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Abstract

Machine learning and arti�cial intelligence has been a hot topic the last few years, thanks to
improved computational power the machine learning framework can now be applied to larger data
sets. Reinforcement learning is a group of machine learning algorithms where one does not know the
correct answer in advance, much like unsupervised learning. However, in contrast to unsupervised
learning, the quality of a decision can be measured as a number. By trail and error a program
can learn to �nd the optimal decisions to take based on this measure. The reinforcement learning
framework has shown to �nd solutions to complex problems in con�ned game environments and
control systems such as balancing tasks and bipedal walking. With reinforcement learning, usable
solutions or strategies have been found to many problems which in theory could be solved to
optimality but in practice are intractable. The success with reinforcement learning in games such
as Chess, Backgammon and Go are examples of such strategies [11].

A problem with reinforcement learning in general is the so called curse of dimensionality. As the
problem gets more complex, it naturally takes longer for the program to learn and the compu-
tational time often grows quickly with the complexity of the problem. The issue with scalability
translates to reinforcement learning systems with multiple agents and new issues arise concerning
the learning in terms of stability of a solution.

In this thesis we present three algorithms which attempts to tackle the issue with stability of
solutions in systems with cooperating or competing agents. The algorithms minimax Q, Nash Q and
win or learn fast are presented and implemented on a set of selected problems and the algortihms
performance is discussed. We also discuss the scalability and make an attempt at interpreting the
assumptions in these algorithms in order to draw conclusions about their applicability to real world
problems.
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Background

Automated system are becoming larger and more complex, the problem of organising and adapting
large systems are in need of more versatile solutions. Real time planning and scaling of methods
used today are facing problems with large automated systems. New methods with a decentralised
approach which attempts to break down the problem in smaller pieces are raising in popularity to
distribute computational power and dependency throughout a system. If a system can continue
to operate at a sub optimal level even though parts of it are disabled and still perform close to
optimal when operating at full capacity, it would make a system more robust to disturbances.
The reinforcement learning framework can be broken down to a decentralised model naturally by
letting parts of the system act and learn independently.

Multi agent reinforcement learning has raised in popularity and some methods recently developed
show promising results. One advantage of multi agent reinforcement learning is that the units
can solve task given to them without the need for detailed instructions from a central control
tower. This can relieve the need for high performance communication and active monitoring of
each working unit in the system. Potential usage areas for this type of decentralised control system
could be in surveilance or search and rescue missions. In a search and rescue mission small units
can work independently and cooperate to search large areas and report back to an operator once
the target is found. With todays advancements in image analysis and classi�cation the mission can
be almost fully automated. Another area of application is logistics system where each individual
unit could potentially accept and execute a mission from a mission planner, without details on
which path to take.

Objectives

This thesis aims to survey the �eld of multi agent reinforcement learning and some of the methods
used in multi agent reinforcement learning. The goal is to review some of the strengths and
weaknesses introduced with modeling reinforcement learning problems as multi agent systems. A
number of selected problems will be implemented, compared and discussed. The problems are
formulated with inspiration form litterature and are considered to be benchmark problems in
reinforcement learning.

The concepts used in multi agent reinforcement learning builds on the theory and concepts used in
single agents reinforcement learning. Therefore, the theory on single agent reinforcement learning
will be presented as well as some of the di�culties that arise in the single agent reinforcement
learning framework. One objective of the thesis is to see how these di�culties translate and
behave in the multi agent framework but also to investigate if any new di�culties arise.
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1 Introduction

Robotics and automation is being implemented more widely and the need for more versatile systems
is growing. To program a machine or system to solve a speci�c task, such as navigating along a
prede�ned path, can be a challenge in itself and the program is often only good for navigating
this known path. In contrast, with the reinforcement learning framework one can create programs
that can solve an entire class of problems. The goal is to teach a machine to navigate any of the
paths in search for a given goal. When the goal is found, the machine should also learn to �nd the
shortest path to this goal. By letting the program explore the problem and measure the quality of
an attempt to solve the task, one can have the program optimise the solution.

In applications today complex autonomous units need to work where communication is limited and
take decisions on their own. Examples of applications are in the survey industry, search and rescue
missions or discovery missions. Several units could spread out and explore while communicating
with each other to complete the mission e�ciently, without the need for detailed instructions from
a human controller. This would let one person search through enormous areas with the help of
multiple drones that report back only if they �nd something of interest.

Machine learning is often separated into three categories, depending on how the machine learns.
There is supervised learning and unsupervised learning with reinforcement learning somewhere in
between. In supervised learning, data is fed to the machine and the correct answer is already
known during learning. The machine adapts its model to the correct answer in an attempt to
approximate a function that maps the input data to the correct answers. In unsupervised learning
the correct answers are not known beforehand. When the machine is fed with data the machine
tries to cluster the data based on some algorithm, trying to classify each data point to some group
by distinguishing patterns in the input data.

Reinforcement learning is a category of machine learning in between supervised and unsupervised
learning. The idea originates from how animals learn when receiving feedback as a result of some
decision. Often there is no known best decision for each situation so supervised learning does not
work while at the same time there is some idea of which direction to go. If there is a way to measure
the quality of a decision one can instead compare decisions with each other to �nd the optimal
decision for each given situation. In reinforcement learning the feedback gained is a real number,
which is used to evaluate the decisions. The machine is referred to as an agent whose objective is
to evaluate the feedback gained in order to improve on its strategy to select the optimal decision
in each situation.

The theory in reinforcement learning is built up around concepts from di�erent disciplines. This
thesis aims to present the core concepts in reinforcement learning, �rst for single agent systems
and then for systems with multiple agents. Some methods for solving problems with reinforcement
learning for single agent systems and for multi agent systems will also be presented. A few selected
problems will then be solved to compare the methods to some extent.

In the second chapter we present the de�nitions and measures used for evaluation in the rein-
forcement learning algorithms. The third chapter is an introduction to single agent reinforcement
learning and a brief discussion about the di�culties these methods face. The forth chapter is the
main chapter in this thesis where the main algorithms and methods for multi agent systems are
presented. The methods presented in chapter four are also implemented in chapter �ve. Chapter
six contains a brief presentation of how the results are measured. Lastly the results are presented
and discussed together with some ideas for future work in chapter seven to ten.
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2 Mathematical concepts

In this section we introduce some of the de�nitions used to model a reinforcement learning problem.
We �rst discuss Markov chains and Markov decision processes. Following these de�nitions, some
theory regarding solutions of Markov decision processes and the methods that serve as a foundation
to reinforcement learning are presented. With a solution to a Markov decision process one refers to a
probability distribution over decision, or a sequence of deterministic decisions. An optimal solution
is a probability distribution over decisions which results in the highest possible total reward for a
simulation. The reader is assumed to be familiar with Markov processes, basic probability theory
and standard methods for optimisation. Should one be unfamiliar with expectations, conditional
expectations, stochastic processes or probability distributions a good resource for rehersing these
concepts can be found in [4].

2.1 Markov decision processes

The environment in a reinforcement learning problem is often formulated in terms of a Markov
process. A Markov process is characterized by the memory less property that states that the
future of a stochastic process is independent of its past, given the present. The Markov property is
convenient in implementation since the input to the model will be of the same type and dimension
in each iteration. The input to the model, or the representation of the environment for a given
time, is called a state. To utilize the Markov property it is important that the representation
of the environment contains enough information to distinguish between di�erent states. If the
representation of the environment is not detailed enough, it can be hard to distinguish di�erent
states from each other.

To illustrate this, consider a model of a bouncing ball as illustrated in Figure 1. Knowing the
position of the ball at a given time would not be enough for predictions on where the ball will be
in the next time step. One needs to know the previous position as well in order to estimate the
trajectory of the ball. If one also has a vector giving the current velocity and its direction, one
has the information required for making predictions. In reinforcement learning, a su�cient and
compact description of the environment which possesses the Markov property can be a tricky thing
to formulate.

Even though some examples used in this report have continuous variables for time and state, these
will be modeled as discrete. This is done by making a countable partition on the set of states or
the set of time. In this report we will only consider stochastic processes that are discrete in time
and state space. A stochastic process which possesses the Markov property and is discrete in time
and state is called a Markov chain.

(x0, y0)

(x1, y1)

(xp, yp)

(a) State include positions only, even if one
knows the previous position, the prediction
may not be certain.

(x0, y0, v0)

(x1, y1, v1)

(xp, yp)

(b) State includes position and current
speed with direction. Information is suf-
�cient for unambiguous prediction.

Figure 1: Comparison of di�erent representation of states.

Extending the Markov chain de�nition we can de�ne a Markov decision process as essentially a
Markov chain with some additional properties for decision making, one of which is the reward
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function. Another property included in the Markov decision process is a set of actions for each
state. Given a state, the agent can select an action from the set of actions and then receive a
reward based on the reward function. The reward function maps each state and action pair to a
numeric reward, the reward gained is used by an agent to evaluate the action taken.

De�nition 2.1 (Markov Decision Process) A Markov decision process Xt, t ∈ T , for some

index set T , is a collection {S,A, P, r, γ} where

S: is the state space, containing all possible settings of the environment.

A: is the action space, containing all possible decisions for each state.

P : S ×A× S → [0, 1]: is the transition probability of jumping to some state s′, given some state

s and action a.

γt : T → [0, 1]: is the discount factor, weighting the rewards impact on a decision. The discount

factor may or may not be constant for each t ∈ T .

r : S ×A× S → R: is the reward function, mapping each given combination of state s, action a
and the next state s′ to a real number.

When solving a Markov decision process one wants to �nd a policy that describes the optimal
decision to make in each state. The policy is a function π : S ×A→ [0, 1] that for each state and
action pair gives a probability for selecting that action, in the given state. Thus, by the law of
total probability, it holds that

∑
a∈A π(s, a) = 1 for each state s ∈ S. The rewards are used to

update the policy that the agent is using to make decisions. The policy is an agents probability
distribution over actions, which is not the same as the transition probabilities. The transition
probabilities is the probability of the next state, given the current state and the selected action.
Often the transition probability is deterministic such that for any given state and action pair, the
probability is 1 for some following state and 0 for any other following state. To illustrate the
di�erence between policy and the transition probabilities, consider one takes the action to �ip a
coin. The outcome of the action is the result of the coin �ip, that is which side of the coin that is
facing up. A deterministic transition probability would be to pick the side in advance and lay the
coin �at. When the transition probaiblity is not one (�ipping the coin), the result of the agents
action is not always the same in the given state. In order to evaluate its decision, the agent need
to consider the expected reward from the two possible results, heads or tails. That is, the agent
not only has to estimate the reward of an action but also the transition probability. Deterministic
transition probabilities makes it easier for the agent to �nd an optimal policy in each state since
the agent does not have to estimate the transition probabilities. The result of an action will always
be the same.

We denote the immediate reward at time t + 1 as rt+1, this is an observation of a reward or an
outcome. The function r : S ×A× S → R depends on the policy and the transition probabilities.
Given a state Xt and an action Yt, the reward gained depends on the resulting state Xt+1. To ease
the notation we will drop the Xt+1 from the argument so that r(Xt, Yt) = r(Xt, Yt, Xt+1). When
the immediate reward is denoted by r(Xt+1, Yt+1), it is to clarify the dependence on the policy
and the transition probabilities [6]. When the immediate reward is denoted rt+1 or r(s, a, s

′), it is
considered an observation. Given a state s, an action a and a next state s′, the reward function
r(s, a, s′) is a given number. Otherwise it is random and will be denoted with random variables as
r(X,Y ) where X is the next state and Y is the action taken in the state.

The agent in a Markov decision process has as its objective to maximise its expected future reward
by �nding a policy that produces as large expected future rewards as possible. For some time
window {0, . . . , N} we have that the sum of future rewards is de�ned as

∑N
k=0 γ

kr(Xt+k+1, Yt+k+1).

3
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Figure 2: Values of di�erent positions propagate through the grid. Here the state in the top right
corner has a reward of 16 while the rest have a reward of 0. Given a uniform policy with two
possible action (move up or right). The value function for each state is in�uenced by the policy
and the reward in other states. In this example the discount factor is 1 and the time horizon is
one step only, the value is then the mean value of the possible next positions.

The sum of future rewards can be expressed in di�erent ways depending on the discount factor
γ and the time window N . For �nite N , the future rewards is said to be of �nite horizon. If
one considers the limit as N → ∞, the future rewards is said to be of in�nite horizon. For
in�nite horizon future rewards it is often assumed that γ < 1 to give some guarantee that the sum
converges. With γ ∈ (0, 1), the importance of rewards which are distant in time are scaled down
gradually. The scaled down future rewards are often referred to as the discounted future rewards.

In order to evaluate a given policy one can consider a function which maps each state to some
value, called the value function. The value function is de�ned in terms of the future rewards from
a given state, which then depends on the policy and the transition probabilities. Thus, the value
of one state is in�uenced by neighbouring states. By changing the policy in a state, an agent can
control by how much to let neighbouring states in�uence a given state. This is due to the value
function dependence on the future rewards which in turn depends on future actions and states,
this is illustrated in Figure 2.

De�nition 2.2 (Value Function) Given a Markov decision process with state space S and s ∈ S.
The value function Vπ(s) for an agent with policy π, is de�ned as the expectation

Vπ(s) = Eπ

[
N∑
k=0

γkr(Xt+k, Yt+k)|Xt s

]
.

One can also evaluate the policy by the state-action value function which is the expected reward
given some state s and an action a.

De�nition 2.3 (Action value function) Given a Markov decision process with state space S
and action space A with s ∈ S and a ∈ A. The action value function Qπ(s, a) for an agent with

policy π, at an arbitrary time t is de�ned as the expectation

Qπ(s, a) = Eπ

[
N∑
k=0

γkr(Xt+k, Yt+k)|Xt s, Yt a

]

In some sense, the action value function is the value of the next state, given an action a. Although
more accurately the action value function is the value of some action, given a state. Using the
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action value function, one can construct a probability measure over the actions available in one
state that re�ects the quality of each action. One can also pick the action that has the highest value
for one state of the action value function. When using this latter, deterministic, rule for selecting
action, it is required to let the agent explore the state space by deviating from the deterministic
rule with some probability. Often this is done by selecting an action on random. Otherwise the
agent will never select actions that have a low action value and will never investigate solutions
which include this state action pair.

2.2 Solving Markov Decision Processes

A solution to a Markov decision process is a policy or a sequence of decisions that gives the highest
reward. For a path �nding problem, going from point A to point B in some environment, a solution
would be what is often called the shortest path in optimisation. The shortest path does not have
to be the shortest in terms of distance, as the term suggests, it could for example be the path
which consumes the least amount of fuel or the fastest route. It depends on how the rewards, or
the objective function, is formulated.

Using the state value function one can derive a recursive relation, using backward induction. The
idea is to consider the last decision made in the process and walk backwards through the chain
of decisions. One can express the value of the second last state in terms of the last state and
continue in this fashion one gets an expression of each state in terms of the neighbouring states.
This concept is used in many popular algorithms for solving an MDP and belongs to a family of
algorithms called dynamic programming.

The following recursive relation of the value function is called the Bellman equations, introduced
in [1]. Using in�nite horizon value functions one can consider the sum of future rewards from the
next state st+1 by letting r(Xt+1, Yt+1) be outside of the summation sign. Factoring out γ and
using linearity of the expectation we get the value function of the next state as one term. The other
term in the expression is the expectation of r(Xt+1, Yt+1). Conditioning on the two probability
distributions P and π to expand E[r(Xt+1, Yt+1)] we can factor out π, P and r. The end result is
an expression of the state value function in terms of the values of neighbouring states.

Vπ(s) = Eπ

[ ∞∑
k=0

γkr(Xt+k+1, Yt+k+1)
∣∣∣Xt = s

]

= Eπ

[
r(Xt+1, Yt+1) + γ

∞∑
k=0

γkr(Xt+k+2, Yt+k+2))
∣∣∣Xt = s

]

=
∑
a∈A

π(s, a)
∑
s′∈S

P (s, a, s′)r(s, a, s′) + γ Eπ

[ ∞∑
k=0

γkr(Xt+k+2, Yt+k+2)
∣∣∣Xt+1 = s′

]

=
∑
a∈A

π(s, a)
∑
s′∈S

P (s, a, s′)

(
r(s, a, s′) + γ Eπ

[ ∞∑
k=0

γkr(Xt+k+2, Yt+k+2)|Xt+1 = s′

])
=
∑
a∈A

π(s, a)
∑
s′∈S

P (s, a, s′) (r(s, a, s′) + γVπ(s′))

(1)

The recursion has a unique solution for each policy π. To optimise an MDP, one needs to �nd a
policy π such that the corresponding value function Vπ(s) ≥ Vπ′(s) for each s ∈ S and for each
other policy π′. A value function with this property will henceforth be refered to as an optimal
value function. The corresponding policy will be refered to as an optimal policy.
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Methods for �nding an optimal policy iteratively are called value iteration and policy iteration
methods, introduced by [1]. In similar fashion, one can derive a recursive relation for the action
value function Qπ(s, a).

Qπ(s, a) =
∑
s′∈S

P (s, a, s′)

(
r(s, a, s′) + γ

∑
a′∈A

π(s′, a′)Qπ(s′, a′)

)

The policy for decision making can be updated using the value function which in turn can be esti-
mated iteratively, using the reward function. Often the transition probabilities are deterministic,
meaning that for some following state s1 the transition probability P (s, a, s1) = 1. For any other
following state s2, by the law of total probability, we have P (s, a, s2) = 0. When P is determin-
istic, the implementation of value iteration and policy iteration is simpli�ed since one only has
to consider one of the terms in the sum over states. The following algorithm is guaranteed to
converge in limit[12] and in implementation of the algorithm, some type of criterion for when to
stop is needed. In most literature the stopping criterion is set |V i+1 − V i| < δ for some small but
arbitrary real number δ. The starting point for V is also set arbitrarily, often to the zero vector
or a vector of ones. Since the value function and the action value function both depends on the
rewards in neighbouring states, it would seem reasonable to initiate them to the most common
discounted reward in the system.

Algorithm 1: Value iteration

Data: Initialise V (s) as arbitrary real numbers for each state s
Result: Optimal value function
while Stop criterion not true do

for s ∈ S do
V i+1(s)← max

a∈A

∑
s′∈S

P (s, a, s′)[r(s, a, s′) + γV i(s′)]

i++

Value iteration converges in limit to the optimal value function which can be used to derive an
optimal solution to the problem. In policy iteration, presented in Algorithm 2, ones solves a system
of linear equations and then updates the policy for each state. If the policy is considered unchanged
in one iteration, based on δ, the algorithm terminates.

Algorithm 2: Policy iteration

Data: Initialise π(s) as uniform distribution over actions
Initialise V (s) as arbitrary numbers for each state s
Result: Optimal policy function
while Stopping criterion not true do

solve system of linear equations
V i+1(s) =

∑
a
π(s, a)

∑
s′∈S

γP (s, a, s′)(r(s, a, s′) + γV i(s′)

i++
for s ∈ S do

Select the action with highest value

π(s, a) =

1 if a = argmax
a∈A

∑
s′∈S

γP (s, a, s′)(r(s, a, s′) + γV i(s′))

0 else

The above assignment of the policy might seem cumbersome but in practice it is very simple.
The idea is to set probability one for the action which yields the highest value, based on the
value function that was updated in the same iteration with respect to i. If the state and action
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space is �nite, so is the number of possible deterministic policies. Together with the fact that
policy iteration improves the policy in each iteration, the computation time is bounded since there
are �nite possibilities to consider. However, in policy iteration one needs to solve a system of
linear equations which makes policy iteration slower then value iteration. One could also use
value iteration combined with policy iteration to approximate the solution to the system of linear
equations. It is not clear which of value iteration and policy iteration is the best method. Both
Algorithms 1 and 2 have inspired to the iterative methods used in reinforcement learning [12].

2.3 Q-Tables and the curse of dimensionality

If the set of actions and the set of states are both �nite, the action value function can be expressed
as a table called a Q-table. A Q-table is then a table where each row represents a state in which the
system can be. The row consists of values for each possible action which the agent can take when
in this state. The Q-table is then the action value function in De�nition 2.3 and gives a measure
of how good an action is, in a given state. These values can be estimated using simulation, for an
estimate to be reliable each state-action pair must be observed a su�cient number of times. This
is one of the main drawbacks with reinforcement learning since it quickly becomes intractable to
maintain the Q-table as the size of the problem increases. Often the size of the state space grows
exponentially when properties are added to the model.

One of the main factors which increases the state space is the number features present in the
model. A feature in the model is a dynamic object in the state representation, meaning it has to
be represented in more than one way. If an object does not have more then one representation
in the state space, we will not consider the object a feature. As an example suppose we have a
vehicle in tra�c. Suppose further that a tra�c lights crossing has the states green light or red
light. This is combined with the state of the vehicle, say the speed of the vehicle, in the model
environment representation. Now if one adds another tra�c light to the state space the two tra�c
lights can have 22 settings. Each tra�c light setting also need each vehicle speed to represent
a state of the system. Thus the state space doubles in size for each tra�c light added to the
system. Discrete algorithms and methods that utilize the action value function or the state value
function to optimize the policy are called tabular methods. Tabular methods su�er greatly from
the fact that the state space grows exponentially as more agents or features are introduced. In
this thesis, to be able to use tabular methods which are easier to visualise and comprehend, the
problems selected are small and simple in their nature. Non-tabular methods can be very e�ective
in managing larger problems but these non-tabular methods will mearly be discussed brie�y.

When the state space becomes too large for tabular methods to e�ectively manage the data re-
quired, one can attempt to use non-tabular methods instead. Non-tabular methods often rely on
approximations of the action value function or value function. Popular approaches are to use neural
networks to classify the states into actions to take in a given state. One can either approximate
each action separately for a state with a function f : S×A→ R or approximate the policy directly
using a function g : S → R|A|. To capture longer sequences of actions there is often a recurrent
neural network with for example a long short-term memory network included in the architecture as
well. Combining convolutional layer for classi�cation with a recurrent layer to include dependence
in time is considered the state of the art in reinforcement learning today. One of these methods is
called Asynchronous Actor-Critic Agents which is abbreviated with A3C.

Tabular compared to non-tabular methods only di�er in the way that the state space is interpreted
for or by the agent. In tabular methods the agent has access to the full representation of the
environment. This gives a more accurate description of the environment, compared to when the
action value function is approximated, for the agent to base its decisions on. When the action
value function is approximated, some information is lost in the representation of a the states. The
non-tabular methods can potentially learn faster, since the size of the state space is in some sense
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reduced. Tabular methods, on the other hand, have more accurate data to rely on if one decides
to analyse how or why an agent made a speci�c decision in some state.

3 Single Agent reinforcement learning

In reinforcement learning, the agent is simulated in an environment where it can make decisions
and observe the reward from an action taken in a given state. After each decision, the agents
receives a reward and moves to a new state according to the underlying Markov decision process.
By keeping track of the rewards received for each state-action pair, the idea is that the agent
learns to make decisions which yield the highest possible total reward. The learning, training or
optimisation of the policy can be done in each time step or separately in batches. When training
using batches, data with paired up state, action and reward are saved in a batch to be processed
in a later stage. Training the agent using such a batch is called batch learning or o�ine learning.
Training in each iteration while the agent is acting upon the environment is called online learning.

In this section a few games are introduced which are simple and intuitive. The intention is to
illustrate some of the core di�culties in reinforcement learning but also to touch upon the potentials
of these methods. The n-armed bandit addresses the problem with non-stationary environment.
Since the algorithms estimates the values of the state-action pairs through iteration, for the estimate
to be accurate there must be a �xed value for the agent to estimate. If the value changes in time,
that is if the assumption about the process being stationary is violated to some extent, the estimate
might be far from accurate.

The grid world game addresses the problems associated with scalability, grid world game is also the
main example problem which will be studied further. The grid world settings has the advantage
that it is very versatile and many problems can be formulated as a variation of the grid world.
The grid world has the potential to contain most of the di�culties that a reinforcement learning
problem can have with stationarity, scalability and non-uniqueness of solutions [5].

3.1 The n-armed bandit

Reinforcement learning is built upon stationary Markov chains. For the agent to learn which
decision is best for each state, it must assume that any previously attempted decisions in that
state will have the same result. Otherwise the agent cannot compare the two decisions made.
When the underlying environment is non-stationary, the agent cannot rely on previous estimates.
The violation of stationarity is an important factor in multi agent systems since as the agent train,
an e�ect is that the transition probabilities for the other agents changes. A classic example on how
non-stationary environments can cause issues is the non-stationary n-armed bandit game.

In the stationary n-armed bandit game, the agent is to choose from n arms on a slot machine.
The di�erent arms have di�erent expected returns and the objective of the agent is to �nd and
focus on selecting the best arm. Selecting an arm is an action, so this game has one state and
n actions. When the agent has found the arm with the highest expected return, it can focus on
selecting that arm as often as possible to maximise its total reward. The rewards from each arm
could be modelled to follow some probability distribution with di�erent expected values for each
arm. The learning process of the agent is then to explore the n di�erent arms and estimate the
expected values of each arm. After having observed the return of each arm a su�cient number of
times, the agent can start to focus on the arm with the highest estimated expected return. By the
law of large numbers this will in the end be the optimal strategy, given that the agent eventually
picks one arm that it then selects in each iteration.
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This is not the case if the environment is non-stationary, i.e. if the expected return for each
arm changes with time. In this situation, the agent has to keep exploring to stay updated on
the changes in the expected returns for each arm. The requirement to stay updated and keep
exploring greatly inhibits the convergence rate for many algorithms and may even make the agent
fail completely. Figure 3 illustrates how the expected return could be realised as a stochastic
process for a two-armed bandit game.

Figure 3: Simulation of Stochastic processes representing the means of the di�erent arms in the
non-stationary n-armed bandit problem. One can see that the arm represented by the dashed line
is the best alternative, but only for a limited period of time.

In the case with the n-armed bandit where the agent must keep exploring, the agent can never
pick one arm that it believes is the best and stop testing the other arms, this can end up in a total
reward which is far from the potential maximum. The reason to why this concept is important
in multi agent systems is that the optimal actions for di�erent agents will likely depend on other
agents actions in the system. Other agents in the system will also adapt and learn which could
change the optimal action over time. Some strategies which looked promising early on might have
been e�ectively countered by other agents or it might not �t well with the strategy for the team.
Likewise, actions which initially seemed poor might be optimal later on, but the agent may have
allready adapted the policy so that this action has low probability to be selected. It is therefore
important to keep exploring strategies or re-learn new agents in a system that has adapted to a
speci�c strategy. One method to avoid this problem is to train one agent at a time and exclude
other agents, or keep their strategies �xed while one agent is training.

3.2 The grid-world game

The grid-world game is based on a discrete set of positions which are structured in a grid. In
the standard settings of the game, the agent is placed in the grid and the goal for the agent is to
�nd its way to the terminal state called the goal. This is the simplest variation of the grid-world
which could also be viewed as the classical optimisation problem of �nding the shortest path or
the path with the lowest cost. One can extend the problem by letting some states in the grid have
other properties, such as a wall which is a state that the agent cannot reach or move to. Another
position is a pit which slows the agent down and reduces the reward gained by some amount. The
grid-world setting is highly versatile and customisable to be used as a model for many problems.
For example, any path �nding optimisation problem formulated as a connected graph could be
viewed as a grid-world problem. Possibly, one has to allow for the agent to move in more then 4
directions to �t graphs with more then 4 edges to a node.

9



In the standard formulation of the grid-world setting, the only termination of the simulation is
when the goal is reached. The reward gained though the path is a measure of the quality of a path
and this measure is used to update the probability of selecting a similar path in future simulations.
This way the agent explores the states and adapts its policy with the hope of �nding and adapting
to an optimal solution to the problem of �nding a path through the grid.

A

GA

Figure 4: An illustration of a 3×3 grid-world game. Here A represents the agent, and GA represents
the goal for agent A. Reaching the goal yields a higher reward and terminates the simulation. The
grey position represents a position which cannot be occupied by the agent.

3.3 Gridworld, default settings

Throughout this report, if not stated otherwise, the following settings will be used for each agent.
The actions available to the agent is to stay put, move up, down, left or right. There are �ve
actions in total and each time step yields a reward of -1 apart from when the agent reaches the
goal. Reaching the goal yields a reward of 10. If there are multiple agents in a system, the
terminal state is de�ned to be when all agents is at their respective goal positions. Moving outside
the boundaries of the grid or into a wall will have the agent bounce back to its previous position
but still takes up the time of making a step. In multi agent system the agents can collide with
each other, collisions gives a reward of −2 for both agents and both agents are returned to their
previous positions.

Due to the structure of the grid-world problem, many symmetries arise and there is often more
then one optimal policy for one problem setting. An example of two selected optimal solutions for
a small grid-world problem is illustrated in Figure 5.

A

GA

Figure 5: Example of two optimal paths for an agent in a 3× 3 grid-world setting.
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3.4 Solving Markov decision processes with reinforcement learning

Two algorithms which are commonly used in reinforcement learning are Q-learning and Temporal
di�erence learning [12]. Both methods share the same idea and build on the idea of policy or value
iteration. The agent takes an action a in state s according to some policy, moves to a new state s′

and receives a reward. Once in the next state, the agent updates the value of the previous state-
action pair (s, a) using the reward and the estimated value of the state-action pair maxaQ(s′, a).
Repeating the process, the rewards gained in some state propagate to neighbouring states and
in�uence their values.

The intuitive idea of both temporal di�erence learning and Q-learning is that the agent takes a
step forward, observes and evaluates the current state and then updates the value of the previous
state-action combination. This means that the system is simulated using actions based on the
current estimates to search for solutions. Temporal di�erence learning is related to Monte Carlo
methods, one of the di�erences is that in temporal di�erence learning one uses the estimated model
in the updates of the value function. In Monte Carlo one would simulate a full episode and then
update the value function for each state while in temporal di�erence learning this is done while
an episode is running, using the current estimates. The way of updating the value function is a
form of bootstrapping as the agent uses the current estimates, or the previous knowledge, when
learning. There is also a hyper parameter involved denoted α often referred to as the learning rate.
One can interpret the expression below, α(r + γV i(s′) − V i(s)), as a step in one direction where
α gives the step length.

Algorithm 3: Temporal Di�erence learning

Data: Initialise V(s) as arbitrary real number for each s
Data: π, chosen policy to be evaluated
for Number of training episodes to complete do

Start in initial state s
while Not at terminal state and Maximum number of steps not reached do

Choose action a based on current policy
take action a and move to next state s′

Receive reward r
V i+1(s)← V i(s) + α(r + γV i(s′)− V i(s))
s← s′

i+ +

Algorithm 4: Q-learning

Data: Initialise Q(s,a) as arbitrary real numbers for each state s
for Number of training episodes to complete do

Start in initial state s
for s ∈ S do

a← argmaxaQ(s, a),
π(s, a)← 1

while Not at terminal state and Maximum number of steps not reached do
Choose action a using policy π(s)
or Choose action a at random if exploring
Take action a and move to next state s′

Receive reward r
Update state-action value according to:
Qi+1(s, a)← Qi(s, a) + α(r + γmax

a′
Qi(s′, a′)−Qi(s, a))

s← s′

i+ +
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3.5 Exploration vs. exploitation

When training of an agent starts it is important that the agent explores the solution set su�ciently.
Exploring means that the agent moves to uncharted land or that the agent sometimes disregards
its policy and selects an action at random. The exploration is not only important initially, but to
get accurate estimates of the values of each state it is important to keep exploring. In problems
which are not stationary the exploration is especially important, that is if any of the state values
might change over time. This can happend if the transition probabilities change or if the reward
function change with time.

There are multiple ways to implement exploration, the most common and straight forward way is
to let the agent select action uniformly with some probability. Often this probability is initially
high and decays as the agent trains. Other methods use probability distributions for the policy of
an agent that maintain non-zero probability for each action. This way it is always possible for the
agent to select each action and evetually it will explore each state-action combination.

4 Multi agent reinforcement learning

Systems with multiple agents are based on the same idea as single agent reinforcement learning.
The di�erence being that one considers the joint action among multiple agents, since the agents all
e�ect the environment and each other. Instead of looking at an action a for one agent one considers
the joint actions a1, . . . , an for n agents. To keep the notation simple and avoid multidimensional
matrices, we will limit ourselves to systems with two agents. The ideas presented in this section
extend to systems with any number of agents, apart from the minimax Q algorithm. The fact that
each agent acts independently and in�uences the quality of other agents decisions is precisely what
poses problems in multi agent systems. The environment is no longer stationary and a state-action
pair which gave a high reward previously might be a terrible choice given another agent's decision.

There are several reason as to why one would want to split up one agent into several decision making
entities. Restrictions in communication and data management between parts of an agent could be
one motivation as to why this separation is required. It could also be that the problem changes
with time and it is not feasible to redo the full calculations required to �nd a new feasible solution.
If the agents could act independently and solve small tasks on their own without instruction from
a central control structure, one can relax the need of high performance communication.

4.1 Stochastic games

For two agent systems one can represent the reward structure as a matrix where the actions for two
agents, (a1, a2) are indexes in the matrix. Here a1 is the action for agent one and a2 is the action
for agent two. These matrices are in game theory called matrix games [8]. This extends naturally
to multidimensional matrices but for simplicity of presentation we shall only consider two player
games. Matrix games give an overview of the reward for one step in a Markov decision process.
The matrices are organised so that for each combination of actions, the corresponding element in
the matrix gives the rewards for each agent. Say a matrix game is given as the matrix

[
(1,−2) (−1, 2)
(−2, 1) (2,−1)

]
.
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Given the actions for each agent one can �nd the reward for this combination of actions in the
matrix representing the matrix game. Suppose the agents both takes action one, then the element
(1, 1) indicates that agents one gains a reward of one while agent two gains a reward of minus two.
Some example matrices for matrix games are presented in Table 1. Matrix games can be classi�ed
into the categories zero-sum games, general sum games and cooperative games. Examples of each
game is presented in Table 1. The game in Table 1a is a game of matching pennies, it is a zero-sum
game meaning that the reward matrices for each agent sum up to the zero matrix. The game in
table 1c is a general sum game, there is no �xed structure for how the rewards relate to each other.
The last game, Table 1b, is a cooperative game where the rewards for each agent share the same
sign in each action pair.

Table 1: Example reward structures for di�erent classes of games. Table 1a shows a zero-sum
game where the rewards for each agent sums up to zero in each pair of actions. Table 1b shows
a cooperative game where the signs for the rewards of each agent share the same sign. Table 1c
shows a general sum game where the rewards does not relate to each other in a structured way.

(a)

a2 = 1 a2 = 2
a1 = 1 (1, -1) (-1, 1)
a1 = 2 (-1,1) (1,-1)

(b)

a2 = 1 a2 = 2
a1 = 1 (0, 0) (1, 1)
a1 = 2 (-1,-1) (2, 2)

(c)

a2 = 1 a2 = 2
a1 = 1 (3, -5) (2, 4)
a1 = 2 (-5, 3) (-2, 1)

When the action taken by the agent is stochastic, a matrix game is called a stochastic game.
Much like a matrix game, the di�erence being that the actions are chosen with respect to some
probability distribution. Littman [7] proposed a framework for multi agent reinforcement learning,
based on stochastic games. By formulating a matrix game for each state one can use the matrix
of rewards to �nd an optimal policy in each state. The matrix of rewards can be multiplied by
the policy distributions by matrix-vector multiplication which gives the expected reward under a
given policy. By �nding the policy which maximizes the expected reward in a given state using
optimisation, the idea is that this policy will be part of the policy over all states. By repeating
the optimisation for each state, the optimal one-step policies will form the full, optimal policy for
solving the problem.

4.2 The grid-world with multiple agents

Extending the grid-world problem into a multi agent system we consider a multi agent path �nding
problem. This is essentially the same as the grid-world problem but with more agents. This
introduces another dimension to the state space and increases the complexity of the problem. The
most signi�cant property in the grid-world problem which a�ects the convergence speed is with
no doubt when more features are added to the environment. A feature is a new type of object in
the grid with properties distinct form the other types of objects in such a way that it should be
uniquely represented in the state. For each agent added to the system, the agent will increase the
number of possible con�gurations by a factor equal to the number of valid positions. Suppose we
have a 2x2 grid where the agents can be in the same state, for a system with one agent we have 4
possible states. Adding one agent, the added agent can occupy any of the 3 remaining positions
giving 12 possible states, disregarding any symmetries. Letting n be the number of positions and
k the number of agents, then the general expression for the number of states is k!

(
n
k

)
= n!

(n−k)! .

This is when we assume that each agent is unique so that two states where 2 agents have swapped
places are distinct from each other. With non-unique agents the size of the state space decreases
to
(
n
k

)
.
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4.2.1 Multi agent path �nding

Many variations of the grid-world game exist, in this report we focus on multi agent path �nding
and a game of tag. In the path �nding formulation there are multiple agents in a grid and each
agent has a goal position. The objective for the agents is for all agents to reach their goal positions
in as few time steps as possible and preferably without colliding with each other. In the game of
tag we consider two agents where one is the invader and the other is the defender. The defender
has as its objective to come su�ciently close to the invader, if the defender gets su�ciently close
the game will terminate and the defender gains a positive reward. The invader has as its objective
to reach a given goal position. The game of tag is thus a variation of a path �nding problem with
the goal being mobile for one of the agents. The game of tag also di�ers in that the terminal state
is when one of the agents reaches their goal and not all agents.

4.2.2 Multi agent game of tag

The other variation of the grid-world game that is implemented in this thesis is the game of tag.
In the game of tag, one agent is chasing another agent. The evading agent have an objective to
reach a goal or occupy some area in the grid. The other agent is to protect that area and catch the
evading agent. The simplest variation of the game is equivalent to a game of matching pennies.
In the game of matching pennies there are two agents and both agents are to choose between
two actions. Agent one wins the game if the same action is selected and loses if the agents select
di�erent actions. The game of matching pennies is extensively studied in game theory and the
Nash equilibrium strategy is for both agent to select action at random, that is by �ipping a coin.
In the grid-world formulation, consider a 2 × 2 grid where 2 agents start in opposite corners as
illustrated in Figure 6, the evading agent A is to reach the position where the defending agent B
starts. Each agent decides on one of two actions, going to the upper right position or going to the
lower left position. In case they go to the same position, the defender wins. If they choose to go to
di�erent positions, the evader can enter its goal position safely and wins. That is, the two agents
play a game with two actions. One agent bene�ts when they select the same actions, the other
agent bene�ts when they select di�erent actions. The full game only takes one step per trail. This
is equivalent to the game of matching pennies which is a extensively studied game in game theory
[8].

A

B

Figure 6: Game of matching pennies as a grid-world game. Agent B wants to go to the same cell
as agent A for a positive reward. Agent A gains a negative reward for moving into the same cell
as agent B.
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4.3 Learning algorithms for multi agent systems

We shall now present a selection of algorithms tested in this thesis, algorithms was selected with
inspiration form the work in [3]. Some algorithms utilize the information of all agent's actions to
construct a matrix game based on the state-action function. In these algorithm the actions from
each agent is considered jointly as one action. That is, if one agent selects action a0 and the other
agent selects action a1, the joint action will be (a0, a1) which is one of the possible actions in the
action value function Q(s, a). We shall denote the action value function with the individual actions
as Q(s, a0, a1) instead of mapping each joint action to a new, discrete, set of actions. One can use
the true state-action function or an estimate of the state-action function if it is initially unknown.
The constructed matrix game gives a reward structure for each combination of actions chosen by
the agents. By �nding the optimal policies for a given state, the idea is that the full policy for
each state will converge towards the optimal policy.

4.3.1 Minimax Q

The minimax Q algorithm is designed for two player zero-sum stochastic games, published in [7].
The idea is to minimize the opponents expected reward by �nding an optimal policy to a linear
optimisation problem. The algorithm relies on the expression maxπs

minao
∑
aQ(s, a, ao)πs(a)

where a is the agents action and ao is the opponents action. The idea is to maximize the policy
with respect to the least favourable action that the other agent could choose. Suppose agent one is
playing minimax Q, then the inner sum is a conditional expectation over the discounted rewards for
agent one given that agent two selects action ao. Minimax Q does not take into account the other
agents policy, instead one assumes the worst. The algorithm is essentially the same as standard
Q-learning apart from the term maximisation over the state-action value function being replaced
by a minimax over the conditional expectation.

Algorithm 5: Minimax Q Learning

Data: Initialise V (s) as arbitrary real number for each state s
Initialise the policy π(s, a) as a uniform distribution over actions
Initialise the state-action value function Q(s, as, ao) as an arbitrary
real number for each state and joint action pair.
Start in initial state s, let i = 0
while Not at terminal state and Maximum number of steps not reached do

Choose action a based on policy π
take action a and move to next state s′

Update Q-values for each agent:
Qi+1(s, a)← Qi(s, a) + α(r + γV i(s′)−Qi(s, a))
V (s′)← maxπ(s) minao

∑
aQ(s, a, ao)π(s, a)

s← s′

i+ +

The matrix containing the Q-values is built up by the estimated rewards, r(X,Y ) where X and
Y are stochastic variables over the actions of agents one and two respectively. The objective
function in the optimisation problem for a given state s is the minimum of

∑
aQ(s, a, ao)π(s, a) =

E[r(X,Y )|Y = ao]. So the objective is to maximise the conditional expectation, given that agent
two has chosen the action which gives the smallest expectation. In other words, agent one tries to
minimise the risk by maximising the expected reward of the worst outcome.
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4.3.2 Nash Q

In Nash Q the goal is to compute an optimal strategy for each state in a hope to converge to the
overall optimal strategy. The optimal strategy is computed with respect to a conditional expecta-
tion, using the estimated rewards. Hu and Wellman [5] concluded that under some assumptions,
Nash Q is guaranteed to converge in general sum games. During learning, the game must maintain
precisely one optimal strategy. Furthermore, when solving the quadratic programming problem,
there must exist either a saddle point or a global optimum. These two conditions are often too
strict since the estimated Q-values that they rely on change while training, and it is di�cult to
keep track of what happens to these Q-values.

The NashQ[Q(s′)] denotes a scalar derived from optimising the policies with respect to the future
rewards for an agent. In a game with two agents, the future rewards for agent one are represented
as a matrix where each element (i, j) in the matrix gives the estimated expected future reward
given that agent one selects action i and agent two selects action j. The reward for agent two
would be element (j, i) in the reward matrix of agent two. Given some state, let R denote the
reward matrix for agent one, π denote the policy for agent one and τ the policy for agent two. Let
there be n actions, so that R is an n×n matrix, π and τ are n dimensional vectors. In a one-step
game, the expression for NashQ[Q(s′)] simpli�es to the expected reward for an agent, which is only
natural since that is exactly what the agent wishes to maximise. In this expression the actions for
agent one and two are denoted by the stochastic variables X and Y respectively.

πTRτ = [π1, π2, . . . , πn]

r(1, 1) . . . r(1, n)
...

. . .
...

r(n, 1) . . . r(n, n)

 τ

= [

n∑
i=1

πir(i, 1), . . . ,

n∑
i=1

πir(i, n)]τ

= [E[r(X,Y )|Y = 1], . . . ,E[r(X,Y )|Y = n] τ

= τ1 E[r(X,Y )|Y = 1] + · · ·+ τn E[r(X,Y )|Y = n]

=

n∑
j=1

E[r(X,Y )|Y = j]τj

= E[r(X)]

The simpli�cation uses the de�nition of vector-matrix multiplication and the de�nition of the
conditional expectation. For the last step one needs the law of total expectation to see that this
is indeed the expected reward for agent one. The algorithm is presented in detail in Algorithm 6
where NashQ[Q(s′)] is the expectation in the quadratic form presented above. In an environment
with multiple steps, the matrix R will not contain the rewards directly but instead contain the
estimated action value function values.
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Algorithm 6: Nash Q learning

Data: Initialise Q0
k(s, a) as arbitrary real numbers for each state-action pair (s, a) and for

each agent k
Initialise πk(s) as uniform distribution for each state s and for each agent k
Start in initial state s, let i = 0
while Not at terminal state and Maximum number of steps not reached do

Each agent k choose an action a based on πk(s)
Each agent takes action a and moves to next state s′

Receive reward r
Solve the optimisation problem given by NashQ[Qik(s′)]
πk(s)← argmaxπi(s)NashQ[Qik(s′)]

Qi+1
k (s, a)← Qik(s, a) + α(r + γNashQ[Qik(s′)]−Qik(s, a))

s← s′

i+ +

4.3.3 Win or learn Fast

Another class of learning methods tries to avoid solving the linear or quadratic programs as in
minimax Q and Nash Q. In win or learn fast one tries to adapt the learning rate based on conditions
derived from experience. Similar algorithms exists in numerous variations [2] but in theory they
are not much di�erent from each other.

The Win or Learn Fast algorithm is Q-learning with an adaptation so that when some condition
is met, the agent changes its rule for updating the policy or the action values. Speci�cally, the
learning rate is changed based on whether the agent thinks it is losing or winning. When the agent
is winning, it will utilize regular Q-Learning. When the agent thinks it is losing, the agent will try
to learn faster by increasing the learning rate.

Win or Learn fast tries to classify its current strategy as a losing strategy or a winning strategy.
The agent then adapts its learning rate to slow learning if the agent is winning or fast learning if
the agent is losing. This could be interpreted as an adaptive step length that takes smaller if the
current solution is close to an optimal solution and longer if it is far from the optimal solution. As
a means to decide upon whether the current strategy is winning or losing the average of previous
strategies is used.

Algorithm 7: Win or learn fast Q learning

Data: Initialise Q0
k(s, a) as arbitrary real numbers for each state s and for each agent k

Start in initial state s, let i = 0
while Not at terminal state and Maximum number of steps not reached do

Choose action a based on Qi(s, a)
take action a and move to next state s′

Receive reward r
Adjust learning rate for each agent k:
if
∑
a∈A

πik(s, a)Qik(s, a) <
∑
a∈A

π̄k(s, a)Qik(s, a) then

α← αl
else

α← αw

Qi+1
k (s, a)← Qik(s, a) + α(r + γmax

a′
Qik(s′, a′)−Qik(s, a))

s← s′

i+ +
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5 Problems implemented

Using MATLAB a few selected problems were implemented and simulated to test the previously
presented algorithms. The problems are inspired from H. Schwartz [10] which has also served as
an initial inspiration to this thesis. The minimax Q algorithm Algorithm 5 is only applicable to
zero-sum games and thus it was only tested for problems which statisfy this condition. Nash Q
and win or learn fast algorithms Algorithms 6 and 7 are both applicable to general sum games,
these two algorithms where tested zero-sum and general sum games.

5.1 Small game of tag

In the game of tag two agents play against each other. The small version is formulated as a zero sum
game so that the minimax Q algorithm could be applied. The small game of tag is implemented
as a 2 × 2 grid-world game and is illustrated in Figure 6. The game is equivalent to a game of
matching pennies and has two agents and two actions with only one state. One could interpret
the four possible terminal states as their own states in which case the game would have 5 states.
It is however only one state that is of interest since the other four states have no possible actions
associated with them. The four terminal states does however have a value and a reward associated
with them. The defending agent wants to select the same action as the intruding agent. The
intruding agent wants to select the action that the defending agent does not select. The optimal
strategy for this game is for both agent to select their action with equal probabilities, 0.5 that is.

5.2 Path �nding problems

A cooperative path �nding problem as illustrated in Figure 5 was implemented with Nash Q and
WolF algorithms. The game was implemented with the same settings as in [5]. In ?? a path
�nding problem with two agents and two goals are implemented as shown in Figure 7 where a few
selected optimal strategies are also shown. The rewards are set to the default values, that is −1
for each time step taken and 10 for reaching the terminal state. To encourage agents to stay at
their goal and wait for the other agent to �nish, there is also a reward of +1 when standing at the
goal position.

A B

GAGB

A B

GAGB

A B

GAGB

A B

GAGB

Figure 7: Selected optimal policies for the Gridworld problem used in Nash Q implementation.

18



5.3 Large game of tag

The 6 × 6 version of the game of tag was implemented using minimax Q, Nash Q and win or
learn fast. The game start setup is illustrated in Figure 6. For minimax Q to be applicable, the
reward structure was set to a zero-sum game. In the larger 6×6 version illustrated in Figure 8 one
can formulate the rewards in a number of ways to motivate di�erent strategies. The goal for the
defending agent could be either to catch the intruding agent as fast as possible or the main goal
could be to defend the terminating state which is the goal for intruding agent. Depending on how
the rewards are formulated, the agents will adapt to di�erent strategies, either it can wait near the
goal for the intruding agent or chase the intruding agent across the grid.

If the defending or the intruding agent gets positive reward for letting the game continue and not
pursuing the terminal state, the agent will stall the game by waiting for the other agent to pursue
its goal. If both agents gain negative rewards for stalling the game, both agents will pursue their
goals. If both agents gets a positive reward for stalling the game, both agents will learn to stall
the game. The game was implemented with a zero-sum formulation for comparison of the three
algorithms. The zero-sum formulation could be implemented either as positive versus negative
reward for all states or as zero reward for all states except the terminal states. The large game
of tag was also implemented with a general sum formulation where both agents receive negative
feedback for stalling the game.

A

B

Figure 8: Intruder defender game, the goal for agent B is to reach the gray area while agent A
tries to defend the same area.

6 Performance measure

In this chapter we will present and discuss a few di�erent methods that have been used for evalu-
ation of policies. The problem solving is focused around the use of Q-Tables and di�erent ways of
updating the tables based on the rewards. Some methods learn faster than others but also explore
less which often makes them end up in a solution that is suboptimal. In the small problems that
are considered in this report one can see an optimal solution to the problem just by looking at it.
Such optimal solutions will be used as a reference to measure a methods performance.

6.1 Reference solution and comparison of methods

In reinforcement learning it is often the case that the optimal solution is not known or it is
too cumbersome to compute. This makes it di�cult to measure performance in some situations.
Measures of performance in reinforcement learning is in general di�cult to formalise and generalise.
A popular measure is to compare with average human performance by looking at statistical data
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over some population. For example when using reinforcement learning to play games, the agent
can compete against human players and compare high score. Performance is then measured as a
percentage compared to the top human players high scores. The same idea has been applied in
image analysis, for example when x-ray images are to be diagnosed and classi�ed by doctors. The
program trains and computes its accuracy on how often it correctly classi�es an x-ray image. The
programs accuracy is then compared to professional doctors average accuracy.

In the simplest problems like the ones considered in this thesis, apart from the large version of
the game of tag, the minimum number of time steps needed can be easily calculated by simply
looking at the problem. Indexing the start position with (x, y) and the goal with (x′, y′), the
minimum number of steps is given by the Manhattan distance |x−x′|+ |y−y′|. This assumes that
there are no obstacles or other agents con�icting with the shortest possible path. In the problems
implemented in this thesis, the Manhattan distance between points will in general be the minimum
number of time steps needed. A feasible solution with the same number of steps as the Manhattan
distance will exist in all problems considered. For a 3×3 Grid the number of steps needed to reach
any position from any other position is at most 4. For a 10 × 10 grid the number of steps is 18
and so on. The optimal solutions can be used to measure performance by looking at how often
the agent learns an optimal solution. We will consider the success rate which is a measure of how
often an algorithm converges to an optimal solution. While the agents are training, the number
of time steps needed to �nd a solution is registered and if the solution is optimal, the training
has succeeded. If the agent does not reach an optimal solution before the training is �nished, the
training is considered a failure. The ratio successes/(successes + failures) is then the success rate.

In the large version of the game of tag it is harder to �nd the optimal solution and it depends on
the reward structure for the two agents. Also the game is imbalanced since the defending agent
has a winning strategy and has an upper hand. By standing near the goal the defending agent
can prevent the evading agent from ever reaching reaching the terminal state. One can, however,
formulate the rewards in a number of ways. One can give each agent negative reward for keeping
the game alive, making it bene�cial for both agents to end the simulation as early as possible.
To formulate the game as a zero-sum game, one has to either give one agent positive reward and
the other a negative reward or give both agents zero reward in each time step. What the optimal
strategy turns out to be is based on the formulation of the rewards.

If both agents get zero reward for each time step, except for the terminal states, there is a winning
strategy for the defending agent. If the defending agent stand close to the goal of the intruding
agent, it would be impossible for the intruding agent to reach its goal. A well trained defending
agent should then win in every match. If the defending agent get a positive reward in each time
step the same strategy can be used without loss and a well trained defending agent should win in
each match in this formulation as well. With the formulation where the defending agent gets a
negative reward in each time step it will be motivated to end the match early. This formulation is
in the intruding agent favour and a well trained intruding agent will win more often.

An illustration of how a policy can look is shown in Figure 9. To simplify the presentation of a
policy, agent B is assumed to follow an optimal path and the policy for agent A is shown in each
cell. The �gures in black represents the states possible for agent A to occupy when both agent
follow the policy shown. The grey states, even though it is possible for them to occur, they will
not occur if the agents follow the speci�ed policy.

7 Results

In this section we present results from our implementations and some comparative results for the
di�erent algorithms and problems discussed throughout the thesis. A table with a summary of the
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Figure 9: Optimal policy for agent A when agent B is following a selected optimal path. In each
cell are the probabilities for moving in each direction indicated by relative position from the centre
of the cell (up, down, left or right). Policies coloured in grey will not be included in the optimal
policy since the states they represent are not included in the optimal solution. As can be seen,
there exists two equally good options in the �rst, bottom left, state for agent A.

quantitative results are shown in Table 2.

Table 2: Best observed success rate for the di�erent algorithms in di�erent problems. 2× 2 refers
to the 2×2 game of tag, 3×3 a refers to the 3x3 path �nding problem with 2 actions. 3×3b refers
to the 3× 3 path �nding problem with 4 actions. 6× 6a refers to the 6× 6 game of tag where the
defending agent wants to stall the game. 6× 6b refers to the 6× 6 game of tag where the invading
agent wants to stall the game. In the problems 6 × 6a and b the success rate is measured as the
ratio of wins for the defending agent.

Problem 2× 2 3× 3a 3× 3b 6× 6a 6× 6b
Minimax Q 100% - - 93% 100%

Nash Q 100% 100% 75% 100% 100%
WolF 100% 70% 50% 97.9% 67.4%

7.1 Small game of tag

Minimax Q showed to be robust and converges for almost any learning parameters or starting
conditions chosen for the small game of tag. Convergence for selected parameter settings are
shown in Figure 10. Minimax Q is limited however since the algorithm is only applicable to
zero-sum games.
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Figure 10: Results from the small game of tag with minimax Q learning. Both agents quickly
converge to the optimal policy where they select any action with probability 0.5.

With Nash Q one solves the optimisation problem for the one step matrix game and the algorithm
�nds the optimal strategy in one iteration with 100% success rate. The problem only has one state
and the state satis�es the assumptions for the Nash Q algorithm. Thus, one can formulate the
reward matrix for this state and solve optimisation problem which will give the optimal policies
for both agents.

Win of learn fast converges towards an optimal policy but does not solve for one exactly like the
Nash Q and minimax Q. However, with small step length it quickly learns a close to optimal policy
and stays there, as seen in Figure 11.

Figure 11: Results from the small game of tag with win or learn fast Q learning. Both agents
quickly converge to the optimal policy where they select any action with probability 0.5.

7.2 Path �nding game

In the implementation of the Nash Q algorithm to the grid-world problem shown in Figure 7, there
was issues with convergence, conclusive with the results of Hu and Wellman [5]. Performance was
measured in success rate which is de�ned as the proportion of trails which converged to an optimal
solution. In the original formulation with �ve possible actions, (stay, up, right, left, down), in
each state the algorithm rarely found an optimal solution. After making restrictions to the action
space as done in [5], the convergence increased �rst to 75% and then to 100%. When removing the
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option to stay in the action space the success rate increased to 75%. After removing all actions not
present in the optional solutions there was a success rate of 100% even though the problem still
violates the required conditions for the algorithm. Moving down and staying still was excluded
completely as well as moving left or right depending on the agent's optimal path.

Even though the assumptions are still violated with the limited action space, the algorithm is still
consistently converging to an optimal solution. The violations seen in this problem is the existence
of multiple optimal policies. In the Nash Q algorithm one does not have control over which policy
the agents choose if there are multiple options. In the 3× 3 path �nding problem the agents have
to coordinate so that one of the agents moves up and the other moves to the middle, there is no
such coordination in the Nash Q algorithm.

When training the agent's using the win or learn fast algorithm it is notable how large of an e�ect
the training parameters have on the algorithms behaviour. Good settings of training parameters
seem to be problem speci�c and �nding good choices could lead to extensive work. The training
itself is fast compared to Nash Q and minimax Q. However, investigating the learning rate, the
discount factor and the criteria for winning or losing could take time still and there are no guar-
antees for convergence to an optimal solution. The process of testing di�erent parameter settings
takes up a signi�cant time even for these small problems and potentially there are no good choices
of parameters.

7.3 Large game of tag

In the large game of tag in a 6×6 grid-world it is harder to de�ne an optimal policy for the problem.
However, with some of the rewards structures used there is a winning strategy for the defending
agent. The defending agent can wait near the goal for the intruding agent to get nearby, it will be
almost impossible for the intruding agent to reach its goal if the defending agent is guarding. For
the defending agent to bene�t from this strategy it must not gain negative reward for stalling the
game. If the defending agent gets negative reward for stalling, the accumulated negative reward
will negate the positive reward gained for catching the intruding agent. The success rate in Table 2
is given as the proportion of wins for the defending agent.

8 Discussion

The algorithms presented are some of the �rst and simplest ones which are adapted for multi agent
systems. Nash Q and minimax Q are also the only algorithms found which have any guaranties of
�nding an optimal solution as long as the required assumptions are met. The assumptions required
in Nash Q are very strict and also nearly impossible to validate since the assumptions depend on
the estimated state-action values. These values change as the agent is learning, making it hard to
maintain the assumptions. In minimax Q the assumption about the game being a zero-sum game
limits the algorithm to a smaller set of problems. In this section we discuss the results and draw
conclusions about the algorithms that have been presented and tested. Some ideas for future work
are also discussed.

8.1 Minimax Q

Minimax Q was only tested for the two versions of game of tag with a zero-sum reward structure.
The algorithm shows very promising results and is very robust in both problems. The learning

23



parameters or starting conditions, that is how the estimates are initialised, seems to have very low
impact on the algorithms performance. The algorithm is only valid for systems with two agents
or systems where the agents can be categorized into two teams. Some variations of minimax Q
which are team based exists and essentially they treat a team as one single agent. In minimax
Q one has to solve a linear system of equations in each iteration. The system of equations grows
quadratically with respect to the number of actions available. When more agents are introduced
an action is interpreted as the joint action of all agents in that team. This makes the problem scale
poorly when more actions or agents are added to the system due to the linear program taking up
too much computational power. Minimax Q is certainly a valid candidate for small problems or
in problems where the computational time is not an important factor. However, problems of this
size can often be solved with a deterministic optimisation algorithm. Thus, there seems to be no
good use for the minimax Q algorithm.

8.2 Nash Q

From tests of the Nash Q algorithm it is clear that when the assumptions are violated, there are
issues with convergence, which is of course expected. Nash Q has a guarantee of convergence for
a very strict set of problems. For example in problems where multiple optimal solutions exist
there is no guarantee for convergence. The Nash Q algorithm does however perform better than
promised by the required assumptions and solves the problem reliably even though the assumptions
are violated to some extent, as they are in the path �nding problem. In the problems considered
in this thesis there exists symmetric optimal solutions that should causes issues for the Nash Q
algorithm since one of the required assumptions is that there should be only one optimal policy in
each stage game. However, even if the problem have precisely one optimal policy, the algorithms
uses the estimated Q-values for �nding the optimal policies for each state. One cannot guarantee
that the intermediate, estimated, Q-values do not violate the required assumptions. Furthermore,
considering the restrictive assumptions it seems unlikely that the intermediate Q-values does not
violate the assumptions.

The Nash Q algorithm needs information about the other agents policies, this can be gained from
observing the other agent's reward and estimating their policies or by sharing its policy with others.

If one seeks to use a multi agent framework for reinforcement learning to solve route optimisation
and scheduling problems where on-line updates of the paths might be necessary due to changes in
the environment these methods are highly intractable for large systems. The data management
required for storing the massive amounts of data required for any problem of reasonable size is also
intractable.

8.3 Equilibrium strategies

In multi agent reinforcement learning, much inspired from game theory, one tries to �nd a so
called equilibrium strategy. In this thesis we have called them optimal strategies since they are
the optimal solutions to the optimisation problems which de�nes them. With optimal we mean
that it is the policy which maximises the value function for each agent. There is however reason to
question the assumptions made in this approach. It is assumed that the opponents are rational in
the sense that the opponents too are trying to maximize their value functions, if they do not then
the optimal solution found might not be optimal at all. It is also assumed that the reward function
is sensible and well de�ned, the reward are in many problems engineered in a way to promote
speci�c behaviour. In some situations the rewards can translate directly to something real, such
as in a scheduling or a logistics problem where the rewards translate directly into moved goods or
time taken to complete a set of tasks.

24



8.4 Win or learn fast

Win or learn fast is an implementation of regular Q-learning where one ignores that the assumption
of stationarity is violated. For some problems this naturally has larger impact than for others.
A modi�cation to Q-learning is made to make the agent try to re-train in some situations to
avoid getting stuck with a suboptimal strategy. The advantage with Win or learn fast is that the
training is very fast. The algorithm only needs to calculate one scalar product in addition to the
calculations done in Q-learning. Due to its speed, one can test a large set of candidate parameters
to �nd suitable parameter settings which work for the speci�ed problem. However, since there
are no guarantees for convergence, the process of searching through parameters might not yield a
solution to the problem at all.

9 Conclusions

The ideas presented in this thesis rely on optimisation problems to solve the intermediate optimal
policy for each state. We have shown that these methods scale badly with the increasing size of
the problem. Moreover the minimax Q algorithm is very limited in which problems it is applicable
to and the same holds for Nash Q. For Nash Q it is also the case that even if the algorithm is
applicable to the problem in its �nal form, there is no way to guarantee that the algorithm is
applicable to the intermediate problems de�ned by the estimated state-action value function. This
makes the algorithm unreliable.

It is also debatable whether it is justi�able to solve for the intermediate optimal policies. It may
not be reasonable to assume that the opponents or any other dynamic objects in the problem are
rational as is assumed when choosing the optimal intermediate strategies. However, when solving
a problem through simulation this could be engineered to hold.

10 Further research

Finding algorithms which can guarantee convergence to optimal strategies and scales well with an
increase of the problem would be fantastic. This is often a trade-o� one has to do in optimisation
problems. Either one uses a heuristic solution to �nd a suboptimal solution quickly, or one uses
a computationally complex algorithm which guarantees convergence to an optimal solution. One
advantage with optimisation problems is that one can often compare di�erent solutions to see
which is best. This makes people lean towards using fast heuristics which could �nd a solution
quickly and one can verify its quality.

10.1 Partial observable states and decentralization

In reinforcement learning, a problem that occurs frequently is the issue of large state spaces. When
the state space becomes infeasible to manage one can either try to �nd a more compact representa-
tion or try to exclude information that can be considered as irrelevant. Sometimes, information is
excluded as a result of the model, some information is simply unknown. An important distinction
that makes an observation partial is if two or more states in the model are represented in the
same way. Reinforcement learning problems with this property are called partially observable and
the framework used to represent the environment is called partially observable Markov decision
processes. As an example of a partially observable state representation, suppose we model the
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state of a vehicle as the nearby surroundings only and suppose the vehicle is in a very long tunnel,
Illustrated in Figure 12. In the environment each state is unique but for the vehicle they are
all the same. In this case, the vehicle interprets each position in the tunnel as equal but in the
environment it is not. In other words, when a mapping from the environment to the set of states
is not one-to-one, the Markov decision process is said to have partial observations.

S1 S2

Figure 12: Visualisation of partially observable states in a Markov decision process. S1 and S2 are
equal but do not represent the same state in the environment.

With partial observability, one can for example exclude all other agents in a system or only con-
sider nearby agents. One could exclude any information which is not of importance for the agent's
decision and hopefully the agent will still be able to learn an optimal solution. By clever represen-
tation of the state space the agents can become more dynamic and applicable to a broader class
of problems. In the implementations considered in this thesis, the agents train for one speci�c
problem only and can not handle di�erent scenarios e�ciently. Instead the agent would have to
re-train and perhaps adapt learning parameter to successfully solve modi�ed problems.

10.2 Partial observations in the grid-world

In the grid-world an idea for partial observations is to let the agents have a vision distance. In
Figure 13 one can see a visualization of the partial observation space. An observation for the agent
consists of the nearby environment and a unit vector pointing out the direction in which the agent
can �nd the goal. With this formulation of the state space, the agent is independent of the size
and shape of the grid-world. The agent can train itself in �nding the goal and when trained, the
agent has the potential to �nd solutions in multiple settings. It does not matter where the goal is,
as long as it can be reached. If the agent has learned to use the unit vector to �nd the goal,it can
navigate to the goal no matter the starting position of goal position. This formulation suggested is
also well suited for applying in an image analysis framework, using convolutional neural networks
to classify the di�erent states. The idea is implemented in [9] with some promising results, in
particular the versatility and scalability of this method is impressive.

10.2.1 Position balansing problem

Consider a looped route with several vehicles which are moving around the loop with some common
reference speed vr. The objective for the vehicles is to maintain an even distance between them.
In other words one wants to minimize the variance in the set of distances between vehicles. If there
are any random disturbances along the route such as tra�c, hills or other obstacles, the distance
between the vehicles will be disturbed. The vehicles must adapt their speed to the current state
to maintain an even �ow of vehicles. This can be done by adding an adjustment to the reference
speed so that v1 = vr + vi where v1 is the speed of agent 1, adjusted by vi.

If implemented as a single agent reinforcement learning problem, one way is to let the state space
be the position of each vehicle in the route. A problem with this formulation is that it quickly

26



A B

GB GA

Figure 13: Visualisation of decentralized agents observation space. A and B represents agents with
their observable environment as transparent. An indicator for the direction in which it can �nd its
goal is also included.

grows very large as new agents are added. If one has a discrete set of positions, the number
of combinations in which you can place k agents in n positions is k!

(
n
k

)
. With 5 agents and 40

positions the state space is already over half a million in size. The problem with scalability is a
common issue for reinforcement learning problems and for multi agent reinforcement learning in
particular.

One can decentralize the problem by letting the state space be only the distance between the
vehicles, this would remove one dimension of the state space. This way the agents can work
independently to maintain a gap to the next vehicle. With this simpli�ed representation of the
state space the number of states is only the number of agents, times the number of possible lengths
between vehicles. With 5 agents and 40 possible positions, assuming that two agents cannot occupy
the same position, this is only 35 · 5 = 175 possible states. Compared to over half a million states,
this is a signi�cant reduction. A Markov decision process with a state space that is simpli�ed in
this fashion is called a partially observable Markov decision process. The partial observations arise
when multiple states in the process are represented in the same way.

An advantage of the partial observation of states is that the same partial observation could make
sense in other problems. In the fully centralized approach, as soon as the size of the problem or the
number of agents changes, the centralized solution might not be usable at all. The representation
of a state or state-action pair changes and can no longer be mapped by the state value or state-
action value function. The decentralized solution will still be able to maintain the same distance
and will �nd a solution to the problem still, even though the solution might be suboptimal.

One of the disadvantages with the decentralized approach is that the agents can not take into
account any naturally occurring disturbances. Tra�c or inclines/declines in the route could disturb
the distances, but only for a limited time, since these will a�ect all vehicles equally. For example if
one vehicle reaches an uphill incline and slows down, the vehicle behind it will possibly catch up.
When the �rst agent reaches the top of the hill and speeds up again, the gap between them will
naturally return to its original state. In a sense there is a natural speed pro�le which the vehicles
follow throughout the route. Information to recognize these types of patterns is not present in
the partially observable representation of the state space and the agents will likely not learn to
e�ectively handle such situations.
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10.2.2 Sequential training with partial observations

In [9] the training is done in sequences. Initially one can formulate a training environment where
the agent learns one speci�c task. Then the agent is pro�cient in this one task, one can let it train
on another task or add another stage to the task. This is not possible when the agent has full
observability since any change to one state or a change in the size of the state will make the agent's
representation of the state invalid. With the partial observations as illustrated in Figure 13 one
can train the agent in �nding the goal, wherever it is in the grid. After that one could add another
agent to the system and let them train at passing each other. If also using a neural network as
in [9], the information gained when training one task propagate to the solution of another task in
a more seamless way compared to when using tables. This is due to the structure of the neural
network. If one changes a single element of an input vector to a neural network, only this column
of the matrix of weights are e�ected. This is not the case with tabular methods where a change
to one element of the input vector will change the whole row of the table. To make information of
previous training valid in the modi�ed state, one has to manually account for these situations and
transfer what has been learned to the modi�ed state.

10.3 Reducing the observation space

One of the biggest problems with multi agent reinforcement learning is keeping the state space
or observation space small enough. Methods for keeping the state space small involve clever
representations of the states and careful selection of the information to include. Other methods
involve discretising the state space and testing which splits of the state space work the best.

Using di�erent function approximations to estimate or classify a state is one approach to limit the
amount of data one has to store. Popular methods involve approximations using neural networks
such as a convolutional neural networks, recurrent neural networks or long short term memory
networks. Convolutional layers together with long short term memory layers have been shown
to perform very well in reinforcement learning. The idea is to classify the input vector using
convolutional layers and then use a recurrent layer to recognize patterns in the sequence of classes.

There are several suggestions on how to reduce the size of the domain for the action-state function.
Sutton [12] suggests tile coding as an option. The idea is to organise the state space in layers, one
can discretise each layer and have the layers overlap. The result is a �ner discretisation of the state
space with a more compact representation. The idea is similar to that of a convolutional neural
network where one uses a �lter to map blocks of a matrix to a smaller block or a real number.

Figure 14: Exampe of tile coding, active areas represented as opaque areas. To the left a tile
coding representation with two indicator functions with 4× 4 elements, mapping each position to
a state by combining the indication from the two discretisations. To the right, a �ner grid giving
the same accuracy but using a 8×8 grid. The tile coding implementation only require 32 elements
while the one layered approach requires 64 elements.
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As an example, consider a map over some terrain with coordinates as numbers with 3 decimals.
One can discretise the coordinates to integers but this might give a coarse representation of the
map, instead of using every 0.5 step in the coordinates mapping as a discretisation one can have
a second layer which is shifted. By decreasing the step size to 0.5 the state space would require
4 times the data to represent the map. With the overlapping layer we receive the same accuracy
with only twice the data. The idea is illustrated in Figure 14
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