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ON THE NATURE OP REINFORCEMENT

Helge Malmgren
Malmgren, H. On the nature of reinforcement. Göteborg 
Psychological Reports, 1 985 , 15 , No. 3. - An abstract 
analysis of reinforcement for randomly composed finite 
deterministic automata is proposed. Negative reinforce­
ment is explained as being a result of a temporary rise 
in the diversity of the automaton's input. Such a rise 
tends to de-stabilize the automaton, and successive such 
de-stabilizations may amount to a kinesis in the inter­
nal state space of the automaton. It is shown that ran­
domly composed automata of a certain kind (inert automa­
ta with randomly assigned state-determined output) will 
with a high probability learn to perform correctly if 
all outputs except those belonging to a certain subset 
are negatively reinforced in this way. A realization of 
the abstract model in terms of a hierarchical, arousa- 
ble nervous system is then proposed, and a computer si­
mulation of a simplified such realization is presented.

Key words: Automata, learning, operant conditioning, re­
inforcement, stochastic processes.

In two previous papers (Malmgren 1980, 1984) I showed that 
phenomena analogous to habituation and simple forms of classical 
conditioning will tend to occur more often than not in randomly 
composed finite deterministic automata. I also argued that 
these probabilities can be turned into reliable performance by 
means of "mass action", if the inputs and outputs of a large 
collection of such randomly composed systems are organized in 
certain ways. In this essay I instead address the question 
whether operant conditioning can be given a similar kind of ex­
planation. By a "similar kind of explanation" I here refer to 
an explanation with the following properties:

1) It is framed in purely non-intentional (non-cognitivistic) 
terms. This disqualifies a number of candidates which essenti- 
iy refer to states of belief, expectations etc.

2) It is formulated in abstract causal terras, i.e. without re­
ference to this or that realization of the system in question. 
This excludes explanations in terms of, e.g., special synaptic 
mechanisms.

3) Its aim is to show the very possibility of learning under 
certain extremely simple assumptions - not to predict actual pa­
rameters of learning phenomena.

Of course, this explanatory aim is not incompatible with a 
belief on my behalf that we also need int.entionalistic explana­
tions (at least in certain cases), concrete physiological expla­
nations and detailed, parametric models in order to completely 
understand the phenomena of learning. However, explanations of 
the kind explored here may possibly

a) facilitate the reduction of intentional to non-intentional 
discourse;
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b) explain why learning phenomena are ubiquitous in the 'living 
world, and not confined to certain kinds of organisms;

c) exhibit the common structure of several more concrete and 
more detailed explanations.

Reinforcement in classical and operant conditioning
When we say that a certain process involves the "reinforcement” 
of a response R (or a central state C), we mean that it alters 
the probability that R (or C) will occur. The experimental 
paradigms of classical and operant conditioning seem to demon­
strate that at least three kinds of reinforcing processes are at 
work in associative learning. In classical conditioning, the 
contingency between CS and UCS positively reinforces (strength­
ens) responses to CS which are similar to the organism's fixed 
response to UCS. In the "operant” paradigm, the occurrence of a 
certain kind of event, a so-called ("positive” or "negative”) 
"reinforcer” is made contingent on the occurrence of a selected 
response R on behalf of the organism. This arrangement often 
strengthens (or, in the case of a ”negative” reinforcer, weak­
ens) R even if R is not similar to the fixed or "unconditional” 
response to the reinforcer. In this latter way one can, e.g., 
learn a rat to respond with "approach behaviour" in order to 
avoid a shock signalled by a discriminative stimulus D, although 
in this case the simultaneous classical conditioning of "escape" 
reactions to D tend to interfere heavily with the learning of 
the adequate response. (For details, the reader is referred to 
Mackintosh 1983).

In Malmgren 1984, I argued that the reinforcement involved 
in a simplified form of classical conditioning may have a very 
straightforward explanation in terms of certain stability pro­
perties of finite deterministic automata under restricted in­
put. In brief, I define a randomly composed automaton as an au­
tomaton the transition matrix of which is construed by randomly 
assigning states to places in the matrix. If a mixture of such 
randomly composed automata is equipped with a certain "uncondi­
tioned response" R to UCS and given UCS at irregular intervals, 
the consecutive responses to the input proceeding UCS will more 
and more tend to be identical to R.

In order now to give a possible abstractly causal explanati­
on of operant reinforcement, I first want to propose a certain 
automaton-theoretic analysis of the working of negative reinfor- 
ers. The idea is simply this: since the finite automaton tends 
to behave in a more stable way under a restricted input than if 
given a more diversified input, any device which raises the di­
versity of the input will de-stabilize the automaton. This, in 
turn, means that the automaton's general tendency to behave in 
the same way in the future as it did before will be smaller than 
if the "diversifying" device had not been operating. One reason 
for choosing this interpretation of the negatively reinforcing 
event is the physiological fact that there is, at least in the 
higher animals, a device which works in this de-stabi1izing way: 
namely, the arousal system, which certainly is very much at work 
in shock reactions, and which tends to raise the information in-
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flou into the CNS - i.e., to diversify its input.
I will not attempt: a detailed analysis of positive operant 

reinforcement; suffices it to say that in my opinion it must be 
given a quite similar treatment in terms of louering of the in­
formation inflow (restricting input). Concerning the relations 
between classical and operant reinforcement, see the last para 
graph.

Operant conditioning as a kinesis in abstract state space
It is well known that many lower organisms succeed in finding 
food, shelter etc by means of so-called "kinesis", i.e. repeat­
ed, pseudo-randomly directed movements, the frequency and/or 
size of which are controlled by some parameter of the environ- 
ent. Abstractly, the mechanism by which the appropriate direc- 
tion of movement is found by means of pseudo-random changes of 
dTFection, which cease when a "good” direction is found, is very 
similar to kinesis proper, and it is sometimes classified as a 
kind of kinesis ("klinokinesis”, in contradistinction to the 
simple ”orthokinesis”; for terminology and examples see Carlile 
1975). In any case, both are good examples of "selection by 
consequences" (Skinner 1981), and it is useful to compare them 
with operant conditioning.

Imagine a kinesis which takes place in the inner state space 
of the organism. Suppose that there is some - as yet unexplain­
ed - pseudo-randomizing device RND, such that RND is switched on 
every time the organism is in a state belonging to a region R of 
its state space. It will then go to any state with the same 
probability in the next moment. It is easily seen that some­
thing like kinesis away from R will occur if an only if the or­
ganism's tendency to stay in R in the absence of RND is greater 
than that expected from a random selection of states.

Now, it is a basic property of finite deterministic systems 
that they tend to restrict their behaviour to relatively small 
sets of states; consequently they tend to return to "same state" 
with a probability exceeding that which is given by the RND 
device. (For some illustrations of this principle, see Halmgren 
1980). Therefore, a randomly cboosen such system with the RND 
coupled to a region R will probably tend to leave R more often 
than will the same system without RND. By the same token, if 
once "randomized out" of R it will also tend to be back in R 
after a given period of time - with less probability than if 
left in R. As a whole, it will therefore tend to avoid R.

The situation is, however, different from ordinary kinesis in 
that external space has a certain topology and metric which in­
fluence the character of adaptation by kinetic movements in spa­
ce. For example, it is certainly easier for organisms to learn 
to stay in a spatially connected "good" region than in a discon­
nected one. In the randomly composed automaton there is no pre­
assigned "nearness" or "connectedness” relations between states, 
and different automata may have very different topologies. Whe­
ther there is, for example, two different regions which are not 
accessible from each other under a given input depends on the 
result of the random construction of the relevant transition
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f unction.
Let us then investigate to what degree kinesis in state 

space uill actually be similar to kinesis in external space.
An illustrative special case is given by the random system 

(in the sense of îlalmgren 1984) with n states and a constant in­
put, trying to avoid k of its states (the ”R-states”) by means 
of the RND device. If and only if an automaton belonging to 
this system has a possible basin (equilibrium set of states) not 
containing any R-state, it will with certainty eventually learn 
to stably avoid them. This is so because:

1) in such an automaton, if it is in a basin not containing 
any R-states it will stay there, while if in a basin including 
some R-state it is certain that it will sooner or later leave 
it; also, in a finite number of steps it must reach a ”good” 
basin; and

2) in the other automata, there can only be basins containing 
R-states, and the automaton will forever keep returning to such 
states with irregular intervals.

Now the probability that there is in the n-state automaton a 
basin not containing any of k pre-selected states is = (n-k)/n.

rule prove the equivalent proposition: The probability Pk,„ 
that a set of k states in an n-state automaton contains some 
basin is = k/n. This is true for k=l, since the probability 

that any state is a basin is = i/n. Suppose that it is 
true for k - s. Take any set of states with s elements and 
add one element a. Then the probability Ps+l,„ that this 
new set will contain some basin is = s/n + 1/n - (s/n)(.l/n)
f Q, where Q is the probability that neither the s-set nor 
the 1-set contains a basin but that one is formed by the 
union of them. Note that the probabilities of basins in two 
disjoint sets are independent, which explains the third 
term. To evaluate Q, note that there are s!/t!(s-t)! ways 
of choosing the set with t elements from s which combines 
with a to make a basin, and that this basin can be formed in 
t! different ways, each with the probability (l/n)t*'1. In 
order to countenance the possibility that there is no other 
basin in the s-set, we also have to multiply with 1 - PK_t, 
which is = 1 - (s-t)/n. Q must then be the sum from t = 1
to t = s of Qt = s!/(s-t)! X (l/n)**1 x (1 - (s-t)/n). Qt 
can also be written as (s/n2) x (s-i)!/(s-t)! x (l/n)*"1 x 
(1 - (s-t)/n) = (s/n2) x Q%- Each term in Q% contains two 
parts, stemming from the two terms in the last parenthesis.
It can be seen that the second part of each term is cancel­
led by the first part of the next term; also, the second 
part of the last term is - 0. Hence, what remains is the 
first part of the first term, which is = 1. Therefore the 
value of Q is = s/n2 which, if substituted in the expression 
for above completes the proof.

This result can be generalized in the following way. Sup­
pose that to each state in a randomly constructed automaton 
there is randomly assigned one of a number of outputs, and that 
the output o is assigned with probability q. Then the probabi-



lity P'„ that the set of states with output o contains some ba­
sin is - q.

The proof is simple. P% is arrived at by summing over all 
alternatives of the form: exactly s states have output o, 
using the previous result. There are n!/s!(n-s)! ways of 
selecting s states, the probability that they but not any 
other state have output o is qs(1-q)n~, and the probabili­
ty that the set contains a basin is = s/n. Prom this it can 
be seen that the expression for P% will be exactly the ex­
pression for the expectancy of the binomial distribution, 
which is = q.

The conclusion to be drawn from these calculations is that 
the random automaton will not learn very efficiently according 
to the model presented above. If the "built-in" probability of 
R, defined as a state-space region of a given size or as a ran­
domly assigned output, is = q, then with probability 1-q the 
random automaton will learn to reliably avoid R if punished in 
R; equivalently, with probability q it will learn to perform R 
if "punished" outside R. This means that only very "easy” tasks 
like for example avoiding one of n states will be learnt with 
anything approaching certainty. (However, the random system 
certainly tends to perform better than if the RND device had 
not been operating. Without it, the randomly composed automaton 
tends to give the correct response with probability q and with 
irregular intervals; with learning, a proportion q of automata 
will certainly learn always to perform the correct response, and 
among the other ones many will still give the correct response 
f rom time to time.)

At this stage, let us note that the character of operant 
conditioning makes it difficult to exploit the "mass action” of 
a collection of automata in the way it was done in Malmgren 1984 
for primitive classical conditioning, where I hypothesized a 
mechanism with the function of selecting the most common respon­
se of the automata as the response of the organism. If such a 
mechanism (for example, a pattern of competitive convergence on 
effector pathways) produces the output of a collection of 
automata, which is exposed to a negative operant contingency, 
then all automata in the collection will be punished for the 
sins of the majority, and the minority will not be punished when 
the majority perform well. This situation does not seem to be 
conducive to efficient operant learning. Hence, it is probably 
advisable to try to find other theoretical ways of improving 
performance.

The inert random system
This creature differs from the ordinary random automaton in the 
following way: when, for any state a and input b another state 
a' is randomly choosen as the state to which the automaton goes 
from a under b, the probability that a = a" is greater than i/n; 
more precisely, it is = i (for "inertia”) which is fixed in ad- 
anee for the whole construction. In other respects, the system
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is still symmetrical; hence, for each a'' not = a, the probabi­
lity that a' = a'' is = (l-i)/(n-l). This latter fact means 
that the inert automaton is not biased to learn to prefer any 
pre-selected state - although it is certainly biased to prefer 
not to change its state.

Me now assign outputs randomly and independently to the sta­
tes of the inert automaton and ask: what is the probability 
that an RND device will make it learn to perform a certain 
response which has an "inbuilt" probability (i.e., a probability 
of prior assignment to each state) = q? This question is not 
quite as easy to answer as the previous ones. It is however 
clear that for fixed n and q, the probability is a positively 
monotonous function of i: a rise in i means a greater
probability for basins of size 1, and the probability that all 
states in a basin of size s or the state in a basin of size 1 
have (has) the "correct" output is larger than the probability 
that all states in a basin of size s+1 have the desired output. 
By the same token, the probability is maximal for i = 1; then it 
is simply = 1 - (l-q)n. (Rather interestingly, for q = 1/n the 
latter expression grows to a limit = 1/e, which means that even 
the inert automaton does not learn to "approach” one state very 
efficiently!) - On the other hand, for each i a lower bound for 
the probability of some basin with the desired property is given 
by the probability of some such basin with size 1, which is = 1
- (1-iq)". For fixed i and q, this expression evidently tends 

towards 1 as a limit when n grows. For modestly large i and n, 
the lower bound will be a good approximation of the sought-for 
probability, for the obvious reasons that many basins in such 
automata will be 1-basins and that such basins have the best 
chances of being well-performing. As an example (cf. below), 
with n = 16, q = 0.25 and i 0.5625 the lower and upper bounds 
are 0.9115 and 0.9900 respectively.

I have not been able to derive any simple formula for the 
exact probabilities. Instead, I have used a computer algorithm 
in which for each possible partition of the state space the 
probability is calculated that all elements of the partition ex­
cept one are basins, at least one of which contains only states 
with the desired output, and that the remaining element of the 
partition does not contain any basin. All such probabilities 
are then summated. For n - 16, q f 0.25 and i =’ 0.5625 the 
total probability turns out to be = 0.9123.

From the general idea in the argument, and from the numeri­
cal example given, it can be seen that an inert automaton has a 
considerable chance to learn by the RND device to perform stea­
dily a response which has a much smaller "inbuilt" probability 
in contrast to what is the case with the automaton without 
inertia, which "only" learns with the same probability as that 
of the prior assignment.

The hierarchicai model with_ ajn ajrousal system

The present model, considered as an explanation of operant con­
ditioning by negative reinforcement, has two serious drawbacks. 
First, it makes use of a mysterious "RND” device which has cer-



tainly not been explicated in abstract causal terms; second, it 
only works under the presupposition that the automaton is given 
a constant input sequence - what we want to explain is, however, 
how animals can "store" a correct response R to a certain input 
b although they certainly experience other, "disturbing” inputs 
during the intervals between the occurrences of b.

Both these remaining problems have been solved by nature by 
means of the hierarchically organized, arousabie nervous systems 
of higher animals. These systems have, among other features, 
the following properties:

1) The "lower" parts are relatively stimulus-bound, i.e. they 
react in a rather stereotyped way and do not learn much. They 
are also more reactive to external stimuli than the "higher” 
parts.

2) In comparison to the lower parts, the higher ones are, as a 
rule, shielded from external stimuli. On the other hand, it 
seems that their reactions to external stimuli are more flexib­
le .

3) The output of the organism is a result of convergence bet­
ween impulses from lower and from higher parts. In view ol 1) 
and 2) this entails that differences between responses on simi­
lar stimuli are mostly due to a changed state of the higher sys­
tems. (This is often expressed, somewhat misleadingly, as the 
higher centers "inhibiting" the action of the lower ones.)

4) The information flow "upwards” (to higher centers) is some­
times dramatically augmented, especially when the organism faces 
new and/or dangereous stimuli. This "activation" is at least 
partly accomplished by structurally identifiable systems.

Let us now arrange some peripherals for an inert random au­
tomaton which will make it similar in essence to the hierarchi­
cal nervous system.

Figure 1. The hierarchical arousabie automaton.

Here, M (for Memory) is an inert automaton with input. How­
ever, as a rule it is shielded from the environmental input 1 by 
the barrier B; hence, in effect it is usually an automaton with 
constant input. When the barrier is lifted, M realizes its po-
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tentialities for one single moment and works like an automaton 
with all environmental stimuli as inputs. The system R (for Re­
flex) is not a random automaton, but a random transducer of en­
vironmental information. (Like M, it has evolved, phylogeneti- 
cally, from random automata, but that is another story.) For 
simplicity, put state of R = input. The system E (Effector) is 
another specialized system, namely a random integrator of infor­
mation from Pi and R: its output is a random function from the 
two states of P! and R to an output set. The output of E is the 
output of the whole organism.

Now, arrange a contingency which consists in the information 
barrier B being temporarily lifted whenever the whole organism 
is given a certain stimulus b and does not produce a certain 
output o. During periods when the barrier is not lifted, PI be­
haves in a rather stable way because it has, in effect, a con­
stant input. Hence, there is an appreciable probability - cf. 
above - that it will contain at least some basin, the outputs of 
which together with the state of R produce o as the "total” 
response on b. If P! is in such a basin, the organism will al­
ways perform correctly, and the barrier will not be lifted even 
when b occurs. If it does not perform correctly - and hence is 
in some state outside all "well-performing" basins - the infor­
mation barrier will be lifted, and M will for a moment behave as 
an automaton with diversified input. Depending on the degree to 
which the environment varies in its perceptible details between 
"trials", and on the degree i of inertness, this lifting of the 
barrier will approximate more or less to the RND device outlined 
above. Note that it will work more slowly for higher values of 
i, and that it will not work at all for i = 1 ? Presupposed that 
i < 1 , P! may well leave its "bad-performing" basin and enter a 
"good-performing” one. After this quasi-random step, PI will 
again be rather stable until next "trial”; and so on until full 
stability - i.e. a well-performing basin - is (probably) reach­
ed .

The really important thing to notice is of course the fact, 
that the hierarchical arrangement, with an information barrier 
makes it possible for the organism to learn a relatively stable 
response to one stimulus although it is also exposed to the 
other ones and reacts differentially to them. This is simply 
not feasible if the output reflects an internal state which, in 
turn, is sensitive to all stimuli all the time. This, in its 
turn, is but another wording of the fact that remembering, which 
means transmission of information about the past, always implies 
diminished transmission of information about the present.

As an illustration of the above argument, I construed hier­
archical, inert pseudo-random systems ("rats") on a personal 
computer and represented them as being located in a certain po­
sition on the screen. Every position on the screen had been 
randomly assigned an "environmental” number (one set of numbers 
for each "rat”). The rats had four different outputs, each cor­
responding to a step in one of the four possible directions of 
movement. As "background" stimuli, the "higher centers” of the 
rats were given a constant sequence of one selected input. The 
"reflex part" of the rats reacted to a much richer input; in the
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first experimental series reported belou the value of the input 
was for each occasion pseudo-randomly selected from a certain 
number of possibilities; in the second series it simply consist­
ed in the number pre-assigned to the rats's present position. 
Think of the two input conditions as pseudo-random tones and 
local characteristics of the environment, respectively. The 
output of the rats was determined as described in connection 
with Figure 1, i.e. in effect as a random function of (full) 
input and the state of the "higher center". From time to time, 
the rats were subjected to a discriminative ("warning”) stimulus 
signalling a hungry bird; they then had to go to the right in 
order not to be shocked - i.e., in order not to expose their 
"higher centers” to the full range of inputs in the next moment.

In Table 1, the figures denote the percentage of correct 
responses on the consecutive trials. Note that without learning 
the expected value for all trials would be 25%; also, that in 
the experiments the number of correct responses does not reflect 
only those "rats" which have learnt to criterion (full stability 
of correct response) but also those who from time to time per­
form correctly. In both series, the number of "rats" was 
1000, and each "rat" had to confront 20 "birds". The number of 
states in each "rat brain" was = 16, the inertness = 0.5625 and 
the number of possible inputs = 21 + warning + background = 23.

Table 1

Percentage of correct responses on the k:th trial

Trial no 1 2 3 4 5 6 7 8 9 10. . .18 19 20

1st series 28 37 41 47 52 56 60 63 65 68. .. . 78 81 80

2d series 15 24 29 35 40 40 40 40 42 46. . . 48 48 48

The difference between the results can be partly explained 
by the fact that the input condition in the second series was 
very much less random-like than that of the first series. This 
is connected with the circumstance that the rats of the second 
series were often confined to small areas on the screen. Both 
series of results should of course be compared with the theore­
tical result for a pure RND device operating on a system with 
the present parameter values. If my argument is correct, the 
differences between this result (0.91, see above!) and the ex­
perimental observations are mainly to be explained by the imper­
fection of the approximations to the RND device.

Concluding comments

It should finally be pointed out that a combination of the pre­
vious theory of habituation and classical conditioning (Halm-
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gren 1984) and the present model might turn out to be fruitful. 
Actual nervous systems almost certainly use dishabituation as 
one important signal for the lifting of information barriers on 
different levels in the hierarchy. The mechanism propased in 
Malmgren 1984 for converting ”number of state changes" to 
"amount of gross response" should then be supposed to be ampli­
fied through the arousal system. If this is the case, and the 
fundamentals of the present model is correct, the interesting 
consequence ensues that classical conditioning will always be 
(positively) operantly reinforced, since a "correct” conditioned 
response mearfs~~that” there is less state change between CS and 
UCS than if the "incorrect" response is present. However, the 
theoretical complexities which arise from such a combination of 
models are left for future investigations.

I have profited much from criticism by Björn Haglund. - Calcula­
tions and simulations were performed on an Apple lie computer. 
Details are supplied on request. Author's present address: 
Dept. of Philosophy, University of Göteborg, S-412 98 Göteborg, 
Sweden.
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