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Abstract

This bachelor thesis in statistics covers the subject of election forecasting in a multiparty

system, using polling data, that is data collected to measure party support, and dynamic

linear models (DLMs) with Kalman filtering. In terms of decision-making the outcome

of an election can be thought of as an uncertainty. Forecasts of election results can

reduce risks for decision-makers and thereby facilitate decision-making. To be able to

foresee the outcome of an event can be of use for experts in several different fields, for

instance political strategists, financial investors and policy makers. A DLM considers an

observable time series to be a linear function of a latent, unobservable series and random

disturbance. In the case of election forecasting we can think of the observable series as

being polling data, and the underlying series to be true measures of party support. The

purpose of using the Kalman filter is then to retrieve the latent series representing true

party support. Altogether three different models are explored in the thesis; a Gamma-

Normal, a time-invariant and a multivariate time-invariant model. The main difference

between the frameworks concerns the variance term in the distribution of the noise terms

in the DLM. The models are applied to the Swedish election of 2018, using polling data

for the period stretching from September 2014 to September 2018. The polling data is

then disregarded for three different time periods; the last month, the last six months and

the last twelve months before the election. For those periods, we instead use simulated

data which together with the polling data is the basis of our forecasts. We find that

the Gamma-Normal model performs slightly better than the two other models, when

forecasting the election result one month ahead, while the multivariate time-invariant

model is slightly better for the two other time frames. For the one year forecast this model

predicts the election result with an average absolute prediction error of 1.28 percentage

points for each party. Finally, the forecasting capability of the models are discussed and

evaluated in the analysis section of this thesis.

Keywords: Election forecasting, Polling, Multiparty systems, Dynamic Linear

Models, DLM, Kalman filtering, Swedish elections
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1 Introduction

This bachelor thesis in statistics cover the topic of forecasting election results in mul-

tiparty systems using a dynamic linear model. The purpose of the study is to develop

and explore different models that only use polling data, that is data collected to measure

party support, to forecast the Swedish election result in September 2018. A dynamic

linear model considers an observable time series to be a function of an underlying unob-

servable process and random disturbance (Petris et al., 2009). The forecasting model is

based on data from nine different Swedish polling institutes, covering the period between

the 2014 and 2018 elections. By the use of Kalman filtering, the unobservable underlying

true support for each party is retrieved. Party support is then simulated for different

time periods in those series until election day. The simulation is based on a Markov chain

Monte Carlo approach, that is a numerical technique to approximate complex integrals,

such as conditional probabilities (Petris et al., 2009).

Between 2014 and 2018 the Swedish political landscape went through an extensive trans-

formation. As suggested by polling data from before the election, the 2018 election could

be thought of as a competition among three major parties of comparable size. Smaller

parties like the Liberals, the Green Party and the Christian Democrats seemed to face

the risk of loosing all seats in parliament. The election result in September 2018 did

however show that the Social Democrats by far remained as the largest party and that

all eight parties that were represented in parliament during the period of 2014-18, won

seats for the coming term.1 A model with the purpose of forecasting the outcome of the

election needs to capture these trends in the polls, but even so reach conclusions that are

close to the actual result.

The research on election forecasting has so far mainly focused on presidential elections in

the American two-party system (Sundell & Lewis-Beck, 2014). There are two substantial

differences between a presidential election in a two-party system and the Swedish situa-

1The interested reader can notice that the result of the Swedish 2018 election created parliamentary

conditions that made it difficult to form a government. It took more than four months until a new prime

minister was elected.
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tion. Firstly, Swedes do not elect a president, they vote for a party in parliament. In the

current situation none of the parties is likely to be able to govern by themselves. This

could lead to strategic and tactical aspects that affects the voting decision. Such effects

would not be present in a two-party system. Secondly, an American presidential election

is dominated by two parties, while eight parties won seats in the Swedish parliament in

the 2018 election. These discrepancies lead to methodological challenges limiting the use

of so-called structural models.

Election forecasting in Sweden conduced prior to elections has been a rare phenomenon

(Sundell & Lewis-Beck, 2014). However, in the scope of the 2014 election several attempts

were made to predict the outcome. The most popular prediction model was probably

Botten Ada, a ”robot” predicting the election result based on polling data. This website

also gained attention of the media (Aftonbladet, 2014; Fokus, 2014). Sundell and Lewis-

Beck (2014) used another approach and created a structural model2 that predicted the

result based on economic variables. Walther (2015) made forecasts on the results of

the multiparty elections in both Germany and Sweden. Given the increased attention in

forecasting election results, it is somewhat surprising that there has not, to our knowledge,

been any attempts to forecast the result of the 2018 Swedish election. This thesis could

thereby contribute to the research of forecasting Swedish elections by using data from a

different time period than prior studies have used.

In terms of decision-making the outcome of an election can be thought of as an un-

certainty. Forecasts of election results can reduce risks for decision-makers and thereby

facilitate decision-making. To be able to foresee the outcome of an event can be of use

for experts in several different fields, for instance political strategists, financial investors

and policy makers. In our thesis three different models are evaluated. The first one is a

Gamma-Normal model, used in previous similar studies. The second is a time-invariant

model, where the support for a party is assumed to be independent of the support for

another party. This independency assumption is also included in the Gamma-Normal

model. The third model instead assumes that the support for one party is dependent on

2That is a model that uses a regression framework to estimate the support of the incumbent parties

using for instance economic variables and underlying political variables.
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the support for other parties. This model is referred to as the multivariate time-invariant

model. To our knowledge there has not been any attempts to use multivariate models to

forecast Swedish election results.

The thesis centers around the following research question:

How well can election outcomes in multiparty systems be forecasted, using polling data

and the frameworks of dynamic linear models and Markov chain Monte Carlo techniques?

In the thesis we evaluate the performance of election forecasting by DLM models, using

the case of the Swedish election in 2018. However, it should be noted that the same

techniques could be used to forecast election result in other similar contexts, with for

instance a multiparty system. Additionally, DLMs and Kalman filtering could also be

used to study subjects unrelated to election forecasting, where there exists an observable

process that is a linear function of a latent one. Such examples could be in financial

economics, engineering and signal processing.

The rest of the thesis is structured as follows. The upcoming section is devoted to a

literature review, which describes previous research on the subject of election forecasting.

The following third section covers theoretical aspects of the study, while the fourth section

describes the concrete methodology used for answering the research question above. The

empirical results are described in the fifth section and finally analyzed in the sixth section.
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2 Literature Review

This section presents a literature review, which positions the thesis in relation to previous

research conducted on this subject. In the following review different techniques and

methods to forecast election are presented and discussed briefly.

The first known attempts to forecast election results took place in the United States

during the 1930’s and 1940’s. In 1936 Gallup published its first presidential pre-election

survey and in the coming decade the strategy of using so-called bellwether states3 was

tested. However, it took until about 1980 before statistical forecasting models was applied

(Lewis-Beck, 2005).

Lewis-Beck and Stegmaier (2014) distinguish between four different approaches to election

forecasting; structuralist, aggregators, synthesizers and judges. The structuralists use

regression techniques to estimate the support of the incumbent party based on underlying

economic and political factors. The aggregators use polling data, often by pooling several

different polls, in order to find a reliable measure on public opinion. The synthesizers

combine the methodologies of the structuralists and the aggregators. The most famous

model using a synthesizer approach is probably Nate Silver’s FiveThirtyEight model.4

Instead of using quantitative methods, the judges base their forecasts on qualitative

assessments of different sources of information. This thesis uses an aggregator approach.

Structural models have traditionally been the common approach to election forecasting

(Walther, 2015). Most of these models are based on the assumption that the number of

votes for a party in government is a function of political and economical variables. In

their most simple forms, these models look like the following (Lewis-Beck, 2005):

Government supportt = Government performancet + Economic performancet + Errort

(1)

3That is states where the public opinion would be similar to the nationwide opinion
4The title of the model refer to the number of members of the Electoral Collage that chose the

president. Silver became a famous election forecaster when he during the American presidential election

in 2012 correctly predicted the outcome of all 50 states (Butterworth, 2014).
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Prevalent explanatory variables included in these model have for instance been the popu-

larity of the president, left- or right-wing attitudes in the population and the length of the

incumbent’s time in office. Economic variables commonly included in the models have

been GDP growth, changes in real income and unemployment (Walther, 2015). A famous

structural model is the Bread and Peace Model in Hibbs (2000), which suggests that the

outcome of an American presidential election can be predicted using only two variables;

growth in real disposable personal income and the number of American soldiers killed

in war. Lewis-Beck and Stegmaier (2000) have reviewed results from studies with struc-

tural models conducted on several other countries than the United States. Their results

suggest that economic factors play an important role for whether or not an incumbent

government can remain in office.

Using a structural model, Sundell and Lewis-Beck (2014) tried to predict the outcome of

the 2014 parliament election in Sweden. As dependent variable Sundell and Lewis-Beck

use the total vote share for the parties that supported the government, and as explanatory

variables GDP growth, inflation and unemployment are used. Their model predicted that

the incumbent right-wing government would receive 49.7 percent of the votes, when the

actual outcome was only 43.4 percent.

Walther (2015) remarks that structural models are hard to apply in a multiparty context,

such as the political landscape in Sweden. Walther mentions three specific reasons for this;

the lack of a clear dependent variable, difficulties in attributing economic and political

performance to individual parties and the limitations in dealing with new parties. In a

two-party system, neglecting the possibility to abstain from voting or to vote blank, the

lost votes of the government would go to the opposition party. In a multiparty landscape

it is not possible to know how these votes will split among different opposition parties.

For instance, differences in policies are likely to affect whether a certain opposition party

benefits from a poor economic performance. Walther states that it appears necessary to

include polling data to make useful forecasts of the result for every party in a multiparty

system.
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One early example of how to use polling data to forecast Swedish elections is found in

Esaiason and Giljam (1986). In their study they predict the vote share for the Social

Democrats and the Left Party. This is done in a regression framework, where this vote

share is the dependent variable and the support of these parties in a poll conducted during

certain month is the explanatory variable. Esaiason and Giljam reach the conclusion that

Sifo’s, a Swedish polling institute, poll in April was the best predictor of the Swedish

election results of the six elections between 1970 and 1985.

More modern approaches on how to use polling data to forecast elections involve us-

ing dynamic linear models (DLMs). The concept of DLMs is more deeply described in

Sections 3.2-3.4, but in short this technique uses pooling of different polls to estimate

the underlying support for the parties and simulations to capture the changes in public

opinion prior to the election. In addition to describing the DLMs, Walther (2015) also

conducts an empirical investigation on whether or not such prediction models can be used

to forecast the outcomes of the three Swedish elections between 2006 and 2010 and the

three German elections between 2005 and 2013. Walther finds that the average prediction

error of a forecast, that is the average difference between the forecasted and the actual

election result, conducted one month before the election, is 1.28 percentage points for

Sweden and 1.66 percentage points for Germany.

To some extent our study resembles the one in Walther (2015), however there are sub-

stantial differences between the approaches. Firstly, we focus only on Sweden and use

data from a different period of time than what Walther uses. Our study compares three

different types of models, while Walther only covers a model which is similar to our

Gamma-Normal model. We evaluate the model’s forecasting abilities on three different

time periods; 1 month, 6 months and 12 months before the election. Thereby, we hope

to contribute new insights to the field of election forecasting in a Swedish context.
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In a master thesis at Linköping University, Hurtado Bodell (2016), explores different

techniques of pooling polls, using DLM’s. While her techniques is somewhat similar to

the ones used in this thesis, the main difference is that she is emphasizing methodologies

to pool series while we are focusing more on the simulation phase. However, there is room

for future research combining the methodologies for retrieving the latent series capturing

true party support, as in Hurtado Bodell, and the simulation techniques used here.

In the context of German elections, Orlowski and Stoetzer (2016) use a DLM framework

to forecast party support during election day. In their study different ways of specifying

the DLM is evaluated. Their work has been a source of inspiration behind the experiment

with the multivariate time-invariant model used in our thesis. Orlowski and Stoetzer also

defines a multivariate Gamma-Normal model that can be useful for future research on

election forecasting.
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3 Theory

This section covers different concepts of theoretical interest for the study conducted in

our thesis. Firstly, a short description of Bayesian analysis is provided and then dynamic

linear models (DLMs) and different aspects of those are discussed. The process of Kalman

filtering is described in Section 3.3, while the section thereafter focuses on Markov chain

Monte Carlo methods. Lastly, a review of the concept of pooling polls is presented.

3.1 Bayes’ theorem and Bayesian analysis

Bayesian analysis is based on the principle that all uncertainties should be represented and

measured by probabilities (West & Harrison, 1997). From this follows that probabilities

are subjective, in the sense that they are a way for the researcher to formalize his or

her incomplete information about the event in question (Petris et al., 2009). Bayesian

analysis can be thought of as a rational way to update beliefs in light of new information,

in order to move from prior beliefs to posterior beliefs. The learning process described

above is solved with the use of conditional probabilities. For this Bayes’ theorem is a

valuable tool, which in terms of probability distributions and discrete variables Jackman

(2009) is described below.

Recall that the conditional probability of A given B, where P (B) > 0 is defined as

P (A|B) =
P (B|A)P (A)

P (B)
. (2)

The expression sometimes referred to as the Bayesian mantra can be derived from Bayes’

theorem: ”the posterior is proportional to the prior times the likelihood” (Jackman, 2009,

p. 14). So, here P (A|B) refers to the posterior, P (A) to the prior and P (B|A) to the

likelihood.

Bayesian analysis serves the aim of this thesis by giving an approach to how deductions

regarding a latent variable can be made using observable data.
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3.2 Dynamic linear models

This section will give a brief description of a general univariate DLM, that is used in two

out of three models in our thesis. For the multivariate time-invariant model, we instead

use a multivariate DLM which is briefly described in Appendix A. The description of

the univariate DLM generally follows the steps and the notation mainly in Petris et al.

(2009), as well as the discussion in West and Harrison (1997). DLM’s have been used in

several other attempts to forecast elections, for instance by Walther (2015), Stoltenberg

(2013) and the earlier mentioned Botten-Ada.

Petris et al. (2009) describe DLMs as a class of state-space models. State-space models

considers a time series (Yt) to be an incomplete function of a latent and unobserved

process (θt), together with random disturbance. This underlying process is referred to as

the state process or the latent process.

State-space models are based on two assumptions (Petris et al., 2009, p.40):

Assumption 1: The process {θt}, where t = 0, 1, ..., n is a Markov chain, which means

that the dynamics of θt depends on past values only through θt−1. The probability law of

the process θt is determined by assigning the initial density p0(θ0) to θ0 and the transition

densities p(θt|θt−1) of θt conditional on θt−1.

Assumption 2: Conditional on {θt, t = 0, 1, ...}, Yt is independent from other observations

Ys, for s < t, and depend only on θt. It thereby follows that (Y1, ..., Yn|θ1, ..., θn), for any

n ≥ 1, have a joint conditional density given by
∏n

t=1 f(yt|θt), where f(yt|θt) is a density

of Yt given θt. In Bayesian terminology the product
∏n

t=1 f(yt|θt) is the likelihood, see

page 11 in this thesis.

With discrete time, as is the case in this thesis, the state-space models are often referred to

as hidden Markov models. The Markovian dependency structure is illustrated graphically

by Figure 1.
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Figure 1: Markovian Dependency Structure of Latent Series

Figure 1, presented in Petris et al. (2009, p. 64), describes how the latent series only

depend on its value in the previous time period and the value of the observed series in

the current period.

A univariate DLM is characterized as follows. Let t be an index describing discrete time,

Yt an observable time series at time t and Ft a scalar that relates the latent process θt to

the observed one, according to

Yt = Ftθt + vt, vt ∼ N(0, Vt), (3)

where vt is the time variant disturbance sequence, which follows a normal distribution

with mean zero and variance Vt. In Equation (3) θt is the latent unobservable process,

which relates to its value in the previous time period θt−1 through the time variant scalar

Gt according to

θt = Gtθt−1 + wt wt ∼ N(0,Wt). (4)

Here wt is the time variant disturbance sequence for the latent process, that is following

a normal distribution with mean zero and variance Wt.

The initial information at time t = 0, which follows a normal distribution, that is

(θ0|D0) ∼ N(m0, C0) (5)

Equations (3) to (5) are sometimes referred to as the observations equation, the system

equation and the initial information (West & Harrison, 1997).
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The random walk with noise model is the simplest form of DLM and refers to a model

where the conditional expectation of a time series at t, given its previous values, is equal

to the value of the series at t − 1, that is E[Yt|Yt−1, Yt−2, ...] = Yt−1 (Stock & Watson,

2015). The general DLM, defined by Equations (3) to (5), can be transformed into a

random walk with noise model, by setting Ft = Gt = 1 which also implies that the

scalars Ft and Gt are assumed to be time invariant. After changing the notation, the

underlying latent process θt is now denoted by µt, which leads to the following equations,

describing the model used in this thesis (West & Harrison, 1997)

Yt = µt + vt vt ∼ N(0, Vt) (6)

µt = µt−1 + wt wt ∼ N(0,Wt) (7)

(µ0|D0) ∼ N(m0, C0), (8)

where Vt, Wt and C0 are the same as in Equations (3) to (5).

The random walk model above, defined by Equations (6)-(8), is often used for short-

term forecasting (West & Harrison, 1997). This stochastic process µt has an important

property, the conditional expected value of the forecast k steps ahead from time t is equal

to the value of the latent process at t, that is

E[Yt+k|µt] = E[µt+k|µt] = µt, (9)

which follows from Equations (6) and (7), see also p. 34 in West and Harrison (1997).

If we define the forecast function ft(k) as E[Yt+k|Dt], where Dt refers to the information

available at time t, that is Dt = y0, y1, ..., yt where yt is the realization of Yt, then

ft(k) = E[Yt+k|Dt] = E[µt+k|Dt] = mt. (10)
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This means that the forecast function, ft(k) is constant in the sense that it does not

depend on k. So, no matter the number of steps ahead the forecast ft(k) for a given

information set, Dt, remains constant at mt where mt = µt−1 (West & Harrison, 1997).

3.3 Kalman filtering

Kalman filtering refers to a recursive procedure to make inferences of a unobservable

latent process µt, through the use of Bayes’ theorem. The application of Kalman filtering

has been common in engineering, for instance for signal processing. Bayes’ theorem states

that the posterior distribution of µt is proportional to the product of the likelihood and

the prior distribution of µt. The prior distribution of µt refers to its distribution when the

value of Yt is not known, while the posterior distribution of µt refers to its distribution

when new information is available (recall Equation (2) and see Section 3.1 for a deeper

description of Bayes’ theorem). Formally this can be expressed as

p(µt|Dt) ∝ p(Yt|µt, Dt−1)× p(µt|Dt−1), (11)

where Dt as earlier refers to the information available at time t and ∝ meaning ”linear

proportional to”.

The inference is made in two steps; first prior to observing Yt and then after observing Yt.

Prior to observing Yt the best guess of µt is simply the relationship captured in Equation

(4). When Yt is observed, Equation (11) can be used to calculate the posterior p(µt|Dt).

This will be done using the forecast error et which is defined as et = Yt − ft = Yt −mt−1

and possible to calculate after observing Yt. Again, using Bayes’ theorem we can state

that

p(µt|Yt, Dt) = p(µt|et, Dt−1) ∝ p(et|µt, Dt−1)× p(µt|Dt−1) (12)

and the posterior distribution p(µt|Yt, Dt−1) can then be calculated as

15



p(µt|Yt, Dt−1) =
p(µt|et, Dt−1)× p(µt|Dt−1)∫

all µt
p(µt|et, Dt−1)dµt

. (13)

The description above of Kalman filtering is based on Meinhold and Singpurwalla (1983).

The Kalman filter results in a filtering density p(µt|Yt, Dt), which follows a normal distri-

bution. In the case of a random walk with noise model, the parameters are the following:

(µt|Dt) ∼ N(mt, Ct), (14)

where mt = mt−1 + Ktet and Ct = KtVt. Here Kt is defined as Kt = Ct−1+Wt

Ct−1+Wt+Vt
, where

Vt and Wt is the same as in Equations (6) and (7). The variable et can be understood as

the forecast error and is defined as et = Yt − ft = Yt −mt−1.

By using the definition of the variables in Equation (14) we can think of mt as a weighted

average of Yt and mt−1, since we have mt = (1 − Kt)mt−1 + KtYt. Also, Kt can be

understood as an adaptive coefficient between 0 and 1 (Petris et al., 2009). Thereby it is

clear that the relationship between the latent and the observed processes are affected by

the values of Vt and Wt. This also means that the predictive capability of the model will

depend on those as well.

The Kalman filter returns the one-step ahead forecast for the observed process, as below

(West & Harrison, 1997):

(Yt+1|Dt) ∼ N(ft, Qt), (15)

where ft = mt−1 and Qt = Ct−1 +Wt + Vt.
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3.4 Markov chain Monte Carlo methods

In many practical applications of DLMs every component of the model is seldom known.

In the perspective of Bayesian analysis these unknown parameters are considered to be

random variables. This means that it is necessary to find the joint conditional distribu-

tion of the latent series and its forecasted values, as well as the unknown parameters.

This usually leads to expressions that cannot be solved analytically, instead a numerical

approach is necessary. This usually involves an application of Monte Carlo techniques to

Markov Chains, often known as Markov chain Monte Carlo (MCMC) methods (Petris et

al., 2009).

For the case of this thesis, µj,t is the quantity of interest, describing the true support for

party j at time t. Now assume that it has a posterior distribution p(µj,t|Dj,t−1, Yj,t). Also

assume that µj,T is the true support for party j on the day of the election (that is t = T ).

We are interested in forecasting the quantity µj,T using direct posterior sampling from

the posterior distribution defined above. Further, assume that g(µj,t) is some arbitrary

function of µj,t. Let m denote the number of Monte Carlo iterations, as m → ∞ the

following holds based on the law of large numbers and conditions that are generally

fulfilled (West & Harrison, 1997)

E[g(µj,t)] =

∫
g(s)p(s|Dj,t−1, Yj,t)ds

p→ 1

m

m∑
i=1

g(µj,t), (16)

where
p→ means convergence in probability, see for instance Wackerly et al. (2008, p.

448-454).
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3.5 Pooling polls

To make predictions about the future based on a latent variable one needs to have a good

estimate of its current value. Only on election days we get to have true measures of party

support, here denoted by θ. Vote shares in upcoming elections are unknown at forehand

and is a result, not only of events on the day of the election but from flows that take

place between elections. That is, we have missing values for true party support all other

days than election days. However, we do have polls that are inaccurate, and probably at

least to some extent, erroneous. This illustrates the purpose of using DLMs to estimate

and forecast party support (Stolenberg, 2013).

Jackman (2005) lists three potential problems with making inferences about public opin-

ion based on individual polls; imprecise estimates due to sampling error, bias induced by

the methods and the fact that public opinion is likely to change between the time of the

poll and the election. Jackman also concludes that the sample size of many polls are too

small to detect small changes in party support with certainty.

Jackman further describes how pooling of polls can increase the precision of the estimates,

that is reduce the standard deviation. Consider two polls, A and B, estimating a true

quantity α. The estimate from poll A will follow a normal distribution with mean α̂A

and standard deviation sA =
√
α̂A(1− α̂A)/nA, where nA is the sample size of poll A.

The same goes for the estimate α̂B and sB. If we pool A and B we will have a precision

weighted average of both polls

α̂AB =
pAα̂A + pBα̂B
pA + pB

, (17)

where pA is the precision of poll A and defined as 1/s2A and pB is the precision of poll B

defined analogously. The standard deviation for the pooled poll is sAB =
√

1/(pA + pB),

which is less than both sA and sB.
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4 Methodology and Data

This section serves the purpose of describing the methodological approach in the thesis

and the data used for performing the study. Section 4.1 covers the data, how it is

processed and also presents some descriptive statistics. The second subsection is devoted

to giving an insight of how the house effects are calculated. The term house effects refers

to ”bias induced by methodological procedures specific to each polling organisation”

(Jackman, 2005, p. 500). Section 4.2 also describes how the bias created by differences in

methodology between polling institutes distinguish from industry bias, while Section 4.3

gives an overall description of the methodological approach. Thereafter, the subsections

define the specific Gamma-Normal model, the time-invariant model and the multivariate

time-invariant model. The two final subsections describes robustness checks and the data

programming.

4.1 Data

The empirical examination is based on a compilation of Swedish polls from Magnusson

(2018). The time period of interest is defined as the period between the 15th of September

in 2014 and the 8th of September in 2018, that is the period between the 2014 and

2018 elections. However, the data set provided by Magnusson goes back to 1998 and

stretches to the present. For the time period of interest the material covers polls from

nine institutes; Demoskop, Inizio, Ipsos, Novus, SCB, Sentio, Sifo, Skop and YouGov. All

together the compilation in early October 2018 contained 1522 different polls. 384 polls

remain after selecting only those made during the time period of interest. Polls where

the institute, collecting period or sample size are unknown are disregarded. By this the

number of polls decrease to 375.

Table 1 below presents descriptive statistics for the polls from the nine different institutes.

As can be seen from Table 1, the frequencies of the polls in the data material differs. The

polls from Statistics Sweden stand out, since they are only done twice a year. On the

other hand these polls have large sample size and a longer collecting period (measured
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in days). The most frequent poll is the Inizio poll, which have been performed 54 times

during the period of interest.

Table 1: Descriptive Statistics for the Polling Institutes

Frequency Av. Sample Size Av. Collecting Period

Demoskop 48 1344.06 7.38

Inizio 54 2321.26 7.87

Ipsos 46 1555.91 10.24

Novus 51 3522.76 23.06

Statistics Sweden 8 5541.50 29.00

Sentio 47 1000.83 5.11

Sifo 53 3973.38 8.72

Skop 25 1639.24 16.72

YouGov 43 1483.40 3.44

The table describes the polls from the nine polling institutes between September 2014

and September 2018. It covers the number of polls from each institute, their average

sample size and average data collecting period (Magnusson, 2018).

In Appendix B, boxplots illustrating the average support and its dispersion for each party

and house are presented.

From the polls of the nine different institutes displayed in Table 1 we construct one pooled

series describing the evolution of each party’s support during the period. By assuming

that the number of interviews have been the same for each day during the collecting

period, each poll is split into daily data. This means that a certain day can be covered by

several different polls. To make one merged time series Yj,t for each party, it is necessary

to combine the information in the different polls. We weigh the polls by sample size and

calculate an average describing the support for each party on a given day. Before this, the

house effects are taken into account. The new merged series of polling data have 1369

observations for eight parties, which means that 94 percent of the 1454 days between
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the elections are covered. Table 2 and Figure 2 below, present descriptive statistics for

this merged series. Figure 2 contains boxplots that describe the mean and variance of

the support for each party in the pooled series, and as can be seen from this figure,

the support for some parties have varied substantially during the period of interest. For

other parties – especially the Liberals, the Christian Democrats and the Left Party – the

support has been more or less constant during the time period.

Figure 2: Support for Each Party in Pooled Series, 2014-2018
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Figure 2 contains boxplots that for each party illustrate the mean and the variance of

its support during the period of September 2014 to September 2018.

Table 2 describes the pattern illustrated by Figure 2 more precisely. The table presents the

average support for each party, its standard deviation and the minimum and maximum

support.
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Table 2: Descriptive Statistics for the Support for Each Party, 2014-2018

Av. Support St.dev Min. Support Max. Support

M 0.225 0.030 0.144 0.284

L 0.050 0.005 0.037 0.065

C 0.085 0.022 0.050 0.134

KD 0.033 0.005 0.019 0.057

S 0.303 0.023 0.262 0.377

V 0.067 0.009 0.042 0.096

MP 0.052 0.012 0.027 0.088

SD 0.171 0.022 0.108 0.222

Descriptive statistics for the support of each party in the pooled series, stretching from

September 2014 to September 2019.

4.2 House effects and industry bias

Jackman (2005) states that pooling the polls lead to better precision, under the criteria

that the polls are unbiased. There are several reasons for why the results of different polls

can be biased. For example because of differences in interviewing methods, sampling,

weighting procedures and how questions are formulated. This could cause the estimated

support for certain parties to be systematically wrong.

To estimate house effect it is necessary to choose one of the institutes as a benchmark,

which polls are thereby considered to be unbiased. In this study the polls from Statis-

tics Sweden, that is the Swedish governmental agency for official statistics, are used as

a benchmark. The argument for choosing this institute is that it has a conservative

methodology and a much larger sample size than other institutes. The house effects are

modelled for each party using a linear regression, where binary variables for all institutes

except for the benchmark, are used as independent variables. The regression models can

be written as:
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Yj,i = α +X iβ + εi (18)

Here Yj,i represents the support for party j in poll i, X is a vector of binary variables

indicating which house that made poll i and the subscript i refers to the poll in question.

If the coefficient for one of the dummy variables is statistically significant at least on a 5

percent level, this house is considered to systematically either under- or overestimating the

support for the party in question (Fisher et al., 2011; Walther, 2015). The house effects

for each party and institute are presented in Section 5.1. These are then transformed and

used as weights when the polls are pooled.

Another type of bias than house effects is industry bias. This term refers to systematic

errors in the industry as a whole, that is errors that all polling institutes suffers from.

This type of bias could be found, for instance if the sum of all house effects is not equal to

zero (Fisher et al., 2011). Industry bias is not taken into account in the filtering process

and can thereby be a potential reason for why forecasts can be less precise compared to

the actual outcome.

4.3 Our algorithm for forecasting the election results

Before going into detail on the methodological approach we outline the stepwise algorithm

used in our study. The purpose of describing our algorithm for election forecasting is to

facilitate the understanding of the overall methodology used in the thesis.

1. Aggregate the polls into one pooled series of daily measures of polled party support,

following the procedure described in Section 4.1.

2. Define the DLM by first assuming that party support follows a random walk with

noise framework, which means that Equations (6) to (8) form the basis of the model.

Then specify the model further using the different frameworks described in Sections 4.5

to 4.7.
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3. Use Kalman filtering to retrieve the latent series describing true party support at a

given time, with the procedure described in Section 3.3.

4. Use the filtered series to simulate the change in party support from the stop date, that

is the last day with polling data, until the election day, using a MCMC approach such

that the predictive density at time t retrieved by the Kalman filter is used for simulating

polling data for time t + 1. By doing this the filtering process is updated. This goes on

until t = T .

5. The forecast is then compared to the actual election result and the predictive capability

of the model is evaluated, both in terms of bias and variance.

4.4 Methodological approach

Given the definition of the algorithm in the previous subsection, this section focuses

on the methodological approach in more detail. In two out of three DLM models, the

Gamma-Normal and the time-invariant models, support for party j is assumed to be

independent of the support for the other parties. Then Yj,t are eight independent time

series. In the third model, the multivariate time-invariant model, the series is instead a

vector with dimension 8 × 1, denoted Y t. In this aspect, the unobserved latent series

µj,t and µt have the same functioning as the observed series. For all three models, the

underlying model assumption is that party support can be modelled using a random walk

with noise model, as specified in Equations (6), (7) and (8).

The difference between the Gamma-Normal model and the time-invariant model refers

to the assumptions on Vj,t and Wj,t in Equations (6) to (8). The behavior of Vj,t and Wj,t

is crucial for the forecasts. In the Gamma-Normal model Vj,t is updated using a binomial

approximation of the variance, while Wj,t is assumed to follow a gamma distribution

with certain shape and rate parameters. In the time-invariant model Vj,t = Vj and is

approximated with the sample variance of the series Yj,t and Wj,t = Wj is approximated

using the sample variance of the latent series based on polling data µj,t. The difference

between the time-invariant and the multivariate time-invariant models is that Σv and
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Σw, the covariance matrices, are used instead of the variances Vj and Wj in the later one.

These matrices are calculated in the same way as the variance terms in the time-invariant

model.

Moreover, forecasts are done for three different time-periods; one month, six months and

twelve months before the election. Naturally the uncertainty of the forecast should be

larger for longer periods of simulations. The last day with polling data is referred to as

the stop date. In Figure 3, the stop date is illustrated by the crosses. Each model is first

estimated using a longer training window, that is using data for the complete period from

September 2014 until the stop date, as shown by the second and third line of Figure 3,

where the period with polling data is the solid line and the period with simulated data

has a dashed line. Then we compare the results to a forecast where instead a moving

training window is used, and this approach uses only polling data that stretches back one

year in time from the stop date. This is illustrated by the fourth and fifth line of Figure

3. As can be seen in Figure 3, the moving training window is based on less data, and the

period where the data is collected from differs between the time frames of the forecast.

To clarify the difference between the longer and the moving training windows we will

present two examples. For both windows, the 12 month forecasts have a stop date in

September 9 2017 and both use one year of simulated data. However, in the longer

training window this forecast is based on data stretching back to September 2014 while

in the moving training window the underlying data only goes back to September 2016.

Essentially the same holds for the 6 months forecasts. Both windows have a stop date in

March 9 2018 and uses half a year of simulated data. In the longer training window the

underlying data still goes back to September 2014, but in the moving training window

we use polling data from March 2017 until the stop date.
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Figure 3: Longer Versus Moving Training Window

Difference between the longer training window and the moving training window. While

the longer training window uses data from September 2014 to the stop date, the moving

training window uses data for a one-year-period that stretches one year back from the

stop date. The solid lines are periods with polling data, the dashed lines are periods

with simulated data and the crosses are the stop dates.

The forecasting procedure is repeated 10,000 times using a MCMC approach. The sim-

ulation for each iteration is done sequentially. First data points for the series Yj,t are

simulated from the posterior distributions retrieved from the Kalman filtering. Then the

Kalman filters are updated and new data points are simulated. This procedure continues

until the day of the election. For the Gamma-Normal model it is necessary to update

the time invariant variances for each day. The resulting forecast of the election result is

then used for calculating an average prediction and a 95 percent (empirical) confidence

interval. These intervals are then compared to the election results for each party, with the

purpose of evaluating the capability of the model. The main instrument for evaluating

the precision of each forecast is referred to as the average prediction error, and is defined

according to
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Average prediction error =
1

8

8∑
j=1

| µ∗j,T − ¯̂µj,T |, (19)

where µ∗j,T is the election result in September 2018 and ¯̂µj,T is the point estimate of the

forecasted result for party j, obtained via the MCMC-approach. Finally, the robustness

of the model is examined using different assumptions on Vj,t and Wj,t.

4.5 The Gamma-Normal model

As discussed in Stoltenberg (2013), the Gamma-Normal model is based on strong and

unrealistic assumptions. However, it serves the purpose of facilitating the modelling.

The underlying assumption behind how Vj,t is defined in this model, see Equation (24),

is that the data generating process can be described as a series of independent Bernoulli

experiments, where each respondent in the polling institute’s survey can state that they

will vote for a certain party or that they will not. This means that the series of polling data

must be considered as eight independent series, one for each party. This is a theoretically

unrealistic assumption, that in practice could lead to that the sum of the forecasted

support for all parties exceed one. In reality this would not, of course, be feasible. Here

that risk is handled by normalizing the simulated support for all parties.

The basis for the Gamma-Normal model is eight univariate DLMs, based on the following

equations:

Yj,t = µj,t + vj,t vj,t ∼ N(0, Vj,t) (20)

µj,t = µj,t−1 + wj,t wt ∼ N(0,Wj,t) (21)

(µj,t|Dj,0) ∼ N(mj,0, Cj,0), (22)

where j = 1, ..., 8 is an index describing the eight parties and t = 1, ..., 1454 is a time

index, describing the number of days between the 2014 and 2018 elections. The one-step-

ahead forecast for the observed process Yj,t would then be
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(Yj,t|Dj,t−1) ∼ N(fj,t, Qj,t), (23)

where fj,t = mj,t−1 and Qt = Cj,t−1 + Wj,t + Vj,t. The terms Vj,t and Wj,t are unknown.

First, Vj,t is calculated using the formula for calculating the variance in a binomial dis-

tribution. Such a binomial approximation relates to the fact that a binomial distribution

consists of a sum of Bernoulli distributions, so that

Vj,t =
yj,t(1− yj,t)

nt
, (24)

where yj,t refers to the polled support for party j at time t and nt refers to the number of

interviews made on day t. For the days between the last day with polling data and the

election day, nt is simulated and is assumed to be nt ∼ Unif(a, b), where a and b is the

values of the 25th and the 75th percentile of the actual data for n.

SinceWj,t is unobserved we cannot use it directly. Instead our study follows the suggestion

by West and Harrison (1997) and uses the so-called precision, φj,t, defined as φj,t = 1
W 2

j,t
.

Also the precision is unknown, but it is assumed that it follows a gamma distribution

with parameters a and b, φj,t ∼ Gamma(a, b).5 Here the following definitions are used

a = 1 and b = 2000, so that the expected daily volatility of the latent series for a certain

party is 0.005 percentage points. Stoltenberg (2013) uses b = 5000 for the Norwegian

Labour party.

In order to simplify the model we have chosen to treat a and b as being equal for all parties

and time-periods. In future studies it could be relevant to alter these parameters based

on the volatility of the support for different parties and time-periods. This is discussed

more in Section 6.5.

5The parameter a can be referred to as the shape parameter and b as the rate parameter of the

gamma distribution.
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4.6 The time-invariant model

The second type of model in this study is referred to as the the time-invariant model.

Also here the time series for each party is assumed to be independent of the ones from

other parties and the basis of the model is the eight DLMs described by Equations (20),

(21) and (22). The only difference between the two models is that we have Vj,t = Vj and

Wj,t = Wj.

To estimate the time-invariant model it is necessary to make assumptions on how Vj and

Wj behave. Here it is assumed that Vj = V ar(yj), that is it is assumed to be equal to

the sample variance of the polling data for party j for the period of interest. The term

Wj is assumed to be proportional to Vj with a factor of 0.5, so Wj = 0.5 · Vj. Here the

0.5 factor can be thought of as a discount factor, which it is referred to in both West and

Harrison (1997) and Petris et al. (2009).

4.7 The multivariate time-invariant model

In the multivariate time-invariant model the support for party j is instead assumed to

be dependent on the support for the other parties. This is a more realistic assumption,

since party support is a zero-sum game. If the support for one party increases, at least

one other party must lose support.

The dependency structure is captured by the fact that in this case V and W are time-

invariant covariance matrices, estimated from the data in the same way as the time-

invariant variances in the model described in Section 4.6. The empirical covariances are

used as estimates, and these are assumed to be time-invariant. The relationship between

matrix V and matrix W are defined in the same way as in the time-invariant model,

such that W = 0.5 · V .
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4.8 Robustness tests

West and Harrison (1997) describes how the forecast depends on Vj,t and Wj,t. The

purpose of our first robustness check is to examine how the choice of the rate parameter

in the gamma distribution of the precision, φj,t ∼ Gamma(a, b), affects the model’s

forecasting ability. The choice of b = 2000 as a general starting point is to a high degree

arbitrary, therefore it is interesting to repeat the simulation using other values of this

parameter. Here it will be examined whether or not the results will be similar for b = 500

and b = 5000. The robustness check is based on the Gamma-Normal model, with 6

months between the end of polling data and election day and a moving training window.

The reason for why only the six months time frame is chosen for the robustness tests is

due to the long time it takes to simulate the data.

The second robustness check examines whether the results change significantly in the

time-invariant models when the discount factor is set to 0.25 and 0.75, instead of 0.5.

The basis also for the second robustness check is the 6 months variant with a moving

training window. This process is repeated for both the time-invariant model and the

multivariate time-invariant model.

In addition, using the longer and the moving training window can be considered a ro-

bustness check that investigates how sensitive the models are for different amounts of

data.

4.9 Estimating the model in R

For estimating the model in R several functions from the ”DLM” package, described in

Petris (2010), has been invaluable. Our R program uses for example the function dlm

for estabilsiing the DLM models for each party and dlmFilter for the Kalman filtering,

but thre rest of our R-code has been implemented by us from scratch, in particular the

part for simulating the change in party support between the stop date and the day of the

election.
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5 Results

This section consists of six subsections. The first two describes the estimated house effects

and the estimated latent series for true party support. Sections 5.3 to 5.5 are devoted

to the results from the three different time frames, that is one, six or twelve months

before thee election, of the forecast model, while Section 5.6 presents the results of the

robustness tests.

5.1 Estimated house effects

As described in Section 4.1 house effects are biases that are created by the methodologies

used by different polling institutes. This could lead to a systematic over- or underestimate

of the support for a certain party. In Table 3 below, the estimated house effects for each

party and polling institutes are displayed, that is the vector β in Equation (18). The

table only consists of significant estimates at the 5 percet level, see Tables 12 to 19 in

Appendix C.

Table 3: Estimated House Effects, 2014-2018

Demoskop Inizio Ipsos Novus Sentio Sifo Skop YouGov

M 0 0 0 0 -0.030 0 -0.026 -0.027

L 0 0 0.010 0 0 0.005 0.007 0

C 0 0 0 0 0 0 0 0

KD 0 0.013 0 0 0 0 0.014 0

S -0.029 -0.035 -0.025 -0.031 -0.059 -0.026 -0.040 -0.061

V 0 0 0 0.009 0.014 0.011 0.019 0.010

MP 0 0 0 0 0 0 0 0

SD 0 0 0 0 0.063 0 0 0.067

Estimated house effects for each party and polling institute. The full results of the

regressions can be found in Appendix C.
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A positive estimate means that the polling institute in question systematically overesti-

mates the support for a certain party, while a negative estimate means that the support

is systematically underestimated. The magnitude of the numbers refers to the average

difference in percentage points from the estimate made by Statistics Sweden. The esti-

mated house effects are then used to weigh the polls for each party before all polling data

is merged into one series.

The negative house effects for the Social Democrats in all polling institutes is troubling,

since it could suggest that Statistics Sweden overestimated the support for the party

rather than that all other houses underestimated their support. This is also a comment

that sometimes is made from political journalists and commentators, see for instance

Expressen (2014). If so, the choice of Statistics Sweden as a benchmark would not be

appropriate. This question is further discussed in the analysis of this thesis.

In earlier election campaigns the Sweden Democrats have been considered to be a party

that is hard to poll. The estimated house effects in Table 3 shows that, compared to

Statistics Sweden, two polling institutes; Sentio and YouGov significantly overestimated

the support for this party. Both these institutes use self-recruiting web panels and Sentio

does not reveal their methodologies (Sundell, 2015). The same institutes have large

negative house effects for the Social Democrats.

No significant house effect at all can be found for the Centre Party and the Green Party.

For the other parties the estimated house effects are small and often not significant.

5.2 Pooling the polls and estimating latent series

Table 4 presents the result of the estimated latent-series. Here, simulated data is not used,

instead the Kalman filtering runs through the complete series of pooled polls for the whole

period between September 2014 and September 2018. The pooling methodology in our

thesis can be evaluated by comparing the estimates for the latent series on election day,

which in turn should describe the true underlying party support that day, to the election

result in September 2018. The election results are compiled from (Valmyndigheten, 2018).
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For all three models the result is on average deviating with 0.8 percentage points from

the election result.

Table 4: The True and Estimated Support on Election Day

Election Result Gamma-Normal Time-Invariant Multivariate Time-Invariant

M 0.198 0.183 0.187 0.187

L 0.055 0.057 0.057 0.057

C 0.086 0.094 0.093 0.093

KD 0.063 0.049 0.047 0.047

S 0.283 0.276 0.279 0.276

V 0.080 0.094 0.092 0.092

MP 0.044 0.052 0.054 0.054

SD 0.175 0.174 0.172 0.172

Av. Error 0.0086 0.0081 0.0085

The table contains support for each party in the 2018 election and also the support on

election day in the estimated latent series. The latent series are estimated for all three

models. The average error is the average distance between the estimate and the election

result, see Equation (19).

Figure 4 illustrates the latent series for all parties from the time-invariant model only, but

as can be seen from Table 4 the endpoints of all three models do not deviate substantially

from each other. The estimated latent series for each party resembles the pattern in the

boxplots of Figure 2. Series for the parties where the boxes illustrate a larger spread is

more volatile. This is important for the consistency of the results. Appendix D includes

figures that for each party relates this series to the polling data. The same appendix

also contains estimated latent series for the Gamma-Normal and the multivariate time-

invariant model.
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Figure 4: Estimated Latent Series from the Time-Invariant Model
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The figure presents the estimated latent series for each party, using the time-invariant

model. Appendix D includes both figures that for each party relates this series to the

polls and the estimated latent series for the Gamma-Normal and the multivariate time-

invariant model.

5.3 Forecasted results one month before the election

Table 5 below presents the result of the forecast conducted one month before the election

for all three models, using the longer training window. The table shows both point

estimates and the interval in which 95 percent of the election forecasts are found.

When it comes to the point estimates, there are small differences between the three mod-

els. In general all models predict the result of the Moderates, the Liberals and the Social

Democrats well. On the other hand, all three models have problems forecasting the result

for the Christian Democrats, which are underestimated, and the Centre Party, which are
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overestimated. In Sweden the right-wing parties, that is the Moderates, Liberals, Centre

Party and Christian Democrats, have formed a pre-election coalition, ”the Alliance”. The

red-green parties, that is the Social Democrats, the Left Party and the Green Party, have

had a similar cooperation before the election. On a party alliance level the best model

underestimates the support for the Alliance with -1.2 percentage points and overestimates

the support for the Red-Green Party with 1.8 percentage point.

Table 5: Results from One Month Forecasts, Longer Training Window

Gamma-Normal Time-Invariant Multivariate Time-Invariant

Election Result Point Estimate 95 % CI Point Estimate 95 % CI Point Estimate 95 % CI

M 0.198 0.201 [0.189, 0.213] 0.203 [0.191, 0.215] 0.198 [-0.062, 0.519]

L 0.055 0.053 [0.044, 0.061] 0.055 [0.054, 0.056] 0.053 [0.011, 0.096]

C 0.086 0.102 [0.092, 0.111] 0.105 [0.097, 0.112] 0.103 [-0.090, 0.297]

KD 0.063 0.035 [0.026, 0.044] 0.035 [0.035, 0.036] 0.035 [-0.005, 0.075]

S 0.283 0.281 [0.271, 0.291] 0.288 [0.280, 0.296] 0.279 [0.097, 0.461]

V 0.080 0.086 [0.078, 0.094] 0.087 [0.085, 0.089] 0.087 [0.013, 0.161]

MP 0.044 0.058 [0.049, 0.067] 0.035 [0.035, 0.036] 0.056 [-0.048, 0.161]

SD 0.175 0.185 [0.175, 0.194] 0.191 [0.184, 0.199] 0.188 [-0.006, 0.382]

Av. Pred. Error 0.0101 0.0111 0.0104

The results from the one month forecasts for the three models, when a longer training

window is used. The bold intervals are those intervals that capture the true election

results in the Gamma-Normal and Time-Invariant models.

The average prediction error, as defined by Equation (19), is similar for all three models.

The Gamma-Normal model performs slightly better than the others.

The width of the confidence intervals can be considered to capture the uncertainty of

the forecast. The uncertainty is by far the largest in the multivariate time-invariant

model. Some election forecasts in this model are actually negative, which of course is

unreasonable. The time-invariant model has a slight lower uncertainty than the Gamma-

Normal model. Therefore the choice between this model and the other two can to some

extent be thought of as a choice capturing the bias-variance trade-off which is common

in statistics.

35



For illustrative purposes we have in Tables 5 to 10 displayed the intervals covering the

true election results in the Gamma-Normal and the time-invariant models in bold. This

is not done for the multivariate time-invariant model because of its unrealistic intervals.

For the Gamma-Normal model five out of eight intervals capture the true election result

in September 2018, and for the time-invariant model three out of eight forecasts cover

the true result.

When a moving training window is used the point estimates are identical for the Gamma-

Normal and the time-invariant models, and the results are presented in Table 6. For the

multivariate time-invariant model there are some small differences, although the aver-

age prediction error remains the same. On the other hand, the moving training window

results in smaller uncertainties for all models. The largest improvement is for the multi-

variate time-invariant model, which however still remains to be the model with the largest

uncertainty.

Table 6: Results from One Month Forecasts, Moving Training Window

Gamma-Normal Time-Invariant Multivariate Time-Invariant

Election Result Point Estimate 95 % CI Point Estimate 95 % CI Point Estimate 95 % CI

M 0.198 0.201 [0.191, 0.211] 0.203 [0.196, 0.211] 0.200 [-0.006, 0.407]

L 0.055 0.053 [0.045, 0.061] 0.055 [0.054, 0.056] 0.053 [0.015, 0.092]

C 0.086 0.102 [0.095, 0.109] 0.105 [0.102, 0.107] 0.101 [0.004, 0.198]

KD 0.063 0.035 [0.027, 0.044] 0.035 [0.035, 0.036] 0.035 [0.011, 0.059]

S 0.283 0.281 [0.272, 0.291] 0.288 [0.282, 0.294] 0.0279 [0.098, 0.459]

V 0.080 0.086 [0.078, 0.093] 0.087 [0.086, 0.089] 0.087 [0.014, 0.159]

MP 0.044 0.058 [0.050, 0.066] 0.035 [0.035, 0.036] 0.057 [0.021, 0.094]

SD 0.175 0.184 [0.175, 0.193] 0.191 [0.186, 0.196] 0.188 [0.023, 0.352]

Av. pred. error 0.0101 0.0111 0.0104

The table presents the results from the one month forecasts for the three models, when

a moving training window is used. The bold intervals are those intervals that capture

the true election results in the Gamma-Normal and Time-Invariant models.
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5.4 Forecasted results six months before the election

Table 7 presents the result of the forecasts conducted six months before the election,

when the longer training window is applied. Overall the average prediction error increases

substantially compared to the forecast one month before of the election in September 2018.

For the Gamma-Normal and time-invariant models the average prediction error is close

to 2 percentage points, while it is substantially better for the multivariate time-invariant

model. T average prediction error is for the latter model only about 1.6 percentage

points. This is mainly driven by more realistic predictions for the Centre Party, the

Social Democrats, the Left Party and the Sweden Democrats. Except for these results,

the individual forecasts are quite similar between the models.

On a party alliance level the best model, the multivariate time-invariant model with a

moving training window, perform even better than the best model in the one month

forecast. For the best six months model the difference between the election result for the

right-wing alliance is only 0.6 percentage points and for the red-green parties only 1.3

percentage points. Thus, both blocs are overestimated.

The uncertainty, as described by the width of the confidence intervals, has increased

compared to the one month forecasts. This phenomenon is illustrated by the fact that

the intervals are wider here. The problem of the unrealistically large variance for the

multivariate time-invariant model remains, and is further exacerbated. As earlier the

bold intervals in the Gamma-Normal and time-invariant models cover the true election

result. For the Gamma-Normal model five out of eight predictions cover the true election

result. This is an identical result compared to the forecast one month before the election.

However, for this time frame the interval for the Green Party capture the true result, but

the result for the Social Democrats is not covered.

For the Gamma-Normal and time-invariant models there are minimal differences between

the results using a longer training window and the results using a moving training window,

see Table 8. The differences are somewhat larger for the multivariate model. As before,

the moving training window reduce the uncertainty for all models.
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Table 7: Results from Six Months Forecasts, Longer Training Window

Gamma-Normal Time-Invariant Multivariate Time-Invariant

Election Result Point Estimate 95 % CI Point Estimate 95% CI Point Estimate 95% CI

M 0.198 0.232 [0.204, 0.261] 0.233 [0.204, 0.263] 0.227 [-0.440, 0.894]

L 0.055 0.042 [0.020, 0.063] 0.043 [0.040, 0.045] 0.044 [-0.060, 0.149]

C 0.086 0.098 [0.074, 0.121] 0.098 [0.079, 0.117] 0.107 [-0.390, 0.604]

KD 0.063 0.032 [0.010, 0.055] 0.033 [0.031, 0.035] 0.033 [-0.069, 0.135]

S 0.283 0.321 [0.296, 0.346] 0.323 [0.303, 0.342] 0.303 [-0.144, 0.750]

V 0.080 0.070 [0.049, 0.090] 0.070 [0.066, 0.074] 0.077 [-0.074, 0.228]

MP 0.044 0.040 [0.015, 0.064] 0.033 [0.031, 0.035] 0.030 [-0.235, 0.296]

SD 0.175 0.166 [0.143, 0.189] 0.168 [0.151, 0.184] 0.178 [-0.291, 0.647]

Av. Error 0.0189 0.0196 0.0164

Results from the six months forecasts for the three models, when a longer training

window is used. The bold intervals are those intervals that capture the true election

results in the Gamma-Normal and Time-Invariant models.

Table 8: Results from Six Months Forecasts, Moving Training Window.

Gamma-Normal Time-Invariant Multivariate Time-Invariant

Election Result Point Estimate 95 % CI Point Estimate 95 % CI Point Estimate 95 % CI

M 0.198 0.232 [0.204, 0.261] 0.233 [0.205, 0.261] 0.228 [-0.433, 0.888]

L 0.055 0.042 [0.021, 0.062] 0.043 [0.041, 0.045] 0.044 [-0.066, 0.154]

C 0.086 0.097 [0.078, 0.116] 0.098 [0.090, 0.106] 0.102 [-0.209, 0.414]

KD 0.063 0.032 [0.011, 0.054] 0.033 [0.032, 0.034] 0.034 [-0.046, 0.113]

S 0.283 0.321 [0.299, 0.343] 0.323 [0.310, 0.336] 0.308 [0.080, 0.537]

V 0.080 0.070 [0.051, 0.089] 0.070 [0.067, 0.073] 0.075 [-0.022, 0.172]

MP 0.044 0.040 [0.019, 0.061] 0.033 [0.032, 0.034] 0.037 [-0.043, 0.117]

SD 0.175 0.166 [0.146, 0.186] 0.168 [0.158, 0.177] 0.171 [-0.152, 0.495]

Av. Error 0.0188 0.0196 0.0159

Results from the six months forecasts for the three models, when a moving training

window is used. The bold intervals are those intervals that capture the true election

results in the Gamma-Normal and Time-Invariant models.
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5.5 Forecasted results twelve months before the election

The results from the forecasts made one year before the election, presented in Tables 9

and 10, follow the same pattern as the predictions made for the shorter time frames. The

moving training window makes the confidence intervals more narrow and the multivariate

time-invariant model still suffers from anomalies, like the fact that a large proportion

of the forecasts have negative outcomes. The differences between the point estimates

from the moving training window and the longer training window remain remarkably

small for the Gamma-Normal and time-invariant model. Here, however, do the point

estimates from the multivariate time-invariant model change drastically between the two

different types of training window. Altogether it is somewhat surprising that the bias,

still measured by the average prediction error, does not increase drastically compared to

the six month prediction.

The earlier presented pattern is still valid for the individual parties as well. The Gamma-

Normal model overestimates the Social Democrats and the Centre Party, and underes-

timates the support for the Moderates and the Christian Democrats. This holds true

no matter if a moving or a longer training window is applied. The confidence intervals

from this model contains the election results for six out of eight parties. The confidence

intervals for the Gamma-Normal model capture the true election result for six out of

eight parties. There are small differences between the results from the Gamma-Normal

and the time-invariant models. The forecast for the time-invariant model results in more

narrow confidence bands. An effect of this is that the true election result is only captured

by two of the eight confidence intervals.
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Table 9: Results from Twelve Months Forecasts, Longer Training Window

Gamma-Normal Time-Invariant Multivariate Time-Invariant

Election Result Point Estimate 95 % CI Point Estimate 95 % CI Point Estimate 95 % CI

M 0.198 0.178 [0.132, 0.223] 0.177 [0.131, 0.223] 0.157 [-0.825, 1.139]

L 0.055 0.048 [0.019, 0.077] 0.049 [0.045, 0.052] 0.051 [-0.097, 0.198]

C 0.086 0.124 [0.087, 0.160] 0.123 [0.096, 0.150] 0.146 [-0.582, 0.873]

KD 0.063 0.035 [0.004, 0.066] 0.036 [0.033, 0.039] 0.037 [-0.117, 0.192]

S 0.283 0.330 [0.294, 0.366] 0.333 [0.303, 0.362] 0.298 [-0.357, 0.953]

V 0.080 0.064 [0.036, 0.092] 0.066 [0.060, 0.071] 0.080 [-0.144, 0.303]

MP 0.044 0.043 [0.011, 0.076] 0.036 [0.033, 0.039] 0.027 [-0.348, 0.402]

SD 0.175 0.178 [0.146, 0.211] 0.181 [0.155, 0.206] 0.204 [-0.597, 0.915]

Av. Error 0.0200 0.0211 0.0240

The table presents the results from the twelve months forecasts for the three models,

when a longer training window is used. The bold intervals are those intervals that

capture the true election results in the Gamma-Normal and Time-Invariant models.

The forecast from the multivariate time-invariant model using a moving training window

performs remarkably well. Much better than what this model performs for the six month

predictions and for the twelve month forecast using a longer training window. The average

prediction error is only 1.28 percentage points. The moving training window forecast the

results for the Liberals and the Left Party very well. Additionally, it is the only model

which predicts that the Christian Democrats will be represented in parliament after the

election. On a party bloc level it misses the election result for the right-wing alliance

with only -0.4 percentage points and for the red-green parties with 1.1 percentage points.

From a qualitative perspective it answers almost every relevant question in line with the

election result. The red-green parties have a slightly larger support than what the right-

wing parties have, but it is a close call. The Social Democrats is by far the largest party,

while the Moderates is the second largest and the Sweden Democrats comes in third.

On the other had, the forecasts incorrectly states that the Green Party will not pass the

four percentage threshold for entering the parliament. Despite this last inaccuracy, the

results are remarkably good considering the fact that the forecast is based on one year of
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simulated data.

Table 10: Results from Twelve Months Forecasts, Moving Training Window

Gamma-Normal Time-Invariant Multivariate Time-Invariant

Election Result Point Estimate 95 % CI Point Estimate 95 % CI Point Estimate 95 % CI

M 0.198 0.178 [0.142, 0.214] 0.177 [0.135, 0.218] 0.188 [-0.773, 1.148]

L 0.055 0.048 [0.020, 0.076] 0.048 [0.046, 0.051] 0.052 [-0.059, 0.163]

C 0.086 0.123 [0.095, 0.152] 0.123 [0.104, 0.143] 0.113 [-0.499, 0.726]

KD 0.063 0.035 [0.005, 0.065] 0.036 [0.034, 0.038] 0.045 [-0.088, 0.179]

S 0.283 0.329 [0.299, 0.360] 0.333 [0.313, 0.352] 0.305 [-0.055, 0.665]

V 0.080 0.064 [0.037, 0.091] 0.066 [0.062, 0.070] 0.081 [-0.081, 0.242]

MP 0.044 0.044 [0.015, 0.072] 0.036 [0.034, 0.038] 0.032 [-0.112, 0.176]

SD 0.175 0.179 [0.153, 0.204] 0.181 [0.170, 0.192] 0.184 [-0.141, 0.510]

Av. Error 0.0198 0.0213 0.0128

Results from the twelve months forecasts for the three models, when a moving training

window is used. The bold intervals are those intervals that capture the true election

results in the Gamma-Normal and Time-Invariant models.

5.6 Results from robustness tests

The complete results of the robustness tests, described in Section 4.8, can be found in

Appendix E.

For the time-invariant and the multivariate time-invariant models these robustness tests

are based on altering the discount factor that determines the relationship between the

variance terms and covariance matrices. In the standard setup this discount factor is

0.5, while here we examine whether the results are affected if this factor is changed to

0.25 and 0.75. As illustrated by two of the tables in Appendix E, the arbitrary choice

of this constant does not have an impact on the point estimate. However, the choice of

discount factor affects the uncertainty of the projection. A higher discount factor widens

the interval that covers 95 percent of the predictions, while a lower discount factor makes

the same interval more narrow. This can be of importance, especially for the multivariate

time-invariant model which in the standard version displays unrealistically wide intervals.
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The results from the robustness tests for the Gamma-Normal model strengthens this

pattern. Changing the rate parameter, b that is determining the distribution of Wj,t does

not affect the point estimate much at all, but do however impact the uncertainty of the

prediction. When b = 500 are the width of the confidence intervals a lot wider than when

b = 2000, as in the standard case. The opposite holds true for the case when b = 5000.

The fact that varying the variance terms Wj,t or W does not impact the point estimate

follows naturally from the model specification assumption. The same goes for why this

leads to wider or more narrow intervals for the election day forecasts, which can be seen

from studying Equation (15) in Section 3.3.

As described in Section 4.8 the choice to use both a longer and a moving training window

can be thought of a robustness test, describing to what extent the forecasts are dependent

on the input data. Tables 5 to 10 indicate that the point estimates are not affected by the

choice of training window. However, here as well, do the choice of training window affect

the uncertainty of the forecast. A moving training window decreases the uncertainty

compared to a longer training window.
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6 Analysis

In this section the results retrieved by the forecasting models are discussed and put into

context. The section starts with a short summary of the empirical results presented

earlier, then it goes on with a section discussing the over- and underestimated support

for some of the parties. The rest of the section is devoted to discussing three aspects of

the models that can be developed in future research.

6.1 Summary of results

The empirical ambition of this thesis is to examine three different DLM models used for

forecasting the election result in a multiparty context. The thesis studies the case of the

election in Sweden in 2018, and uses polling data and simulated data to predict the result

for each party one year, six months and one month before the election. The analysis is

done based on the framework of dynamic linear models.

Section 4.4 describes how two different approaches to the underlying data are used; a

moving training window and a longer training window. The point estimates of the support

for each party at election day are for all the three time frames, not changing significantly

depending on the choice of training window. One exception from this is however the

twelve months forecast for the multivariate time-invariant model, for which the point

estimates changes substantially, the support for some parties are higher while for others

the support is lower, when we are going from a longer to a moving training window.

The best model, that is the model that minimizes the average prediction error, for the

one month forecast is the Gamma-Normal model. The multivariate time-invariant model

is on the other hand the best model for the six and twelve months forecasts. In addition,

it is worth mentioning that this model has a problem of unrealistically wide confidence

intervals. In general, for all three time frames, is the average prediction error between 1

and 2.4 percentage points.
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The accuracy of a forecast model can also be evaluated using its answers to relevant

qualitative questions. Examples of such questions could be ”Which parties will enter

the parliament?” or ”Which party will have the highest support?”. Here it is worth

mentioning that the best twelve months forecasting model answer most of qualitative

questions correctly. It has the Social Democrats as the largest party, it predicts that

the red-green parties will be somewhat larger than the right-wing alliance and it states

that the Liberals as well as the Christian Democrats will remain in parliament after the

election. The forecasted results for the two party blocs are close to the actual election

result. The model does however wrongly predict that the Green Party will not pass the

4 percent threshold for entering the parliament.

The purpose of this thesis, as it is defined in the introduction, is to develop and ex-

plore different models for election forecasting. We have tested the model on one Swedish

election, with fairly good results. However, it is necessary to test the model’s perfor-

mance using other elections, in Sweden as well as in other countries, to fully evaluate its

predictive capability. We do believe that a critical discussion of the work at hand will

serve future research the best. Therefore is the rest of this analysis devoted to a critical

assessment of our models and the empirical result.

6.2 Evaluating the over- and underestimated support for some

parties

When analyzing the empirical results summarized in Tables 5 to 10 one evident as-

pect is that the six and twelve months models overestimate the support for the Social

Democrats and for the Centre Party, while they underestimate the support for the Chris-

tian Democrats. A critical assessment of the forecasting capability must therefore start

with an analysis of why this could be the case.

An apparent suggestion for why the models overestimate the support for the Social

Democrats can be found in the estimated house effects. When estimating those we used

the poll from Statistics Sweden as a benchmark, by that we assumed that this poll was
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unbiased. However, as mentioned earlier, there are good reasons to believe that this poll

instead overestimates the support for the Social Democrats. This means that while the

estimated house effects in Table 3 suggest that all other polls underestimates the support

for the Social Democrats, it could instead be the case that their support is overestimated

in the assumed unbiased poll. Figure 19 in Appendix D illustrates how the estimated

latent series for the Social Democrats is higher than what is suggested by most polls.

On the other hand, there are also arguments stipulating that the methodology used by

Statistics Sweden leads to polls that would be close to the election result. The institute

does also produce polls close to the election that is not made public until after the election

have taken place. In 2018 these polls suggested that the election result on average deviated

0.86 percentage points for each party (SR, 2018).

Besides the house effects another possible explanation to why the Social Democrats is

overestimated could be found in the fact that they are a party that usually performs badly

during the last weeks of the election campaign. Since 1968 the Social Democrats have

lost voters during those weeks in every single election but one, not taking the election in

2018 into account (Oscarsson, 2016). Such an effect would not be captured by our model

and is further discussed later in the analysis.

When it comes to the overestimated support for the Centre Party the explanation is

more straight forward. As can be seen in Figure 17, the latent series does not deviate

systematically from the polling data. Table 3 does also state there is not any significant

house effects for this party. The deviation between the forecast and the election result is

the largest for the twelve months prediction. This is around the time when the Centre

Party got their highest numbers in the polls. The overestimation of the support for this

party illustrates the problem with data driven forecasts. This problem is related to the

model specification assumption and is discussed more deeply below.

The underestimation of the Christian Democrats is likely to be driven by the same issue.

The forecasts of that party are close to what the polls have suggested during most of

the period of interest. However, during the absolute last days and weeks of the election

campaign the support for the Christian Democrats increased rapidly in the polls. As a
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matter of fact the good result for that party was one of the largest surprises in the 2018

Swedish election. In general terms is it a problem that the model does not take periods

where political support is more volatile, as en election campaign, into account. This is

discussed further later on in the analysis.

6.3 Limitations regarding model specification

The forecasts are to a high degree driven by the data, meaning that the election day

prediction is close to the polls on the last day with actual data. This is illustrated in

Table 11 below. The table presents the differences between the best model for each time

period and the last day’s polling data.

Table 11: Difference Between Stop Date Polling and Election Forecast

1 month 6 months 12 months

M 0.003 0.001 0.013

L 0.001 0.003 0.005

C 0.002 0.007 0.007

KD 0 0.002 0.010

S 0.003 0.006 0.017

V 0.002 0.006 0.018

MP 0.002 0.002 0.012

SD 0.005 0.009 0.010

Difference between the stop day polling data, that is the polling data in the merged

series on the stop date, that is the last day before the period with simulated data starts.

The estimate of the election support is from the best model.
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As indicated by the table there are small differences, measured in percentage points,

between the average election day forecast and the polling data for the stop date, that is

the last day before the period with simulated data starts. Additionally, it is interesting

to see how these differences increase with the length of the period with simulated data.

The robustness tests suggest that this pattern does not seem to be dependent on the

variance terms. Instead it is a natural consequence of the model specification. Equation

(10) describes how the conditional expectation of the one-step-ahead forecast for the

random walk with noise model is equal to the value of the series in the previous period.

In the thesis we simulate the support for each day between the last period of polling data

and the election day. This will inevitably result in the pattern described above.

The multivariate time-invariant model is the model that is least dependent on the data.

This can potentially both serve the purpose of making more accurate forecasts, but can

also result in forecasts that are farther away from the election result. If the effect is

beneficial or disadvantageous depends on how close the polling data at the period of

interest is to the election result. This fact can be observed if the average prediction error

for the six and twelve months forecasts are compared for the multivariate time-invariant

model.

The question of model specification is of interest for more aspects of the empirical re-

sults. As mentioned in Section 3.2 the random walk models are often used for short-term

forecasting. One can question whether the time frames in this thesis really is short term.

We believe that such an assumption might be valid for the one month prediction, but

probably not for the six and twelve months forecasts. The reason for using such a model

specification, despite this complication, can be found in the fact that this is a common

assumption in most types of election forecasting using DLMs.

On a more long term basis we believe that the random walk assumption must be com-

plemented with additional factors that capture the dynamics of political support. For

instance it is clear from the estimated latent series, see for instance the figures in Appendix

D, that the support for most parties goes through both upward sloping and downward

sloping trends during the period of interest. More accurate forecasts could therefore re-
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quire trend components that make it possible to estimate the models with drift. This

would then lead to the here unanswered question of how to determine the trends. Such

questions could be of interest for future research.

Another aspect of the problem with the model specification assumption is that some

periods are more volatile than others. The most obvious period when party support

is determined is the last weeks before the election. The underlying unobserved series

should thereby be more volatile in that period. The fact that more than one third of the

electorate, 37 percent, in 2018 decided which party to vote for during the last day or the

last week of the election campaign illustrates the difficulties in election forecasting (SVT,

2018). One way forward could in future research be to include components capturing

seasonality aspects, like what is done in Walther (2015).

This relates to one of the surprises in the 2018 Swedish election result, the good result for

the Christian Democrats. All models in this thesis underestimate the support for them.

The underlying reasons is that the model specification using a random walk model does

not capture the sharp upward trend in the polls for the Christian Democrats during the

last weeks before the election. Additionally, in this aspect it is also problematic that

the models do not account for strategic factors that determine voting behavior. Many

conservative voters have in this election, as well as in previous ones, voted on the Christian

Democrats to have them remain in parliament during the coming term. The same goes

for progressive voters that have made a tactical vote on the Green Party. These factors

are not captured by the forecasts, and that is a limitation of our model.

6.4 Other problems regarding the model assumptions

Besides the problem arising from the model specification assumption, one can question

whether political support really follows a Markov process. The definition of the Markov

chain, for instance described by Figure 1, is that its value in time t only depends on

the value in time t − 1 and not on the value in earlier time periods. The Markov chain

suggest that it is only the support for the party in the period before that matter for
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the estimated support the next period. During a four year period there is likely to be

events that are shaping the political support for longer time periods, for instance a major

political crisis or an economic downturn. Some voters are likely to base their voting

decision on historical events, which can both impact the support of a party negatively

and positively. Our point here is that there are good reasons to believe that political

support does not follow a Markov chain. To what extent this impacts our empirical

results is not certain.

Regarding the Gamma-Normal and the time-invariant models, we have already mentioned

the unrealistic assumption that the support for a certain party is independent of the

support for other parties. It is hard to evaluate whether this assumption has lead to

any practical problems in the empirical results, but it is interesting that the multivariate

model is the one performing the best for the longer time frames. Realistic models on

party support should, at least from a theoretical point of view, be based on multivariate

analysis. The insights of the multivariate time-invariant model can therefore be useful

for future research on election forecasting. A possible next step of developing models for

forecast Swedish elections could be to implement a Dirichlet-Multinomial model, as for

instance Stoltenberg (2013) uses to forecast Norwegian election results. Such a model is

also used by Hurtado-Bodell (2016) in her work of polling Swedish polls.

6.5 The uncertainty of the predictions

The reason for including both a Gamma-Normal and a time-invariant model is to see

to what extent different assumptions on the unknown variances affect the forecasting

capability. Firstly, it is clear from the empirical results that the average prediction errors

for the two models are close in all three time frames. In this aspect, the Gamma-Normal

model often performs slightly better than the time-invariant model. On the other hand

the time-invariant model leads to less uncertain forecasts, since its confidence intervals

covering 95 percent of the election day forecasts are more narrow. The choice between

the Gamma-Normal model and the time-invariant model can therefore, at least to some

extent, be thought of as a bias-variance trade-off.
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Secondly, as the robustness tests show, the uncertainty of the forecast can be affected

through the assumptions made on the variance of the underlying latent series. This means

that it is possible to vary the assumptions on the variance term for different time frames

and different parties. Therefore it would be possible to make more accurate forecasting

models that perform more realistically in regards to the uncertainty, if we would adapt

the assumptions on the variance terms, based on historical patterns, for each party. Such

a strategy could be a way of handling the problem of the unrealistically wide confidence

intervals in the multivariate time-invariant model. This poses one possible opportunity for

how the applied research on election forecasting in the Swedish context can be developed

in the future.

Altogether in this analysis we have tried to evaluate the work in this thesis critically

and hope that this assessment can be of use for coming work on election forecasting in

multiparty contexts, especially for the case of Sweden.
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A The multivariate DLM

In the following appendix a multivariate DLM is briefly described. The multivariate DLM

is based on the following three equations, that relates to the definition of the univariate

DLM in Equations (3) to (5).

Y t = F ′tθt + vt vt ∼ N(0,Σv,t) (25)

θt = G′tθt−1 +wt wt ∼ N(0,Σw,t) (26)

(θ0|D0) ∼ N(m0,C0) (27)

The major difference between the model defined by Equations (3) to (5) and the one

defined by Equations (25) to (27), is that the parameters as well as the variables is

vectors and matrices in the multivariate model. In the multivariate model are Σv,t and

Σw,t covariance matrices. By assuming that F and G are 8× 8 identity matrices we can

go from the general multivariate DLM to the multivariate random walk with noise model,

defined by Equation (28) below.

Y t = µt + vt vt ∼ N(0,Σv,t)

µt = µt−1 +wt wt ∼ N(0,Σw,t)

(µt|D0) ∼ N(m0,C0)

(28)

In the multivariate time-invariant model described in Section 4.7 the covariance matrices

are assumed to be time-invariant, so that Σv,t = Σv and Σw,t = Σw. The forecasting is

then based on simulations from a multivariate normal distribution such that

(Y t+1|Dt) ∼ N(f t,Qt), (29)

where f t = mt−1 and Qt = Ct−1 + Σw + Σv.
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B Descriptive statistics for each party and polling

institute

In this appendix we present figure containing boxplots for each party. The Boxplots

contains the average support and the average support in polls from each institute for

each party, during the period September 2014 to September 2018.

Figure 5: Polling Data for the Moderates, 2014-2018
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Figure 6: Polling Data for the Liberals, 2014-2018
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Figure 7: Polling Data for the Centre Party, 2014-2018
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Figure 8: Polling Data for the Christian Democrats, 2014-2018
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Figure 9: Polling Data for the Social Democrats, 2014-2018
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Figure 10: Polling Data for the Left Party, 2014-2018
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Figure 11: Polling Data for the Green Party, 2014-2018
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Figure 12: Polling Data for the Sweden Democrats, 2014-2018

0.15

0.20

0.25

Demoskop Inizio Ipsos Novus SCB Sentio Sifo Skop YouGov

Houses

V
o
te

 s
h
a
re

, 
S

w
e

d
e

n
−

D
e
m

o
c
ra

ts

57



C Results from the house effect regressions

In this appendix the results for each house effect regression is presented. As described in

Section 4.1 this regression is repeated for each party. The estimated coefficient describes

the average difference between the party’s support in the polls from the actual institute

and their average support in the polls by Statistics Sweden.

Table 12: Results from House Effects Regression, Moderates

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.2296 0.0111 20.63 0.0000

Demoskop -0.0080 0.0120 -0.66 0.5073

Ipsos -0.0107 0.0119 -0.90 0.3703

Inizio -0.0080 0.0121 -0.66 0.5101

Novus -0.0117 0.0120 -0.98 0.3281

Sentio -0.0296 0.0120 -2.46 0.0144

Sifo -0.0076 0.0119 -0.64 0.5256

Skop -0.0257 0.0128 -2.01 0.0455

YouGov -0.0266 0.0121 -2.20 0.0287
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Table 13: Results from House Effects Regression, Liberals

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0496 0.0023 21.18 0.0000

Demoskop 0.0029 0.0025 1.14 0.2566

Ipsos -0.0047 0.0025 -1.86 0.0630

Inizio 0.0102 0.0025 4.00 0.0001

Novus 0.0032 0.0025 1.27 0.2051

Sentio -0.0026 0.0025 -1.01 0.3129

Sifo 0.0053 0.0025 2.11 0.0357

Skop 0.0067 0.0027 2.49 0.0133

YouGov -0.0020 0.0026 -0.80 0.4237

Table 14: Results from House Effects Regression, Centre Party

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0770 0.0076 10.17 0.0000

Demoskop 0.0081 0.0082 0.99 0.3211

Ipsos 0.0139 0.0081 1.71 0.0886

Inizio 0.0071 0.0082 0.86 0.3882

Novus 0.0086 0.0081 1.05 0.2934

Sentio 0.0009 0.0082 0.11 0.9111

Sifo 0.0120 0.0081 1.48 0.1411

Skop 0.0090 0.0087 1.04 0.2994

YouGov 0.0035 0.0082 0.42 0.6746

59



Table 15: Results from House Effects Regression, Christian Democrats

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0329 0.0028 11.54 0.0000

Demoskop 0.0020 0.0031 0.65 0.5151

Ipsos 0.0126 0.0031 4.13 0.0000

Inizio 0.0019 0.0031 0.60 0.5461

Novus 0.0025 0.0031 0.83 0.4081

Sentio -0.0019 0.0031 -0.63 0.5295

Sifo 0.0041 0.0031 1.33 0.1838

Skop 0.0139 0.0033 4.24 0.0000

YouGov 0.0023 0.0031 0.73 0.4657

Table 16: Results from House Effects Regression, Social Democrats

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.3006 0.0078 38.37 0.0000

Demoskop -0.0290 0.0085 -3.42 0.0007

Ipsos -0.0348 0.0084 -4.15 0.0000

Inizio -0.0254 0.0085 -2.99 0.0029

Novus -0.0311 0.0084 -3.69 0.0003

Sentio -0.0587 0.0085 -6.93 0.0000

Sifo -0.0258 0.0084 -3.06 0.0023

Skop -0.0398 0.0090 -4.42 0.0000

YouGov -0.0609 0.0085 -7.14 0.0000
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Table 17: Results from House Effects Regression, Left Party

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0658 0.0044 14.86 0.0000

Demoskop 0.0084 0.0048 1.75 0.0813

Ipsos 0.0056 0.0047 1.19 0.2351

Inizio 0.0094 0.0048 1.95 0.0517

Novus 0.0094 0.0048 1.98 0.0484

Sentio 0.0138 0.0048 2.88 0.0043

Sifo 0.0111 0.0047 2.34 0.0199

Skop 0.0186 0.0051 3.65 0.0003

YouGov 0.0102 0.0048 2.12 0.0345

Table 18: Results from House Effects Regression, Green Party

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0519 0.0044 11.66 0.0000

Demoskop 0.0032 0.0048 0.67 0.5046

Ipsos -0.0066 0.0048 -1.38 0.1671

Inizio 0.0004 0.0048 0.08 0.9398

Novus 0.0001 0.0048 0.03 0.9792

Sentio -0.0029 0.0048 -0.59 0.5534

Sifo 0.0035 0.0048 0.73 0.4658

Skop 0.0035 0.0051 0.69 0.4907

YouGov -0.0089 0.0048 -1.83 0.0677
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Table 19: Results from House Effects Regression, Sweden Democrats

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.1665 0.0087 19.24 0.0000

Demoskop 0.0067 0.0093 0.72 0.4733

Ipsos 0.0182 0.0093 1.97 0.0501

Inizio -0.0014 0.0094 -0.15 0.8821

Novus 0.0163 0.0093 1.75 0.0803

Sentio 0.0632 0.0094 6.75 0.0000

Sifo -0.0049 0.0093 -0.53 0.5968

Skop 0.0102 0.0099 1.03 0.3046

YouGov 0.0673 0.0094 7.14 0.0000
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D Latent series and polls for each party

The first two figures of this appendix contains the estimated latent series for the Gamma-

Normal model, see Figure 13, and the multivariate time-invariant model, see Figure 14.

Furthermore, Figures 15 to 22 present the latent series (the line) and polling data, where

each point in the graphs represent one poll, for each party during the period of September

2014 to September 2019.

Figure 13: Estimated Latent Series from the Gamma-Normal Model
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Figure 14: Estimated Latent Series from the Multivariate Time Invariant

Model
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Figure 15: Latent Series and Polling Data, Moderates
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Figure 16: Latent Series and Polling Data, Liberals

0.04

0.05

0.06

0.07

2015 2016 2017 2018

Time

S
u

p
p

o
rt

, 
L

ib
e

ra
ls

Figure 17: Latent Series and Polling Data, Centre Party
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Figure 18: Latent Series and Polling Data, Christian Democrats
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Figure 19: Latent Series and Polling Data, Social Democrats
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Figure 20: Latent Series and Polling Data, Left Party
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Figure 21: Latent Series and Polling Data, Green Party
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Figure 22: Latent Series and Polling Data, Sweden Democrats
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E Results from robustness tests

The three tables below present the results from the robustness tests, discussed in Section

5.6. Table 20 presents the results for the robustness test for the time-invariant model,

while Table 21 and Table 22 do the same for the multivariate time-invariant and the

Gamma-Normal models.

Table 20: Results from Robustness Test for Time-Invariant Model

W = 0.5 · V W = 0.75 · V W = 0.25 · V

Point Estimate Width of CI Point Estimate Width of CI Point Estimate Width of CI

M 0.233 0.056 0.233 0.074 0.234 0.037

L 0.043 0.004 0.043 0.005 0.043 0.003

C 0.098 0.016 0.098 0.021 0.097 0.010

KD 0.033 0.003 0.033 0.004 0.033 0.002

S 0.323 0.026 0.323 0.035 0.322 0.017

V 0.070 0.006 0.070 0.007 0.070 0.004

MP 0.033 0.003 0.033 0.004 0.033 0.002

SD 0.168 0.019 0.167 0.025 0.168 0.013

Table 20 presents the results of the robustness tests for the time-invariant model, using

a forecast for 6 months with a moving training window.
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Table 21: Results from Robustness Test for Multivariate. Time-Invariant

Model

W = 0.5 · V W = 0.75 · V W = 0.25 · V

Point Estimate Width of CI Point Estimate Width of CI Point Estimate Width of CI

M 0.228 1.321 0.227 1.592 0.230 0.971

L 0.044 0.220 0.044 0.268 0.043 0.164

C 0.102 0.623 0.104 0.750 0.100 0.457

KD 0.034 0.159 0.035 0.189 0.034 0.116

S 0.308 0.457 0.306 0.549 0.311 0.335

V 0.075 0.194 0.076 0.233 0.073 0.142

MP 0.037 0.161 0.036 0.194 0.038 0.118

SD 0.171 0.647 0.172 0.778 0.170 0.475

Table 21 presents the results of the robustness tests for the multivariate time-invariant

model, using a forecast for 6 months with a moving training window.

Table 22: Results from Robustness Test for Gamma-Normal model

b=2000 b=500 b=5000

Point Estimate Width of CI Point Estimate Width of CI Point Estimate Width of CI

M 0.232 0.057 0.234 0.164 0.232 0.036

L 0.042 0.041 0.039 0.150 0.042 0.021

C 0.097 0.038 0.098 0.136 0.097 0.020

KD 0.032 0.042 0.030 0.153 0.033 0.022

S 0.321 0.044 0.325 0.159 0.320 0.024

V 0.070 0.038 0.069 0.144 0.070 0.019

MP 0.040 0.042 0.037 0.153 0.040 0.021

SD 0.166 0.040 0.167 0.142 0.166 0.021

Table 22 presents the results of the robustness tests for the Gamma-Normal model, using

a forecast for 6 months with a moving training window.
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