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Introduction

Predictability in equity markets is a central question in financial economics. Theoretical

asset pricing models for time-varying expected returns suggest a relationship between ex-

pected returns and variables related to the aggregate risk in the economy such as valuation

ratios (e.g. the dividend-price ratio or book-to-market value), term structure variables

(e.g. the short rate or the term spread) or macroeconomic quantities (inflation, GDP

growth).

Evaluating these relationships empirically is difficult because unexpected returns ex-

plain a large part of the return variation. Therefore, tests of return predictability are

bound to lack power, which is also reflected by the inconclusiveness of the abundant

empirical research. The weak evidence on predictability is exacerbated by a number of

statistical difficulties one faces when conducting inference on equity returns. In par-

ticular, surveying the recent empirical literature, Koijen and Van Nieuwerburgh (2011)

report three “disconcerting statistical features” of return predictability. First, the high

persistence of the predictors renders standard testing procedures incorrect. Second, the

relationship between returns and potential predictor variables exhibits significant insta-

bility over time. Third, the out-of-sample performance of predictive regressions is poor.

The aim of this thesis is to give a deeper understanding of the econometric properties of

return predictions. More specifically, I analyse how the three statistical features proposed

by Koijen and Van Nieuwerburgh (2011) interact with each other. In particular, how

the persistence of the predictor variables affects estimation and inference, feeding into

parameter instability and out-of-sample predictive power.

Since several prominent predictors are highly serially correlated, the literature on

persistent regressor bias is abundant (Cavanagh et al., 1995; Stambaugh, 1999; Lewellen,

2004; Torous et al., 2004; Campbell and Yogo, 2006; Ang and Bekaert, 2007; Cochrane,

2008). The workhorse model in these papers assumes a linear relationship between the
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forecasting variable and expected returns, which therefore inherit the persistence of the

predictor. To reconcile this feature with the stylized fact that realized returns are nearly

serially uncorrelated, expected returns are assumed to constitute a small fraction of the

variation, and the unexpected returns dominate (c.f., Moon and Velasco, 2014). This

observation plays a central role in the analysis of return predictability and serves as a

common thread throughout the thesis.

In the first chapter of the dissertation, Predictive Regressions in Predictive Sys-

tems, I analyse inference on return predictability under the assumption that the predictor

variables are imperfect proxies of the expected returns. I show that if there are differences

in the dynamic properties of the expected returns and the predictor(s), the predictive re-

gression uses the predictive information inefficiently. This effect is especially strong if the

predictors and the expected returns are highly, but not equally, persistent.

As a solution, I propose a persistence adjusted predictive regression. The resulting

estimator is a two-stage method, where the expected return process and the predictor

process are modelled separately, allowing for the two to have distinct dynamic properties.

For instance, the procedure formally allows for highly persistent expected returns to be

explained by less persistent term structure variables, a feature not possible in a standard

predictive regression formulation. Simulations, as well as empirical results, show that the

method leads to both better in-sample fit and real-time forecasting performance.

The second chapter of my dissertation, Testing Return Predictability with the

Dividend-Growth Equation: An Anatomy of the Dog, is a joint work with Erik Hjal-

marsson. We analyse the dividend-growth based test of return predictability proposed by

Cochrane (2008). In his study, Cochrane finds that testing for the absence of dividend

growth is a more powerful test of return predictability than a direct test using returns.

The key insight is that under the Campbell and Shiller (1988) decomposition either divi-

dend growth or returns must be predictable. Our aim is to better understand the power
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gains in the dividend-growth based test of return predictability.

Our main finding is that Cochrane’s dividend-growth based test is very similar to a

test based on the full information maximum likelihood estimator of the return predic-

tive regression, where the autoregressive (AR) parameter in the dividend–price ratio is

treated as known. The power gain is achieved because the dividend-growth based test

makes strong use of the postulated value of the autoregressive coefficient. We show that

using the same information one could use a maximum likelihood procedure for the return

equation that dominates the dividend-growth based test. That is, if one compares testing

approaches based on the same information set, there are no power gains from using the

dividend-growth regression in testing for return predictability.

The maximum likelihood test is very sensitive to the choice of the autoregressive

coefficient, which implies a similar sensitivity in Cochrane’s procedure. Moreover, we show

that if one uses the OLS estimate of the autoregressive parameter (which is downward

biased, e.g. Kendall, 1954), then the dividend-growth based test results in severe size

distortion. From an empirical perspective, our findings imply that there are no apparent

gains from using the dividend-growth equation when testing for return predictability and

that one’s prior belief on the persistence of the predictor can substantially affect the

outcome of the tests.

In the third chapter of my thesis, Vanishing Predictability and Non-Stationary

Regressors, I propose a framework in which predictor persistence and parameter instabil-

ity are closely connected. I assume that expected returns are stationary and potentially

predictable by highly persistent variables. Analogous to the work on noisy predictors

(Torous et al., 2004), the information in the predictor is confounded by an uninformative,

non-stationary component. This implies that in large samples the persistent but uninfor-

mative part becomes dominant. Therefore the predictive power weakens, and eventually

vanishes as the number of observations increases. This is consistent with a specific form
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of parameter instability, namely that predictors appear to lose power, and the evidence

of predictability weakens over time (Ferson et al., 2003; Goyal and Welch, 2008).

I also propose a simple and flexible estimation framework, subsample fixed effects

(SFE), that accounts for the presence of a non-stationary non-informative component in

the predictor. It builds on the idea that the bias in the ordinary least squares estimation

increases with the sample size because the non-stationary component becomes dominant

in larger samples. Therefore estimating the parameters on shorter subsamples and pooling

them via a fixed effects estimator mitigates the problem. Applying this method to well-

known predictors of stock market returns shows an overall increase in the significance of

these predictors, supporting the empirical relevance of the proposed model.
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Predictive Regressions in Predictive Systems∗

Tamás Kiss†

Abstract

This paper analyses predictive regressions in a predictive system framework, where

the predictor is an imperfect proxy for the expected returns. I show that when there

are differences between the dynamic structure of the expected returns and the pre-

dictor, the predictive regression uses predictive information inefficiently. The effect

is especially strong if the predictor and the expected returns are highly, but not

equally, persistent. As a solution, I propose a persistence adjustment for the predic-

tive regression. The resulting estimator is a two-stage method, where the expected

return and predictor processes are modelled separately, allowing for each to have

distinct dynamic properties. Simulations, as well as empirical results, show that the

method leads to both better in-sample fit and real-time forecasting performance.

The empirical results highlight that the proposed method is especially useful in the

case of multiple predictors.

Keywords: Persistence adjustment; Predictive system; Return predictability;

JEL classification: C22, G1.

∗I am grateful for the comments by Erik Hjalmarsson, Adam Farago, Hossein Ashgarian, Joakim
Westerlund, Emre Aylar, as well as the participants of the 5th Annual PhD Workshop (2018) at the
University of Gothenburg, and the joint KWC-CFF workshop (2018) in Varberg.
†Department of Economics, Centre for Finance, University of Gothenburg; Email:

tamas.kiss@cff.gu.se.
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1 Introduction

Since the seminal contribution of Campbell and Shiller (1988), several studies have ar-

gued for the existence of time-varying expected returns (Lettau and Ludvigson, 2001;

Ang and Bekaert, 2007; Cochrane, 2008, 2011). The consensus in the financial litera-

ture has subsequently converged toward accepting the existence of return predictability,

and the focus has shifted towards understanding how potential predictors contribute to

predictability. A significant body of empirical literature has found that the evidence on

predictability using predictive regressions is subject to statistical problems (Goyal and

Welch, 2008; Koijen and Van Nieuwerburgh, 2011), which has spurred the development

of sophisticated inference techniques for testing the null of no return predictability. The

proposed tests primarily deal with correcting for the persistent regressor bias to conduct

valid tests on whether returns are predictable (Cavanagh et al., 1995; Stambaugh, 1999;

Lewellen, 2004; Torous et al., 2004; Campbell and Yogo, 2006; Jansson and Moreira, 2006;

Kostakis et al., 2015).

The inferential problem changes, however, when the aim is to assess which variables

are useful predictors, rather than explicitly test a null of no predictability. In this case,

it is critical to understand how a certain predictor is related to future expected returns,

and how this relationship can best be estimated. Indicatively, all predictive regressions

cannot simultaneously be the true data-generating processes for the expected returns. For

instance, univariate regressions with valuation ratios and term structure variables imply

expected return processes with different properties. Both types of regressions can still be

useful for understanding predictability, as these variables most likely carry information

about future expected returns. However, they most probably do so imperfectly in the

sense that the predictors only proxy for the expected return series, as described by the

predictive system in Pástor and Stambaugh (2009). That is, expected return variation is

only partially recovered in any given specification.

In this work, I study predictive regressions in the presence of predictor imperfection.

I examine two forms of imperfection that are non mutually exclusive. First, predictors

might not explain the full variation in expected returns — that is, the latent expected
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return process is not a linear combination of the predictor variables. This form of imper-

fection reflects a fundamental lack of information in the predictive regression formulation;

it cannot be fully controlled for within the model. Second, predictors and the expected

returns might have different dynamic properties. I focus on this latter form of imperfec-

tion, which can be controlled for within the predictive system. I demonstrate that, based

on the standard predictive regression, the explanatory power of the predictor decreases

as the difference between the persistence of the expected returns and the predictor grows.

This effect is particularly strong if the variables are highly persistent. In the limit, where

both the predictor and the expected return are (nearly) non-stationary, the predictive

regression becomes spurious (like the problems described in Ferson et al., 2003; Deng,

2013).

Figure 1: Implied expected return processes from predictive regressions

Notes: The figure shows the realized excess returns of the Centre for Research in Security
Prices (CRSP) value-weighted index (dotted line) and expected returns implied by running
univariate predictive regressions rt+1 = α+βxt+et+1, where xt is either the dividend–price
ratio (solid line) or the (detrended) yield on the long term government bond (dashed line).
The sample runs between 1952 and 2016. Further details on the variables are provided in
Section 5.

To intuitively understand why differences in the time-series structure are important,

consider the simple example in Figure 1, where expected returns are calculated using

univariate predictive regressions based on two different predictors: the dividend–price

ratio and the (detrended) long-term bond yield.1 Unsurprisingly, the two expected return

1A detailed description of the specifications can be found in the description of Figure 1.
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series are markedly different from each other, particularly in terms of their dynamic

properties. Figure 1 thus indicates that information on the persistence of the expected

returns can be useful when estimating the effect of the predictors.

To pursue this idea, I propose a persistence adjustment to the predictive regression.

Incorporating the assumption that expected returns follow a first order autoregressive pro-

cess, the persistence adjusted predictive regression (PAPR) improves upon the standard

ordinary least squares (OLS) estimation in terms of model fit and real-time forecasting

performance. The gain in explanatory power comes from the fact that the persistence ad-

justment disconnects the time-series dynamics of the predictor(s) from the persistence of

expected returns. The persistence adjustment is operationalized by a two-step estimation

framework. In the first step, the parameters governing the dynamics of the predictors are

calculated using the standard least squares technique. In the second step, the latent ex-

pected return process is obtained by minimizing the variance of the unexplained returns.

The method belongs to the class of extremum estimators described by, for example, Newey

and McFadden (1994), and hence its properties are well-known. In particular, the stan-

dard errors can be calculated straightforwardly, accounting for the two-step nature of the

estimation procedure.

The predictive system is formally represented as a state-space model. In the general

case, the expected return process can be estimated by the Kalman filter. Asymptotically,

this yields optimal expected return estimates, connecting the variation in expected returns

to the predictor and/or to past realized returns. I show that the PAPR is a restricted

version of the Kalman filter. It uses information in the predictive variables, but does

not connect expected return variation to realized returns. It thus provides the optimal

expected return series given the information in the predictor, but ignores information in

past returns. The upside is that it requires less parameters to be estimated than the

Kalman filter, which translates into less parameter uncertainty, and better out-of-sample

forecasts.2 In the special case wherein the predictor and the expected returns have the

2The information loss in the PAPR, relative to the Kalman filter, appears smaller. When the true
parameters of the model are assumed known (i.e., no parameter uncertainty), the advantage of the
Kalman-filtered expected returns is not particularly large.
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same time-series dynamics, the PAPR collapses to a standard predictive regression esti-

mated by OLS. Thus, from a practical perspective, the proposed persistence adjustment

connects the structural assumptions of the state-space model with the estimation frame-

work of the predictive regression.

The performances of the different specifications of expected returns are compared

through simulations and an empirical application. A Monte Carlo experiment reveals that

the PAPR outperforms both OLS and the Kalman filter in terms of real-time forecasting

performance. This result suggests that the effect of ignoring past return information is

dominated by the reduced parameter uncertainty. In line with the theoretical discussion,

the advantage of the PAPR over OLS increases as the differences in the dynamics grow.

My empirical analysis is based on quarterly excess stock market returns and the

three predictors used in Pástor and Stambaugh (2009): the dividend–price ratio, the

consumption-to-wealth ratio (cay) by Lettau and Ludvigson (2001), and the detrended

yield on the 30-year US government bond. The results confirm that the persistence ad-

justment involves a bias-variance trade-off compared with the least squares estimation of

the predictive regression. Since more parameters are estimated using the same amount of

information, the parameter estimates of the PAPR tend to have larger standard errors.

Indeed, the time-series dynamics of the expected returns are estimated separately from

the predictors, which is an advantage of the persistence adjustment. If the predictor has a

relatively low persistence (as in the case of the univariate regression using the bond yield

as a predictor), using the PAPR is useful because it can capture the potentially higher

persistence of the expected returns. This becomes even clearer in the case of several

predictors, where the PAPR outperforms OLS both in-sample and out-of-sample.

The remaining paper is organized as follows. I discuss the model and the properties

of the least squares estimation in the predictive system in section 2. Section 3 describes

the PAPR and its relationship to other estimation methods. I present the Monte Carlo

simulations analysing the properties of the PAPR in section 4 and the empirical applica-

tion of the method in section 5. I conclude the study in section 6. The appendix contains

technical derivations and supplementary results.
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2 Predictive regressions and predictive systems

The workhorse model of empirical research on return predictability is the predictive re-

gression. That is,

rt+1 = α + βxt + et+1, (1)

where rt+1 is an observed excess return series (usually stock market index returns in

excess of a risk-free rate) and xt is a predictive variable.3 This specification implies

Et(rt+1) = α + βxt, that is, the conditional expected returns are a linear function of

the predictive variable. In particular, the predictive regression implies that the dynamics

of the expected returns are identical to the dynamics of the predictor; otherwise, the

regression is misspecified. The key advantage of this model is that it can be squarely

estimated using least squares, and standard testing procedures (potentially corrected for

the persistent regressor bias described in Stambaugh, 1999) are readily available. There-

fore, it is a simple and well-understood tool to decide whether certain variables predict

excess returns. Many predictors have been proposed and tested in the literature, both in

univariate settings and in combinations (see, for example, Goyal and Welch, 2008 and the

references therein).

Pástor and Stambaugh (2009) introduced the predictive system, where the predictors

are not perfect proxies of the expected returns. It is a convenient framework to analyze

cases wherein the time-series dynamics of expected returns and the predictor differ, since

it allows the dynamics of the expected return series to be defined separately. Formally,

the following state-space model is used to write the predictive system,

rt+1 = µt + ut+1, (2)

µt+1 = (1− γµ)µ̄+ γµµt + wt+1, (3)

xt+1 = (1− γx)x̄+ γxxt + εt+1. (4)

3In the theoretical discussion, I consider the univariate case only. The results straightforwardly extend
to the multiple predictor case, unless it is discussed separately (as in Appendix C).
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rt+1 and xt are the same as in case of the predictive regression specification, and µt =

Et(rt+1) is the conditional expected return process, modelled separately. The innovation

processes {ut, wt, εt}∞t=0 are assumed to be zero mean, serially independent martingale dif-

ference sequences with a finite covariance matrix. In this specification, the autoregressive

parameters of the expected return (γµ) and the predictor process (γx) need not coin-

cide. The correlation between the innovations of the expected returns and the predictor,

ρwε = Corr(wt, εt), determines the informativeness of the predictive variable. ρwε = 0

implies that the predictor variable is completely uninformative. In the other extreme,

ρwε = 1, together with γx = γµ, implies that expected returns are completely pinned

down by the predictor. In this case, the system reduces to the predictive regression in

equation (1), with equation (4) describing the evolution of the predictor.

Under the assumption that returns and the predictor are generated by equations (2),

(3) and (4), the properties of the predictive regression in equation (1) can be derived. If

we assume stationarity in the system (γx < 1, γµ < 1), the OLS estimator of the slope

coefficient in the predictive regression satisfies the standard result,

β̂OLS
p→ E ((rt+1 − r̄)(xt − x̄))

E ((xt − x̄)2)
= b

1− γ2
x

1− γµγx
, (5)

where b = ρwε
σw
σε

is the coefficient determining the relationship between the expected re-

turn and predictor innovations (hereafter the innovation slope coefficient). The formula

shows that the slope coefficient of the OLS estimator depends on the relationship between

the innovations and the differences in persistence. To analyze this expression further, I fix

the amount of predictability, or more specifically the ratio of expected to unexpected re-

turn variation. I then define the quantity η = σw
/

(σu
√

1− γ2
µ

)
, governing the amount of

predictability present in returns (the normalized beta, for example, in Wachter and Waru-

sawitharana, 2009, 2015; Lucivjanska, 2018).4 Using this notation, the slope coefficient of

4Using the quantity η, the amount of explained return variance can be rewritten as

R2
true =

η2

1 + η2
(6)

Note that η is unobservable, since it depends on the parameters of the latent expected return process.
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the predictive regression can be decomposed into three parts and a scale factor,

β̂OLS
p→ ηρwε

√
1− γ2

µ

√
1− γ2

x

1− γxγµ
σu
√

1− γ2
x

σε
≡ βplimOLS. (7)

First, the asymptotic limit of the OLS estimator depends positively on the relative

variation of the expected returns, η. The intuition is straightforward: the larger the

amount of predictability, the stronger the regression evidence becomes. Second, βplimOLS

depends on the correlation between the predictor and the expected returns (ρwε), as a

better proxy for the predictor implies a larger slope coefficient in the predictive regression.

The third component highlights the importance of distinguishing between the time-series

properties of the expected return and the predictor series. The value of this term, which

depends only on the persistence parameters, is between zero and one, and it is equal

to one only if γµ = γx. The strongest predictive relationship can thus be detected if

the persistence of the predictor and the expected returns are aligned.5 The first two

components (the amount of expected return variation η and the correlation ρwε) are

“fundamental”quantities of the model; they directly determine the amount of variation a

predictor can explain. Without any further information, these quantities must be viewed

as given and fixed. In contrast, the difference in persistence is a feature that can be

corrected for by using the structural assumptions of the model, as discussed further in

section 3.

If γx → 1 while γµ < 1, the OLS estimator converges to zero, keeping other parameters

— especially the scaling and the degree of predictability — constant. This reflects the fact

that a non-stationary variable cannot be used to capture stationary variation. The same

result holds if γµ → 1 and γx < 1, since, analogously, a stationary variable cannot capture

the variation in a non-stationary variable. Furthermore, if both persistence parameters

approach one, the limit is not well defined. In particular, the limit

lim
(γx,γµ)→(1,1)

√
1− γ2

µ

√
1− γ2

x

1− γxγµ
5Similar results for the regression t-statistics and the R2 are derived in Appendix A.
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depends on the relative rates of convergence for γx and γµ. The special case, when

both the expected returns and the predictor approach the non-stationary region must be

analyzed separately. This case is of interest because of the extensive literature on the effect

of persistent regressor bias in predictive regressions (Stambaugh, 1999; Lewellen, 2004;

Campbell and Yogo, 2006; Phillips, 2014, among others), and the empirical fact that many

of the important predictors (particularly, valuation ratios) exhibit high persistence. The

full formal analysis is relegated to Appendix B, but the main finding is that the correlation

between expected return and predictor innovations plays a crucial role when predictors

are nearly non-stationary. If the correlation is not strong, the regression t-statistic is

dominated by the spurious regression effect, making inference invalid. In fact, the spurious

predictive regression literature (Ferson et al., 2003; Deng, 2013), where the predictor is

completely uninformative about expected returns, is a special case of the results derived in

Appendix B. On the other hand, when the correlation between the innovations is high, the

difference in persistence does not enter the asymptotic distribution of the test statistics.

In this case, the predictor and the expected returns become asymptotically equivalent.

In a knife-edge case however, the difference in persistence does play a role, affecting the

distribution of the t-statistic through an extra term that enters due to imperfection.

Overall, the predictive system in the (near) non-stationary case becomes tenuous,

where meaningful inference is only possible in highly specific cases. That is, unless the

data-generating process is in the knife-edge case described in Proposition 1 in Appendix

B, the predictive system either results in spurious predictability or asymptotically reduces

to the predictive regression. Therefore, in the remaining analysis I focus on the stationary

case, in which the predictive system does not collapse to either of these special cases.

3 Inference under imperfect predictors

3.1 Persistence adjusted predictive regression

As discussed in the previous section, the predictive regression is misspecified if the pre-

dictor and the expected returns have different persistence. In this section, I propose
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a persistence adjusted predictive regression (PAPR), which is a method that explicitly

corrects the predictive regression to account for the difference in the persistence of the

predictor and the expected returns.

Assume that the data-generating process is described by the predictive system in equa-

tions (2), (3), and (4). Given the parameters of the model, the innovations of the predictor,

{εt}Tt=1, can be calculated by applying the dynamics in equation (4). The expected return

process is formed from the innovations wt, and although these are unobservable, a pro-

jected expected return series can be calculated using the predictor innovations and the

parameters of the model. The least squares projection of the expected return innovation

is given by wt|εt = bεt, where b is the innovation slope coefficient introduced in equation

(5). The projected expected return series can then be calculated as

µt = µ̄+
t∑

s=1

γt−sµ bεs. (8)

That is, the projected innovations bεs are used in the autoregressive filter governing the

dynamics of the expected return process. If γµ = γx, the expected return series implied

by equation (8) reduces to

µt = µ̄+
t∑

s=1

γt−sx bεs = µ̄+ b
t∑

s=1

γt−sx εs = α + βxt,

in which case the expected return process implied by the projection is identical to that

of the predictive regression. Estimating (8) with γµ as a free parameter is an augmented

version of OLS estimation, where the potentially different persistence of the predictor and

the expected returns is considered.

The parameter estimation of the PAPR can be performed by minimizing the forecast

error. The objective function can be written as

Q(θ) =
1

T − 1

T−1∑
t=1

(rt+1 − µ̃t(θ))
2 , (9)

where θ denotes all parameters of the model. The structure of the problem suggests
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that the estimation can be accomplished in two steps. Let θ = (θ1, θ2), where θ1 =

{x̄, γx} includes the parameters of the predictor process and θ2 = {µ̄, γµ, b} contains the

parameters of the expected return process and the innovation slope coefficient. Since the

predictor follows a simple autoregression, OLS can efficiently estimate its parameters, and

its innovations can be calculated in the first step. In the second step, the objective function

in (9) can be minimized with respect to θ2 to obtain the estimates of the parameters of

the expected return process and the innovation slope coefficient,

θ̂2 = arg min
θ2

Q(θ̂1, θ2)

= arg min
θ2

1

T − 1

T−1∑
t=1

(
rt+1 − µ̃t(θ̂1, θ2)

)2

= arg min
θ2

1

T − 1

T−1∑
t=1

(
rt+1 − µ̄−

t∑
s=1

γt−sµ bε̂s

)2

= arg min
θ2

1

T − 1

T−1∑
t=1

(
rt+1 − µ̄−

t∑
s=1

γt−sµ b
[
xs − (1− γ̂x)ˆ̄x− γ̂xxs−1

])2

,

where ε̂t is the fitted residual of the predictor and µ̃0 = r̄. That is, the expected return

process is initialized in the long term average of realized returns, captured by the sample

mean.6

Two-step estimators constitute a special case of extremum estimators; hence, their

asymptotic properties are well known (Newey and McFadden, 1994). Since the parameters

of the predictor process can be consistently estimated by OLS, the second step is also

consistent. The asymptotic distribution of the estimator has the usual form, except that

standard errors of the estimates in the second step must consider the estimation error of

the first step (see Appendix C).

Analogous to classical regressions, the PAPR can also be easily extended to the mul-

tivariate regression case. If the variables x1
t , x

2
t , . . . , x

J
t are all potential predictors of the

expected returns, the first-step innovation series ε̂1t , ε̂
2
t , . . . , ε̂

J
t are obtained using a mul-

tivariate time-series model for the predictors. The expected return projection is then

6This initialization is not completely innocuous, since theoretically, the exact specification of the
initialization can impact the estimation. This issue is explored further in Appendix D. Consequently,
the bias of the current initialization is empirically negligible.
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formulated as wt|ε1t , ε2t , . . . , εJt =
∑J

j=1 bjε
j
t . The second step is modified whereby all the

innovation slope coefficients {bj}Jj=1 are jointly estimated with the parameters of the ex-

pected return process.

Another assumption of the PAPR that can be easily relaxed is the time-series dynamics

of the predictor. Equation (4) can be redefined using a more general time-series model, and

the predictor innovations are obtained by estimation of the defined model. Asymptotic

results and further discussion on the implementation of the two-step procedure are found

in Appendix C.

3.2 Comparison to Kalman filter

Pástor and Stambaugh (2009) used a Kalman filter to estimate the predictive system.

Since their data-generating process is identical to the one proposed in the present study,

I compare the persistence adjustment to the Kalman filter estimation of the system.

The key difference between the two methods is that the PAPR contains information

only from the predictor (its covariance structure and cross-correlation with the returns),

while the Kalman filter connects the expected return variation not only to past predictor

innovations but also to past returns. To see this, consider the regression formulation of

the conditional expected returns in the state-space model (the derivation can be found in

Pástor and Stambaugh, 2009),

µt = µ̄+
t∑

s=1

ωs(rs − µ̄) +
t∑

s=1

δsεs. (10)

The parameters of the linear model, ωs = m(γµ −m)t−s and δs = n(γµ −m)t−s, depend

on the persistence of the expected returns and the parameters m and n, which, in turn,

are functions of the parameters in equation (2)–(4) and the covariance matrix of the error

terms. The parameters m and n measure the degree to which (past) returns and predictors

contribute to the expected return variation, respectively.7 These parameters need to be

estimated.

7Their exact dependence on the parameters of the underlying data-generating process is given by
equations (A36) and (A37) in Pástor and Stambaugh (2009).

22



The Kalman filter estimation can be viewed as estimating the parameters of equation

(10) without imposing any further assumption on the parameters. In contrast, using the

PAPR is equivalent to imposing m = 0. In this case, ωs = 0, b = n, and δs = bγt−sµ .8

Thus, equation (10) collapses to the specification of the PAPR in equation (8). Setting

m = 0 is an assumption, thus forcing past returns to have no effect on the expected return

prediction. While the Kalman filter attributes time variation in expected returns to both

past returns and predictor innovations, the proposed two-step method shuts down the

channel through which past returns directly operate.

If the model is correctly specified, the Kalman filter estimated by maximum likelihood

results in an asymptotically optimal estimate of the expected returns. However, the typical

sample size in the current return predictability setting is relatively small compared with

the number of parameters that need to be estimated in a full state-space model. Therefore,

the parameter uncertainty is potentially large in the Kalman filter estimation, and the

asymptotic optimality results might not be relevant in empirically occurring sample sizes.

The PAPR is advantageous because it reduces the parameter uncertainty compared with

the Kalman filter. That is, the (asymptotic) bias caused by imposing the restriction

m = 0 is traded-off against the reduced number of parameters. The PAPR can thus

more robustly estimate expected returns, while still considering the potential difference

between the persistence of the predictor and the expected returns.

In the following two sections, I analyze the PAPR and further compare it with the

Kalman filter and OLS both in Monte Carlo simulations and in an empirical application.

I compare three different specifications of expected returns: α + βxt for the standard

predictive regression, equation (8) for the PAPR, and equation (10) for the Kalman filter.

I focus on their performance both in-sample (how well they describe expected returns)

and out-of-sample (how they perform in terms of real-time forecasting).

8n = (σwε−mσuε)σ−2ε in the general formulation in Pástor and Stambaugh (2009). m = 0 corresponds
to n = σwεσ

−2
ε = b.
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4 Simulations

In this section I perform a Monte Carlo simulation to assess the properties of the PAPR

in a predictive system. I present two sets of simulation results that closely relate to the

theoretical discussion in sections 2 and 3. First, I show that the predictive regression

cannot capture the persistence of the expected returns when it is separate from the pre-

dictor. Therefore, the PAPR can produce a better estimate of the expected returns (a

higher in-sample fit), since it estimates the persistence parameter of the expected returns

separately. Second, I carry out an analysis of real-time forecasting performance by com-

paring the predictive regression, the PAPR, and the Kalman filter estimation of the full

system.

4.1 Simulation setup

All simulations assume that the data-generating process is given by the predictive system

described in equations (2)–(4), where the innovations follow a jointly normal process. The

baseline parametrization of the system is as follows. The values µ̄ = 0.018 and x̄ = 0.03

are the unconditional means of the return and the predictor, respectively. These values

correspond to the quarterly unconditional mean of the excess return and the dividend–

price ratio. The expected returns are assumed to explain 5 percent of total return variation

(η2 = 0.05). The default value for the persistence of the expected returns is γµ = 0.9

and the autoregressive parameter of the predictor γx ∈ [0.5, 0.99] is specified for each

simulation.

The standard deviations of the unexpected and expected returns are set such that

the quarterly unconditional volatility is 8 percent. Given the parameters (particularly,

η and γµ) above, this implies σu = 0.081 and σw = 0.011. Further, using the value of

γx, the standard deviation of the predictor, σε, is calculated to ensure that βplimOLS = ρwε.

This choice makes the comparison over specifications easier, since it imposes the same

asymptotic limit for the OLS estimator in each specification.

The correlation structure of the innovations is chosen to reflect the presence of imper-

fection. The default value for predictor imperfection — that is, the correlation between
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the expected return and predictor innovation — is set to ρwε = 0.9. The correlation

between expected and unexpected returns is set to ρuw = −0.7 to capture the negative

correlation for the dividend–price ratio that has been documented in the literature. I also

assume that ρuε = ρuwρwε, which implies that the unexpected returns and the predictor

are only correlated through their correlation with the expected return innovations. All

simulations are performed with T = 200, which corresponds to a typical sample size in

the context of return predictability using quarterly data. The results are based on 1000

repetitions in each case. These parameter choices are retained throughout the simulations,

unless otherwise noted.

4.2 In-sample results

The first set of the simulation results highlights the misspecification in the predictive

regression arising from its inability to capture the potential difference in persistence be-

tween the expected return process and the predictor. The results are obtained by fixing

all parameters at default values (particularly, γµ = 0.9) and varying the autoregressive

coefficient of the predictor between γx = 0.5 and γx = 0.99. Table 1 displays the summary

statistics of the estimation results for the predictive regression and for the PAPR. Since

the expected return implied by the standard predictive regression is µ̂t,OLS = β̂xt, its

persistence is pinned down by xt. Therefore, the estimated persistence of the expected

returns is biased, unless γµ = γx (as seen in Table 1, Panel a). The persistence adjust-

ment is advantageous because it can estimate γµ with less bias and the persistence of the

estimated expected returns no longer depends on γx (Table 1, Panel b).9

[Table 1 about here.]

The ability of the PAPR to capture the difference in persistence translates into better

model fit. To illustrate this, I calculate the in-sample R2 of the models. It measures the

9All the estimates of the autoregressive parameters are downward biased due to the small sample bias
present in OLS estimation. Nevertheless, this does not influence the comparison between the standard
predictive regression estimated by OLS and the PAPR.
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degree to which a given model explains return variation. That is,

IS −R2 = 1− V ar(rt+1 − µ̂t)
V ar(rt+1)

, (11)

where µ̂t is the expected return process generated by the model. In case of OLS, the

measure is identical to the usual R2, while in a non-linear specification it is usually

called the pseudo-R2. According to Figure 2, the PAPR is better than the standard

predictive regression in terms of in-sample R2, and its advantage increases as the difference

in persistence grows, confirming the theoretical results in section 2.

[Figure 2 about here.]

4.3 Out-of-sample results

The second set of simulations analyzes the PAPR in terms of its ability to predict expected

returns in a real-time forecasting setup, and compares it to that of the predictive regression

and the estimation of the full state-space system by the Kalman filter. The real-time

forecasting performance of the model is measured by its out-of-sample R2 defined by

Goyal and Welch (2008),

OOS −R2 =
MSFEbenchmark −MSFEmodel

MSFEbenchmark
, (12)

where MSFEmodel (MSFEbenchmark) is the mean squared forecasting error of the model

(benchmark). The historical mean forecast (i.e., µt = 1
t

∑t
s=1 rs) is used as the benchmark

model. A positive OOS − R2 implies that the model outperforms the constant expected

return model. The training sample is always set equal to 200 observations and the simula-

tions are based on 1000 one period ahead forecasts of the expected returns. Out-of-sample

R2 values are calculated for the default parametrization, and γx varies between 0.5 and

0.99.

[Figure 3 about here.]
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Figure 3 illustrates the results of the simulations. Indeed, the PAPR typically outper-

forms both the standard OLS estimation and the Kalman filter. Since the PAPR involves

more parameters, its advantage over the standard predictive regression is smaller if there

is no large difference in persistence. However, with even a relatively small difference in

persistence, the PAPR outperforms the standard predictive regression. The results in

Figure 3 further indicate that the maximum likelihood estimation of the Kalman filter is

not suitable for out-of-sample forecasts due to parameter uncertainty. It always underper-

forms compared with the other methods, but also the historical mean specification. This

confirms the results in Lucivjanska (2018), that is, the predictive regression is usually

better in terms of out-of-sample performance.

[Figure 4 about here.]

To demonstrate how the weak performance of the Kalman filter can be attributed to

estimation uncertainty, Figure 4 presents the results for when the parameters of the ex-

pected return process are known. That is, there is no estimation error, and the differences

in the models are entirely due to how expected returns are calculated (α + βxt for the

predictive regression, equation (8) for the PAPR, and the filtering equations described by

Pástor and Stambaugh (2009) for the Kalman filter). In this empirically infeasible case,

the Kalman filter provides optimal expected return series. This is reflected in Figure 4,

with the Kalman filter generating the highest out-of-sample R2. However, the figure also

highlights the importance of adjusting for the difference in persistence. The prediction

made by the standard predictive regression is dominated by the PAPR, which, in turn,

is remarkably close to the Kalman filter. The results in Figure 4 thus suggest that the

advantage of the full system estimation is limited, given the similarity between PAPR

and the Kalman filter.

5 Empirical analysis

I now turn to an empirical analysis using the PAPR method described above. I estimate

various models to predict the quarterly returns on the Center for Research in Security

27



Prices (CRSP) value-weighted stock market index between 1952 and 2016. Excess returns

are calculated using the 30-day Treasury bill as the risk-free rate. The predictors are

the same as those in Pástor and Stambaugh (2009). The dividend–price ratio (dp) is

calculated using returns on the CRSP value-weighted index with and without dividends.

The consumption-to-wealth ratio (cay) is obtained from Lettau and Ludvigson (2001).

The bond yield (by) variable is the difference between the 30-year government bond yield

and its twelve-month moving average in the CRSP Treasuries file.

Descriptive statistics for the variables are shown in Table 2. The first-order autocor-

relations in the third column show that the predictors are substantially different in terms

of their time-series properties. The autoregressive parameter for the dividend–price ratio

is 0.97, which implies high persistence, close to non-stationarity. On the other hand, the

first-order autocorrelation of the bond yield is only 0.61, implying a relatively fast mean

reversion. The cay variable is in the middle with an autoregressive parameter of 0.82.

These numbers also suggest that the expected return processes implied by the univariate

regressions are likely different.

[Table 2 about here.]

Panel (a) in Table 3 presents the results from univariate OLS regressions and a mul-

tivariate regression including all the variables. In this dataset, the dividend–price ratio

is the weakest predictor of the expected returns, while the other two variables exhibit

stronger relationships with one-quarter-ahead returns. Including all these variables in

the regression leaves the coefficient on each variable largely unchanged, which suggests

that the three predictor variables convey different information, and multicollinearity is

not particularly large.

[Table 3 about here.]

[Table 4 about here.]

The PAPR results show similar patterns. Innovations in the first step are obtained
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through a first-order autoregressive filter (shown in Table 4).10 The estimates of the sec-

ond step, that is, the estimated persistence of the expected returns and the innovation

slope coefficients, are shown in panel (b) of Table 3. Overall, the univariate results of the

PAPR reflect the results of the standard regression estimated by OLS. The autocorrelation

coefficient of the expected returns (γµ) is estimated with high precision. The innovation

slope coefficients are estimated with larger standard errors than the corresponding OLS

slope coefficients. Thus, with the PAPR, there are more parameters to estimate com-

pared with the standard predictive regression. When all three variables are included in

the model, all are significant, suggesting that they all help explain expected return inno-

vations. The PAPR estimates of the persistence of expected returns (γµ) reveal a more

uniform pattern over the specifications than the corresponding OLS estimates (bottom

row of each panel).

Since the simulated results show a downward bias in the PAPR estimate of γµ, I also

report the bootstrap bias-corrected estimates for this parameter in the last row of Table

3, Panel (b).11 The bias-corrected estimates are larger than the baseline values, though

only to a small extent. Thus, even though the downward bias is present empirically, it

is not substantial. Therefore, the forecasting results in the next section are based on the

baseline PAPR estimates of γµ.

The autoregressive coefficient of the expected returns is a key parameter of the model,

and obtaining results conditional on γµ is also informative, given the additional parameter

uncertainty of PAPR compared with the standard predictive regression. Fixing the au-

toregressive parameter of the expected return process decreases the number of estimated

parameters, thus reducing the parameter uncertainty in the PAPR. It also eliminates the

minor downward bias in the PAPR estimate of γµ. Table 5 shows the restricted estimation

results. The first column replicates the unrestricted estimates, while the second and third

columns present the restricted estimation results, imposing either γµ = 0.8 or γµ = 0.95.

10In unreported results, I considered alternative specifications. I fitted higher-order autoregressive
models for each predictor, where the order is determined by the Akaike and Bayesian information cri-
teria, and ARMA(1,1) models. The results based on the alternative time-series specifications remain
qualitatively similar.

11A residual bootstrap with 200 repetitions is performed.
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The different outcomes of the estimation show variation, but the differences are not large.

That is, the estimated innovation slope coefficients are not particularly sensitive to the

restrictions. I return to the usefulness of imposing restrictions on γµ in the out-of-sample

results discussed below.

[Table 5 about here.]

To evaluate the PAPR, I also calculate its in-sample fit and real-time (out-of-sample)

forecasting performance. The measures I use are the in-sample and out-of-sample R2

defined in section 4, and the Diebold–Mariano test assessing equal forecasting performance

(Diebold and Mariano, 1995). Table 6 presents both in-sample and out-of-sample results

for the one regressor specifications and the full model, where all the regressors are included.

The results for the standard linear model estimated by OLS as well as the unrestricted

PAPR and two of the restricted forms are shown. The full estimation of the system using

maximum likelihood Kalman filter is also presented.12

[Table 6 about here.]

Table 6 shows that the unrestricted PAPR outperforms the OLS estimation in each

case in terms of in-sample R2. This suggests that the predictive regression is misspecified;

thus, adjusting for persistence differences mitigates the misspecification. The in-sample

gains of the PAPR range between 0.2 and 2 percentage points, the latter implying an

18 percent improvement on the standard predictive regression in terms of in-sample R2.

When restrictions are imposed on the PAPR, the in-sample results worsen to some extent

compared with the unrestricted model.

As seen in the estimation results in Table 3, the standard errors of the PAPR estimates

are relatively large, which might negatively affect the out-of-sample performance. This

is at least partially supported by the out-of-sample results shown in Table 6. Imposing

a pre-defined value on the persistence parameter γµ, as discussed above, can potentially

reduce the overall parameter uncertainty and improve the out-of-sample forecasts. In fact,

12Note that these results are not directly comparable with the results in Pástor and Stambaugh (2009),
since performing the full Bayesian estimation as in the original study is outside the scope of the current
analysis.
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imposing a relatively high persistence (γµ = 0.95) makes sense both from an economic

and econometric perspective because most evidence suggests that the time variation in

expected returns is persistent. As seen in Table 6, fixing γµ = 0.95, the PAPR forecasts

perform the best out of sample in all cases except for the dividend–price ratio, which

appears to be a weak predictor with no out-of-sample gains for any estimation method.

In the multivariate specification, all PAPR forecasts (whether based on restricted or

unrestricted estimates) outperform the OLS one. This reflects the fact that the expected

return parameters are estimated with more precision in the multivariate case (see also in

Panel (b) in Table 3).

The fit of the Kalman filter tends to be much weaker than that of the other two

methods in the specifications using the dividend–price ratio (Panel a and d in Table 6).

This is likely because the estimation of the Kalman filter parameters becomes unstable

when the persistence of the state variables is high. Further, out-of-sample performance

tends to be weak in all specifications, which echoes the results of Lucivjanska (2018) and

the simulation results in section 4.

6 Conclusion

In this study, I investigated predictive regressions when the data are generated by the

predictive system proposed by Pástor and Stambaugh (2009), where predictors are im-

perfect proxies of the expected returns. I demonstrated how predictor imperfection can

be decomposed into two main terms: the imperfect correlation between the innovation

of the predictor and the expected returns as well as the difference in persistence between

the predictor and the expected returns. While the first type of imperfection is arguably

fundamental, the second type can be controlled for within the model. To this end, I

proposed a persistence adjustment to the standard predictive regression, which is based

on the structural assumptions of the predictive system.

The proposed estimator was labeled PAPR. It is a two-stage method, where the ex-

pected returns and predictor processes are modelled separately, allowing for each to have

distinct dynamic properties. This method involves minimal deviation from the standard
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predictive regression. If the persistence parameters of the predictor and the expected

returns are equal, the method is asymptotically identical to the standard predictive re-

gression. My simulations reveal that the model fit of the predictive regression can be sub-

stantially lower if the difference in persistence is not taken into account and the persistence

adjustment can significantly improve upon standard least squares results in predictive re-

gressions. This is particularly true if the difference in persistence is large. Empirically,

both in-sample and out-of-sample improvements, relative to OLS estimation, are docu-

mented in relevant cases.

The focus of the current study was to evaluate how assumptions about imperfect pre-

dictors affect predictive regression evidence on return predictability. If the data-generating

process is given by the predictive system, the Kalman filter delivers asymptotically opti-

mal expected return series. Disregarding estimation uncertainty, the PAPR is thus inferior

to the Kalman filter. However, a simple persistence adjustment brings the predictive re-

gression results remarkably close to the estimation of the full system, and in practical

situations the parameter uncertainty in the Kalman filter results in poor in-sample and

out-of-sample performance. The proposed method therefore provides a simple and almost

efficient way of dealing with predictor imperfection.
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Figure 2: Simulated in-sample model fit

Notes: This plot shows the in-sample R2 of the predictive regression and the PAPR as a
function of the autoregressive parameter of the predictor. The results are based on a Monte
Carlo simulation with 1,000 repetitions. The parameter choices are as in the description for
Table 1. In particular, the vertical line indicates that the autoregressive parameter of the
expected returns is set to γµ = 0.9.
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Figure 3: Simulated out-of-sample model fit when parameters are estimated

Notes: These plots show the out-of-sample R2 of the standard predictive regression (dashed
line), the PAPR (solid line), and the Kalman filter (dotted line). The autoregressive pa-
rameter of the expected returns is set to γµ = 0.9, and results are shown as a function of
the persistence parameter of the predictor. The other parameters are set to their default
values as described in the text and in Table 1. The benchmark model is the historical mean
forecast and the results are based on 1,000 repetitions.
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Figure 4: Simulated out-of-sample model fit when parameters are imposed

Notes: This plot shows the out-of-sample R2 of the standard predictive regression (dashed
line), the PAPR (solid line), and the Kalman filter (dotted line), where the parameters
are not estimated (the true parameters are imposed). The autoregressive parameter of the
expected returns is set to γµ = 0.9, and results are a function of the persistence parameter of
the predictor. The rest of the parameters are set to their default values as described in the
text and in Table 1. The benchmark model is the historical mean forecast and the results
are based on 1,000 repetitions.
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Table 1: Estimated persistence of the expected returns

This table shows how OLS (Panel a) and the persistence adjusted predictive regres-
sion (Panel b) capture the persistence of the expected returns. The columns are the
mean and standard deviation of the autoregressive coefficient of the expected returns,
measured by the sample first-order autocorrelation. The data-generating process is the
predictive system in equation (2)–(4). Each row indicates the persistence parameter
of the predictor used in the simulation. Otherwise, default parameter values are used:
µ̄ = 0.018, x̄ = 0.03, η2 = 0.05, σu = 0.081, γµ = 0.9, σw = 0.011, ρuw = −0.7,

ρwε = 0.9, σε = 0.011 1−γ2x
1−0.9γx

. All the results are based on a sample size of T = 200
and 1,000 repetitions.

(a) Predictive Regression

Mean γ̂µ S.e. γ̂µ
γx = 0.5 0.4862 0.0622
γx = 0.6 0.5843 0.0595
γx = 0.7 0.6846 0.0519
γx = 0.8 0.7817 0.0448
γx = 0.9 0.8810 0.0343
γx = 0.99 0.9772 0.0177

(b) Persistence Adjusted Predictive Regression

Mean γ̂µ S.e. γ̂µ
γx = 0.5 0.8051 0.2266
γx = 0.6 0.8224 0.2092
γx = 0.7 0.8395 0.1681
γx = 0.8 0.8495 0.1497
γx = 0.9 0.8571 0.1476
γx = 0.99 0.8083 0.1788
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Table 2: Descriptive statistics

This table includes descriptive statistics for variables used in the main empirical anal-
ysis. The data are quarterly, running from the first quarter of 1952 until the fourth
quarter of 2016. The first two columns are the mean and the standard deviation
of the variables. The third column is the estimated slope coefficient of a first-order
autoregressive process.

mean stdev γx N
dp 0.0308 0.0111 0.967 260
cay -2.07e-05 0.0125 0.822 260
by 7.12e-05 0.00531 0.612 260
ret 0.0181 0.0824 0.0821 260
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Table 3: Estimation results

This table presents the estimation results for the predictive regression with and with-
out persistence adjustment. The first three columns show the results based on one
predictor, while the last column shows the results when all predictors are included.
Panel (a) includes the estimates of univariate (columns 1–3) and multivariate OLS
regressions. The slope coefficient estimates are shown in rows one through three. The
last row shows the implied autocorrelation of the expected returns, that is, the first-
order autocorrelation of the process µ̂t =

∑J
j=1 β̂jxj . Standard errors are given in

parentheses. Panel (b) shows results for the PAPR. The first three rows are the inno-
vation slope coefficients, and the last row is the estimated persistence of the expected
returns. Innovations in the first step are obtained through a first-order autoregressive
filter. Standard errors in parentheses are calculated using the asymptotic formula given
in Appendix C. The bootstrap bias-corrected version of the autoregressive parame-
ter (based on a residual bootstrap approach with 200 repetitions) is shown in square
brackets. The sample runs from the first quarter of 1952 to the last quarter of 2016.
The dependent variable is the one-step ahead excess return. *, **, and *** indicate
significance at the 10, 5 and 1 percent levels, respectively.

(a) Predictive Regression

dp cay by full
dp 0.9196 0.7655

(0.4649)** (0.4604)*
cay 1.6051 1.2921

(0.4106)*** (0.4230)***
by 2.9109 2.7117

(1.1792)** (1.1242)**
γµ (implied) 0.9644 0.8248 0.6145 0.7768

(0.0147)*** (0.0340)*** (0.0849)*** (0.0423)***

(b) PAPR (Second step)

dp cay by full
dp 2.1933 3.0026

(1.5889) (1.0243)***
cay 1.2293 0.9136

(0.3658)*** (0.4169)**
by 2.7669 2.0009

(1.2236)** (0.8130)**
γµ 0.8762 0.9235 0.6808 0.9165

(0.1236)*** (0.0395)*** (0.2155)*** (0.0444)***
[0.8953] [0.9282] [0.7006] [0.9269]
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Table 4: PAPR (first stage)

This table shows the first-step estimates of the two-step procedures described in the
text. The sample runs between the first quarter of 1952 and the last quarter of 2016.
Since a first-order autoregressive process is used, the estimated parameters are the in-
tercept (first column) and the scalar autoregressive parameter (second column). Stan-
dard errors are based on the usual OLS formula. *, **, and *** indicate significance
at the 10, 5 and 1 percent levels, respectively.

Constant AR(1)
dp 0.0009 0.9671

(0.0007) (0.0169)*
cay -0.0000 0.8223

(0.0004) (0.0376)*
by 0.0000 0.6121

(0.0003) (0.0293)*
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Table 5: Persistence Adjusted Predictive Regression (restricted estimates)

This table shows how restrictions affect estimation results for the two-step estimates.
The sample runs between the first quarter of 1952 and the last quarter of 2016. The
first column is the unrestricted model, while results in the second and third columns
are obtained by fixing the autoregressive coefficient of the expected returns. Inno-
vations in the first step are obtained through a first-order autoregressive filter. The
dependent variable is the one-step-ahead excess return. Standard errors in parenthe-
sis are calculated using the asymptotic formula given in Appendix C. *, **, and ***
indicate significance at the 10, 5 and 1 percent levels, respectively.

Full Restricted (γµ = 0.8) Restricted (γµ = 0.95)
bdp 3.0026 2.7873 2.6010

(1.0243)*** (1.4966)* (0.8032)***
bcay 0.9136 1.1948 0.7950

(0.4169)** (0.6610)* (0.3419)**
bby 2.0009 2.5758 1.5699

(0.8130)** (1.0418)** (0.7087)**
γµ 0.9165 0.8000 0.9500

(0.0444)***
[0.9269]
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Table 6: Model comparison

These tables present the performance measures for different model specifications. Panels (a)
to (c) include the results based on univariate specifications using the dividend–price ratio, cay
and bond yield, respectively. Panel (d) shows the results for when all the variables are included
simultaneously. The first column in each table presents in-sample R2 values based on the formula
in equation (11). The second column is the out-of-sample R2 defined in equation (12). Positive
values indicate that the model performs better than the historical mean. The first row indicates
standard predictive regression results, and the second row is the unrestricted PAPR. The third
and fourth rows are restricted versions of the PAPR, where the persistence of the expected
returns is fixed. The last row shows results based on the maximum likelihood estimates of the
full system using the Kalman filter. Only one-step-ahead forecast horizons are considered, and
the initial training sample is taken to be 40 percent of the entire sample. The third column is
the test statistic of the Diebold–Mariano test as in Diebold and Mariano (1995).

(a) dividend–price ratio

IS-R2 OOS-R2 DM test statistic
OLS 0.0153 -0.0299 -7.7337
PAPR 0.0185 -0.0486 -12.8341
Restricted PAPR (γµ = 0.8) 0.0150 -0.0069 -2.5791
Restricted PAPR (γµ = 0.95) 0.0140 -0.0355 -9.9231
Kalman Filter 0.0069 -0.7463 -14.2686

(b) cay

IS-R2 OOS-R2 DM test statistic
OLS 0.0587 0.0401 7.3666
PAPR 0.0685 0.0367 6.9956
Restricted PAPR (γµ = 0.8) 0.0559 0.0307 5.6796
Restricted PAPR (γµ = 0.95) 0.0679 0.0504 10.6227
Kalman Filter 0.0870 0.0037 0.6103

(c) bond yield

IS-R2 OOS-R2 DM test statistic
OLS 0.0425 -0.0050 -0.7302
PAPR 0.0449 -0.0210 -3.0038
Restricted PAPR (γµ = 0.8) 0.0444 -0.0054 -0.8058
Restricted PAPR (γµ = 0.95) 0.0321 0.0047 0.9358
Kalman Filter 0.0442 -0.0806 -9.1279

(d) all

IS-R2 OOS-R2 DM test statistic
OLS 0.0927 -0.0049 -0.6252
PAPR 0.1114 0.0087 1.0897
Restricted PAPR (γµ = 0.8) 0.0944 0.0069 0.8341
Restricted PAPR (γµ = 0.95) 0.1093 0.0217 3.0534
Kalman Filter 0.0186 -0.8611 -15.2522
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Appendix

A t-statistics and R2 of the predictive regression

The results reflecting equation (7) can be derived for the t-statistic and the R2 of the

predictive regression. Begin with the variance of the regression error:

V ar (êt+1) = V ar (rt+1 − r̄) + β̂
2

OLSV ar (xt − x̄)− 2β̂OLSCov (rt+1 − r̄, xt − x̄)

=
σ2
w

1− γ2
µ

+ σ2
u + β̂

2

OLS

σ2
ε

1− γ2
x

− 2β̂OLS
σwε

1− γxγµ

=
σ2
w

1− γ2
µ

+ σ2
u +

σ2
wε

(1− γxγµ)2

(1− γ2
x)

2

σ4
ε

σ2
ε

1− γ2
x

− 2
σwε

1− γxγµ
(1− γ2

x)

σ2
ε

σwε
1− γxγµ

=
σ2
w

1− γ2
µ

+ σ2
u −

σ2
wε

(1− γxγµ)2

(1− γ2
x)

σ2
ε

.

The variance of the OLS estimator of β is

TV ar(β̂OLS) =
V ar (êt+1)

V ar (xt)
=
σ2
w

σ2
ε

1− γ2
x

1− γ2
µ

+
σ2
u(1− γ2

x)

σ2
ε

− ρ2
wε

σ2
w

σ2
ε

(1− γ2
x)

2

(1− γxγµ)2

= η2σ
2
u

σ2
ε

(1− γ2
x) +

σ2
u(1− γ2

x)

σ2
ε

− η2ρ2
wε

σ2
u

σ2
ε

(1− γ2
x)

2(1− γ2
µ)

(1− γxγµ)2

=
σ2
u(1− γ2

x)

σ2
ε

[
1 + η2

(
1− ρ2

wε

(1− γ2
x)(1− γ2

µ)

(1− γxγµ)2

)]
,

which implies the following expression for the t-statistic:

tβ̂OLS =
β̂OLS√

V ar(β̂OLS)
=
√
T

ηρwε

√
1−γ2µ
√

1−γ2x
1−γxγµ√

1 + η2
[
1− ρ2

wε

(
(1−γ2µ)(1−γ2x)

(1−γxγµ)2

)] .

The expression above is scale-free and essentially depends on the same factors as

the slope coefficient: the underlying amount of predictability, the degree of imperfection

and the difference between the persistence of the predictor and the expected returns.

Both η and ρwε are positively related to the t-statistic. A higher underlying amount of

predictability and a larger correlation between the predictor and the expected returns
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suggest a stronger signal, which should imply a greater t-statistic. The effect of the

autocorrelation parameters on the t-statistic is also similar. The t-statistic is maximal

if the two autocorrelations coincide; otherwise, it decreases in the difference between the

two values. The decrease is faster the closer the parameters are to unity. This implies

that the persistence of the regressor substantially affects the inference, in line with the

results in Appendix B.

A decomposition analogous to (7) can also be given for the regression R2,

R2
OLS =

β̂
2

OLSV ar(xt)

V ar(rt+1)
= R2

trueρ
2
wε

(1− γ2
x)(1− γ2

µ)

(1− γxγµ)2
.

R2
OLS ≤ R2

true, where R2
true is the R2 of the predictive regression in the absence of predictor

imperfection. Therefore, the explanatory power of any predictive regression provides a

lower bound for the degree to which expected returns explain return variation.

B Highly persistent predictors

Suppose that the autoregressive parameter of the predictor and the expected returns is

given by γx = 1 − cx
T

and γµ = 1 − cµ
T

, respectively, where T is the sample size and cx

and cµ are constants. This corresponds to the specification in Cavanagh et al. (1995)

and Campbell and Yogo (2006). As discussed, predictor imperfection can stem from

two sources, either a smaller-than-unity correlation in innovations, or a difference in the

autocorrelation of the predictor and the expected returns (which, in this case, is captured

by the fact that cx 6= cµ).

A correlation coefficient ρwε strictly smaller than one implies a spurious predictive

regression if the predictor and the expected returns are nearly integrated. Any non-perfect

correlation means that the expected return process has a nearly integrated component

that is unrelated to the predictor. In this case, the slope coefficient of the predictive

regression converges to a random variable, and the t-statistic diverges for any value of

ρwε. Therefore, it is necessary to introduce an asymptotically perfect correlation between

the innovations to analyze the effect of predictor imperfection further. To this end, I
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introduce the concept of a nearly perfect predictor (analogous to near integration). This

implies that, asymptotically, the correlation ρwε → 1 as T →∞. I specify ρwε = 1− d
T δ

for

some positive constants d and δ. The asymptotic results on the regression slope coefficient

and the t-statistics are summarized in the following proposition.

Proposition 1 Assume that the data-generating process is given by equations (2)−−(4),

with γx = 1 − cx
T

and γµ = 1 − cµ
T

for some cx, cµ ≥ 0, and the correlation between the

predictor and the expected returns can be written as ρεw = 1 − d
T δ

for some d > 0 and

δ ≥ 0. Define β∗ = σw
σε

. The following results hold:

1. The slope coefficient satisfies

T δ/2
(
β̂OLS − β∗

)
⇒
√

2d
σw
∫
J cx J̃ cµ

σε
∫
J2
cx

if δ < 2,

T
(
β̂OLS − β∗

)
⇒

σu
∫
J cxdBu

σε
∫
J2
cx

+
√

2d
σw
∫
J cx J̃ cµ

σε
∫
J2
cx

if δ = 2,

T
(
β̂OLS − β∗

)
⇒

σu
∫
J cxdBu

σε
∫
J2
cx

if δ > 2.

2. The t-statistic

tβ̂OLS diverges if δ < 2,

tβ̂OLS ⇒ (1− ρ2
εu)

1/2

∫
J cxdWũ(∫
J2
cx

)1/2
+ ρεu

∫
J cxdWx(∫
J2
cx

)1/2
+
√

2d
σw
∫
J cx J̃ cµ

σu
(∫

J2
cx

)1/2
if δ = 2,

tβ̂OLS ⇒ (1− ρ2
εu)

1/2

∫
J cxdWũ(∫
J2
cx

)1/2
+ ρεu

∫
J cxdWx(∫
J2
cx

)1/2
if δ > 2,

where the processes Jcx and J̃cµ are defined below in Lemma 1.

Before the proof of Proposition 1, I collect some useful standard results related to

local-to-unity asymptotics in a lemma (based on Phillips, 1987).

Lemma 1 Let vt = (ut, wt, εt)
′ be a serially uncorrelated martingale difference sequence

with E(vtv
′
t) = Σ ∀t. Define the nearly integrated processes ξt = (ũt, µt, xt)

′ such that
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their time-series dynamics can be written as

ξt =


1− cũ

T
0 0

0 1− cµ
T

0

0 0 1− cx
T

 ξt−1 + vt ≡
(
I − 1

T
C

)
ξt−1 + vt.

Then, by standard results (for example, in Phillips, 1988)

1

T−3/2

T∑
t=2

ξt−1 ⇒ Σ1/2

∫ 1

0

JC(r)dr

1

T−2

T∑
t=2

ξt−1ξ
′
t−1 ⇒ Σ1/2

∫ 1

0

JC(r)JC(r)′drΣ1/2

1

T−1

T∑
t=2

ξt−1v
′
t ⇒ Σ1/2

∫ 1

0

JC(r)dW(r)′drΣ1/2,

where W is a standard three-dimensional Brownian motion and JC satisfies the stochastic

differential equation

dJC(r) = CJC(r)dr + dW(r); JC(0) = 0.

The joint convergence result also implies that the result holds for individual processes

and pairs of processes, too. Note that we can use the usual orthogonal decomposition for

the processes due to the lack of autocorrelation in the innovations. In particular, Wµ =

ρεwWx +
√

1− ρ2
εwWµ̃, where Wµ̃ is a standard Wiener process, independent from Wx.

We can build up a J̃cµ process, which is independent from Jcx , using this decomposition

for Wµ. The results hold for the demeaned process ξ
t

= ξt − 1
T

∑T
t=1 ξt, replacing JC(r)

with JC(r) = JC(r)−
∫ 1

0
JC(r)dr.

Proof of Proposition 1.
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Consider first the OLS estimate of the slope coefficient,

β̂OLS =

∑T−1
t=1 (rt+1 − r̄) (xt − x̄)∑T−1

t=1 (xt − x̄)2
=

∑T−1
t=1 (µt − µ̄) (xt − x̄)∑T−1

t=1 (xt − x̄)2
+

∑T−1
t=1 ut+1 (xt − x̄)∑T−1
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∑(
1− d

T δ

)
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σε
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t=1 (xt − x̄)2

+

∑T−1
t=1 ut+1 (xt − x̄)∑T−1
t=1 (xt − x̄)2

+
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t=1

√
2d
T δ
− d2

T 2δ

(
µ̃t+1 − ¯̃µ

)
(xt − x̄)∑T−1
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1− d

T δ
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σw
σε

+

∑T−1
t=1 ut+1 (xt − x̄)∑T−1
t=1 (xt − x̄)2

+
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2d
T δ
− d2

T 2δ

(
µ̃t+1 − ¯̃µ

)
(xt − x̄)∑T−1

t=1 (xt − x̄)2
,

where µ̃t+1 is a local-to-unity process with autoregressive parameter 1 − cµ/T and inno-

vations uncorrelated with εt. Based on the results in Lemma 1,

T δ/2
√

2d

T δ
− d2

T 2δ

1
T

∑T−1
t=1

(
µ̃t+1 − ¯̃µ

)
(xt − x̄)

1
T

∑T−1
t=1 (xt − x̄)2

⇒
√

2d
σw
∫
J cx J̃ cµ

σε
∫
J2
cx

,

T
1
T

∑T−1
t=1 ut+1 (xt − x̄)

1
T

∑T−1
t=1 (xt − x̄)2

⇒
σu
∫
J cxdWu

σε
∫
J2
cx

.

The joint weak convergence also holds. Defining β∗ = σw
σε

yields the first part of the results

in Proposition 1. The result implies that the OLS estimate is consistent. That is,

β̂OLS
p→ β,

and β̂OLS − β = Op(T
−min{1,δ/2}), which can also be written as β̂OLS − β = ζ

Tmin{1,δ/2} ,

where ζ is a random variable (Op(1)). The fitted residuals and their sum of squares can

thus be written as

ût+1 = rt+1 − β̂OLS(xt − x̄)

= µt − µ̄t + ut+1 − ūt − β̂OLS(xt − x̄)

=

(
1− d

T δ

)
β(xt − x̄) +

√
2d

T δ
− d2

T 2δ
(µ̃− ¯̃µ)− β̂OLS(xt − x̄) + (ut+1 − ū)

=

(
β − β̂OLS −

d

T δ

)
(xt − x̄) +

√
2d

T δ
− d2

T 2δ
(µ̃− ¯̃µ) + (ut+1 − ū)
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and

1

T

T−1∑
t=1

û2
t+1 =

1

T

(
β − β̂OLS −

d

T δ

)2 T−1∑
t=1

(xt − x̄)2 +
1

T

(
2d

T δ
− d2

T 2δ

) T−1∑
t=1

(µ̃− ¯̃µ)
2

+
1

T

T−1∑
t=1

(ut+1 − ū)2

+ 2
1

T

(
β − β̂OLS −

d

T δ

)√
2d

T δ
− d2

T 2δ

T−1∑
t=1

(xt − x̄) (µ̃− ¯̃µ)

+ 2
1

T

(
β − β̂OLS −

d

T δ

) T−1∑
t=1

(xt − x̄)(ut+1 − ū)

+ 2
1

T

√
2d

T δ
− d2

T 2δ

T−1∑
t=1

(µ̃− ¯̃µ) (ut+1 − ū)

=
1

T

T−1∑
t=1

(ut+1 − ū)2 + op(1).

The variance of the OLS estimator of β can now be written as

V ar(β̂OLS) =
1

T

1
T

∑T−1
t=1 û

2
t+1

1
T

∑T−1
t=1 (xt − x̄)2

=
1

T

ζ2
(
op(1) + 1

Tζ2

∑T−1
t=1 (ut+1 − ū)2

)
1
T

∑T−1
t=1 (xt − x̄)2

and the t-statistic (disregarding the asymptotically vanishing term) is

tβ̂OLS =
β̂OLS − β√
V ar(β̂OLS)

=
ζ

Tmin{1,δ/2}

ζ√
T

√
1
Tζ2

∑T−1
t=1 (ut+1−ū)2

1
T

∑T−1
t=1 (xt−x̄)2

= Tmax{− 1
2
, 1−δ

2
}
ζ
√

1
T

∑T−1
t=1 (xt − x̄)2√

1
T

∑T−1
t=1 (ut+1 − ū)2

.

If δ < 2, the expression above diverges, establishing the first line of the second part of the

results. Otherwise, the expression above converges to

tβ̂OLS ⇒
ζ
(
σ2
ε

∫
J2
cx

)1/2

σu
=

∫
J cxdWu(∫
J2
cx

)1/2
+
√

2d
σw
∫
J cx J̃ cµ

σu
(∫

J2
cx

)1/2
if δ = 2,

and

tβ̂OLS ⇒
ζ
(
σ2
ε

∫
J2
cx

)1/2

σu
=

∫
J cxdWu(∫
J2
cx

)1/2
if δ > 2.

The remaining results are then established by decomposing the innovations in the last

term on the right-hand side as Wu = ρεuWx + (1 − ρ2
εu)

1/2Wũ, where Wũ is a standard
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Wiener process independent of Wx.

Proposition 1 distinguishes between three cases. First, if the predictor imperfection

is strong (δ < 2), spurious regression dominates. The convergence of β is slow (or it

does not converge in probability if δ = 0), and the t-statistic diverges, indicating strong

statistical significance, even if there is no relationship between the predictor and the

expected returns. That is, the predictive regression is spurious if δ < 2. It is analogous

to the result in Ferson et al. (2003) and Deng (2013) dealing with completely spurious

regressions in the context of return predictability (δ = 0 and d = 1 nest the specification

discussed in Deng, 2013). In this case, the endogeneity of the predictor has a second-

order effect. The second case, δ > 2, is then asymptotically equivalent to the situation, in

which the predictor perfectly correlates with the expected returns. The estimation of β is

consistent and the t-statistic converges to the expression derived in Cavanagh et al. (1995).

Third, in the knife-edge case, δ = 2, predictor imperfection has a non-trivial effect on the

results. The slope coefficient can be estimated consistently, but the t-statistic becomes

non-standard. Particularly, it is a linear combination of three terms. The first one is

a standard normal distribution, that is, in the absence of endogeneity and imperfection

(ρεu = d = 0), the t-statistic asymptotically follows a standard normal distribution. The

second part enters because of the potential endogeneity of the regressor, and the third

component indicates the effect of predictor imperfection. The relative strengths of the

three terms are determined by the correlation structure of the innovations.

C The general formulation of the two-step procedure

Let the predictive system be described by

rt+1 = µt + ut+1 (13)

µt+1 = (1− γµ)µ̄+ γµµt + wt+1 (14)

xt+1 = x̄ + A(L)xt + εt, (15)
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where xt is a K-dimensional vector process, and A(L) is a lag polynomial satisfying

assumptions that ensure the stationarity of xt. The innovations {ut, wt, εt} jointly follow

martingale difference sequences with a contemporaneous covariance matrix Σ. Let θ =

{θ1, θ2} be the parameters of the model to be estimated, with θ1 = {x̄, A} and θ2 =

{µ̄, γµ,b}, as in the main text.

In the first step, the parameters of equation (15) are estimated (for example, equation-

by-equation OLS), and the predictor innovations are calculated as

ε̂t+1 = xt+1 − ˆ̄x− Â(L)xt.

The second step consists of minimization of the criterion function. That is,

θ̂2 = arg min
θ2

Q(θ̂1, θ2) = arg min
θ2

1

T − 1

T−1∑
t=1

(
rt+1 − µ̄+

t∑
s=1

γt−sµ b′ε̂t

)2

. (16)

The asymptotic properties of the two-step estimator, which is a special case of ex-

tremum estimators, is well-known (for example Newey and McFadden, 1994). Given a

consistent estimator for the first-step parameters θ̂1, the remaining parameters (θ2) can

be consistently estimated in the second step, treating the first-step parameters as known.

The asymptotic variance of the second step estimator is, however, affected by the first

step results. Especially, the standard errors of the second-step estimates must consider

the estimated first-step parameters. Let yt = {rt+1,xt,xt−1, ...} denote the data, and

q(θ1, θ2, yt) =

(
rt+1 − µ̄+

t∑
s=1

γt−sµ b′εt

)2

,

where the dependence on θ1 is through the innovations εt. Let the random variable rt(θ1)

be defined as

√
T (θ̂1 − θ1) = T−1/2

T∑
t=1

rt(θ1) + op(1).
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Then, the asymptotic distribution of the second step estimator is given by

√
T (θ̂2 − θ2)

d→ N(0,Γ−1
0 Ω0Γ−1

0 ),

Γ0 = E

(
∂2q(θ1, θ2, yt)

∂θ2∂θ′2

)
,

Ω0 = E (s(θ1, θ2, yt)s(θ1, θ2, yt)
′) ,

s(θ1, θ2, yt) =
∂q(θ1, θ2, yt)

∂θ2

+
∂2q(θ1, θ2, yt)

∂θ2∂θ′1
rt(θ1).

The effect of the first-step estimation appears through the second term of the s(θ1, θ2, yt)

function (in a usual one-step estimator ∂2q(θ1,θ2,yt)
∂θ2∂θ′1

= 0). When calculating the standard

errors, the matrices Γ0, Ω0 are replaced by consistent estimators

Γ̂0 =
1

T

T∑
t=1

∂2q(θ̂1, θ2, yt)

∂θ2∂θ′2
|θ2=θ̂2

,

Ω̂0 =
1

T

T∑
t=1

ŝ(θ̂1, θ̂2, yt)ŝ(θ̂1, θ̂2, yt)
′,

ŝ(θ̂1, θ̂2, yt) =
∂q(θ̂1, θ2, yt)

∂θ2

|θ2=θ̂2
+
∂2q(θ1, θ2, yt)

∂θ2∂θ′1
|θ1=θ̂1,θ2=θ̂2

rt(θ̂1).

D The effect of initialization

The definition of the PAPR estimator assumes that the expected return in t = 0 is equal

to the sample mean of the return. The high persistence of the expected return process

thus implies that the initial value may have an effect not only in the initial period, but

in the subsequent periods too. Therefore, if the true initial value of the expected returns

is vastly different from its long term mean, it may bias the estimated expected returns in

the first part of the sample (simulations suggest that the problem may prevail for 20-30

periods, depending on the persistence of the variables). However, in sample sizes relevant

for return predictions, this does not affect the real time forecasting performance, since

the effect of the initial value is negligible by the end of the training sample. It does affect

the in-sample fit of the model, making it weaker due to the poor fit in the initial periods.

Therefore, the in-sample results of the model reported in the study become conservative
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estimates of the overall performance of the PAPR estimator.

The current initialization also impacts parameter estimation. The formulation implies

that, in the second step, parameters are estimated under a restriction: the projected ex-

pected return process starts from the sample mean of the returns. For a robustness check,

I perform a modified version of the two-step estimation (which I label the initialization

robust PAPR). In this case, the first h observations are omitted when the second-step es-

timation is performed (where h is an integer, which is either a fixed number or represents

a fraction of the entire sample). That is, the second-step parameter estimation problem

can be written as

θ̂2 = arg min
θ2

1

T − 1

T−1∑
t=1

H(t)

(
rt+1 − µ̄−

t∑
s=1

γt−sµ bε̂s

)2

, (17)

H(t) =


0 if t ≤ h

1 otherwise

. (18)

This modification of the second step ensures that estimates of the parameters of the

expected return process are not affected by the observations for which the potential bias

due to the initialization is the largest.

I consider the cases h = {0.05T, 0.1T, 0.2T}, which correspond to h = 13, 26, 52,

respectively (since T = 260 in the empirical specification). The estimation results are

presented in Table A1, while in-sample and out-of-sample performances are shown in

Table A2. The results are both qualitatively and quantitatively similar to the baseline

results in Tables 3 and 6. The only notable difference is that the cay variable performs

slightly worse in terms of real-time forecasting after correcting for the initialization.

[Table A1 about here]

[Table A2 about here]
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Table A1: Robustness - Initialization robust PAPR

This table shows the impact of omitting the first h observation in the second step estimation.
The results are obtained based on the second-step objective function in (18). Further details on
the specification can be found in the description of Table 3.

(a) h = 13

dp cay by full
dp 2.4475 3.1689

(1.6026) (1.0560)***
cay 1.1770 0.8591

(0.3629)*** (0.4204)**
by 2.7230 2.1055

(1.2230)** (0.8299)**
γµ 0.8627 0.9247 0.6798 0.9119

(0.1266)*** (0.0404)*** (0.2197)*** (0.0474)***
[0.8663] [0.9366] [0.6951] [0.9168]

(b) h = 26

dp cay by full
dp 2.5523 3.3080

(1.6081) (1.0664)***
cay 1.1314 0.8340

(0.3561)*** (0.4187)**
by 2.6317 2.1669

(1.2181)** (0.8348)***
γµ 0.8564 0.9273 0.6851 0.9110

(0.1286)*** (0.0399)*** (0.2244)*** (0.0476)***
[0.8551] [0.9432] [0.7007] [0.9153]

(c) h = 52

dp cay by full
dp 2.4458 3.4455

(1.6090) (1.0320)***
cay 1.0899 0.7124

(0.3488)*** (0.3915)*
by 2.6710 2.2754

(1.2297)** (0.8256)***
γµ 0.8572 0.9302 0.6645 0.9198

(0.1332)*** (0.0392)*** (0.2334)*** (0.0425)***
[0.8535] [0.9445] [0.6675] [0.9332]
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Table A2: Model comparison for the initialization robust PAPR

This table shows both in-sample and out-of-sample results for the initialization robust PAPR
for different choices of h. Further details on the specification can be found in the description of
Table 6.

(a) dividend–price ratio

IS-R2 OOS-R2 DM test statistic
h = 13 0.0183 -0.0386 -9.9980
h = 26 0.0181 -0.0316 -7.8336
h = 52 0.0182 -0.0651 -13.4851

(b) cay

IS-R2 OOS-R2 DM test statistic
h = 13 0.0684 -0.0024 -0.3960
h = 26 0.0682 -0.0016 -0.2665
h = 52 0.0680 -0.0020 -0.3462

(c) bond yield

IS-R2 OOS-R2 DM test statistic
h = 13 0.0356 -0.0202 -3.0300
h = 26 0.0355 -0.0146 -2.4257
h = 52 0.0355 -0.0222 -3.6494

(d) all

IS-R2 OOS-R2 DM test statistic
h = 13 0.1113 0.0136 1.7331
h = 26 0.1112 0.0141 1.7815
h = 52 0.1106 0.0051 0.6433
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Testing Return Predictability with the

Dividend-Growth Equation: An Anatomy of the Dog∗

Erik Hjalmarsson Tamás Kiss†

Abstract

The dividend-growth based test of return predictability, proposed by Cochrane

[2008, Review of Financial Studies 21, 1533-1575], is similar to a likelihood-based

test of the standard return-predictability model, treating the autoregressive param-

eter of the dividend–price ratio as known. In comparison to standard OLS-based

inference, both tests achieve power gains from a strong use of the exact value pos-

tulated for the autoregressive parameter. When compared to the likelihood-based

test, there are no power advantages for the dividend-growth based test. In common

implementations, with the autoregressive parameter set equal to the corresponding

OLS estimate, Cochrane’s test also suffers from severe size distortions.

Keywords: Predictive regressions; Present-value relationship; Stock-return predictabil-

ity.

JEL classification: C22, G1.
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1 Introduction

A standard empirical framework for testing return predictability consists of a predictive

regression for returns and an autoregressive (AR) process for the dividend–price ratio. In

an influential study, Cochrane (2008) adds a predictive regression for the dividend-growth

rate to this standard model, and links the three equations through the Campbell and

Shiller (1988) present value identity. Cochrane’s key insight is that under the identity that

links returns, prices, and dividends, a given degree of predictability in returns corresponds

exactly to some degree of predictability in dividend growth. Thus, if one is testing the

null hypothesis of no return predictability, using the dividend–price ratio as predictor, this

null hypothesis has an exact translation in terms of predictability in dividend growth.1

In this paper, we show that Cochrane’s dividend-growth based test is very similar to

a test based on the full information maximum likelihood (ML) estimator for the standard

bi-variate system, where the AR parameter of the dividend–price ratio is treated as known.

Cochrane’s test can thus be viewed as an economically motivated (approximate) derivation

of the ML estimator in the case of a known AR parameter. This finding explains why the

dividend-growth based test, as implicitly formulated by Cochrane, appears more powerful

than the return-based test using the simple OLS estimator. However, if one were to

use the same assumptions when formulating the return-based test, one could use an ML

procedure that (asymptotically) dominates the dividend-growth based test. That is, if

one compares testing approaches based on the same information set, or the same set of

assumptions (i.e., treating the AR parameter as known and equal to some given value),

1Cochrane’s proposed modelling framework and testing approach has received great interest in the
profession, and there is now a host of papers that evaluates both return predictability as well as dividend-
growth predictability. Papers explicitly using Cochrane’s (2008) approach to test for return predictability
include Chen (2009); Engsted and Pedersen (2010); Golez and Koudijs (2018). Other related works that
consider both return and dividend-growth predictability include Lettau and Ludvigson (2005); Boudoukh
et al. (2007); Lettau and Van Nieuwerburgh (2008); Binsbergen and Koijen (2010); Lacerda and Santa-
Clara (2010); Lettau and Ludvigson (2010); Chen et al. (2012); Kelly and Pruitt (2013); Golez (2014);
Bollerslev et al. (2015); Maio and Santa-Clara (2015); Detzel and Strauss (2016). Koijen and Van Nieuwer-
burgh (2011) provides a review on return and dividend-growth predictability.
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there are no apparent gains from using the dividend-growth regression in testing for return

predictability.2

The ML procedure is, in fact, extremely sensitive to the specific value used for the

AR parameter of the dividend–price ratio, and by implication so is Cochrane’s procedure.

Specifically, the choice to treat the OLS estimate of the AR parameter as the “true” value,

which appears to have been adopted in subsequent empirical studies (e.g., Chen, 2009;

Engsted and Pedersen, 2010; Golez and Koudijs, 2018), leads to severe size distortions.

A test with a nominal size of five percent is shown to have actual rejection rates in excess

of 20 percent under the null hypothesis. On the other hand, if the value of the AR

parameter is set high enough, such that it is greater than or equal to the true parameter

value in the data, the size of the resulting test can be controlled. For instance, under an

assumption that the dividend–price ratio is stationary, setting the AR parameter equal

to unity would ensure that it is greater than the true parameter value in the data. In

this case, Cochrane’s test becomes similar to the conservative sup-bound test developed

in Lewellen (2004) and analyzed further in Campbell and Yogo (2006).3

To form some intuition for our results, note that Cochrane’s predictive model is made

up of three regressions, where the equations are linked together by the Campbell and

Shiller (1988) present value identity, which implies an exact relationship among the slope

coefficients as well as the error terms in the three regressions. Thus, any one of the

three equations is redundant in the model formulation and the standard bi-variate pre-

dictive system, consisting of a predictive regression for returns and an AR process for the

dividend–price ratio, must contain exactly the same information as the tri-variate system.

2Within the same framework, Cochrane also discusses tests of long-run predictability. We do not
consider the properties of these tests here, as their formulation is based on a re-scaled version of the
return coefficient, and does not explicitly rely on inference in the dividend-growth regression.

3We make no claim to provide an exhaustive analysis of the relative merits of the many inferential
methods that exist for predictive regressions (recent examples include Chen and Deo, 2009, Phillips and
Chen, 2014, and Kostakis et al., 2015). Rather, we focus solely on the properties of the dividend-growth
based procedure proposed by Cochrane (2008), and how it relates to likelihood-based inference.
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Our results essentially confirm this basic intuition: Adding a fully redundant equation

to a regression system should not lead to any statistical gains. From the perspective of

empirical research, our findings imply that if one is interested in testing for return pre-

dictability, there is no extra information available in the dividend-growth equation, and

equally or more powerful tests can be formulated from the standard predictive regression

setup.

An empirical application to aggregate U.S. stock returns illustrates our main theoreti-

cal results. Specifically, we show that the dividend-growth based test provides very similar

results to an ML-based test, and that both tests depend strongly upon the assumption

on the maximum feasible value for the AR parameter in the dividend–price ratio. If one

is not willing to impose any stronger assumption than stationarity of the dividend–price

ratio, both tests fail to reject the null hypothesis of no return predictability at the five

percent significance level. On the other hand, if one is willing to assume that the AR

parameter in the dividend–price ratio is below about 0.97 in annual data, the evidence

would point in favor of return predictability. Seemingly small changes in the assumptions

on the AR parameter can thus lead to rather drastic changes in inference.

2 Testing return predictability

2.1 Model formulation

Our predictive model is identical to the one used by Cochrane (2008). Let rt denote the

log-returns from period t−1 to t, dt the time t log-dividends, and dt−pt the corresponding

log dividend–price ratio. The joint model of return and dividend-growth predictability is
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formulated as the following restricted first-order VAR system,

rt = αr + βr (dt−1 − pt−1) + εrt , (E1)

∆dt = αd + βd (dt−1 − pt−1) + εdt , (E2)

dt − pt = αdp + φ (dt−1 − pt−1) + εdpt . (E3)

By Campbell and Shiller (1988), the following (approximate) present value identity

holds,

rt = ρ (pt − dt) + ∆dt − (pt−1 − dt−1) . (1)

The identity is obtained through a log-linearization of returns around the long-run mean

of the dividend–price ratio, denoted by ρ and empirically defined as

ρ =
e−(d−p)

1 + e−(d−p)
, (2)

where d− p is the average dividend–price ratio. The parameter ρ is subsequently treated

as a fixed and “known” quantity. In the CRSP data used by Cochrane, ρ = 0.9638, and

this is the value that we use throughout this study as well.

The present value identity in equation (1) implies the following restrictions on the

coefficients and error terms in the predictive equations (E1)–(E3),

βr = βd + (1− ρφ) , (R1)

and

εrt = εdt − ρε
dp
t . (R2)

The restrictions in (R1) and (R2) imply that any one of the three model equations is

redundant, and an equivalent model formulation would be retained by dropping any one
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of the equations (E1)–(E3).4

Let εt =
(
εrt , ε

d
t , ε

dp
t

)′
denote the vector of mean zero innovations, and let Σ ≡ E [εtε

′
t]

be the covariance matrix for εt, where σij, i, j = 1, 2, 3, denotes the elements of Σ. By

restriction (R2), the covariance matrix Σ can be written as

Σ =


σ11 σ11 + ρσ13 σ13

σ11 + ρσ13 σ11 + ρ2σ33 + 2ρσ13 σ13 + ρσ33

σ13 σ13 + ρσ33 σ33

 . (3)

It is easily seen that Σ is not full rank, reflecting the redundancy in the equation system

(E1)–(E3).

2.2 Standard OLS-based inference

Cochrane’s (2008) key idea is that the absence of return predictability must imply the

presence of dividend-growth predictability. That is, the coefficient restriction,

βr = βd + (1− ρφ) , (4)

implies that if βr = 0,

βd = − (1− ρφ) < 0, (5)

provided ρφ < 1. Thus, under the assumption of φ < 1 (or at a minimum ρφ < 1), it

follows that βr = 0 implies βd = − (1− ρφ) 6= 0 and βd = 0 implies βr = (1− ρφ) 6= 0.

Cochrane therefore suggests that instead of testing just the usual simple null, βr = 0,

4The identity in equation (1) is only approximate, and the restrictions stated in equations (R1) and (R2
) are therefore also approximate. However, as shown by Cochrane (2008), as well as in many subsequent
papers (e.g., Binsbergen and Koijen, 2010; Koijen and Van Nieuwerburgh, 2011; Engsted et al., 2012;
Kelly and Pruitt, 2013), the restrictions in (R1) and (R2) hold very closely empirically, and we will
therefore treat them as exact throughout the paper. This is also in line with how Cochrane deals with
them, and all his simulation results make explicit use of their exact identity.
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one should also test whether βd = − (1− ρφ). Thus, the “joint” null hypothesis can be

formulated as

H0 : βr = 0 and βd + (1− ρφ) = 0. (6)

Under the maintained model specification, the coefficient restriction βr = βd+(1− ρφ)

is exact and the restriction also applies to the estimated values, such that

β̂r,LS = β̂d,LS +
(

1− ρφ̂LS
)
. (7)

Since this equality holds numerically for the OLS estimates in any sample, the distribution

of β̂r,LS and β̂d,LS +
(

1− ρφ̂LS
)

must also be identical (see Appendix A). Therefore, if

one uses the OLS estimates of βr, βd, and φ to test either of the simple nulls, βr = 0

or βd + (1− ρφ) = 0, the two tests using β̂r,LS or β̂d,LS +
(

1− ρφ̂LS
)

must have the

same rejection regions for a given significance level. Appendix A illustrates this point, by

showing that the individual standard t-statistics for testing βr = 0 or βd + (1− ρφ) = 0

are numerically identical.

Thus, provided all three parameters, βr, βd, and φ are estimated (by OLS), there is

no distinction between testing the joint null vis-á-vis the standard simple null of βr = 0,

and no power gains can therefore be achieved through such an approach.

2.3 Cochrane’s simulation approach

In contrast, Cochrane (2008) proposes a simulation-based approach—from which finite-

sample distributions of the estimators are obtained—and reports substantially stronger

evidence of return predictability when considering a test based on βd rather than βr. The

simulations are intended to replicate the estimated model as closely as possible, while

imposing the null of no return predictability.

Specifically, the simulated model is specified as follows. The AR parameter φ is set
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equal to the OLS estimate from the data being used (below, we also discuss alternatives

to this parameterization). Given this value of φ, βd is set such that βr = βd + (1− ρφ) =

0, thus imposing the null of no return predictability. That is, βd = − (1− ρφ). The

parameter ρ is set to 0.9638 and the covariance matrix Σ is also set equal to the empirical

estimate from the data.

Samples from this model are simulated, and βr and βd are estimated in each of these

samples. In particular, equations (E2) and (E3) are simulated, and the values in the

return equation (E1) are inferred from the identity (1). The present value identity thus

holds exactly in the simulations, and by implication the restrictions (R1) and (R2) also

hold exactly.

In each draw i of the simulation, coefficient estimates β̂
i,sim

r,LS , β̂
i,sim

d,LS , and φ̂
i,sim

LS are

obtained through OLS estimation. For each simulated sample, these are related as

β̂
i,sim

r,LS = β̂
i,sim

d,LS +
(

1− ρφ̂
i,sim

LS

)
. (8)

Let bDatar ≡ β̂
Data

r,LS and bDatad ≡ β̂
Data

d,LS denote, respectively, the OLS coefficient estimates of

βr and βd in the actual data. The simulations are then used to evaluate how rarely the

events β̂
i,sim

r,LS ≥ bDatar and β̂
i,sim

d,LS ≥ bDatad occur. That is, treating bDatar and bDatad as given,

the probabilities

Pr
(
β̂
i,sim

r,LS ≥ bDatar

)
≡ pr, (9)

and

Pr
(
β̂
i,sim

d,LS ≥ bDatad

)
≡ pd, (10)

are determined based on the empirical distributions of β̂
i,sim

r,LS and β̂
i,sim

d,LS . These p-values

capture the likelihood of observing the empirically estimated coefficients bDatar and bDatad ,
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if the null of no return predictability was true.5 Cochrane finds that pd ≈ 2% whereas

pr ≈ 22%, which is interpreted as the dividend-growth test providing much stronger

evidence against the null of no return predictability than the predictability test for the

actual returns. That is, the bDatad outcome is highly unlikely to have been generated under

the null model, whereas the bDatar outcome is not that unlikely. Based on these results, it

is concluded that the test based on βd is more powerful.6

Why are the two p-values, pr and pd different? According to the discussion in the

previous sub-section, one would expect the tests of βr and βd to be identical. Consider

first the case where the value of φ used to simulate the dividend–price ratio process is

set to φData ≡ φ̂
Data

LS . This specification is the one that seems to have been adopted

in subsequent empirical studies (Engsted and Pedersen, 2010; Golez and Koudijs, 2018),

although Cochrane also considers other scenarios that we discuss further below. To see

the implications of this formulation of the simulated model, write

bDatad = bDatar −
(
1− ρφData

)
= bDatar −

(
1− ρφ̂

i,sim

LS

)
+ ρ

(
φData − φ̂

i,sim

LS

)
, (11)

where the first step uses the restriction on the coefficients from the data and the second

step simply adds and subtracts ρφ̂
i,sim

LS .7 Using the restriction on the estimated coefficients

5Cochrane also considers the empirical distribution of the t-ratios β̂
i,sim

r,LS

/√
V ar

(
β̂
i,sim

r,LS

)
and

β̂
i,sim

d

/√
V ar

(
β̂
i,sim

d,LS

)
. The subsequent literature seems to have primarily adopted the tests based

directly on the coefficients (e.g., Golez and Koudijs, 2018), and we similarly focus on these in our anal-
ysis. In non-reported Monte Carlo simulations, we find results for the t-ratio tests that are very similar
to those we document for the coefficient tests in Section 3.2 below.

6The word “power” is used here in a somewhat imprecise sense. Formally, power is defined as the
probability of rejecting the null under a given alternative. In Cochrane’s simulations, the rejection
probabilities are all obtained under the null and are therefore not, in the true sense, a measure of power.

7The restriction on the coefficients (equation (7)) does not hold exactly for the OLS estimates in the
actual data, but the discrepancy is empirically very small.
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in the simulations stated in equation (8), it follows that

Pr
(
β̂
i,sim

d,LS ≥ bDatad

)
= Pr

(
β̂
i,sim

r,LS −
(

1− ρφ̂
i,sim

LS

)
≥ bDatar −

(
1− ρφ̂

i,sim

LS

)
+ ρ

(
φData − φ̂

i,sim

LS

))
= Pr

(
β̂
i,sim

r,LS − ρ
(
φData − φ̂

i,sim

LS

)
≥ bDatar

)
6= Pr

(
β̂
i,sim

r,LS ≥ bDatar

)
(12)

whenever φ̂
i,sim

LS 6= φData.

How does this simulation-based testing approach differ from the standard OLS infer-

ence discussed in the previous sub-section, where the βr- and βd-based tests of return

predictability were shown to be identical? The key difference stems from the fact that if

one wishes to use the estimate of βd to test a null of βr = 0, the relevant null hypothesis

for βd is in fact not fully known since βr = 0 is equivalent to βd = − (1− ρφ). In the

simulation approach, the p-values for the βd-based test reflect the sampling uncertainty in

the estimates of βd, but ignore the uncertainty coming from the fact that the value of the

AR parameter in the original data is indeed unknown. In effect, the p-values correspond

to a test of the null hypothesis βd = −
(
1− ρφData

)
, which postulates that the true AR

parameter in the data is known and equal to φData.8

Because of the downward bias in the OLS estimator of the AR coefficient φ, it follows

that on average, φData − φ̂
i,sim

LS > 0, and it is therefore reasonable to assume that

Pr
(
β̂
i,sim

d,LS ≥ bDatad

)
= Pr

(
β̂
i,sim

r,LS − ρ
(
φData − φ̂

i,sim

LS

)
≥ bDatar

)
≤ Pr

(
β̂
i,sim

r,LS ≥ bDatar

)
,

(13)

8The simulation based test can alternatively be interpreted as a parametric bootstrap approach (E1)–
(E3), where the parameters are treated asymmetrically. In particular, βr and βd is estimated in each
bootstrap sample, while φ is implicitly held constant at φData by the definition of the null of the indirect
test. A more standard way to perform the bootstrap would be to re-estimate all parameters in each

bootstrap sample. In this case, the dividend-growth based test can be formulated as β̂
i,sim

d,LS +1−ρφ̂
i,sim

LS =

0, which is then equivalent to the direct test based on β̂
i,sim

r,LS = 0 per the discussion in Section 2.2.
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which goes some way towards explaining the results in Cochrane (2008). In fact, one

can get a stronger result. The full information ML estimator of βr with a known φ (see

Campbell and Yogo, 2006) is given by

β̂r,ML (φ) = β̂r,LS +
σ13
σ33

(
φ− φ̂LS

)
. (14)

In Cochrane’s data, σ13/σ33 ≈ −0.9 and β̂r,ML ≈ β̂r,LS − 0.9
(
φ− φ̂LS

)
. With

ρ ≈ 0.96, it follows that

β̂
i,sim

r,LS − ρ
(
φData − φ̂

i,sim

LS

)
≈ β̂

i,sim

r,LS − 0.96
(
φData − φ̂

i,sim

LS

)
≈ β̂

i,sim

r,ML

(
φData

)
, (15)

where β̂
i,sim

r,ML

(
φData

)
is calculated using the true autoregressive parameter, φData, in the

simulated model. Further, note that the ML estimator of βr, with the least squares

estimate of φ treated as the known true value, trivially reduces to the OLS estimator of

βr. That is, bDatar = β̂
Data

r,ML

(
φData

)
, where β̂

Data

r,ML

(
φData

)
is the ML estimator of βr in the

original data, treating φData = φ̂
Data

LS as the true value of φ. Defining bDatar,ML

(
φData

)
≡

β̂
Data

r,ML

(
φData

)
= bDatar , equations (13) and (15) thus give,

Pr
(
β̂
i,sim

d,LS ≥ bDatad

)
≈

Pr
(
β̂
i,sim

r,ML

(
φData

)
≥ bDatar

)
= Pr

(
β̂
i,sim

r,ML

(
φData

)
≥ bDatar,ML

(
φData

))
. (16)

The test based on β̂d,LS in this setup of Cochrane’s simulation-based approach therefore

turns out to be very similar to a test using the ML estimator of βr, when φ is treated as

fixed and known and equal to the OLS estimate in the data.
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2.4 Altering the value of φ in the simulations

What happens if the value for φ used in the simulations is changed from φData = φ̂
Data

LS to

some other value? As shown in Appendix B, a similar result to that derived above holds,

except the βd-based test now corresponds to a test based on the ML estimator using this

alternative value for the AR parameter as the true value of φ. In particular, if one sets the

AR parameter in the simulations equal to some maximum feasible value for φ, say φMax,

one ends up with a test that is similar to Lewellen’s (2004) test, interpreted by Campbell

and Yogo (2006) as a sup-bound test. Provided the assumption φ ≤ φMax indeed holds,

the resulting test will generally be conservative, in the sense that if φ < φMax, the rejection

rate under the null hypothesis will be smaller than the nominal significance level of the

test. That is, analogous to the actual ML-based tests, setting the AR parameter large

enough in Cochrane’s simulation-based test is a way of constructing tests that do not

over-reject the null.

2.5 Is the similarity with ML coincidental?

The near numerical equality with the ML estimator is seemingly somewhat accidental,

and depends on the specific values of σ13 and σ33. Should one in general expect the two

to be close? Note that by the restrictions in the covariance matrix (3), −σ13/σ33 = ρ is

equivalent to σ23 = 0. Therefore, the near-equivalence of the dividend-growth based test

and the ML-based test is a result of the near zero correlation between the dividend–price

ratio and dividend-growth innovations observed in the data used by Cochrane (2008).

Specifically, given σ23 = 0 (−σ13/σ33 = ρ),
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β̂r,ML (φ) = β̂r,LS +
σ13
σ33

(
φ− φ̂LS

)
= β̂d,LS + 1− ρφ̂LS +

σ13
σ33

(
φ− φ̂LS

)
= β̂d,LS + 1− ρφ.

Treating the autoregressive parameter φ as fixed and known, and provided σ23 = 0,

inference based on βi,simd,LS is thus equivalent to using β̂r,ML (φ).

As Cochrane (2008) and the subsequent literature—summarized in Koijen and Van Nieuwer-

burgh (2011)—suggest, σ23 = 0 is a relatively robust feature of the post-war U.S. equity

data. However, this results is not general. In fact, the empirical literature has documented

a relatively strong correlation (ranging between 0.3 and 0.5) between the dividend-growth

and dividend–price ratio innovations in the pre-war U.S. data (Chen, 2009), and inter-

nationally (Engsted and Pedersen, 2010). In these contexts, σ23 is significantly different

from zero, therefore the dividend-growth based test may differ substantially from the ML

test. Since the latter makes asymptotically efficient use of the information on φ, using the

dividend-growth based test in these cases will (asymptotically) result in a loss of power

compared to the ML-based test.

3 Size of the test

3.1 Lessons from the ML estimator

The simulation-based test, using β̂d,LS, was shown to be similar to an ML-based test,

where the value of the AR parameter φ specified in the simulation design is treated

as the “true” AR parameter in the ML estimator. Cochrane’s dividend-growth based

test therefore (approximately) inherits the properties of the ML estimator, for a given
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specification of the AR parameter.

In case the AR parameter in the simulation design is set to the OLS estimate from

the data, the result is a test that is severely over-sized. We illustrate this below by

reporting actual rejection rates, under the null of no return predictability, in a Monte Carlo

simulation. However, the general idea can quite easily be understood by considering the

properties of the ML estimator. As remarked above, the ML estimator using φ̂LS instead

of the true value φ, reduces to the OLS estimator. However, if one now proceeds as if

φ̂LS was indeed the true known value for φ, the perceived (asymptotic) variance of the

estimator would erroneously be calculated as (see Appendix C)

V ar
(
β̂r,ML

(
φ̂LS

))
=
(
1− δ213

)
V ar

(
β̂r,LS

)
≤ V ar

(
β̂r,LS

)
, (17)

where δ13 = σ13
/√

σ11σ33 is the correlation between the return and the dividend–price

ratio innovations. Since β̂r,ML

(
φ̂LS

)
= β̂r,LS, the variance of the ML estimator would

therefore be severely under-estimated for δ13 close to unity. Resulting test statistics based

on this (erroneous) result would be over-sized.9,10

In general, one never has full knowledge of φ, but one might be willing to impose some

upper limit on the range of possible values for φ. Most prominently, one might assume

that the dividend–price ratio is a stationary process, such that φ < 1. More generally,

suppose one imposes the assumption that φ ≤ φMax. In that case, provided σ13 < 0, one

can form a “conservative” (downward biased) estimator of βr,

β̂r,ML

(
φMax

)
= β̂r,LS +

σ13
σ33

(
φMax − φ̂LS

)
. (18)

9The OLS estimator is also biased, which further invalidates inference.
10Amihud and Hurvich (2004) and Amihud et al. (2008, 2010) analyze how bias-corrected versions of

the OLS estimator of φ can be used to achieve bias-corrections in the estimator of βr. Campbell and Yogo
(2006) use a bonferroni approach to obtain a feasible version of ML-based inference, although Phillips
(2014) has subsequently leveled a critique against the reliability of this type of procedure.
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This is essentially the approach taken by Lewellen (2004), although his motivation

comes from the finite sample bias result for β̂r,LS, derived in Stambaugh (1999). Camp-

bell and Yogo (2006) also discuss this type of conservative estimator and associated test

statistics. Under the assumption that φ ≤ φMax, and provided σ13 < 0, tests based on

the resulting estimator are conservative (i.e., under-sized).

3.2 Monte Carlo simulations

The above results are for the actual ML procedure. Given the close similarity between

the ML-based test and Cochrane’s dividend-growth based test, similar results should

also apply to the latter. To verify this, we perform a Monte Carlo simulation where

the actual rejection rates under the null of no return predictability are obtained. To be

clear, Cochrane’s testing procedure is in itself a simulation-based procedure, and here

we evaluate the finite sample properties of that procedure in a controlled Monte Carlo

simulation. The details of the Monte Carlo simulation are given in Appendix D, but the

basic setup is as follows.

The dividend-growth and dividend–price ratio equations ((E2) and (E3)) are simu-

lated, and the return equation (E1) is inferred from the present-value identity in equation

(1). The null hypothesis βr = 0 is imposed and for a given value for φ, the dividend-

growth coefficient βd is implicitly determined by the parameter restriction in equation

(R1). The innovations, εt, are drawn from an iid normal distribution and their covari-

ance matrix Σ satisfies the restrictions stated in equation (3). Intercepts are fitted in all

regressions, although these are not commented on below. All simulation results are based

on 10,000 repetitions. The unknown AR parameter φ plays the key role in determining

the sampling properties of the OLS estimators of the main parameters βr and βd in the

model, therefore we show results for alternative values of φ. Other parameters are set

to the empirical estimates presented in Table 2 in Cochrane (2008) and we use the same
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sample size of T = 78 that was available in Cochrane’s orginal sample, in each simulation

draw. As noted earlier, in the U.S. CRSP data set used by Cochrane, the parameter σ23

is close to zero and the approximation ρ ≈ −σ13/σ33 therefore holds well (specifically,

σ13/σ33 ≈ −0.9 and ρ ≈ 0.96).

We fix the nominal size of Cochrane’s test procedure to five percent in a one-sided

test against a positive alternative. That is, in each round of the simulations, we reject

the null hypothesis of no return predictability for p-values less than or equal to 0.05. As

a comparison to Cochrane’s tests, we also calculate rejection rates for the standard OLS

t-test and the ML-based test described in Campbell and Yogo (2006), which takes the

shape of an adjusted t-test (referred to as the Q-test in Campbell and Yogo’s notation).

For these tests, the empirical rejection frequencies are calculated using standard critical

values (i.e., reject for test statistics greater than 1.65).

The results from the Monte Carlo simulations are reported in Figure 1, with the size of

the tests plotted as functions of the true parameter value φ in the data generating process.

The dividend-growth based test, using the least squares estimate of φ as the “true” AR

parameter, performs very poorly in terms of size. This is true for any underlying AR

parameter φ, with rejections rates always in excess of 20 percent for a nominal-sized

5 percent test. The ML-based test implemented in the analogous manner—using the

least squares estimate of φ as the “true” AR parameter—suffers from even larger size

distortions than the dividend-growth based test, as also illustrated in Figure 1. This is

to be expected, since the ML-based test makes even stronger use of the value for the AR

parameter.11

11In addition to Cochrane’s dividend-growth based test and the ML-based test, we also obtained
Monte Carlo rejection rates for Cochrane’s test based on the return coefficient (equation (9)) as well as
the standard OLS t-test. Cochrane’s test based on the return coefficient was found not to be sensitive to
the exact value of φ in the simulations, and somewhat under-sized when one parametrizes the simulation
with the OLS estimate of the autoregressive parameter. The standard OLS t-test suffers from well-known
size distortions, with rejection rates ranging from around 12 to 25 percent depending on the true value
of φ) for a nominal-sized 5 percent test.
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Figure 1 also presents results for the conservative ML-based test, using equation (18),

and the dividend-growth based test performed in an analogous conservative way, where the

upper bound for the autoregressive parameter is set to φMax = 0.995. In this conservative

implementation, both tests exhibit rejection rates that are typically well below the nominal

five percent significance level. As the true parameter φ gets closer to the specified upper

bound φMax, the rejection rates approach five percent.

[Insert Figure 1 here]

3.3 Power

Given the large size distortions of the dividend-growth based test that uses the OLS

estimate of φ as the “true” AR parameter, there is little use in analyzing the power

properties of this specific implementation of Cochrane’s dividend-growth based test. The

conservative test maintains size well. However, as argued above, this test is very similar

to Lewellen’s (2004) test and Campbell and Yogo’s sup-bound test. The latter study

provides extensive results on the power of this test, and there is little reason to report

very similar results here.

It is clear that power gains can be achieved by using the dividend-growth equation,

but only viz-á-viz standard OLS tests, not against ML-type tests that use information

on the AR parameter. In fact, the ML-based tests are asymptotically the most powerful

(see Campbell and Yogo, 2006), and the dividend-growth based tests can therefore at

best (asymptotically) achieve the power of the ML tests. We verify that these results

hold also for finite sample sizes in non-reported simulations, where we show that under

the parameter estimates in Cochrane’s study, the power of the ML and dividend-growth

based tests are very close. However, if one changes the parameters somewhat (e.g., setting

δ13 = σ13
/√

σ11σ33 = −0.95), such that the very close correspondence between the ML-

based and the dividend-growth based tests is relaxed, the ML tests can achieve some
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power advantages.

4 Empirical results

We use the annual value-weighted CRSP returns, including and excluding dividends, to

calculate the dividend–price ratio and the dividend growth. The sample period is 1927

to 2016, and we use real returns calculated with inflation defined as the monthly change

in the Consumer Price Index.12

Our focus is on Cochrane’s dividend-growth based test, and we compare it to the

ML-based test. Specifically, we estimate equations (E1)-(E3), using the full 1927 to 2016

sample, and calculate the p-values for each test over a range of different values postulated

for φ. That is, we do not use the OLS estimator of φ in creating either of the test

statistics, since this test suffers large size distortions. Instead we calculate the range of

p-values obtained for φ ∈ [0.95, 0.995].

Figure 2 illustrates the sensitivity of the test results with respect to the assumptions

made on the AR coefficient φ. In particular, the figure shows the p-values of the ML-based

and the dividend-growth based tests as a function of the maximum value specified for φ.

As is seen, if one is willing to assume that φ ≤ 0.97, one starts to find significant results.

[Insert Figure 2 here]

The empirical results presented in Figure 2 are very much in line with many previous

studies. Without imposing additional assumptions, we find that tests that are robust to

the bias inherent in these types of predictive regressions are at best borderline significant.

Figure 2 clearly illustrates how the empirical results can be viewed as conditional on one’s

beliefs regarding the autocorrelation in the dividend–price ratio. If one is willing to make

stronger assumptions than merely assuming that the dividend–price ratio is stationary,

12Using excess returns (over the 3-month Treasury Bill rate) or restricting the sample to end in 2004,
as in the original study by Cochrane, leads to very similar results to those reported here.
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more significant results are obtained. It is worth pointing out that the OLS estimate of φ

is equal to 0.94, and using this value as the “true” AR value in the test procedures would

thus lead to a strong rejection of the null hypothesis.

5 Conclusion

We provide a detailed analysis of the properties of the dividend-growth based test of

return predictability in Cochrane (2008). We show that Cochrane’s test is similar to a

full-information maximum likelihoood test, using an explicit assumption on the degree of

persistence in the predictor variable. Using this assumption gives both Cochrane’s test

and the ML-based test additional power over the standard OLS-based test. Cochrane’s

test can be viewed as an economically motivated proxy for the statistically motivated

efficient ML method, and as such Cochrane’s test does not add power over and above

the previously existing ML test. Importantly, we also show that unless one specifically

imposes a conservative approach to the formulation of Cochrane’s procedure, the test will

tend to over reject the null hypothesis of no return predictability. Our findings highlight

that while extending the simple predictive regression to more elaborate present-value

frameworks helps provide a deeper economic understanding of return predictability, it

does not help escape the associated inferential issues.
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Figure 1: Size distortions using φ̂LS

N Notes: The figure presents the actual size of one-sided nominal-sized five percent tests of
the null hypothesis of βr = 0 against a positive alternative. That is, the graphs indicate the
average rejection rates, for the corresponding tests, under the null hypothesis of no return
predictability. The dashed (solid) line is the dividend-growth (ML-) based test using the

OLS estimate φ̂
Data

LS as the value for the AR parameter. The dashed (solid) line with circles
represents the rejection rates for the conservative dividend-growth (ML-) based test using
φMax = 0.995 as the value for the AR parameter. The ML-based tests use standard normal
critical values (i.e., reject for test statistics greater than 1.65). The results are based on the
Monte Carlo simulation described in the main text with 10,000 repetitions.
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Figure 2: Empirical p-values as a function of φMax

Notes: The graph shows the p-values of tests of return predictability. The p-values are
plotted as functions of the value specified for the upper bound, φMax, on the AR parameter.
The solid line represents the ML-based test (using critical values from the standard normal
distribution), and the dashed line represents the simulation-based test using βd. Both tests
specify that the value for the autoregressive parameter is set to the corresponding value for
φMax.
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Appendix

A Properties of the OLS estimators

For ease of notation, define xt = dt − pt, and let X−1 denote the vector of stacked lagged

observations for xt. Similarly, denote r as the vector of observations on returns, and let

εr, εd, and εdp, denote the stacked innovations. We treat the model without intercepts,

but the results generalize immediately to regressions with fitted intercepts by replacing

all variables by their demeaned versions.

The OLS estimator of β = (βr, βd, φ)′ is now equal to

β̂LS =


β̂r,LS

β̂d,LS

φ̂LS

 = β +
(
X ′−1X−1

)−1


X ′−1ε
r

X ′−1ε
d

X ′−1ε
dp

 . (19)

Using βr = βd + (1− ρφ) and εr = εd − ρεdp,

β̂r,LS = βr +
(
X ′−1X−1

)−1
X ′−1ε

r

=
(
βd +

(
X ′−1X−1

)−1
X ′−1ε

d
)

+
(

1− ρ
(
φ+

(
X ′−1X−1

)−1
X ′−1ε

dp
))

= β̂d,LS +
(

1− ρφ̂LS
)
. (20)

Further, letting MX−1 = I −X−1
(
X ′−1X−1

)−1
X ′−1, and using standard results, the fitted
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residuals satisfy,

ε̂r ≡ r −X−1β̂r,LS

= MX−1ε
r

= MX−1

(
εd − ρεdp

)
= ε̂d − ρε̂dp. (21)

In order to motivate the formulation of the standard t-statistics below, suppose that

φ < 1 and that εt is an iid or martingale difference sequence.13 Under classical asymptotic

results, it follows straightforwardly that as the sample size T →∞,

√
T
(
β̂LS − β

)
d→ N(0,

(
V ar

(
x2t−1

))−1
Σ) ≡ N (0,Ω) , (22)

where Σ is given in (3), and V ar
(
x2t−1

)
= σ33

1−φ2 . For φ close to one, the asymptotic dis-

tribution result stated in (22) does not hold up well in finite samples. However, our main

purpose for stating this result is to motivate the standard t-statistics considered below,

and show that their standard formulation leads to an equivalence between the return

based and the dividend-growth based tests, analogous to that for the actual coefficients

seen in equation (20) above.

Let ε̂ =
(
ε̂r, ε̂d, ε̂dp

)
be the matrix of fitted residuals. A standard estimator of the

asymptotic covariance matrix in (22) is given by

Ω̂ =

(
1

T
ε̂′ε̂

)(
1

T
X ′−1X−1

)−1
=


ε̂′r ε̂r ε̂′r ε̂d ε̂′r ε̂dp

ε̂′r ε̂d ε̂′dε̂d ε̂′dε̂dp

ε̂′r ε̂dp ε̂′dε̂dp ε̂′dpε̂dp


(

T∑
t=2

x2t−1

)−1
, (23)

13The stationarity condition (φ < 1) is by no means necessary for our main analysis, but it enables us
to frame the main properties of the OLS estimator of equations (E1)-(E3) in terms of classical asymptotic
results for stationary models.
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where the first diagonal element of Ω̂ corresponds to the asymptotic variance of β̂r. The

standard t-statistic for testing the null hypothesis of βr = 0 is thus given by,

tβr =
β̂r,LS√

1
T

(ε̂r′ε̂r)
(
X ′−1X−1

)−1 =
β̂r,LS√

1
T

(
ε̂d′ε̂d + ρ2ε̂dp′ε̂dp − 2ρε̂d′ε̂dp

) (
X ′−1X−1

)−1 , (24)

where the last equality follows from the result in (21). To formulate the dividend-growth

based t-statistic of the null of no return predictability, let c = (0, 1,−ρ). The t-statistic

is then given by

tβd+1−ρφ =
β̂d,LS +

(
1− ρφ̂LS

)
√

1
T

(c′ (ε̂′ε̂) c)
(
X ′−1X−1

)−1
=

β̂r,LS√
1
T

(
ε̂d′ε̂d + ρ2ε̂dp′ε̂dp − 2ρε̂d′ε̂dp

) (
X ′−1X−1

)−1 = tβr . (25)

The standard t-statistics, tβr and tβd+1−ρφ, are thus numerically identical, provided the

restrictions in (R1) and (R2) hold.

B The simulation-based test parametrized with φMax

Before analyzing the simulation-based test, recall first the “conservative” ML estimator

in equation (18),

β̂r,ML

(
φMax

)
= β̂r,LS +

σ13
σ33

(
φMax − φ̂LS

)
. (26)

In a conservative test, the value of β̂r,ML

(
φMax

)
is evaluated against the critical value

that would apply if the AR parameter in the data was indeed equal to φMax. Provided

the true value of the AR parameter in the data is less than or equal to φMax, and σ13 < 0,

the resulting estimator will be downward biased, and tests based on this estimator will

be conservative against a positive alternative.
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Consider now the simulation-based test, where the simulated model is parametrized

with an AR parameter φMax.14 Let β̂
i,sim

r,ML

(
φMax

)
be the ML estimator of βr in the

simulations, and let bDatar,ML

(
φMax

)
≡ β̂

Data

r,ML

(
φMax

)
be the conservative ML estimate of βr

in the actual data. In the simulated data β̂
i,sim

r,ML

(
φMax

)
is the “correct” ML estimator,

since the simulated model has an AR parameter equal to φMax, whereas in the original

data the estimator is conservative (provided the true AR parameter is less than or equal

to φMax). In order to show that the simulation-based dividend-growth test is similar to

the conservative ML test in this case, we need to show that

Pr
(
β̂
i,sim

d,LS ≥ bDatad

)
≈ Pr

(
β̂
i,sim

r,ML

(
φMax

)
≥ bDatar,ML

(
φMax

))
. (27)

That is, Pr
(
β̂
i,sim

r,ML

(
φMax

)
≥ bDatar,ML

(
φMax

))
compares the conservative ML estimate from

the data, bDatar,ML

(
φMax

)
, to the distribution of the ML estimator in a setting where φMax

is indeed the true value for the AR parameter.

For ρ ≈ −σ13/σ33, the ML estimator of βr in the simulations can be written as

β̂
i,sim

r,ML

(
φMax

)
= β̂

i,sim

r,LS +
σ13
σ33

(
φMax − φ̂

i,sim

LS

)
≈ β̂

i,sim

r,LS − ρ
(
φMax − φ̂

i,sim

LS

)
. (28)

As in Section 2.3, let bDatar ≡ β̂
Data

r,LS and bDatad ≡ β̂
Data

d,LS . By restriction (R1),

bDatad = bDatar −
(

1− ρφ̂
Data

LS

)
= bDatar −

(
1− ρφ̂

i,sim

LS

)
+ ρ

(
φ̂
Data

LS − φ̂
i,sim

LS

)
, (29)

and β̂
i,sim

d,LS = β̂
i,sim

r,LS −
(

1− ρφ̂
i,sim

LS

)
. The conservative ML estimator in the actual data,

using ρ ≈ −σ13/σ33, can be written as

bDatar,ML

(
φMax

)
≈ bDatar − ρ

(
φMax − φ̂

Data

LS

)
. (30)

14This formulation is without loss of generality, as the actual derivations make no use of the assumption
that φMax is indeed larger than the true value for the AR parameter in the data.
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It follows that

Pr
(
β̂
i,sim

d,LS ≥ bDatad

)
= Pr

(
β̂
i,sim

r,LS −
(

1− ρφ̂
i,sim

LS

)
≥ bDatar −

(
1− ρφ̂

i,sim

LS

)
+ ρ

(
φ̂
Data

LS − φ̂
i,sim

LS

))
= Pr

(
β̂
i,sim

r,LS ≥ bDatar + ρ
(
φ̂
Data

LS − φ̂
i,sim

LS

))
= Pr

(
β̂
i,sim

r,LS − ρ
(
φMax − φ̂

i,sim

LS

)
≥ bDatar − ρ

(
φMax − φ̂

Data

LS

))
≈ Pr

(
β̂
i,sim

r,ML

(
φMax

)
≥ bDatar,ML

(
φMax

))
. (31)

C Variance of the estimators

Using the joint convergence for β̂LS =
(
β̂r,LS, β̂d,LS, φ̂LS

)
in equation (22), along with

the shape of Σ given in (3), the asymptotic variance of the ML estimator of βr can be

expressed as follows,

V ar
(
β̂r,ML

)
= V ar

(
β̂r,LS +

σ13
σ33

(
φ− φ̂LS

))
= V ar

(
β̂r,LS

)
+
σ2
13

σ2
33

V ar
(
φ̂LS

)
− 2

σ13
σ33

Cov
(
β̂r,LS, φ̂LS

)
= V ar

(
β̂r,LS

)
+
σ2
13

σ2
33

σ33
σ11

V ar
(
β̂r,LS

)
− 2

σ13
σ33

σ13
σ11

V ar
(
β̂r,LS

)
= V ar

(
β̂r,LS

)(
1− σ2

13

σ33σ11

)
= V ar

(
β̂r,LS

) (
1− δ213

)
. (32)

D Implementation of Monte Carlo simulations

In order to implement Cochrane’s procedure in a repeated Monte Carlo simulation, a

“two-layered” simulation is implemented. For a given set of true parameter values, the

procedure can most easily be summarized by the below steps. For a simulation with
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10,000 repetitions, steps 1-4 are repeated 10,000 times.

1. Simulate a single sample of size T = 78 of the system in equations (E1)-(E3), under

restrictions (R1) and (R2).

2. From the simulated sample, obtain OLS estimates of all regression coefficients, as

well as estimates of all parameters in the covariance matrix Σ. Denote the OLS

estimates of βr, βd, and φ as β̂
sim

r,LS, β̂
sim

d,LS, and φ̂
sim

LS , respectively.

3. Parametrize the same system as in step (1), imposing the null of no return pre-

dictability and replacing all other parameters of the model with the empirical esti-

mates from step (2). That is, in this parametrization, βr = 0, βd = −
(

1− ρφ̂
sim

LS

)
,

and all other parameters are set equal to the empirical estimates obtained in step

(2). Simulate 50,000 sample paths of size T = 78 from this empirically parametrized

system that imposes the null of no return predictability. For each of the simulated

samples, obtain OLS estimates of βr and βd.

4. Based on the resulting empirical distributions of the OLS estimators in step (3),

calculate the p-values for the coefficient estimates β̂
sim

r,LS and β̂
sim

d,LS, obtained from

the initial simulated sample in steps (1) and (2). Classify as rejection/non-rejection

depending on whether the respective p-value is less or greater than 0.05.

The above steps refer to the implementation of Cochrane’s procedure where the

parametrization in step (3) uses the OLS estimate of φ obtained in step (2). Alter-

native implementations differ only in their treatment of φ in step (3). Specifically, we also

consider a conservative test where φ is set equal φMax = 0.995. Thus, in this alternative

implementation, the value of φ used to parametrize the simulated system in step (3) is set

to φMax and the value of βd is adjusted accordingly to ensure that the null of no return

predictability is imposed (i.e., βd = −
(
1− ρφMax

)
).
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Vanishing Predictability and Non-Stationary

Regressors∗

Tamás Kiss†

Abstract

This paper provides an explanation for why predictive regressions may have lost

power in recent samples. In a noisy predictor framework, where expected returns

are stationary and a non-stationary component masks the information in the re-

gressor, I show that the predictive power of the regression vanishes as the sample

size increases. To address vanishing predictability, I propose an estimation method,

subsample fixed effects. It involves estimating the predictive relationship locally in

subsamples and then pooling the estimates via a fixed effects estimator. Empirically,

important predictors of the stock returns exhibit vanishing predictability but ap-

plying subsample fixed effects indicates that the underlying predictive relationship

between these predictors and returns remains significant.
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1 Introduction

In this paper, I propose that the high persistence of the predictor and the parameter

instability of predictive regressions are two interconnected phenomena. Analogous to

the work on noisy predictors (Torous et al., 2004), I assume that the information in the

predictor, captured by a stationary process, is confounded by an uninformative, non-

stationary component. If the variability in the informative part of the predictor is large

enough, then it is possible to detect the predictive relationship in small samples. However,

as the number of observations increases, the non-stationary component inevitably becomes

dominant in the regressor, and therefore, the estimated slope coefficient of the predictive

regression converges to zero. This implies that the power of the predictive regression

decreases over time, even if there is an underlying relationship between the predictor

information and the returns. That is, predictability asymptotically vanishes under these

assumptions.

Since several prominent predictors of excess stock market returns have serial correla-

tion close to unity, the literature on inference and estimation based on such variables is

abundant. In particular, the persistent regressor bias has been extensively discussed.1 In

these studies, predictability implies that expected returns and the predictor have com-

mon time series characteristics. In particular, if the predictor has high serial correlation,

then the expected returns must share this property. To reconcile this feature with the

stylized fact that realized returns are nearly serially uncorrelated, the usual approach is

to assume that the persistent expected return component is small, and the unexpected

returns dominate (c.f., Moon et al., 2005; Moon and Velasco, 2014).

In contrast, I propose that the predictor information need not be highly persistent;

that is, expected returns are stationary and remain potentially predictable by a non-

stationary variable. This weakens the predictability evidence in larger samples, which is

in line with two related forms of parameter instability. First, the evidence of predictability

is usually stronger in sub-samples than in century-long datasets (Ang and Bekaert, 2007;

1Goetzmann and Jorion (1993); Cavanagh et al. (1995); Nelson and Kim (1993); Stambaugh (1999);
Valkanov (2003); Lewellen (2004); Campbell and Yogo (2006); Ang and Bekaert (2007); Cochrane (2008);
Boudoukh et al. (2008)
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Lettau and Van Nieuwerburgh, 2008; Koijen and Van Nieuwerburgh, 2011). Second,

predictors appear to lose power because the evidence of predictability weakens over time

(Ferson et al., 2003; Goyal and Welch, 2008; Deng, 2013). In the current study, these

forms of parameter instability are not surprising. In fact, based on the model I propose, if

highly persistent (non-stationary) predictors are used, then (i) predictability is stronger in

smaller samples, and (ii) the loss in predictive power is due to the increase in the sample

size. This conclusion is parallel to the discussion in Osterrieder et al. (2015) who discuss

the properties of the predictive equation with fractionally integrated regressors.

I derive the asymptotic results for the ordinary least squares (OLS) estimator to show

that predictability disappears under a general set of assumptions on the dynamics of the

time-varying expected returns. Finite sample properties indicate that the high persistence

of the regressor results in a substantially biased slope coefficient for relevant sample sizes.

The bias is especially large if the persistence of the regressor is so high that the variable

is indistinguishable from a non-stationary process.

To mitigate the bias caused by the decreasing predictive power, I propose a simple

and flexible estimation framework, subsample fixed effects (SFE). It builds on the idea

that the bias increases with the sample size because the non-stationary component be-

comes dominant in larger samples. The problem can therefore be reduced by dividing

the full sample and pooling the information from different subsamples via a fixed effects

estimator. By limiting the subsample size, one effectively puts a bound on the variance

accumulation within the regressor. Therefore, the extent of the bias in the estimator de-

creases and the estimated slope coefficient no longer vanishes asymptotically. I derive the

exact relationship between the bias and the subsample size under the assumption of inde-

pendent, identically distributed (i.i.d.) innovations. Simulations show that the proposed

subsampling estimator is robust, since it reduces the bias caused by the non-stationary

component, even under a more general set of assumptions.

Since the non-stationary component is more dominant in larger samples, the bias in

the subsampling estimator is positively related to the size of a given subsample. Choos-

ing a smaller subsample is thus more favorable to reduce bias. However, including more
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fixed effects results in a loss of estimation precision. This translates into an efficiency-bias

trade-off for the choice of subsample size in the SFE estimator. The simulation results

suggest that the optimal choice of subsample size depends on the (potentially unobserv-

able) parameters of the data generating process. Therefore, one can ensure robustness

empirically by considering several subsample sizes simultaneously.

To test the proposed model empirically, I investigate the predictors of the excess

returns on the S&P 500 stock market index. I focus on highly persistent variables as in

this case, the model with a non-stationary component in the predictor can potentially be a

good approximation. Looking at how regression estimates change over time, predictors of

excess returns (including the dividend-price ratio, treasury bill rate, and book-to-market

value) appear to exhibit vanishing predictability. Their slope coefficients approach zero as

the sample size grows. Applying SFE shows an overall increase in the significance of these

predictors. The estimated slope coefficients are the smallest in magnitude for the OLS (no

subsampling) and they grow as one introduces subsampling and moves towards smaller

subsamples. All these empirical observations support the predictions of the proposed

model.

The rest of the paper is organized as follows. Section 2 describes the modelling frame-

work and presents the main theoretical results, along with the proposed estimator, SFE.

Section 4 presents the Monte Carlo simulations to analyze the performance of the model.

Section 5 discusses subsample size selection. I provide the empirical results based on sev-

eral important predictors of excess returns in Section 6, and Section 7 concludes. Technical

derivations are presented in the Appendix.

2 The model

Consider returns that are stationary and potentially predictable. However, the ex-

planatory variable has two components: the informative component (stationary) and a

unit-root component (non-stationary) unrelated to the dependent variable. The data

generating process can then be written in the following form:
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yt = α0 + β0ηt−1 + ut (1)

xt = ηt + ξt (2)

ξt = ξt−1 + εt (3)

The stationary parts of the dependent variable, ηt and ut, and the innovation of

the unit root process, εt, are assumed to be linear processes with zero unconditional

mean. Specifically, define wt = (ηt, ut, εt)
′. Then wt =

∑∞
j=0Cjζt−j, where {Cj}∞j=1

is a sequence of matrices and ζt−j is a martingale difference sequence with E(ζt) = 0,

E(ζtζ
′
t) = Σζ ∈ R3×3

+ . Furthermore, E(wtw
′
t) = Σ <∞ with diag(Σ) = (σ2

η, σ
2
u, σ

2
ε).

The data generating process is fairly standard in the return predictability literature

with noisy predictors. The non-standard element is the fact that the noise component

(the component unrelated to the predictive signal) is a unit-root process. Although I do

not define it in more detail, the unit-root component can be thought of as capturing the

(persistent) structural changes in the economy that affect the level of the predictor, but

not the predictive relationship. Lettau and Van Nieuwerburgh (2008) proposes one such

framework, in which changes in the long term mean of the dividend-price ratio create

instability in the predictive relationship. The authors argue that these jumps in the mean

reflect changes in the structure of the economy, going from one steady-state to another. In

this context, the unit-root component in the present model is an alternative interpretation

of these (gradual) shifts between steady states.

The key parameter of interest when assessing predictability is the slope coefficient in

equation (1), β0. In most empirical work, the OLS estimator is applied to calculate the

parameter estimates of the standard predictive regression,

yt = α + βxt−1 + et. (4)

Under the assumptions in (1) − (3), the predictive power of xt is masked by the non-

stationary component. Since the left hand side of equation (4) is stationary in this case,
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while the right hand side has a unit root, the slope coefficient and the predictive power

disappear at the limit (converge to zero) by construction. The following proposition states

this result:

Proposition 1. Let the data generating process be described by equation (1)− (3). Fur-

thermore let wt = (ηt, ut, εt) =
∑∞

j=0Cjζt−j, where {Cj}∞j=1 is a sequence of matrices

and ζt−j is a martingale difference sequence with E(ζt) = 0, E(ζtζ
′
t) = Σζ ∈ R3×3

+ , and

E(wtw
′
t) = Σ <∞.

Then β̂OLS
p→ 0, where β̂OLS is the OLS estimate of the slope coefficient of the regres-

sion (4). If α0 = 0 is also imposed, then α̂OLS
p→ 0, otherwise it converges to a random

variable.

Proof. In the Appendix.

Intuitively, the result is straightforward. If a stationary variable is regressed on a

non-stationary predictor, the variation in xt becomes arbitrarily large as the sample size

grows, and the only way to reconcile it with the finite variation in the stationary dependent

variable is that the slope coefficient converges to zero.

Since no specific assumptions are made about the autocovariance structure of the

yt and ηt process, this argument is widely applicable. From a practical perspective, the

advantage of this generality is that it allows one to specify ηt as a weakly dependent series,

such as a stationary autoregressive–moving-average (ARMA) process. Proposition 1 also

covers the case of endogenous regressors, as the error term of the dependent variable and

either component of the regressor are allowed to be correlated.

If the predictors are tested for a unit root in a given sample, the test statistics often

suggest a narrow rejection of non-stationarity. This can happen if the unit-root component

is small relative to the informative part. In this case, statistical testing concludes that

there is no unit root in the series. Therefore, running the predictive regression (4) seems to

be appropriate and it may produce a good estimate for the slope coefficient and predictive

power (c.f. Moon et al. (2005)). However, Proposition 1 suggests that increasing the

sample size leads to more biased point estimates that eventually converge to zero. This
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is in sharp contrast with the general notion that a growing sample size results in a better

estimate of the slope coefficient.

3 Local demeaning and subsample fixed effects

Removing the local (subsample) mean from the regressor can mitigate the effect of

the non-stationary component. I can show this by fixing a subsample size, denoted by

M ∈ N, and assuming that the entire sample size can be written as T = KM , where

K ∈ N. The processes xt and yt can then be written as sequences of processes {xk,t}Kk=1

and {yk,t}Kk=1, where xk,t = x(k−1)M+t and yk,t = y(k−1)M+t. Define the locally demeaned

regressor as

x̃k,t = xk,t −
1

M

M∑
m=1

xk,m (5)

for all k and t. If {xk,t}Kk=1 is generated according to equations (2)-(3), where independence

and identical distribution is imposed on the error terms, one can calculate the variance

of the demeaned regressor.

Lemma 1. Let xt be generated by equations (2)-(3), and εt and ηt be i.i.d. random

variables with variances σ2
ε , σ

2
η <∞, respectively. Then

V ar (x̃k,t) = A(M)σ2
η +B(M, t)σ2

ε ,

where the expressions for A(M) and B(M, t) are given in the proof.

Proof. In the Appendix.

The key observation of Lemma 1 is that the variance of the demeaned regressor grows

linearly in the subsample size. Based on this result, it is possible to characterize the

properties of the least squares estimator using the locally demeaned explanatory variable

(hereinafter, the “subsample fixed effects ”estimator).2 To obtain the exact asymptotic

2The notation comes from the observation that the estimator can be computed simply by including
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results the regression error ut is assumed to be independent of the other error variables.

Then, the asymptotic results for the locally demeaned regressor are characterized by the

following proposition.

Proposition 2. Let the data generating process be described by equations (1-3) with

{εt, ηt, ut}∞t=0 i.i.d. sequences with unconditional variances σ2
ε , σ

2
η, σ

2
u < ∞, respectively.

Moreover, fix the subsample size M ∈ N such that M = T
K

, where T is the total number

of observations and K is the number of subsamples. Define α̂SFE and β̂SFE as the OLS

estimator of the coefficients in regression

yt = α + βx̃t−1 + et, (6)

where x̃t is the locally demeaned regressor given by equation (5) using x̃(k−1)M+t = x̃k,t.

Then, as T →∞ (and therefore K →∞ as M is fixed)

β̂SFE
p→ β0

σ2
η

σ2
η + M+1

6
σ2
ε

α̂SFE
p→ E(yt) = α0

Proof. In the Appendix.

The formulation with fixed effects is especially useful since its estimation is straight-

forward. The result for the slope coefficient is similar to the classical measurement error

attenuation bias formula, as the bias enters the estimate as a multiplicative factor. How-

ever, for the subsampling fixed effects estimator, the extent of the bias depends on the

number of observations in each subsample, M . Since their relationship is positive, a larger

M implies a more biased estimation.3 On the other hand, the variance of the estimator

a fixed effect for each subsample, and using an OLS estimation. To see the equivalence note that if
{yk,t}Kk=1 is generated according to equation (5), then∑K

k=1

∑M
t=1 ỹk,tx̃k,t−1∑K

k=1

∑M
t=1 x̃

2
k,t−1

=

∑K
k=1

∑M
t=1 yk,tx̃k,t−1∑K

k=1

∑M
t=1 x̃

2
k,t−1

−
∑K
k=1

¯̃yk,t
∑M
t=1 x̃k,t−1∑K

k=1

∑M
t=1 x̃

2
k,t−1

=

∑K
k=1

∑M
t=1 yk,tx̃k,t−1∑K

k=1

∑M
t=1 x̃

2
k,t−1

,

where the last equality follows from the fact that
∑M
t=1 x̃k,t−1 = 0.

3M →∞ implies β̂SFE
p→ 0, which is in line with Proposition 1.
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within a single subsample is decreasing as M increases, since the number of observations in

a subsample grows. Therefore choosing the number of subsamples involves a bias-variance

trade-off.

To obtain the asymptotic results in Proposition 2, I need to impose fairly strong

assumptions. In particular, Proposition 2 allows only strictly exogenous regressors. How-

ever, I show in a simulation exercise in the following section that the method also appears

robust with endogenous regressors.

4 Simulations

This section carries out a Monte Carlo experiment to analyze finite sample properties

of the model and the proposed estimator. The simulations suggest that the presence

of a non-stationary component in the regressor substantially biases OLS estimates even

for moderate sample sizes. Using SFE mitigates this bias. However, the results of the

subsampling estimator are sensitive to the choice of subsample size.

The simulation set-up is based on the data generating assumption in equations (1)-(3)

and the predictive regression (4). The common assumptions in these specifications is that

the information part of the predictor, ηt−1, is i.i.d., and ση = σu = 1 for normalization.

The underlying slope coefficient of equation (1) is set to β0 = 0.2 and no intercept is used.

For the remaining parameters of the model, I analyze a set of difference scenarios. In

particular, I consider three values of the signal-to-noise ratio λ = ση
σε

, λ = {1, 3, 10}, rep-

resenting different levels of persistence caused by the non-stationary component.4 For the

correlation between ut and εt, the simulations use two values, ρu,ε = 0 and ρu,ε = −0.8,

which represent whether the predictor is strictly exogenous, or there is a negative corre-

lation between the error terms that causes endogeneity (and hence a persistent regressor

bias). The results using 1000 repetitions are presented in Table 1 for sample sizes of

T = {100, 300, 800}. These sample sizes represent the number of available observations

in yearly, quarterly or monthly datasets generally used to assess return predictability.

4On a sample of 1000 observations, these choices of λ correspond to first order autocorrelations of
approximately 0.99, 0.95 and 0.7, respectively.
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[Insert Table 1 here]

The first three columns in Table 1 represent the case of an exogenous regressor, ρu,ε =

0. The first observation is that the extent of bias for different sample sizes strongly depends

on the persistence of the predictor. If the informative component is small (λ = 1), then

the sample autocorrelation is almost completely driven by the non-stationary component,

and there is already a serious bias for a small sample (T = 100). This bias decreases

as the informative component of the predictor strengthens (λ becomes larger), which

implies a relatively weaker non-stationary component, and thus, a lower persistence. The

convergence of the slope coefficient to zero is apparent in each case, and it happens quickly.

The coefficients are substantially closer to zero for a sample size of T = 800.

Columns (5)–(7) in Table 1 show the results based on simulations in which the strict

exogeneity assumption of the regressor is violated. ρu,ε = −0.8 means a strong negative

relationship between the innovations ut and εt. As Stambaugh (1999) argued, this corre-

lation creates an upward bias in the estimation, which one can observe in columns (5)–(7).

This results in an over-rejection of the null hypothesis of no predictability in the absence

of non-stationarity. However, if the autocorrelation of the regressor is substantial, then

the parameter estimates are considerably biased towards zero, even though the estimated

slope coefficients are larger in absolute value. In fact, the endogeneity bias enters the

estimates nearly additively and the sample size does not affect its extent. Thus, as the

sample size increases, the effect of the non-stationary component becomes stronger than

that of the endogeneity bias, and therefore the slope coefficients eventually converge to

zero (the vanishing predictability phenomenon dominates).

The findings of the simulations have important practical implications for predictive

regressions. In particular, even if statistically significant predictive power is found in a

given sample, it is not certain that the estimation precision of the relationship improves

when using more observations. In fact, the contrary holds in the present case. The larger

the sample is, the more biased the least squares estimation becomes.

Next, the properties of the subsampling fixed effects method are analyzed. The simu-

lations use the same data generating process as above and apply the SFE estimator with
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subsample sizes of M = {10, 25, 50}. Given M and the sample size T (≥ M), the sub-

sampling partition {T1, T2, . . . , TK} is uniquely determined. Panel I in Table 2 presents

the mean of the simulated SFE estimates. The standard deviation of the simulated em-

pirical distribution (Panel II), or the standard error of the SFE estimator based on the

simulations results, is calculated based on 1000 repetitions.

[Insert Table 2 here]

As Table 2 shows, the SFE is robust to the size of the entire sample. The point

estimates for T = 100 and T = 800 are almost identical. This is unsurprising given

the theoretical results, as the accumulated variance of the non-stationary component

is constrained to a given subsample and thus the overall bias is similar to the bias that

appears in one subsample. To further illustrate the point, Figure 1 plots the SFE estimates

as a function of the sample size T , for a fixed subsample size M = 50.

[Insert Figure 1 here]

Proposition 2 implies that the subsample size plays a key role in determining the bias

in the SFE estimator. This is also confirmed by the simulation results, showing that

the subsample size M does have a significant effect on the estimation results even in

finite samples. Comparing results with M = 10 to M = 50 in Table 2, it is clear that

the smaller subsample size results in a less biased, but more imprecise estimation. The

point estimates are closer to the true value if the subsample size is small (Panel I), but

their standard errors are larger (Panel II). This is independent of the fact whether there

is correlation between the unexpected return and the innovation of the non-stationary

component. In particular, the endogeneity bias enters as an additional factor to the point

estimates.

5 Choice of subsample size

Both the theoretical and simulation results point to the importance of the efficiency-

bias trade-off when choosing the subsample size M . To elaborate on this point further,
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note that the mean squared error (MSE) of the subsampling estimator is

MSE = (E(βSFE)− β0)2 + V ar (βSFE) , (7)

for a given sample size T . Now, for large samples (i.e., T → ∞) and for fixed M , the

variance of the estimator shrinks arbitrarily small, while the first term that captures the

bias, does not disappear per Proposition 2. Therefore,

MSE
T→∞→ β2

0

(
σ2
η

σ2
η + M+1

6
σ2
ε

− 1

)2

;

that is, the error is driven completely by the asymptotic bias. The above expression

increases in the absolute value of M . Therefore, for sufficiently large T , the best choice

of M is as small as possible. This is somewhat at odds with the usual notion that the

subsample size should be chosen as M → ∞, such that M/T → 0. However, the result

mirrors the basic intuition behind the estimator: the smaller the subsample is, the less

the non-informative component can affect estimation.

The asymptotic results provide poor guidance on how to choose a subsample size in

finite samples. This follows from the fact that for a small M , the number of parameters

to estimate (relative to the sample size) is large, and hence, the variance of the estimator

is substantial. To see how the bias and variance of the estimator interact in sample sizes

relevant for the predictability context, I calculate the MSE of the subsampling estimator

based on the simulated mean and the standard deviation of β̂SFE using equation (7). The

specifications are the same as in Table 2, except that I consider a finer set of subsample

sizes M ∈ [10, 50].

[Insert Figure 2 here]

Figure 2 shows that the trade-off between the bias and variance highly depends on

the signal-to-noise ratio. In Panel (a), where the informative component explains a very

small part of the predictor variation, the error grows monotonically with the subsample

size. However, in the other two scenarios, in which the non-stationary component is

less strong, the optimal choice of subsample size depends on the size of the sample. In
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particular, for λ = 3, the MSE minimizing subsample size is around 20 for annual samples.

Additionally, for λ = 10 — which corresponds to a sample autocorrelation of around 0.7

in monthly samples — the optimal subsample size is even larger, between 25 and 35 for

all (empirically relevant) sample sizes considered.

From a practical point of view, the main implication of Figure 2 is that the choice

of subsample size depends on the data generating process. A priori, we do not have

information about all unobservable components of the model, and λ cannot be identified

by looking at the predictor process only.5 Therefore, an empirically feasible and robust

approach is to use several subsample sizes (where a relatively small subsample size is

chosen, such as below 50), and compare the results based on the set of estimates.

6 Empirical results

I use the monthly dataset compiled by Goyal and Welch (2008), who perform a com-

prehensive analysis of the predictors of the excess return on the S&P 500 stock market

index.6 The time window of the analysis is between January 1952 and December 2017.7

Since the focus here is on prediction with highly persistent variables, I consider variables

with high serial correlation (their estimated first order autocorrelation is above 0.95). The

analysis is further restricted to the variables with monthly observations available for the

full sample period.8 Consequently, I assess the predictive capacity for seven time series,

including the dividend–price ratio (dp), earnings–price ratio (ep), dividend payout ratio

(de), book-to-market value (bm), three-month treasury bill rate (tbl), term spread on

government bonds (tms), and default yield spread (dfy).9 Table 3 presents the summary

statistics of the predictors and the excess returns.

5For example, if the persistence of the predictor is partly due to a (mild) autocorrelation in the
predictor information, then λ can be small, even if the informative component is relatively strong.

6http://www.hec.unil.ch/agoyal/
7Since the analysis includes the variables related to the short rate, the sample starts in 1952, when

independent monetary policy became possible, and the interest rate variables became informative. Camp-
bell and Yogo (2006) and Pástor and Stambaugh (2009), among others, start their samples in the same
year for this reason.

8Although the results in this section are based on monthly data, I also considered the prediction on a
quarterly basis. The empirical findings remain qualitatively unchanged, which suggests that aggregation
to lower frequencies does not change the results.

9The variable descriptions can be found in Goyal and Welch (2008).
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[Insert Table 3 here]

Since the persistence of the explanatory variables is key to the analysis, Table 3 report

the OLS estimate of the largest autoregressive root and the p-value of an Augmented

Dickey-Fuller test. The autoregressive roots are close to unity, and the existence of a unit

root cannot be rejected (except for the term spread, which represents a borderline case:

the null of a unit root is rejected at the five percent significance level, but not at the one

percent level). The high persistence makes these variables good candidates that fulfil the

assumptions of the model, namely, that the stationary informative component is masked

by a non-stationary noise.

6.1 Vanishing predictability in the data

Although the results of Proposition 1 are asymptotic, the implied bias is also sub-

stantial in finite samples. Empirically, this is testable by looking at the changes in the

estimated slope coefficient for different sample sizes. To obtain a set of slope coefficients

that correspond to different sample sizes, I perform an extending window analysis of the

standardized values of the variables.10 First, I consider 100 observations of the dataset

and estimate equation (4) with OLS. Then, the sample is extended by adding one more

observation, and equation (4) is re-estimated. This procedure is iterated until no new

data points are available. I carry out this analysis for each of the predictors discussed

above.

The sequences of the estimated slope coefficients for four variables (the dividend–price

ratio, book-to-market value and interest-related variables, treasury-bill rate, and term

spread) are presented in Figure 3. Even though the overall evidence for predictability is

weak, these results show gradually decreasing predictability, in line with the theoretical

results.

[Insert Figure 3 here]

In contrast, the remaining three variables — earnings–price ratio, dividend payout

ratio and default yield spread — appear to be essentially non-predictors. Their slope

10I standardize the variables to obtain comparable results across predictors.
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coefficients cannot be statistically distinguished from zero at any sample size, even with

the relatively small OLS standard errors. This suggests that the information component

in these variables is negligible, and they do not predict excess returns. In particular,

estimates of the slope coefficients are statistically indistinguishable from zero for all sample

sizes.11

The empirical findings so far are conditional on the selected start date and the specific

sample. Proposition 1 does not assume or require a specific initial condition. In fact,

results are independent of the start date and value of the processes, which means that

vanishing predictability does not depend on the start date of the sample according to

the model. This can be tested by using subsets of observations. First, the time series

between January 1952 and December 1996 are considered, omitting the last twenty years

of observations. The sequences of the slope coefficients are obtained by the extending

window analysis described above (this gives the same sequences as before, truncated at

1996). Then, the start and end of the sample are shifted ten years forward in time and

the same exercise is carried out, giving a new set of sequences of slope coefficients for

the shifted sample. This procedure is repeated twice, resulting in three sets of results,

presented in Figure 4. Although the coefficient series vary significantly over time, the

tendency of decreasing predictive power prevails in the shifted samples. This confirms

the intuition from the baseline results overall: non-stationary predictors that potentially

have predictive power for the excess returns tend to lose power over time.

[Insert Figure 4 here]

6.2 Applying subsample fixed effects

The results based on the OLS estimation suggest that vanishing predictability is

present in the data. Therefore, one can expect the SFE estimator to improve the re-

sults by reducing the bias in the point estimation. I estimate the slope coefficients of the

predictive regression using the SFE based on equation (5)-(6). The variables are those

that are subject to vanishing predictability: dividend–price ratio, book-to-market value,

11All results using this group of variables are shown in the Appendix.
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treasury bill rate, and term spread. Since the results are sensitive to the choice of subsam-

ple size, the models are estimated with subsample sizes of 10, 25 and 50. The coefficient

estimates and standard errors are reported in Table 4 (The OLS results are presented as

a benchmark in the last column).

[Insert Table 4 here]

The findings in Table 4 are in line with the theoretical results. First, while the OLS

results for the entire sample are barely significant, the subsampling results are remarkably

stronger. In particular, most of the subsampling coefficients are significant at the one per-

cent level. Second, the point estimates become larger in absolute value as the subsample

size decreases. This is completely in line with the theoretical prediction of Proposition 2,

which suggests that for smaller subsamples the bias caused by the non-stationary compo-

nent decreases. This, in turn, makes the relationship between the informative component

of the predictor and the excess return easier to reveal. The results therefore suggest that

the underlying predictive power of the variables is stronger than the results based on a

standard least squares estimation using the full sample.

Although the SFE estimator is defined using subsamples of equal size, the idea of

subsampling is more general. If a persistent variable exhibits vanishing predictability,

estimating subsamples can help mitigate the problem. An alternative approach to equal-

sized subsamples is to estimate structural breaks in the time series of the explanatory

variable and define the subsamples as observations between two breaks. This is analogous

to the approach Lettau and Van Nieuwerburgh (2008) follow to examine the dividend–

price ratio by identifying structural breaks with the method in Bai and Perron (1998).12

To see how the results change when using estimated cut-off points, I estimate the model

by Bai and Perron (1998) to identify breaks between subsamples. The number of breaks

in each series is specified in advance, and I let the method determine their location. This

facilitates comparison with the SFE estimator, since by specifying the number of cut-off

points, the average subsample size is also defined. Using the break-adjusted explanatory

12For a given number of breaks, the method of (Bai and Perron, 1998) estimates a linear model
with subsample dummies, where the cut-offs between subsamples are determined such that the resulting
equation model has the smallest MSE.
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variables based on the estimated cut-off values, I estimate the predictive regression (6).

Table 5 presents the results based on this approach. They are qualitatively similar to

the ones using SFE. In particular, the results are generally strongly significant, and the

coefficients seem to be even further away from zero for a given (average) subsample size in

the estimated cut-off case. Overall, the evidence based on an estimated cut-off is in line

with the theoretical predictions of the model, suggesting that estimation using subsamples

can provide stronger evidence of predictability.

[Insert Table 5 here]

6.3 Vanishing or time-varying predictability?

The empirical evidence described so far is consistent with the time-invariant predictive

relationship and the presence of a highly persistent uninformative component, as the

model (1)-(3) describes. However, the shrinking predictive power of the variables can

also occur because periods with stronger predictability are blended with periods with

weaker predictive relationship (as Farmer et al., 2018 suggest). In theory, it is simple to

disentangle these two scenarios: if the coefficients become consistently larger in absolute

terms as smaller subsamples are used, then the results support vanishing predictability.

On the other hand, a large variation in the estimated slope coefficients between subsamples

suggests that the underlying predictive relationship is time-varying.

To investigate this question, Figure 5 shows rolling window estimates of the slope

coefficient of the univariate predictive regression for each variable discussed.13 First, there

is a substantial variation in the slope coefficients, suggesting support for the time-varying

predictability argument. However, for the financial ratios (dividend–price ratio and the

book-to-market value), the coefficients on smaller subsamples are consistently higher than

those using larger subsamples or the entire sample, which suggests that overall, using a

larger sample results in finding weaker predictability. Therefore, vanishing predictability

seems to explain at least part of the variation in the slope coefficients of these variables.

13To partly account for the large estimation uncertainty introduced by using very small samples, I
present “smoothed ”rolling window results (see the description in Figure 5).
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[Insert Figure 5 here]

7 Conclusion

Several predictors of stock market returns (such as financial ratios or interest-related

variables) are highly persistent. This is in contrast to excess returns, which prior works

usually find to be weakly dependent, almost white noise processes. I reconcile the po-

tential non-stationarity in the explanatory variables and a stationary expected return by

assuming a noisy predictor. The main result is that if stationary returns are regressed

on the lagged values of a non-stationary explanatory variable, then the slope coefficient

and the predictive power approach zero as the sample size increases. This observation

is in line with the empirical evidence of weakening predictive power of several regressors

presented in Section 6.

The key result of the model holds for a general set of assumptions about the innovations

in the regressor and the unexpected returns. Using Monte Carlo simulations, I also show

that the convergence of the slope coefficients to zero happens quickly; therefore, the

estimates are biased, even for moderate sample sizes.

The proposed SFE estimator puts a bound on the variance of the non-stationary com-

ponent, and it therefore reduces the bias caused by the high persistence of the explanatory

variable. I derive exact theoretical results for the extent of the bias for a fixed subsample

size for a restrictive set of assumptions. The simulations show that the estimator also

works well for more general assumptions. Applying this estimator to highly persistent

predictors of the returns shows that the point estimates improve and tend to become

significant.
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Figures

Figure 1: Example of the subsample fixed effects estimator

Notes: The (black) line marked with crosses shows the point estimates of the slope
coefficient of the SFE estimator in the simulated model described by equations (1)-(4)
with parameter choices σε = σu = 1, ση = 10. The chosen true value of the slope
coefficient is β0 = 0.2 (marked with a dashed line in the figure), and the subsamples
have 50 observations (M = 50). The (red) line marked with circles represents the
OLS results based on the same samples. The dotted lines represent the respective 95
percent confidence intervals based on the simulated sampling distributions.
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Figure 2: Mean squared errors as a function of subsample size

(a) λ = 1

(b) λ = 3

(c) λ = 10

Notes: The plots show the simulated mean squared errors based on the simulation setup
described in equations (1)-(4). The chosen true value of the slope coefficient is β0 = 0.2. Each
panel represents different choices of signal-to-noise ratio, while the different lines correspond
to various sample sizes (T ). The subsample size M is depicted on the horizontal axis. The
results are based on 1000 repetitions.
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Figure 3: Extending window analysis of the predictors

Notes: The figures show the estimated slope coefficients of the univariate predictive regres-
sions as a function of the sample size. All samples start in January 1952. The explanatory
variables in the figures are the dividend–price ratio (dp), book-to-market value (bm), three-
month treasury bill rate (tbl), and term spread on the government bonds (tms).
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Figure 4: Sensitivity of the slope coefficient to the sample start date

Notes: The lines represent the estimated slope coefficients of the univariate predictive regres-
sions as a function of the sample size, with different starting points. The lightest grey line
represents January 1952, and darker shades mean later starting points. Variable descriptions
are given in Figure 3.

119



Figure 5: Rolling window slope coefficients

Notes: The lines represent the smoothed rolling window estimates of the standard univariate
predictive regression using different subsample sizes. That is, βSmootht = ωβSmootht−1 + (1 −
ω)βRollingt , where βRollingt is estimated on the rolling window [t, t−M ] and ω = 0.95. The
variable descriptions are given in Figure 3.
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Tables

Table 1: Slope coefficients of the predictive regression

ρu,ε = 0 ρu,ε = −0.8
λ = 1 λ = 3 λ = 10 λ = 1 λ = 3 λ = 10

T=100 0.0185 0.0836 0.1792 0.0527 0.1429 0.2028
T=300 0.0062 0.0432 0.1411 0.0201 0.0736 0.1712
T=800 0.0027 0.0191 0.1010 0.0077 0.0343 0.1183

Notes: This table presents the OLS estimates of the slope coefficient
β in the regression yt = α + βxt−1 + et with different sample sizes
(T ). (yt, xt) are generated using equations (1)-(2) with β0 = 0.2. The
information component of the predictor, ηt is i.i.d. with ση(= σu) = 1.
λ is the signal-to-noise ratio that determines the persistence of the
explanatory variable. Columns (2)-(4) represent the exogenous cases,
in which ρu,ε = Corr(u, ε) = 0, while columns (5)–(7), ρu,ε = −0.8,
correspond to endogenous regressors.
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Table 2: Subsampling fixed effects estimator

I: Mean of β̂SFE

ρu,ε = 0 ρu,ε = −0.8
λ = 1 λ = 3 λ = 10 λ = 1 λ = 3 λ = 10

M = 10
T=100 0.0688 0.1610 0.1985 0.2176 0.2786 0.2336
T=300 0.0694 0.1663 0.1973 0.2158 0.2757 0.2385
T=800 0.0709 0.1655 0.1966 0.2117 0.2765 0.2363

M = 25
T=100 0.0418 0.1342 0.1853 0.1246 0.2307 0.2316
T=300 0.0388 0.1357 0.1933 0.1180 0.2250 0.2290
T=800 0.0370 0.1364 0.1908 0.1149 0.2258 0.2305

M = 50
T=100 0.0256 0.1149 0.1771 0.0790 0.1856 0.2188
T=300 0.0229 0.1069 0.1859 0.0695 0.1756 0.2178
T=800 0.0223 0.1052 0.1848 0.0652 0.1720 0.2229

II: Standard deviation of β̂SFE

ρu,ε = 0 ρu,ε = −0.8
λ = 1 λ = 3 λ = 10 λ = 1 λ = 3 λ = 10

M = 10
T=100 0.0651 0.0967 0.1088 0.0661 0.0954 0.1017
T=300 0.0376 0.0565 0.0591 0.0363 0.0515 0.0612
T=800 0.0234 0.0342 0.0367 0.0224 0.0341 0.0374

M = 25
T=100 0.0503 0.0876 0.0993 0.0559 0.0835 0.0959
T=300 0.0274 0.0510 0.0571 0.0326 0.0499 0.0573
T=800 0.0167 0.0308 0.0348 0.0195 0.0300 0.0367

M = 50
T=100 0.0393 0.0814 0.0957 0.0477 0.0865 0.0986
T=300 0.0211 0.0470 0.0547 0.0270 0.0467 0.0565
T=800 0.0122 0.0279 0.0345 0.0152 0.0284 0.0334

Notes: This table presents the means (Panel I) and standard devia-
tions (Panel II) of the simulated SFE estimates in Equation (4) with
subsample sizes of M = {25, 50, 100}. The data generating process
with further parameter specifications are given in the description of
Table 1. The simulation is repeated 1000 times.

122



Table 3: Summary statistics of the predictors
and excess returns

mean stdev φ p-value N
dp -3.5391 1.4000 0.9933 0.8772 792
bm 0.5143 0.8547 0.9943 0.2121 792
tbl 0.0432 0.1072 0.9914 0.2497 792
tms 0.0172 0.0485 0.9572 0.0098 792
ep -2.8075 1.4460 0.9891 0.7279 792
de -0.7316 1.0211 0.9865 0.3981 792
dfy -0.0097 0.0152 0.9702 0.1518 792
ret 0.0596 0.1444 0.0519 0.0010 792

Notes: stdev indicates the standard deviation of
the variable and N is the number of observations.
Column (3) presents the first order autocorrelation
of the variables, while column (4) shows the empir-
ical significance level of the Augmented Dickey Fuller
test (without deterministic trend and drift). The ta-
ble presents the dividend–price ratio (dp), earnings–
price ratio (ep), dividend payout ratio (de), book-
to-market value (bm), three-month treasury bill rate
(tbl), term spread on the government bonds (tms),
and default yield spread (dfy) variables. The variable
ret is the excess return on the S&P 500 index.
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Table 4: Regression results from the one-period-ahead
forecasts using a fixed subsample size

Subsample size (M)
10 25 50 OLS

dp 0.2070 0.0886 0.0538 0.0055
(0.0247)*** (0.0163)*** (0.0129)*** (0.0040)

bm 0.1927 0.1131 0.0709 0.0024
(0.0401)*** (0.0248)*** (0.0207)*** (0.0064)

tbl -0.4905 -0.4534 -0.2441 -0.1149
(0.2071)** (0.1479)*** (0.0934)*** (0.0493)**

tms 0.1770 0.4538 0.2437 0.2158
(0.2462) (0.1777)** (0.1418)* (0.1179)*

Notes: The table presents the slope coefficients and standard er-
rors of the univariate predictive regression. The SFE estimator
is used. Standard errors are calculated using residual block boot-
strapping, where the length of the blocks is O(T 1/3). The column
header specifies the size of the subsample. The table presents
the dividend–price ratio (dp), book-to-market value (bm), three-
month treasury bill rate (tbl), and term spread on the government
bonds (tms) variables. ∗∗∗, ∗∗, and ∗ represent statistical signifi-
cance at the 1%, 5%, and 10% level, respectively.
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Table 5: Regression results from the one-period-ahead forecasts
using the estimated subsample cut-offs

10 8 4 2
dp 0.0559 0.0462 0.0319 0.0219

(0.0140)*** (0.0126)*** (0.0079)*** (0.0066)***
bm 0.1142 0.0848 0.0521 0.0115

(0.0269)*** (0.0231)*** (0.0161)*** (0.0099)
tbl -0.5346 -0.4870 -0.3223 -0.1632

(0.1419)*** (0.1314)*** (0.0837)*** (0.0580)***
tms 0.6124 0.3878 0.2532 0.2177

(0.1840)*** (0.1696)** (0.1388)* (0.1268)*
Av. size 79 99 198 396

Notes: The table presents the slope coefficients and standard errors of
the univariate predictive regression. Subsample fixed effects are used
together with the approach in Bai and Perron (1998) to estimate cut-off
values for the subsamples. Standard errors are from the classical OLS
formula. The column header specifies the number of subsamples (which
also determine the average sample size, shown in the last row). The
table presents the dividend–price ratio (dp), book-to-market value (bm),
three-month treasury bill rate (tbl), and term spread on the government
bonds (tms) variables. ∗∗∗, ∗∗, and ∗ represent statistical significance at
the 1%, 5%, and 10% level, respectively.
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Appendix

A Proofs

A.1 Proof of Proposition 1

First, consider the slope coefficient (without loss of generality assume that the first

observation of x is x0),

β̂OLS =

1
T

∑T
t=1 ytxt−1 −

(
1
T

∑T
t=1 yt

)(
1
T

∑T
t=1 xt−1

)
1
T

∑T
t=1(xt−1 − x̄t−1)2

=
1√
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1
T 3/2

∑T
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(
1
T

∑T
t=1 yt

)(
1

T 3/2

∑T
t=1 xt−1

)
1
T 2

∑T
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. (8)

Using the results 1
T 3/2

∑T
t=1 ytξt−1

p→ 0 in Phillips (1987), 1
T

∑T
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p→ E(yt) = E(α0 +

β0ηt−1+ut) = α0,
1
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p→ 0 by the Weak Law of Large

Numbers, and 1
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∫ 1

0
W (r)dr in Phillips (1986), where W (r) is a standard

Brownian motion. The numerator can be written as
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Furthermore, using 1
T 2

∑T
t=1(ξt−1 − ξ̄t−1)2 ⇒

∫ 1

0
W (r)2dr −

(∫ 1

0
W (r)dr

)2
in Phillips

(1986), the denominator converges to
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1

T 2

T∑
t=1

(xt−1 − x̄t−1)2 =
1

T 2

T∑
t=1

(ξt−1 − ξ̄t−1)2 +
1

T 2
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+ 2
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Therefore, by the joint convergence results in Phillips (1987), I obtain

√
T β̂ ⇒

α0

∫ 1

0
W (r)dr∫ 1

0
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(∫ 1

0
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)2 ,
which establishes the result for β̂. For the intercept,
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1

T
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t=1

yt − β̂
1

T

T∑
t=1

xt =
1

T
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p→ E(yt) = α0.

A.2 Proof of Lemma 1

First, write out x̃k,t.

x̃k,t =xk,t −
1
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Note that x̃k,t is independent of the initial value ξk,0. The variance is then given by
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I consider the three parts separately.
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where the last equality follows from the fact that Cov (ηk,t, ηk,m) = σ2
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Cov (ηk,t, ηk,m) = 0 otherwise.
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where the last equality follows from the fact that Cov (εk,s, εk,m) = σ2
ε if m = s, and

Cov (εk,s, εk,m) = 0 otherwise. Lastly, since Cov(ηk,t, εk,s) = 0 for all t, s = 1, 2, . . . ,M , I

obtain
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Then, the variance can be written as
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A.3 Proof of Proposition 2

Consider β̂SFE. Using the fact that ¯̃xt−1 = 0 the estimator can be written as
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Due to the i.i.d. assumptions on the error terms both {yk,tx̃k,t−1}Kk=1 and {x̃2k,t−1}Kk=1 are

i.i.d. sequences with finite variance. Therefore, the Weak Law of Large Numbers applies:
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Furthermore, the Slutsky theorem implies that
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by Lemma 1. Summing over M gives
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where the last equality holds because
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The result for α̂SFE completes the proof:

α̂SFE = ȳt − βSFE ¯̃xt−1 = ȳt
p→ E(yt) = α0
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B Supplementary Tables and Figures

Table B1: Regression results for variables with no
predictive power on small samples

Subsample size (M)
10 25 50 OLS

ep 0.0201 0.0011 0.0077 0.0033
(0.0114)* (0.0071) (0.0064) (0.0038)

de 0.0338 0.0184 0.0055 0.0037
(0.0113)*** (0.0068)*** (0.0057) (0.0053)

dfy -2.2487 -2.2115 -1.2741 -0.1748
(0.9653)** (0.5459)*** (0.5074)** (0.3644)

Notes: The table presents the slope coefficients and stan-
dard errors of the univariate predictive regression for predic-
tors with no predictive power even on small samples. This
group includes the earnings–price ratio (ep), dividend payout
ratio (de), and default yield spread (dfy). The SFE esti-
mator is used. Standard errors are calculated using residual
block bootstrapping, where the length of the blocks isO(T 1/3).
The column header specifies the size of the subsamples. ∗∗∗,
∗∗, and ∗ represent statistical significance at the 1%, 5%, and
10% level, respectively.
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Figure B1: Monthly time series of the predictors and excess returns
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Figure B2: Extending window analysis of variables with no predictive power on
small samples

Notes: The figures show the estimated slope coefficients of the univariate predictive regres-
sions as a function of the sample size. All samples start in January 1952. The explanatory
variables are the earnings–price ratio (ep), dividend payout ratio (de), and default yield
spread (dfy), respectively.

Figure B3: Sensitivity analysis for variables with no predictive power on small
samples

Notes: The lines represent the estimated slope coefficients of the univariate predictive re-
gressions as a function of the sample size. Different starting points are used: the lightest
grey line represents January 1952, and darker shades mean later starting points (1962 and
1972, respectively). The variable descriptions are given in Figure B2.

Figure B4: Rolling window slope coefficients for variables with no predictive power
on small samples

Notes: The lines represent smoothed rolling window estimates of the standard univariate
predictive regression using different subsample sizes. That is, βSmootht = ωβSmootht−1 + (1 −
ω)βRollingt , where βRollingt is estimated on the rolling window [t, t−M ] and ω = 0.95. The
variable descriptions are given in Figure B2.
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