
Thesis for the Degree of Doctor of Philosophy

Formal Methods for Testing
Grammars

Inari Listenmaa

Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Gothenburg, Sweden 2019



Formal Methods for Testing Grammars
Inari Listenmaa

© Inari Listenmaa, 2019.

ISBN 978-91-7833-322-6
Technical Report 168D

Research groups: Functional Programming and Language Technology
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Sweden
Telephone +46 (0)31-772 1000

Typeset in Palatino and Monaco by the author using X ETEX
Printed at Chalmers reproservice
Gothenburg, Sweden 2019



Abstract

Grammar engineering has a lot in common with software engineering. Analogous to a pro-
gram specification, we use descriptive grammar books; in place of unit tests, we have gold
standard corpora and test cases for manual inspection. And just like any software, our gram-
mars still contain bugs: grammatical sentences that are rejected, ungrammatical sentences
that are parsed, or grammatical sentences that get the wrong parse.

This thesis presents two contributions to the analysis and quality control of computa-
tional grammars of natural languages. Firstly, we present a method for finding contradictory
grammar rules in Constraint Grammar, a robust and low-level formalism for part-of-speech
tagging and shallow parsing. Secondly, we generate minimal and representative test suites of
example sentences that cover all grammatical constructions in Grammatical Framework, a
multilingual grammar formalism based on deep structural analysis.

Keywords: Grammatical Framework, Constraint Grammar, Satisfiability, Test Case Generation,
Grammar Analysis
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Chapter 1

Introduction to this thesis

There are many approaches to natural language processing (NLP). Broadly divided, we can
contrast data-driven and rule-based approaches, which in turn contain more subdivisions.

Data-drivenNLP is based on learning from examples, rather than explicit rules. Consider
howwould a system learn that the English string cat corresponds to the German string Katze:
we feed it millions of parallel sentences, and it learns that whenever cat appears in one, Katze
appears in another with a high probability. This approach is appropriate, when the target
language is well-resourced (and grammatically simple), the domain is unlimited and correct-
ness is not crucial. For example, a monolingual English speaker who wants to get the gist of
any non-English web page will be happy with a fast, wide-coverage translation system, even
if it makes some mistakes.

Rule-based NLP has a different set of use cases. Writing grammar rules takes more hu-
man effort than training a machine learning model, but in many cases, it is the more feasible
approach:

• Quality over coverage. Think of producers instead of consumers of information: the
producer needs high guarantees of correctness, but often there is only a limited domain
to cover.

• Less need for language resources. Most of the 6000+ languages of the world do not
have the abundance of data needed formachine learning, making rule-based approach
the only feasible one.

• Grammatically complex languages benefit proportionately more from a grammar-
based approach. Think of a grammar as a compression method: a compact set of rules
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Chapter 1. Introduction to this thesis

generates infinitely many sentences. Grammars can also be used in conjunction with
machine learning, e.g. creating new training data to prevent data sparsity.

• Grammars are explainable, and hence, testable. If there is a bug in a particular sen-
tence, we can find the reason for it and fix it. In contrast, machine learning models are
much more opaque, and the user can just tweak some parameters or add some data,
without guarantees how it affects the model.

Testing grammars has one big difference from testing most software: natural language
has no formal specification, so ultimately we must involve a human oracle. However, we
can automatemany useful subtasks: detect ambiguous constructions and contradictory grammar
rules, as well as generateminimal and representative set of examples that cover all the construc-
tions. Think of thewhole grammar as a haystack, andwe suspect there are a fewneedles—we
cannot promise automatic needle-removal, but instead we help the human oracle to narrow
down the search.

Our work is by no means the first approach to grammar testing: for instance, Butt et al.
(1999) recommend frequent use of test suites, as well as extensive documentation of gram-
mars. However, we automate the process further than our predecessors, using established
techniques from the field of software testing, and applying them to a novel use case: natural
language grammars.

In the following sections, we present our research on testing computational natural lan-
guage grammars, showcasing two different types of grammar formalisms and testing meth-
ods. The first type of grammars are reductionistic: the starting point is all the words in a given
sentence, with all possible analyses: for example, in the sentence “can you can the can”, every
can has 3 analyses, and you has 2. The grammar rules are constraints, whose task is to get rid
of inappropriate analyses. The second type grammars are generative: the starting point is an
empty string, and the grammar is a set of rules that generate all grammatical sentences in the
language. For example, “I saw a dog” would be in the set, because there are rules that con-
struct just that sequence, but “saw dog I a” would not, because there are no rules to construct
it.

1.1 Symbolic evaluation of a reductionistic formalism
Constraint Grammar (CG) (Karlsson et al., 1995) is a robust and language-independent for-
malism for part-of-speech tagging and shallow parsing. A grammar consists of disambigua-
tion rules for initially ambiguous, morphologically analysed text: the correct analysis for the
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Chapter 1. Introduction to this thesis

sentence is attained by removing improper readings from ambiguous words. Consider the
word wish: without context, it could be a noun or a verb. But any English speaker can easily
tell that “a wish” is a noun. In CG, we can generalise the observation and write the following
rule:

SELECT noun IF (0 noun/verb) (-1 article) ;

Wide-coverage CG grammars, containing some thousands of rules, generally achieve
very high accuracy: thanks to the flexible formalism, new rules can be written to address
even the rarest phenomena, without compromising the general tendencies. But there is a
downside to this flexibility: large grammars are difficult to maintain and debug. There is
no internal mechanism that prevents rules from contradicting each other—the following is a
syntactically valid CG grammar, and normal CG compilers will not detect anything strange.

SELECT noun IF (-1 article) ;

SELECT verb IF (-1 article) ;

Apart from obvious cases as above, with two rules saying contradicting truths about the
language, there can be indirect conflicts between the rules. Take the following example:

REMOVE article ;

SELECT noun IF (-1 article) ;

The first rule removes all articles unconditionally, thus rendering the second rule invalid: it
can never apply, because its condition is never matched.

In real life, these conflicts can be much more subtle, and appear far apart from each other.
The common way of testing grammars is to apply them into some test corpus, with a gold
standard, and gather statistics how often the rules apply. While this method can reveal that
SELECT noun IF (-1 article) never applied, it cannot tell whether it is just because no sen-
tence in the test corpus happened to trigger the contextual test, or whether some other rule
before it made it impossible to ever apply.

We use a method called symbolic evaluation: in high level terms, we pretend to apply the
grammar to every possible input, and track the consequences of each decision. The rules
become interconnected, and we can find the reason for a conflict. This allows us to answer
questions such as “given this set of 50 rules, is there an input that goes through the first 49
rules and still triggers the 50th rule?”
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Chapter 1. Introduction to this thesis

1.2 Test case generation for a generative formalism

Grammatical Framework (GF) (Ranta, 2011) is a generative, multilingual grammar formalism
with a high level of abstraction. As opposed to CG, where the rules reduce the number of
possible readings, GF and other generative formalisms use rules to generate a language from
scratch. In other words, the language corresponding to a grammar is defined as the set of
strings that the grammar rules generate.

The most typical example of a generative grammar is a context-free grammar. GF is a
more complex formalism, and we will present it in Section 2.2. To quickly illustrate the prop-
erties of a generative grammar, we use the following context-free grammar G:

Sentence ::= Noun Verb | Noun "says that" Sentence

G = Noun ::= "John" | "Mary"

Verb ::= "eats" | "sleeps"

We call Sentence as the start category: all valid constructions in the language G are sen-
tences. There are two ways of forming sentences: one is to combine a Noun and a Verb, which
results in the finite set {John eats, John sleeps, Mary eats, Mary sleeps}. However, the secondway
of constructing a sentence is recursive, resulting in an infinite amount of sentences: John says
that Mary says that …Mary eats.

Again, the grammars we are really interested in are much larger, and the GF formalism
has more complex machinery in place, such as taking care of agreement, i.e. allowing John
sleeps and I sleep, but rejecting *I sleeps and *John sleep. But the basic mechanism is the same:
a formal, rather compact description that generates a potentially infinite set of sentences.

It is fully possible to write a “bad” generative grammar, in the sense that it produces sen-
tences that any English speaker would deem grammatically incorrect. But there is no notion
of internal inconsistency, like there was in CG—the question is simply “does this grammar
describe the English language adequately?”. In order to test this, we must go beyond the
grammar itself, and find a human oracle to answer the question. But here we face a problem:
what kind of subset of the grammar should we test? How do we know if we have tested
enough?

The problem is relevant for any kind of software testing, andweuse existing techniques of
test case generation, applied to the GF formalism. For each language, we generate a minimal
and representative set of example sentences, which we give to native or fluent speakers to
judge.
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Chapter 1. Introduction to this thesis

1.3 Structure of this thesis

The thesis is divided in two parts: one about Constraint Grammar (Chapters 3 and 4) and an-
other about Grammatical Framework (Chapter 5). The core of Chapters 3 and 4 is based
on two articles, which present the SAT-encoding and its application to grammar testing:
“Constraint Grammar as a SAT problem” (Listenmaa and Claessen, 2015) and “Analysing
Constraint Grammars with a SAT-solver” (Listenmaa and Claessen, 2016). A third article,
“Cleaning up the Basque grammar: a work in progress” (Listenmaa et al., 2017), presents a
practical application of themethod on a Basque CG, and is included in the evaluation section.
A fourth article, “Exploring the Expressivity of Constraint Grammar” (Kokke and Listenmaa,
2017), presents a novel use for the SAT-encoding.

Chapter 5 is an extension of one article, “Automatic test suite generation for PMCFG
grammars” (Listenmaa and Claessen, 2018).

For both parts, some of the content has been updated since the initial publication; in
addition, the implementation is described in much more detail. The thesis is structured as
a stand-alone read; however, a reader who is familiar with the background, may well skip
Chapter 2.

Chapter 2 presents a general introduction to both software testing and computational
grammars, aimed for a reader who is unfamiliar with the topics. Chapter 3 introduces the
SAT-encoding ofConstraintGrammar, with twodifferent schemes for conflict handling. Chap-
ter 4 describes the method of analysing CG by using symbolic evaluation, along with eval-
uation on three different grammars. Chapter 5 presents the method of generating test cases
for GF grammars, along with evaluation on a large-scale resource grammar and a couple of
smaller grammars. The user manual of the program is included an appendix. Chapter 6
concludes the thesis.

1.4 Contributions of the author

The three articles which present the general methods (Listenmaa and Claessen, 2015, 2016,
2018) are co-written by the author and Koen Claessen. In general, the ideas behind the pub-
lications were joint effort. For the first article (Listenmaa and Claessen, 2015), all of the im-
plementation of SAT-CG is by the author, and all of the library SAT+ by Koen Claessen. The
version appearing in this monograph, Chapter 3, is thoroughly rewritten by the author since
the initial publication.
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For the second article (Listenmaa and Claessen, 2016), the author of this work was in
charge of all the implementation, except for the ambiguity class constraints, which were
written by Koen Claessen. The version appearing in Chapter 4 is to large extent the same
as the original article, with added detail and examples throughout the chapter. The chapter
incorporates material from two additional articles: “Exploring the Expressivity of Constraint
Grammar” (Kokke and Listenmaa, 2017), which is joint work between the author and Wen
Kokke, and “Cleaning up the Basque grammar: a work in progress” (Listenmaa et al., 2017),
co-authored with Jose Maria Arriola, Itziar Aduriz and Eckhard Bick. In (Kokke and Lis-
tenmaa, 2017), the initial idea was developed together, implementation was split in approx-
imately half, and writing was done together. In (Listenmaa et al., 2017), the author was in a
main role in both the implementation and writing.

Thework in the third article (Listenmaa andClaessen, 2018) was joint effort: both authors
participated in all parts of planning and implementation. Both the original article and the
version appearing in this monograph, Chapter 5, was mainly written by the author.

6



Chapter 2

Background

Much of the methodology of grammar testing is
dictated by common sense.

Miriam Butt et al.
A Grammar Writer’s Cookbook

In this chapter, we present the main areas of this thesis: computational natural language
grammars and software testing. Section 2.1 introduces the CG formalism and some of the
different variants, along with the historical context and related work. For a description of
any specific CG implementation, we direct the reader to the original source: CG-1 (Karlsson,
1990; Karlsson et al., 1995), CG-2 (Tapanainen, 1996), VISL CG-3 (Bick and Didriksen, 2015;
Didriksen, 2014). Section 2.2 introduces the GF formalism (Ranta, 2011) and the Resource
Grammar Library (Ranta, 2009).

Section 2.3 is a brief and high-level introduction to software testing and verification,
aimed for a reader with no prior knowledge on the topic. For a more thorough introduc-
tion on software testing in general, we recommend Ammann and Offutt (2016), and for SAT
in particular, we recommend Biere (2009).

2.1 Constraint Grammar
Constraint Grammar (CG) is a formalism for disambiguating morphologically analysed text.
It was first introduced by Karlsson (1990), and has been used for many tasks in computa-
tional linguistics, such as part-of-speech tagging, surface syntax and machine translation
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Chapter 2. Background

(Bick, 2011). CG-based taggers are reported to achieve F-scores of over 99 % for morpho-
logical disambiguation, and around 95-97 % for syntactic analysis (Bick, 2000, 2003, 2006).
CG disambiguates morphologically analysed input by using constraint rules which can se-
lect or remove a potential analysis (called reading) for a target word, depending on the context
words around it. Together these rules disambiguate the whole text.

In the example below, we show an initially ambiguous sentence “the bear sleeps”. It
contains threeword forms, such as "<bear>", each followed by its readings. A reading contains
one lemma, such as "bear", and a list of morphological tags, such as noun sg. A word form
together with its readings is called a cohort. A cohort is ambiguous, if it contains more than
one reading.

"<the>" "<sleeps>"
"the" det def "sleep" noun pl

"<bear>" "sleep" verb pres p3 sg
"bear" noun sg "<.>"
"bear" verb pres "." sent
"bear" verb inf

We can disambiguate this sentence with two rules:

1. REMOVE verb IF (-1 det) ‘Remove verb after determiner’
2. REMOVE noun IF (-1 noun) ‘Remove noun after noun’

Rule 1 matches the word bear: it is tagged as verb and is preceded by a determiner. The
rule removes both verb readings from bear, leaving it with an unambiguous analysis noun sg.
Rule 2 is applied to the word sleeps, and it removes the noun reading. The finished analysis
is shown below:

"<the>" "<bear>" "<sleeps>"

"the" det def "bear" noun sg "sleep" verb pres p3 sg

It is also possible to add syntactic tags and dependency structure within CG (Didriksen,
2014; Bick and Didriksen, 2015). However, for the remainder of this introduction, we will
illustrate the exampleswith themost basic operations, that is, disambiguatingmorphological
tags. The syntactic disambiguation and dependency features are not fundamentally different
from morphological disambiguation: the rules describe an operation performed on a target,
conditional on a context.

8



Chapter 2. Background

2.1.1 Related work
CG is one in the family of shallow and reductionist grammar formalisms. Disambiguation
using constraint rules dates back to 1960s and 1970s—the closest system to modern CG was
Taggit (Greene and Rubin, 1971), which was used to tag the Brown Corpus. Karlsson et al.
(1995) list various approaches to the disambiguation problem, includingmanual intervention,
statistical optimisation, unification and Lambek calculus. For disambiguation rules based on
local constraints, Karlsson mentions (Herz and Rimon, 1991; Hindle, D., 1989).

CG itself was introduced in 1990. Around the same time, a related formalism was pro-
posed: finite-state parsing and disambiguation system using constraint rules (Koskenniemi,
1990), which was later named Finite-State Intersection Grammar (FSIG) (Piitulainen, 1995).
Like CG, a FSIG grammar contains a set of rules which remove impossible readings based on
contextual tests, in a parallel manner: a sentence must satisfy all individual rules in a given
FSIG. Due to these similarities, the name Parallel Constraint Grammar was also suggested
(Koskenniemi, 1997). Other finite-state based systems include Gross (1997) and Graña et al.
(2002). In addition, there are a number of reimplementations of CGusing finite-statemethods
(Yli-Jyrä, 2011; Hulden, 2011; Peltonen, 2011).

Brill tagging (Brill, 1995) is based on transformation rules: the starting point of an analy-
sis is just one tag, the most common one, and subsequent rule applications transform one tag
into another, based on contextual tests. Like CG, Brill tagging is known to be efficient and
accurate. The contextual tests are very similar: Lager (2001) demonstrates a systen that auto-
matically learns both Brill rules and CG rules. Similar ideas to CG have been also explored
in other frameworks, such as logic programming (Oflazer and Tür, 1997; Lager, 1998), con-
straint satisfaction (Padró, 1996), and dependency syntax (Tapanainen and Järvinen, 1997).

2.1.2 Properties of Constraint Grammar
Karlsson et al. (1995) list 24 design principles anddescribes relatedwork at the time ofwriting.
Here we summarise a set of main features, and relate CG to the developments in grammar
formalism since the initial description.

CG is a reductionistic system: the analysis starts from a list of alternatives, and removes
those which are impossible or improbable. CG is designed primarily for analysis, not gen-
eration; its task is to give correct analyses to the words in given sentences, not to describe a
language as a collection of “all and only the grammatical sentences”.

The syntax is decidedly shallow: the rules do not aim to describe all aspects of an abstract
phenomenon such as noun phrase; rather, each rule describes bits and pieces with concrete
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Chapter 2. Background

conditions. The rules are self-contained and do not, in general, refer to other rules. This
makes it easy to add exceptions, and exceptions to exceptions, without changing the more
general rules.

There are different takes on how deterministic the rules are. The current state-of-the-art CG
parser VISL CG-3 executes the rules strictly based on the order of appearance, but there are
other implementations which apply their own heuristics, or remove the ordering completely,
applying the rules in parallel. A particular rule set may bewritten with one application order
in mind, but another party may run the grammar with another implementation—if there are
any conflicting rule pairs, then the behaviour of the grammar is different.

2.1.3 Ordering and execution of the rules
The previous properties of Constraint Grammar formalism and rules were specified by Karls-
son et al. (1995), and retained in further implementations. However, in the two decades
following the initial specification, several independent implementations have experimented
with different ordering schemes. In the present section, we describe the different parameters
of ordering and execution: strict vs. heuristic, and sequential vs. parallel. Throughout the sec-
tion, we will apply the rules to the following ambiguous passage, “What question is that”:

"<what>" "<question>" "<is>" "<that>"

"what" det "question" noun "be" verb "that" det

"what" pron "question" verb "that" rel

Strict vs. heuristic aka. “In which order are the rules applied to a single cohort?”
An implementation with a strict order applies each rule in the order in which they appear in
the file. Suppose that a grammar contains the following rules the given order:

REMOVE verb IF (-1 det)

REMOVE noun IF (-1 pron)

In a strict ordering, the rule that removes the verb reading in question will be applied first.
After it has finished, there are no verb readings available anymore for the second rule to fire.

Howdowe knowwhich rule is the right one? There can bemany rules that fit the context,
but we choose the one that just happens to appear first in the rule file. A common design
pattern is to place rules with a long list of conditions first; only if they do not apply, then try
a rule with fewer conditions. For a similar effect, a careful mode may be used: “remove verb
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after unambiguous determiner” would not fire on the first round, but it would wait for other
rules to clarify the status of what.

An alternative solution to a strict order is to use a heuristic order: when disambiguating
a particular word, find the rule that has the longest and most detailed match. Now, assume
that there is a rule with a longer context, such as SELECT noun IF (-1 det) (1 verb), even if
this rule appears last in the file, it would be preferred to the shorter rules, because it is a more
exact match. There are also methods that use explicit weights to favour certain rules, such as
Pirinen (2015) for CG, and Voutilainen (1994); Oflazer and Tür (1997); Silfverberg and Lindén
(2009) for related formalisms.

Both methods have their strengths and weaknesses. A strict order is more predictable,
but it also means that the grammar writers need to pay more thought to rule interaction.
A heuristic order frees the grammar writer from finding an optimal order, but it can give
unexpected results, which are harder to debug. As for major CG implementations, CG-1
(Karlsson, 1990) and VISL CG-3 (Didriksen, 2014) follow the strict scheme, whereas CG-2
(Tapanainen, 1996) is heuristic1.

Sequential vs. parallel aka. “When does the rule application take effect?”
The input sentence can be processed in sequential or parallel manner. In sequential execution,
the rules are applied to one word at a time, starting from the beginning of the sentence. The
sentence is updated after each application. If the word what gets successfully disambiguated
as a pronoun, then the word question will not match the rule REMOVE verb IF (-1 det).

In contrast, a parallel execution strategy disambiguates all the words at the same time,
using their initial, ambiguous context. To give a minimal example, assume we have a single
rule, REMOVE verb IF (-1 verb), and the three words can can can, shown below. In parallel
execution, both can2 and can3 lose their verb tag; in sequential only can2.

"<can1>" "<can2>" "<can3>"
"can" noun "can" noun "can" noun
"can" verb "can" verb "can" verb

The question of parallel execution becomes more complicated if there are multiple rules
that apply for the same context. Both REMOVE v IF (-1 det) and REMOVE noun IF (-1 pron)

would match question, because the original input from the morphological analyser contains
both determiner and pronoun as the preceding word. The result depends on various details:

1Note that CG-2 is heuristic within sections: the rules in a given section are executed heuristically, but all of them
will be applied before any rule in a later section.
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Strict Heuristic Unordered
Sequential CG-1 (Karlsson, 1990) CG-2 (Tapanainen, 1996) –

VISL CG-3 (Didriksen,
2014)

Weighted CG-3 (Pirinen,
2015)

Peltonen (2011)
Yli-Jyrä (2011)
Hulden (2011)

Parallel SAT-CGOrd SAT-CGMax Lager (1998)

FSIG (Voutilainen, 1994) FSIG (Koskenniemi, 1990)

Voting constraints (Oflazer
and Tür, 1997)

Table 2.1: Combinations of rule ordering and execution strategy.

shall all the rules also act in parallel? If we allow rules to be ordered, then the result will not
be any different from the same grammar in sequential execution; that is, the later rule (later
by any metric) will not apply. The only difference is the reason why not: “context does not
match” in sequential, and “do not remove the last reading” in parallel.

However, usually parallel execution is combinedwith unordered rules. In order to express
the result of these two rules in an unordered scheme, we need a concept that has not been
discussed so far, namely, disjunction: “the allowed combinations are det+n or pron+v”. If
we wanted to keep the purely list-based ontology of CG, but combine it with a parallel and
unordered execution, then the result would have to inconclusive and keep both readings;
both cannot be removed because that would leave question without any readings. The dif-
ference between the list-based and disjunction-based ontologies, corresponding to CG and
FSIG respectively, is explained with further detail in Lager and Nivre (2001).

Table 2.1 shows different systems of the constraint rule family, with rule order (strict vs.
heuristic) on one axis, and execution strategy (sequential vs. parallel) on other. Traditional
CG implementations are shown in a normal font; other, related systems in cursive font and
lighter colour. SAT-CGMaxand SAT-CGOrdrefer to the systems by the author; they are pre-
sented in Listenmaa and Claessen (2015) and in Chapter 3 of this thesis.

2.2 Grammatical Framework
Grammatical Framework (GF) (Ranta, 2011) is a framework for building multilingual gram-
mar applications. Its main components are a functional programming language for writ-
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ing grammars and a resource library that contains the linguistic details of many natural lan-
guages. A GF program consists of an abstract syntax (a set of functions and their categories)
and a set of one or more concrete syntaxes which describe how the abstract functions and cat-
egories are turned into surface strings in each respective concrete language. The resulting
grammar describes a mapping between concrete language strings and their corresponding
abstract trees (structures of function names). This mapping is bidirectional—strings can be
parsed to trees, and trees linearised to strings. As an abstract syntax can have multiple cor-
responding concrete syntaxes, the respective languages can be automatically translated from
one to the other by first parsing a string into a tree and then linearising the obtained tree into
a new string.

Another main component of GF is the Resource Grammar Library (RGL) (Ranta, 2009),
which, as of October 2018, contains a range of linguistic details for over 40 natural languages.
The library has had over 50 contributors, and it consists of 1900 program modules and 3
million lines of code. As the name suggests, the RGLmodules are primarily used as libraries
to build smaller, domain-specific application grammars. In addition, there is experimental
work on using the RGL as an interlingua for wide-coverage translation, aided by statistical
disambiguation (Ranta et al., 2014).

2.2.1 Related work

GF comes from the theoretical background of type theory and logical frameworks. The prime
example of a systemwhich combines logic and linguistic syntax isMontague grammar (Mon-
tague, 1974); in fact, GF can be seen as a general framework for Montague-style grammars.

The notion of abstract and concrete syntax appeared in both computer science, specifi-
cally compiler construction (McCarthy, 1962), and linguistics, introduced by Curry (1961) as
tectogrammatical (abstract) and phenogrammatical (concrete) structure.

GF is analogous to a multi-source multi-target compiler—a program in any program-
ming language can be parsed into the common abstract syntax, and linearised into any of
the other programming languages that the compiler supports. In the domain of linguistics,
Ranta (2011) mentions a few grammar formalisms that also build upon abstract and concrete
syntax, such as de Groote (2001); Pollard (2004); Muskens (2001). However, none of these
systems have focused on multilinguality. The inspiration for a large resource grammar used
as a library to build smaller applications comes from CLE (Core Language Engine) (Alshawi,
1992; Rayner et al., 2000).
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abstract Foods = {
flags startcat = Comment ;
cat

Comment ; Item ; Kind ; Quality ;
fun

Pred : Item -> Quality -> Comment ; -- this wine is good
This, That, These, Those : Kind -> Item ; -- this wine
Mod : Quality -> Kind -> Kind ; -- Italian wine
Wine, Cheese, Fish, Pizza : Kind ;
Warm, Good, Italian, Vegan : Quality ;

}

Figure 2.1: Abstract syntax of a GF grammar about food

2.2.2 Abstract syntax

Abstract syntax describes the constructions in a grammar without giving a concrete imple-
mentation. Figure 2.1 shows the abstract syntax of a small example grammar in GF, slightly
modified from Ranta (2011), and Figure 2.2 shows a corresponding Spanish concrete syntax.
We refer to this grammar throughout the chapter.

Section cat introduces the categories of the grammar: Comment, Item, Quality, and Kind.
Comment is the start category of the grammar: this means that only comments are complete
constructions in the language, everything else is an intermediate stage. Quality describes
properties of foods, such as Warm and Good. Kind is a basic type for foodstuffs such as Wine and
Pizza: we know what it is made of, but everything else is unspecified. In contrast, an Item

is quantified: we know if it is singular or plural (e.g. ‘one pizza’ vs. ‘two pizzas’), definite or
indefinite (‘the pizza’ vs. ‘a pizza’), and other such things (‘your pizza’ vs. ‘my pizza’).

Section fun introduces functions: they are either lexical items without arguments, or syn-
tactic functions which manipulate their arguments and build new terms. Of the syntactic
functions, Pred constructs an Comment from an Item and a Quality, building trees such as
Pred (This Pizza) Good ‘this pizza is good’. Mod adds an Quality to a Kind, e.g. Mod Italian Pizza

‘Italian pizza’. The functions This, That, These and Those quantify a Kind into an Item, for in-
stance, That (Mod Italian Pizza) ‘that Italian pizza’.
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concrete FoodsSpa of Foods = {
lincat

Comment = Str ;
Item = { s : Str ; n : Number ; g : Gender } ;
Kind = { s : Number => Str ; g : Gender } ;
Quality = { s : Number => Gender => Str ; p : Position } ;

lin
Pred np ap = np.s ++ copula ! np.n ++ ap.s ! np.n ! np.g ;
This cn = mkItem Sg "este" "esta" cn ;
These cn = mkItem Pl "estos" "estas" cn ;
-- That, Those defined similarly
Mod ap cn = { s = \\n => preOrPost ap.p (ap.s ! n ! cn.g) (cn.s ! n) ;

g = cn.g } ;
Wine = { s = table { Sg => "vino" ; Sg => "vinos" } ;

g = Masc } ;
Pizza = { s = table { Sg => "pizza" ; Sg => "pizzas" } ;

g = Fem } ;
Good = { s = table { Sg => table { Masc => "bueno" ; Fem => "buena" } ;

Pl => table { Masc => "buenos" ; Fem => "buenas" } } ;
p = Pre } ;

--Fish, Cheese, Italian, Warm and Vegan defined similarly
param

Number = Sg | Pl ;
Gender = Masc | Fem ;
Position = Pre | Post ;

oper
mkItem num mascDet femDet cn =
let det = case cn.g of { Masc => mascDet ; Fem => femDet } ;
in { s = det ++ cn.s ! num ; n = num ; g = cn.g } ;

copula = table { Sg => "es" ; Pl => "son" } ;
preOrPost p x y = case p of { Pre => x ++ y ; Post => y ++ x } ;

}

Figure 2.2: Spanish concrete syntax of a GF grammar about food

2.2.3 Concrete syntax

Concrete syntax is an implementation of the abstract syntax. The section lincat corresponds
to cat in the abstract syntax: for every abstract category introduced in cat, we give a concrete
implementation in lincat.
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Figure 2.2 shows the Spanish concrete syntax, in which Comment is a string, and the rest of
the categories are more complex records. For instance, Kind has a field swhich is a table from
number to string (sg ⇒ pizza, pl ⇒ pizzas), and another field g, which contains its gender
(feminine for Pizza). We say that Kind has inherent gender, and variable number.

The section lin contains the concrete implementation of the functions, introduced in fun.
Herewe handle language-specific details such as agreement: when Pred (This Pizza) Good is
linearised in Spanish, ‘esta pizza es buena’, the copula must be singular (es instead of plural
son), and the adjective must be in singular feminine (buena instead of masculine bueno or
plural buenas), matching the gender of Pizza and the number of This. If we write an English
concrete syntax, then only the number of the copula is relevant: this pizza/wine is good,
these pizzas/wines are good.

2.2.4 PMCFG
GF grammars are compiled into parallel multiple context-free grammars (PMCFG), intro-
duced by Seki et al. (1991). The connection between GF and PMCFG was established by
Ljunglöf (2004), and further developed by Angelov (2011). After the definition, which fol-
lows Angelov (2011), we explain three key features for the test suite generation.

Definition A PMCFG is a 5-tuple:

G = ⟨NC , FC , T, P, L⟩.

• NC is a finite set of concrete categories.

• FC is a finite set of concrete functions.

• T is a finite set of terminal symbols.

• P is a finite set of productions of the form:

A→ f [A1, A2, . . . , Aa(f)]

where a(f) is the arity of f , A ∈ NC is called result category, A1, A2, . . . , Aa(f) ∈ NC

are called argument categories and f ∈ FC is a function symbol.

• L ⊂ NC × FC is a set which defines the default linearisation functions for those con-
crete categories that have default linearisations.
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Concrete categories For each category in the original grammar, the GF compiler introduces
a new concrete category in the PMCFG for each combination of inherent parameters. These con-
crete categories can be linearised to strings or vectors of strings. The start category (Comment
in the Foods grammar) is in general a single string, but intermediate categories may have to
keep several options open.

Consider the categories Item, Kind and Quality in the Spanish concrete syntax. Firstly,
Item has inherent number and gender, so it compiles into four concrete categories: Itemsg,masc,
Itemsg,fem, Itempl,masc and Itempl,fem, each of them containing one string. Secondly, Kind has an
inherent gender and variable number, so it compiles into two concrete categories: Kindmasc and
Kindfem, each of them a vector of two strings (singular and plural). Finally, Quality needs to
agree in number and gender with its head, but it has its position as an inherent feature. Thus
Quality compiles into two concrete categories: Qualitypre and Qualitypost, each of them a vector
of four strings.

Concrete functions Each syntactic function from the original grammar turns into multiple
syntactic functions into the PMCFG: one for each combination of parameters of its arguments.

• Modpre,fem : Qualitypre → Kindfem → Kindfem

• Modpost,fem : Qualitypost→ Kindfem → Kindfem

• Modpre,masc : Qualitypre → Kindmasc→ Kindmasc

• Modpost,masc : Qualitypost→ Kindmasc→ Kindmasc

Coercions Aswehave seen, Quality in Spanish compiles into Qualitypre and Qualitypost. How-
ever, the difference of position is meaningful only when the adjective is modifying the noun:
“la buena pizza” vs. “la pizza vegana”. But when we use an adjective in a predicative position,
both classes of adjectives behave the same: “la pizza es buena” and “la pizza es vegana”. As
an optimization strategy, the grammar creates a coercion: both Qualitypre and Qualitypost may
be treated as Quality∗ when the distinction doesn’t matter. Furthermore, the function Pred

: Item → Quality → S uses the coerced category Quality∗ as its second argument, and thus
expands only into 4 variants, despite there being 8 combinations of Item×Quality.

• Predsg,fem,∗ : Itemsg,fem → Quality∗→ Comment

• Predpl,fem,∗ : Itempl,fem → Quality∗→ Comment

• Predsg,masc,∗ : Itemsg,masc→ Quality∗→ Comment

• Predpl,masc,∗ : Itempl,masc→ Quality∗→ Comment
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2.3 Software testing and verification
We can approach the elimination of bugs in two ways: reveal them by constructing tests, or
build safeguards into the program that make it more difficult for bugs to occur in the first
place. In this thesis, we concentrate on the first aspect: our starting point is two particular
grammar formalisms that already have millions of lines of code written in them. Rather than
change the design of the programming languages, we want to develop methods that help
finding bugs in existing software. In the present section, we introduce some key concepts
from the field of software testing, as well as their applications to grammar testing.

Unit testing Unit tests are particular, concrete test cases: assume we want to test the ad-
dition function (+), we could write some facts we know, such as “1+2 should be 3”. In the
context of grammars and natural language, we could assert translation equivalence between
a pair of strings, e.g. “la casa grande”⇔ “the big house”, or between a tree and its linearisation,
e.g. “DetCN the_Det (AdjCN big_A house_N)⇔ the big house”. Whenever a program is changed
or updated, the collection of unit tests are run again, to make sure that the change has not
broken something that previously worked.

Property-based testing Theweakness of unit testing is that it only tests concrete values that
the developer has thought of adding. Another approach is to use property-based testing: the
developer defines abstract properties that should hold for all test cases, and uses random
generation to supply values. If we want to test the (+) function again, we could write a
property that says “for all integers x and y, x + y should be equal to y + x”. A grammar-
related property could be, for instance, “a linearisation of a tree must contain strings from
all of its subtrees”. We formulate these properties, and generate a large amount of test data—
pairs of integers in the first case, syntax trees in the second—and assert that the property
holds for all of them.

Model-based testing The programs we test are often large and complex, and their main
logic is hard to separate from less central components, such as graphical user interface, or
code dealing with input and output. In order to make testing easier, we can introduce a
model of the real system, which we use to devise tests. To give a concrete example, suppose
we want to test a goal-line system: a program that checks whether a goal has been scored
or not, in a game such as football. The real program includes complex components such as
cameras andmotion sensors, but ourmodel can abstract away such details, and consider only
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the bare bones: the ball and the goal line. For our model, we define possible states for the ball
and goal line: the ball can be inside or outside the line, and the goal line may be idle or in
action. Furthermore, we define legal transitions between the states: the ball starts outside,
can stay outside, or go inside, but once it has entered the goal, it must get out before another
goal can be scored.

With such a model in place, we can query another program, called model checker, for pos-
sible outcomes in the model, or ask whether a particular outcomewould be possible. For our
goal-line system, we would like to be assured that it is possible to score a goal; on the other
hand, when a ball has entered the goal, it is only registered as one goal, not repeated goals
every millisecond until the ball is removed.

What do we gain from building such a model? We describe the (intended) behaviour of
the real program in the formof a simplifiedmodel, and ask for logical conclusions: sometimes
we discover that our original descriptionwasn’t quite aswaterproof aswewanted. Of course,
we still need to execute tests for the real system—the model (together with model checker)
has only given us inspiration what to test.

There is no great theoretical distinction betweenmodel-based and property-based testing.
Amodel can be seen as a specific variant of a property; alternatively, a collection of properties
can be seen as a model. Furthermore, we can see grammars as models for language: what is
a grammar if not a human’s best attempt to describe the behaviour of a complex system?

In Chapter 4, we will take the approach of a model checker to the individual Constraint
Grammar rules: “you claimed that X happens, now let’s try applying X in all possible con-
texts”, where the contexts are exhaustively created combinations of morphological readings,
not real text. The goal of this procedure is to find out whether the grammar rules contradict
each other. The desired outcomes are therefore very simple: for each rule, the outcome is
“this rule can apply, given that all other rules have applied”, and the task of our program is
to find out if such an outcome is possible.

In Chapter 5, we are interested in the much more difficult outcome “this grammar rule
produces correct language”. It is clear that a model checker cannot check such a high-level
concept as grammatical correctness. Therefore, we need humans as the ultimate judges of
quality. Because human time is expensive, we need to make sure that the test cases are as
minimal and representative as possible.

Deriving test cases Unit tests, as well as properties, can be written by a human or derived
automatically from some representation of the program. The sources of tests can range from
informal descriptions, such as specifications or user stories, to individual statements in the
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source code. Alternatively, tests can be generated from an abstract model of the program, as
previously explained.

In the context of grammar testing, the specification is the whole natural language that the
grammar approximates—hardly a formal and agreed-upon document. Assuming no access
to the computational grammar itself (generally called black-box testing), we can treat tradi-
tional grammar books or speaker intuition as an inspiration for properties and unit tests.
For example, we can test a feature such as “pronouns must be in an accusative case after a
preposition” by generating example sentenceswhere pronouns occur after a preposition, and
reading through them to see if the rule holds.

If we have access to the grammar while designing tests (white-box testing), we can take
advantage of the structure—to start with, only test those features that are implemented in
the grammar. For example, if we know that word order is a parameter with 2 values, direct
statement and question, then we need to create 2 tests, e.g. “I am old” and “am I old”. If the
parameter had 3 values, say third for indirect question, then we need a third test as well, e.g.
“I don’t know if I am old”.

Coverage criteria Beizer (2003) describes testing as a simple task: “all a tester needs to do
is find a graph and cover it”. The flow of an imperative program can be modelled as a graph
with start and end points; multiple branches at conditional statements and back edges at
loops. Take a simple program that takes a number and outputs “even” for even numbers
and “odd” for odd numbers. The domain of this program is, in theory, infinite, as there is
an infinite number of integers. But in practice, the program only has two branches, one for
even and one for odd numbers. Thus in order to test the program exhaustively, i.e. cover
both paths, one needs to supply two inputs: one even and one odd number.

Simulating the run of the programwith all feasible paths is called symbolic evaluation, and
a constraint solver is often used to find out where different inputs lead into. It is often not
feasible to simulate all paths for a large and complex program; instead, several heuristics
have been created for increasing code coverage.

Symbolic evaluation works well for analysing (ordered) CG grammars, at least up to an
input space of tens of thousands of differentmorphological analyses. The range of operations
is fairly limited, and the program flow is straightforward: execute rule 1, then execute rule 2,
and so on.

For GF grammars, the notion of code coverage is based on individual grammatical func-
tions, rather than a program flow. We want to test linearisation, not parsing, and thus our
“inputs” are just syntax trees. We need to test all syntactic functions (e.g. putting an adjec-
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tive and a noun together), with all the words that make a difference in the output (some
adjectives come before the noun, others come after). Thus, even if the grammar generates an
infinite amount of sentences, we still have only a finite set of constructions and grammatical
functions to cover.

2.4 Boolean satisfiability (SAT)
Imagine you are in a pet shop with a selection of animals: ant, bat, cat, dog, emu and fox.

These animals are very particular about each others’ company. The dog has no teeth and
needs the cat to chew its food. The cat, in turn, wants to live with its best friend bat. But the
bat is very aggressive towards all herbivores, and the emu is afraid of anything lighter than 2
kilograms. The ant hates all four-legged creatures, and the fox can only handle one flatmate
with wings.

You need to decide on a subset of pets to buy—you love all animals, but due to their
restrictions, you cannot have them all. You start calculating in your head: “If I take the ant, I
cannot take cat, dog, nor fox. How about I take the dog, then I must take the cat and the bat
as well.” After some time, you decide on bat, cat, dog and fox, leaving the ant and the emu
in the pet shop.

Definition This conveniently contrived situation is an example of Boolean satisfiability (SAT)
problem. The animals translate into variables, and the cohabiting restrictions of each animal
translate into clauses, such that “dogwants to livewith cat” becomes an implication dog⇒ cat.
Under the hood, all of these implications are translated into even simpler constructs: lists
of disjunctions. For instance, “dog wants to live with cat” as a disjunction is ¬dog ∨ cat,
which means “I don’t buy the dog or I buy the cat”. The representation as disjunctions is
easier to handle algorithmically; however, for the rest of this thesis, we show our examples
as implications, because they are easier to understand. The variables and the clauses are
shown in Figure 2.3.

The objective is to find a model: each variable is assigned a Boolean value, such that the
conjunction of all clauses evaluates into true. A program called SAT-solver takes the set of
variables and clauses, and performs a search, like the mental calculations of the animal-lover
in the shop. We can see that the assignment {ant = 0, bat = 1, cat = 1, dog = 1, emu = 0, fox =

1} satisfies the animals’ wishes. Another possible assignment would be {ant = 0, bat =

0, cat = 0, dog = 0, emu = 1, fox = 1}: you only choose the emu and the fox. Some problems
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Variable Constraint Explanation
ant ∨ bat ∨ cat ∨ dog ∨ fox “You want to buy at least one pet.”

ant ant⇒ ¬cat ∧ ¬dog ∧ ¬fox “Ant does not like four-legged animals.”
bat bat⇒ ¬ant ∧ ¬emu “Bat does not like herbivores.”
cat cat⇒ bat “Cat wants to live with bat.”
dog dog⇒ cat “Dog wants to live with cat.”
emu emu⇒ ¬ant ∧ ¬bat “Emu does not like small animals.”
fox fox⇒ ¬(bat ∧ emu) “Fox cannot live with two winged animals.”

Figure 2.3: Animals’ cohabiting constraints translated into a SAT-problem.

have a single solution, some problems have multiple solutions, and some are unsatisfiable,
i.e. no combination of assignments can make the formula true.

History and applications SAT-solving as a research area dates back to 1970s. Throughout
its history, it has been of interest for both theoretical and practical purposes. SAT is a well-
known example of anNP-complete (Nondeterministic Polynomial time) problem (Cook, 1971):
for all such problems, a potential solution can be verified in polynomial time, but there is no
known algorithm that would find such a solution, in general case, in sub-exponential time.
This equivalence means that we can express any NP-complete problem as a SAT-instance,
and use a SAT-solver to solve it. The class includes problems which are much harder than
the animal example; nevertheless, all of them can be reduced into the same representation,
just like ¬bat ∨ ¬emu.

The first decades of SAT-research were concentrated on the theoretical side, with little
practical applications. But things changed in the 90s: there was a breakthrough in the SAT-
solving techniques, which allowed for scaling up and finding new use cases. As a result,
modern SAT-solvers can deal with problems that have hundreds of thousands of variables
and millions of clauses (Marques-Silva, 2010).

What was behind these advances? SAT, as a general problem, remains NP-complete: it is
true that there are still SAT-problems that cannot be solved in sub-exponential time. However,
there is a difference between a general case, where the algorithm must be prepared for any
input, and an “easy case”, wherewe can expect somehelpful properties from the input. Think
of a sorting algorithm: in the general case, it is given truly random lists, and in the “easy case”,
it mostly gets lists with some kind of structure, such as half sorted, reversed, or containing

22



Chapter 2. Background

bounded values. The general time complexity of sorting is still O(n log n), but arguably, the
easier cases can be expected to behave in linear time, andwe can even design heuristic sorting
algorithms that exploit those properties.

Analogously, the 90s breakthrough was due to the discovery of right kind of heuristics.
Much of the SAT-research in the last two decades has been devoted to optimising the solving
algorithms, and finding more efficient methods of encoding various real-life problems into
SAT. This development has led to an increasing amount of use cases since the early 2000s
(Claessen et al., 2009). One of the biggest success stories for a SAT-application is model
checking (Sheeran and Stålmarck, 1998; Biere et al., 1999; Bradley, 2011), used in software
and hardware verification. Furthermore, SAT has been used in domains such as computa-
tional biology (Claessen et al., 2013) and AI planning (Selman and Kautz, 1992), just to pick a
few examples. In summary, formulating a decision problem in SAT is an attractive approach:
instead of developing search heuristics for each problem independently, one can transform
the problem into a SAT-instance and exploit decades of research into SAT-solving.

2.5 Summary
In this section, we have presented the theoretical background used in this thesis. We have
introducedConstraint Grammar andGrammatical Framework as examples of computational
grammars. On the software testing side, we have presented key concepts such as unit testing
andBoolean satisfiability. In the following chapters, wewill connect the two branches. Firstly,
we encode CG grammars as a SAT-problem, which allows us to apply symbolic evaluation
and find potential conflicts between rules. Secondly, we use methods for creating minimal
and representative test data, in order to find a set of trees that test a given GF grammar in an
optimal way.
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CG as a SAT-problem

This explicitly reductionistic approach does not seem
to have any obvious counterparts in the grammatical

literature.
Fred Karlsson, 1995

You should do it because it solves a problem, not
because your supervisor has a fetish for SAT.

Koen Claessen, 2016

In this chapter, we present CG as a Boolean satisfiability (SAT) problem, and describe
an implementation using a SAT-solver. This is attractive for several reasons: formal logic is
well-studied, and serves as an abstract language to reason about the properties of CG. De-
spite the wide adoption of the formalism, there has never been a single specification of all
the implementation details of CG, particularly the rule ordering and the execution strategy.
Furthermore, the translation into a SAT-problemmakes it possible to detect conflicts between
rules—we will see an application for grammar analysis in Chapter 4.

Applying logic to reductionist grammars has been explored earlier by Lager (1998) and
Lager and Nivre (2001), but there has not been, to our knowledge, a full logic-based CG
implementation; at the time, logic programming was too slow to be used for tagging or
parsing. Since those works, SAT-solving techniques have improved significantly (Marques-
Silva, 2010), and they are used in domains such as microprocessor design and computational
biology—these problems easily match or exceed CG in complexity. In addition, SAT-solving
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brings us more practical tools, such as maximisation, which enables us to implement a novel
conflict resolution method for parallel CG.

The content in this chapter is based on “Constraint Grammar as a SAT problem” (Listen-
maa and Claessen, 2015). As in the original paper, we present a translation of CG rules into
logical formulas, and show how to encode it into a SAT-problem. This work is implemented
as an open-source software SAT-CG1. It uses the high-level library SAT+2, which is based on
MiniSAT (Eén and Sörensson, 2004). We evaluate SAT-CG against the state of the art, VISL
CG-3. The experimental setup is the same, but we ran the tests again for this thesis: since the
writing of Listenmaa and Claessen (2015), we have optimised our program and fixed some
bugs; this makes both execution time and F-scores better than we report in the earlier paper.

3.1 Related work
Ourwork is inspired by previous approaches of encoding CG in logic (Lager, 1998; Lager and
Nivre, 2001). Lager (1998) presents a “CG-like, shallow and reductionist system” translated
into a disjunctive logic program. Lager and Nivre (2001) build on that in a study which
reconstructs four different formalisms in first-order logic. CG is contrasted with Finite-State
Intersection Grammar (FSIG) (Koskenniemi, 1990) and Brill tagging (Brill, 1995); all three
work on a set of constraint rules which modify the initially ambiguous input, but with some
crucial differences. On a related note, Yli-Jyrä (2001) explores the structural correspondence
between FSIG and constraint-solving problems. In addition, logic programming has been
applied for automatically inducing CG rules from tagged corpora (Eineborg and Lindberg,
1998; Sfrent, 2014; Lager, 2001).

3.2 CG as a SAT-problem
In this section, we translate the disambiguation of a sentence into a SAT-problem. We demon-
strate our encoding with an example in Spanish, shown in Figure 3.1: la casa grande. The first
word, la, is ambiguous between a definite article (‘the’) or an object pronoun (‘her’), and the
second word, casa, can be a noun (‘house’) or a verb (‘(he/she) marries’). The subsegment
la casa alone can be either a noun phrase, laDet casaN ‘the house’ or a verb phrase laPrn casaV

‘(he/she) marries her’. However, the unambiguous adjective, grande (‘big’), disambiguates
the whole segment into a noun phrase: ‘the big house’. Firstly, we translate input sentences

1https://github.com/inariksit/cgsat
2https://github.com/koengit/satplus
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into variables and rules into clauses. Secondly, we disambiguate the sentence by asking for
a solution. Finally, we consider different ordering schemes and conflict handling.

3.2.1 Encoding the input

Original analysis Variables Default rule
"<la>" “do not remove the last reading”

"el" det def f sg laDet
"lo" prn p3 f sg laPrn laDet ∨ laPrn

"<casa>"
"casa" n f sg casaN
"casar" v pri p3 sg casaV casaN ∨ casaV

"<grande>"
"grande" adj mf sg grandeAdj grandeAdj

Figure 3.1: Ambiguous segment in Spanish: translation into SAT-variables.

Reading The readings of the word forms make a natural basis for variables. We translate a
combination of a word form and a reading, such as "<la>" ["el" det def f sg], into a vari-
able laDet, which represents the possibility that la is a determiner. This example segment
gives us five variables: {laDet, laPrn, casaN, casaV, grandeAdj}, shown in 3.1.

Cohort As in the original input, the readings are grouped together in cohorts. We need to
keep this distinction, for instance, tomodel select rules and cautious context: SELECT "casa" n

means, in effect, “remove casaV”, and IF (-1C prn) means “if laPrn is true and laDet false”.
Most importantly, we need to make sure that the last reading is not removed. Hence we add
the default rule, “do not remove the last reading”, as shown in the third column of 3.1. These
disjunctions ensure that at least one variable in each cohort must be true.

Sentence In order to match conditions against analyses, the input needs to be structured
as a sentence: the cohorts must follow each other like in the original input, indexed by their
absolute position in the sentence. Thus when we apply REMOVE v IF (-1 det) to the cohort
2→ [casaN, casaV], the condition will match on laDet in cohort 1.

Rule Next, we formulate a rule in SAT. A single rule, such as REMOVE v IF (-1 det), is a
template for forming an implication; when given a concrete sentence, it will pick concrete
variables by the following algorithm.
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1. Match rule against all cohorts

la: No target found

casa: Target found in casaV, match conditions to la

– Condition found in laDet

– Create a clause: laDet ⇒ ¬casaV ‘if la is a determiner, casa is not a verb’

grande: No target found

2. Solve with all clauses: {
given by the default rule︷ ︸︸ ︷

laDet∨ laPrn, casaN ∨ casaV, grandeAdj,

REMOVE v IF (-1 det)︷ ︸︸ ︷
laDet ⇒ ¬casaV}

In Section 3.3 , we have included a translation of all the rule types that SAT-CG supports:
remove and select rules, with most of the operations from CG-2 (Tapanainen, 1996), and a
couple of features from VISL CG-3 (Didriksen, 2014). The following examples in this section
do not require reading Section 3.3.

3.2.2 Applying a rule
Finally, we have all we need to disambiguate the segment: the sentence and the constraints
encoded as SAT-variables and clauses. The SAT-solver returns a model that satisfies all the
clauses presented in step 2. We started off with all the variables unassigned, and required at
least one variable in each cohort to be true. In addition, we gave the clause laDet ⇒ ¬casaV.
We can see with a bare eye that this problem will have a solution; in fact, multiple ones,
shown in Figure 3.2. The verb analysis is removed in the first two models, as required by
the presence of laDet. However, the implication may as well be interpreted “if casaV may not
follow laDet, better remove laDet instead”; this has happened in Models 3–4. We see a third
interpretation in Model 5: casaV may be removed even without the presence of laDet. This is
possible, because laDet ⇒ ¬casaV is only an implication, not an equivalence.

It seems like SAT-CGdoesworse than any standard CG implementation: the latter would
just remove the verb, not give 5 different interpretations for a single rule. In fact, the rule
REMOVE v IF (-1 det) alone behaves exactly like REMOVE det IF (1 v). But there is power to
this property. Now, we add a second rule: REMOVE n IF (-1 prn), which will form the clause
laPrn ⇒ ¬casaN. The new clause prohibits the combination laPrn casaN, which rules out three
models out of five. The disambiguation is shown in Figure 3.3.

After two rules, we only have twomodels: onewith laDet casaN and otherwith laPrn casaV.
In fact, we have just implemented parallel CG (PCG), introduced in Section 2.1.3: the rules act

28



Chapter 3. CG as a SAT-problem

Model 1 Model 2 Model 3 Model 4 Model 5
laDet laDet

laPrn laPrn laPrn laPrn
casaN casaN casaN casaN

casaV casaV
grandeAdj grandeAdj grandeAdj grandeAdj grandeAdj

Figure 3.2: Possible models for REMOVE v IF (-1 det).

Model 1 Model 2
laDet

laPrn
casaN

casaV
grandeAdj grandeAdj

Figure 3.3: Possible models for REMOVE v IF (-1 det) and REMOVE n IF (-1 prn).

in parallel, and if the sentence cannot be fully disambiguated, the remaining uncertainty is
modelled as a disjunction of all possible combinations of readings. In contrast, a sequential
CG (SCG) engine applies each rule individually, and it cannot handle disjunction; its only
operation is to manipulate lists of readings in a cohort. The SCG engine would have just
applied one of the rules—say, the first one, removed the verb and stopped there. If another
rule later in the sequence removes the determiner, there is no way to restore the verb.

To finish our PCG example, let us add one more rule: REMOVE v IF (1 adj), and the corre-
sponding clause grandeAdj ⇒ ¬casaV. This clause will rule out Model 2 of Figure 3.3, and we
will get Model 1 as the unique solution. We can see another benefit in allowing connections
between rules: none of the three rules has targeted la, still it has become unambiguous.

3.2.3 Solving conflicts in the parallel scheme
As described in Section 2.1.3, PCG behaves differently from SCG: the rules are dependent
on each other, and the order does not matter. This prevents too hasty decisions, such as
removing casaV before we know the status of la. However, ignoring the order means that we
miss significant information in the rule set. The truth is that pure PCG is very brittle: each
and every rule in the set must fit together, without the notion of order. The rule sequence
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in Figure 3.4, taken from a Dutch grammar3, will be well-behaved in an SCG with strict rule
order. The grammar will behave as intended also in a heuristic variant of SCG, because the
rules with a longer context are matched first. But in PCG, the rule set will definitely cause a
conflict, rendering the whole grammar useless.

The order clearly demonstrates the course of action: “If a potential imperative starts a
sentence and is followed by an object pronoun, select the imperative reading; then, move on
to other rules; finally, if any imperative is still ambiguous, remove the imperative reading.”
Comparing the success of SCG to PCG in practical applications, one may speculate that the
sequential order is easier to understand—undeniably, its behaviour is more transparent. If
two rules target the same cohort, the first mentioned gets to apply, and removes the target.
When the first rule has acted, the second rule is not even considered, because it would remove
the last reading.

SECTION

# Zeg me
SELECT Imp IF (-1 BOS) (1 (prn obj)) ;

# . Heb je
SELECT (vbhaver pres p2 sg) IF (-1 BOS) (1 (prn obj uns p2 mf sg)) ;

[--]

SECTION

# remove all imperative readings that have not been explicitly selected
REMOVE Imp ;

# remove informal 2nd person singular reading of "heb"
REMOVE (vbhaver pres p2 sg) ;

Figure 3.4: Example from a Dutch grammar

Ideally, both ways of grammar writing should yield similar results: sequential CG rules
are more imperative, and parallel CG rules are more declarative. But the problem of conflicts
in PCG still remains. In the following, we present two solutions: in the first one, we emulate

3https://github.com/apertium/apertium-nld/blob/master/apertium-nld.nld.rlx, commit d13fdaa
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ordering in choosing which clauses to keep, and in the second one, we maximise the number
of rule applications.

Emulating order We keep the parallel base, but use ordering as information for solving
conflicts. Thismeans that all the benefits of parallel execution still hold: the three rules, which
all target casa, may still disambiguate la, without la ever being the target. If all the rules play
well together, or if the earlier rules do not match any cohorts, then no rule applications need
to be removed. However, if we have the grammar from Figure 3.4, and imperative is the
right analysis for a given context, then the clauses created by REMOVE Imp would be ignored,
in favour of the clauses that are created by SELECT Imp IF (-1 BOS) (1 (prn obj)).

In this modified scheme, we introduce the clauses to the SAT-solver one by one, and
attempt to solve after each clause. If the SAT-problem after the 50th rule has a solution, we
accept all the clauses created by rule 50. If rule 51 causes a conflict, we prioritise the previous,
well-behaving subset of 50 rules, and discard the conflicting clauses created by rule 51.

If a rule matches multiple cohorts, it creates a separate clause for each instance. Thus, it
is no problem if the rule causes a conflict in only one cohort—say, we have another potential
imperative in the sentence, but there is no other rule which targets its other readings. We
can discard only the conflicting instances: we prevent REMOVE Imp from applying to Zeg in the
sequence # Zeg me, but it still may apply to other ambiguous tokens with imperative reading.

Let us demonstrate the procedure with the Spanish segment la casa grande. Assuming our
rule set is {REMOVE v IF (-1 det), REMOVE v IF (1 adj), REMOVE n}, the revised algorithm goes
as follows:

1. Apply REMOVE v IF (-1 det)

• Create a clause: laDet ⇒ ¬casaV

• Solvewith previous clauses: {
default rule︷ ︸︸ ︷

laDet∨ laPrn, casaN ∨ casaV, grandeAdj,

REMOVE v IF (-1 det)︷ ︸︸ ︷
laDet ⇒ ¬casaV}

• Solution found: add new clause to the formula

2. Apply REMOVE v IF (1 adj)

• Create a clause: grandeAdj ⇒ ¬casaV

• Solve with previous clauses: {..., laDet ⇒ ¬casaV,

REMOVE v IF (1 adj)︷ ︸︸ ︷
grandeAdj ⇒ ¬casaV}

• Solution found: add new clause to the formula
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3. Apply REMOVE n

• Create a clause: ¬casaN

• Solve with previous clauses: {..., laDet ⇒ ¬casaV, grandeAdj ⇒ ¬casaV,

REMOVE n︷ ︸︸ ︷
¬casaN}

• No solution: discard clause

With this procedure, we use ordering to decide which clauses to include, and then ap-
ply all of them in parallel. After going through all the rules, the final formula to the SAT-
solver will contain the clauses laDet ∨ laPrn, casaN ∨ casaV, grandeAdj, laDet ⇒ ¬ casaV and
grandeAdj⇒¬ casaV.

Maximisation Solving conflicts means that we have multiple rules that target the same
reading, and we must choose which rule to apply. Strict ordering substitutes the question
with a simpler one: “which rule comes first in the grammar?” Heuristic rule order asks “out
of all the rules that target this cohort, which one has the best matching context?” If the com-
petitors are REMOVE n IF (-1 prn) and REMOVE v IF (-1 det) (1 adj), then the second onewill
win. However, if the rules are both as good a match, which happens in Figure 3.3, we need
to resort to mere guessing, or fall back to ordering.

However, we can ask yet another question: “Out of all the rules that target this cohort,
which one is a best fit with other rules that will apply to this whole sentence?” As opposed to
heuristic or weighted approaches (Voutilainen, 1994; Oflazer and Tür, 1997), here all the indi-
vidual rule applications are equally important; we justwant to find the largest possible subset
of rule applications that can act together without conflict. We will explain the procedure in
the following.

Each rule application to a concrete cohort produces a clause, and the whole rule set ap-
plied to the whole sentence produces a large formula. In an ideal case, all the rules are well-
behaved, and thewhole formula is satisfiable. However, if thewhole formula is unsatisfiable,
we may still ask for an assignment that satisfies the maximum number of the clauses; that is,
rule applications. If the grammar is good, we hope that the interaction between the appropri-
ate rules would make a large set of clauses that fit together, and the inapplicable rule would
not “fit in”.

We keep the Spanish segment and the rule set {REMOVE v IF (-1 det), REMOVE v IF (1

adj), REMOVE n }. Now the procedure goes as follows:

1. Apply REMOVE v IF (-1 det)
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• Create a clause: laDet ⇒ ¬casaV

2. Apply REMOVE v IF (1 adj)

• Create a clause: grandeAdj ⇒ ¬casaV

3. Apply REMOVE n

• Create a clause: ¬casaN

4. Solve with all clauses: {
default rule︷ ︸︸ ︷

laDet∨ laPrn, ...,

REMOVE v IF (-1 det)︷ ︸︸ ︷
laDet ⇒ ¬casaV,

REMOVE v IF (1 adj)︷ ︸︸ ︷
grandeAdj ⇒ ¬casaV,

REMOVE n︷ ︸︸ ︷
¬casaN}

5. No solution for all clauses: try to find a solution that satisfies maximally many rule
applications; however, default rule cannot be overridden.

Similarly to the previous, order-based scheme, we create a clause for each instance of
the rule application. In the case of a conflict, we can only discard the clauses targeting the
offending cohort, but the rule may apply elsewhere in the sentence.

The problemof satisfyingmaximumamount of clauses is knownasMaximumSatisfiability
(MaxSAT). Whereas SAT is a decision problem, MaxSAT is an optimisation problem. How-
ever, optimisation can be expressed as a sequence of decision problems: first, we compute a
solution, then we add a constraint “the solution must be better than the one just found”, and
ask for another one. This process repeats until a better solution cannot be found; then we
accept the latest solution.

Now let us define how is one solution “better” than other, by using a simple trick. For
each clause c, we create a new variable v. Instead of the original clause, we give the SAT-
solver an implication v ⇒ c. This means that if v is false, the SAT-solver can ignore the actual
clause c—the part that comes from the rule application. Conversely, if v is true, then the SAT-
solver must handle the original clause. Then, we ask for a solutionwheremaximallymany of
these vs are true, and the question for improvement becomes “can we make any more of the
vs true”? The method of maximising the variables is described in Eén and Sörensson (2006).

As a alternative to creating a helper variable, we could also separate the variables into
contexts and targets, and maximise the set of contexts: for laDet ⇒ ¬casaV and grandeAdj ⇒
¬casaV, maximise the set of {laDet, grandeAdj}. This variant would bring back the distinction
between targets and contexts; given the design of most actually used CGs, it may be better
suited for a practical implementation.
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3.3 SAT-encoding
In this section, we show the SAT-encoding for all the rule types that SAT-CG supports: re-
move and select rules, with the contextual tests and set operations described in CG-2 (Tapa-
nainen, 1996), except for the operators ** (continue search if linked tests fail) and @ (absolute
position). In addition, the software SAT-CG supports a couple of new constructions from
VISL CG-3: cbarrier, which requires the barrier tag to be unambiguous in order to function
as a barrier; negate, which inverts a whole chain of contextual tests; and subreadings, which
make it possible to include e.g. a clitic in the same cohort, but distinguish it from the main
reading.

The encoding in this section is independent of the implementation of the software SAT-
CG; it does not describe how the sentence is processed in order to find the variables. The
purpose of this section is to give a full description of the different rule types; the method is
introduced with more pedagogical focus in Section 3.2.

3.3.1 SAT-encoding of sentences
As in Section 3.2, we demonstrate the SAT-encodingwith a concrete segment in Spanish: sobre
una aproximación más científica. It has the virtue of being ambiguous in nearly every word: for
instance, sobre is either a preposition (‘above’ or ‘about’) or a noun (‘envelope’); una can be
a pronoun, determiner or a verb. The full analysis, with the initial ambiguities, is shown in
Figure 3.5.

"<sobre>"
"sobre" pr "<aproximación>"
"sobre" n m sg "aproximación" n f sg

"<una>" "<más>"
"uno" prn tn f sg "más" adv
"uno" det ind f sg "más" adj mf sp
"unir" v prs p3 sg "<científica>"
"unir" v prs p1 sg "científico" adj f sg
"unir" v imp p3 sg "científico" n f sg

Figure 3.5: Ambiguous segment in Spanish.
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We transform each reading into a SAT-variable:

sobrePr unaPrn aproximaciónN másAdv científicaAdj
sobreN unaDet másAdj científicaN

unaPrsP3

unaPrsP1

unaImpP3

(3.1)

CG rules may not remove the last reading, even if the conditions hold otherwise. To
ensure that each cohort contains at least one true variable, we add the clauses in 3.2; later
referred to as the “default rule”. The word aproximación is already unambiguous, thus the
clause aproximaciónN is a unit clause, and the respective variable is trivially assigned true.
The final assignment of the other variables depends on the constraint rules.

sobrePr ∨ sobreN
unaPrn ∨ unaDet ∨ unaPrsP3 ∨ unaPrsP1 ∨ unaImpP3

aproximaciónN
másAdv ∨másAdj

científicaAdj ∨ científicaN

(3.2)

3.3.2 SAT-encoding of rules

In order to demonstrate the SAT-encoding, we show variants of remove and select rules,
with different contextual tests. We try to craft rules that make sense for this segment; how-
ever, some variants are not likely encountered in a real grammar, and for some rule types,
we modify the rule slightly. We believe this makes the encoding overall more readable, in
contrast to using more homogeneous but more artificial rules and input.

No conditions

The simplest rule types remove or select a target in all cases. A rule can target one or multiple
readings in a cohort. We demonstrate the case with one target in rules 3.3–3.4, and multiple
target in rules 3.5–3.6.

REMOVE adj Unconditionally removes all readings which contain the target.
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¬másAdj

¬científicaAdj
(3.3)

SELECT adj Unconditionally removes all other readings which are in the same cohort with
the target. We do not add an explicit clause for másAdj and científicaAdj: the default rule 3.2
already contain másAdv ∨másAdj and científicaAdj ∨ científicaN, and the combination ¬másAdv

and másAdv ∨másAdj implies that másAdj must be true.

¬másAdv

¬científicaN
(3.4)

REMOVE verb As 3.3, but matches multiple readings in a cohort. All targets are negated.

¬unaPrsP3 ∧ ¬unaPrsP1 ∧ ¬unaImpP3 (3.5)

SELECT verb As 3.4, but matches multiple readings in a cohort. All other readings in the
same cohort are negated. As previously, we need no explicit clause for unaPrsP3 ∨ unaPrsP1 ∨
unaImpP3: the default rule 3.2 guarantees that at least one of the target readings is true.

¬unaDet ∧ ¬unaPrn (3.6)

Positive conditions

Rules with contextual tests apply to the target, if the conditions hold. This is naturally repre-
sented as implications. We demonstrate both remove and select rules with a single condi-
tion in 3.7; the rest of the variants only with remove. All rule types can be changed to select
by changing the consequent from ¬másAdj to ¬másAdv.

REMOVE adj IF (1 adj) SELECT adj IF (1 adj)
científicaAdj =⇒ ¬másAdj científicaAdj =⇒ ¬másAdv

(3.7)

REMOVE adj IF (-1 n) (1 adj) Conjunction of conditions.
REMOVE adj IF (-1 n LINK 2 adj) Linked conditions—identical to the above.

científicaAdj ∧ aproximaciónN =⇒ ¬másAdj (3.8)
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REMOVE adj IF ((-1 n) OR (1 adj)) Disjunction of conditions (template).

científicaAdj ∨ aproximaciónN =⇒ ¬másAdj (3.9)

REMOVE adj IF (1C adj) Careful context. Condition must be must be unambiguously ad-
jective.

científicaAdj ∧ ¬científicaN =⇒ ¬másAdj (3.10)

REMOVE adj IF (-1* n) Scanning. Any noun before the target is a valid condition.

sobreN ∨ aproximaciónN =⇒ ¬másAdj

sobreN ∨ aproximaciónN =⇒ ¬científicaAdj (3.11)

REMOVE adj IF (-1* n LINK 1 v) Scanning and linked condition. Any noun before the
target, followed immediately by a verb, is a valid condition.

sobreN ∧ (unaPrsP3 ∨ unaPrsP1 ∨ unaImpP3) =⇒ ¬másAdj

sobreN ∧ (unaPrsP3 ∨ unaPrsP1 ∨ unaImpP3) =⇒ ¬científicaAdj (3.12)

REMOVE adj IF (-1* n LINK 1* adv) Scanning and linked condition. Any noun before the
target, followed anywhere by an adverb, is a valid condition.

(sobreN ∧másAdv) ∨ ( aproximaciónN ∧másAdv) =⇒ ¬másAdj

(sobreN ∧másAdv) ∨ ( aproximaciónN ∧másAdv) =⇒ ¬científicaAdj (3.13)

REMOVE adj IF (-1* n BARRIER det) Scanning up to a barrier. Any noun before the target,
up to a determiner, is a valid condition: sobreN is a valid condition only if unaDet is false.

(sobreN ∧ ¬unaDet) ∨ aproximaciónN =⇒ ¬másAdj

(sobreN ∧ ¬unaDet) ∨ aproximaciónN =⇒ ¬científicaAdj (3.14)
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REMOVE adj IF (-1* n CBARRIER det) Scanning up to a careful barrier. Any noun before
the target, up to an unambiguous determiner, is a valid condition. The variable unaDet fails to
work as a barrier, if any of the other analyses of una is true. Let unaAny denote the disjunction
unaPrn ∨ unaPrsP3 ∨ unaPrsP1 ∨ unaImpP3.

(sobreN ∧ unaAny) ∨ aproximaciónN =⇒ ¬másAdj

(sobreN ∧ unaAny) ∨ aproximaciónN =⇒ ¬científicaAdj (3.15)

REMOVE adj IF (-1C* n) Scanning with careful context. Any unambiguous noun before the
target is a valid condition: sobreN is a valid condition only if it is the only reading in its cohort,
i.e. sobrePr is false.

(sobreN ∧ ¬sobrePr) ∨ aproximaciónN =⇒ ¬másAdj

(sobreN ∧ ¬sobrePr) ∨ aproximaciónN =⇒ ¬científicaAdj (3.16)

REMOVE adj IF (-1C* n BARRIER det) Scanning with careful context, up to a barrier. Any
unambiguous noun before the target, up to a determiner, is a valid condition: sobreN is a valid
condition only if it is the only reading in its cohort (sobrePr is false), and there is no determiner
between sobre and the target (unaDet is false).

(sobreN ∧ ¬sobrePr ∧ ¬unaDet) ∨ aproximaciónN =⇒ ¬másAdj

(sobreN ∧ ¬sobrePr ∧ ¬unaDet) ∨ aproximaciónN =⇒ ¬científicaAdj (3.17)

REMOVE adj IF (-1C* n CBARRIER det) Scanning with careful context, up to a careful
barrier. Like above, but una fails to work as a barrier if it is not unambiguously determiner.

(sobreN ∧ ¬sobrePr ∧ unaAny) ∨ aproximaciónN =⇒ ¬másAdj

(sobreN ∧ ¬sobrePr ∧ unaAny) ∨ aproximaciónN =⇒ ¬científicaAdj (3.18)

Inverted conditions

In the following, we demonstrate the effect of two inversion operators. The keyword not
inverts a single contextual test, such as IF (NOT 1 noun) , as well as linked conditions, such
as IF (-2 det LINK NOT *1 noun) . The keyword negate inverts a whole conjunction of con-
textual tests, which may have any polarity: IF (NEGATE -2 det LINK NOT 1 noun) means
“there may not be a determiner followed by a not-noun”; thus, det noun would be allowed,
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as well as prn adj, but not det adj. Inversion cannot be applied to a barrier condition. If one
wants to express IF (*1 foo BARRIER ¬bar) , that is, “try to find a foo until you see the first
item that is not bar”, a set complement operator must be used: (*) - bar .

There is a crucial difference between matching positive and inverted conditions. If a
positive condition is out of scope or the tag is not present in the initial analysis, the rule
simply does not match, and no clauses are created. For instance, the conditions ‘10 adj’ or
‘-1 punct’, matched against our example passage, would not result in any action. In contrast,
when an inverted condition is out of scope or inapplicable, that makes the action happen
unconditionally. As per VISL CG-3, the conditionNOT 10 adj applies to all sentences where
there is no 10th word from target that is adjective; including the case where there is no 10th
word at all. If we need to actually have a 10th word to the right, but that word may not be
an adjective, we can, again, use the set complement: IF (10 (*) - adj) .

REMOVE adj IF (NOT 1 adj) Single inverted condition. There is noword following científica,
hence its adjective reading is removed unconditionally.

¬científicaAdj =⇒ ¬másAdj

=⇒ ¬científicaAdj (3.19)

REMOVE adj IF (NOT -1 n) (NOT 1 adj) Conjunction of inverted conditions.

¬ aproximaciónN ∧ ¬científicaAdj =⇒ ¬másAdj

=⇒ ¬científicaAdj (3.20)

REMOVE adj IF (NEGATE -3 pr LINK 1 det LINK 1 n) Inversion of a conjunction of condi-
tions.

¬(sobrePr ∧ unaDet ∧ aproximaciónN) =⇒ ¬másAdj

=⇒ ¬científicaAdj (3.21)
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REMOVE adj IF (NOT 1C adj) Negated careful context. Condition cannot be unambigu-
ously adjective.

¬(científicaAdj ∧ ¬científicaN) =⇒ ¬másAdj

=⇒ ¬científicaAdj (3.22)

REMOVE adj IF (NOT -1* n) Scanning. There must be no nouns before the target.

¬(sobreN ∨ aproximaciónN) =⇒ ¬másAdj

¬(sobreN ∨ aproximaciónN) =⇒ ¬científicaAdj (3.23)

REMOVE adj IF (NOT -1* n BARRIER det) Scanning up to a barrier. There must be no
nouns before the target, up to a determiner.

¬((sobreN ∧ ¬unaDet) ∨ aproximaciónN) =⇒ ¬másAdj

¬((sobreN ∧ ¬unaDet) ∨ aproximaciónN) =⇒ ¬científicaAdj (3.24)

REMOVE adj IF (NOT -1* n CBARRIER det) Scanning up to a careful barrier. There must
be no nouns before the target, up to an unambiguous determiner.

¬((sobreN ∧ ¬sobrePr ∧ unaAny) ∨ aproximaciónN) =⇒ ¬másAdj

¬((sobreN ∧ ¬sobrePr ∧ unaAny) ∨ aproximaciónN) =⇒ ¬científicaAdj (3.25)

Non-matching inverted conditions Here we demonstrate a number of inverted rules, in
which the contextual test does not match the example sentence. As a result, the action is
performed unconditionally.

REMOVE adj IF (NOT 1 punct) Single inverted condition, not present in initial analysis.

REMOVE adj IF (NOT 10 adj) Single inverted condition, out of scope.

REMOVE adj IF (NOT 1 n) (NOT 10 n) Conjunction of inverted conditions, one out of scope.

REMOVE adj IF (NEGATE -3 pr LINK 1 punct) Inversion of a conjunction of conditions,
some not present in initial analysis.

=⇒ ¬másAdj (3.26)
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3.4 Experiments
In this section, we report experiments on the two modifications to the parallel scheme, pre-
sented in the previous section. We evaluate the performance against VISL CG-3 in accuracy
and running time; in addition, we offer some preliminary observations on the effect of gram-
mar writing.

For these experiments, we implemented another variant for both schemes: we force all
the literals that are not targeted by the original rules to be true. This modification destroys
the “rules may disambiguate their conditions” property, which we hypothesised to be help-
ful; however, turns out that this variation slightly outperforms even VISL CG-3 in terms of
precision and recall. Conversely, the original SAT-CG scheme, where all variables are left
unassigned, fares slightly worse for accuracy. Overall, the accuracy is very low with the
tested grammars, thus it is hard to draw conclusions. As for execution time, all variants of
SAT-CGperform significantlyworse thanVISLCG-3—depending on the sentence length and
the number of rules, SAT-CG ranges from 10 times slower to 100 times slower. The results
are presented in more detail in the following sections.

3.4.1 Performance against VISL CG-3

19 rules 261 rules
F-score Time F-score Time

SAT-CGMax 80.22u % 83.28f % 4s 78.15u % 79.03f % 8s
SAT-CGOrd 81.14u % 83.12f % 4s 79.03u % 79.17f % 8s
VISL CG-3 81.52 % 0.39s 78.83 % 0.64s

Table 3.1: F-scores and execution times for the subset of the Spanish grammar, tested on a gold standard
corpus of 20,000 words.

We took a manually tagged corpus4 containing approximately 22,000 words of Spanish
news text, and a small constraint grammar5 from the Apertium repository. We kept only
select and remove rules, which left us 261 rules. In order to test the grammars, we pro-
duced an ambiguous version of the tagged corpus: we discarded the tags, and analysed the
text again with the Apertium morphological analyser and the morphological dictionary for
Spanish. Ideally, we should have used the same analyser, but since the gold standard was
produced, there have been some changes in the dictionary. Due to these differences, we had

4https://svn.code.sf.net/p/apertium/svn/branches/apertium-swpost/apertium-en-es/es-tagger-data/es.tagged
5https://github.com/apertium/apertium-spa/blob/master/apertium-spa.spa.rlx, commit 1d4f290d
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to discard some 2000 words from the gold standard—in most cases, there was a change of
just one word, but we excluded the whole sentence nevertheless. With this setup, we ran
both SAT-CG and VISL CG-3 on the newly ambiguous corpus. In addition, we wrote a small
grammar of 19 rules, optimised to be very compact and disambiguate effectively, taking ad-
vantage of the parallel execution. Some of the rules were selected from the original grammar,
and some were written by the author.

Table 3.1 shows F-scores and execution times for these two grammars. SAT-CGMax is the
parallel scheme with maximisation, and SAT-CGOrd is the parallel scheme where rule appli-
cations are introduced one by one; superscript u refers to the unassigned variant and f to
the version where we force non-targeted literals true. The original grammar performs very
poorly, with an F-score between 78–79 % for all three setups—even with an empty gram-
mar, the F-score would be around 70 %. Due to the unrepresentative example, we cannot
draw many conclusions. We had access to other grammars of the same size range, such as
Portuguese, Dutch and Russian; however, no sufficiently large gold standard corpora were
available.

The experiment with the 19-rule grammar was more interesting. We intended to write
a grammar that would perform exceptionally well for the parallel execution; it was heavily
tuned to the gold standard corpus, and tested only with SAT-CG (leaving all variables unas-
signed) during development. To our surprise, this small grammar turned out to outperform
the original, 261-rule grammar, even when run with VISL CG-3. The rule ordering was not
optimised by automatic means, and sections were not used; hence it is possible that with
another order, the numbers could be even better for VISL CG-3 and the ordered scheme.

3.4.2 Execution time

Spanish (380k words) Finnish (19k words)
19 rules 261 rules 1185 rules

SAT-CGMax 25s 1m 5s 4m 56s
SAT-CGOrd 19s 1m 2s 4m 17s
VISL CG-3 2.7s 4.8s 4.3s

Table 3.2: Execution times for Spanish and Finnish grammars of different sizes, disambiguating Don
Quijote (384,155 words) and FinnTreeBank (19,097 words).

Number of rules vs. number of words In addition to the 20,000-word corpus of news text,
we tested the performance by parsing Don Quijote (384,155 words) with the same Spanish
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261 rules 1185 rules
283 tokens Split 251 tokens Split

SAT-CGMax 2.26s 2.06s 5.34s 2.36s
SAT-CGOrd 2.20s 1.99s 4.70s 2.36s
VISL CG-3 0.05s 0.03s 0.04s 0.04s

Table 3.3: Experiments with sentence length. On the left, Spanish 261-rule grammar parsing the com-
plete 283-token sentence, parsed as one unit vs. split at semicolons into four parts. On the right, Finnish
1185-rule grammar parsing an artificially constructed 251-token sentence.

grammars as in the previous experiment. More importantly, wewanted to test a grammar of a
realistic size, so we took a Finnish grammar, originally written in 1995 for CG-1, and updated
into the VISL CG-3 standard by Pirinen (2015). We discarded rules and constructions that
SAT-CG does not support, and ended up with 1185 rules. Then, we parsed around 19,000
words of text from FinnTreeBank (Voutilainen, 2011). Table 3.2 shows the results for both
Finnish and Spanish tests.

For both systems, the number of rules in the grammar affects the performance more than
the raw word count. However, the performance of SAT-CG gets worse faster than VISL CG-
3s. From the SAT-solving side, maximisation is the most costly operation. Emulating order
performs slightly faster, but still in the same range: maximisation is not needed, but the
solve function is performed after each clause—this gets costlier after each rule. However, we
believe that SAT is not necessary the bottleneck: VISL CG-3 is a product of years of engineer-
ing effort, whereas SAT-CG is still, despite the improvements from Listenmaa and Claessen
(2015), a rather naive implementation, written in Haskell and BNFC.

Sentence length In addition, we explored the effect of sentence length further. When split
by just full stops, the longest sentence in Don Quijote consists of 283 tokens, including punc-
tuation. In Table 3.3, we see this sentence parsed, on the right as a single unit, and on the
left, we split it in four parts, at the semicolons. In Table 3.2, it was already split at semicolons.
We tested the effect of sentence length also for the Finnish grammar. All the sentences in
FinnTreeBank were very short, so we created an 251-token “sentence” by pasting together 22
short sentences and replacing sentence boundaries with commas.

The results in Table 3.3 are promising: the execution time does not grow unbearably, even
with the unusually long sentence. To give some context, let us consider the performances of
the sequential CG-2 and the parallel FSIG in 1998. Voutilainen (1998) reports the performance
of a 3,500-ruleCG: “On a 266MHzPentium runningLinux, EngCG-2 tags around 4,000words
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per second”. In contrast, a 2,600-rule FSIG grammar is unable to find a correct parse in the
allowed time, 100 seconds per sentence, for most sentences longer than 15 words. As another
CG result from the late 1990s, Tapanainen (1999) reports an average time of 5 seconds for
parsing 15-word sentences in CG-2.

Compared to the parsing times of sequential CG and FSIG nearly 20 years ago, our results
demonstrate a smaller difference, and much less steep growth in the execution time related
to sentence length. Of course, this remark should be taken with caution: to start with, the de-
scribed experiments were conducted on different systems and in different centuries6. Impor-
tantly, the parallel participants in the experiments were using different grammars—the FSIG
grammar used in Voutilainen (1998) contains much more difficult operations, which makes
the constraint problem larger. Our experiments have just shown the lack of blowup for a
small grammar. Nevertheless, it would be interesting to conduct this experiment properly:
try a SAT-based approach for executing the FSIG grammars from the 1990s, and compare the
results to the current state of the art.

3.4.3 Effect on grammar writing

Throughout the implementation of SAT-CG, we have predicted that the more declarative
features would influence the way rules are written. We hoped to combine the best parts of
SCG and PCG: the rules would be more expressive and declarative, but we could still fall
back to heuristics: eventual conflicts would not render the whole grammar useless. On the
one hand, getting rid of ordering and cautious context could ease the task of the grammar
writer, since it removes the burden of estimating the best sequence of rules and whether to
make them cautious. On the other hand, lack of order can make the rules less transparent,
and might not scale up for larger grammars. Without an actual CG writer, it is hard to say
whether this prediction holds or not.

As stated earlier, we got the best F-score with a modification which prevents the rules
from disambiguating their context: in the case with la casa grande and the three rules which
all target casa, we would assign both laDet and laPrn true. We tried also a second variant,
where we would assign true to only those variables which are neither targets nor conditions
to any rule. Table 3.4 shows in more detail what happens to the precision and recall with all
the three variants, with the 19-rule grammar.

6Eckhard Bick (personal communication) points out that CG-2 run on a modern system is around 6 times faster
than VISL CG-3.
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We notice that the SAT-based solution loses severely in recall, when all variables are left
unassigned. This is understandable: given that the grammar is extremely small, only 19 rules,
the majority of the tokens will never appear in the clauses, neither as targets nor conditions.
So the SAT-solver is free to arbitrarily choose the readings of those free words, whereas VISL
CG-3 does nothing to them. There is no universal behaviour what to do if a variable is not
included in any of the clauses; it is likely that many solvers would just assign false by default.
In our case, we still require at least one reading of every cohort to be true; this applies even
for cohorts which do not appear in the clauses. Given the lack of other information, the SAT-
solver is likely to just choose the first one in alphabetical order. It would not be difficult
to modify the scheme based on another heuristic, such as the most likely unigram reading,
or dispreference for analyses with many compound splits. However, we did not add any
heuristics; the results just show the SAT-solver performing its default actions.

NoAss NoAff NoTar
Prec. Rec. Prec. Rec. Prec. Rec.

SAT-CGMax 79.97 80.47 77.24 82.94 80.36 86.41
SAT-CGOrd 80.96 81.31 78.42 84.07 80.22 86.28
VISL CG-3 78.29 85.02 78.29 85.02 78.29 85.02

Table 3.4: Showing the effect of three variants on the 19-rule grammar: (NoAss) Leave all variables
unassigned; (NoAff) Assign true to variables which do not appear in any rule; (NoTar) Assign true
to variables which are not targeted by any rule.

The precision in SAT-CG is better already in the unassigned scheme. The percentage is
calculated by overall number of analyses, but even at the level of different words, the ad-
vantage is at SAT-CG. Out of the gold standard corpus, VISL CG-3 differs in the analyses of
some 4,200 words, whereas SAT-CG, in the unassigned variant, disagrees only on 3700-3900
words. Of course, the differences are still very small, and this effect could also be due to
randomness: sometimes the SAT-solver happens to disambiguate correctly just by removing
a random analysis.

We move on to the second variant, where the completely unaffected variables are as-
signed true. Unsurprisingly, the recall grows: we have just added some thousands of true
variables, some of which would have been otherwise randomly removed by the SAT-solver.
The ordered variant resembles most the behaviour of VISL CG-3, both in precision, recall and
the amount of words where the analysis disagrees; now the number is around 4,200 for both.

The third variant, where all non-targeted analyses are assigned true, performs the best.
High recall is expected; now we force some more thousands of variables true, among them
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must be some actually true readings. But at the same time, this limits the power of rules:
they may only disambiguate targets, not conditions—why does precision go up? The most
plausible explanation for this phenomenon, aside frommere chance, is the particular features
of the tested grammar. When tested with the original 261-rule grammar, shown in Table 3.5,
the pattern does not repeat: assigning more variables true just brings the performance closer
to VISL CG-3.

NoAss NoAff NoTar
Prec. Rec. Prec. Rec. Prec. Rec.

SAT-CGMax 77.03 79.32 70.85 86.46 71.91 87.72
SAT-CGOrd 77.91 80.18 70.79 86.40 71.78 87.62
VISL CG-3 71.17 88.34 71.17 88.34 71.17 88.34

Table 3.5: Evaluation of the three variants, for the original 261-rule grammar.

# la casa (en que vivo)
SELECT:i01_s_det Det IF (NOT 1C VerbFin) ;

# (el sacerdote) la casa (con el novio)
SELECT:i08_s_pro PrnIndep IF (1C VerbFin) ;

Figure 3.6: Excerpt from the 19-rule Spanish grammar.

Now, what are these features of the tiny grammar? One reason may be that many of the
rules come in pairs. Figure 3.6 shows an excerpt from the grammar: due to these rules, both
laDet and laPrn would be targeted, and remain unassigned. Another peculiarity in the 19-rule
grammar is the high number of select rules—this means that all the other readings in the
cohort become the actual targets. Thus, if a rule addresses some phenomenon, most of the
readings in the target cohort are saved from the forced assignment.

To conclude, this experiment has been very inconclusive, due to the extremely low cov-
erage of the tested grammars. A high-quality grammar would target significantly more indi-
vidual words in the test corpus; this means less risk for the SAT-solver to randomly decide
the values for untargeted readings. We would hope that the power of rules disambiguating
their condition would help such a grammar to go that extra mile; however, based on the
experiments so far, this is mostly speculation.

It would be interesting to repeat the experiment in writing a serious, large-scale grammar.
Some questions to address would be (a) do we need fewer rules; (b) do we need careful
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context; (c) do we write more select rules; and (d) will a grammar that performs well with
parallel CG also perform well with sequential CG?

3.5 Summary
In this section, we started from the known parallels between CG and logic: the rules express
what is true (select) and false (remove), under certain conditions (if). Expressing this as a
SAT-problem, we get a working CG implementation, which executes the rules in a parallel
and unordered manner. However, a straight-forward parallel encoding means that the rules
of a given grammar should contain no contradictions. To alleviate the brittleness of PCG, we
developed two approaches to discard conflicting rule applications. The first one is based on
order; introducing clauses one by one, and assuming that the previous clauses are true, and
the second one is based on maximisation; trying to make as many clauses as possible apply.

As a conclusion, SAT-solver provides an interesting alternative for a CG engine, but loses
in practicality: performance and lack of transparency for grammar writers. We see more
potential in contributing to the FSIG community, with a practical implementation and novel
ways to get around conflicts. It would be interesting to test an actual syntactic FSIG grammar
encoded in SAT, to see if a SAT-based solution is powerful enough for the more complex
constraints.
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Chapter 4

Analysing Constraint Grammar

Another desirable facility in the grammar
development environment would be a mechanism for
identifying pairs of rules that contradict each other.

Atro Voutilainen, 2004

In the previous chapter, we presented a tool. In the current chapter, we will solve a problem.
Recall the design principles of CG from Section 2.1.2: by design, the grammars are shal-

low and low-level. There is no particular hierarchy between lexical, morphological, syntactic
or even semantic tags: individual rules can bewritten to address any property, such as “verb”,
“auxiliary verb in first person singular”, or “the word form sailor, preceded by drunken any-
where in the sentence”. This makes it possible to treat very particular edge cases without
touching the more general rule: we would simply write the narrow rule first (“if noun AND
sailor”), and introduce the general rule (“if noun”) later.

However, this design is not without problems. As CGs grow larger, it gets harder to keep
track of all the rules and their interaction. Despite this well-known issue, there has not been a
tool that would help grammar writers to detect conflicting rules. Following the idea further,
the tool could give feedback that is not restricted to conflicts, but also other features that are
helpful in the process of writing grammar. Given the rules in Figure 4.1, a grammar writer
may ask the following questions.

• Are all the Portuguese rules distinct? (e.g. Para and Demay be included in Prep)

• Could two ormore rules bemerged? (e.g. SELECT Inf IF -1 Prep OR Vai OR Vbmod ...)
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SELECT Inf IF ... SELECT V + Prs/Imprt + Act + Neg IF ...
(-1 Prep) (0C V) ; (*-1C Negv LINK NOT *1 Vfin) (NOT *-1 Niin OR Neg)
(-1 Para OR De) (0C V) ; (NOT 0 N) (NOT 0 Pron) (*-1C Negv
(-1C Vbmod) (0C V) ; (NOT *1 Neg) (NOT *-1 Neg) LINK NOT 0 Imprt
(-1C Vai) ; (NOT 0 Pass) (NOT *-1 Niin) LINK NOT *1 Vfin OR CLB?)
(-1C Vbmod) (0 Ser) ; (*-1C Negv LINK NOT *1 CLB?) (NOT 0 N OR Pron OR Pass)
(-1C Ter/de) ; (*-1C Negv LINK NOT 0 Imprt) ; (NOT *1 Neg) ;

Figure 4.1: Left: rules to select infinitive in Portuguese. Right: two versions of a condition in Finnish.

• What is the best order for the rules?

• Can the Finnish rule on the left be rewritten in the form shown on the right?

• Generate an example sequence that triggers rule(s) R but not rule(s) R′.

The chapter follows with introduction of related work: namely, corpus-based methods
to aid grammar writing, and automatic optimisation of a complete, human-written grammar.
We continue by presenting our solution, along with a working implementation, and finally,
evaluate its performance.

Most of the content in this chapter is based on “Analysing Constraint Grammars with a
SAT-solver” (Listenmaa andClaessen, 2016). In addition, we include two later developments.
Section 4.4, based on the article “Cleaning up the Basque grammar: a work in progress” (Lis-
tenmaa et al., 2017), describes a practical application of our tool and collaboration with CG
writers. Section 4.5 presents the main ideas from “Exploring the Expressivity of Constraint
Grammar” (Kokke and Listenmaa, 2017)—a side effect following the creation of symbolic sen-
tences, it allowed us to pose the question “what if CG was a generative formalism?” Sec-
tion 4.5 is only loosely related to the main line of work, and can be safely skipped by the
uninterested reader.

4.1 Related work
There has been previous research on corpus-based methods in manual grammar develop-
ment (Voutilainen, 2004), as well as optimisation of hand-written CGs (Bick, 2013). In addi-
tion, there is a large body of research on automatically inducing rules, e.g. Samuelsson et al.
(1996); Eineborg and Lindberg (1998); Lager (2001); Sfrent (2014). However, since our work
is aimed to aid the process of hand-crafting rules, we omit those works from our discussion.
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Due to adding Section 4.5, we also include work addressing the expressivity and complexity
of CG.

Corpus-based methods in manual grammar development Hand-annotated corpora are
commonly used in the development of CGs, because they give immediate feedback whether
a new rule increases or decreases accuracy. Voutilainen (2004) gives a detailed account about
best practices of grammar writing and efficient use of corpora to aid the grammar develop-
ment. For a language with no free or tagset-compatible corpus available, Reynolds and Tyers
(2015) describe a method where they apply their rules to unannotated Wikipedia texts and
pick 100 examples at random for manual check.

CG rules are usually arranged in sections, and run in the following manner. First apply
rules from section 1, and repeat until nothing changes in the text. Then apply rules from
sections 1–2, then 1–3 and so on, until the set includes all rules. The best strategy is to place
the safest and most effective rules in the first sections, and leave the more heuristic (i.e. less
safe) rules as a last resort; only to act on the parts that haven’t been disambiguated yet by the
safer rules. A representative corpus is arguably the best way to get concrete numbers—how
many times a rule applied and how often it was correct—and to arrange the rules in sections
based on that feedback.

Voutilainen (2004) states that the around 200 rules are probably enough to resolve 50–75
% of ambiguities in the corpus used in the development. This figure is very much thanks
to Zipf’s law: we can add rules that target the most frequent tokens, thus disambiguating a
high number of word forms. However, this methodwill not notice a missed opportunity or a
grammar-internal conflict, nor suggest ways to improve; neither does it guarantee a coherent
whole of rules. While the coverage information is easy to obtain from a corpus, there is
no tool that would aid grammar writers in including wide coverage of different linguistic
phenomena.

Automatic optimisation of hand-written grammars The corpus-basedmethod can tell the
effect of each single rule at their place in the rule sequence, and leaves the grammar writer
to make changes in the grammar. As a step further, Bick (2013) modifies the grammar au-
tomatically, by trying out different rule orders and altering the contexts of the rules. Bick
reports error reduction of 7–15% compared to the original grammars. This is a valuable tool,
especially for grammars that are so big that it’s hard to keep track manually. A program can
try all combinations whereas trying to make sense out of a huge set of rules would be hard
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for humans. As a downside, the grammar writer will likely not know why exactly does the
tuned grammar perform better.

Expressivity and complexity of CG Tapanainen (1999) gives an account of the expressivity
of the contextual tests for 4 different constraint formalisms, including CG. In addition, pars-
ing complexity can be easily defined for a given variant and implementation of CG; see for
instance Nemeskey et al. (2014). Yli-Jyrä (2017) relates CG to early formal language theory,
and provides a proof of non-monotonic1 CG being Turing-complete.

4.2 Analysing CGs
We start by defining a conflict, and present requirements for a solution. Then, we introduce
a logical translation of sequential CG, corresponding to Lager and Nivre (2001), and modify
it into a SAT-problem about the original sentence before applying the rules. We refine our
solution by restricting what kind of sentences we can create. The whole method requires
only a morphological lexicon, no corpus.

Conflict Wedefine conflict as follows: a list of rulesR is in conflictwith the rule r, if applying
Rmakes it impossible to apply r, regardless of input. Some examples of conflicts follow:

• If two equivalent rules r and r′ occur in the grammar, the second occurrence will be
disabled by the first

• A list of rules R selects something in a context, and r′ removes it

• A list of rules R removes something in a context, and r′ selects it

• A list of rulesR removes something from the context of a rule r′, so r′ can never apply

• A rule r has an internal conflict, such as non-existent tag combination, or contradictory
requirements for a context word

This definition is very similar to the concept bleeding order in generative phonology (Kiparsky,
1968); however, since we are talking about an explicit list of human-written rules, we include
also rule-internal conflicts in our classification. The conflicting (or “bleeding”)R can be a sin-
gle rule or a list of rules: for instance, if one rule removes a verb in context C, and another

1Amonotonic variant of CGmay only remove readings from cohorts, whereas a non-monotonic variant may add
readings or cohorts.
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in context ¬C, together these rules remove a verb in all possible cases, disabling any future
rule that targets verbs.

Solution How do we find out if a rule r can act? We could apply the grammar to a large
corpus and count the number of times each rule fires; if some rule never fires, we can suspect
there is something wrong in the rule itself, or in the interaction with previous rules. But it
can also be that r just targets a rare phenomenon, and there was no sentence in the corpus
that would trigger it.

Of course, tagged corpora are extremely useful for many questions in CG analysis. A
corpus can show which rules are the most used, or which rules give false analyses. Luckily,
we have already methods for finding such statistics—the question about conflicts is orthogo-
nal to those, and the solution needs to address only the part about conflicts, not about rules
being frequent or accurate. Therefore, we can take a more artificial approach. Remember the
definition of conflict: “applying R makes it impossible to apply r regardless of input”. In a
nutshell, we are going to show the absence of a conflict by trying to create a sequence where
r can apply after R; conversely, we detect a conflict by showing that such sequence cannot
be created.

4.2.1 From disambiguation to generation

SAT-encoding of sequential CG In order to analyse real-life CGs, we need to model the
semantics of sequential CG: rule application takes effect immediately, is irreversible2, and
only allows changes in the target. We restrict ourselves to the operations on morphological
disambiguation, and only select and remove rules. The following encoding does not sup-
port dependency relations, nor rule types which add readings or cohorts. Last time, we only
used ordering as a way to choose the which rules to apply. But there was no state: all clauses
operated in parallel, on the same variables. Now, we need a new variable for a reading every
time when it is targeted; that is, when its state potentially changes. As before, a sentence is
a vector of cohorts, which is, in turn, a vector of variables representing the readings of the
current cohort. At each rule application, we create a new variable word′RD for each targeted
reading wordRD. The new variable word′RD is true iff
We keep the same example sequence from Chapter 3, la casa grande. In the following, we
apply the rule REMOVE v IF (-1 det) to it.

2As pointed out by Eckhard Bick, VISL CG-3 allows reference to deleted readings. In principle, this would not
be an obstacle for our implementation, because no variables are removed.
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(a) wordRD was true, and (b) the rule cannot apply: this can be because
– its conditions do not hold, or
– it would remove the last reading.

New variable casa′V ⇐⇒ casaV ∧ (

invalid condition︷ ︸︸ ︷
¬laDet ∨

only target left︷ ︸︸ ︷
(casaV ∧ ¬casaN))

After the application, we replace each wordRDwith word′RDin the sentence vector; those vari-
ables that are not touched by the rule, will be carried over to the next round unchanged.
For example, if we apply two rules which target verbs and one which targets pronouns, the
sentence vector will look like the following.

la→ {laDet, la′Prn}
casa→ {casa′′V, casaN}

grande→ {grandeAdj}

Symbolic sentence We saw how casa′V was created, based on the status of casaV and the
conditions at the time. Similarly, casa′′V will be created based on casa′V. But what is the status
of the variables in the beginning? In fact, that decision makes a crucial difference. If all
variables start off as true, then we have, in effect, reimplemented the logical encoding by
Lager and Nivre (2001). This option would not make an interesting SAT-problem: there is no
search involved, just manipulation of Boolean expressions in a completely deterministic way.
All the new variables, created from the rule applications, would get their value immediately:
casa′V ⇔ grandeAdj ∧ ¬(casaV ∧ ¬casaN) just translates into casa′V ⇔ True ∧ ¬(True ∧ ¬True).

In order to turn this problem into a SAT-problem, we will have the readings start off
unassigned. All the other variables computed along the way depend on the original vari-
ables, so the question to the SAT-solver becomes: “Which readings were originally true?” For
implementing a CG engine, this question does not make much sense: we know which read-
ings were given by the morphological analyser. But our task now is to generate the original
sentence, which will pass through the rules. Here comes the most important modification:
we will apply the rules to something we call symbolic sentence. Every cohort, called symbolic
word, contains every possible reading, and rule applications are responsible for shaping the
sentence into a concrete one.

Before we can do any analysis any of the rules, we need to find out what the set of all
possible readings of a word is. We can do this by extracting this information from a lexicon,
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but there are other ways too; we will explain this in more detail in Section 4.2.2. In our
experiments, the number of readings has ranged from about 300 to about 9000.

Width of a rule Furthermore, whenwe analyse a rule r, we need to decide thewidthw(r) of
the rule r: How many different words should there be in a sentence that can trigger r? Most
often, w(r) can be easily determined by looking at how far away the rule context indexes in
the sentence relative to the target. For example, in the rule REMOVE v IF (-1 det), the width
is 2.

If the context contains a * (context word can be anywhere), we need to make an approx-
imation of w(r), which may result in false positives or negatives later on in the analysis;
this indeed happened in the Finnish grammar in Section 4.3.3. For example, given the rule
REMOVE v IF (-1* det), we tried first a sentence of width 2; if there was a conflict, we tried
width 3, and then 4. For a rule with multiple *s, we create combinations in the range of
± 2 symbolic words for each *-condition; in addition, we need to specify where the target
is in the symbolic sentence. For instance, the rule REMOVE v IF (-1* det) (1* det) would
be tested with the following combinations, where C means condition and T means target:
(C,T,C); (C,C,T,C); (C,T,C,C); (C,C,T,C,C); (C,C,C,T,C,C); (C,C,T,C,C,C) and (C,C,C,T,C,C,C).

Rule application Finally, we define what does it mean for a sentence to “pass through” a
rule. Let us enumerate the cases:

1. The sentence is out of scope; target not removed

2. The conditions of the rule do not hold; target not removed

3. The target is the only possible reading left; target not removed

4. The target was never in place

5. The target is removed

Let us illustrate the difference between the last two cases with a rule that targets pronouns,
say, REMOVE prn IF (1 v). If the target was never in place, then both the original laPrn and the
newly created la′Prn end up as false. If the target is removed, then laPrn will be true and la′Prn

false. This means that a rule with the condition IF (-1 prn) behaves differently depending
on where in the rule sequence it is placed: if it is applied before REMOVE prn IF (1 v), then it
will match the original reading laPrn. Any rule applied after that will get the newly created
variable la′Prn.
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Now we have the definitions in place. In the following, we are going to show two exam-
ples; first one a very simple conflict, and the second one with more complicated interaction.

Example 1: conflict Let us look at a conflicting case. For simplicity, we assume that the
full set of readings in the language is {det def, noun sg, noun pl, verb sg, verb pl}. We ignore all
lexical readings for now, and assume dummy words of the form wi, where i refers to the
index of the word. The rules are as follows:

r1 = REMOVE verb IF (-1 det) ;

r2 = REMOVE verb IF (-1 det) (1 noun) ;

We want to know if the last rule is able to apply, after going through the rules that come
before it—in this case, there is only one such rule. The width of the last rule is three: one
condition to the left of the target, one to the right, so we create a symbolic sentence of three
words. Below, we show the symbolic sentence, consisting of the symbolic words w1, w2 and
w3.

"<w1>" "<w2>" "<w3>"
"w1" det def "w2" det def "w3" det def
"w1" noun sg "w2" noun sg "w3" noun sg
"w1" noun pl "w2" noun pl "w3" noun pl
"w1" verb sg "w2" verb sg "w3" verb sg
"w1" verb pl "w2" verb pl "w3" verb pl

After applying the first rule, we have a situation which looks much like the one in the
previous chapter, Figure 3.2. If the symbolic word w1 is a determiner, then w2 cannot be a
verb; the only exception is the case where verb is the only analysis of w2. As before, the verb
analysis w2 can also be false, even if w1 is not a determiner. The exact same dependencies
are created between the symbolic words w2 and w3. The first word w1 is out of scope of the
condition, because it has no preceding word. Below we see the affected readings after the
first rule application, with newly created variables:

1→ {w1DetDef, w1NSg, w1NPl, w1VSg, w1VPl}
2→ {w2DetDef, w2NSg, w2NPl, w2′VSg, w2′VPl}
3→ {w3DetDef, w3NSg, w3NPl, w3′VSg, w3′VPl}

There is no “final sentence” yet, simply constraints on the possible combinations of deter-
miners and verbs. If we asked for a solution now, it could be anything; for instance, all three
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words are determiners. Just asking for a freely chosen sequence is not very interesting; there
are so many possibilities, and even after applying more rules, most of the combinations are
not explicitly prohibited.

We want to know if there is a sequence that can trigger the last rule. In order to trigger
the rule, the sequence must have the following three features:

• Target readings: at least one reading with a verb tag in the target position w2.

• Ambiguity: at least one reading without a verb tag in the target position; if there are
only verb readings in the target, the rule would not fire.

• Conditions: at least one reading with a det tag in the cohort preceding the target, and
at least one reading with a noun tag in the cohort following the target.

We can see that some of these requirements can be fulfilled: the first rule allows models
where w2 contains target readings. If the rule had been REMOVE verb, that is, unconditionally
remove all verbs, then this requirement could not be fulfilled. But so far we have not run into
the wall. The second requirement, for ambiguity is no problem either: other readings of w2
have not been targeted, so we are free to choose anything.

As for conditions, the part about (1 noun) can be fulfilled; nothing preventsw3 from being
a noun. But the first condition, (-1 det), cannot be true, if the target w2 has to be a verb—the
first rule has prohibited exactly that combination. Therefore, whenwe try to ask for a solution
where all these requirements hold, we will get a conflict. The result shows us that the rule
REMOVE verb IF (-1 det) (1 noun) cannot ever apply, if the rule REMOVE verb IF (-1 det) has
been already applied.

Example 2: no conflict The previous was a simple example of a conflict: two rules target
the same reading, and the first one had broader conditions. Since we had only one preceding
rule, we could not demonstrate why is it important to apply all the rules in order—even with
a longer list of rules, the previous example could have also worked unordered, as long as the
last rule is separated from rules before it. Now we will show another example, where we
illustrate why is it important to create new variables, and how conditions can affect the state
of the variables, but in a more limited way. The set of readings is the same, and the rules are
as follows.

r1 = REMOVE verb IF (-1C det) ;

r2 = SELECT det IF ( 1 verb) ;

r3 = REMOVE verb IF (-1 det) ;
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The width of the last rule is 2, thus we create a symbolic sentence with only w1 and w2. The
sentence is shown below:

"<w1>" "<w2>"
"w1" det def "w2" det def
"w1" noun sg "w2" noun sg
"w1" noun pl "w2" noun pl
"w1" verb sg "w2" verb sg
"w1" verb pl "w2" verb pl

To begin, let us only look at r1 and r3. Like in the previous example, they target the same
reading, but now the order is good: the first rule is the one with a narrower condition, which
means that it is possible for a sequence to pass through it, and still have the verb reading
in w2 intact—it just needs to have something else in addition to the determiner in w1. The
following is an example of such sequence (false readings not shown).

"<w1>" "<w2>"
"w1" det def "w2" noun pl
"w1" noun sg "w2" verb sg

So far, we have passed through r1 with the case “condition does not hold, target not re-
moved”. Now, let us add r2: SELECT det IF (1 verb). We must, in fact, select the determiner
and remove everything else: the condition of r2 happens to be the target of r3, so it must hold.
But we have the notion of state now, so this is no problem. On arriving to r1, the symbolic
word w1 had to be ambiguous—that is, one of the variables w1NSg, w1NPl, w1VSg, w1VPl

must be true. But after passing through r2, the state of w1 has changed: it contains a set of
new variables w1′NSg, w1′NPl, w1′VSg, w1′VPl, and all of themmust be false. Since the clauses
formed by r1 and r3 get access to different variables, there is no conflict.

4.2.2 Towards realistic language

Creating realistic readings Earlier we have shown an example with 5 readings (“det def”,
“noun sg”, ...). In a realistic case, we operate between hundreds and thousands of possible
readings. In order to find the set of readings, we expand a morphological lexicon3, ignore
the word forms and lemmas, and take all distinct analyses. However, many grammar rules
target a specific lemma or word form. A simple solution is to retain the lemmas and word

3We used the lexica from Apertium, found in https://github.com/apertium/apertium-languages.
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forms only for those entries where it is specified in the grammar, and otherwise leave them
out. For example, the Dutch grammar contains the following rule:

REMOVE ("zijn" vbser) IF (-1 Prep) (1 Noun) ;

This hints that there is something special about the verb zijn, compared to the other verbs.
Looking at the lexicon, we find zijn in the following entries:

zijn:zijn<det><pos><mfn><pl> zijn:zijn<vbser><inf>

zijn:zijn<det><pos><mfn><sg> zijn:zijn<vbser><pres><pl>

Thuswe add special entries for these: in addition to the anonymous “det posmfn pl” reading,
we add “zijn det pos mfn pl”. The lemma is treated as just another tag.

However, for languages with more readings, this approach is not feasible. For instance,
Spanish has a high number of readings, not only because of many inflectional forms, but
because it is possible to add 1–2 clitics to the verb forms. The number of verb readingswithout
clitics is 213, and with clitics 1572. With the previously mentioned approach, we would have
to duplicate 1572 entries for each verb. We experimented with small variations with Spanish,
and report slightly different results (and significantly different running time) in Section 4.3.
Later on, when we applied the tool for Basque (Listenmaa et al., 2017), we were forced to
modify the approach even further. We explain the changes in Section 4.4.1.

The readings in a grammar can be underspecified: for example, the rule REMOVE (verb

sg) IF (-1 det) gives us “verb sg” and “det”. In contrast, the lexicon only gives us fully
specified readings, such as “verb pres p2 sg”. We implemented a version where we took the
tag combinations specified in the grammar directly as our readings, andwe could insert them
into the symbolic sentences as well. The shortcut works most of the time, but if we only take
the readings from the grammar and ignore the lexicon, it is possible to miss some cases: e.g.
the rule SELECT (pron rel) IF (0 nom) may require “pron rel nom” in one reading, but this
method only gives “pron rel” and “nom” separately.

In addition, we found that the tag lists in the grammars sometimes contain errors, such
as using a nonexistent tag or using a wrong level in a subreading. If we accept those lists as
readings, we will generate symbolic sentences that are impossible, and not discover the bug
in the grammar. However, if we are primarily interested in rule interaction, then using the
underspecified readings from the grammar may be an adequate solution.

Creating realistic ambiguities In the previous section, we have created realistic readings, by
simply hardcoding legal tag combinations into variables. The next step in creating realistic
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n nt sg n f pl vblex sep inf det pos mfn
uitgaven 0 1 1 0
toespraken 0 1 1 0

haar 1 0 0 1

Table 4.1: Ambiguity classes

ambiguities is to constrain which readings can go together. For instance, the case of zijn shows
us that “determiner or verb” is a possible ambiguity. In contrast, there is no word form in the
lexicon that would be ambiguous between an adjective and a comma, hence we do not want
to generate such ambiguity in our symbolic sentences.

We solve the problem by creating ambiguity classes: groups of readings that can be am-
biguous with each other. We represent the expanded morphological lexicon as a matrix, as
seen in Table 4.1: word forms on the rows and analyses on the columns. Each distinct row
forms an ambiguity class. For example, one class may contain words that are ambiguous
between plural feminine nouns and separable verb infinitives; another contains masculine
plural adjectives and masculine plural past participles. Then we form SAT-clauses that al-
low or prohibit certain combinations. These clauses will interact with the constraints created
from the rules, and the end result will be closer to real-life sentences.

Our approach is similar to Cutting et al. (1992), who use ambiguity classes instead of
distinct word forms, in order to reduce the number of parameters in aHiddenMarkovModel.
They take advantage of the fact that they don’t have to model “bear” and “wish” as separate
entries, but they can just reduce it to “word that can be ambiguous between noun and verb”,
and use that as a parameter in their HMM.

There are two advantages of restricting the ambiguitywithinwords. Firstly, we can create
more realistic example sentences, which should help the grammar writer. Secondly, we can
possibly detect some more conflicts. Assume that the grammar contains the following rules:

REMOVE adj IF (-1 aux) ;

REMOVE pp IF (-1 aux) ;

With our symbolic sentence, these rules will be no problem; to apply the latter, we only
need to construct a target that has a realistic ambiguity with a past participle; the adjective
will be gone already. However, it could be that past participles (pp) only ever get confused
with adjectives—in that case, the above rules would contradict each other. By removing the
adj reading, the first rule effectively selects the pp reading, making it an instance of “r selects
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something in a context, r′ removes it”. The additional constraints will prevent the SAT-solver
from creating an ambiguity outside the allowed classes, and such a case would be caught as
a conflict.

4.2.3 Use cases

In the beginning of this chapter, we gave a list of questions, regarding the rules in Figure 4.1.
After describing our implementation, we return to these questions, and explain how a SAT-
solver can answer them. Section 4.3 shows the evaluation of the conflict detection, which we
tried out for four grammars of different sizes. The use cases presented in this section have not
been tried in practice; however, our setup makes them fairly straight-forward to implement.

Are all the rules distinct? We gave the example of two rules in the Portuguese grammar,
where one had the condition (-1 Prep) and the other (-1 Para OR De). A grammarian who
has some knowledge of Portuguese could tell that para and de are both prepositions, so these
two rules seem to do almost the same thing.

How canwe verify this? To start, we apply all candidate rules to the same initial symbolic
sentence. For the resulting symbolic sentence, we can ask for solutions with certain require-
ments. For instance, “give me a model where a reading a /∈ Inf is true”. There are fewer
such models allowed after SELECT Inf IF (-1 Prep)—if a non-infinitive reading is in place, it
means that the previous word cannot be any determiner—and they are all in the set of mod-
els allowed SELECT Inf IF (-1 Para OR De). Thus, we can show that the first rule implies the
second. It is in the hands of the grammar writer to decide whether to keep the stronger or
the weaker rule, or if they should be placed in different sections.

Could two or more rules be merged? This example concerns two or more rules with the
same target but different conditions in the same position. All the six rules in Figure 4.1 have
conditions in position -1; four of them also in 0. Some of them have an additional careful
context, and some do not. A grammar writer might think that IF (-1C Vbmod) (0C V) and IF

(-1C Vbmod) (0 Ser) are very similar, and could be merged into SELECT Inf IF (-1C Vbmod)

(0C V OR Ser). But could there be some unintended side effects in merging these two rules?
Why is there a C in the first rule, but not in the second rule?

The procedure is similar to the previous one. We initialise two symbolic sentences; on
one we run the original rules in a sequence, and on the other the merged rule. Then, we
can perform tests on the resulting symbolic sentences. Assuming that the ambiguity class
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constraints are in place, the result may show that C is not needed for the condition about ser,
simply because ser is not ambiguous with anything else in the lexicon; hence the merged rule
can safely have the condition (0C V OR Ser). However, if ser can be ambiguous with some-
thing else, then this merged rule is stricter than the two original rules. If the grammar writer
is still unsure whether there would be any meaningful sequences that would be missed, they
can ask the SAT-solver to generate all those cases—this requires that the ambiguity classes
are implemented, otherwise the number of solutions would blow up due to all the readings
that are irrelevant to the rules in question.

Generate a sequence that triggers rule(s) R but not rule(s) R′. For any given rule, we can
extract three requirements that would make it trigger. We illustrate them for the rule REMOVE

v IF (-1 det). In order to trigger the rule, the sequence must have

• target readings: at least one reading with the v tag in the target position

• ambiguity: at least one readingwithout the v tag in the target position; if there are only
v-readings in the target, the would not fire.

• conditions: at least one reading with the det tag in the cohort preceding the target.

We can extract these requirements from both the rules that must be triggered, and the
rules that must be not triggered. Then, we can request a solution from the SAT-solver.

What is the best order for the rules? For a small number of rules, we can generate variants
of the rule order, and run them to a set of symbolic sentences. Then, for the resulting symbolic
sentences, we can query which one is the most restricted, that is, allows the least models. As
a variant, we may be interested in the placement of just one rule in the sequence.

Does a rewritten rule correspond to the original? We can initialise two symbolic sentences,
then run the original rule and the rewritten rule, and check if they allow the same models.

4.3 Evaluation
We tested two grammars with the setup described in Section 4.2.2: readings as combinations
of lexical and morphological tags, and ambiguity class constraints in place. These grammars
were very small: Dutch4, with 59 rules and Spanish5, with 279 rules.

4https://github.com/apertium/apertium-nld/blob/master/apertium-nld.nld.rlx, commit d13fdaa
5https://github.com/apertium/apertium-spa/blob/master/apertium-spa.spa.rlx, commit 1d4f290d
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In addition, we applied variations of the method to two grammars, which were both
larger and targeted more complex languages: Finnish6, with 1185 rules, and Basque7 with
1261 rules. Due to the size of the grammars and tagsets, we had to apply some shortcuts;
these are described in the relevant sections.

We left out map, substitute and other rule types introduced in CG-3, and only tested
remove and select rules. The results for Dutch and Spanish are shown in Table 4.5, and the
results for Finnish in Table 4.3. For Basque, we were unable to analyse the whole grammar;
instead we worked in smaller batches.

The experiments revealed problems in all grammars. For the smaller grammars, wewere
able to verify manually that nearly all detected conflicts were true positives—we found one
false positive and one false negative, when trying out different setups for the Spanish gram-
mar. We did not systematically check for false negatives in any of the grammars, but we kept
track of a number of known tricky cases; mostly rules with negations and complex set opera-
tions. As the tool matures and we add new features, a more in-depth analysis will be needed.
Another natural follow-up evaluation will be to compare the accuracy of the grammar in the
original state, and after removing the conflicts found by our tool.

nld spa spa sep. lem.

# rules 59 279 279
# readings 336 3905 1735
# true positives AC 7 45 44
(internal + interaction) (6 + 1) (21 + 24) (20 + 24)
# true positives no AC 7 43 42
(internal + interaction) (6 + 1) (18 + 25) (17 + 25)
# false positives 0 0 1� with amb. classes 7 s 1h 46m 23 min� no amb. classes 3 s 44 min 16 min

Table 4.2: Results for Dutch and Spanish grammars.

4.3.1 Dutch
The Dutch grammar had two kinds of errors: rule-internal and rule interaction. As for rule-
internal conflicts, one was due to a misspelling in the list definition for personal pronouns,
which rendered 5 rules ineffective. The other was about subreadings: the genitive s is anal-

6https://github.com/flammie/apertium-fin/blob/master/apertium-fin.fin.rlx, commit 49866f3b
7https://github.com/inariksit/cgclean/blob/master/data/gramatika4.4.1_lem.rlx, commit 793e00d1
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ysed as a subreading in the Apertium morphological lexicon, but it appeared in one rule as
the main reading. There was one genuine conflict with rule interaction, shown below:

d1. REMOVE Adv IF (1 N) ;

REMOVE Adv IF (-1 Det) (0 Adj) (1 N) ;

These two rules share a target: both remove an adverb. The problem is that the first rule has
a broader condition than the second, hence the second will not have any chance to act. If the
rules were in the opposite order, then there would be no problem.

We also tested rules individually, in away that a grammarwritermight use our tool when
writing new rules. The following rule was one of them:

d2. SELECT DetPos IF (-1 (vbser pres p3 sg)) (0 "zijn") (1 Noun);

As per VISL CG-3, the condition (0 "zijn") does not require zijn to be in the same reading
with the target DetPos. It just means that at index 0, there is a reading with any possessive
determiner, and a reading with any zijn. However, the intended action is to select a “det
pos zijn” all in one reading; this is expressed as SELECT DetPos + "zijn". In contrast, the 0-
condition in example d1 is used correctly: the adjective and the adverb are supposed to be in
different readings.

Canwe catch this imprecise formulationwith our tool? The SAT-solverwill notmark it as
a conflict (which is the correct behaviour). But if we ask it to generate an example sequence,
the target word may be either of the following options. Seeing interpretation a) could then
direct the grammar writer to modify the rule.

a) "<w2>"

"w2" det pos f sg

"zijn" vbser inf

b) "<w2>"

"zijn" det pos mfn pl

We found the same kind of definition in many other rules and grammars. To catch them
more systematically, we could add a feature that alerts in all cases where a condition with 0 is
used. As a possible extension, we could automatically merge the 0-condition into the target
reading, then show the user this new version, alongwith the original, and askwhich onewas
intended.
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4.3.2 Spanish
The Spanish grammar had proportionately the highest number of errors. The grammar we
ran is like the one found in the Apertium repository (linked on the previous page), apart
from two changes: we fixed some typos (capital O for 0) in order to make it compile, and
commented out two rules that used regular expressions, because support for these had not
been implemented. For a full list of found conflicts, see the annotated log of running our
program in https://github.com/inariksit/cgsat/blob/master/data/spa/conflicts.log.

We include two versions of the Spanish grammar in Table 4.5: in column spa, we added
the lemmas and word forms as described in Section 4.2.2, and in column spasep. lem., we just
added eachword form and lemma as individual readings, allowed to combinewith any other
reading. This latter version ran much faster, but failed to detect an internal conflict for one
rule, and reported a false positive for another.

When we added ambiguity class constraints, we found three more internal conflicts. In-
terestingly, the versionwith ambiguity classes fails to detect an interaction conflict, which the
simpler version reports, because one of the rules is first detected as an internal conflict. We
think that neither of these versions is a false positive or negative; it is just a matter of priority.
Sometimes we prefer to know that the rule cannot apply, given the current lexicon. How-
ever, we may know that the lexicon is about to be updated, and would rather learn about all
potential interaction conflicts.

As an example of internal conflict, there are two rules that use SET Cog = (np cog): the
problem is that the tag “cog” does not exist in the lexicon. As another example, four rules
require a context word tagged as NP with explicit number, but the lexicon does not indicate
any number with NPs. It is likely that this grammar has been written for an earlier ver-
sion, where such tags have been in place. One of the conflicts that was only caught by the
ambiguity class constraints had the condition IF (1 Comma) (..) (1 CnjCoo). The additional
constraints correctly prevent commas from being ambiguous with anything else.

As for the 25 interaction conflicts, there were only 9 distinct rules that rendered 25 other
rules ineffective. In fact, we can reduce these 9 rules further into 3 different groups: 4 + 4 + 1,
where the groups of 4 rules are variants of otherwise identical rule, eachwith different gender
and number. An example of such conflict is below (gender and number omitted for readabil-
ity):

s1. # NOM ADJ ADJ

SELECT A OR PP IF (-2 N) (-1 Adj_PP) (0 Adj_PP) (NOT 0 Det);
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# NOM ADJ ADJ ADJ

SELECT A OR PP IF (-3 N) (-2 N) (-1 Adj_PP) (0 Adj_PP) (NOT 0 Det);

In addition, the grammar contains a number of set definitions thatwere never used. Since
VISL CG-3 already points out unused sets, we did not add such feature in our tool. However,
we noticed an unexpected benefit when we tried to use the set definitions from the grammar
directly as our readings: this way, we can discover inconsistencies even in set definitions that
are not used in any rule. For instance, the following definition requires the word to be all of
the listed parts of speech at the same time—most likely, the grammar writer meant OR instead
of +:

s2. SET NP_Member = N + A + Det + PreAdv + Adv + Pron ;

If it was used in any rule, that rule would have been marked as conflicting. We noticed
the error by accident, when the program offered the reading “w2 n adj det preadv adv prn”
in an example sequence meant for another rule.

As with the Dutch grammar, we ran the tool on individual rules and examined the se-
quences that were generated. None of the following was marked as a conflict, but looking at
the output indicated that there are multiple interpretations, such as whether two analyses for
a context word should be in the same reading or different readings. We observed also cases
where the grammar writer has specified desired behaviour in comments, but the rule does
not do what the grammar writer intended.

s3. REMOVE Sentar IF (0 Sentar) (..) ;

SELECT PP IF (0 "estado") (..) ;

The comments make it clear that the first rule is meant to disambiguate between sentar
and sentir, but the rule does not mention anything about sentir. Even with the ambiguity
class constraints, the SAT-solver only created an ambiguity where sentar in 1st person plural
is ambiguous with a lexically unspecified 1st person plural reading. This does not reflect
the reality, where the target is only ambiguous with certain verbs, and in certain conjugated
forms.

The second case is potentially more dangerous. The word form estadoW can be either a
noun (estadoL, ‘state’), or the past participle of the verb estarL. The condition, however, ad-
dresses the lemma of the noun, estadoL, whereas the lemma of the PP is estarL. This means
that, in theory, there can be a case where the condition to select the PP is already removed.
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Currently, the lexicon does not contain other ambiguities with the word form estadoW , but
we could conceive of a scenario where someone adds e.g. a proper noun EstadoL to the lex-
icon. Then, if some rule removes the lemma estadoL, the rule to select PP will not be able to
trigger.

4.3.3 Finnish

The results for the Finnish grammar are shown separately, in Table 4.3. We encountered
a number of difficulties and used a few shortcuts, which we did not need for the other
grammars—most importantly, not using the ambiguity class constraints. Due to these com-
plications, the results are not directly comparable, but we include Finnish in any case, to give
an idea how our method scales up: both to more rules, and more complex rules.

Challenges with Finnish The first challenge is the morphological complexity of Finnish.
There are more than 20,000 readings, when all possible clitic combinations are included. Af-
ter weeding out the most uncommon combinations, we ended up with sets of 4000–8000
readings.

The second challenge comes from the larger size of the grammar. Whereas the Spanish
and Dutch had only tens of word forms or lemmas, the Finnish grammar specifies around
900 of them. Due to both of these factors, the procedure described in Section 4.2.2 would
have exploded the number of readings, so we simply took the lemmas and word forms, and
added them as single readings. In cases where they were combined with another tag in the
grammar, we took that combination directly and made it into an underspecified reading: for
instance, we included both aika and “aika n” from the rule SELECT "aika" + N, but nothing
from the rule SELECT Pron + Sg. This method gave us 1588 additional readings.

Finally, we were not able to create ambiguity class constraints—expanding the Finnish
morphological lexicon results in 100s of gigabytes of word forms, which is simply too big
for our method to work. For future development, we will see if it is possible to manipulate
the finite automata directly to get hold of the ambiguities, instead of relying on the output in
text.

Results The results are shown in Table 4.3. In the first column, we included only possessive
suffixes. In the second column, we included question clitics as well. Both of these readings
include the 1588 lemmas and word forms from the grammar. In the third column, we in-
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1 cl + lem 2 cl + lem 1 cl + rds only rds
# readings 5851 9494 6657 2394
lexicon + grammar 4263 + 1588 7906 + 1588 4263 + 2394 0 + 2394
# conflicts 214 214 22 22
internal + interaction 211 + 3 211 + 3 19 + 3 19 + 3� all rules (approx.) ~4h 30min ~9h 30min ~7h 45min ~2h 30min

Table 4.3: Results for Finnish (1185 rules). (1 cl + lem) 1 clitic + lemmas from the grammar; (2 cl + lem)
2 clitics + lemmas from the grammar; (1 cl + rds) 1 clitic + all readings from the grammar; (only rds)
all readings from the grammar.

cluded all the tag combinations specified in the grammar, and in the fourth, we took only
those, ignoring the morphological lexicon.

The first two variants reported a high number of internal conflicts. These are almost all
due to nonexisting tags. The grammar was written in 1995, and updated by (Pirinen, 2015);
such a high number of internal conflicts indicates that possibly something has gone wrong
in the conversion, or in our expansion of the morphological lexicon. As for accuracy, adding
the question clitics did not change anything: they were already included in some of the 1588
sets with word forms or lemmas, and that was enough for the SAT-solver to findmodels with
question clitics. We left the result in the table just to demonstrate the change in the running
time.

The second two variants are playing with the full set of readings from the grammar. For
both of these, the number of reported conflicts was only 22. Given the preliminary nature of
the results, we did not do a full analysis of all the 214 reported conflicts. Out of the 22, we
found 17 of them as true conflicts, but 5 seemed to be caused by our handling of rules with
*: all of these 5 rules contain a LINK and multiple *s. On a positive note, our naive handling
of the * seems to cover the simplest cases. Some examples of true positives are shown in the
following.

f1. "oma" SELECT Gen IF (..) (0C Nom) ;

SELECT Adv IF (NOT 0 PP) (..) ;

Both of these are internal conflicts, which may not be trivial to see. The first rule requires
the target to be genitive and unambiguously nominative; however, these two tags cannot
combine in the same reading. As for the second rule, the definition of PP includes adv among
others—with the sets unfolded, this rule becomes SELECT adv IF (NOT 0 pp|adv|adp|po|pr) (..).

The following two examples are interaction conflicts:
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f2. REMOVE A (0 Der) ;

REMOVE N (0 Der) ;

REMOVE A/N (0 Der) ;

This is the same pattern we have already seen before, but with a set of rules as the reason
for conflict. The first two rules together remove the target of the third, leaving no way for
there to be adjective or noun.

f3. SELECT .. IF (-1 Comma/N/Pron/Q) ;

SELECT .. IF (-2 ..) (-1 Comma) ;

The rules above have been simplified to show only the relevant part. The conflict lies
in the fact that Comma is a subset of Comma/N/Pron/Q: there is no way to trigger the second rule
without placing a comma in position -1, and thereby triggering the first rule.

4.3.4 Performance
The running time of the grammars ranges from seconds to hours. Note that the times in the
Finnish table are not entirely comparable with each other: we were forced to run the tests in
smaller batches, and it is possible that there are different overheads, unrelated to the size of
the SAT-problem, from testing 50 or 500 rules at a time. Despite the inaccuracies, we can see
that increasing the number of readings and adding the ambiguity class constraints slow the
program down significantly.

However, many of the use cases do not require running the whole grammar. Testing
the interaction between 5–10 rules takes just seconds in all languages, if the ambiguity class
constraints are not included. A downside in the ambiguity classes is that generating them
takes a long time, andwhile the overheadmay be acceptablewhen checking the full grammar,
it is hardly so when analysing just a handful of rules. We are working on an option to store
and reuse the ambiguity class constraints.

4.4 Experiments on a Basque grammar
After the original experiment was done on the previously introduced three languages, we got
a chance to test a Basque grammar (Aduriz et al., 1997). We worked together with grammari-
ans, who improved the grammar in various ways: reordering, removing or modifying rules,
and updating deprecated tag sets. It is hard to say how much exactly our tool influenced
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the improved F-score, but nevertheless, the tool was helpful in detecting both internal and
interaction conflicts.

The size of the Basque tag set wasmuch larger than for Finnish, andmade it impossible to
test thewhole grammarwith our setup. We explain ourmodifications and report preliminary
results.

4.4.1 Changes in the setup

Work on groups of rules In order to get some use out of our tool, we grouped all the rules
in the grammar by their targets, and sorted by the complexity of their contextual tests. For
instance, the 5 rules that target the tag ADOIN will be in the order shown in Figure 4.2: from
fewest to most contextual tests, and in the case of same number of tests, preferring those
with fewer tagsets. Each of those groups is then tested with the SAT-based method. The
original order is lost, but the method is likely to catch superfluous rules, because shorter
contexts come first. For instance, the two rules originally on lines 6423 and 6422 will cause a
conflict in this new order. The original order wasn’t a conflict, according to our definition in
Section 4.2, but it certainly looks redundant.

SELECT ADOIN IF (1 ARAZI) ; # line 7412
REMOVE ADOIN IF (0 IZE) (1C ADJ) ; # line 6423
REMOVE ADOIN IF (0 IZE) (1 DET | ADJ | IZE) ; # line 6433
REMOVE ADOIN IF (0 EZEZAG + ADJ + GEN) (-2C IZE) ; # line 6319
REMOVE ADOIN IF (0 IZE) (-1C IZE) (1C ADJ) ; # line 6422

Figure 4.2: Rules grouped by target, and ordered by their contextual tests.

Modified handling of lexical forms We implemented an alternative scheme for readings,
with variables split in three layers: word forms, lexemes and morphological tags. The layer
with morphological tags comes from the lexicon as usual, but now, instead of creating new
variables with appropriate lexical tags included (e.g. the word form "<going>" added to the
morphological tag list verb present gerund), we allowed lexical tags to attach to anything. A
reading in a symbolic sentence has to have at least morphological tags, and optional lexical
tags. The methodmade it possible to run the tool for Basque, but the resulting readings were
mostly nonsensical—imagine a situation in Englishwhere a reading combines theword form
"<going>"with the lexeme "dog" and claims that it is a plural possessive pronoun. Themethod
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worked for detecting conflicts between rules, but of course, it may have missed some that
would have been found by saner readings.

Improve order of the rules with an external tool In addition, we applied a tool for auto-
matically tuning grammars (Bick, 2013): the tool modifies and reorders rules, testing against
a gold standard to keep only those changes which improve the results. Our initial hypothesis
is that the human-cleaned version will benefit more from tuning than the original grammar.
Some bad rules may have only a minor problem, such as a single tag name having changed
meaning, and they would be better fixed by updating the obsolete tag, instead of the whole
rule being demoted or killed. To test our assumptions, we tune both the original grammar
and the human-cleaned versions, continuously comparing the new versions to the original.

4.4.2 Results

We evaluate the grammars with a manually disambiguated corpus of 65,153 tokens/53,429
words, compiled from different sources (Aduriz et al., 2006). We report the original score,
and the result from tuning the original grammar, as well as the result of preliminary cleanup.
The scores are given using two metrics, differing on the granularity of the tagset.

The Basque tag set is structured in four levels of granularity. As explained in Ezeiza et al.
(1998), the first level contains only the main POS, 20 distinct tags, and the fourth level con-
tains several hundreds of tags with fine-grained distinctions, including semantic tags such as
animacy. Table 4.4 shows a simplified example of the levels for nouns. On the 4th level, the
initial ambiguity is very high: the test corpus has, on average, 3.96 readings per cohort. On
the 2nd level, when readings that differ only in higher-level tags are collapsed into one, the
initial ambiguity is 2.41 readings per cohort. We follow the scheme for evaluation: assume
that we are left with two readings, “Common noun, singular” and “Common noun, plural”,
and one of them is correct. Evaluation on levels 3 and 4 reports 100 % recall and 50 % preci-
sion. Evaluation on levels 1 and 2 ignores the tags from the higher levels, and regards any
common noun or noun as correct, hence 100 % for both measures.

Analysis of the results The results of the preliminary evaluation are in Table 4.5. The drop
in performance after the preliminary cleanup is most certainly due to ordering—the alpha-
betical ordering seems to block many rules from firing. We could have done the preliminary
fixes on the grammar in the old format, to get more representative scores after the initial
cleanup, but we found it easier to work on the grammar directly after grouping and sorting
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Level 1 Level 2 Level 3 Level 4

Noun Common noun
Proper noun

Common noun, plural absolutive
Common noun, singular ergative
Proper noun, plural absolutive
Proper noun, singular ergative

Common noun, plural absolutive, animate
Common noun, plural absolutive, inanimate
...
Proper noun, singular ergative, animate
Proper noun, singular ergative, inanimate

Table 4.4: Levels of granularity in the Basque grammar

All tags (Level 4) 48 main categories (Level 2)
Rec. Prec. F-score Rec. Prec. F-score

Original grammar 95.61 62.99 75.94 97.48 84.37 90.45
Tuned original 93.87 68.06 78.91 96.66 86.82 91.48
Preliminary cleanup 94.81 56.56 70.85 96.82 84.13 90.03
Tuned prel.cleanup 93.41 68.61 79.11 96.41 87.19 91.57

Table 4.5: Preliminary evaluation on words, excluding punctuation, for levels 4 and 2 of granularity.

the rules, as shown in Figure 4.2. Tuning the cleaned grammar brings the precision up, indi-
cating that more rules get to fire in the tuned order. The difference is most dramatic in the
sorted and grouped grammar on the 4th level: the original precision drops from 62 % to 56
%, and goes up to 68 % with the tuning.

The fairest test at this stage is to compare the tuned results of the original and the cleaned
grammar. We see the cleaned and tuned grammar slightly outperforming the tuned original;
the difference is not large, but we see it as a promising start.

Conflict check Ourmain problem is the size of the tag set: all possible combinations of tags
on level 4 amount to millions of readings, and that would make the SAT-problems too big.
We cannot just ignore all tags beyond level 2 or 3, because many of the rules rely on them as
contexts.

As a first approximation, we have created a reduced set of 21000 readings, which allows
the program to check up to 200 rules at a time before running out of memory. The reduced
readings, along with the relaxed lexicon handling (as explained in Section 4.4.1), finds some
nontrivial conflicts and redundancies, such as the following:

SELECT ADB IF

(0 POSTPOSIZIOAK-9)

(-1 IZE-DET-IOR-ADJ-ELI-SIG + INE) ;

SELECT ADB IF

(0 ("<barrena>")) (-1 INE) ;
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The problem is that the set POSTPOSIZIOAK-9 contains the word form “barrena”, and the other
set contains the tag INE; in other words, the latter rule is fully contained in the first rule and
hence redundant.

Our second strategy is to reduce the rules themselves: from a rule such as SELECT Verb +

Sg IF (1 Noun + Sg), we just remove all tags higher than level 2, resulting in SELECT Verb IF

(1 Noun). We also keep all lexical tags intact, but as explained in Section 4.4.1, we allow them
to attach to any morphological tags; this may lead to further false negatives, but reduces the
size of the SAT-problem. This setup analyses the whole grammar, in the given order, in ap-
proximately 1 hour. With the reduced rules, the program would not find the redundancy
described earlier, because the problem lies in the 3rd-level tag INE. But this approximation
found successfully 11 duplicates or near-duplicates in the whole grammar, such as the fol-
lowing:

SELECT IZE IF # line 817

(0 POSTPOSIZIOAK-10IZE LINK 0 IZE_ABS_MG)

(-1 IZE-DET-IOR-ADJ-ELI-SIG + GEN) ;

SELECT IZE IF # line 829

(0 POSTPOSIZIOAK-10IZE + IZE_ABS_MG)

(-1 IZE-DET-IOR-ADJ-ELI-SIG + GEN) ;

Both of the contextual tests contain 3rd-level tags (ABS, MG, GEN), but removing them keeps
the sets identical, hence it is not a problem for the conflict check.

Finally, all setups have found some internal conflicts. In order to get a more reliable
account, we would need more accurate tagset, beyond the 21000. To be fair, many internal
conflicts can be detected by simpler means: using the strict-tags flag of VISL CG-3 would
reveal illegal tags, which are the reason for a large number of internal conflicts. But some
cases are due to a mistake in logic, rather than a typo; examples such as the following were
easily found by the tool.

REMOVE ADI IF (NOT 0 ADI) (1 BAT) ;

SELECT ADI IF (0C ADI LINK 0 IZE) ;

The first rule is clearly an error; it is impossible to remove an ADI from a reading that does
not have one. The conflict likely stems from a confusion between NOT X and (*) - X. The
second rule is not obvious to the eye: the interplay of 0C and LINK 0 requires ADI and IZE in
the same reading, not just in the same cohort. According to the lexicon, this is an impossible
combination, and the rule is thus flagged as an internal conflict.
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Tuning So far, the most important use of the tuning has been to overcome the differences
in ordering. Given the preliminary nature of the work, we have not tried multiple variations.
We used a development corpus of 61,524 tokens and a test corpus of 65,153 tokens; the same
which we used to obtain the scores in Table 4.5. We stopped the tuning after 5 iterations, and
used an error threshold of 25 % to consider a rule as “good” or “bad”.

In the future, as the grammar cleanup advances, we are interested in trying out different
settings. Already in our current stage, tuning has clearly improved the precision, for both
original and preliminarily cleaned grammars, and for both levels of granularity; it is likely
that experimenting with different parameters, we would find a combination that would also
improve the recall, like Bick (2013) and Bick et al. (2015) report. However, while tuning im-
proves the grammar’s performance, it makes the grammar less human-readable, and contin-
uing the development is harder. Keeping two versions of the grammar might be sensible:
one for maintenance, kept in a human-readable order, and other for running, created auto-
matically from the former.

4.5 Generative Constraint Grammar
Symbolic sentences have an attractive side effect: they let us model CG as a generative for-
malism. This section is a detour from the central theme of analysis and quality control of
natural language grammars; the uninterested or time-constrained reader may well skip it.

We view a constraint grammar CG as generating a formal language L over an alphabet
Σ as follows. We encode words w ∈ Σ⋆ as a sequence of cohorts, each of which has one of
the symbols of w as a reading. A constraint grammar CG rejects a word if, when we pass
its encoding through the CG, we get back the cohort "<REJECT>". A constraint grammar CG
accepts a word if it does not reject it. We generate the language L by passing every w ∈ Σ⋆

through the CG, and keeping those which are accepted.
As an example, consider the language a⋆ over Σ = {a, b}. This language is encoded by

the following constraint grammar:

LIST A = "a";

LIST B = "b";

SET LETTER = A OR B;

SELECT A;

ADDCOHORT ("<REJECT>")

BEFORE LETTER
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IF (-1 (>>>) LINK 1* B);

REMCOHORT LETTER

We then encode the input words as a series of letter cohorts with readings (e.g. "<l>" "a",
"<l>" "b"), and run the grammar. For instance, if we wished to knowwhether either word in
{aaa, aab} is part of the language a⋆, we would run the following queries:

Input Output
"<l>" "a" "<l>" "a"

"<l>" "a" "<l>" "a"

"<l>" "a" "<l>" "a"

"<l>" "a" "<REJECT>"

"<l>" "a"

"<l>" "b"

As CG is a tool meant for disambiguation, we can leverage its power to run both queries at
once:

Input Output
"<l>" "a" "<l>" "a"

"<l>" "a" "<l>" "a"

"<l>" "a" "b" "<l>" "a"

This is a powerful feature, because it allows us disambiguate based on some formal language
L if we can find the CG which generates it. However, the limitations of this style become
apparent when we look at a run of a CG for the language {ab, ba}:

Input Output
"<l>" "a" "b" "<l>" "a" "b"

"<l>" "a" "b" "<l>" "a" "b"

While the output contains the interpretations ab and ba, it also includes aa and bb. Therefore,
while this style is useful for disambiguating using CGs based on formal languages, it is too
limited to be used in defining the language which a CG generates.

In light of the idea of usingCGs based on formal languages for disambiguating, it seems at
oddswith the philosophy of CG to reject by replacing the entire inputwith a single "<REJECT>"
cohort. However, for the definition of CG as a formal language, we need some sort of dis-
tinctive output for rejections. Hence, we arrive at two distinct ways to run generative CGs:
the method in which we input unambiguous strings, and output "<REJECT>", which is used
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in the definition of CG as a formal language; and the method in which we input ambiguous
strings, and simply disambiguate as far as possible.

It should be noted that VISL CG-3 (Bick and Didriksen, 2015; Didriksen, 2014) supports
commands such as EXTERNAL, which runs an external executable. It should therefore be obvi-
ous that the complete set of VISL CG-3 commands, at least theoretically, can generate any re-
cursively enumerable language. For this reason, we will investigate particular subsets of the
commands permitted by CG. In sections 4.5.1 and 4.5.2, we will restrict ourselves to the sub-
set of CG which only uses the REMOVE command with sections, and show this to at least cover
all regular languages and some context-free and context-sensitive languages. In the original
article (Kokke and Listenmaa, 2017), we address more subsets and complexity classes.

Figure 4.3: Lower bound on the expressivity of the subset of CG using only REMOVE.

4.5.1 A lower bound for CG
In this section, we will only use the REMOVE command with sections, in addition to a single
use of the ADDCOHORT command to add the special cohort "<REJECT>", and a single use of the
REMCOHORT command to clean up afterwards. We show that, using only these commands, CG
is capable of generating some context-free and context-sensitive languages, which establishes
a lower bound on the expressivity of CG (see Figure 4.3).

Example grammar: anbn Below, we briefly describe the CG which generates the language
anbn. This CG is defined over the alphabet Σ, in addition to a hidden alphabet Σ′. These
hidden symbols are meant to serve as a simple form of memory. When we encode our input
words, we tag each cohort with every symbol in the hidden alphabet8, e.g. for some symbol
ℓ ∈ Σ and Σ′ = {h1, . . . , hn}we would create the cohort "<ℓ>" "h1" . . . "hn".

8 We can automatically add these hidden symbols to our cohorts using a single application of the ADD command.
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The CG for anbn uses the hidden alphabet {odd, even, opt_a, opt_b}. These symbols mean
that the cohort they are attached to is in an even or odd position, and that a or b is a legal
option for this cohort, respectively. The CG operates as follows:

1. Is the number of characters even? We know the first cohort is odd, and the rest is
handled with rules of the form REMOVE even IF (NOT -1 odd). If the last cohort is odd,
then discard the sentence. Otherwise continue…

2. The first cohort is certainly a and last is certainly b, so we can disambiguate the edges:
REMOVE opt_b IF (NOT -1 (*)), and REMOVE opt_a IF (NOT 1 (*)).

3. Disambiguate the second cohort as a and second-to-last as b, the third as a and third-
to-last as b, etc, until the two ends meet in the middle. If every "<a>" is marked with
opt_a, and every "<b>" with opt_b, we accept. Otherwise, we reject.

The language anbn is context-free, and therefore CG must at least partly overlap with the
context-free languages.

Example grammar: anbncn We can extend the approach used in the previous grammar to
write a grammar which accepts anbncn. Essentially, we can adapt the above grammar to find
themiddle of any input string. Once we have the middle, we can “grow” as from the top and
bs up from the middle, and bs down from the middle and cs up from the bottom, until we
divide the input into three even chunks. If this ends with all "<a>"s marked with opt_a, all
"<b>"s marked with opt_b, and all "<c>"s marked with opt_c, we accept. Otherwise, we reject.

The language anbncn is context-sensitive, and therefore CG must at least partly overlap
with the context-sensitive languages.

Figure 4.4: A finite-state automaton describing the regular language det (adj)* noun.
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4.5.2 CG is regular
In the present section, we propose a method to transform arbitrary finite-state automata into
CG. We show how any finite-state automaton can be expressed in a CG: encode the states
and transitions as ambiguous cohorts, and the disambiguated result shows both the correct
sequence and its path in the automaton. The translation is implemented in Haskell, and can
be found on GitHub9.

Finite-state automata Formally, a finite-state automaton is a 5-tuple

⟨Σ, S, s0, δ, F ⟩.

Σ is the alphabet of the automaton, S is a set of states, including a starting state s0 and a set
F of final states. δ is a transition function, which takes one state and one symbol from the
alphabet, and returns the state(s) where we can get from the original state with that symbol.
The automaton in Figure 4.4 is presented as follows:

S = {s1, s2} Σ = {det, adj, n}

s0 = s1 δ = {s1 det−→ {s2},

F = {s1} s2
adj−→ {s2},

s2 noun−−−→ {s1}}

Informally, the automaton describes a simple set of possible noun phrases: there must be
one determiner, one noun, and 0 or more adjectives in between. We implement a correspond-
ing CG in the following sections.

Cohorts and sentences We encode our input as a sequence of state cohorts and transition co-
horts. Initially, a state cohort contains the full set S = {s1, s2} as its readings, and a transition
cohort contains the alphabet Σ = {det, adj, noun}, or some subset of it. As an example, we
generate all 2-letter words recognised by the automaton in Figure 4.4. The initial maximally
ambiguous input for length 2 looks as follows:

"<s>" "<w>" "<s>" "<w>" "<s>"

s1 det s1 det s1

s2 adj s2 adj s2

noun noun

9See https://github.com/inariksit/cgexp
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The grammar disambiguates both transition cohorts and state cohorts. Thus the desired re-
sult shows both the accepted sequence(s)—det noun in this case—and their path(s) in the
automaton.

"<s>" "<w>" "<s>" "<w>" "<s>"

s1 det s2 noun s1

We can easily adapt the disambiguation scheme for real-world ambiguities, such as “the
present”. The state cohorts are identical, but the transition cohorts contain now some actual
word form, and the initial ambiguity is not over the whole Σ, but some subset of it.

"<s>" "<the>" "<s>" "<present>" "<s>"

s1 det s1 adj s1

s2 s2 noun s2

The disambiguation process goes exactly like in the first version, with full Σ in the transition
cohorts. Depending on howmuch the initial input contains ambiguity, the result may be the
same, or more disambiguated. For our example, the output is identical.

"<s>" "<the>" "<s>" "<present>" "<s>"

s1 det s2 noun s1

Rules Given that every transition happens between two states, and every state has an in-
coming and outgoing transition, every rule needs only positions -1 and 1 in its contextual
tests. The semantics of the rules are “remove a transition, if it is not surrounded by allowed
states”, and “remove a state, if it is not surrounded by allowed transitions”. For the example
automaton, the rules are as follows:

# Transition rules # State rules

REMOVE Det REMOVE S1

IF (NEGATE -1 S1 LINK 2 S2) ; IF (NEGATE -1 >>> OR Noun

REMOVE Adj LINK 2 Det) ;

IF (NEGATE -1 S2 LINK 2 S2) ; REMOVE S2

REMOVE Noun IF (NEGATE -1 Det OR Adj

IF (NEGATE -1 S2 LINK 2 S1) ; LINK 2 Adj OR Noun) ;

The start and end states naturally correspond to the first and last state cohort, and can be
trivially disambiguated, in this case both into s1. Once we remove a reading from either side
of a cohort, some more rules can take action—the context “s2 on the left side and s1 on the
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right side” may be broken by removing either s2 or s1. One by one, these rules disambiguate
the input, removing impossible states and transitions from the cohorts.
For the final result of the disambiguation, we consider three options: the cohorts may contain
the whole alphabet, a well-formed subset or a malformed subset.

Full Σ If there is only one allowed word of length n in the language, then the result will
contain only fully disambiguated transition cohorts. Furthermore, if there is only path in the
automaton that leads to this word, then also the state cohorts are fully disambiguated.

If there are multiple words of the same length in the language, then we have to relax our
criteria: every transition cohort and state cohort in the result may contain multiple readings,
but all of themmust contribute to some valid word of length n, and its path in the automaton.

Well-formed subset of Σ With well-formed subset, we mean that each cohort contains at
least one of the correct readings: {det} for “the”, and {adj,noun} for “present”. If the initial
input is well-formed, then the result will be correct, and may even be disambiguated further
than with the full Σ in the transition cohorts.

Malformed subset ofΣ Malformed subset has at least one cohort without any correct read-
ings, for example, “the” is missing a det reading. This will lead to arbitrary disambiguations,
which do not correspond to the automaton. Without a det reading in “the”, the rule which
removes s2 would trigger in the middle state, leaving us with three s1 states. s1-s1-s1 is an
impossible path in the automaton, so it would trigger all of the transition rules, and stop only
when there is one, arbitrary, reading left in the transition cohorts.

4.5.3 Discussion

The FSA→CG conversion is still only an approximation. As Lager and Nivre (Lager and
Nivre, 2001) point out, CG has no way of expressing disjunction. Unlike its close cousin
FSIG (Koskenniemi, 1990), which would represent a language such as {ab, ba} faithfully, CG
substitutes uncertainty on the sentence level (“either ab or ba”) with uncertainty in the co-
horts: “the first character may be either a or b, and the second character may be either a or b”.
If we use such a CG to generate, by feeding it maximally ambiguous cohorts, the result will
be overly permissive. We acknowledge that this is a limitation in the expressive power: many
languages can only be approximated by CG, not reproduced exactly. Nevertheless, this lim-
itation may not matter so much when disambiguating real-world text, because the cohorts
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are initially less ambiguous, and leaving genuine ambiguity intact is desired behaviour for
CG.

4.6 Conclusions and future work

We set out to design and implement an automatic analysis of constraint grammars that can
find problematic rules and rule combinations, without the need for a corpus. Our evaluation
indicates that the tool indeed finds non-trivial conflicts and dead rules from actual grammars.

We did not have a volunteer to test the tool in the process of grammar writing, so we
cannot conclude whether the constructed examples are useful for getting new insights on the
rules. In any case, there are still a number of features to improve and add. Future work can
be divided in roughly three categories: (a) general improvement of the tool (b) evaluation
with users, and (c) integration as a part of CG development framework.

4.6.1 General improvement

Combiningmorphological and lexical tags Our solution to hardcode the tag combinations
in the readings is feasible for simple morphology, but it can cause problems with more com-
plex morphology. Currently, if we add one new lemma to the set of readings, we need to
create as many new variables as there are inflectional forms for that lemma. The alternative
scheme we implemented for Basque resulted in fewer combinations, but as a result, it cre-
ated nonsensical combinations of wordform, lemma and morphological tags. Investigating
whether this is a problem (i.e. does it miss actual conflicts, or suggest false positives) is left
for future work.

Heuristic checks for common issues As mentioned earlier, some grammar design choices
are common sources of misinterpretation. Many of these issues concern the case where the
conditions include the target cohort—does SELECT foo IF (0 bar)mean that “foo” and “bar”
should be in the same reading or in different readings? Lemmas and word forms are another
source of confusion, which is easy to check automatically against the lexicon. Ideally, these
checks should be included in a special “paranoid mode”, to not clutter the analysis10.

10As pointed out by Eckhard Bick, the program should act upon this only if the 0 relates to an existing ambiguity
class.
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Support formore features of VISLCG-3 As for longer-term goals, wewant to handlemore
of the features in VISL CG-3, such as map, append and substitute rules, as well as depen-
dency structure. This also means finding different kinds of conflicts, such as dependency
circularity. In order to implement rules that may add new readings, or new tags to existing
readings, we need to modify our approach in the SAT-encoding. Even if the lexicon gives all
readings that exist in the lexicon, the user might give a nonexistent reading, or in the case of
map, a syntactic tag, which is (by definition) not in the lexicon. We may need to move to a
more scalable solution.

4.6.2 Evaluation with user base
Cleaning up the Basque grammarwas our first chance to test the tool together with grammar-
ians, complementedwithmachine learning (the tuning step). We got to a promising start, but
due to the performance problems, we had to simplify our approach considerably. Below, we
envision some properties that might be interesting to test further; however, we would be in-
terested in getting feedback from actual grammarians and adding features based on what is
needed.

Reformatting a rule Another possible feature is to suggest reformattings for a rule. Recall
Figure 4.1 from the introduction; in the case on the right, the original rule was written by the
original author, and another grammarian thought that the latter form is nicer to read. Doing
the reverse operation could also be possible. If a rule with long disjunctions conflicts, it may
be useful to split it into smaller conditions, and eliminate one at a time, in order to find the
reason(s) for the conflict.

Suggesting alternative orders Ona speculative note, it could be interesting to identify pairs
for a potential “feeding order” that is missed in the grammar. Say we have the following rule
sequence:

REMOVE:r1 x IF (-1C y)

SELECT:s2 y IF (...)

If s2 appears before r1, if makes way for r1 to act later on the same round. However, if
the rules are ordered as shown, and y is not unambiguous from the beginning, then r1 has
to wait for the next round to be applied.

Lager (2001) observed that the rule sequence learned by the µTBL system did not remove
further ambiguities after its first run, and concluded that the sequence was “optimal”. It
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would be interesting to recreate the goals in Lager (2001) and Bick (2013), to see if this seman-
tic analysis of rule dependencies could lead also to better ordering within a grammar.

Of course, it remains to be seen if any of these improvements would make a difference in
speed; VISL CG-3 is already very fast, when the grammars are run multiple times.

Alternative ways of deriving CGs Learning CG rules from a corpus has been a popular
topic since the beginning of the formalism (Samuelsson et al., 1996; Eineborg and Lindberg,
1998; Lager, 2001; Sfrent, 2014). As an alternative, our method of transforming regular gram-
mars into an approximate CG (see Section 4.5 could be of interest. To be fair, the resulting
grammars are not very readable: they include extra cohorts and symbols, and the logic is
spread across rules in a rather obscure way—in contrast to a human-written grammar, where
each rule is a self-contained piece of truth about a language. Therefore we do not envision
the generated grammars being used as is, but rather as compilation targets. Such CGs could
be used as a part of a larger constraint grammar: some sections can be written manually, and
others derived from existing grammars. So far we only have a working conversion tool for
finite-state automata, but we are hoping to develop this further, to also include context-free
or even mildly context-sensitive grammars.

4.6.3 Integration as a part of CG development environment
In order to attract the attention of the CG community, it would be desirable to incorporate
the tools as a part of existing CG software. Currently, the described software consists of just
under 3000 lines of Haskell code, including both the CG engine and the grammar analysis
tool. The grammar used for parsing the original CG files is written in BNFC (Pellauer et al.,
2004), and it is missing many constructs in CG-3. Given these factors, the preferred option
would be a full reimplementation and integration as a part of VISL CG-3, or any other CG
development framework. We believe this would make the tools easier to use, more cohesive
and synchronised with the main CG engine, and likely much faster. Of course, it is up to the
community and the developers to decide if these tools are of interest.
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Chapter 5

Test Case Generation for
Grammatical Framework

Fixpoint computation is the new SAT I’m afraid.
Koen Claessen, 2018

What is the essence of a language? When formalising and implementing a natural language
grammar, which example sentences do we need to check in order to convince ourselves that
the grammar is correct?

Imagine we are formalising a grammar for English, and in particular we are working on
the reflexive construct. In order to check correctness for the 3rd person singular, we need
to test for three different subjects, because the object has to agree with the subject: “he sees
himself”, “she sees herself” and “it sees itself”. Without seeing all three examples (alongwith
the rest of the pronouns), we cannot be certain that the reflexive construction is implemented
correctly. In contrast, the general pattern of a transitive verb with a non-reflexive object is
enough to test with only one third person subject: he, she, it, or any singular noun or proper
name. The agreement only shows in the verb form, thus including both “she sees a dog” and
“John sees a dog” in the test suite is redundant.

Now, what is minimal and representative is highly language-dependent. For instance,
Basque transitive verbs agree with both subject and object, thus we need 6× 6 examples just
to cover all verb forms. In this chapter, we are not interested in the morphology per se—
there are easier methods to test for that—but the correctness of the syntactic function: does
the function pick the correct verb form for the correct combination of subject and object? For
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that purpose, it is enough to test the syntactic construction “transitive verb phrase” with just
a single transitive verb.

We present a method that, given a grammar (that in general encompasses an infinite set
of sentences), generates a finite set of sentences that can be used as test cases for the cor-
rectness of the grammar. Our concrete implementation is for a particular grammar formal-
ism, namely parallel multiple context-free grammars (PMCFG) (Seki et al., 1991), which is
the core formalism used by the Grammatical Framework (GF) (Ranta, 2004). However, the
general method works for any formalism that is at most as expressive as PMCFG, including
context-free grammars, multiple context-free grammars, which covers formalisms such as
Tree-Adjoining Grammar (Joshi et al., 1975), Linear Context-free Rewriting Systems (Vijay-
Shanker et al., 1987) and Combinatory Categorial Grammar (Steedman, 1988).

The following sections assume knowledge of GF and PMCFG formalisms; we direct the
reader to Section 2.2 for a general GF introduction, and 2.2.4 especially for translation of a GF
grammar into PMCFG.

5.1 Related work

Traditionally, GF grammars are tested by the grammarians themselves, much in the way de-
scribed in the introduction of this article. An example human-written treebank can be found
in Khegai (2006, p. 136–142). For testing the coverage of the grammars, grammarians have
used treebanks such as the UD treebank (Nivre et al., 2016) and Penn treebank (Marcus et al.,
1993), and for testing morphology, various open-source resources have been used, such as
morphological lexica from the Apertium project (Forcada et al., 2011).

As an example of other grammar formalisms, Butt et al. (1999, pp. 212–213) describe
common methods of testing the LFG formalism: similarly to GF, they use a combination
of human-written test suites meant to cover particular phenomena, and external larger cor-
pora to test the coverage. As a difference from GF testing tradition, their human-written test
suites include also ungrammatical sentences: those that the grammar should not be able to
parse. However, their tests are only meant for monolingual grammars, whereas GF tests are
for multilingual grammars, so they are stored as trees. In other words, GF tests only what
the grammar outputs, not what it parses.

Other related work in computational linguistics includes error mining for parsing gram-
mars, such as Gardent and Narayan (2012). The setup includes triples of dependency tree,
generated sentence and the gold standard sentence. For every triple where the generated
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sentence and the gold standard sentence are different, their algorithm finds the smallest sub-
trees that cause the problems. Gardent’s algorithm fills a slightly different need than ours: it
relies on the correct linearisation so be known, which we don’t. Instead, we want to generate
trees whose linearisations are then read by humans. On the other hand, Gardent’s method
would prove very useful once an error is found—it can be tricky to determine which function
exactly caused the error. Further away from our approach, van Noord (2004) works on pars-
ing grammars rather than generation, with the goal of detecting strings that cause parsing
errors.

However, our biggest source of inspiration is automatic test case generation for general
software, such as Celentano et al. (1980); Geist et al. (1996); Claessen and Hughes (2011). Soft-
ware testing and grammar testing both deal with notions of coverage and compactness, and
deriving test cases from a formal specification. Sometimes even software tests are generated
with human oracles in mind, such as in Matinnejad et al. (2016).

5.2 Grammar

abstract NounPhrases = {
flags startcat = NP ;
cat

S ; NP ; Adv ; -- Non-terminal categories
CN ; Det ; Adj ; Prep ; -- Terminal (lexical) categories

fun
UttNP : NP -> S ; -- Single NP as an utterance
PredAdj : NP -> Adj -> S ; -- e.g. "this house is blue"
PredAdv : NP -> Adv -> S ; -- e.g. "this house is on a hill"
DetNP : Det -> NP ; -- e.g. "this"; "yours"
DetCN : Det -> CN -> NP ; -- e.g. "this house"
PrepNP : Prep -> NP -> Adv ; -- e.g. "without the house"
AdjCN : Adj -> CN -> CN ; -- e.g. "small house"
AdvCN : Adv -> CN -> CN ; -- e.g. "house on a hill"

a, the, this, these, your : Det ;
good, small, blue, tired, ready : Adj ;
house, hill : CN ;
in, next_to, on, with, without : Prep ;

}

Figure 5.1: GF grammar for noun phrases
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Figure 5.1 shows a small example of a GF abstract grammar. The grammar generates
noun phrases for a lexicon of 17 words (a, the, …, without) in four lexical categories, and
8 functions to construct phrases. CN stands for common noun, and it can be modified by
arbitrarilymany adjectives (Adj), e.g. small blue house is an English linearisation of the abstract
syntax tree AdjCN small (AdjCN blue house). A CN is quantified into a noun phrase (NP) by
adding a determiner (Det), e.g. the small house corresponds to tree DetCN the (AdjCN small

house). Alternatively, a Det can also become an independent noun phrase (as in, (I like) this
instead of (I like) this house) using the constructor DetNP. Finally, we can form an adverb (Adv)
by combining a preposition (Prep) with an NP, and those adverbs can modify yet another CN.
We refer to this grammar throughout the chapter.

5.2.1 Examples to test
As examples that help illustrate different testing needs for different languages, let us take four
language-specific phenomena in the scope of our small grammar: preposition contraction
in Dutch, adjective agreement in Estonian, adjective placement and agreement in Spanish
and determiner placement in Basque. Concrete syntaxes for all four languages are found in
https://github.com/inariksit/GF-testing/tree/master/data/grammars; however, the chapter
can be read without understanding the details of the concrete syntaxes.

Preposition contraction in Dutch In Dutch, some prepositions should merge with a single
determiner or pronoun, e.g. met dit ‘with this’ becomes hiermee ‘herewith’, but stay inde-
pendent when the determiner quantifies a noun, e.g. met dit huis ‘with this house’. Other
prepositions, such as zonder ‘without’, do not contract with any determiners: zonder dit ‘with-
out this’ and zonder dit huis ‘without this house’. When testing PrepNP, we would like to see
one preposition that contracts and one that does not, as well as one NP that is a single deter-
miner, and one that comes from a noun. Since the result of PrepNP is an adverb, which does
not inflect any further, we are happy with just finding the right arguments to PrepNP, no need
for contexts. In order to catch a bug in the function, or confirm there is none, we need the
following 4 trees:

PrepNP { with
without } {

DetNP this
DetCN this house }.

Adjective agreement in Estonian In Estonian, most adjectives agreewith nouns in case and
number in an attributive position. However, participles are invariable (singular nominative)
as attributes but inflect regularly in a predicative position, and a set of invariable adjectives
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do not inflect in any position. Furthermore, in 4 of the 14 grammatical cases, even the regular
adjectives only agree with the noun in number, but the case is always genitive. Table 5.1
shows the different behaviours in attributive position, with sinine ‘blue’ as an example of a
regular adjective, and valmis ‘ready’ as an invariable.

Regular Genitive agreement Invariable
sinises majas sinise majaga valmis majas
blue-sg.ine house-sg.ine blue-sg.gen house-sg.com ready.sg.nom house-sg.ine
‘in a blue house’ ‘with a blue house’ ‘in a finished house’

sinistes majades siniste majadega valmis majades
blue-pl.ine house-pl.ine blue-pl.gen house-pl.com ready.sg.nom house-pl.ine
‘in blue houses’ ‘with blue houses’ ‘in finished houses’

Table 5.1: Estonian adjective agreement

Since we are interested in adjectives, choosing AdjCN as the base sounds reasonable—but that
only creates an inflection table, so we must think of a context too. Just like in English, num-
ber comes from the determiner, so we need to wrap the CN in a DetCN with two determiners
of different number, for instance this and these. But we still need an example for one of the
10 cases with normal agreement, such as inessive (in something), and one of the 4 cases with
restricted agreement, such as comitative (with something). These cases correspond to the En-
glish prepositions in andwith, so in this abstract syntaxwe can use PrepNPwith the arguments
in and with. This is another showcase of the abstraction level of GF: in the English concrete
syntax, Prep contains a string such as ‘in’ or ‘with’, and PrepNP concatenates the string from
its Prep argument into the resulting adverb, but in Estonian, Prep contains a case, and PrepNP

chooses that case from its NP argument. The following set of 8 trees creates all the relevant
distinctions:

PrepNP { in
with } (DetCN {

this
these }

AdjCN { blueready } house).

Adjective placement and agreement in Spanish Spanish adjectives agree in number and
gender with the noun, in both attributive and predicative position. In attributive position,
most adjectives (e.g. small) come after its head, but some adjectives (e.g. good) are placed be-
fore the head. In order to test AdjCN, with regards to both adjective placement and agreement,
we need the following 8 trees:

DetCN { this
these } (AdjCN { good

small } {
house
hill }).
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Determiner placement in Basque In Basque, there are three different ways to place a de-
terminer into a noun phrase. When a number (other than 1) or a possessive pronoun acts as
a determiner in a complex noun phrase, it is placed between “heavy” modifiers, such as ad-
verbials or relative clauses, and the rest of the noun phrase. Demonstrative pronouns, such
as this, are placed after all modifiers as an independent word. Number 1, which functions as
an indefinite article, acts like demonstratives, but the definite article is a suffix. If there is a
“light” modifier, such as an adjective, the definite article attaches to the modifier; otherwise
it attaches to the noun. In order to test the implementation of this phenomenon, we need the
following 12 trees:

DetCN { the
this
your

} { AdvCN on (DetCN the hill)
∅ } { AdjCN small

∅ } house.

5.3 Using the tool
Here is a typical use for the tool. Let us take the noun phrase grammar for Dutch, and pick a
single function, say AdvCN. We generate test cases, which include the following trees:

AdvCN (PrepNP next_to (DetNP your)) hill

‘hill next to yours’

AdvCN (PrepNP next_to (DetNP your)) house

‘house next to yours’

In Dutch, the words hill and house have different genders, and the word yours has to agree in
gender with the antecedent: (de) heuvel naast de jouwe and (het) huis naast het jouwe. Say that
the test cases reveal a bug, where DetNP your picks a gender too soon—always neuter, “het
jouwe”, instead of leaving it open in an inflection table. To fix the bug, we add gender as a
parameter to the Adv type, and have AdvCN choose the correct form based on the gender of the
CN.

After implementing the fix, we run a second test case generation: this time, not meant
for human eyes, but just to compare the old and new versions of the grammar. We want
to make sure that our changes to Adv, AdvCN and DetNP have not caused new bugs in other
categories and functions. The simplest strategy is to generate test cases for all functions in
both grammars, and only show those outputs that differ between the grammars. After our
changes, we get the following differences:
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DetCN the (AdvCN (PrepNP next_to (DetNP your)) hill)

– de heuvel naast het jouwe

+ de heuvel naast de jouwe

DetCN the (AdvCN (PrepNP without (DetNP this)) hill)

– de heuvel zonder dit

+ de heuvel zonder deze

We notice a side effect that we may not have thought of: the gender is retained in all
adverbs made of NPs made of determiners, so now it has become impossible to say “the
hill next to that”, where that is referring to a house. So we do another round of modifications,
compute the difference (to the original grammar or to the intermediate), and see if something
else has changed.

Additional analyses Aside from concrete language-dependent phenomena, there are more
general questions a grammar writer may ask. For instance, say that our concrete type for CN
in some language is an inflection table from case to string, we would like to know if (a) a
given string field is unreachable from the start category; (b) any two fields always contain
the same string; or (c) some fields are always the empty string. In addition, awhole argument
may be erased by some function: say that AdjCN : Adj → CN → CN never adds the adjective
to the new CN, in which case AdjCN blue house and house are linearised identically. Instead of
testing every single function and finding out by accident, we can test the whole grammar to
find out if there are any functions in the grammar that behave like this.

5.4 Generating the test suite
In this section, we explain how the test suites are built. Earlier in Section 2.2.4, we saw how
a single abstract category compiles into multiple concrete categories NC , depending on the
combinations of parameters. Instead of dealing with parameters directly, we now have a set
of new types, which is helpful for generating test cases.

We use one syntactic function as the base for one set of test cases. For lexical categories, it
also makes sense to test the whole category, e.g. generate all trees that show that AP is defined
and handled correctly in the functions. However, we only explain in detail the method with
one syntactic function as a base.
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We require that all test cases are trees with the same start (top-level) category, such as S in
our example grammar. Furthermore, the start category must be linearised as one string only.

5.4.1 Enumerate functions

Aswe explained before, each syntactic function in the abstract syntax turns into multiple ver-
sions, one for each combination of parameters of its arguments. In the notation by Angelov
(2011), presented in Section 2.2.4, these concrete functions are the set FC .

In order to construct trees that use the concrete syntactic function f ∈ FC , we need to
supply the function with a(f) arguments, as well as put the resulting tree f(A1, . . . , Aa(f))

into a context that produces a tree in the start category. In the best case, each f can be tested
with only one tree, but as we will explain in the following section, sometimes we need more
than one tree to test f , if no single argument list is discriminative enough.

5.4.2 Enumerate arguments

Some syntactic functions are simply a single lexical item (for example the word good); in this
case just the tree good is our answer. If we choose a function with arguments, such as PrepNP,
then we have to supply it with argument trees. Each argument needs to be a tree belonging
to the right category (in the example, Prep and NP, respectively).

When we test a function, we want to see whether or not it uses the right material from
its arguments, in the right way. The material that a syntactic function uses is any of the
strings that come from linearising its arguments. In order to be able to see which string in
the result comes from which field from which argument, we want to generate test cases that
only contain unique strings. For example, the English pronoun you is a worse test case than
they, because all forms are not unique: you is both nominative and accusative (you sleep vs. I
saw you), whereas they has a different form for both (they sleep vs. I saw them).

Subsumption For our testing purposes, any other pronoun with all unique forms subsumes
the pronoun you: if we can construct a test with {they,them,their}, we don’t need the inferior
{you,you,your} in addition. In general, we would like to find just one combination of argu-
ments where all strings in the linearisations are different. However, it is not always possible
to do this, which is why we in general aim to generate a set of combinations of arguments,
where for each pair of strings from the arguments, there is always one test case where those
strings are different. If all pronouns in English were non-unique, we could still get the effect
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by using both {you,you,your} and {she,her,her}, because their ambiguity manifests in different
forms1.

We define the function subsumes for a given function f and two candidate lists of argu-
ment trees. It is important to include the function f and not just its arguments, because any
GF function may introduce new strings to the linearisation. If f introduces some string s,
then any argument that contains s is worse than an otherwise identical argument without s.

In addition to Angelov (2011)’s definition, we use the notion of Tree as a generic type
for any application of some f ∈ FC to all of its arguments [A1, . . . , Aa(f)]. Thus, a single
f ∈ FC is also a Tree, if a(f) = 0. For an f with a(f) > 0, we need to apply f to all of its
argument Trees of types A1, . . . , Aa(f).

linAll :: Tree → [String]
linAll (f(A1, . . . , Aa(f)) = evaluate the expression f(A1, . . . , Aa(f)),

return all string fields.

subsumes : FC → [Tree]→ [Tree]→ Bool
subsumes f xtrees ytrees =

let syncats = strings introduced by f

xlins = syncats ++ concatMap linAll xtrees
ylins = syncats ++ concatMap linAll ytrees
len = min xs ys

in and [ ylins !! i == ylins !! j

| i← [0..len-1], j ← [0..len-1]
, xlins !! i == xlins !! j ]

In words, we gather all strings from the function f and its arguments, and check that for
all indices i and j, if the ith element of xlins is the same as the jth element of xlins, then also
the ith and jth element from ylins must be the identical. If this property holds, then xtrees
subsumes ytrees. For instance, the list [a,a,b] subsumes [c,c,d] (and vice versa), because the
indices 0 and 1 are identical in both lists.

Argument generation and filtering For a given f ∈ FC , we generate all lists of argument
trees [A1, . . . , Aa(f)]. The function FEAT.generateAllTrees is implemented using the FEAT
library (Duregård et al., 2012), and generates lazily all vectors of argument trees for the given

1The majority of all functions in all tested languages need 1 or 2 argument trees, and there are only a handful of
cases that need more than 3. The highest number we encountered was 8 trees, for a single function in the Basque
resource grammar.
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concrete categories, starting from smallest size. The size of a tree is defined as the number
of constructors; thus DetNP this is generated before DetCN this house. This ensures that we
find the most minimal examples.

FEAT.generateAllTrees :: [NC ]→ [[Tree]]
FEAT.generateAllTrees [a1, . . . , an] = generates lazily all vectors of argument

trees for the given concrete categories,
starting from smallest.

Out of all argument lists, we find the ones to test f using the previously defined function
subsumes. The function keepIfBetter takes a new tentative test case (t), a list of already good
test cases (ts), and checks whether any of the test cases in ts subsumes t. If yes, we can
ignore t and keep ts intact; if no, we add t to the list and remove from ts any test cases that t
subsumes.

keepIfBetter :: FC → [Tree]→ [[Tree]]→ [[Tree]]
keepIfBetter f t ts = if any (λx. subsumes f x t) ts

then ts
else t : filter (not ◦ subsumes f t) ts

The main logic, in mostUniqueExamples, is implemented as a fold over a list of lists
of argument trees. The algorithm starts with an empty list as an accumulator, and applies
keepIfBetter repeatedly, until a desired combination of trees is found, or until the original
list has run out.

mostUniqueExamples :: FC → [[Tree]]→ [[Tree]]
mostUniqueExamples f vtrees = foldr (keepIfBetter f) [] vtrees

Putting it all together The set of most unique argument trees for some f ∈ FC is computed
by the function bestTrees. For an f with arguments [A1, A2, . . . , Aa(f)], theTrees in the inner
lists are of types [A1, A2, . . . , Aa(f)].

bestTrees :: FC → [[Tree]]
bestTrees f =

let args = [A1, A2, . . . , Aa(f)]

s.t. A→ f [A1, A2, . . . , Aa(f)] is a production in P.

in mostUniqueExamples f (FEAT.generateAllTrees args)

The list coming from FEAT.generateAllTrees is infinite, but in practice, we stop after exam-
ining 10,000 lists of trees.
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AdjCN good house AdjCN good hill
(sg) buena casa (sg) buen cerro
(pl) buenas casas (pl) buenos cerros
AdjCN small house AdjCN small hill
(sg) casa pequeña (sg) cerro pequeño
(pl) casas pequeñas (pl) cerros pequeños

Table 5.2: Agreement and placement of Spanish adjectives in attributive position

Example: Test cases using AdjCN Let us test the function AdjCN : Adj → CN → CN in Span-
ish concrete syntax. Firstly, we need a minimal and representative set of arguments: one
premodifier and one postmodifier AP (good and small), as well as one feminine and one mas-
culine CN (house and hill). Now, our full set of test cases are AdjCN applied to the cross product
of { goodsmall} × {househill }, as seen in Table 5.2.

5.4.3 Enumerate contexts

The third and last enumeration we perform when generating test cases is to generate all pos-
sible uses of a function. After we provide a function with arguments, we need to put the
resulting tree into a context, so that we can generate a single string from the result. By con-
text for a given category C, we mean a function of type C→ S. From another point of view, a
context can be seen as a tree in the start category (S in our example) with a hole of the same
type as the function under test returns (denoted by _).

Figure 5.2 shows a concrete example for the category CN in our example grammar. Since
CN is variable for number, we need two contexts: one that chooses the singular form and other
that chooses the plural form. This means we should apply two different CN → NP functions

UttNP (DetCN this (AdjCN good house)) UttNP (DetCN this (AdjCN good hill))
esta buena casa este buen cerro
UttNP (DetCN these (AdjCN good house)) UttNP (DetCN these (AdjCN good hill))
estas buenas casas estos buenos cerros
UttNP (DetCN this (AdjCN small house)) UttNP (DetCN this (AdjCN small hill))
esta casa pequeña este cerro pequeño
UttNP (DetCN these (AdjCN small house)) UttNP (DetCN these (AdjCN small hill))
estas casas pequeñas estos cerros pequeños

Table 5.3: Complete test cases to test AdjCN
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Figure 5.2: Two contexts for the category CN, which choose all forms from the inflection table.

(Figure 5.2 shows DetCN this and DetCN these), and give their results to the UttNP function,
which constructs an S.

We could as well pick any of the Pred* functions, which also has the goal type S, but their
second arguments don’t make any difference as to which field we choose from the NP. In the
name of minimalism, we choose UttNP, because it is the smallest tree. The concrete set of
contexts is thus UttNP (DetCN this _) and UttNP (DetCN these _). We insert the 4 test cases
from Table 5.2 into the holes, and get 8 trees in total as shown in Table 5.3.

Strings’ path to the start category A subtree in any category C gets to show its strings to the
world by one way: the strings need to end up in a tree of the start category. If C is the start
category, then the subtree of type C needs no further context. If C is not the start category, then
the subtree depends on other categories in order to make it to the start category. We need to
find a succession of function applications that take a string from some field in C, through all
other intermediate categories, so that it finally ends up in the start category.

The word depend is a bit counterintuitive here: normally one would think that e.g. NP de-
pends on CN, because we form NPs by using functions of type CN → NP. But when we think
of contexts, we say instead that the context of CN depends on the context of NP. A tree of type
CN would like to show its strings, but the function UttNP, which is the fastest way to the start
category, only takes NPs. So it has to rely on applications of DetCN this and DetCN these to lift
it up into an NP, as shown in Figure 5.2, and only then can UttNP get access to its strings.

Contexts as systems of equations Computing relevant contexts in a given start category S is
done once, in advance, for all possible hole typesH at the same time, using fixpoint iteration.
We model this in a top-down manner, where in the beginning, only the start category S has
a context, albeit a trivial one: “do nothing, you’re already there!”. The other categories don’t
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Figure 5.3: Context for A in start category S depends on a context for B.

have a context yet, but will get them during the process in the following manner, referencing
Figure 5.3.

On the first round, we get to compute contexts for all categories B that are arguments
to some function g : B → S: these contexts are simply the function g itself. On the sec-
ond round, we compute contexts for all categories A that are arguments to some function
f : A → B; the context for such an A is g ◦ f. Each round unlocks more categories further
down from the start category, so we get to compute more contexts for categories that depend
on the newly unlocked ones, until all categories have their contexts. Figure 5.3 shows the
general pattern for categories A and B in start category S.

The definition of contexts is mutually recursive, and can be seen as a system of equations.
The simple example with f : A → B and g : B → S is expressed as follows.

contexts(S) = { id }
contexts(B) = { C[g(_)] | C ∈ contexts(S)}
contexts(A) = { C[f(_)] | C ∈ contexts(B)}

Least solution In the general case, these sets can be infinite: think of functions of type
A → A and loops of A → B and B → A. In such a case, we want to find the least solution
to such systems of equations. The word leastmeans two separate things: (a) the fewest trees
that still use all the fields of the category, and (b) which are of the smallest size (e.g. choosing
UttNP over PredAdj for the context of NP).

In contrast to the more intuitive bottom-up approach, top-down computation is more
efficient: we retrieve the fastest way to the start category, because at each round, we consider
contexts that we already know to lead into the start category. We avoid functions of type
B → A when computing the context for B, because we only consider functions whose goal
type already has a context; hence g : B → S is the only candidate.
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Algorithm We express the set of relevant contexts for one hole type H in terms of the sets
of relevant contexts for other hole typesH ′, using the following definition:

contexts(H) = prune( {C[F (_)] | F ∈ H → H ′, C ∈ contexts(H ′)} )

In words, to generate contexts with holes of type H , we enumerate all functions F that
have a H as an argument, and enumerate all contexts C that have the result type H ′ of F as
a hole type, and put C and F together to get a new context. Then, we apply a function prune
to the result in order to filter out redundant contexts, i.e. contexts whose uses of the strings
ofH are already covered by other contexts in the same set.

In order to compute all sets of contexts for all possible hole categories H , we set up a
system of equations. In general, this system of equations is recursive, and we use a fixpoint
iteration to solve it, initialising the contexts as follows: id for the start category, and an empty
set for all other categories. There is a guaranteed minimal solution, because the RHSs are
monotonic inH ′ (Lassez et al., 1982).

contexts(S) = { id }
contexts(H) = { } : ∀H ̸= S

It is important thatwe do not change the contexts for anything that uses fewer or the same
amount of fields. In the English example, it would not serve any purpose to swap PredAdj

for AdjCN in the context of AP, because both choose the same (the only) field. Furthermore, if
we changed the contexts on an arbitrary basis, the sets would not converge, andwewouldn’t
find a fixpoint.

However, the functions can be replaced in the case that we find a function that covers
strictly more fields than any of the previously found. Assume that we added a whole new
abstract syntax construction of type CN → NP, which uses both singular and plural in one
sentence. Then we get just one context which covers two fields, and thus we can throw away
both DetCN this and DetCN these in favour of the new construction.

So, the set of contexts for a category H may change during the fixpoint computation. It
grows as we unlock contexts for more categories, further down from the start category. It
may also shrink, if we find a single context that covers the fields from multiple, previously
computed, contexts. But most importantly, the list of fields fromH that make it into the start
category is growing throughout the fixpoint computation.
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NPsg,noncontr NPpl,noncontr NPsg,contr NPpl,contr
UttNP _ UttNP _ UttNP _ UttNP _

PredAdv <any NP> (PrepNP on _) PredAdv <any NP> (PrepNP on _)

Table 5.4: Contexts to showcase all strings of different concrete NPs in the Dutch grammar

5.4.4 Pruning the trees within one set of test cases
Sometimes we can further reduce test cases created for a single function, taking advantage
of the coercions in the grammar (explained in Section 2.2.4). Let us take as an example the
function DetNP : Det → NP for Dutch. As usual, the category Det compiles into 8 concrete cat-
egories: combinations of singular vs. plural, contracting vs. non-contracting, and definite vs.
indefinite. But our grammar only has 5 determiners in total, out of 8 possible combinations—
does this mean that we cannot test DetNP exhaustively with the small lexicon? Firstly, we
look for coercions of arguments (Det) in the different concrete versions of DetNP, and secondly,
coercions of the goal category (NP) used in the contexts.

Coercions of Det used by DetNP Due to coercions, there are only 4 different type signatures
for DetNP: definiteness is not relevant when a Det is made directly into an NP (it only matters
when combining a determiner with an adjective). This brings us down to 4 arguments for
DetNP, shown below.

• DetNP : Det∗,sg,noncontr → NPsg,noncontr

• DetNP : Det∗,pl,noncontr → NPpl,noncontr

• DetNP : Det∗,sg,contr → NPsg,contr

• DetNP : Det∗,pl,contr → NPpl,contr

Contexts for NP The next step is to look at the contexts for all goal categories of DetNP, as
shown in Table 5.4. The contracting NPs get two contexts, one to choose the full form and
other the contracted form. The non-contracting ones only get one context each, because their
field for the contracted form is empty.

Coercions of NP used in contexts In addition, we look for coercions for all the goal categories.
For instance, there is one that covers all NPs; let us call that NP∗. This tells us that there are
functions that take NP, but don’t care anything about its parameters. One such example is
UttNP, which just takes an NP, chooses the nominative form and makes it into a standalone
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utterance. There is another useful coercion, which covers both singular andplural contracting
NPs; we call that NP∗,contr. It is used by PrepNP2, which doesn’t care about number, just whether
to merge its arguments or not. In order to reduce the number of test cases for any function
f : A → B, two properties need to hold:

1. A number of concrete categories for B are interchangeable in a particular context;

2. That context is one of those chosen to showcase B.

With NP∗ and NP*,contr, both of these properties hold. Thus, we only need to put one represen-
tative of any NP into the context UttNP _, and one representative of the contracting NPs into the
context PredAdv <any NP> (PrepNP on _). The following trees would fit the description:

UttNP (DetNP this)

deze
‘this’

PredAdv (DetCN a house) (PrepNP on (DetNP this)

een huis hierop
‘a house on this’

5.4.5 Pruning the trees to test the whole grammar
So far we have completely ignored that one tree can showcase more than one function. In
the Estonian example, we start by testing AdjCN and end up with the following 8 trees, where
PrepNP is in the context:

PrepNP { in
with } (DetCN { this

these } AdjCN {
blue
ready } house).

In fact, these 8 trees cover all tests we would’ve needed for PrepNP itself. Thus, it is possible
to shrink the test cases, if one wants to test the whole grammar at one go. However, such an
approach has also a significant drawback: interpreting the test results may get more difficult,
because a bug can come from many different functions.

Deterministic argument generation There is a simple way to detect redundancy in the gen-
erated trees. We make the generation of arguments and contexts completely deterministic,
e.g. always choose the function that is alphabetically first. Then, we would get a sentence

2Along with a similar coercion NP∗,noncontr for non-contracting NPs.
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such as “the good house is good” for testing both AdjCN and PredAdj. The downside is that
the sentences can get boring to read, or even confusing, in the style of “the house gives the
house the house”.

However, we can split the generation in two stages: first stage is deterministic, where
every noun is house, and we can eliminate redundancies by just eliminating copies of the
same tree. Then, when we have a set of unique trees, we can substitute individual words in
them with other words in the same concrete category. A sentence such as “the house gives
the hill the ham” tests the same properties as the version with house in every role, but at least
it is easier to keep track who does what, and compare the translations of the same tree.

In practice, we only apply the first step, and let the sentences be redundant. In Section 5.5,
we refer to total and unique trees when generating tests for the whole grammar; “unique
trees” means the number after removing duplicate trees that are generated to test different
functions, but happen to be the same.

Alternative priorities for context generation The current implementation of context gen-
eration prioritises minimal trees, such as UttNP for NP instead of any other functions. As an
alternative, we could choose contexts where the NP can also use its parameters, in addition to
just showing all of its strings. Arguably, it would tell more to the user to see a sentence like
“this house is big”, formed with PredAdj, rather than just “this house”, formed by UttNP.

However, these alternative priorities are not implemented yet. With the current scheme,
we have found it a useful practice to hide functions such as UttNP, which just lift a category
into the start category without introducing other arguments. For future, it wouldmake sense
for a context to serve double purpose: show all of its strings and (try to) use all of its param-
eters.

5.5 Evaluation

Concrete syntax→ Dutch Spanish Estonian Basque
↓ Grammar #funs+lex #trees #total #uniq #total #uniq #total #uniq #total #uniq
Noun phrases 8+17 >10,000 21 18 16 15 33 27 40 36
Phrasebook 130+160 >480,000 513 419 504 382 610 505 538 503
Resource gr. 217+446 >500 billion 21,370 19,825 19,689 16,662 13,733 9,194 100,967 64,390

Table 5.5: Test cases for all functions in three grammars

In order to evaluate our method, we generate test cases for grammars of varying sizes,
using the four languages presented earlier: Dutch, Spanish, Estonian and Basque. These
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Resource grammar function Dutch Spanish Estonian Basque
ComparA : A → NP → AP ‘stronger than you’ 10 4 20 6
RelNP : NP → RS → NP ‘a cat that I saw’ 2 23 23 20
ComplVS : VS → S → VP ‘say that I sleep’ 89 206 171 104
ReflVP : VPSlash → VP ‘see myself’ 1034 890 343 1082

Table 5.6: Test cases for some individual functions in the resource grammar

languages come from different language families, and cover a wide range of grammatical
complexity. Dutch and Spanish are both Indo-European languages, with fairly simple nomi-
nal morphology. Dutch features word order changes in subordinate and question clauses,
and separable prefixes in verb phrases (imagine English behaving “look something up ~
uplooked”). Spanish has a large number of tenses and moods, and clitics for direct and indi-
rect objects, which attach to verbs. To add some linguistic variety, we include Estonian from
the Finno-Ugric language family, and Basque, an isolate language. In contrast to Dutch and
Spanish, Estonian and Basque have a rich nominal morphology, with 14 grammatical cases in
each. In addition, Basque has the most complex verb morphology out of all the 4 languages,
featuring agreement in subject, object and indirect object. The Dutch, Spanish and Estonian
grammars behaved similarly to each other and Basque significantly worse, both in execution
time and examples generated.

Table 5.5 shows the number of generated trees for in total for all syntactic functions in the
three grammars, and Table 5.6 shows some example functions from the resource grammar.
As stated earlier, we do not consider generating test cases for all functions an optimal way of
testing a whole resource grammar from scratch; this gives merely a baseline reduction from
all possible trees up to a reasonable depth. We introduce the grammars and comment on the
results in the following sections.

5.5.1 Grammars

The first grammar is the toy example introduced earlier in this article: NounPhraseswith 8syn-
tactic functions and 17words in the lexicon. We wrote the concrete syntaxes from scratch for
each of the languages, instead of using the full resource grammar and reducing it to only noun
phrases. All four concrete syntaxes were completed in less than an hour, by an experienced
grammarian with some knowledge in all the languages.

The second grammar is a mid-size application grammar: Phrasebook (Ranta et al., 2012),
with 42 categories such as Person, Currency, Price and Nationality, 160-word lexicon and
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130 functions with arguments. As opposed to the trees that we have seen so far, which only
contain syntactic information, the trees in the Phrasebook are much more semantic: for ex-
ample, the abstract tree for the sentence “how far is the bar?” in the Phrasebook is PQuestion
(HowFar (ThePlace Bar)), in contrast to the resource grammar tree UttQS (UseQCl (TTAnt TPres

ASimul) PPos (QuestIComp (CompIAdv (AdvIAdv how_IAdv (PositAdvAdj far_A))) (DetCN (DetQuant DefArt

NumSg) (UseN bar_N)))) for the same sentence. Limiting up to depth 3, the Phrasebook grammar
produces over 480,000 trees3.

The third grammar is a restricted version of the GF resource grammar, with 84 categories,
217 syntactic functions and 446 words in the lexicon. Since all the languages did not have a
complete implementation, we simply took the subset of functions that was common, and re-
moved manually a couple of rare constructions and words that are potentially distracting.
This fragment produces hundreds of billions of trees already up to depth 5. None of the
resource grammars has been tested systematically before—for the Estonian grammar (Lis-
tenmaa and Kaljurand, 2014), the morphological paradigms were tested extensively against
existing resources, but syntactic functions were only tested with a treebank of 425 trees.

5.5.2 Execution time
We ran all the experiments on a MacBook Air with 1,7 GHz processor and 8 GB RAM. For
Phrasebook, it took just seconds to generate the test suite for all languages. For the resource
grammar, Dutch and Estonian finished in 3–4 minutes. However, the Basque resource gram-
mar is noticeably more complex, and creating test trees for all functions took almost three
hours.

5.5.3 Generated trees
We report both total and unique trees: total trees are simply the sum of all trees for all func-
tions, and unique trees is the count after removing duplicates, as explained in Section 5.4.5
(“the pizza gives the pizza the pizza” style).

Grammar engineering vs. language typology As we can see in Table 5.5, the number of
trees differs between languages. Table 5.6 shows some expected patterns in individual func-
tions. For instance, Basque and Estonian have more complex noun morphology than Dutch,
so RelNP needs more tests (20+ vs. 2): if the type for NP is a large inflection table, it needs to be

3Application grammars are usually much more compact than resource grammars, hence depth 3 covers already
a lot of relevant trees.
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put in many contexts. However, if the question was purely about language complexity, we
would expect Spanish to behave more like Dutch: both have only 2 cases, nominative and
accusative.

In fact, around 80 % of the code in the Spanish grammar is inherited from a common
module to all Romance languages; thus the implementation is meant to be as general as pos-
sible, and support all distinctions that appear in some language, not necessarily in Spanish
itself. In this case, the pan-Romance category for NP includes nominative, accusative, dative
and genitive as cases in the inflection table, even though the latter two are realised as just
prepositions (a and de) in Spanish. In addition, all cases include a stressed and unstressed
form—this makes for 8 fields in total.

As another example, Basque, Spanish and Dutch have more complex verb phrases (for
different reasons!) than Estonian, so they need more test cases to test ReflVP. This time it
is not only about the contexts, but also the arguments: ReflVP takes a VPSlash, which has
many parameters, so the tool needs to create many examples to cover all different concrete
categories for VPSlash.

In general, we believe the number of test cases has both language typological and gram-
mar engineering reasons. Other resource grammarians have reported significant differences
in complexity between implementations: Enache et al. (2010) report a 200-time reduction in
the number of concrete rules after changing the implementation of clitics in verb phrases.

To further explore the effect of grammar engineering vs. inherent language complexity,
it would be interesting to generate test cases for two different implementations of the same
language. However, there is not much material to explore—writing a full resource grammar
is several months’ effort, thus writing a second implementation for a language that already
is in the RGL is hardly a justifiable use of resources. We could explore related languages,
but in practice they are often based on one another, either by copying an existing one and
modifying it (e.g. Afrikaans based onDutch, Estonian on Finnish), orwriting a parameterised
module from the beginning, with the intention of fitting several languages (e.g. Romance and
Scandinavian languages).

Two different implementations of Basque noun phrase grammar Given the lack of large-
scale language resources with different implementations, we experimented with the noun
phrase grammar for Basque. In the first implementation, the one described earlier in this
chapter, we implemented nominal morphology using inflection tables, and syntactic func-
tions choose the correct case for each purpose. In another grammar, we used the Basque
resource grammar, which has implemented nouns as stems, and syntactic functions concate-

104



Chapter 5. Test Case Generation for Grammatical Framework

nate suffixes to the stems. In the stem-based grammar, nouns have phonological features as
inherent parameters, in order to attach the correct form of the inflectional morphemes. For
test case generation, this had the added benefit or curse of implicitly testing morphology as
well. For instance, AdjCN needs to generate test cases with the arguments { goodsmall} house, just
because good ends in a consonant and small in a vowel.

Function Inflection table Stems
PredAdj, PredAdv,
UttNP, PrepNP

1, 1, 1, 1 1, 1, 1, 1

DetNP 3 4
DetCN 3 4
AdjCN 7 4
AdvCN 7 4
Total: 24 20

Table 5.7: Two versions of Basque concrete syntax for noun phrase grammar

In the version based on inflection tables, AdjCN needs only one adjective and one noun to
form the test cases, for instance AdjCN small house. This tree is then put in 7 different contexts,
in order to showcase all the different fields in the CN.

UttNP (DetCN a _)

UttNP (DetCN your _)

UttNP (DetCN the _)

PredAdv <any NP> (PrepNP on (DetCN your _))

PredAdv <any NP> (PrepNP from (DetCN your _))

PredAdv <any NP> (PrepNP on (DetCN the _))

PredAdv <any NP> (PrepNP from (DetCN the _))

In Section 5.2.1, we described the placement of determiners in Basque. In the hand-written
fragment for noun phrases, we introduced a parameter in the Det type, which controls the
placement of the determiner, andwhich form it chooses from the NP. We can see clearly which
part comes from where: AdjCN only creates an inflection table, and the rest of the context
chooses different forms.

In contrast, the stem-based grammar creates much more unwieldy arguments for AdjCN.
We explained the choice of good and small already, due to phonetic features as inherent pa-
rameters, but the full trees are more complex, as in the following:
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AdjCN {
good
small} (AdvCN (PrepNP without (DetCN a house)) house)

‘good/small house without a house’.

This is because in the full resource grammar, there is no parameter for the modifier and deter-
miner placement, instead, each CN just includes fields for heavy and non-heavymodifier, and
all determiners include the fields for pre- and postdeterminer. This way the functions don’t
need to include any pattern matching, just concatenate det.pre ++ cn.heavyMod ++ cn.noun

++ cn.lightMod ++ det.post, and any of these fields may be empty. The downside is that, in
order to generate a minimal number of test cases, the best strategy is to generate a test case
where the fewest possible of these strings are empty. This leads into fewer examples, but
they are harder to read.

The number of generated test cases doesn’t differ much in this example. Furthermore,
the version implemented with resource grammar includes many unnecessary distinctions
for such a small grammar: for instance, each of the two trees generated for AdjCN are put in
singular and plural contexts, which is completely irrelevant in the scope of our tiny grammar.
Thus we cannot draw any conclusions which strategy leads to more test cases. However, just
reading the generated 44 (20+24) trees suggests that the full resource grammar generates less
readable test cases.

5.5.4 Qualitative analysis
The Basque resource grammar is still work in progress, and the test sentences showed serious
problems in morphology. We thought it premature to get a fluent speaker to evaluate the
grammar, because the errors inmorphologywould probablymake it difficult to assess syntax
separately. Phrasebook was implemented using the resource grammar, so it was equally
error-ridden.

For Estonian, we read through all the Phrasebook test sentences. These 505 sentences
showed a handful of bugs—all coming from Phrasebook itself, not from the resource gram-
mar. Most were individual words having the wrong inflection paradigm (the right one exists
in the resource grammar, but a wrong one was chosen by the application grammarian), but
there were also some bugs in more general functions: for example, using a wrong form of na-
tionality when applied to a human and when to an institution, along the lines of “Spaniard
restaurant”. As expected, Phrasebook sentences were easier to read, and made more sense
semantically than sentences from the resource grammar.

We have been developing the tool by testing it on the Dutch resource grammar—this
process is described in more detail in Section 5.6. During 6 months, we have committed 22
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bugfixes on Dutch in the GFmain repository. (In the name of honesty, a few of the bugs were
caused by our earlier “fixes”—that was before we had implemented the comparison against
an older version of the grammar.) One of the bugs found in Dutch was also present in other
languages, so we fixed it in German and English.

5.6 Case study: Fixing the Dutch grammar

In this section, we describe the long-term project of fixing bugs in the Dutch resource gram-
mar. The content of the section describes general principles, and is well understandable for
readers who don’t speak Dutch themselves.

5.6.1 Experimental setup

We describe a collaboration between a grammarian (the author), who is an expert in GF, and
a native Dutch speaker. We wanted to investigate the feasibility of this division of labour:
ideally, the tester can be any native speaker, with no skills in GF whatsoever. In our case,
the tester also had GF skills, but did not have access to the grammar, only to the produced
sentences.

We generated a set of test sentences for each function in Dutch, with English translations,
and gave them to the native tester to read. The tester replied with a list of sentences that were
wrong, along with suggestions for improvement. Communication between the grammarian
and the tester was conducted via email.

5.6.2 Types of bugs

We can classify the bugs in two dimensions: how easy it is to understandwhat the problem is,
and how easy it is to fix the grammar. Ease of understanding is relative to the grammarian: a
trained linguist who is fluent in Dutch would have easy time pinpointing the error from the
generated test cases, having both intuition and technical names for things. Ease of fixing is
relative to the grammar: a given grammatical phenomenon can be implemented in a variety
of ways, some of which are harder to understand.

In more concrete terms, easy to fixmeans just some local changes in a single function. In
contrast, bugs that are hard to fix usually involve modifying several functions, restructuring
the code or adding new parameters.
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Easy to understand, easy to fix Perhaps the easiest bug to fix is to correct a wrong lexical
choice. Below is an example feedback from the tester.

“opschakelen” is not the right translation of “switch on”. “aanzetten” or “aan-
doen” is better.

Other examples include wrong inflection or agreement, e.g. the polite second person pro-
noun should take the third person singular verb form, but was mistakenly taking second
person forms.

Typically, bugs that are due to an almost complete implementation are easy to fix. For
instance, particle verbs were missing the particle in future tense. Looking at the generated
sentences, we could see the particle being in the right place in all other tenses, except for the
future. There was a single function that constructed all the tenses, and looking at the source
code, we could see the line ++ verb.particle in all other tenses except the future. In such a
case, fixing the bug is fairly trivial.

Easy to understand, hard to fix Dutch negation uses two strategies: the clausal negation
particle niet ‘not’, and the noun phrase negation geen ‘no’. There are some subtleties in their
usage—the following quote comes from the tester:

In any case, one can never say “eet niet wormen” (don’t eat worms, literally).
That should always be “eet geen wormen” (don’t eat worms, correctly trans-
lated)

We sent three more sentences as follow-up, and got the following answer:

eet niet deze wormen - maybe OK?, feels strange
eet deze wormen niet - definitely OK
eet niet 5 wormen - definitely OK

From the feedback, it was fairly easy to see the pattern: clauses with indefinite noun phrases
(aworm, worms) use noun phrase negation, but if the noun phrase has any other determiner
(these worms, fiveworms), then clausal negation is appropriate.

In the grammar, this fix required changes to 13 categories. Not all categories had to be
changed manually, but e.g. a change in NP changes all categories that depend on it, such as
Comp and VP. Depending on how modularly the grammar is implemented, this means that
some functions that operate on VP or Comp need to be changed too, when NP changes.
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Hard to understand, easy to fix The following two sentences were generated by the same
function, which turns superlative adjectives and ordinal numbers into complements. The
tester reported problems with both of them, as follows:

ik wil roodst worden –> ik wil het roodst worden (‘I want to become reddest’)
ik wil tiend worden –> ik wil tiendeworden (‘I want to become tenth’)

We gave some more sentences to the tester, and got the following feedback:

ik wil linker worden –> ik wil de linker worden (‘I want to become left’)
ik wil 224e worden = OK (‘I want to become 224th’)

This small example gave at least three different ways of using these complements: for
numerals, no article and -e at the end (tiende ‘tenth’); for superlative adjectives, the article het
and no -e at the end of the adjective (het roodst ‘the reddest’), and for a class of adjectives like
left and right, the article de (de linker ‘the left one’).

In addition, the grammar has a separate construction for combining a numeral and a
superlative adjective, e.g. “tenth best”. Since the tests were generated per function, the
main tester didn’t read those sentences at the same time. After noticing the additional func-
tion, we asked another informant how to say Nth best, and got an alternative construction
op (N-1) na best. Eventually, we got an answer that the strategy used for superlative adjec-
tives, i.e. with the article het and no -e in the number, is acceptable.

Once it was clear to the grammarian how to proceed, fixing the bug was easy. There was
already a parameter for the adjective form: attributive in two forms (strong and weak) and
one predicative, and the different classes of adjectives corresponded to the abstract syntax of
the GF Resource Grammar Library (RGL). Thus it was easy to modify the predicative form
in a different way for different adjective types. Earlier, the predicative was just identical
to the other attributive form, but now the AP type actually contains 3 different strings for
superlatives: beste and best for attributive and het best for predicative. Adjectives in positive
or comparative don’t get the article: good is just goede, goed and goed (not *het goed).

If there hadn’t been already a parameter for different adjective forms, or if the classes of
words with different behaviours hadn’t corresponded to the RGL categories, then this bug
would have required more work to fix.

Hard to understand, hard to fix As an example of a problem that was hard to understand
and hard to fix, we take the agreement of a reflexive construction in conjunctionwith a verbal
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complement. The example works as well for English, so for the convenience of the reader,
we use English as an example language. Now, consider the following sentences:

• I like myself / you like yourself / …
• I help [ you like yourself / them like themselves / … ]

The choices of reflexive pronoun seem reasonable: if the object of liking was I in the
second example, the pronoun wouldn’t be myself but me: “I help you like me”. In the GF
grammar, these sentences are constructed in a series of steps:

PredVP (UsePron i_Pron)

(ComplSlash

(SlashV2V help_V2V

(ReflVP

(SlashV2a like_V2)

)

)

(UsePron they_Pron)

)

The innermost subtree is SlashV2a like_V2: the transitive verb like is converted into a
VPSlash (i.e. VP\NP). Right after, the function ReflVP fills the NP slot and creates a VP. However,
no concrete string for the object is yet chosen, because the reflexive object depends on the
subject. The status of the VP is as follows at the stage ReflVP (SlashV2a like_V2):

s = "like" ;

ncomp = table { I => "myself" ; You => "yourself" ; … } ;

vcomp = [] ;

If we added a subject at that point, the subject would choose the appropriate agreement: I
likemyself, you like yourself. But instead, we add another slash-making construction, SlashV2V
help_V2V. Now the new verb help_V2V, which takes both a direct object and a verbal comple-
ment, becomes the main verb. The old verb like becomes a verbal complement.

s = "help" ;

ncomp = table { I => "myself" ; You => "yourself"; … } ;

vcomp = "like" ;
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The next stage is to add an NP complement they_Pron, using the function ComplSlash. The
standard way for ComplSlash is to insert its NP argument into the ncomp table, taking the vcomp
field along.

In the old buggy version, ComplSlash just concatenated the new object and the vcompwith
the reflexive that was already in the ncomp table. But the scope of the reflexive was wrong:
when adding an object to a VPSlash that has a verbal complement clause, the object should
complete the verbal complement and pick the agreement. It is not in the scope for the subject.
The old behaviour was as follows:

s = "help" ;

ncomp = table { I => "them like myself" ; You => "them like yourself"; … } ;

vcomp = [] ;

After fixing the bug, the table was as follows:

s = "help" ;

ncomp = table { _ => "them like themselves" } ;

vcomp = [] ;

But this turned out not to be a perfect solution. The exception to this is when the VPSlash
is formed by VPSlashPrep : VP -> Prep -> VPSlash. With the changes to ComplSlash, we sud-
denly got sentences such as “[I like ourselves] without us”. This would be a valid linearisation
for a tree where [ourselves without us] is a constituent (such a tree is formed by another set
of functions and was linearised correctly), but in this case, the order of the constructors is as
follows:

• ReflVP like

s = "like" ;

ncomp = table { I => "myself" ; You => "yourself" ; … } ;

• VPSlashPrep (ReflVP like) without

s = "like" ;

ncomp = table { I => "myself" ; You => "yourself" ; … } ;

prep = "without"

• ComplSlash (VPSlashPrep (ReflVP like) without) we_Pron)
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s = "like" ;

ncomp = table { I => "myself" ; You => "yourself" ; … } ;

adv = "without us"

The desired behaviour is to put the complement into an adverbial slot and keeping the
agreement in ncomp open to wait for the subject. But the following happened after our initial
changes in ComplSlash:

s = "like" ;

ncomp = table { _ => "ourselves without us" } ;

To fix this problem, we added another parameter to the category VPSlash. All VPSlashes
constructed by VPSlashPrep have now a missingAdv set True: this tells that the VPSlash is not
missing a core argument, so it shouldn’t affect the agreement. With the new parameter,
ComplSlash can now distinguish when to choose the agreement from the NP argument and
when to leave it open for the subject.

All in all, this was a complex phenomenon, and there were different interpretations in
the RGL. For the Scandinavian languages, the behaviour was as we expected, but for English
and German, it was similar to Dutch. We fixed the grammar for all three languages (Dutch,
English and German), using the same strategy.

5.6.3 Results
How many bugs were fixed and how many were of which kind? We skip the ease of under-
standing, and just classify the bugs by how easy they were to fix.

Easy to fix

1. Several lexical changes.
2. Several inflection fixes.
3. youPol_Pron had agreement of Sg P2, changed it to Sg P3 so that a correct reflexive pro-

noun is chosen.
4. Choose always stressed forms of personal pronouns.
5. Change agreement in conjunctions
6. Extra prefix in prefix verbs for perfect tense
7. Missing participle in future tense
8. Plural imperatives
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9. Two bugs in postmodifier APs: placement and the adjective form. een getrouwde worm
‘a married worm’ is correct, but a heavier AP, such as getrouwd met mij ‘married with
me’ should become a postmodifier (een worm getrouwd met mij), and in that case, the
adjective form should be without the e at the end.

10. Superlatives and ordinals
11. DetQuant (and DetQuantOrd) combining a Quant and a Num, andwhen Num is an actual digit,

both Quant and the Num contribute with a string, thus becoming een 1 huis ‘a 1 house’.

Hard to fix

1. Add missing inflected forms for past participles + add missing linearisation for the
function PastPartAP

2. Preposition contraction (met dit huis ‘with this house’ and hiermee ‘with this’)
3. Negation patterns (niet and geen)
4. Variety of word order weirdness in verbal complements: affected several functions,

fixed in several functions
5. Scope of ReflVP with VPSlash

Effort Tester 1 has read around 5,000 sentences over the course of several weeks, usually
taking just minutes of time at one go. Tester 2 has been used as a backup when Tester 1 was
not available and the grammarian wanted quick feedback. Where Tester 1 was instructed
to read through a long list of sentences (out of which most are correct), Tester 2 has been
given sentences that Tester 1 already flagged as wrong. All in all, Tester 2 has read around
50 sentences.

We found that communication via email was suboptimal, and would be hard to scale
up to more testers. In the future, we aim to improve the process management with a more
efficient workbench.

5.7 Conclusion and future work
We have presented method for automatically generating minimal and exhaustive sets of test
cases for testing grammars. We have found the tool useful in large-scale grammar writing,
in a context where grammars need to be reliable.

One problemwe have encountered is that the test sentences from resource grammars are
often nonsensical semantically, and hence a native speaker might intuitively say that a sen-
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tence is wrong, even though it is just unnatural. For instance, the function SelfAdVVP covers
constructions such as “the president herself is at home”. However, the function itself is com-
pletely general and can take any verb phrase and add the reflexive pronoun, and furthermore
it may add any subject NP, or none at all, for context. This means that bizarre combinations
often appear in the generated test cases, such as “to always itself be hungry”–there is no
meaningful subject present, but the VP requires a reflexive pronoun anyway.

So far the only mode of operation is generating test cases for a single function. As future
work, we are planning to add a separate mode for testing the whole grammar from scratch:
intentionally create trees that test several functions at once. We have an implementation only
for GF grammars so far, but the general method works for any grammar formalism that can
be compiled into PMCFG. GF already supports reading context-free grammars, so testing
any existing CFG is a matter of some preprocessing.
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Conclusions

This chapter concludes the thesis. Firstly, we summarise the main results of this thesis. For
the remainder of this chapter, we discuss insights gained from this work, and possible direc-
tions for future research.

6.1 Summary of the thesis
Weset out to test and verify natural language grammars. In this thesis, we have described two
systems for two different grammar formalisms: Constraint Grammar (CG) and Grammatical
Framework (GF).

For CG, previous evaluation methods relied on a gold standard corpus, or manual in-
spection if there was no corpus available. Our work started with the observation that CG
rules resemble logical formulas; remove and if can be expressed as negations and implica-
tions respectively. As noted by Lager (1998), a straight-forward implementation in a logical
framework results in a parallel and unordered CG.

Our implementation of the sequential CG is very similar to the encoding by Lager and
Nivre (2001). However, we modified the setup in a crucial detail: instead of an actual sen-
tence, we applied the rules to a symbolic sentence, where every word contains every possible
reading. Then, instead of the original question “Which readings are true after all rule ap-
plications?”, we found a meaningful SAT-problem, with the question “Which readings were
originally true?”

We exploited this newly found property for grammar analysis. Our method tests the
internal consistency of a grammar, only relying on a morphological lexicon. The system ex-
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plores all possibilities to see if a particular rule can apply: if there is no input that would
trigger a rule r after rule r′, we know that rules r and r′ are in conflict. This method was
successful in finding such conflicts, when tested with grammars between 60–1200 rules. In
addition, the mechanisms that we developed in order to test CG have interesting side effects:
namely, they let us model CG as a generative formalism, which opens potential for deriving
CG grammars from other grammar formalisms.

When testing GF grammars, earlier we relied on an informant to remember and explain
all important phenomena to test, and a grammarian to form all relevant trees that showcase
these phenomena. This time, our inspiration was all the work done for automatic test case
generation for general software, such as Celentano et al. (1980); Geist et al. (1996); Claessen
andHughes (2011). Software testing dealswith notions of coverage and compactness, and de-
riving test cases from a formal specification; this proved to be a useful approach for grammar
testing as well.

In this thesis, we have presented a tool that automates the two steps: identifying the gram-
matical phenomena to test and formulating them as trees. Now, the grammarian only needs
to input a function or category, and the system outputs a minimal and representative set of
sentences that showcases all the variation in the given function or category. The informant
only needs to read and evaluate the example sentences. (Of course, humans are still needed
to write the grammars in the first place, but we consider that a fun task!)

6.2 Insights and future directions

6.2.1 On completeness
Testing can only show the presence of bugs, not the absence. The tools introduced in this
thesis are no exception: herewe comment on the reliability and completeness of both systems.

CG The quality of a CG grammar can be judged according to purely internal criteria: either
the rules are internally consistent or not. It is a separate question (not the research question
in this thesis!) whether the CG grammar also does a good job at disambiguating natural
language. Such questions are better left for corpus-based methods.

To be more precise, a CG grammar is internally consistent given a certain tagset, rules
to combine tags into readings, and ambiguity classes. This means that reliability of our CG
analysis tool depends on the consistency of the CG grammar and the morphological lexicon
where the tags and the readings come from. If themorphological lexicon contains awordwith
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the wrong tag, or the specifications for how tags can combine into readings are outdated, our
tool may do the wrong thing: report a false conflict or fail to detect a real error.

But if the lexicon and tag set are correct, then we can be fairly certain of the analysis.
If the grammar is deemed conflict-free, it means that for each rule r in the grammar, the
program has found a sequence of words which can pass through all previous rules, and r

can remove something from at least one word. In other words, the system has to generate a
positive example for all rules r it judges conflict-free. This r doesn’t even need to do the right
thing—it may as well be “wish is a verb in the context the wish”—but we can still trust that r
doesn’t conflict with any of the previous rules in the grammar.

Can we trust the program when it finds r being in conflict with some other rule? We use
symbolic evaluation to explore all possibilities: if there was a way in which r could apply
(e.g. create a context which prevents a previous rule from matching), the SAT-solver would
have found it. If we find r impossible to apply, it has to be one of the following causes: (a) its
conditions are inconsistent (e.g. “-1 has to be a noun and not be a noun”)1, or (b) another rule
r′ or set of rulesR′ before it forces the symbolic sentence to be in a certain way. In the case of
(a), the human grammarian would hopefully see the error when it is pointed out. In the case
of (b), even if the conflict is not clear by just looking at the grammar, the SAT-solver can help
by generating a positive example, i.e. a sequence that triggers r when it goes through all the
previous rules except r′.

GF On the GF side, we are trying to answer the harder question: does the grammar do an
adequate job at producing some natural language? For that, we need a set of test sentences
that cover all phenomena in the grammar. In the CG world, we had a natural restriction:
there is only a few hundreds or thousands of different tags in the morphological lexicon, and
there are restrictions in how they mix together into readings. So the language of the tags and
readings is finite—sounds reasonable that we can do the job thoroughly.

But natural language is infinite. How does that work with a finite set of test cases? First
of all, we are testing a PMCFG representation of natural language. This representation may
still define an infinite language: for example, the grammar can parse and produce a sentence
with arbitrarily many subordinate clauses (I know that you think that she disagrees that …this
example is contrived), only limited by physical constraints such as memory or having a source
of power. But importantly, the grammar still has a finite number of functions, and all those
functions can only take arguments of finitely many different types.

1If we have ambiguity classes in place, the inconsistency can also be more subtle, e.g. “-1 has to be noun and
punctuation”, assuming that there is no word form in the lexicon that has such an ambiguity.
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How about repeating the same function arbitrarily many times? Could it be that the tree
for you think that X is linearised correctly, but I know that you think that X introduces an error?
We can answer this definitely, and the answer is no. In the PMCFG format, all variation is en-
coded as parameters: if the nth repetition of some function would cause different behaviour,
then there would be a parameter that counts the applications, and the program would gen-
erate separate test cases for one subordinate clause, and n nested subordinate clauses.

But we can still fail to generate a test that reveals the error—the failure mode is, simply,
not enough parameters in the grammar. Consider the AdjCN function for Spanish again, and
say that we don’t have the parameter for pre- and postmodifier at all, and AdjCN only comes
in two variants, one for feminine and one for masculine. Suppose that all adjectives are,
incorrectly, postmodifiers. Then we would notice the error only if the single AP argument for
AdjCNfem and AdjCNmasc happened to be a premodifier one.

If the missing parameter handles a common phenomenon, it is more likely that we catch
the error even with missing parameters. This was the case with, for example, Dutch preposi-
tion contraction (from Section 5.2.1). Originally, none of the prepositions contracted, but this
is the most common behaviour—only a handful of prepositions don’t contract. Thus we got
some test cases which showed the error, and went on to fix the grammar. After the fixes, the
system created separate test cases for contracting and non-contracting prepositions.

6.2.2 Future directions

The tools are available, and have had already some usage outside the research group. Out
of the two tools, the GF test suite generation shows more potential for wider adoption and
becoming a standard practice of GF grammar engineering.

There are many directions to develop the GF test suite tool further. As we mention in
Section 5.7, there is no semantic coherence in the generated sentences—this is particularly
important when working with non-linguist testers. However, if it turns out that most test-
ing work is done on application grammars, this step may not be as crucial as for testing
resource grammars. Furthermore, resource grammarians are often linguists themselves, and
thus more capable of distinguishing between semantic and syntactic weirdness.

Another interesting feature is shrinking the test sentences. Especially for resource gram-
mars, the generated examples are quite long: this is due to the preference for maximally
unique fields, and “always runwithMary” is amore distinguishing example of a verb phrase
than “run”. However, if an error is found in a sentence with “always run with Mary”, it
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would be desirable to generate another example with smaller examples, such as “run”, “al-
ways run” and “run with Mary”, to help narrow down which function introduces the error.

As we mention in Section 5.6, communication with the testers via email is not a scalable
solution. We would like to use the tool as a part of a more general language workbench,
where the tester can read test sentences along with a linearisation in another language they
know. The tester can then comment on the sentences, and give a correct linearisation in cases
where the grammar outputs an incorrect sentence. Then when the grammar is updated, the
grammarian could see immediatelywhether the produced sentences are the same as the tester
specified or not.

Inmore philosophical terms, wewould like the grammarwriting community to view test-
ing, in terms of Beizer (2003), as a “mental discipline that helps all IT professionals develop
higher-quality software.” Our work is by no means the first approach to grammar testing:
for instance, Butt et al. (1999) recommend frequent use of test suites, as well as extensive
documentation of grammars. We argue that generating test suites automatically from the
grammar itself, combined with treebanks for coverage testing, is an even better way to test
grammars. It is always a risk that a test suite is deprecated when the grammar is changed;
with automatic generation, the test suite is updated along with the grammar.
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Appendix: User manual for gftest

gftest is a program for automatically generating systematic test cases for GF grammars. The
basic use case is to give gftest a PGF grammar, a concrete language and a function; then
gftest generates a representative and minimal set of example sentences for a human to look
at. There are examples of actual generated test cases later in this document, as well as the full
list of options to give to gftest. It is recommended to compile your PGF with the gf flag
--optimize-pgf, otherwise this tool can be very slow. For example, gf -make --optimize-pgf

LangEng.gf.
A live version of this user manual is found at https://github.com/GrammaticalFramework/

gftest#readme. The version in this thesis is from October 2018.

Table of Contents
• Installation
• Common use cases

◦ Grammar: -g
◦ Language: -l
◦ Function(s) to test: -f
◦ Start category for context: -s
◦ Category to test: -c
◦ Tree to test: -t
◦ Compare against an old version of the grammar: -o
◦ Information about a particular string: --concr-string
◦ Write into a file: -w

• Less common use cases

◦ Empty or always identical fields: -e, -q
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◦ Unused fields: -u
◦ Erased trees: -r
◦ Debug information: -d

• Detailed information about the grammar

◦ --show-cats

◦ --show-funs

◦ --show-coercions

◦ --show-contexts

◦ --funs-of-arity

Installation
Clone this repository git clone https://github.com/GrammaticalFramework/gftest.git. See
installation instructions in the Travis file https://github.com/GrammaticalFramework/gftest/

blob/master/.travis.yml.

Common use cases
Run gftest --help of gftest -? to get the list of options.

Common flags:

-g --grammar=FILE Path to the grammar (PGF) you want to test

-l --lang="Eng Swe" Concrete syntax + optional translations

-f --function=UseN Test the given function(s)

-c --category=NP Test all functions with given goal category

-t --tree="UseN tree_N" Test the given tree

-s --start-cat=Utt Use the given category as start category

--show-cats Show all available categories

--show-funs Show all available functions

--funs-of-arity=2 Show all functions of arity 2

--show-coercions Show coercions in the grammar

--show-contexts=8410 Show contexts for a given concrete type (given as FId)

--concr-string=the Show all functions that include given string

-q --equal-fields Show fields whose strings are always identical

-e --empty-fields Show fields whose strings are always empty
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-u --unused-fields Show fields that never make it into the top category

-r --erased-trees Show trees that are erased

-o --old-grammar=ITEM Path to an earlier version of the grammar

--only-changed-cats When comparing against an earlier version of a

grammar, only test functions in categories that have

changed between versions

-b --treebank=ITEM Path to a treebank

--count-trees=3 Number of trees of depth <depth>

-d --debug Show debug output

-w --write-to-file Write the results in a file (<GRAMMAR>_<FUN>.org)

-? --help Display help message

-V --version Print version information

Grammar: -g

Give the PGF grammar as an argument with -g. If the file is not in the same directory, you
need to give the full file path.

It is recommended to compile your PGF with the gf flag --optimize-pgf, otherwise this
tool can be very slow. For example, gf -make --optimize-pgf FoodsEng.gf FoodsGer.gf.

You can give the grammar with or without .pgf.
Without a concrete syntax you can’t do much, but you can see the available categories

and functions with --show-cats and --show-funs

Examples:

• gftest -g Foods --show-funs

• gftest -g /home/inari/grammars/LangEng.pgf --show-cats

Language: -l

Give a concrete language. It assumes the format AbsNameConcName, and you should only give
the ConcName part.

You can give multiple languages, in which case it will create the test cases based on the
first, and show translations in the rest.

Examples:

• gftest -g Phrasebook -l Swe --show-cats
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• gftest -g Foods -l "Spa Eng" -f Pizza

Function(s) to test: -f

Given a grammar (-g) and a concrete language ( -l), test a function or several functions.
Examples:

• gftest -g Lang -l "Dut Eng" -f UseN

• gftest -g Phrasebook -l Spa -f "ByTransp ByFoot"

You can use the wildcard *, if you want to match multiple functions. Examples:

• gftest -g Lang -l Eng -f "*hat*"

matches hat_N, hate_V2, that_Quant, that_Subj, whatPl_IP and whatSg_IP.

• gftest -g Lang -l Eng -f "*hat*u*"

matches that_Quant and that_Subj.

• gftest -g Lang -l Eng -f "*"

matches all functions in the grammar. (As ofMarch 2018, takes 13minutes for the English
resource grammar, and results in ~40k lines. You may not want to do this for big grammars.)

Start category for context: -s

Give a start category for contexts. Used in conjunction with -f, -c, -t or --count-trees. If not
specified, contexts are created for the start category of the grammar.

Example:

• gftest -g Lang -l "Dut Eng" -f UseN -s Adv

This creates a hole of CN in Adv, instead of the default start category.

Category to test: -c

Given a grammar (-g) and a concrete language ( -l), test all functions that return a given
category.

Examples:

• gftest -g Phrasebook -l Fre -c Modality

• gftest -g Phrasebook -l Fre -c ByTransport -s Action
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Tree to test: -t

Given a grammar (-g) and a concrete language ( -l), test a complete tree.
Example:

• gftest -g Phrasebook -l Dut -t "ByTransp Bus"

You can combine it with any of the other flags, e.g. put it in a different start category:

• gftest -g Phrasebook -l Dut -t "ByTransp Bus" -s Action

This may be useful for the following case. Say you tested PrepNP, and the default NP it
gave you only uses the word car, but you would really want to see it for some other noun—
maybe car_N itself is buggy, and you want to be sure that PrepNPworks properly. So then you
can call the following:

• gftest -g TestLang -l Eng -t "PrepNP with_Prep (MassNP (UseN beer_N))"

Compare against an old version of the grammar: -o

Give a grammar, a concrete syntax, and an old version of the same grammar as a separate
PGF file. The program generates test sentences for all functions (if no other arguments), lin-
earises with both grammars, and outputs those that differ between the versions. It writes the
differences into files.

Example:

> gftest -g TestLang -l Eng -o TestLangOld

Created file TestLangEng-ccat-diff.org

Testing functions in…

<categories flashing by>

Created file TestLangEng-lin-diff.org

Created files TestLangEng-(old|new)-funs.org

• TestLangEng-ccat-diff.org: All concrete categories that have changed. Shows e.g. if
you added or removed a parameter or a field.

• TestLangEng-lin-diff.org (usually the most relevant file): All trees that have different
linearisations in the following format.
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* send_V3

** UseCl (TTAnt TPres ASimul) PPos

(PredVP (UsePron we_Pron)

(ReflVP (Slash3V3 _ (UsePron it_Pron))))

TestLangDut> we sturen onszelf ernaar

TestLangDut-OLD> we sturen zichzelf ernaar

** UseCl (TTAnt TPast ASimul) PPos

(PredVP (UsePron we_Pron)

(ReflVP (Slash3V3 _ (UsePron it_Pron))))

TestLangDut> we stuurden onszelf ernaar

TestLangDut-OLD> we stuurden zichzelf ernaar

• TestLangEng-old-funs.org and TestLangEng-new-funs.org: groups the functions by
their concrete categories. Shows difference if you have e.g. added or removed parame-
ters, and that has created new versions of some functions: say you didn’t have gender
in nouns, but now you have, then all functions taking nouns have suddenly a gendered
version. (This is kind of hard to read, don’t worry too much if the output doesn’t make
any sense.)

Additional arguments to -o

The default mode is to test all functions, but you can also give any combination of -s, -f,
-c, --treebank/-b and --only-changed-cats.

With -s, you can change the start category in which contexts are generated.
With -f and -c, it tests only the specified functions and categories. With -b FILEPATH

(-b=--treebank), it tests only the trees in the file.
With --only-changed-cats, it only test functions in those categories that have changed

between the two versions.
Examples:

• gftest -g TestLang -l Eng -o TestLangOld tests all functions
• gftest -g TestLang -l Eng -o TestLangOld -s S tests all functions in start category S
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• gftest -g TestLang -l Eng -o TestLangOld --only-changed-cats tests only changed
categories. If no categories have changed (and no other arguments specified), tests
everything.

• gftest -g TestLang -l Eng -o TestLangOld -f "AdjCN AdvCN" -c Adv -b trees.txt

tests functions, AdjCN and AdvCN; same for all functions that produce an Adv, and all
trees in trees.txt.

Information about a particular string: --concr-string

Show all functions that introduce the string given as an argument.
Example:

• gftest -g Lang -l Eng --concr-string it

which gives the answer ==> CleftAdv, CleftNP, DefArt, ImpersCl, it_Pron

(Note that you have the same feature in GF shell, command morpho_analyse/ma.)

Write into a file: -w

Writes the results into a file of format <GRAMMAR>_<FUN or CAT>.org, e.g. TestLangEng-
UseN.org. Recommended to open it in emacs org-mode, so you get an overview, and you
can maybe ignore some trees if you think they are redundant.

1) When you open the file, you see a list of generated test cases, like this:

Place cursor to the left and click tab to open it.

2) You get a list of contexts for the test case. Keep the cursor where it was if you want
to open everything at the same time. Alternatively, scroll down to one of the contexts
and press tab there, if you only want to open one.
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3) Now you can read the linearisations.

If you want to close the test case, just press tab again, keeping the cursor where it’s been
all the time (line 31 in the pictures).

Less common use cases
Empty or always identical fields: -e, -q

Information about the fields: always empty, or always equal to each other. Example of empty
fields:

> gftest -g Lang -l Dut -e

* Empty fields:

==> Ant: s

==> Pol: s

==> Temp: s

==> Tense: s

==> V: particle, prefix
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The categories Ant, Pol, Temp and Tense are as expected empty; there’s no string to be
added to the sentences, just a parameter that chooses the right forms of the clause. V having
empty fields particle and prefix is in this case just an artefact of a small lexicon: we happen
to have no intransitive verbs with a particle or prefix in the core 300-word vocabulary. But a
grammarian would know that it’s still relevant to keep those fields, because in some bigger
application such a verbmay show up. On the other hand, if some other field is always empty,
it might be a hint for the grammarian to remove it altogether.

Example of equal fields:

> gftest -g Lang -l Dut -q

* Equal fields:

==> RCl:

s Pres Simul Pos Utr Pl

s Pres Simul Pos Neutr Pl

==> RCl:

s Pres Simul Neg Utr Pl

s Pres Simul Neg Neutr Pl

==> RCl:

s Pres Anter Pos Utr Pl

s Pres Anter Pos Neutr Pl

==> RCl:

s Pres Anter Neg Utr Pl

s Pres Anter Neg Neutr Pl

==> RCl:

s Past Simul Pos Utr Pl

s Past Simul Pos Neutr Pl

…

Here we can see that in relative clauses, gender does not seem to play any role in plural.
This could be a hint for the grammarian to make a leaner parameter type, e.g. param RClAgr

= SgAgr <everything incl. gender> | PlAgr <no gender here>.
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Unused fields: -u

These fields are not empty, but they are never used in the top category. The top category can
be specified by -s, otherwise it is the default start category of the grammar.

Note that if you give a start category from very low, such as Adv, you get a whole lot of
categories and fields that naturally have no way of ever making it into an adverb. So this is
mostly meaningful to use for the start category.

Erased trees: -r

Show trees that are erased in some function, i.e. a function F : A -> B -> C has arguments A
and B, but doesn’t use one of them in the resulting tree of type C. This is usually a bug.

Example:

> gftest -g Lang -l "Dut Eng" -r

* Erased trees:

** RelCl (ExistNP something_NP) : RCl

- Tree: AdvS (PrepNP with_Prep

(RelNP (UsePron it_Pron)

(UseRCl (TTAnt TPres ASimul) PPos

(RelCl (ExistNP something_NP)))))

(UseCl (TTAnt TPres ASimul) PPos (ExistNP something_NP))

- Lin: ermee is er iets

- Trans: with it, such that there is something, there is something

** write_V2 : V2

- Tree: AdvS (PrepNP with_Prep

(PPartNP (UsePron it_Pron) write_V2))

(UseCl (TTAnt TPres ASimul) PPos (ExistNP something_NP))

- Lin: ermee is er iets

- Trans: with it written there is something

In the first result, an argument of type RCl is missing in the tree constructed by RelNP, and
in the second result, the argument write_V2 is missing in the tree constructed by PPartNP. In
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both cases, the English linearisation contains all the arguments, but in the Dutch one they are
missing. (This bug is already fixed, just showing it here to demonstrate the feature.)

Detailed information about the grammar
Debug information: -d

When combined with -f, -c or -t, two things happen:

1) The trees are linearised using tabularLinearize, which shows the inflection table of all
forms.

2) You can see traces of pruning that happens in testing functions: contexts that are com-
mon to several concrete categories are put under a separate test case.

When combined with --show-cats, also the concrete categories are shown.

--show-cats

Shows the categories in the grammar. With --debug/-d, shows also concrete categories.
Example:

> gftest -g Foods -l Spa --show-cats -d

* Categories in the grammar:

Comment

Compiles to concrete category 0

Item

Compiles to concrete categories 1—4

Kind

Compiles to concrete categories 5—6

Quality

Compiles to concrete categories 7—8

Question

Compiles to concrete category 9

--show-funs

Shows the functions in the grammar. (Nothing fancy happens with other flags.)
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--show-coercions

First I’ll explain what coercions are, then why it may be interesting to show them. Let’s
take a Spanish Foods grammar, and consider the category Quality, e.g. Good and Vegan.
Good “bueno/buena/buenos/buenas” goes before the noun it modifies, whereas Vegan

“vegano/vegana/…” goes after, so these will become different concrete categories in the
PGF: Quality_before and Quality_after. (In reality, they are something like Quality_7 and
Quality_8 though.)

Now, this difference is meaningful only when the adjective is modifying the noun: “la
buena pizza” vs. “la pizza vegana”. But when the adjective is in a predicative position, they
both behave the same: “la pizza es buena” and “la pizza es vegana”. For this, the grammar
creates a coercion: both Quality_before and Quality_aftermay be treated as Quality_whatever.
To save some redundant work, this coercion Quality_whatever appears in the type of predica-
tive function, whereas the modification function has to be split into two different functions,
one taking Quality_before and other Quality_after.

Now you knowwhat coercions are, this is how it looks like in the program (just mentally
replace 7 with before, 8 with after and 11 with whatever.):

> gftest -g Foods -l Spa --show-coercions

* Coercions in the grammar:

Quality_7--->_11

Quality_8--->_11

--show-contexts

Show contexts for a given concrete category, given as an FId (i.e. Int). The concrete category
may be a coercion or a normal category. By combining with -s, you can change the start
category of the context. (You can get a list of all concrete categories by pairing --show-cats

with --debug: see --show-cats.)
Examples:

• First, find out some concrete categories:

> gftest -g Foods -l Spa --show-cats -d

…

Quality

Compiles to concrete categories 7—8

…
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• Then, list the contexts for some of them, say Quality_7:

> gftest -g Foods -l Spa --show-contexts 7

Pred (That (Mod _ Wine)) Vegan

Pred (That Wine) _

Pred (These (Mod _ Wine)) Vegan

Pred (These Wine) _

Pred (That (Mod _ Pizza)) Vegan

Pred (That Pizza) _

Pred (These (Mod _ Pizza)) Vegan

Pred (These Pizza) _

• You can also give it a range of arguments, with starting and ending category in quotes:
gftest -g Foods -l Spa --show-contexts "7 10"

• Check out from --show-coercionshow to find coercions, andyou can try --show-contexts
with them:

> gftest -g Foods -l Spa --show-contexts 11

Pred (That Wine) _

Pred (These Wine) _

Pred (That Pizza) _

Pred (These Pizza) _

--count-trees

Number of trees up to given size. Gives a number howmany trees, and a couple of examples
from the highest size. Examples:

> gftest -g TestLang -l Eng --count-trees 10

There are 675312 trees up to size 10, and 624512 of exactly size 10.

For example:

* AdvS today_Adv (UseCl (TTAnt TPres ASimul) PPos (ExistNP (UsePron i_Pron)))

* UseCl (TTAnt TCond AAnter) PNeg (PredVP (SelfNP (UsePron they_Pron)) UseCopula)

This counts the number of trees in the start category. You can also specify a category:
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> gftest -g TestLang -l Eng --count-trees 4 -s Adv

There are 2409 trees up to size 4, and 2163 of exactly size 4.

For example:

* AdAdv very_AdA (PositAdvAdj young_A)

* PrepNP above_Prep (UsePron they_Pron)

--funs-of-arity

Show all functions of given arity (not up to).
Example:

> gftest -g Phrasebook --funs-of-arity 3

* Functions in the grammar of arity 3:

ADoVerbPhrasePlace

AModVerbPhrase

HowFarFromBy

QWhereModVerbPhrase
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