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Problem There are many models on the market that claim to predict changes in 

financial assets as stocks on the Stockholm stock exchange (OMXS30) and 
the Milano stock exchange index (MIB30). Which of these models gives the 
best forecasts for further risk management purposes for the period 31st of 
October 2003 to 30th of December 2008? Is the GARCH framework more 
successful in forecasting volatility than more simple models as the Random 
Walk, Moving Average or the Exponentially Weighted Moving Average? 

 

Purpose The purpose of this study is to find and investigate different volatility 

forecasting models and especially GARCH models that have been developed 
during the years. These models are then used to forecast the volatility on 
the OMXS30 and the MIB30 indices. The purpose of this study is also to find 
the model or models that are best suited for further risk management 
purposes by running the models through diagnostics checks. 

 

Method Daily prices together with the highest and lowest prices during one trading 

day for the OMXS30 and MIB30 indices were collected from Bloomberg for 
the period 31st of October 2003 to 30th of December 2008. These data were 
then processed in Microsoft Excel and Quantitative Micro Software EViews 
to find the most successful model in forecasting volatility for each of the two 
indices. The forecasting was performed on-step ahead for the period 1st of 
July 2008 to 30th of December 2008.  

 

Results This study has examined the forecasting ability of various models on the 

OMXS30 and MIB30 indices. The models were the Random Walk (RW), the 
Moving Average (MA), the Exponentially Weighted Moving Average 
(EWMA), ARCH, GARCH, EGARCH, GJR-GARCH and APGARCH. The results 
suggest that the best performing model was EGARCH(1,1) for both indices. 
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1 Introduction 
The paragraphs in the introduction section give a brief description of the background, 
problem definition, delimitations and purpose of this study. The disposition of this report is 
also presented.  

1.1 Background 

 
Trading in the world’s financial markets has increased dramatically over the years. As larger 
and larger volumes are handled by investors, financial institutions and their traders, it has 
become more important to handle and evaluate risk. Evidence in the past has showed that 
lack of risk handling and control systems can have a devastating outcome. An example of 
lack of risk evaluation is told by the outcomes of the United Kingdom’s oldest merchant 
bank, Barings Bank. Here one person traded with financial instruments for vast amount of 
money without risk handling. The result was that the Barings Bank went bankrupt and the 
total losses exceeded one billion dollars. 
 
Financial instruments are today more exposed to volatility when global markets are 
connected to each other and tend to shift rapidly. Financial instruments are also becoming 
more complex and harder to understand. Therefore investors are paying more interest to 
the actual risk involved and not only the payoff (Simons, 2000). 
 
Another perspective of risk in classic portfolio theory says that investors can eliminate asset- 
specific risk by diversifying their portfolio by holding many different assets. Although the risk 
can be diversified away in this manner, the market does not reward such portfolio handling. 
Instead an investor should hold a combination of a risk-free asset and the market portfolio. 
The conclusion here is that investors should not waste resources as investors don’t care 
about firm-specific risk (Christoffersen, 2003). Many investors have however learnt that 
firm-specific risk shall have a high priority. Firm-specific risk involves bankruptcy costs, taxes 
paid which influence the value of the firms, capital structure and the cost of capital. All these 
risks influence firm value on the market and have a direct influence on the volatility of their 
stock value. 
 
Many models have been developed over the years to forecast the volatility and thus to give 
a framework to manage risk. The RiskMetrics model, also called the exponential smoother, 
was one of the most famous models developed by J P Morgan. Another famous model is the 
Random Walk. These models are easy to use but have some shortcomings. The 
disadvantages with RiskMetrics or the Random Walk have been to drive the development of 
new models to give a better prediction of future volatility. A set of new models that have 
been developed are called GARCH, generalized autoregressive conditional heteroskeda-
sticity. These models have showed enough flexibility to accommodate specific aspects of 
individual assets, while still being simple to use (Christoffersen, 2003). 

1.2 Purpose 

Firstly, the purpose of this study is to find and investigate different volatility forecasting 
models, especially GARCH models, which have been developed over the years. These models 
are then used to predict the volatility on the Stockholm stock exchange index (OMXS30) and 
the Milano stock exchange index (MIB30). Secondly, the aim is to run these models through 
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diagnostics checks to determine the model or models that are best suited for further risk 
management purposes. 

1.3 Problem definition 

There are many models on the market that claim to predict changes in financial assets as 
stocks on the OMXS30 and MIB30 indices. Which of these models gives the best predictions 
for further risk management purposes for the period 31st of October 2003 to 30th of 
December 2008? Is the GARCH framework more successful in predicting volatility than more 
simple models such as the Random Walk, Moving Average or the Exponentially Weighted 
Moving Average models? 

1.4 Delimitations 

The study presented in this report is limited to volatility forecasting on the Stockholm stock 
exchange index (OMXS30) and the Milano stock exchange index (MIB30). Models studied are 
the Random Walk (RW), the Moving Average (MA), the exponentially weighted Moving 
Average (EWMA), ARCH, GARCH, EGARCH, GJR-GARCH and APGARCH. The estimations of the 
models are performed under the assumption that the returns of the stock indices follow the 
normal distribution. No estimation is used under the assumption of a Student-t distribution, 
Skewed Student-t distribution, Gereralized Error Distribution or any other distribution. 
Furthermore, processing of the forecasted data as Value at Risk (VaR) or Expected Shortfall 
(ES) is not performed in this study. 
 
The time period used for the data from the stock indices range from 31st of October 2003 to 
30th of December 2008. 

1.5 Disposition 

The report starts with chapter 1 introducing the subject, the purpose of the study, the 
problem definitions and the delimitations. It then continues with chapter 2 explaining the 
methodology and approach to the study. In chapter 3 the theoretical framework goes 
through the theories used to retrieve the results. Chapter 4 describes the data and the data 
processing methodology. The results found are then presented in chapter 5 followed by an 
analysis and discussion in chapter 6. Chapter 7 gives some final thoughts and summarises 
the study. Further research suggestions of subjects not covered in this study are presented 
in chapter 8. Finally, the report ends with a list of references used when writing this report. 

2 Methodology 
The paragraphs in the methodology section describe the type of study that is performed in 
this report. The approach to the study is also described. 

2.1 Choice of methodology 

There are traditionally two methods used when investigating problems similar to problems 
in this report. They are the qualitative and quantitative studies. When using a qualitative 
study a limited number of units are investigated to gain a deeper understanding of these 
units. A qualitative study most likely leads to a situation where the researcher’s 
comprehension or interpretation of the information found serves as a basis for the results 
found in the study. 
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When using a quantitative study a vast number of units are studied with the purpose of 
gaining knowledge on a limited number of factors for each unit. Statistical analysis is most 
likely to take place of the data of interest such that different phenomenon can be explained 
using a selection of a certain population. A quantitative study can also be used to generalize 
and to represent other units in a similar population (Holme and Solvang, 1996). 
 
The presented problems and the data used to find the results in this study use a quantitative 
methodology. It is possible to generalize the studied problems to similar populations (stock 
indices) and the results are based on statistical analysis of the collected data. A quantitative 
methodology to the study thus makes sense. 

2.2 Approach to the study 

In general there are two main approaches to data in a study. These approaches are the 
deductive approach and the inductive approach. When using a deductive approach the 
conclusions made for specific events are based on general principles and existing theories. 
Based on these known theories and principles hypothesis are derived and then further 
empirically tested for the cases studied. The choice and interpretation of data used are also 
influenced by the known theories and principles. 
 
When using an inductive approach specific events are not derived from hypothesis derived 
from existing theories. The events are here studied without prior knowledge or influence of 
theories. A new theory is compiled and formulated using the results of the study (Davidsson, 
Patel, 1994). 
 
The study presented in this report uses a deductive approach. Academic research in the field 
has been performed during several years investigating similar problems. Practices based on 
these investigations have been prepared and made accessible for the general public. A 
deductive approach in this case thus makes sense. 

3 Theoretical framework 
The paragraphs in the theoretical framework describe the theories used to form the results 
in this study. 

3.1 Asset returns, volatility and standard deviation 

The return of an asset today is defined as the difference between the closing price of the 
asset today and its closing price yesterday divided by yesterday’s closing price. 
 

𝑅𝑡+1 =
𝑆𝑡+1 − 𝑆𝑡

𝑆𝑡
 

(1) 
 

 
The log return is used widely as the output of the calculation is unit free. Log returns are 
thus suitable for comparison with other unit free returns. The return or daily geometric 
return, also called “log” return can be defined as the change in the logarithm of daily closing 
prices of an asset. 
 

𝑅𝑡+1 = ln 𝑆𝑡+1 − ln(𝑆𝑡) (2) 
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The volatility is a measure of fluctuations in asset returns. An asset has a high volatility when 
the return fluctuates over a wide rage. When the return fluctuates over a small range the 
asset has a low volatility. Volatility can be seen as a risk measure or an uncertainty of asset 
return movements faced by participants in financial markets. The volatility is measured by 
the volatility or the standard deviation and is a measure of the asset returns dispersion over 
a specified time period. 
 

𝜎2 =
1

𝑁 − 1
  𝑅𝑡 − 𝑅  2

𝑁

𝑡=1

 (3) 

 
The standard deviation is simply the square root of the volatility. 
 

𝜎 =  
1

𝑁 − 1
  𝑅𝑡 − 𝑅  2

𝑁

𝑡=1

 (4) 

 
where: 
 
𝜎2 is the volatility 
𝜎 is the standard deviation 
𝑅𝑡  is the asset return at time t 
𝑅  is the average return over the specified time period 
𝑁  is the number of days for the specified time period 

3.2 Stylized facts of volatility and asset returns 

In order to model future volatility or the volatility of assets forming a portfolio or index it is 
important to consider the stylized facts. These facts have been found through vast academic 
research and seem to fit for most markets, time periods and types of assets. 
 

1. It can be found that daily returns have very little autocorrelation. Thus, returns are 
almost impossible to predict by only looking at the past returns. 
 

𝐶𝑜𝑟𝑟 (𝑅𝑡+1, 𝑅𝑡+1−𝜏) ≈ 0 𝑓𝑜𝑟 𝜏 = 1, 2, 3, … , 100 (5) 
 
The correlation of returns with returns lagged from 1 to 100 days of the OMXS30 
index and the MIB30 index are shown in Figure 1 and Figure 2. When investigating 
these graphs it can be argued that the conditional mean fluctuates around zero and 
is fairly constant. 
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Figure 1 – Autocorrelations of daily OMXS30 
returns 

Figure 2 – Autocorrelations of daily 
MIB30 returns 

 
The unconditional distribution of daily returns usually deviates from normality. This 
phenomenon is called excess kurtosis. Figure 3 and Figure 4 show a histogram along with the 
normal distribution. A closer look tells us that the histograms in these figures have fatter 
tails and have higher peaks around zero. The tails are usually fatter on the left side of the 
distribution. Fatter tails to the left of the distribution indicates higher probabilities of large 
losses compared to losses under the normal distribution. The QQ-plots in Figure 5 and Figure 
6 further shows the deviation from normality in the tails. 

  
Figure 3 – Daily OMXS30 returns against 
the normal distribution 

Figure 4 – Daily MIB30 returns against 
the normal distribution 

  
Figure 5 – QQ-Plots of daily OMXS30 
returns against the normal distribution 

Figure 6 – QQ-plot of daily MIB30 returns 
against the normal distribution 
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2. Stock market movements tend to have more large drops in value than corresponding 
large increases. The market is thus negatively skewed. Once again this can be seen in 
Figure 3 and Figure 4. 

 
3. It is hard to statistically reject a zero mean of return. For short horizons such as daily 

the standard deviation of returns is given more importance. The OMXS30 index has a 
daily standard deviation of 1.1644% and a daily mean of 0.0281%. For the MIB30 
index the numbers are 0.8804% and 0.0103% respectively. 

 
4. It can be found that volatility measured by squared returns have a positive 

correlation with past returns, especially for short horizons such as daily or weekly. 
Figure 7 and Figure 8 shows the autocorrelation in squared returns for the OMXS30 
index and the MIB30 index. 
 

  
Figure 7 – Autocorrelations of squared 
daily OMXS30 returns 

Figure 8 – Autocorrelations of squared 
daily MIB30 returns 

 
5. The correlation tends to increase between assets. Especially in bearish markets or 

during market crashes. This phenomenon is also referred to as volatility clustering 
where extreme returns are followed by other extreme returns, although not 
necessarily of the same sign. Figure 9 and Figure 10 shows the returns for the 
OMXS30 index and the MIB30 index over time where volatility clusters are present. 

 

  
Figure 9 – Daily OMXS30 returns Figure 10 – Daily MIB30 returns 
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6. Equity and equity indices tend to have a negative correlation between their volatility 
and returns. This phenomenon is called the leverage effect and is due to the fact that 
a drop in stock price will increase the leverage of a firm under a constant capital 
structure, i.e. if debt stays constant. 

 
These stylized facts are the most common facts mentioned in academic literatures. Other 
facts are also present. Regardless, it is important to know how these effects influence the 
financial data when using models for volatility forecasting. When considering these facts the 
daily return can be specified (Christoffersen, 2003). 
 

𝑅𝑡+1 = 𝜇𝑡+1 + 𝜀𝑡+1  (6) 
 

𝜀𝑡+1 = 𝜎𝑡+1𝑧𝑡+1 and zt+1 ∼ i.i.d D(0,1) (7) 
 
The random variable zt+1 is an innovation term which is assumed to be identically and 
independently distributed according to the distribution D(0,1). This distribution in this study 
is assumed to be the normal distribution with a mean equal to zero and volatility equal to 
one. The conditional mean of the return μt+1 is assumed to be zero (Christoffersen, 2003). 
 
Researchers sometimes include an autoregressive term of the first order AR(1) or a Moving 
Average term of the first order MA(1) in the mean equation. A combination of these terms 
of the first order will be an ARMA(1,1) term. Higher orders of these terms AR(p), MA(q), are 
also possible to include in the mean equation. 
 

𝑅𝑡+1 = 𝜇𝑡+1 +  𝛽𝑖 ,𝐴𝑅

𝑝

𝑖=0

𝐴𝑅 𝑖 +  𝛽𝑗 ,𝑀𝐴

𝑞

𝑗=0

𝑀𝐴 𝑗 + 𝜀𝑡+1 (8) 

 
By including these terms the model (mean equation) might capture dynamic features of the 
data better. The AR term states that a time-series current value depends on its current and 
previous value of a white noise error term. A time-series linear dependency on its own 
previous value is captured by the MA term (Brooks, 2008). The terms are selected using the 
Akaike Information Criterion (AIC), see paragraph 3.5.1. 

3.3 Volatility modelling 

This study focus on Generalized Autoregressive Conditional Heteroskedastic (GARCH) models 
that are exploiting different aspects of the stylized facts described in paragraph 3.2 above. 
The following paragraphs will describe the different GARCH models in more detail. Other 
more simple models are also described as these are the foundation of the more complex 
GARCH models. 

3.3.1 The Random Walk (RW) model 

The Random Walk (RW) model only considers the actual volatility in the present time period 
as a forecast for the volatility in the following time period. Thus, volatility is almost 
impossible to forecast based on historical information as the movement on the stock 
markets are seen as random. 
 

𝜎𝑡+1
2 = 𝜎𝑡

2 (9) 
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where: 
 
𝜎𝑡+1

2  is the forecasted unconditional volatility based on the actual volatility at time t 
𝜎𝑡

2 is the unconditional volatility at time t from equation (3) with a 25 day sliding  
                        window, which is the average number of trading days in a month 

3.3.2 The Moving Average (MA) model 

The Moving Average (MA) model states that if a period in time has a high volatility there is 
also a high probability of high volatility in the following time periods. Tomorrow’s volatility is 
thus the simple average of the most recent observations. 
 

𝜎𝑡+1
2 =

1

𝑚
 𝜎𝑡+1−𝜏

2

𝑚

𝜏=1

 (10) 

 
where: 
 
𝜎𝑡+1

2   is the forecasted unconditional volatility based on information given at time t 
𝜎𝑡+1−𝜏

2  is the unconditional volatility at time t+1-τ 
𝑚 is the number of observations 
 
The drawback of this model is that extreme returns will influence the volatility for 1/m times 
the squared return for m time periods as equal weights are put on all past observations. 
Another drawback is that it can be difficult to select the number of observations. 

3.3.3 The Exponentially Weighted Moving Average (EWMA) model 

The Exponential Weighted Moving Average model (EWMA) or the exponential smoother, 
developed by JP Morgan considers the drawback with equal weights on past observations. 
Weights on the observations are declining exponentially over the time period. The influence 
on extreme returns is smoothed out compared to the Moving Average model. 
 

𝜎𝑡+1
2 = 𝜆𝜎𝑡

2 +  1 − 𝜆 𝜎𝑡
2 (11) 

 
where: 
 
𝜎𝑡+1

2   is the forecasted conditional volatility based on information given at time t 
𝜆𝜎𝑡

2 is the volatility at time t 
 1 − 𝜆 𝜎𝑡

2 is the is the forecasted unconditional volatility at time t from equation (10) 
𝜆 is the smoothing parameter 
 
The smoothing parameter λ shall be estimated with values ranging from zero to one. When 
the exponential smoother model was developed it was found that a λ=0,94 was best for 
most assets for daily data (Jorion, 2001). This value has since then become an industry 
standard and is also used in this study. 

3.3.4 The ARCH(q) model 

R F Engle (1982) proposed a model where the conditional volatility was modelled with an 
AutoRegressive Conditional Heteroscedasticity (ARCH) processes. The term autoregressive 
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here states that past events influence future events but with diminishing effect as time pass 
by. Engle used the fact that financial time series usually incorporates clusters of high and low 
volatility over longer time periods. The time series thus show heteroscedasticity. As the 
volatility usually is gathered in clusters Engle found no independent variable that explained 
this phenomenon. He therefore used a regression based model with past squared returns as 
a describing factor for volatility forecasting. The lag parameter for past squared returns is 
described with q. The most simplest ARCH(q) process is a ARCH(1) process where the 
squared return is lagged one time period. 
 

𝜎𝑡+1
2 = 𝜔 +  𝛼𝑖𝜀𝑡+1−𝑖

2

𝑞

𝑖=1

 (12) 

 
with ω > 0 and 𝛼𝑖  ≥ 0 for all 𝑖 = 1 to 𝑞. 
 
where: 
 
𝜎𝑡+1

2   is the forecasted conditional volatility based on information given at time t 
𝜔 is a constant 
𝛼 is the ARCH coefficient 

𝜀𝑡+1−𝑖
2  is the squared residual from the mean equation at time t+1-i 

𝑞 is the non-negative order of the Moving Average ARCH term 

3.3.5 The GARCH(p,q) model 

The ARCH model was extended to a Generalized AutoRegressive Conditional 
Heteroscedasticity (GARCH) model by Tim Bollerslev (1986). This model not only considers 
past squared returns but also past volatilities to forecast the volatility. Thus the ARCH model 
was extended with an autoregressive term q for the volatility. The most simplest GARCH(p,q) 
process is a GARCH(1,1) process. 
 

𝜎𝑡+1
2 = 𝜔 +  𝛼𝑖𝜀𝑡+1−𝑖

2

𝑝

𝑖=1

+  𝛽𝑗𝜎𝑡+1−𝑗
2

𝑞

𝑗=1

 (13) 

 
with ω > 0, 𝛼𝑖  ≥ 0 for all 𝑖 = 1 to 𝑝, 𝛽𝑗  ≥ 0 for all 𝑗 = 1 to 𝑞 and (sum of 𝛼𝑖  + sum of 𝛽𝑗 ) < 1. 

 
where: 
 
𝜎𝑡+1

2   is the forecasted conditional volatility based on information given at time t 
𝜎𝑡

2 is the volatility at time t 
𝜔 is a constant 
𝛼 is the ARCH coefficient 
𝛽 is the GARCH coefficient 

𝜀𝑡+1−𝑖
2  is the squared residual from the mean equation at time t+1-i 

3.3.6 The EGARCH(p,q) model 

The GARCH(p,q) model does not consider the fact that a drop in asset return has a larger 
effect on the volatility then a corresponding rise in asset return. This effect is called the 
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leverage effect and is also argued in stylized fact number six above. The GARCH(p,q) model 
can be modified to deal with this phenomenon. The Exponential GARCH (EGARCH) model 
proposed by Nelson (1991) considers the asset returns effect on volatility differently 
depending on whether the return is positive or negative. An advantage with the model is 
that the volatility is always positive. The drawback with the model is that the forecasted 
volatility for lags larger than one cannot be calculated analytically. The most simplest 
EGARCH(p,q) process is a EGARCH(1,1) process. 
 

log 𝜎𝑡+1
2 = 𝜔 +  𝛼𝑖

𝑝

𝑖=1

 
𝜀𝑡+1−𝑖

𝜎𝑡+1−𝑖
 +  𝛾𝑘

𝑟

𝑘=1

 
𝜀𝑡−𝑘

𝜎𝑡−𝑘
 +  𝛽𝑗

𝑞

𝑗=1

𝑙𝑜𝑔 𝜎𝑡+1−𝑗
2   (14) 

 
with no restrictions on the parameters since the logarithm prevents 𝜎𝑡+1

2  to be negative. 
 
where: 
 
log 𝜎𝑡+1

2   is the log forecasted conditional volatility based on information given at time t 

𝜎𝑡+1−𝑗
2  is the volatility at time t+1-j 

𝜎𝑡−𝑘  is the standard deviation at time t-k 
𝛾 is the leverage coefficient 
𝜔 is a constant 
𝛼 is the ARCH coefficient 
𝛽 is the GARCH coefficient 
𝜀𝑡+1−𝑖  is the squared residual from the mean equation at time t+1-i 
𝑝 is the non-negative order of the Moving Average ARCH term 
𝑞 is the non-negative order of the autoregressive GARCH term 
𝑟 is equal to p 

3.3.7 The GJR-GARCH(p,q) model 

Glosten, Jagannathan and Runkle (1993) proposed another extension to the GARCH model, 
which deals with the leverage effect. An indicator variable was here introduced to form the 
GJR-GARCH model. The indicator variable takes the value 1 if the return at time period t is 
positive. Otherwise the indicator variable takes the value 0. The most simplest GJR-GARCH 
(p,q) process is a GJR-GARCH(1,1) process. 
 

𝜎𝑡+1
2 = 𝜔 +  𝛼𝑖

𝑝

𝑖=1

𝜀𝑡+1−𝑖
2 +  𝛾𝑘𝜀𝑡+1−𝑘

2

𝑟

𝑘=1

𝐼𝑡+1−𝑘
− +  𝛽𝑗

𝑞

𝑗=1

𝜎𝑡+1−𝑗
2  (15) 

 
with ω > 0, 𝛼𝑖  ≥ 0 for all 𝑖 = 1 to 𝑝, 𝛽𝑗  ≥ 0 for all 𝑗 = 1 to 𝑞, (𝛼𝑖 + 𝛾𝑘 ) ≥ 0 for all 𝑖 = 1 to 𝑝 and 𝑘 

= 1 to 𝑟 and (sum of 𝛼𝑖  + sum of 𝛽𝑗  + 0.5 sum of 𝛾𝑘) <  1 for all 𝑖 = 1 to 𝑝, 𝑗 = 1 to 𝑞 and 𝑘 = 1 

to 𝑟. 
 
where: 
 
𝜎𝑡+1

2   is the forecasted conditional volatility based on information given at time t 

𝜎𝑡+1−𝑗
2  is the volatility at time t+1-j 
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𝐼𝑡+1−𝑘
−  is an indicator variable that takes the value 1 or 0 at time t+1-k 

𝛾 is the leverage coefficient 
𝜔 is a constant 
𝛼 is the ARCH coefficient 
𝛽 is the GARCH coefficient 

𝜀𝑡+1−𝑖
2  is the squared residual from the mean equation at time t+1-i 

𝑝 is the non-negative order of the Moving Average ARCH term 
𝑞 is the non-negative order of the autoregressive GARCH term 
𝑟 is equal to p 

3.3.8 The APGARCH(p,q) model 

The Asymmetric Power GARCH (APGARCH) model was introduced by Ding, Granger and 
Engle (1993). It is similar to the GJR-GARCH model as the leverage effect is considered. The 
difference with the APGARCH models is that it allows the power к to be estimated. The 
power к usually takes the value 2 (Ding, Granger and Engle (1993)). The most simplest 
APGARCH(p,q) process is a APGARCH(1,1) process. 
 

𝜎𝑡+1
δ = 𝜔 +  𝛼𝑖 |𝜀𝑡+1−𝑖| − 𝛾𝑖𝜀𝑡+1−𝑖 

𝛿

p

i=1

+  𝛽𝑗𝜎𝑡+1−𝑗
δ

q

j=1

 (16) 

 
with δ > 0, |𝛾𝑖| ≤ 1 for all 𝑖 = 1 to 𝑟, 𝛾𝑖  = 0 for all 𝑖 > 𝑟 and 𝑟 ≤ 𝑝. 
 
where: 
 

𝜎𝑡+1
δ  is the forecasted conditional volatility based on information given at time t 

𝜎𝑡+1−𝑗
δ  is the volatility at time t+1-j 

𝛿 is the power coefficient 
𝛾 is the leverage coefficient 
𝜔 is a constant 
𝛼 is the ARCH coefficient 
𝛽 is the GARCH coefficient 
𝜀𝑡+1−𝑖  is the residual from the mean equation at time t+1-i 
𝑝 is the non-negative order of the Moving Average ARCH term 
𝑞 is the non-negative order of the autoregressive GARCH term 
 
The APGARCH model also includes other GARCH models as special cases. If restrictions are 
set on its parameters the below models can be specified: 
 

 ARCH when 𝛿 = 2, 𝛾𝑖= 0 for all 𝑖 = 1 to 𝑝 and 𝛽𝑗  = 0 for all 𝑗 = 1 to 𝑞 

 GARCH when 𝛿 = 2, 𝛾𝑖= 0 for all 𝑖 = 1 to 𝑝 

 GJR-GARCH when 𝛿 = 2 

3.3.9 Other GARCH models 

There exist a variety of other GARCH models. The Threshold GARCH (TGARCH) model 
introduced by Zakoian (1994) and the Quadratic GARCH (QGARCH) model introduced by 
Sentana (1995) are similar to the GJR-GARCH model. They both consider the leverage effect. 
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Other models as the Integrated GARCH (IGARCH) or the GARCH in mean (GARCH-M) are 
models that uses restrictions on the basic GARCH model or uses GARCH terms in the mean 
equation for the return. More complex GARCH models are the Regime Switching GARCH (RS-
GARCH) model introduced by Gray (1996) or the fractionally integrated GARCH model 
(FIGARCH) introduced by Baillie, Bollerslev and Mikkelsen (1996), which forecasts volatility at 
longer time periods than daily or weekly. New GARCH models are proposed continuously but 
they all origin from the simple ARCH model proposed by Engel (1982). A list of many 
proposed models is found in the Glossary to ARCH (GARCH) also called as “alphabet-soup” 
(Bollerslev, 2008). The GARCH models mentioned in this paragraph will not be dealt with in 
this study. 

3.4 Maximum-Likelihood parameter estimation 

The GARCH models described in previous sections contain unknown parameters. These 
parameters must be estimated in order to fit the GARCH models properly to the historical 
(in-sample) data used for volatility forecasting. The method used to find the unknown 
parameters is based on Maximum Likelihood Estimation (MLE). 
 
If equation (6) is considered and the assumption of i.i.d. under the normal distribution, the 
likelihood or probability that 𝑅𝑡  will occur is defined as 𝑙𝑡  (Christoffersen, 2003). 
 

𝑙𝑡 =
1

 2𝜋𝜎𝑡
2
𝑒𝑥𝑝  −

𝑅𝑡
2

2𝜎𝑡
2  (17) 

 
The joint likelihood of all squared returns within the time period is defined as 𝐿. 
 

𝐿 =  𝑙𝑡

𝑇

𝑡=1

=  
1

 2𝜋𝜎𝑡
2
𝑒𝑥𝑝  −

𝑅𝑡
2

2𝜎𝑡
2 

𝑇

𝑡=1

 (18) 

 
The unknown parameters are then selected to fit the data by maximizing the joint log 
likelihood of all squared returns within 𝐿. 
 

max log 𝐿 = 𝑚𝑎𝑥 𝑙𝑛 𝑙𝑡 = 𝑚𝑎𝑥   −
1

2
𝑙𝑛 2𝜋 −

1

2
𝑙𝑛 𝜎𝑡

2 −
1

2

𝑅𝑡
2

𝜎𝑡
2 

𝑇

𝑡=1

𝑇

𝑡=1

 (19) 

 
where: 
 
𝐿 is the likelihood of all squared asset returns between time t and T 
𝑙𝑡  is the likelihood of the squared asset return at time t 
𝜎𝑡

2 is the volatility at time t 
𝑅𝑡

2 is the squared asset return at time t 

3.5 Evaluation statistics 

Several statistical tests are performed in the software package EViews to determine which 
volatility models that are most suitable for the data used in the study. This paragraph 



 

18 
 

describes the Akaike Information Criterion (AIC) and the ARCH Lagrange multiplier (ARCH 
LM) test. 

3.5.1 Akaike Information Criterion (AIC) 

Models will fit a time-series as daily data from a stock index with different success 
depending on their specifications. Information criterion can be used as a guide when 
selecting the most appropriate model. The Akaike Information Criterion (AIC) consists of two 
parts. The first part is a test statistics derived from the maximum likelihood function. A 
penalty is then calculated in the second part for the loss of degrees of freedom from adding 
extra parameters (Brooks, 2008). The lower the information criteria the better the model fits 
the data. 
  

𝐴𝐼𝐶 = −
2𝑙

𝑇
+

2𝑘

𝑇
 (20) 

 
where: 
 
𝐴𝐼𝐶 is the test value 
𝑙 is the test statistics derived from the likelihood function 
𝑘 is the number of estimated parameters 
𝑇 is the number of observations 

3.5.2 ARCH Lagrange Multiplier (ARCH LM) test 

When using ARCH models for volatility forecasting it is appropriate to test if the time series 
consists of ARCH effects in the residuals. That is, if there is evidence of autoregressive 
conditional heteroskedasticity. If there is no evidence, ARCH models are not appropriate for 
volatility forecasting. The ARCH Lagrange multiplier (ARCH LM) test checks for ARCH effects 
in the residuals. When the ARCH models have been used and their parameters have been 
estimated for the in-sample period there should be as little evidence as possible left of any 
further ARCH effects. If there is still evidence of ARCH effects in the residuals there is more 
information in higher orders of the model that may explain the volatility better. A regression 
is used to compute two test statistics. The null hypothesis that there are no ARCH effects in 
the residuals up to order q is then tested (EViews, 2005). 
 

𝜀𝑡
2 = 𝛽0 +   𝛽𝑖

𝑞

𝑖=1

𝜀𝑡−𝑖
2  + 𝑣𝑡  (21) 

 
where: 
 
𝜀𝑡

2 is the squared residual at time t 
𝑘 is the number of estimated parameters 
𝛽0 is the intercept 
𝛽𝑖  is the slope 
𝑣𝑡  is the error term 
𝑞 is the non-negative order of the Moving Average ARCH term 
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The two test statistics computed for this test are the F-statistic and the OBS*R-squared test 
statistic. From these test statistics p-values can be calculated, which is used to check if the 
null hypothesis can be rejected or not. 

3.6 Forecast volatility model evaluation 

When the volatility model has been selected and the parameters have been estimated it is 
necessary to check if the model performs as expected. This paragraph describes the 
evaluation process based on regression, the R2 test and the F-statistic test. 

3.6.1 Out-of-sample check using regression 

A volatility model can be evaluated using regression. The squared return for the forecast 
period 𝑅𝑡+1

2  is regressed on the volatility forecast from the volatility model itself. 
 

𝑅𝑡+1
2 = 𝑏0 + 𝑏1𝜎𝑡+1

2 + 𝑒𝑡+1 (22) 
 
where: 
 
𝜎𝑡+1

2  is the forecasted conditional volatility based on information given at time t 
𝑅𝑡+1

2  is the squared asset return at time t + 1 
𝑏0 is the intercept 
𝑏1 is the slope 
𝑒𝑡+1 is the error term 
 
The volatility forecast 𝜎𝑡+1

2  should be unbiased and efficient. It is unbiased if it has an 
intercept of 𝑏0 = 0 and efficient if the slope 𝑏1 = 1. It shall be noted that as the squared 
return shows a high degree of noise the fit of the regression will be fairly low, typically 
around 5 - 10% (Christoffersen, 2003). 

3.6.2 Intraday high and low prices 

Instead of using the squared return as a proxy for the volatility the range can be used. The 
range is the difference between the logarithmic high and low price of an asset during a 
trading day. 
 

𝐷𝑡 = 𝑙𝑛 𝑆𝑡
𝐻𝑖𝑔

 − 𝑙𝑛 𝑆𝑡
𝐿𝑜𝑤   (23) 

 
where: 
 
𝐷𝑡  is the range at time t 

𝑆𝑡
𝐻𝑖𝑔

 is the highest price of an asset observed during day t 

𝑆𝑡
𝐿𝑜𝑤  is the lowest price of an asset observed during day t 

 
Peter Christoffersen (2003) suggests that the proxy for the daily volatility shall have the 
following form. 
 

𝜎𝑟 ,𝑡
2 =

1

4𝑙𝑛 2 
𝐷𝑡

2 ≈ 0.361𝐷𝑡
2 (24) 
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As in the out-of-sample check in the previous paragraph, regression is used for evaluating 
the forecast from the volatility model. 
 

𝜎𝑟 ,𝑡
2 = 𝑏0 + 𝑏1𝜎𝑡+1

2 + 𝑒𝑡+1 (25) 
 
where: 
 
𝜎𝑡+1

2  is the forecasted conditional volatility based on information given at time t 
𝜎𝑟 ,𝑡

2  is the range-based estimate of unconditional volatility at time t + 1 

𝑏0 is the intercept 
𝑏1 is the slope 
𝑒𝑡+1 is the error term 

3.6.3 Goodness of fit statistic, R2 test 

When comparing forecasted models they have to be distinguished in terms of goodness of 
fit between the data and the model before they can be ranked. The R2 test is such a measure 
explaining how well a model containing explanatory variables actually explains variations in 
the dependent variable (Brooks, 2008). In other words to what extent the parameters and 
variables in the models used in this study explain the forecasted volatility on the OMXS30 
and MIB30 stock indices. The R2 test uses regression and will equal 1 if the fit is perfect and 0 
if the fit is no better than the mean of the dependent variable (EViews, 2005). 

3.6.4 The F-statistic from regression 

The F-statistic reported from a regression tests the hypothesis that all slope parameters (bn) 
except the constant (c) and the intercept (b0) is zero. That is, if the regressed parameters 
includes information from the dependent variable. The reported p-value Prob(F-statistic) is 
the marginal significance level of the F-test. If the p-value is significant the null hypothesis is 
rejected and the slope parameters (bn) are significantly different from zero (EViews 2005). 
 

𝐹 =
𝑅2/ 𝑘 − 1 

 1 − 𝑅2 / 𝑇 − 𝑘 
 (26) 

 
where: 
 
𝐹 is the test value 
𝑅2 is the goodness of fit statistic 
 𝑘 − 1  is the number of numerator degrees of freedom 
 𝑇 − 𝑘  is the number of denominator degrees of freedom 

4 Data and data processing methodology 
The paragraphs in the data and data processing methodology section describe the data and 
the methods used in this study. Data can be divided in primary data and secondary data 
when used for research purposes. Primary data is data that researchers gather themselves 
through interviews or observations during the work of the study. Secondary data is data that 
have already been found by others and that can be extracted from databases, books or 
journals etc. (Holme and Solvang, 1996). This report only uses secondary data. 
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4.1 Description of the data 

The data consists of daily prices from the OMXS30 and MIB30 indices. Both OMXS30 and 
MIB30 list the 30 most valued companies on the Stockholm Stock Exchange and the Milano 
Stock Exchange. The time period for both OMXS30 and MIB30 indices is 31st of October 2003 
to 30th of June 2008. That is roughly five years giving 1171 sample points for OMXS30 and 
1185 sample points for MIB30. Peter Christoffersen (2003) argues that a general rule of 
thumb is to use the last 1000 data points for volatility forecasting. The number of sample 
points differs between the indices due to different number of holidays and different dates 
when holidays occurs between Sweden and Italy. Included with the daily prices the data also 
contains the daily range, highest and lowest daily price. The data has been retrieved using 
the Bloomberg databases. 

4.1.1 In- and out-of-sample periods 

The RW model only uses the previous sample point of the actual volatility to forecast the 
volatility. Thus the actual volatility for sample 1171 for the OMXS30 index and 1185 for the 
MIB30 index is used giving the first forecasted value in the out-of-sample period. The 
forecasting is then performed one step ahead throughout the out-of-sample period. 
 

𝜎𝑡+1
2 = 𝜎𝑡

2 and tOMXS30 = 1172, 1173, ... , 1299 (27) 

 
𝜎𝑡+1

2 = 𝜎𝑡
2 and tMIB30 = 1186, 1187, ... , 1312 (28) 

 
For the MA model the moving average window is set to equal the number of sample points 
in the in-sample period. That is the moving average window for the OMXS30 index is 1171 
and 1185 for the MIB30 index. The forecasting is then performed using these sample point 
sliding windows throughout the out-of-sample period. 
 

𝜎𝑡+1
2 =

1

1171
 𝜎𝑡+1−𝜏

2

1171

𝜏=1

 and tOMXS30 = 1172, 1173, ... , 1299 (29) 

𝜎𝑡+1
2 =

1

1185
 𝜎𝑡+1−𝜏

2

1185

𝜏=1

 
 
and tMIB30 = 1186, 1187, ... , 1312 

(30) 

 
The EWMA model only requires 100 lags in order to include 99,8% of all the weights neces-
sary to calculate tomorrow’s volatility (Christoffersen, 2003). To forecast the first day of 
volatility in the out-of-sample period weights 1072 to 1171 are used for the OMXS30 index 
and weights 1086 to 1185 are used for the MIB30 index. The forecasting is then performed 
using the 100 sample point sliding windows throughout the out-of-sample period. 
 

𝜎𝑡+1
2 = 𝜆𝜎𝑡

2 +  1 − 𝜆 𝜎𝑡
2 and tOMXS30 = 1172, 1173, ... , 1299 (31) 

𝜎𝑡+1
2 = 𝜆𝜎𝑡

2 +  1 − 𝜆 𝜎𝑡
2 and tMIB30 = 1186, 1187, ... , 1312 (32) 

 
The in-sample period when the coefficients for the ARCH type models are estimated is equal 
to the time period of the retrieved data, 31st of October 2003 to 30th of June 2008. When the 
coefficients have been found and fitted to the data using MLE the coefficients are used to 
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forecast the volatility one day ahead during the period 1st of July 2008 to 30th of December 
2008. This period is the out of sample period. The forecasting is thus made in a sliding 
window one day ahead throughout the out-of-sample period. 1st of July 2008 is the first day 
of forecasted volatility and 30th of December is the last day of forecasted volatility. Note that 
the out-of-sample period includes returns with high levels of volatility. 

4.2 Criticism of the sources 

The quality of the gathered data is very important in order to prevent biased results. It is 
therefore sound to treat the data with some scepticism. Typical questions to consider are 
the purpose of the data, when and where the data was gathered or even why the data 
exists. Further questions to consider are the circumstances when the data was collected, 
who the originator of the data is and its relation to the data (Davidson and Patel, 1994). 
 
The data used for this study is gathered by Bloomberg and used by many institutions and 
agents in the financial markets. There is no reason to think that this data is not correct or 
biased in any way for purposes only known by Bloomberg.  

4.3 Validity and reliability 

When researching a topic it is important that the result reflects the questions asked about 
the topic. Validity thus ensures that this is fulfilled. Reliability deals with the consistency of a 
number of measurements and is determined based on the processing of the data. Reliability 
can be increased if the data is treated carefully to avoid errors. Validity implies reliability, but 
reliability does not imply validity (Holme and Solvang, 1996). 
 
Bloomberg provides data to professional institutions and agents in financial markets all over 
the world. They have processes and rules that ensure correct data in their databases. If this 
were not the case they could not charge users for their services. The data is thus seen as 
reliable. Methods and calculations used in this study are presented in such a way that they 
could be replicated. A description and definition of what this study will find is also provided. 
The study can then be seen as valid. 

4.4 Data processing 

The data from the two indices are used to calculate other necessary data in order to further 
study the forecasting models. First, the prices are transformed to returns using equation (2). 
The actual volatility is computed using equation (3). Each of the MA, EWMA and RW models 
forecasted volatility are calculated using their respective formulas in paragraph 4.1.1. Finally 
the range and the range volatility are calculated using equation (23) and (24) respectively. All 
calculations are performed in Microsoft Excel. The data are then imported to Quantitative 
Micro Software EViews for further analysis. Note that the forecasting for the ARCH type 
models are performed in EViews and thus didn’t have to be calculated in Excel. 

5 Results 
The data in the result paragraphs describe the results found on empirical data. First the 
mean equation is examined followed by the stylized facts and found model parameters. 
Then the in-sample results for the different models are presented followed by the forecast  
and the out-of-sample results of the model valuation. 
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5.1 The mean equation 

The mean specification is found in equation (8). Regression is used to find if an AR(p), MA(q) 
or ARMA(p,q) term shall be included in the mean equation used by the ARCH type models. 
The EViews Akaike Information Criterion (AIC) is used to find the best model for the mean 
equation for the in-sample period. The results are show in Table 4 in Appendix 1. For the 
OMXS30 index the mean equation shall follow an AR(1) process whereas an ARMA(5,5) 
process is more suitable for the MIB30 index. 

5.2 Statistics of the OMXS30 and MIB30 indices 

Evidences of the stylized facts are already discussed in paragraph 3.3. Most of these facts 
can also be measured statistically. Table 1 shows the result of the sample statistics.  
 

 OMXS30 MIB30 

Number of observations 1171 1185 
Daily mean (%) 0.0281 0.0103 
Daily standard deviation (%) 1.1644 0.8804 
Zero mean test 0.8246 (0.4098) 0.4030 (0.6870) 
Skewness -0.322654 -0.589149 
Excess kurtosis 5.073684 5.931765 
Jarque-Bera value 229.9337 (<0.001) 492.5258 (<0.001) 
Ljung-Box Q-statistics (10 lags) 23.688 (0.008) 18.977 (0.041) 
Ljung-Box Q-statistics (20 lags) 33.799 (0.028) 26.540 (0.149) 
Lagrange Multiplier test (50 lags) 4.776 (0.000) 5.3975 (0.000) 
Augmented Dickey-Fuller test 1 (ADF1) -38.33809 -37.79119 
Augmented Dickey-Fuller test 2 (ADF2) -11.16321 -13.19904 

 
Zero mean test – Tests the null hypothesis of a zero mean in the daily returns 
Lagrange Multiplier test – Tests if there are any ARCH effects in the daily return series 
ADF1 – Tests for unit root in the return series, ADF2 – Tests for unit root in the squared return series 

 
Table 1 – Sample statistics for the OMXS30 and MIB30 indices, Oct 31, 2003 – Jun 30, 2008 

5.3 Higher orders of GARCH 

To test for higher orders of GARCH models the AIC criterion from EViews is used once again 
to find the best models. The results are shown in Table 5 through Table 8 in Appendix 2 
through Appendix 5. For higher orders, GARCH(7,2), EGARCH(3,7), GJR-GARCH(4,8) and 
APGARCH(2,7) are the most suitable models for the OMXS30 index. For the MIB30 index, 
GARCH(8,8), EGARCH(4,6), GJR-GARCH(2,4) and APGARCH(3,6) are the most suitable models.  
 
An ARCH LM test was performed in order to ensure that there are no or few ARCH effects 
left in the residuals. The results of the ARCH LM test are shown in Table 9 in Appendix 6. All 
models passed the test. Thus, the models have been successful in removing any remaining 
ARCH effects in the data for both indices. 

5.4 Estimated parameters 

Table 10 and Table 11 in Appendix 7 shows the estimated parameters for the first order 
GARCH and the order higher than one that best fitted the data. 



 

24 
 

5.5 Forecast model evaluation 

The one day ahead forecast for each model was evaluated with equation (24) as a proxy. An 
R2 statistic was used to rank the models. The regression parameters along with the p-value 
from the F-test are also presented. The results are shown in Table 2 and Table 3. 
 

 
The R

2
 statistics are applied over the period 01/07/2008 to 30/12/2008. Model rankings are obtained by 

expressing the R
2
 statistics as a ratio relative to the worst performing model. The best model is marked in bold. 

 
Table 2 – Model ranking from forecasting daily volatility for the OMXS30 index. 
 

 
The R

2
 statistics are applied over the period 01/07/2008 to 30/12/2008. Model rankings are obtained by 

expressing the R
2
 statistics as a ratio relative to the worst performing model. The best model is marked in bold. 

 

Table 3 – Model ranking from forecasting daily volatility for the MIB30 index. 

Model ranking from forecasting daily volatility for the  OMXS30 index 

     
Models R2 Relative Rank b0 b1 Prob(F-stat) 

       
RW 0.129008 0.381 8 0.000263 0.466706 0.000031 
MA 0.082871 0.244 9 -0.000502 6.874947 0.000984 
EWMA 0.072775 0.215 10 0.000326 0.661715 0.002074 
ARCH(1) 0.046037 0.136 12 0.000521 0.539557 0.015013 
GARCH(1,1) 0.179934 0.531 6 0.000164 0.656694 0.000001 
GARCH(7,2) 0.147060 0.434 7 0.000225 0.600495 0.000008 
EGARCH(1,1) 0.338963 1.000 1 -4.41E-05 1.547109 0.000000 
EGARCH(3,7) 0.068603 0.202 11 0.000454 0.385415 0.002821 
GJR-GARCH(1,1) 0.334523 0.987 2 8.39E-05 0.942256 0.000000 
GJR-GARCH(4,8) 0.237315 0.700 4 0.000159 0.749941 0.000000 
APGARCH(1,1) 0.329409 0.972 3 8.84E-06 1.185613 0.000000 
APGARCH(2,7) 0.206170 0.608 5 0.000170 1.006972 0.000000 

Model ranking from forecasting daily volatility for the MIB30 index 

     
Models R2 Relative Rank b0 b1 Prob(F-stat) 

       
RW 0.205316 0.414 9 0.000190 0.299419 0.000000 
MA 0.100968 0.204 11 -6.79E-05 4.593494 0.000272 
EWMA 0.093425 0.188 12 0.000246 0.427981 0.000475 
ARCH(1) 0.120536 0.243 10 0.000327 0.521438 0.000064 
GARCH(1,1) 0.263071 0.531 7 0.000154 0.372716 0.000000 
GARCH(8,8) 0.232090 0.468 8 0.000172 0.410482 0.000000 
EGARCH(1,1) 0.495824 1.000 1 2.10E-06 1.303237 0.000000 
EGARCH(4,6) 0.391830 0.790 4 0.000112 0.841082 0.000000 
GJR-GARCH(1,1) 0.437723 0.883 2 0.000102 0.596572 0.000000 
GJR-GARCH(2,4) 0.368879 0.744 6 0.000124 0.512730 0.000000 
APGARCH(1,1) 0.413437 0.834 3 7.66E-05 0.660719 0.000000 
APGARCH(3,6) 0.378037 0.762 5 0.000126 0.611588 0.000000 
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The results show that the EGARCH(1,1) model performed best during the forecast period for 
both indices. As the actual volatility is unobserved the range from equation (24) is plotted as 
a proxy against the forecasted volatilities to graphically show each models performance. The 
graphs are shown in Figure 11 through Figure 34 in Appendix 9 and Appendix 10. 

6 Analysis and discussion 
There is evidence in Figure 1 and Figure 2 of insignificant correlations for the indices returns. 
In Figure 7 and Figure 8 the autocorrelations in squared returns are significant and 
persistent. The values found from the Ljung-Box Q-statistics and Engle’s Lagrange multiplier 
ARCH test further supports these findings. The Ljung-Box Q-statistics determines that the 
null hypothesis of no autocorrelation up to lag 10 cannot be rejected. There is also strong 
evidence of autoregressive conditional heteroskedasticity determined by the Lagrange 
multiplier ARCH test. Daily returns deviate from normality. This is shown in Figure 3 and 
Figure 4 and is also supported by the values of excess kurtosis and by the Jarque-Bera 
normality test. The Jarque-Bera null hypothesis is rejected at the 1% significance level. The 
indices are asymmetric or negatively skewed, which once again is supported by the values of 
excess kurtosis and by the values of skewness. The assumption of a zero mean cannot be 
rejected at the 1% significance level for both indices. The null hypothesis states that the 
return has a mean of zero. Figure 9 and Figure 10 also show evidence of volatility clustering. 
The augmented Dickey-Fuller test shows that there are no unit roots in return and squared 
return series for both indices. A time-series as daily data from a stock index is stationary if 
the mean and volatility do not depend on time. If a unit root exists it could lead to the non-
existence of a stationary version of the volatility and lead to infinite volatility. These facts 
suggest that the GARCH models are preferred for more simple models. The GARCH models 
would also profit from having the innovation term from equation (7) to follow a distribution 
with fatter tails such as the student-t distribution. The models would then fit the data better. 
Although a better fit in the in-sample period would not necessarily mean a better forecast in 
the out-of-sample period. This can be seen from Table 2 and Table 4 where more or better 
information, in this case higher orders, doesn’t improve the forecasting. 
 
The higher orders of GARCH models are not superior to the lower orders. In fact no higher 
order GARCH model outperforms the lower order models. This can also be seen in Appendix 
6 where all or most ARCH effects have been removed by the models as the p-values for the 
test values reject the null hypothesis of existence of remaining ARCH effects. Thus, the 
volatility has been correctly specified for all GARCH models. Many GARCH models of higher 
orders have insignificant parameters. This simply means that if these parameters were zero 
they would not affect the outcome of the volatility from the model. Unfortunately many 
restrictions are also violated, i.e. ω, α or β parameters are negative. For the OMXS30 index 
the Maximum Likelihood Estimation does not converge on some occasions, which means 
that more information is necessary to add to the model specifications. A conclusion is 
therefore that these models are less attractive to use even though they outperform the 
more simple models. Interestingly the Random Walk model outperforms the MA, EWMA and 
ARCH(1) models for both indices. The RW model does however lack information from the 
range, which can be seen by the slope parameter b1 compared to the GARCH models. 
GARCH models including the leverage effect seem to perform better. In particular the 
EGARCH(1,1) models performs best for both indices closely followed by the GJR-GARCH(1,1) 
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and APGARCH(1,1) specifications. As shown in Table 2 and Table 3 they are also unbiased, 
fairly efficient and include information about the range. If there was no information about 
the range the models lack representation of the underlying data on which the volatility is 
based. 

7 Summary 
This study has examined various models capability to predict volatility on the OMXS30 and 
MIB30 indices. The models, which were tested included the Random Walk, the Moving 
Average, the Exponential Weighted Moving Average, ARCH, GARCH, EGARCH, GJR-GARCH 
and APGARCH. The results suggest that GARCH models give better volatility forecasts than 
more simple models. Although the simple Random Walk model outperforms both ARCH, MA 
and EWMA models. In particular GARCH models, which includes the leverage effect 
performs best for the period 31st of October 2003 to 30th of December 2008. Thus, the 
GARCH framework should be preferred to simpler volatility models when used for further 
risk management purposes. 

8 Further research suggestions 
Regression has been used to evaluate the volatility models in this study. Instead of a 
regression approach one could use various error statistics to see if results differ. These error 
statistics could be Mean Error (ME), Mean Absolute Error (MAE), Root Mean Square Error 
(RMSE) or a Mean Absolute Percentage Error (MAPE) just to mention a few. 
  
The study has focused on the assumption of normally distributed innovation terms. As seen 
in paragraph 5.2 this assumption does not reflect reality. It could therefore be interesting to 
evaluate the performance of the volatility models under the assumptions of a Student-t, 
Skewed Student-t, Gereralized Error Distribution or any other distribution of choice. 
 
Only a one day forecast horizons has been investigated in this study. It could be interesting 
to see how the GARCH models perform under longer forecast horizons. More specifically the 
regime switching models or fractionally integrated models could be investigated as these 
handle longer forecast horizons better than the GARCH models presented in this study. 
 
For risk management purposes a volatility forecast using a volatility model is not really useful 
unless the results from the forecast are used to calculate risk measures. In particular such 
risk measures are the Value at Risk (VaR) or the Expected Shortfall (ES). 
 
For further readings in the field of volatility forecasting it’s recommended to read the book 
Elements of Financial Risk Management by Christoffersen (2003). The Gloria Mundi (2009) 
website contains many interesting articles and research papers free to download. There is 
also a very interesting research paper written by Brailsford and Faff (1996), which evaluates 
many volatility forecasting techniques. Finally, the research papers mentioned in the 
references, especially from Engle and Bollerslev are strongly recommended for further 
readings. 
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Appendix 1 – AIC results for the mean equation 
 

Akaike Information Criterion (AIC) for the OMXS30 index 

AR(p)/MA(q) MA(0) MA(1) MA(2) MA(3) MA(4) MA(5) 
       
AR(0) -6.067246 -6.078126 -6.077659 -6.075990 -6.074794 -6.073125 
AR(1) -6.078257 -6.076844 -6.075369 -6.073840 -6.072578 -6.070867 
AR(2) -6.076171 -6.074796 -6.075844 -6.077211 -6.075700 -6.074056 
AR(3) -6.074907 -6.073381 -6.076956 -6.075247 -6.073623 -6.075307 
AR(4) -6.072923 -6.071382 -6.074451 -6.072751 -6.070695 -6.075694 
AR(5) -6.071064 -6.069588 -6.076090 -6.074626 -6.072957 -6.071101 

       

Akaike information criterion (AIC) for the MIB30 index 

AR(p)/MA(q) MA(0) MA(1) MA(2) MA(3) MA(4) MA(5) 
       
AR(0) -6.626344 -6.632771 -6.633854 -6.632189 -6.630920 -6.629237 
AR(1) -6.634750 -6.633865 -6.633494 -6.631817 -6.630621 -6.628945 
AR(2) -6.633979 -6.632423 -6.634178 -6.638326 -6.638469 -6.636832 
AR(3) -6.632139 -6.630553 -6.638225 -6.636935 -6.635977 -6.634086 
AR(4) -6.630064 -6.628892 -6.634569 -6.635135 -6.633817 -6.630871 
AR(5) -6.629470 -6.628068 -6.631288 -6.633709 -6.633730 -6.646356 

 
Table 4 – Akaike Information Criterion for the mean equation. The best fitted ARMA terms 
models are shown in bold. 
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Appendix 2 – AIC results of the GARCH(p,q) model 
 

AIC of the GARCH(p,q) model for the OMXS30 and MIB30 indices 

 OMXS30 
 

MIB30 OMXS30 MIB30 OMXS30 MIB30 

p/q 1 1 2 2 3 3 
       
1 -6.246044 -6.792414 * -6.791004 * -6.789775 
2 -6.244473 -6.791133 -6.242934 -6.789169 -6.259005 -6.787835 
3 -6.244102 -6.789335 -6.248357 -6.787695 -6.243967 -6.787119 
4 -6.245766 -6.787899 -6.246576 -6.787107 -6.243250 -6.804844 
5 -6.245022 -6.787880 -6.243286 -6.786427 -6.248763 -6.784649 
6 -6.243555 -6.786229 -6.246575 -6.784759 -6.249751 -6.782948 
7 -6.242157 -6.784726 -6.240243 -6.783221 -6.247290 -6.781535 
8 -6.241865 -6.783106 -6.240382 -6.782590 -6.253991 -6.791100 
       

p/q 4 4 5 5 6 6 
       
1 * -6.789130 * -6.787481 -6.247782 -6.788182 
2 * -6.786689 -6.256494 -6.803835 -6.246135 -6.786698 
3 -6.255496 -6.784818 * -6.796467 -6.246095 -6.811592 
4 -6.254030 -6.814230 -6.265176 -6.827863 -6.262890 -6.788477 
5 -6.250954 -6.783062 -6.251565 -6.781958 -6.234672 -6.784456 
6 -6.243542 -6.792160 -6.273411 -6.794155 -6.267759 -6.790609 
7 -6.248145 -6.792245 -6.246235 -6.802288 -6.266353 -6.788675 
8 -6.243802 -6.788088 -6.249213 -6.795193 -6.247808 -6.805837 
       

p/q 7 7 8 8   
       
1 -6.252838 * -6.263197 -6.794117   
2 -6.249449 -6.801039 * -6.801637   
3 -6.253846 -6.797115 -6.258381 -6.801022   
4 -6.263860 -6.797562 -6.258401 -6.805126   
5 -6.252966 -6.783079 -6.247085 -6.781676   
6 * -6.784237 -6.252528 -6.782525   
7 -6.245135 -6.807281 -6.249255 -6.791887   
8 -6.258727 -6.792904 -6.241682 -6.810053   

 
* MLE convergence not achieved after 500 iterations 
 
Table 5 – AIC test for higher orders of GARCH for the OMXS30 and MIB30 indices. The lowest  
                 order and best fitted models are shown in bold. 
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Appendix 3 – AIC results of the EGARCH(p,q) model 
 

AIC of the EGARCH(p,q) model for the OMXS30 and MIB30 indices 

 OMXS30 
 

MIB30 OMXS30 MIB30 OMXS30 MIB30 

p/q 1 1 2 2 3 3 
       
1 -6.298186 -6.852545 -6.296590 -6.852772 -6.299955 -6.736787 
2 -6.296716 -6.852581 -6.295308 -6.847259 -6.298747 -6.852407 
3 -6.295076 -6.854246 -6.293638 -6.839013 -6.297110 -6.842493 
4 -6.293366 -6.827535 -6.291961 -6.847127 * -6.845712 
5 -6.293894 -6.851494 -6.292230 -6.847075 -6.294688 -6.851903 
6 * -6.831835 -6.291905 -6.849102 * -6.825220 
7 -6.291716 -6.820660 -6.290198 -6.819432 -6.292132 -6.836695 
8 * -6.853003 -6.288488 -6.843718 * -6.850760 
       

p/q 4 4 5 5 6 6 
       
1 * -6.852687 * -6.651252 -6.298081 -6.664065 
2 -6.297094 -6.853682 * -6.852604 -6.295762 -6.849775 
3 -6.295459 -6.823908 -6.296861 -6.829653 -6.256109 -6.786692 
4 -6.293783 -6.852392 -6.295189 -6.830466 * -6.858341 
5 -6.293050 -6.849418 -6.294315 -6.853647 * -6.822600 
6 -6.291935 -6.820049 -6.290351 -6.835373 -6.291738 -6.856054 
7 -6.290421 -6.847585 -6.288730 -6.853686 -6.249247 -6.855901 
8 -6.288778 -6.846990 -6.287092 -6.852630 -6.303014 -6.848687 
       

p/q 7 7 8 8   
       
1 * -6.751787 -6.086076 -6.632780   
2 * -6.855215 * -6.632729   
3 -6.303542 -6.781742 -6.226939 -6.756047   
4 -6.301836 -6.824954 -6.300336 -6.791985   
5 -6.302955 -6.852567 -6.295341 -6.810005   
6 * -6.857017 -6.233697 -6.851570   
7 -6.236565 -6.847227 -6.184262 -6.864179   
8 -6.298894 -6.819433 -6.226551 -6.853817   

 
* MLE convergence not achieved after 500 iterations 
 
Table 6 – AIC test for higher orders of EGARCH for the OMXS30 and MIB30 indices. 

 The lowest order and best fitted models are shown in bold. 
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Appendix 4 – AIC results of the GJR-GARCH(p,q) model  
 

AIC of the GJR-GARCH(p,q) model for the OMXS30 and MIB30 indices 

 OMXS30 
 

MIB30 OMXS30 MIB30 OMXS30 MIB30 

p/q 1 1 2 2 3 3 
       
1 -6.281484 -6.844777 -6.279773 -6.835060 -6.282271 -6.845612 
2 -6.281732 -6.848067 -6.280023 -6.843148 -6.281774 -6.845821 
3 -6.280024 -6.844497 * -6.850016 -6.280073 -6.844705 
4 -6.278313 -6.841984 -6.276607 -6.850415 -6.278819 -6.848659 
5 -6.278550 -6.842627 * -6.841743 -6.277109 -6.849401 
6 -6.281415 -6.842932 -6.278620 -6.841510 * -6.841182 
7 -6.281059 -6.841063 -6.279347 -6.839938 -6.277523 -6.840130 
8 -6.280803 -6.839663 -6.280071 -6.832955 -6.275583 -6.838491 
       

p/q 4 4 5 5 6 6 
       
1 -6.283589 -6.849222 -6.283074 -6.834240 -6.282263 -6.839498 
2 * -6.854768 * -6.835863 -6.280688 -6.836842 
3 * -6.849699 * -6.839446 -6.279248 -6.837106 
4 -6.280181 -6.848535 -6.280535 -6.845865 -6.277186 -6.838983 
5 -6.278734 -6.848088 -6.279150 -6.840388 -6.277635 -6.839667 
6 -6.276844 -6.839486 -6.277837 -6.838951 -6.276127 -6.848830 
7 -6.275923 -6.835292 -6.277293 -6.840998 * -6.833973 
8 -6.273840 -6.833719 -6.274370 -6.835638 -6.271728 -6.832291 
       

p/q 7 7 8 8   
       
1 -6.289300 -6.841497 -6.288193 -6.838759   
2 -6.287590 -6.838901 -6.286844 -6.835515   
3 -6.285582 -6.850072 * -6.835595   
4 -6.288928 -6.835968 -6.293611 -6.834135   
5 -6.287526 -6.838838 -6.286274 -6.830561   
6 -6.287758 -6.848080 -6.283972 -6.836846   
7 -6.272454 -6.837972 -6.277711 -6.836473   
8 -6.286343 -6.833256 -6.281771 -6.826143   

 
* MLE convergence not achieved after 500 iterations 
 
Table 7 – AIC test for higher orders of GJR-GARCH for the OMXS30 and MIB30  

 indices. The lowest order and best fitted models are shown in bold. 
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Appendix 5 – AIC results of the APGARCH(p,q) model 
 

AIC of the APGARCH(p,q) model for the OMXS30 and MIB30 indices 

 OMXS30 
 

MIB30 OMXS30 MIB30 OMXS30 MIB30 

p/q 1 1 2 2 3 3 
       
1 -6.299930 -6.837575 -6.298241 -6.835892 -6.303869 -6.837329 
2 -6.298653 -6.846056 -6.296920 -6.845929 -6.302584 -6.845135 
3 -6.296952 -6.847766 -6.295216 -6.847047 -6.300887 -6.851369 
4 -6.295301 -6.846877 -6.293577 -6.845792 -6.299200 -6.851118 
5 -6.296977 -6.845285 -6.295245 -6.844142 -6.297921 -6.850057 
6 -6.295319 -6.844727 -6.293612 -6.844220 -6.296256 -6.849665 
7 -6.293642 -6.843090 -6.291904 -6.842208 -6.294858 -6.848109 
8 -6.292366 -6.843549 -6.290727 -6.842615 -6.293257 -6.847824 
       

p/q 4 4 5 5 6 6 
       
1 -6.302220 -6.838468 * -6.833756 -6.300843 -6.831671 
2 -6.300984 -6.844039 -6.301437 -6.842223 -6.299163 -6.842816 
3 -6.299309 -6.849703 -6.299850 -6.849588 -6.299449 -6.859925 
4 -6.297608 -6.849802 -6.298187 -6.849173 -6.296193 -6.847774 
5 -6.296294 -6.849176 -6.296958 -6.847382 -6.294369 -6.848223 
6 -6.294616 -6.848208 -6.295272 -6.848969 -6.292747 -6.843776 
7 -6.293245 -6.847852 -6.294124 -6.846297 -6.291981 -6.844280 
8 -6.291860 -6.847032 -6.292543 -6.806402 -6.290254 -6.845667 
       

p/q 7 7 8 8   
       
1 -6.300705 -6.829686 -6.300150 -6.832076   
2 -6.311210 -6.847641 -6.297940 -6.836306   
3 -6.301352 -6.854037 -6.300105 -6.852349   
4 -6.299740 -6.853058 -6.298956 -6.850902   
5 -6.301601 -6.852147 -6.308794 -6.852435   
6 -6.299463 -6.849626 * -6.852835   
7 * -6.849284 -6.292993 -6.846897   
8 -6.295720 -6.845804 -6.303898 -6.846784   

 
* MLE convergence not achieved after 500 iterations 

 
Table 8 – AIC test for higher orders of APGARCH for the OMXS30 and MIB30  
                 indices. The lowest order and best fitted models are shown in bold. 
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Appendix 6 – ARCH LM test for the GARCH models  
 

ARCH LM test of the GARCH(p,q) models for the OMXS30 and MIB30 indices 

 OMXS30 
 

MIB30 OMXS30 MIB30 

Statistics GARCH(1,1) GARCH(1,1) GARCH(7,2) GARCH(8,8) 
     
F-statistic 0.041650 0.022618 0.006825 0.237868 
(probability) 0.838324 0.880482 0.934173 0.625841 
Obs*R-squared 0.041720 0.022656 0.006837 0.238224 
(probability) 0.838154 0.880356 0.934103 0.625492 
     

Statistics EGARCH(1,1) EGARCH(1,1) EGARCH(3,7) EGARCH(4,6) 
     
F-statistic 0.122986 0.272039 0.075329 0.009579 
(probability) 0.725882 0.602065 0.783779 0.922050 
Obs*R-squared 0.123184 0.272439 0.075453 0.009595 
(probability) 0.725607 0.601701 0.783556 0.921968 
     

Statistics GJR-GARCH(1,1) GJR-GARCH(1,1) GJR-GARCH(4,8) GJR-GARCH(2,4) 
     
F-statistic 1.022377 0.764937 0.215619 0.038064 
(probability) 0.312166 0.381966 0.642485 0.845348 
Obs*R-squared 1.023234 0.765740 0.215949 0.038128 
(probability) 0.311753 0.381538 0.642144 0.845187 
     

Statistics APGARCH(1,1) APGARCH(1,1) APGARCH(2,7) APGARCH(3,6) 
     
F-statistic 0.064107 0.304500 0.453010 3.144734 
(probability) 0.800163 0.581180 0.501042 0.076431 
Obs*R-squared 0.064213 0.304939 0.453611 3.141681 
(probability) 0.799956 0.580803 0.500625 0.076315 

 
Table 9 – ARCH LM test to check for remaining ARCH effects. 
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Appendix 7 – Estimated parameters for the best fitted 
GARCH  models for the OMXS30 index 
 

Best fitted GARCH models and their estimated parameters for the OMXS30 index 

     
Parameters GARCH(1,1) GARCH(7,2) EGARCH(1,1) EGARCH(3,7) 

     
ω 4.03E-06 (**) 1.26E-06 (x) -0.474182 (**) -0.462348 (**) 

α0 0.100825 (**) 0.103339 (**) 0.041974 (*) 0.110805 (**) 

α1 -  0.105107 (x) -  0.065519 (x) 

α2 -  -0.001128 (x) -  -0.083783 (*) 

α3 -  -0.061604 (x) -  -  

α4 -  -0.053931 (x) -  -  

α5 -  -0.034481 (x) -  -  

α6 -  -0.004676 (x) -  -  

β0 0.870927 (**) 0.194512 (x) 0.954263 (**) 1.123370 (**) 

β1 -  0.744569 (x) -  -0.419570 (**) 

β2 -  -  -  0.260347 (**) 

β3 -  -  -  -0.201420 (**) 

β4 -  -  -  0.826155 (**) 

β5 -  -  -  -1.095236 (**) 

β6 -  -  -  0.463647 (**) 

γ0 -  -  -0.184559 (**) -0.145947 (**) 

     
Parameters GJR-GARCH(1,1) GJR-GARCH(4,8) APGARCH(1,1) APGARCH(2,7) 

     
ω 6.68E-06 (**) 2.59E-06 (**) 0.001986 (x) 0.005800 (x) 

α0 -0.026087 (x) -0.013538 (x) 0.081637 (**) 0.062321 (**) 

α1 -  0.036245 (x) -  -0.000565 (x) 

α2 -  -0.067784 (**) -  -  

α3 -  0.054458 (**) -  -  

β0 0.860922 (**) 1.766376 (**) 0.892876 (**) 1.204003 (**) 

β1 -  -1.452701 (**) -  -0.730089 (**) 

β2 -  0.611254 (**) -  0.707554 (**) 

β3 -  -0.312020 (**) -  -0.685761 (**) 

β4 -  0.893510 (**) -  1.126296 (**) 

β5 -  -1.605075 (**) -  -1.112847 (**) 

β6 -  1.485140 (**) -  0.406834 (**) 

β7 -  -0.465560 (**) -  0.477900 (**) 

γ0 0.209627 (**) 0.090960 (**) 0.999709 (**) 0.999922 (**) 

δ -  -  0.736453 (**) 0.803133 (**) 

 
(**) indicates statistical significance at the 1% level, (*) indicates statistical significance at the 5% level 
(x) indicates no statistical significance 

 
Table 10 – Estimated parameters for the first order GARCH and the order higher than one  
                   that best fitted the data for the OMXS30 index. 
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Appendix 8 – Estimated parameters for the best fitted 
GARCH  models for the MIB30 index 
 

Best fitted GARCH models and their estimated parameters for the MIB30 index 

     
Parameters GARCH(1,1) GARCH(8,8) EGARCH(1,1) EGARCH(4,6) 

     
ω 2.84E-06 (**) -2.59E-08 (x) -0.502780 (**) -0.655529 (**) 

α0 0.097893 (**) 0.106557 (**) 0.050158 (**) -0.070233 (x) 

α1 -  0.066095 (*) -  -0.038263 (x) 

α2 -  -0.036393 (x) -  0.126974 (x) 

α3 -  -0.107632 (*) -  0.063443 (x) 

α4 -  -0.004524 (x) -  -  

α5 -  0.039927 (x) -  -  

α6 -  -0.039869 (x) -  -  

α7 -  -0.014487 (x) -  -  

β0 0.865430 (**) 0.002754 (x) 0.952070 (**) 0.919454 (*) 

β1 -  1.046067 (**) -  -0.318399 (x) 

β2 -  1.299547 (**) -  0.270185 (x) 

β3 -  -0.935657 (*) -  -0.025336 (x) 

β4 -  -0.888641 (**) -  -0.068429 (x) 

β5 -  -0.136729 (x) -  0.161155 (x) 

β6 -  0.716788 (**) -  -  
β7 -  -0.112295 (x) -  -  
γ0 -  -  -0.176809 (**) -0.275822 (**) 

     
Parameters GJR-GARCH(1,1) GJR-GARCH(2,4) APGARCH(1,1) APGARCH(3,6) 

     
ω 3.92E-06 (**) 3.48E-06 (**) 0.000374 (x) 0.000520 (x) 

α0 -0.071213 (**) -0.085986 (**) 0.072723 (**) 0.100704 (**) 

α1 -  0.027944 (x) -  -0.165658 (**) 

α2 -  -  -  0.120142 (**) 

β0 0.884144 (**) 1.574845 (**) 0.899261 (**) 1.122044 (**) 

β1 -  -1.434887 (**) -  -0.155036 (x) 

β2 -  0.966160 (**) -  -0.119068 (x) 

β3 -  -0.208610 (**) -  -0.441564 (**) 

β4 -  -  -  0.809427 (**) 

β5 -  -  -  -0.306367 (**) 

γ0 0.231381 (**) 0.193280 (**) 0.999888 (**) 0.999459 (**) 

δ -  -  0.996827 (**) 0.954526 (**) 

 
(**) indicates statistical significance at the 1% level, (*) indicates statistical significance at the 5% level 
(x) indicates no statistical significance 

 
Table 11 – Estimated parameters for the first order GARCH and the order higher than one  
                   that best fitted the data for the MIB30 index. 
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Appendix 9 – Forecasted volatility with the range as a 
proxy for the OMXS30 index 
 

  
Figure 11 – Forecasted RW volatility for the 
OMXS30 index 

Figure 12 – Forecasted MA volatility for the 
OMXS30 index 

 

  
Figure 13 – Forecasted EWMA volatility for 
the OMXS30 index 

Figure 14 – Forecasted ARCH(1) volatility for 
the OMXS30 index 

 

  
Figure 15 – Forecasted GARCH(1,1) volatility 
for the OMXS30 index 

Figure 16 – Forecasted GARCH(7,2) volatility 
for the OMXS30 index 
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Figure 17 – Forecasted EGARCH(1,1) volatility 
for the OMXS30 index 

Figure 18 – Forecasted EGARCH(3,7) volatility 
for the OMXS30 index 

 

  
Figure 19 – Forecasted GJR-GARCH(1,1) 
volatility for the OMXS30 index 

Figure 20 – Forecasted GJR-GARCH(4,8) 
volatility for the OMXS30 index 

 

  
Figure 21 – Forecasted APGARCH(1,1) 
volatility for the OMXS30 index 

Figure 22 – Forecasted APGARCH(2,7) 
volatility for the OMXS30 index 
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Appendix 10 – Forecasted volatility with the range as a 
proxy for the MIB30 index 
 

  
Figure 23 – Forecasted RW volatility for the 
MIB30 index 

Figure 24 – Forecasted MA volatility for the 
MIB30 index 

 

  
Figure 25 – Forecasted EWMA volatility for 
the MIB30 index 

Figure 26 – Forecasted ARCH(1) volatility for 
the MIB30 index 

 

  
Figure 27 – Forecasted GARCH(1,1) volatility 
for the MIB30 index 

Figure 28 – Forecasted GARCH(8,8) volatility 
for the MIB30 index 
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Figure 29 – Forecasted EGARCH(1,1) volatility 
for the MIB30 index 

Figure 30 – Forecasted EGARCH(4,6) volatility 
for the MIB30 index 

 

  
Figure 31 – Forecasted GJR-GARCH(1,1) 
volatility for the MIB30 index 

Figure 32 – Forecasted GJR-GARCH(2,4) 
volatility for the MIB30 index 

 

  
Figure 33 – Forecasted APGARCH(1,1) 
volatility for the MIB30 index 

Figure 34 – Forecasted APGARCH(3,6) 
volatility for the MIB30 index 

 


