of the various extractions (local synset 
members (local), hypo- and hypernym synset members (HH members), definition and sample 
sentence) are shown in Table 6. The best selection is kept as the main selection of experiment 
1.  

Chart 1: Inter-annotator agreement across all nouns of interest. Krippendorffs alpha, a, is 
applied. a = 0 means total disagreement,  a = 1 means total agreement. 
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DanNet features Accuracy 
Definition  0.16 
Local 0.22 
HH definition  0.20 
HH members 0.28 
Local + HH definition + sample sentence 0.29 
Local + HH definition + sample sentence + HH members + definition 0.29 
Local + HH definition + sample sentence + definition 0.30 

Table 6: WSD performance using various DanNet features. Note, only seven feature selections are shown, out of all the 
possible combinations.. The features with lowest performance and highest are shown, 

 
Table 7 shows WSD results for the sense embeddings created with the word sense 
representation systems in experiment 1 to 3. The average random (by chance) performance is 
provided as well as the average frequency of the most common annotation.  
 
WSD System Accuracy 

Experiment 1 0.30 

Experiment 2 0.27 

Experiment 3 0.17 

Random 0.13 

Most frequent 0.56 
Table 7: WSD results. Accuracy score, random score, score of the most frequent annotation, and finally the results from the 
experiments compared to the other scores 
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Figure 14 shows the WSD performance from experiment 1-3 for all words together with the 
random guess and most frequent. Remember, the sense embeddings in experiment 1 are made 
based on local wordnet synset members, neighbours, definition sentence and a sample sentence. 
The sense embeddings in experiment 2 is based solely on the sample sentence. The experiment 
3 sense embeddings are the centroids of the k-means clustered Korpus DK sentences. 

Figure 14:WSD performance for all experiments for all target nouns, as well as the random guess and most frequent 
sense frequency. 
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Figure 15 shows the average Kullback-Leibler divergence between the distance distribution 
(distribution of word sense representation system output) and annotation distribution 
(distribution in the evaluation data) for all test sentences for all words. 

Table 8 shows the average Kullback-Leibler divergence across all words for experiment 1 to 
3. An epsilon of 1e-11 is applied. 
 

 

 

 

 

Experiment 4  
Figure 16 shows the WSD performance for the machine learning classifiers trained and tested 
on the SemDaX data. 

Table 8: Average Kullback-Leibler divergence across all words. Baseline is the comparison with the annotations distribution 
from an artificial distribution where each sense is equally probable. 

Representation system Kullback-Leibler divergence 
Experiment 1 2.0100 
Experiment 2 2.0054 
Experiment 3 2.0198  
Baseline 2.0220 

Figure 15: Kullback-Leibler divergence across all nouns and experiments. A divergence of 0 means perfect match between the 
compared distributions (not the case that a divergence of 1 is absolute dissimilar distributions). 
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Figure 16: Machine learning classifier performance across all words. Trained and tested on the evaluation data SemDax. A 
Linear Support Vector Machine, a simple Feed-Forward Neural Network, and the Sci-Kit Learn DummyClassifier is applied 
for the random classification. The frequency of the most common sense annotation is given in green. 

Figure 17 shows the WSD performance for the machine learning classifiers trained and tested 
on the k-means clustered Korpus DK data selection. 

 
Figure 17: Machine learning classifier performance across all words. Trained and tested on the clustered Korpus DK data.. 
A Linear Support Vector Machine, a simple Feed-Forward Neural Network, and the Sci-Kit Learn DummyClassifier is 
applied for the random classification. The frequency of the most common sense (biggest cluster) is given in green. 
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Figure 18 shows the WSD performance for the machine learning classifiers trained and tested 
on the SemDax data combined with the k-means clustered Korpus DK data selection. 

 
Figure 18: Machine learning classifier performance across all words. Trained and tested on the clustered Korpus DK data 
combined with the SemDaX data.  A Linear Support Vector Machine, a simple Feed-Forward Neural Network, and the Sci-
Kit Learn DummyClassifier is applied for the random classification. The frequency of the most common sense (annotation 
and biggest cluster) is given in green. 

Figure 19 shows the WSD performance for the machine learning classifiers trained on the k-
means clustered Korpus DK data selection and tested on the SemDax data.  

 

Figure 19: Machine learning 
classifier performance across all 
words. Trained on the clustered 
Korpus DK data and tested on the 
SemDaX data. A Linear Support 
Vector Machine, a simple Feed-
Forward Neural Network, and the 
Sci-Kit Learn DummyClassifier is 
applied for the random 
classification. The frequency of 
the most common sense (frequency 
of class of biggest cluster in 
SemDaX) is given in green. 
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Table 9 shows the average performance of the machine learning classifiers in experiment 4.17 
There are no KL-divergence scores for this experiment: the score was computed from cosine 
similarities between sense embeddings to test instances in experiment 1-3. In experiment 4, 
machine learning classifiers are applied for WSD, not sense embeddings.18 
 

Data \ Classifier Baseline 
(random) 

SVM FFNN Most Frequent 

SemDax  
5-fold 

0.39 0.72 0.78 0.56 

Clustered  
5-fold 

0.13 0.56 0.71 0.18 

SemDax + Clustered  
5-fold 

0.153 0.39 0.65 0.24 

Trained on clustered 
Tested on SemDax 

0.147 0.17 0.18 0.10 

Table 9: Average machine learning classifier performance for different data selections and algorithms. 

 

                                                
17 The evaluation method gives an advantage to the words with higher disagreement, as each 
annotation is correct. A classification of either of the possible annotation is a counted correct. 
The FFNN classifier without this advantage outperforms the SVM and almost reaches the 
performance of the FFNN with evaluation advantage.   
18 It would be possible to compute KL-divergence scores from the final softmax layer to the 
test instances considered as a probability distribution. This is indeed a relevant future project. 
(The test data has been slightly changed for this final experiment (repeated instances as many 
times there were multiple classes). The original test data had to be applied to compute the KL-
divergence score for this experiment.) 
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6 Analysis and Discussion 
In the first half of this chapter, an analysis of the results from each experiment is given. Both 
one-by-one, and across experiments. Afterwards, a discussion on the possible reasons for the 
system performance is given, especially with weight on the linking of the datasets, the 
evaluation method, the data applied, and the methodological assumptions taken in the approach. 
 
6.1 Experiment 1-3 

The experiments generally outperform the baseline of 0.13, but do not, as expected, beat the 
most frequent sense at 0.56. Experiment 1 outperforms the baseline for all target words with an 
accuracy score on 0.30. The DanNet information extracted for creating the sense embeddings 
that works best is when including the sample sentence, the definition, the local synset members, 
and the definitions from the hyper- and hyponym synsets. When extracting only one kind of 
information, e.g. the local synset members, it works less well. The general picture is that the 
single features performs worst, and the more features used, the better a performance (except 
with the HH members). Experiment 2 outperforms the baseline as well for all target words with 
0.27. This is a bit lower than experiment 1. Experiment 3 also beats the baseline with an 
accuracy score on 0.17.  

When comparing the KL-divergence scores across these experiments, the built senses 
are considered all together and compared to the objective, the annotations. All the experiments 
beat the baseline at 2.022, as these have lower KL-divergence scores. The results indicate that 
the built senses in experiment 2, with a KL-divergence of 2.0054 is a better match to the 
annotations, than experiment 1 and 3 with KL-divergences on 2.01 and 2.0198, respectively. 
This suggest that even though experiment 1 performs better at the WSD task, the sense 
representations in experiment 2 is a better fit to the true outcome of the system when looking at 
all the built senses together. Although, the significance of these differences can be questioned, 
and must be answered in future work. 
 
For the word ‘top’ and especially ‘stand’, the performance of experiment 1 is higher than the 
other words. This might be due to the low number of senses of these words: ‘stand’ has 4 senses, 
and ‘top’ has 5, where the average sense number is 9.4. Also, stand is often annotated with the 
same sense (also high inter-coder agreement) which suggests that there is a highly dominant 
sense both created and annotated: if a sense is very commonly annotated, and generally has 
highest cosine similarity with the test sentence, the performance will undoubtedly increase. The 
same situation might be the case in experiment 2 where ‘stand’ also has a high score, and 
actually on the same level as the most frequent sense. This situation is also reflected in the KL-
divergence score for ‘stand’, which is lower than the other words, suggesting that the created 
sense representation per sense for this word match the annotators’ choice. 
 
In experiment 1, the WSD of ‘blik’ also works quite well compared to the other words 
considering the performance of the most frequent sense. This word has a relatively low inter-
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annotator agreement and “only” 6 associated senses, which could explain this. This word is also 
a homonym, which could increase the distance between the sense embeddings in the word 
embedding model. 
 
Experiment 1 generally outperforms the other experiments, suggesting the highest correlation 
of the word uses per sense in the word embedding model and in DanNet (and how the test 
instances appear of course). Where experiment 1 works less well than experiment 2 is especially 
for ‘hold’, and ‘vold’, but also for ‘slag’, ‘stand’, ‘kontakt’, and ‘selskab’. Investigation of the 
synset member size for ‘hold’ shows that almost half of the synsets only has one concept 
associated with it in DanNet, namely one hypernym. This is rather little information to base a 
sense embedding on, and, hypernyms tend to be more general, which might not be very 
informative being the only information.  

‘vold’ has a very low inter-annotator agreement and high most frequent sense 
frequency, which could give the system an advantage. Again, for this word, many of the synset 
sizes are rather small, which could explain the low performance compared to experiment 2.  

‘selskab’ is a tricky word as the differences in senses are often very subtle. Though the 
inter-annotator agreement is very acceptable, and therefore not giving the system a big 
advantage, many of the synsets in DanNet share quite some associated concepts. This could 
suggest that the positions of the sense embeddings for ‘selskab’ in experiment 1 are close. 

 
The experiment 2 sense embeddings perform slightly worse than experiment 1 in terms of 
accuracy score. This could be due to more noise in the associated words, as these are the bag-
of-words of the whole sample sentence. However, the sense embeddings from experiment 2 
works relatively good for the homonyms ‘hold’ and ‘vold’. Their contexts are relatively 
different when looking at the sample sentences giving a hint on which group of senses of the 
homonyms that are met. The sense embeddings for ‘selskab’ also seems to be more appropriate 
in experiment 2 than in experiment 1, as mentioned in the section above.  
 The KL-divergence score for experiment 2 are minimally lower than for experiment 
1, suggesting the sense representations are slightly more suitable on average for all senses, and 
not just the nearest sense embedding. The significance of these differences is questionable – 
see chapter 6. 
 
The clustering-approach in experiment 3 works relatively fine for the words ‘ansigt’, ‘plads’, 
and again ‘stand’. There are quite many idiomatic expressions and figurative speeches for 
‘ansigt’. Since the majority of data come from newswire text, these senses could be very 
common in the data, which enforce a consistency of sense features within the clusters. 

Since the Korpus DK sentences are clustered around seeds from experiment 2, it could 
be suspected that the results generally follow the performance there, since this is their starting 
point. This is not evident from the results. Experiment 3 works rather non-satisfying for ‘blik’, 
‘lys’, ‘model’ and ‘vold’ which in fact are outperformed by the random baseline. This suggests 
that the tuning of the seeds go in a wrong direction - the instances assigned to a cluster share 
other features than what is useful for WSD. This is the general case, except for ‘ansigt’, though 
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the performance stays at around 0.28. The rather bad results from experiment 3 are also 
reflected in the KL-divergence scores. See discussion on this matter in chapter 6. 
 
In summary, the words that generally are disambiguated most satisfactory are ‘blik’, ‘hold’, 
‘stand’, ‘top’ and ‘selskab’. All of these words have distinct information in the DanNet synsets, 
are homonyms or have non-subtle sense differences. Worst results are found for ‘lys’ which has 
a high number of senses (16), but no huge advantage to the system since the inter-annotator 
agreement is relatively high (.81). Also, though the sense number is high, the senses are related 
in meaning and the differences are often very subtle. The word ‘lys’ (and ‘kort’) is also a 
common adjective in Danish, which possibly affects the word embedding model. These reasons 
could explain why the system works less well for this word. 

The size and intersections of the synsets seem to be important for the sense representations 
in experiment 1, where the sample sentence information for experiment 2 works best for 
homonyms.  

Experiment 3 was motivated by the idea that sample sentences could work as seeds for 
clustering of more data, but both the accuracy and KL-divergence score (and machine learning 
classifiers, see more below and in Figure 19) proves otherwise, suggesting that the sample 
sentences do not have clear enough information as a base for clustering. 

6.2 Experiment 4 
Experiment 4 (classifiers on SemDaX and clustered data from exp. 3) shows that the classifiers 
perform best on within-dataset training and testing. The best performance is on the SemDaX 
data alone on 0.78 with a FFNN. The accuracy on the clustered data with a FFNN lies on 0.71. 
Both models significantly outperform the baseline (0.39 and 0.15, respectively), and the most 
frequent sense (0.56 and 0.18, respectively) too. This suggest that there is a clear pattern of 
features for the word senses in the data to be found by the FFNN algorithm. The picture is the 
same with the slightly less good SVM.  

When mixing the data sets, the performance falls to 0.65, but still beats the baseline at 
0.153 and the most frequent sense at 0.24. This suggests that there still is a pattern to find for 
the algorithm, but the function from features to the classes is more confused, which means that 
the features in one data set is a bit different from the features in the other data set for each class. 
This is not surprising, considering the origin of each data set. Again, this requires a systematic 
look in the differences between the data sets in future work. 

This tendency continues when looking at the performance when the models are trained 
on the clustered data and tested externally on SemDax. The performance then falls to 0.18, 
which beat the baseline (0.147), and generally the (low) most frequent at 0.10. 
 
The interesting results from experiment 4 are not those from the classifier trained on SemDaX 
exclusively, but the others. The motivation for this 4th experiment was to explore whether 
machine learning algorithms could find a function from features in data to classes (word 
senses). If the classifiers perform roughly the same within the SemDaX as on tested on the 
clustered data or a mix of the two sets, it could suggest that the features for each class are 
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similar. If this was the case, it would seem plausible that the clustered data was clustered around 
appropriate seeds (considering the SemDaX as the objective). This was apparently not the case, 
even though the classifiers outperform the random baselines. For this reason, the features and 
classes in the clustered data seem to differ from those in SemDaX. The difference is not 
complete, but big enough to want to adjust the approach in the future. 
 
In summary, all the classifiers in experiment 4 beat the baseline (random classification), but 
only the models tested (partly or exclusively) on the data they were trained on, perform better 
than the most frequent sense. 
 
It is appropriate here once again to recall Pedersen et al (2018), who also trained a SVM on the 
target nouns in the SemDaX data. Here, the surrounding lemmas of the target words, and their 
order, were used as features. The model performs at around 0.66, on the same task, though only 
including 10 nouns. The SVM in this thesis work performs a bit higher on average on 9 of the 
10 words, namely around 0.68. A cautious conclusion could be that representing the data 
instances as sentence centroids in the word embedded space trained on a huge corpus is a better 
feature than surrounding lemmas for word sense classification. 
  
We have seen in the experiments that the parameters that influences the results are inter-
annotator agreement, number of senses, synset sizes and synset member intersections, and the 
information in the sample sentences. Generally, and as expected, the words with most ambiguity 
are disambiguated poorest. The sense representation for ‘Plade’ yields average performance, 
though the inter-annotator agreement for the word is very low, suggesting the sense 
representations here are not suitable. Shortcomings of the approach and possible biases of the 
results are now discussed below. 
 

6.3 Linking from Dictionary Senses to DanNet Synsets 
An obvious bias in the system is the necessary linking from dictionary sense labels in the 
evaluation data, to the DanNet-influenced built senses represented by a synset id. Several links 
from dictionary senses had to converge into one synset id, since there are no synsets for 
idiomatic expressions, which the evaluation data has been annotated with as well. On the one 
hand, the bias has been minimized by choosing the synset of the literal sense of the target word 
in the idiomatic expression, and would therefore hopefully affect the sense representation 
minimally. Also, the DanNet has been compiled from the Danish dictionary, which proposes a 
correspondence (there does exists key besides the manual created here, but is not available for 
research).  
On the other hand, the labels before and after linking obviously cannot be said to be absolutely 
1:1 (this will not be a problem in the future when accurate data is available), as DanNet is 
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coarser grained19. The bias will therefore be highest where several links converge, which is 
mostly where the frequency of idiomatic expressions are high. It would be possible to delete 
these instances from the data, but they make up quite an amount. Also, the expressions in its 
literate sense uses the target words as how they are considered when linked.  
The exact quality of WSD of idiomatic expressions cannot be accounted for in this system, 
though. 
 
Yet an aspect to consider is that not all the senses for each target word in DanNet have been 
included. This is the also the case, again, in the work of Pedersen et al. 2018, where they tested 
a SVM on sentences in SemDaX with the annotated senses. The senses not included in the 
system of this thesis work are therefore not in the evaluation data SemDaX, and could therefore 
be said to not be of big importance (un-used or rare) generally. This is of course not evident, 
and it might be so, that the non-included senses are very apparent in data elsewhere. This is yet 
to be investigated when future statistics on word sense distributions is covered. 
 

6.4 WSD: Quality as Performance  
 
The evaluation method used to test the word sense representation system is a WSD task. This 
assumes that if the created sense representations can disambiguate in a satisfying way, the 
system is of good quality. Though it is a customary evaluation method, it might not be true that 
the built sense representations are of bad quality, if it does not disambiguate test data well. 
Maybe it is the other way around: that the method to test the (possibly ideal) sense 
representations are not suitable. The test data can be refined and bigger to disqualify this 
concern, or another evaluation method can be applied (cluster-based or in an application). 
 
Another point to discuss here in relation to the WSD task is the most frequent sense baseline, 
which the system is compared to. The most frequent annotation in the test data is chosen as the 
most frequent sense – but that might not be the case generally. Again, this is a matter of access 
to word sense frequencies in the Danish language in general. The 900 million word corpus that 
the word embeddings were trained on might have other sense frequencies than the test data. 
Even though the test data instances are represented in the vector space, we do not know which 
senses are the most frequent in the big training corpus, which probably would be the sense 
representation closest to the target word in the vector space. If a test data instance is very similar 
to the target word vector, the system will probably choose the most frequent sense (in the big 
corpus), but the point is, that we do not know whether that is the most frequent in the test data 
as well. Another normal baseline is the 1st sense (in the given lexical resource), which often is 
the most common sense. A random sense is also a possible alternative, which is also chosen in 
this present work. 

                                                
19 This is not only the case for DanNet, but is a general problem with wordnets, as these do not contain 
idiomatic expressions. 
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6.5 Data   
The quality of data in any NLP system is crucial. Some discussion points on the data used in 
this thesis work are now given, as the data can be another major source of uncertainty. 
 
The DanNet sample sentences are in experiment 3 supplemented with more data (sentences) 
using the k-means algorithm. Ideally, the new data should have no intersection with neither the 
DanNet sample sentences, the data from which the word embeddings were made nor the 
evaluation data SemDaX. We attempted to access such data, but due to practical reasons we 
decided on Korpus DK. It is uncertain whether there is an overlap, but probably there is. 
 
Another possible imperfection arrives when using a lexical resource, as WordNet or the 
dictionary. Though these resources often are of good quality and fine-grained, they are rather 
static, descriptive and expensive as humans have made decisions on which elements to include, 
how, when and where etc. DanNet includes only a certain number of senses, has a certain 
granularity and structure, and treats rare word senses in the same way as common senses. Word 
embeddings are in contrast made automatically on the data given, and hence, possibly more up-
to-date. The created sense representations in this work are anchored in wordnet associated data, 
and is therefore limited to the quality hereof. It is possible to add-on more data as in experiment 
3, though the number of senses remain the same.  

Word embeddings can also cause problems. Homonyms are treated as same element, 
and different inflections or class of a word are treated as different elements. It is also not 
possible to compare the word embeddings directly across vector spaces trained on different 
corpora. The homonym ‘skade’ (harm/injury/damage, magpie, marine ray), used in this work, 
has several and non-related senses. As the word embedding model operates at word level, the 
word embedding for that word is affected by both senses at the same time, which is not 
necessarily desirable. This is not a big problem in the word sense representation system of this 
work though, as the sense representations are made from the centroids of the words in the sense-
bag collection extracted from DanNet, and not induced from neighbour clusters to the target 
word embedding. Also, the hyperonymy relations are extracted, which skews the sense 
representations towards their proper “head” sense. The results of experiment 1 suggests that the 
hypernyms and hyponyms are valuable information to include in the system (see Table 6). 
 
The annotation of the test data is also discussable. The disagreement is rather high, and only 
2% of the data have been curated. Annotators report that the sentences often lack context and 
that the senses are rather fine-grained (Pedersen et al., 2018). As the senses can be very closely 
related, minor dissimilarities in how to understand the given word can influence the agreement. 
The disagreement can of course be lowered by different means, and will possibly decrease when 
the sense number drops, as the similarity between the possible senses might fall. 
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6.6 Manipulating Vectors and Averaging Information 
 
All data used as input in the word sense representation system are word embeddings, that 
originally come from single words or sentences. Every sentence (either test data sentences, 
Korpus DK sentences or DanNet sentences) has been word tokenized, and represented as one 
vector in the word embedded space. Though this procedure is customary, it is a decision with 
consequences. There will inevitably be lost structural information of the sentence under data 
processing. However, some structure can be said to have lasted in the word embedding model, 
at least the co-occurrence information. This is a condition when modelling word similarity as 
in vector space models.  
 
One decision is to treat a sentence as bag-of-words (possibly selected words). Another decision 
is how to transform the bag-of-words into one vector representation. In this thesis work, the 
mean of the word vectors is taken. Another possibility is to add the word vectors together.  This 
will have consequences for the length of the resulting vectors, not the direction of them. As the 
cosine similarity is used in this thesis work as distance measure between vectors, the length of 
the vectors matters less, than if the Euclidean distance was used. Again, the task at hand can 
help identifying how vectors should be manipulated.  
 
If certain words in a sentence are judged to have more importance than other words (e.g. those 
that play a semantic role to the target word), they could be extracted before representing them 
in a vector. Another possibility is to give the words a weight, which is applied when 
manipulating the vectors. This is indeed a possibility in future work. 
 

6.7 The KL-divergence Metrics 
It is obvious in Figure 4 that the two distributions that are compared with the KL-divergence 
score are rather dissimilar. On the one hand, it makes sense to treat each word sense (and 
annotation) as a valid candidate with assigned weights. As mentioned before, this is also the 
case and intuition in the SemEval 2013 task 13.  
 
On the other hand, the method lead to high and very similar KL-divergence scores, whose 
differences cannot be said to be significant. In this work, each annotated sense is assigned the 
same probability. This does not properly rank all the word senses, but rather either give the 
word senses importance, or not. A possible solution could be to include statistics on how many 
annotators chose some senses over others, and give a higher weight to those senses that are 
chosen by, say, five of six annotators. This would be a more “democratic” approach, but would 
disregard the view that all annotators are just as right. A more expensive solution could be to 
adjust the annotator’s task, and ask them to rank the possible word sense labels. These possible 
solutions could represent the evaluation data in a metric, which probably would be more similar 
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to the metric of distances between the sense representations and a test sentence centroid. With 
two sets of sense labels, the system could be evaluated more similarly to the SemEval task 13 
with a Jaccard Index and positionally-weighted Kendall’s τ, and thereby use correlation 
statistics rather than divergence statistics. 
 

6.8 Approach Assumptions 
 
The approach of this thesis is to see whether sense representations based on wordnet associated 
data represented in a word embedded space, can disambiguate test data, which is also 
represented in the embedded space. The words in the sense-bags are grouped regardless of how 
they appear in the embedded space. This means that only a reasonable (distinctive) sense 
representation can be made if there is a correspondence with wordnet senses and how they 
actually behave in the big training corpus. The centroid of the words associated with each sense 
in DanNet can only be different from each other if the same groups of words also behave 
differently in the training data.  

Also, the centroids of the test instance sentences can be affected by noise in the sentences. 
Some words are not important to the word sense. The context word with a window of 5 is 
considered, but the clues to which sense it is, might be elsewhere in the sentence.  
 
The word sense representation system can be considered more or less guided. The sense 
embeddings made exclusively from words in DanNet (experiment 1 and 2) can be considered 
as new representations of the synsets, which are then applied for WSD. This is rather controlled 
and knowledge-based. Although, the sense representations are represented in the vector space 
model, which are rather data-driven. The clustering technique in experiment 3 can be said to be 
semi-supervised since new data unsupervised are assigned a class, which “happen” to have a 
label. Consequently, the system do not unsupervised induce and detect senses, but is guided. 
These aspects need to be considered in future comparison to unsupervised WSI systems. 

6.9 Limitations and prospects 
The approach of this thesis has a series of limitations, but also prospects. 
 
A theoretical limitation is that the created sense representations are based on a lexical resource, 
which limits the created senses to the senses apparent in the given resource. This means there 
is a set number of senses, and the sense inventory would not cover other or new senses in data. 
Also, the system is limited by the quality of the given lexical resource. For example, some 
synsets in DanNet do not contain much information.20 Unsupervised methods for word sense 

                                                
20 Practically, the system in this work is most likely more limited by the input data (with noise), and the 
approach limited by available evaluation data. 
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detection would be appropriate to detect new senses or senses of unknown words, but requires 
a suitable evaluation method. 
 Another limitation of the approach is that the machine learning classifiers can only be 
used to sense-tag the target words apparent in training data. A solution could be to auto-tag new 
training data using sense representations built like we do. Such a machine learning classifier 
could be trained for all words in the given lexical resource. 

A practical limitation is the performance of the system. The sense representation 
system for experiment 1 to 3, which can be computed for any word in the given lexical 
ressource, does not outperform the most frequent sense, in fact, the best sense representations 
here only perform roughly half as good. Possible solutions have been discussed, and it is still 
an open question how the sense representations perform for less ambiguous words.  
  
Nevertheless, the approach has some prospects. As mentioned above, it is possible to create 
sense representations for all senses apparent in the given lexical resource. Also, there is a 
number of possible rather straight-forward improvements (see next chapter), which could 
augment the quality of the sense embeddings. Finally, the supervised simple WSD classifiers 
from experiment 4 all outperformed the baselines significantly, and the best model (0.78) can 
be applied for DanNet sense-tagging of the lexical samples included in this work. This model 
also reaches the level of inter-annotator agreement in this sense inventory. 
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7 Conclusion 
This study set out to determine the possibility of building appropriate sense representations for 
Danish sense tagging, by combining word embeddings with wordnet senses. The rationale is to 
combine corpus evidence with senses outlined by humans. Various data were extracted, 
represented in a word embedded space, and tested in a WSD task. Thousands of sample 
sentences were auto-tagged by sense clustering, and the clusters as well as the evaluation data 
were tested in machine learning classifiers. This technique to represent word sense could work, 
if the word senses behave approximately similar in both the (mostly) high-quality knowledge-
based information and the distributional information of the given words.  

As expected, wordnet-associated data is informative for the sense representations. 
Generally, the more semantic relations and information included from the wordnet, the better. 
The best WSD results for created sense representations are found in the first experiment, where 
the wordnet sample sentence, definition, local synset members and definition of the hypo- and 
hypernym are extracted all together. When comparing all annotations in all test instances to the 
sense embeddings through Kullback-Leibler divergence scores, the best sense representations 
across all target words come from the wordnet sample sentence alone. The differences in these 
scores are non-significant, and must be examined in future work.  

Moreover, the word sense representation system in experiment 1-3 has other serious 
drawbacks. Firstly, it is generally far from performing as well as the most frequent sense as 
default, and it is not clear to what extent the mapping of dictionary senses in the evaluation data 
into wordnet synsets generates bias. Also, the machine learning classifiers works far better at 
the WSD task, but they are limited to the number of sense annotated words in data. Furthermore, 
the machine learning results indicate that the features of the auto-tagged clusters seems to have 
almost no connection at all to the sense features in the evaluation data. 

However, the sense representation system can also be said to seem promising. The best 
sense embeddings in this pilot project do disambiguate better than by chance, even though the 
task is rather hard and the information not have been through (probably) valuable cleaning of 
data noise. With these aspects considered, the first pilot of this approach seems to function, 
though not yet suitable for application. Various improvements will possibly increase the quality 
of the representations leading to better disambiguations and possibly auto-tagged data. 
Especially for less polysemous words, which undoubtedly make up a bigger part of the Danish 
language than the selected highly ambiguous nouns included in this case study. Before 
evaluation of unsupervised WSI approaches is possible for Danish, it is now found that a 
combination of the lexical resource DanNet and word embeddings seems promising for future 
development of appropriate sense inventories for Danish language technologies. 

Future work 
The motivation for this thesis was partly to work towards comparing the supervised created 
clusters of word senses in Pedersen et al. 2018 (grouped by wordnet ontological types) to free-
standing clusters induced unsupervised from data. Before curated open-source data is available 
to evaluate such clusters, it would be useful to explore how the senses represented as in this 
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thesis work would cluster, and whether that would have a correspondence to the human-driven 
approach. Also, in line with the mentioned study, an exploration of adjustment of granularity 
of the sense inventory would be appropriate. 

Another motivation for this thesis was to find word sense distributions, as these can 
e.g. improve sense-taggers or reveal qualities of different text types. The sense distributions 
could be found by ranking the sense embeddings by similarity to the target word, as Bhingardive 
et al. (2015) does for most frequent sense detection. For all words in DanNet, a sense embedding 
(and the nearest to the target word) can be found. These ideas are a start for a sense-tagger. 
Another possibility is to count tags in data tagged by a sense-tagger (such data can be evaluated 
e.g. in a survey or by a gold standard). The detections of the most common senses can also be 
compared to whether they are the 1st sense (in a lexical database), as this is usually the most 
common. 
 
As sense representations from experiment 1 proved to work best compared to experiment 2, it 
would be suitable for near-future work to use these centroids as seeds in experiment 3. A clean-
up of the sense-bags created from the sample sentences would also be an obvious next step: 
detection of the target word to extract the chosen context window would reduce noise in the 
data. The synonyms or the near-synonyms of words in the sample sentences could possibly 
augment the sense embeddings if these were included in the sense-bags. Also, when computing 
the centroids of the sense-bags, the neighbours could be weighted differently depending on the 
type of relation. Maybe a hypernym is more similar in the distributional sense than e.g. 
meronyms. The test sentences could also be clustered, and the centroid of those would be the 
sense embedding and seeds. This would limit a possible sense-tagger to the target nouns. 
Regarding experiment 4, some near-future work is also possible here. Firstly, the training data 
can be refined in line with the possible solutions given in this chapter. Secondly, the parameters 
set when training the classifiers can be tested more thoroughly which most likely will reveal 
some potential for better performance. Again, the classifiers can also be tested on less 
ambiguous nouns, if proper auto-tagged training data is created. 
 
The sense representations can also be evaluated differently than in a WSD if suitable data are 
created. Such data can also benefit evaluation of un-supervised WSI systems where free-
standing automatically induced clusters can be compared to. This can possibly reveal new 
senses and detect sense use over time. It can also discover sense distributions, i.e. by ranking 
the nearest cluster neighbours or count tags in auto-sense-tagged corpora, if the system is 
reliable. These possibilities open up for bootstrapping new data sets. 

Another possible future project could be to adjust the sense embeddings by finding a 
relation (if such one exists) to the location of the test vectors. If the DanNet vectors are always 
a bit off (in a consistent way) to the gold standard sense vectors, the WSD guesses can be 
adjusted by knowledge on this relation. This would post-process a sense representation from 
the lexical resource into an adjusted sense representation, for instance by linear transformation. 

Finally, a future expansion of this work could be to include other word classes, such 
as verbs, which also can be highly ambiguous. FrameNet will possibly be useful for this. Other 



 

 64 

work could be to test the approach on less polysemous words when data is available. At the 
time of writing, there is an ongoing project for evaluating the word embeddings. When these 
results are ready, it would be suitable to test this word sense representation system with the best 
word embedding model available. Lastly, as the approach of this thesis limits a possible sense-
tagger to the words found in DanNet, a future project is to include unknown words. 
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