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Malmgren, H. Learning by natural resonance. Göteborg 
Psychological Reports, 1991, 21, No. 6. A new model for 
learning in natural and artificial neuràl networks is 
proposed. The system described here can learn associations 
to sequences of inputs without ad-hoc assumptions about 
temporal coding. The model is related to adaptive resonance 
theory and to the theory of adaptive neural oscillators with 
backpropagation but its teaching principle and its concept 
of matching between input and output signals are simpler 
and biologically more plausible. The basic learning concept 
is that of natural resonance, i.e. the auto-selection of stable 
or pseudo-stable limit cycles given an alternation between 
an input constraint and relaxation periods. Such natural 
resonance can be shown to occur in systems with feedback 
resulting from a certain kind of non-linear interaction 
between input and output even if one does not assume any 
external teacher or an explicit reset-on-mismatch 
mechanism. Some discrete system simulations which 
support the theory are reported.

Keywords: Learning, Networks, Adaptive resonance, 
Automata, Robotics, Neural oscillators.

Introduction and background

MacKay (1956) outlined a model for automaton learning which 
involves the comparison between the environment and an internally 
produced representation. An error signal is sent as input if a mismatch 
occurs. If the environment is reasonably stable this error signal (or 
repeated such signals) may lead to an adaptation in the sense that the 
internally produced representation eventually matches the 
environment. In cognitive psychology, this general scheme has become 
known as the "analysis-by-synthesis" model. As MacKay himself points 
out, the model can be developed in several directions depending (among 
other things) on how one conceptualizes the nature of the error signal.

Among recent theories about learning in neural networks which 
conform to MacKay’s conception, Grossbergs "adaptive resonance 
theories (ART; cf Grossberg 1987) should be mentioned. The AK1 
models are systems built of continuous, non-linear, neuron-like elements 
with modifiable synapses. In a matching process, the output ("top-down 
signal") from the higher-level neurons is compared to the input 
("bottom-up signal") and if there is a mismatch an error ("reset") signal 
is sent. Grossberg's models are very detailed and also include a lot of
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other features as for example the vigilance parameter which determines 
the sensitivity of the reset mechanism to mismatch.

Like most recent neural network theories, the ART models are built 
around the concept of a system with stable attractor states. This 
means, among other things, that learned associations are stored as 
stable parameters of the connections between neuronal elements. 
Although there are many useful mathematical results concerning 
stability and convergence in such systems (mainly related to the 
concept of an energy function) it can be argued that they cannot explain 
on-line learning of dynamical patterns in a natural way. The theory of 
adaptive neural oscillators therefore takes it departure in the more 
general concept of stable (or approximatively stable) limit cycles. In a 
recent version of these models (Doya & Yoshizawa 1989), continuous 
back-propagation of error is used as the basic teaching principle. A 
multi-layered system of non-linear neuronal elements is first exposed to 
a dynamical input having a certain waveform. The mismatch between 
this input and the system's output determines the nature of the error 
signal which is continuously fed back to the system according to a 
version of the back-propagation algorithm and which tends to correct 
the output signal in the desired direction. In a relaxation period, the 
system then takes it own output as input. After repeated alternation of 
training and relaxation the system often reproduces the original 
waveform very closely. The main drawback of the theory is - as the 
authors themselves remark - that the back-propagation algorithm is 
extremely implausible as a biological principle.

In this article, an alternative approach to the learning of dynamical 
input is presented. Like the theory of adaptive neuronal oscillators it 
relies on the concept of stable or pseudo-stable limit cycles, but unlike 
that theory the present model uses unsupervised learning, i.e., it does 
not involve any assumptions about external teaching mechanisms. In 
the latter respect the present model is more similar to adaptive 
resonance theory but it differs from ART in that it dispenses with the 
assumption of stable attractor states and in that the error signal and 
the matching of top-down and bottom-up signals are modeled in a 
radically different way.

The model is intended to be applicable to all discrete systems and to a 
large set of continuous systems. In this article we will illustrate our 
theory by means of a simple class of applications, namely that of 
randomly composed finite automata with input. These devices are 
completely deterministic but have a transition matrix which has been 
constructed in a random way, except possibly for a certain bias towards 
stability, in which case we call them inert random automata. (For an 
introduction to randomly composed automata and their stochastic 
properties see Malmgren 1984.)

The choice of randomly composed finite automata does not only make 
for simplicity but also shows the generality of the model in the sense 
that in it, very few assumptions about specific structure is needed to 
produce learning. To be sure, the probability of learning in any single 
randomly composed automaton is often small but "better" data result if 
large systems of randomly composed automata with cooperative output 
are used. One way of modelling such cooperative output is to let the 
most frequent response of the system's subautomata determine the 
output of the whole system (Malmgren 1984).
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Simple adaptation and low-order comparison in randomly
composed automata

As a preamble to the discussion of natural resonance I want to point 
out some trivial but nonetheless important facts about the relation 
between change of input and change of state in finite deterministic 
systems.

In an earlier article (Malmgren 1984) I described a simple possible 
application to biological systems of the notion of randomly composed 
automata. Such an automaton tends towards a stable state under a 
constant sequence of inputs. On the other hand, if a new input is given 
the system usually changes its state. Supposing that an organism 
contains a large number of such automata, the changes of state of 
which are directly reflected in the amount of change of the organism's 
output, the phenomena of sensory adaptation and behavioural 
habituation immediately receive a plausible explanation. See Malmgren 
(1984) for details, including calculations and simulation experiments.

If one wants to speculate about the psychology of automata (or, to be 
more serious: if one wants ultimately to explain psychological notions in 
terms of mechanistic systems), one might say that a randomly 
composed automaton "compares" the successive inputs and reacts to a 
"mismatch" (over time) by changing its state. The typical reaction to a 
match is instead no change of state (or as one might also say, "no 
reaction at all").

Higher-order input comparisons in automata

Suppose now that a randomly composed N state automaton with
input is exposed to a recurrent input sequence Ktj), I(t2).......
I(tk+i)=I(ti), ... which - for the simplicity of the argument - contains k 
different inputs which may be renumbered Ij, ..., Ik- At some time 
T<kN+1 it will occur that the automaton is exposed to the same input 
while being in the same state as it was at some previous time when that 
particular input occurred. The trajectory of the automaton's state under 
the repetitive sequence then forms a complex limit cycle Ci with length 
<T. Suppose now that the input sequence is changed so that Ik+2 Is 
substituted for Ij, j<k+l. Since the automaton is randomly composed it 
will most probably switch to another limit cycle C2 (which may of 
course have elements in common with Ci). So, again the novelty of the 
input is reflected as a change in the behaviour of the system.

The switch to another input sequence may imply a switch to a more 
constant input. This is the case if the sequence is changed from 
121212... to 111111... In this case one may say that a global (higher- 
order) novelty occurs entailing that the input from now on contains less 
local (lower-order) novelty. It is clear that both these factors will tend to 
be reflected in the behaviour of a randomly composed automaton in the 
sense that there will probably be a large-scale change from a closed 
trajectory including a fair amount of change to a closed trajectory
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involving less change. This is because longer trajectories are more 
probable with the alternating sequence than with the constant one. For 
example, it is more probable that the automaton goes to a steady state 
under 111111... than under 121212..., and cycles with length >N are 
simply not possible under constant input.

The above argument can be generalized to cover changes between 
other high-level input constraints than the repetitive sequences 
described above, but for the moment we will confine our attention to this 
special case. We will now re-describe the facts by saying that the 
randomly composed automaton simultaneously performs low-level and 
high-level comparisons and tends to react not only to mismatches 
between inputs but also to mismatches between successive sequences.

Now, if input changes over time tend to change the state or the 
trajectory of automata, why not dispense with specifically designed 
"reset-on-mismatch" mechanisms (as those hypothesized in ART) and 
instead use novelty as the sole kind of error signal? In the next section I 
will show how low-level input mismatches over time can be used as 
externally produced error signals which tend to move the system into a 
state having a desired output.

The problem which will then remain is of course the following one: how 
could one possibly dispense with the externally produced error signal if 
the system only detects mismatches over time? After all, the system is 
expected to learn not only that its present input matches its past input 
but also that, in some sense, its present response is the correct one - i.e., 
that its present output matches it present input. And how could it learn 
that, if no process is designed to perform such a matching?

In the section after the following one, I will explain the basic idea of 
natural resonance: how, in systems with a certain kind of feed-back, 
high-level input mismatches over time internally produce an adequate 
error message which signals a mismatch between present input and 
output, i.e. a signal which tends to move the system into a closed 
trajectory in which the system performs correctly.

Novelty as an external error signal

I want to substantiate the present conception of an error signal by 
referring to an earlier model of operant conditioning, i.e. learning with an 
external but unspecific teacher mechanism (Malmgren 1985). The 
hidden ("memory") unit of the system investigated there is a randomly 
composed finite inert automaton, i.e. a finite automaton with a 
transition matrix which is randomly constructed except for a rather 
strong bias towards stability. Usually the memory unit is shielded from 
environmental information, which is equivalent to the assumption that 
it receives a constant input (here called the "background" input). This 
means that it tends strongly toward stable states (longer limit cycles do 
occur but not as often as in completely random automata). The 
system's output is a certain combination (by means of a randomly 
chosen function) of the memory state and the present stimulus, 
conforming to the model of a modifiable reflex (see Figure 1). The 
outputs are conceptualized as corresponding to step-wise movements in 
two dimensions.
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Figure 1. Selection of stable states through temporary intrusion of 
environmental noise. M = Memory unit; B = Information barrier; N = 
Noise; E = Environment; A = Reflex apparatus; S = Stimulus; R = 
Response.

The system moves in a noisy environment (i.e., with many possible 
stimuli) which contains an operant contingency: if a certain stimulus 
occurs and the system does not react by moving in a pre-determined 
direction (one of four), the shield which protects the memory unit from 
environmental information is temporarily removed - one should think of 
this as corresponding to the alerting of an organism. The signal that is 
let through (hereafter referred to as the "error" signal) differs from the 
background input usually received by the memory unit, and so tends to 
move the unit from one stable state to another. If the system is "lucky" 
this new state determines a correct response to the next occurrence of 
the "dangerous" stimulus. Otherwise a new error signal of the same kind 
occurs.

Over time, the system will perform a kind of random walk among 
those states which constitute possible attractor states (and limit 
cycles) under background stimulation, until a "successful" state is 
reached or the random walk has itself become trapped in an 
unsuccessful limit cycle. Already in very small inert automata with only 
16 possible states, the final count of correct responses amounts to 75- 
80% (see Malmgren 1985) although the error signal is totally undirected. 
(For a possible extension of the model including targeted error signals, cf. 
Malmgren & Östensson 1989.)

For the present discussion it is important to point out that the 
essence of the error signal in the earlier model is the novelty of the signal. 
At different unsuccessful trials, the signal which is received by the 
memory unit may be any one of those constituting the noise. Its effect, 
if any, is due to the simple fact that it is another signal than the usual 
one. Note that the novelty which plays a role is not only novelty vis-a- 
vis the background input but also novelty vis-a-vis the previous 
unsuccessful trial (if there was one). If the error signal is intrinsically 
the same at two consecutive trials, the chances are lower that a failure 
will be followed by a success than they are in the case where the two 
error signals are different. This is of course because in our sense of 
"compare", the system compares not only successive stimuli but also 
successive trials.
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So, the indeterminacy of the error signal is not only allowed by the 
model but conducive to its good performance. This holds especially for 
the case of a small system with a large intrinsic bias towards stability. 
In a large system with less stability there is substantial learning even 
with a less noisy environment, including the limiting case of a constant 
error signal, because two identical error signals usually have different 
effects if they occur at moments when the internal states differ. This is 
of some importance for the theory of natural resonance since it depends 
rather heavily (in its present formulation) on a constant error signal.

Natural resonance

The system unit here consists of two elements, the (inner) (or 
memory) element and the outer (or resonant) element. The memory 
element has an output which we will call the internal representation, for 
reasons that will be clear later. The resonant element combines the 
external input from the environment (the stimulus) with the internal 
representation and computes a certain kind of function, the resonance 
function, from them. The result is sent to the memory element. Hence 
the memory element does not take the environmental stimulus as such 
as input but something which is a function of this stimulus and the 
previous output of the memory element itself.

If one accepts the above description in terms of internal 
representations one can say that the memory unit only perceives the 
environment through its own interpretation of it. Therefore we will 
sometimes refer to the result of the computation in the resonant 
element as the percept. In several applications we will however instead 
think of the output of the resonant element as the motor response of the 
whole unit.

INREP

STIM

Figure 2. M = Memory element; R = Resonant element; INREP = 
Internal representation; MP = Perceptual (or motor) response.

One simple kind of resonance function has the following properties. 
For all external inputs except one, the percept is identical to the external 
input. For the remaining external input, the zero stimulus, the percept is 
identical to the internal representation. This corresponds to a matrix of 
the kind described in Table 1.
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Table 1
The Computational Matrix of a Simple Resonant Function

Representation
Stimulus
So Si s2 S3 - Sm

Rl Pi pi P2 P3 •• pm
R2 P2 pi P2 P3 •• Pm
% P3 pi P2 P3 - PM

Rm Pm Pi P2 P3 " Pm

To help understanding the point of this construction, one should think 
of Sq as a state of "no information about the environment", in which 
case the internal representation completely determines the response of 
the resonant element. Similarly, Sj to S]y[ correspond to a state of "full 
information about the environment", in which the external stimulus 
completely determines the resonant response. It may also be helpful to 
think of So as being transmitted via some physically independent 
channel (a gating mechanism), but other interpretations are of course 
possible.

Note that if the first column is not considered, the matrix has a 
diagonal such that P(i,i) = Rj = P(0,i). Also, for every representational 
element Rj, Sq and Si are the only stimuli which give the percept Pj. In 
other words, the i:th representation plus the zero stimulus (= no 
environmental information) is functionally equivalent to the i:th 
stimulus. Therefore one can say that the i:th representation represents 
the i:th stimulus - or to be more precise, represents the i:th stimulus 
under the zero stimulus condition.

The representation relation introduced here is defined in terms of 
functional relations and does not entail any qualitative similarity 
between representation and reality. A fortiori, the concepts of match 
and mismatch between representation and reality (stimulus) cannot be 
defined in terms of similarity. To be sure, in computer simulations the 
easiest way out is to use the numeral 2 as a name for R2, S2 and P2 
alike, because then the results become more easily interpretable (cf 
below). But one should not confuse computational heuristics with the 
properties of the model itself.

Indeed, the present concept of representation excludes all kinds of 
simultaneous comparisons (on the part of the system unit) between 
representation and stimulus, since when any stimulus except zero is 
present the representation does not matter at all to the future behaviour of 
the system. This is why this conception of a representation is 
intrinsically connected with comparisons over time.

Simple resonance functions also include all cases where one 
representation is functionally equivalent under the zero stimulus to a 
disjunction of other stimuli. Indeed, a great lot of all logically possible n x 
m matrixes contain some resonant part, in this sense, and therefore
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some rudimentary representation. But we will confine our attention to 
the special case just described.

A still more general class of resonance functions is created if one 
takes account of other degrees of environmental determination than one 
or zero. In continuous resonant elements, a non-linear interaction 
between stimulus and the output from the memory unit can form the 
basis of a natural-resonance theory of representation. Non-linear 
interaction means that for certain values of the external stimulus (say, 
close to zero) the influence of the internal output (representation) is 
higher than it is for stimulus values in other regions. In other words, 
under certain conditions the internal output tends to determine the 
resonant response, while under other conditions the external stimuli 
tends to dominate the response. This paves the way for the possibility 
that a certain internally produced signal may be functionally similar 
(although perhaps not identical), under the first condition, to a certain 
class of external stimuli fulfilling the second condition. Then there will be 
representation in a wide sense. However, in the discrete automaton 
model considered here we need not take this complication into account.

Adaptation to stimulus sequences

I will now show that the above-mentioned construction will in itself 
entail a tendency towards learning of high-level stimulus constraints, if 
these are presented repeatedly and in alternation with zero stimuli.

Suppose a repetitive sequence SiS2...SkSiS2.. is presented to the 
system. After a while it has entered a complex limit cycle of memory 
states. During this limit cycle it also produces a repetitive sequence of 
internal outputs (representations), which however have no effect on the 
system since it is completely environment-driven.

Now switch the input condition to a sequence of zeroes. In other 
words, the automaton is given time to internally rehearse what 
happened. It may happen, although it is in general not very probable, 
that it manages to stay in exactly the same limit cycle. Under zero 
input the system is completely representation-driven. So if it does not 
stay in the same cycle but enters another one, C2, this must be due to 
the fact that the sequence of representations which it produces does not 
"match" the sequence of external stimuli previously given (in the sense 
of "matching" given above). This in turn entails that the representations 
produced under the previous constraint did not match the stimuli.

Supposing that the system did not stay in the original limit cycle 
when "rehearsing" the first time, repeat the stimulation. When the 
original repetitive condition is again presented, the system may or may 
not switch to a completely new limit cycle C3. If it does, it might happen 
that the sequence of representations produced "matches" the stimuli. If 
that is the case (and the match includes phase relations), the behaviour 
of the system during the next "rehearsal" will be unchanged - it has 
learnt. If there is a mismatch, there is a possibility that the system will 
again switch to another limit cycle, and so on.

There is however always a "risk" that the system enters a complex 
limit cycle of unsuccessful trials involving mismatch, since it may well
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happen at any time that the memory unit does not recognize the 
difference between the stimulus sequence and a representation 
sequence which does not match it. So learning is not in any sense 
guaranteed. The argument only shows that under the conditions outlined 
above, the learned state with a complete match between 
representations and stimuli does tend to occur at the end of the 
experiment more often than at the beginning.

In the finite automaton realization which I have simulated, the 
memory unit is usually a randomly composed automaton with a state- 
dependent internal output which can take 4 different values (i.e., there 
are 4 different representations). The system has an external input 
which can take 5 values including zero and it contains a resonant 
element of the kind depicted in Fig. 2 and Table 1.

I have exposed 10.000 such 20-state automata (starting in a 
randomly chosen state) to a regular sequence containing 4 occurrences 
of sub-sequences consisting of one single stimulus or of three different 
stimuli, i.e. 1 1 1 1 or 123 123 123 123, alternating with rehearsal 
periods consisting of 4 and 12 zeroes (to keep phase) respectively. At 
each rehearsal it is noted whether the automaton's internal 
representations have reached a stable limit cycle which coincides with 
the input sequence. The number of correct sub-sequences within each 
trial is also recorded. After the first 7 trials, the input constraint is 
changed to 3 3 3 3 and 341 341 341 341 respectively. Finally the 
automaton is run towards equilibrium for 8 trials (starting in the same 
original state as before) with the last-mentioned stimulus condition; in 
all rehearsals the representations proper to the first constraint are 
counted. This last part of the experiment is performed in order to exclude 
the possibility that the stable solutions are due to an unspecific effect of 
repetitiveness.

In Table 2, the figures for "correct" refers to the total number of 
correct responses during a trial of 4 sequences which means (since there 
are 4 possible representations) that for condition "1", the number 
expected from random performance is 10.000. The figures for stable 
solutions are absolute numbers (at most 1 success per trial).
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Table 2
Adaptation to Simple and Complex Repetitive Input in Naturally 
Resonant Automata. For Further Explanation, See Text 
Condition "1" 
Correct responses Stable solutions
on 16 rehearsals on 16 rehearsals

1 10009 1 377
2 11752 2 1023
3 12291 3 1261
4 12375 4 1327
5 12411 5 1344
6 12431 6 1347
7 12414 7 1350
8 9952 8 491
9 9350 9 269

10 9192 10 291
11 9095 11 281
12 9177 12 304
13 9122 13 283
14 9076 14 285
15 9158 15 295
16 9105 16 289

Condition "123"
Correct responses Stable solutions
on :16 rehearsals on 16 rehearsals

1 1989 1 64
2 2522 2 233
3 2671 3 294
4 2669 4 305
5 2716 5 309
6 2670 6 309
7 2686 7 309
8 1940 8 77
9 1894 9 41

10 1926 10 48
11 1915 11 51
12 1934 12 50
13 1914 13 52
14 1913 14 49
15 1922 15 51
16 1929 16 51

These figures may not seem very impressive. However there is an 
approximately threefold and fivefold increase, respectively, of stable 
correct solutions and there is no doubt that the effects are specific to 
the training.

With collective output, not only the stable solutions will count. If the 
most frequent resonant output is allowed to determine the global output 
of a reasonably large system consisting of randomly composed sub-
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automata, such a system will reliably learn to imitate the behaviour 
induced in it by repetitive sequences.

Classical conditioning

Let us now consider associative learning in the classical sense of 
Pavlov. I will now show by an analytical argument and by simulations 
that the resonant automaton will tend to learn a stimulus contingency, 
and that it shows true conditioning to sequences of stimuli.

In the case of classical conditioning, we may regard the resonant 
output as being either a percept or a motor response. I here use 
automata which are random except for the fact that they are rather 
inert to one of the stimuli, called number 3 and used as the "background" 
input. This is simply because the effects are otherwise overshadowed by 
the interstimulus period as a source of variation. Suppose that the 
system is fed a continuing sequence of 3's which is however sometimes 
(at randomly chosen moments) interrupted by the short sequence 42 
followed by 1. (This is the classical conditioning paradigm with CS=42 
and UCS=1.) After a number of such training trials, the system is given 
the opportunity to rehearse by giving a 0 instead of a 1 for some trials, 
then the next set of training trials follows, and so on.

Consider one training trial. Since the reaction on the background 
stimulus 3 is inert, we may simplify the discussion by concentrating on 
the case where the system enters some stable state during background 
stimulation. When the first CS-UCS combination has occurred, the 
system most probably has transited to another stable state. Sooner or 
later the movement in state space enters a complex limit cycle which 
may or may not have the property that the representation produced 
when the UCS occurs is always 1. Now let the system rehearse. If the 
match between UCS and representation was perfect (as just defined), 
then the system will not move from its limit cycle, i.e. it will continue to 
present a "matching" representation during rehearsal. If the match was 
not perfect, there is a definite probability (depending, among other 
things, on the proportion of matching representations during the limit 
cycle) that the system will move to another limit cycle, and so on.

The similarity to the previous case is considerable, but there is an 
important difference in that phase relations are not important in the 
case of associative conditioning (since any number of 3's can keep the 
message).

The amount of learning which is achieved is illustrated by the 
following simulation. Here 5.000 100-state randomly composed 
automata with a 50% extra inertia to input 3 were exposed to the 
conditions just described for 5 periods, each including at least 4 training 
trials and 4 rehearsals. In addition, in a 6th period the sequence 22 was 
substituted for 42 as the CS in order to test the hypothesis that the 
learning actually pertains to the whole sequence and not only to the 
input 2. In each of the 6 periods it was noted whether or not the internal 
representation corresponding to 1 occurred at the moment after the CS 
and whether this was the case for all of the first 4 cycles of the period 
(most probably indicating a stable solution). Also, the representation
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during the last background stimulation (IS in Table 3) was noted in order 
to detect any generalization to other stimuli than the CS.

As in Table 2, the figures for "correct" in Table 3 refer to the total 
number of "hits" in 4 samples while stability was of course sampled only 
once in each period.

Table 3
Classical Conditioning in Naturally Resonant Automata. For Further

Period: 1 2 3 4 5 6
CS (correct): 5151 6090 6398 6407 6448 5036
CS ("stable"): 143 603 665 699 712 176
IS (correct): 4768 4897 4960 4887 4998 4897
IS (stable): 80 221 240 234 254 108

It can be seen that the probability of a "correct response" rises 
gradually to approximately 130% of the value expected from complete 
randomness. Also, there is a sharp drop to near the base level when the 
alternative CS (22) is introduced, indicating that the system has learnt 
that it is the sequence 42 - not the input 2 in any context - which is 
followed by 1. It seems to me that this model could in principle serve to 
explain certain naturally occurring conditioning phenomena, supposing 
cooperative output.
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