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Statistical Modelling of Pedestrian Flows

ERIK HÅKANSSON
Department of Mathematical Sciences
University of Gothenburg

Abstract
Pedestrian counts and in particular their relation to the buildings in the vicinity of the
street and to the structure of the street network is of central interest in the space syntax
�eld. This report is concerned with using statistical techniques to model pedestrian
counts and in particular how these counts vary over the day. Of interest is whether the
variation over the day for a street can be predicted based on its density type, describing
the nearby buildings, and street type, describing its role in in the city’s overall street
network.
Using data from Amsterdam, London and Stockholm the hour-by-hour pedestrian counts
are modelled with the so-called functional ANOVA method, using the aforementioned
types to divide the streets into groups. Additionally, the e�ect of the presence of schools,
stores and public transport stops near the streets on pedestrian counts is considered. The
model is �tted in a Bayesian framework using the integrated nested Laplace approxima-
tion technique. The results indicate that this model works well but that it might be
somewhat too rigid to capture all the variability in the data, failing to capture some of
the di�erence between groups and between the cities. Some possible extensions to the
model to remedy this are suggested.
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Chapter 1

Introduction

In the �elds of urban planning and design, pedestrian counts, or pedestrian �ows as they
are often called, are of central interest. Of particular interest is how the pedestrian counts
can be explained by the urban area itself, or in more statistical language how they depend
on various covariates. Knowledge about this can be of use in the planning and design of
new urban developments to adopt the infrastructure to the expected pedestrian �ows.
This report describes the results of a statistical modelling for such counts and how they
vary during the day.

The data used in this report was originally collected in a survey by the Spatial Mor-
phology Group at Chalmers in October of 2017, using mobile phone Wi-Fi signals. This
masters project began with analysing this data with a focus on modelling total pedes-
trian counts over the entire day in. This analysis is discussed very brie�y in Appendix A.
The results of it are not essential to understanding the current report but give some in-
sight into the choices made when conducting the analysis at hand. The results of this
total counts analysis is the focus of the (forthcoming) article [Sta+19].

In this report the main goal is to make a more �ne-grained analysis by also consid-
ering how the counts vary over time; speci�cally we will model how the vary hour by
hour throughout the day. This makes for a more complicated modelling problem but
also serves to give further insight into the data.

The starting point of the modelling is the street typology described in [Ber+17]. In
that article, streets are divided into street types and density types; these (roughly speak-
ing) describe how central streets are to the street network and what kind buildings there
are around the street respectively. Since this typology is used as the main explanatory
variable this project also serves as an investigation of how well the types describe the
time-e�ects in the data.

To model the time dependence one has to move beyond the most basic statistical
methods of ANOVA and regression which were used in the analysis of total counts
[Sta+19]. The time e�ects are therefore handled in a so-called functional ANOVA frame-
work [Yue+16]. That is, we consider the counts as functions of time and use the types
to give ANOVA categories. In addition to giving a model for the counts this will lead to
interpretable e�ects for individual types, which can be of independent interest, and also
show what kinds of behaviour are coming from which parts of the data.

The model �tting is done using the INLA method [RMC09] as implemented in the
R-INLA package for the R progamming language [R C18].
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1. Introduction

Lastly we remark that part of the more long-term goal of this project (including both
this report and the analysis in [Sta+19]) is to visualise the results of the models along with
the data to provide further insight. The total count results have been incorporated into
a web based GUI that allows easy overview of these results and of the data [Ber+]. As of
writing this has not yet been done for the hour by hour models due to time constraints.

Outline
Chapter 2 describes the data used. It is divided into two Sections: Section 2.1, which
gives a general overview of the data, and Section 2.2, which gives more detail on the
main covariates used.

Chapter 3 gives a description of the statistical inference, including the model used
and how it is �tted. It is divided into a few sections. A short review of the Bayesian
statistical paradigm is given in Section 3.1, followed by a description of the statistical
model used in Sections 3.2 and 3.3. This is followed by Section 3.4 where the INLA model
�tting procedure is described. The last section of this chapter, Section 3.5, introduces the
methods for model checking and model comparison that we use.

Chapter 4 shows and discusses the results of the model �tting.
Finally, Chapter 5 summarises the project and gives some suggestions for possible

extensions.
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Chapter 2

Data

This chapter describes the data used in this report.

2.1 Data Description

Here we give a quick rundown of the data, the variables we use, and what they mean. The
data was gathered in three European cities: Amsterdam, London and Stockholm. This
was done in October of 2017. The data contains quite a few variables so the description
in this section will be limited to the ones that are used in the statistical analysis in this
report. Overall, the data contains 10848 observations, corresponding to 678 streets across
46 neighbourhoods.

The location of the measured neighbourhoods are shown in Figure 2.2 for Amster-
dam, Figure 2.3 for London and Figure 2.4 for Stockholm.

Each of these observations consist of the pedestrian count during one hour for one
street segement with the hours ranging from 6 in the morning to 21 in the evening, so
a total of 16 hours for each street segment. Figure 2.1 shows an excerpt from the data
split up by the types described below. As mentioned above, the goal of this project is to
make a statistical model for these counts over time based on covariates describing the
streets (these covariates remain the same over time).

The focus of the analysis is the categorical covariates arising from the typology of
[Ber+17], which divides the streets into density types (6 levels) and street types1 (4 levels).
They are described in more detail below. Each street segment belongs to one density
type and one street type. The types come from clustering of continuous variables; these
continuous variables are available in the dataset but will not be used by themselves in
this project.

There are two major reasons for using these categorical variables instead of the con-
tinous variables they are built from. The �rst is interpretability. The interpretation of the
continuous variables is somewhat opaque, but (as we see below) the type variables can
be interpreted. This is also useful when planning new urban developments, as it is likely
easier to e.g. construct an area of density type 3 than one with a speci�c value of some
continuous measurement. The other reason is ease of statistical modelling. As was men-
tioned in the introduction, the model considered in this report is based on ANOVA, but

1Or centrality types.
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2. Data
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Figure 2.1: Counts for 3 randomly chosen streets in each density-street group.

with a time e�ect for each group in the ANOVA. This type of model of course requires
categorical covariates to divide the data into groups. If we were to use the continuous
covariates, we would have to devise a model where the mean value is a function f (t , s)
of both time t and continuous covariate values s . This is more complicated than the
ANOVA situation where we instead for each group i estimate a function fi(t) of just one
variable.

In addition to the types the analysis will use so-called ‘attraction’ covariates. These
measure the presence of (potentially) pedestrian-attracting institutions in the vicinity
of the street segment. The attractions considered are public transport stops, schools,
and so-called ‘local markets’. Local markets in this case refers to retail stores, cafes, and
restaurants. For all three (public transport, schools, local markets) we have data on both
the number of institutions on the street segment and the number within a 500 meter
walking distance of the street segment.

We note that these values are computed in a somewhat strange manner and that
because of this, these attraction covariates are actually continuous. The reason for this is
as follows. Some street segments considered in the data are divided into shorter paths.
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2. Data

Figure 2.2: Neighbourhood locations in Amsterdam. Image taken from the GUI [Ber+].

Figure 2.3: Neighbourhood locations in London. Image taken from the GUI [Ber+].
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2. Data

Figure 2.4: Neighbourhood locations in Stockholm. Image taken from the GUI [Ber+].

When this is the case, the attractions are counted separately for each path. The covariate
value given to the street segment is then the average of these counts per path. As a
simple example, if a street segment is made up of four shorter paths with 1, 2, 3 and
4 schools within a 500 metre distance then the street segment is considered to have
(1 + 2 + 3 + 4)/4 = 2.5 schools in a 500 metre distance.

The attraction covariates are normalized to have mean 0 and standard deviation 1.

2.2 Density Types and Street Types

As mentioned above two major covariates used are density and street types. Both of
these are based on clustering on building density metrics and betweenness at di�erent
scales respectively, the details are described in [Ber+17]. Note that the names used in
this article di�er from the names we use. A summary of the types is shown in Table 2.1.

The clustering for density types is based on two measures of density known as �oor
space index2 (FSI) and ground space index (GSI). Speci�cally, these measures computed in
a 500m radius around the street are used. Roughly speaking FSI is the ratio of total �oor
area to lot area, and GSI is the ratio of ‘footprint size’ to lot area. Thus FSI is a measure
of the density of total living area, and GSI is a measure of how large part of the land
is taken up by buildings. Note that while GSI ∈ [0, 1] always, FSI can in principle take
arbitrary positive values as buildings can have multiple �oors and hence more square
footage than the lots they are placed on. High FSI and low GSI means that buildings are
tall with many �oors.

2Swedish: exploateringstal.
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2. Data

Density type Description Street type Description
1 Spacious low-rise 1 Background network
2 Compact low-rise 2 Neighbourhood streets
3 Dense mid-rise 3 City streets
4 Dense low-rise 4 Local streets
5 Compact mid-rise
6 Spacious mid-rise

Table 2.1: Summary of density types and street types.

The street types were created using a clustering on principal components of angular
betweenness measures on di�erent scales. This measures (in some sense) how important
the street is to the road network on di�erent ‘zoom levels’. Streets with high betweenness
on large scales are of importance when moving larger distances, while high betweenness
on smaller scales means that they are important when moving shorter distances.

The density type is a function of the kind of area in the city a street is located in;
the street type rather describes what type of street it is. While there is some relation
between these the data was chosen in such a manner that there are streets in the data
belonging to each of the 24 density-street groups. To be more precise, Table 2.2 shows
the distribution of the type combinations.

Both the density and street types are to some extent interpretable. These interpreta-
tions will be helpful when discussing model �tting results, so we present them here. We
begin with the density types.

Type 3 (dense mid-rise) is typical in city centres. The area directly surrounding the
city centre typically belongs to type 5, which has lower buildings than type 3 but the
same compact coverage. Streets in both these types are of course expected to have high
pedestrian counts. Types 1,2, and 6 are likely to have lower counts. Type 1 consists to
a large extent of villa areas and urban sprawl and type 2 tends to be typical suburban
areas. The third of these, type 6, is at least in a Swedish milieu exempli�ed by typical
‘miljonprogrammet’ areas, with tall buildings placed somewhat sparsely. The last den-
sity type, type 4 or dense low-rise is a (rather odd) combination of two kinds of building
development – namely, areas of this type are usually either industrial or historic (i.e.
medieval) city centres.

For the street types the names given in Table 2.1 are more descriptive than for the
Densities. Type 1, background network, has streets which essentially are of low be-
tweenness at all scales and hence are not so important to the street network. The three
remaining categories can be roughly arranged by the scale at which they are most im-
portant. First of these is type 4, local streets, which are important when moving within
neighbourhoods but not on larger scales than that. Then comes type 2, neighbourhood
streets. These are important for moving in between neighbourhoods. Finally, type 3
(city streets) are important on the largest scales, i.e. when moving across the city.

An overview of the spatial distribution of density types is shown in Figure 2.5 and
of street types in Figure 2.6. The density types are shown for the city centres, and hence
types 3 and 5 are dominant. When it comes to the street types most streets are part of
the background network (i.e. type 1), with larger streets in types 2 through 4.
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2. Data

Figure 2.5: Spatial distribution of density types in the three cities and Gothenburg.
Taken (with permission) from [Ber+17, Figure 8].
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2. Data

Figure 2.6: Excerpt from the GUI [Ber+], showing the spatial distribution of street types
in central Stockholm. The colours show represent the types: light blue – 1 (background
network), light brown – 2 (neighbourhood street), dark brown – 3 (city street), darker
blue – 4 (local street).

Street 1 Street 2 Street 3 Street 4 Total
Density 1 0.09 0.02 0.01 0.03 0.15
Density 2 0.05 0.02 0.03 0.05 0.15
Density 3 0.11 0.03 0.03 0.07 0.24
Density 4 0.05 0.04 0.01 0.01 0.12
Density 5 0.13 0.03 0.03 0.02 0.21
Density 6 0.05 0.03 0.01 0.03 0.13
Total 0.48 0.17 0.13 0.22

Table 2.2: Distribution of density and street types in the data.
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Chapter 3

Model and Methods

3.1 A Quick Review of Bayesian Inference
Throughout this thesis we use Bayesian methods for inference. Since this framework is
essential to understanding some parts of the model description we will quickly review
the basic idea of it in this section. For a thorough account the interested reader is referred
to any textbook on the subject, e.g. [Gel+13].

First a small note on notation. Throughout this report we will use the common con-
vention in Bayesian statistics that π (·) generically denotes a probability density, and
π (· | ·) denotes a conditional density; the exact density that π refers to at the moment
should be clear from its arguments.

Suppose we have observed some data y and are interested in doing inference about
some parameter θ that controls the distribution of y. For example, y might be the ob-
served weight of some observed subjects and θ might be the average weight in the pop-
ulation. These are related through the likelihood π (y | θ ), i.e. the distribution of the
observations for a known θ . This setup is the same as in the frequentist case.

In the Bayesian framework we consider θ to be a random variable. That is, we in-
troduce a prior distribution π (θ ) for θ . The prior distribution is meant to represent our
knowledge of the parameter before we observe any data. Roughly speaking, the variance
in the prior re�ects the uncertainty in our knowledge of θ – the more sure we are, the
lower the variance.

Using the prior and the likelihood we want to compute the posterior distribution
π (θ |y); this represents our knowledge about θ after observing the data y. This compu-
tation is done by using Bayes’ theorem as

π (θ |y) =
π (y | θ )π (θ )

π (y)
,

where the marginal density can be computed as π (y) =
∫
π (y | θ )π (θ ) dθ . Since the

denominator does not depend on θ and only serves to normalize the density this formula
is usually restated as

π (θ |y) ∝ π (y | θ )π (θ )

where ∝ denotes that the left hand side is a constant multiple of the right hand side. We
will use this expression in several times throughout this report.

11



3. Model and Methods

We will in fact use slightly more complicated, hierarchical, models – between the
above data and parameters we add a layer of latent variables x . The term latent refers to
the fact that these variables are not directly observed; we only observe them indirectly
through y. For such models the terminology changes slightly: the term prior now refers
to the conditional distribution π (x | θ ), and to distinguish them π (θ ) is called the hyper-
prior (hence θ is called hyperparameters). The likelihood π (y | x ,θ ), and inference is all
about studying the joint posterior

π (x ,θ |y) ∝ π (y | x ,θ )π (x | θ )π (θ ) ,

from which one can calculate quantities of interest regarding x and θ . For our models y
will be hour-by-hour counts of pedestrians, x will be average hour-by-hour counts, and
θ will consist of parameters controlling the variability of x and y.

The principles of Bayesian inference sketched above are rather simple. In practice
however some complications appear. One is the precise choice of prior. We mostly use
random walk priors which are described later. Another is the actual computation. It is
often rather easy to write down the posterior, but it can be di�cult. What is de�nitely
di�cult in most cases is to say anything of interest about the posterior (e.g. compute a
mean), and one often has to resort to simulations. In this context Markov Chain Monte
Carlo methods such as the Metropolis-Hastings algorithm are used. Such methods are
discussed in detail in [Gel+13], and applied in a functional ANOVA in [KS10]. In this
thesis we instead use an approximate computation method known as INLA [RMC09]
which is discussed below in Section 3.4.

3.2 Model Description

In this section we describe the statsitcal model used. We split this up into separate (but
of course connected) discussions of the likelihood, prior, and posterior distributions rep-
sectively.

3.2.1 Data model

In one sentence, we use a functional ANOVA negative binomial model with logarithmic
link, inspired by the models considered in [Yue+16].

Brie�y, the model can be described as follows. We model the count for every street
and hour as a negative binomial distribution. The average count changes from hour to
hour; how it changes depends on the density type and street type of the street. Each
city is given a separate, time-independent intercept term. In addition to this, we include
Schools, Local markets, and Public transport as variables that a�ect the average for the
street but not how it changes over time.

In full detail, the model is this: Let yk(t) denote the pedestrian count on street k
at time (hour) t (t = 6, 7, . . . , 21). We assume that this follows a negative binomial
distribution:

P (yk(t) = n | ηk , s) =
Γ(n + s)

Γ(s)Γ(n + 1)

(
s

eηk (t) + s

)s (
eηk (t)

eηk (t) + s

)n
.

12



3. Model and Methods

This distribution is related to the Poisson distribution but allows for overdispersion, i.e.,
that

Var (yk(t))
E [yk(t)]

> 1.

One way of viewing the negative binomial distribution is that it arises as a Poisson distri-
bution where the intensity λ is itself random and Gamma distributed; this is for example
described in Section 17.2 of [Gel+13]. The parameter s > 0 is called a size parameter,
and controls the amount of overdispersion compared to a Poisson distribution. Speci�-
cally, 1/s is the overdispersion and the weak limit as s → ∞ is the Poisson distribution.
While a Poisson distribution is perhaps more natural, the earlier analysis of total counts
indicated that the data is overdispersed and we therefore use the negative binomial dis-
tribution. Later we will also look at the estimate of s to see whether the negative binomial
distribution is necessary.

The other parameter of the negative binomial distribution,ηk , is a (time- and observation-
dependent) linear predictor. It is related to the mean of yk through

ηk(t) = logE [yk(t)].

Finally, the linear predictor is related to the covariates through

ηk(t) = Xkϕ + µ̃(t) + α̃i[k](t) + β̃j[k](t).

Here Xk is a row-vector of time-independent covariates: Schools, Local markets, public
transport and intercept terms for each city, and ϕ are �xed e�ects coe�cients. The co-
variates are normalized by centering and dividing by the standard deviation, producing
values with mean 0 and variance 1. We also have time-dependent, or functional, e�ects
µ̃, α̃i , β̃i . The �rst of these, µ̃, is a baseline time e�ect, which is the same for all streets.
The second α̃i , i = 1, 2, 3, 4, 5, 6 depends on which density type i[k] that street k has. The
third and �nal one, β̃j , j = 1, 2, 3, 4 is similar but instead depends on the street type j[k]

of street k . To ensure identi�ability we require that α̃1 = β̃1 = 0 everywhere. We will in
the sequel split up the time e�ects as

µ̃(t) =m + µ(t)

α̃i(t) = ai + αi(t)

β̃j(t) = bj + βj(t)

where m,ai ,bj are time independent mean levels and µ,αi , βj are constrained to sum to
zero: ∑

t

µ(t) =
∑
t

αi(t) =
∑
t

βj(t) = 0

for all i, j. Note that the previous identi�ability constraint means that a1 = b1 = 0 and
that α1 = β1 = 0. This split is done to more clearly separate changes over time from
mean levels in groups.

Note that while this model is similar to the model described in equation (2) of [Yue+16],
we do not include interactions e�ects γij . As Table 2.2 shows that there are rather few
streets in some of the i-j-groups making �tting a separate e�ect rather di�cult. This
also makes the model more rigid, providing a guard against over�tting.

13



3. Model and Methods

We will later also experiment with a model that includes one further random e�ect,
changing the linear predictor to

ηk(t) = Xkϕ + µ(t) + αi[k](t) + βj[k](t) + γk

where the γk is a street level random intercept.

3.2.2 Prior distributions
To fully describe our model we also need to specify priors for ϕ, µ,α , β , and hyperprios
for s and the other hyperparameters. The hyperpriors and the �xed e�ect priors are the
default ones in R-INLA and the priors for the time e�ect are second-order random walk
models. These priors are based on the discussion in [Yue+16], and the hyperpriors are
the default priors in R-INLA, and are generally not so informative. The intercept is given
a �at prior π (ϕ0) ∝ 1 and the other �xed e�ects ϕi , i , 0 are given vague normal priors
ϕi ∼ Normal (0, 1000) (that is, variance 1000). This also includes the �xed mean e�ects
m,ai ,bj for each density and street type. The usage of the same default priors for all
variables is reasonable as the (continuous) covariates are normalized.

All the functional e�ects are given second order random walk (RW2) priors. These
are described in Section 3.3; brie�y the linear combinations µ(ti) − 2µ(ti+1) + µ(ti+2) are
taken to be independent and normally distributed with some precision κµ for all i , and
similarly for α and β , with each e�ect having its own precision parameter. The precision
parameters κµ ,κα ,κβ are given independent and rather �at Gamma priors with shape
parameter a = 1 and rate parameter b = 5 · 10−5, i.e.,

π (κ) =
ba

Γ(a)
κa−1e−bκ ,

for κ = κµ ,κα ,κβ .
Lastly, there is the prior on s . Instead of de�ning a prior on s directly we let θ = log s

and give θ the prior

π (θ ) =
7
θ 2

��ψ ′(θ−1) − θ ��√
2 log(θ−1) − 2ψ (θ−1)

exp
(
−7

√
2 log(θ−1) − 2ψ (θ−1)

)
where ψ is the digamma function; this is described in [Sim+17b]. This prior seems
strange at �rst glance but it arises rather naturally as a penalized complexity prior, a
type of prior introduced in [Sim+17a]. Brie�y, s (and hence θ ) can be thought of as a pa-
rameter that controls the model complexity compared to a Poisson distribution (which
corresponds to the limit as s → +∞). The prior is constructed by requiring that in-
creased complexity is penalized in a certain uniform manner, the details of which are
described in [Sim+17a].

3.2.3 Posterior
In the language of Section 3.1 we havey = y, x = (Xkϕ, µ,α , β) and θ =

(
s,κµ ,κα ,κβ ,κγ

)
.

Let κ =
(
κµ ,κα ,κβ ,κγ

)
. The likelihood is

π (y | η, s) =
∏
k

π (yk | ηk , s) =
∏
k

21∏
t=6

π (yk(t) | ηk , s) .
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The posterior is

π (ϕ, µ,α , β ,γ , s,κ |y) ∝
∏
k

π (yk | ηk , s) · π
(
µ
��κµ ) π (α | κα )π (

β
��κβ ) π (ϕ)π (s)π (κ)

where π (κ) = π
(
κµ

)
π (κα )π

(
κβ

)
.

3.3 Random walk Priors
The goal of this section is to give some brief comments on the RW2 priors used for the
time e�ects in the model. Informally, these can be seen as a higher-dimensional analogue
to ‘�at priors’ for mean parameters in one dimension. The RW2 model is an example
of an intrinsic gaussian Markov random �eld, the theory of which are detailed in [RH05,
Ch.3]. A vector x = (x1, . . . ,xn) is a second order random walk model with precision κ if
the second order di�erences

(xi − xi+1) − (xi+1 − xi+2) = xi − 2xi+1 + xi+2

are independent and distributed as

xi − 2xi+1 + xi+2 | κ ∼ Normal
(
0,κ−1

)
. (3.1)

There are n − 2 such increments, giving the density

π (x | κ) ∝ κ(n−2)/2 exp

(
−
κ

2

n−2∑
i=1
(xi − 2xi+1 + xi+2)2

)
∝ κ(n−2)/2 exp

(
−
κ

2
xtQx

)
where matrix Q has the form

Q =

©­­­­­­­­­­«

1 −2 1
−2 5 −4 1
1 −4 6 −4 1
. . .

. . .
. . .

. . .
. . .

1 −4 6 −4 1
1 −4 5 1

1 −2 1

ª®®®®®®®®®®¬
.

Note that this distribution is improper (it does not have a �nite integral), as Q is rank
de�cient. In fact the density does not change if we add a linear trend to x . To be precise,

π (x1,x2, . . . ,xn | κ) = π (x1 + a + 1b,x2 + a + 2b, . . . ,xn + a + nb | κ)

for any a,b ∈ R. Since it might be that there is a linear trend in pedestrian counts this
type of model is appropriate for the time e�ects considered in this project.

An interpretation of the RW2 model can be found by considering (3.1). The normal
distribution has most of its mass concentrated around 0, so this equation says that most
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Figure 3.1: Simulated trajectories from a RW2 model with κ = 1. The RW2 model here
has the constraints x0 = 0 and E [xi+1 − xi] = 0 to get a proper distribution.

of the time the second di�erence (xi − xi+1) − (xi+1 − xi+2) will be small (how small is
of course controlled by κ). Since xi − xi+1 gives the ‘trend’ at i , the RW2 model says
that the change in the trend is small. It should be noted that the trend itself can be
arbitrarily large as long as it does not change quickly. This is also re�ected by the fact
that density is maximized for any perfectly linear x . The typical realization of an RW2
process therefore tends to look rather smooth.

Figure 3.1 shows simulated trajectories from a RW2 model withκ = 1. Since the RW2
model is improper the trajectories in this plot are subject to the additional constraints
x0 = 0 and E [xi+1 − xi] = 0, making the distribution proper. We see quite clearly their
typical ‘smooth-esque’ behaviour.

3.4 Integrated Nested Laplace Approximation
To �t the models to data we use the integrated nested Laplace approximation (INLA)
method of Rue, Martino and Chopin [RMC09]. INLA is based around approximating
densities with Gaussians and using numerical integration. If π (x) = C exp(h(x)) is a
(su�ciently smooth) density with mode x∗ then we can approximate it by the Gaussian
density

πG(x) = C exp(h(x∗)) exp
(
−
1
2
(x − x∗)tH (x − x∗)

)
where H = −

(
∂2

∂xi∂x j
h
)
(x∗) is the negative of the hessian matrix of h evaluated in x∗.

The approximation comes from a second order Taylor expansion of h around x∗ and is
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exact if π is a Gaussian density.
The INLA method is applicable for latent gaussian models. These are hierarchical

models that can be schematically written as

θ x = (x1, . . . ,xn)

x1 x2 . . . xn

y1 y2 . . . yn

where θ is a vector of hyperparameters, x is a Gaussian vector and yi are observations.
The x are refered to as latent variables (hence the name latent Gaussian models), and x is
assumed to be a GMRF. Finally we assume that observations are conditionally indepen-
dent given the latent �eld and hyperparameters:

π (y | x ,θ ) =
∏
i

π (yi | xi ,θ ) .

This last assumption means that the yi do not a�ect each other directly; if they a�ect
each other they only do so through the parameters θ and latent �eld x .

The goal when doing inference is (as discussed in Section 3.1) to �gure out the pos-
terior distribution of θ and x . This is formally given by

π (x ,θ |y) ∝ π (y | x ,θ )π (x | θ )π (θ )

but this expression can be hard to do computations with in general. What INLA does
is to provide approximations of the marginal posterior distributions π (θ |y), π

(
θj

��y)
and π (xi |y) that are reasonable to compute. Note that we can write the marginals as
integrals

π (xi |y) =

∫
π (xi | θ ,y)π (θ |y) dθ (3.2)

π
(
θj

��y) = ∫
π (θ |y) dθ−j , (3.3)

where as usual θ−j denots all the values of θ except for θj . These integrals are however
not trivial to compute. The next step is therefore to replace the densities π with more
tractable approximations π̃ . First we approximate the marginal posterior π (θ |y). This
density can be written as

π (θ |y) ∝ π (θ ,y) =
π (x ,θ ,y)π (θ ,y)

π (x ,θ ,y)
=
π (x ,θ ,y)

π (x | θ ,y)

for any choice of x , where the proportionality is due to the missing normalizing constant
π (y). We can replace the denominator with its gaussian approximation πG (x | θ ,y) and
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evaluate the expression at the mode x∗ = x∗(θ ) of π (x | θ ,y) to get the Laplace approxi-
mation

π̃ (θ |y) ∝
π (x ,θ ,y)

πG (x | θ ,y)

����
x=x∗

The reason for using this approximation instead of the direct Gaussian approximation
πG (θ |y) is that the latter works very badly when π (θ |y) is skewed and this tends to
occur in practice.

With this approximation we can use (3.3) to approximate the marginal posterior for
each θj as

π
(
θj

��y) ≈ π̃ (
θj

��y) = ∫
π̃ (θ |y) dθ−j ,

where the integral can be computed numerically.
It remains to approximateπ (xi |y). To do this we need to somehow computeπ (xi | θ ,y)

in the integral above in (3.2). The authors of [RMC09] describe three di�erent approaches
to approximating this, all of which are based around using Gaussian approximations, ei-
ther directly or in Laplace-style quotients. These methods present a choice between ac-
curacy and computational cost. The method used in this report is the default approach in
the R-INLA library which is called simpli�ed Laplace approximation. This method takes
as its starting point the Laplace approximation

π̃ (xi | θ ,y) ∝
π (x ,θ ,y)

πG (x−i | xi ,θ ,y)

����
x−i=x

∗
−i

which is in turn made more computationally feasible by using series expansion and dis-
regarding the e�ect of x−i-elements which correspond to locations that are in some sense
far from the location of xi . The marginal π (xi |y) can then be approximated using (3.2)
as

π (xi |y) ≈ π̃ (xi |y) =

∫
π̃ (xi | θ ,y) π̃ (θ |y) dθ ,

after which we are done with our presentation of how the INLA method works.
We conclude this section with some remarks on the properties and pros and cons of

INLA compared to MCMC. The big advantage of INLA compared to an MCMC approach
is speed. In addition to being fast it also has the advantage of being deterministic. This
makes it easier to reason about the computation time. It also means that there is no
need to carfully check for convergence of chains and to do multiple runs as is usually
necessary when performing MCMC.

There are also some drawbacks to INLA. One of these is that it can only �t latent
gaussian models. In this project this restriction does not cause any problems as the
models considered are of that type. Another, which has more e�ect on this project, is
that INLA only gives posterior marginals and not joint distributions. This for example
makes the computation of posterior predictive distributions di�cult as this really needs
the joint distribution of s and µk which is not available. However, this problem is for
the most part alleviated by the fact that R-INLA can generate samples from the (joint)
posterior π (x ,θ |y) from which such distributions can be approximated.
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3.5 Comparing and Checking Models

The main model used in this project was described above in Section 3.2. In addition to
this model a few other models were also tried for comparison. This section aims to brie�y
describe these models and what methods will be used for comparing the models. The
goal of trying other models is twofold. First of all it makes sense to investigate whether
there is some strictly better model than the main model – if there is, it makes sense to
change the main model to get better predictions. Second, trying other models will give
some insight into the robustness of the estimates. For example, we can see if removing
the �xed e�ects will have any major impact on the estimates of the time e�ects.

We begin by describing the other models considered. With one exception, the other
models can be seen as simpli�cations to the main where some parts of it have been
removed. These simpli�ed models are as follows:

• No Fixed E�ects: same as the Main model, but without the �xed e�ects for schools,
markets and public transport.

• No Street type e�ect: Does not use the street type, only the density type.
• Only mean e�ect: Uses neither street nor density, there is only a single time-

dependent mean e�ect µ.
• No time e�ects: Does not include any of the time e�ects µ,α , β . The �xed type

e�ects m,a,b are still used however Note that as the time is ignored, this is just a
regular negative binomial regression.

The last additional model (random street intercepts) was alluded to in the model descrip-
tion, it takes the main model and then adds a (time-independent) random intercept γk to
each street k .

To compare the models we will use so-called proper scoring rules [GR07]. These are
a type of predictive performance measures which have the useful property that they are
always minimised for the true model1. Scoring rules also take prediction uncertainty
into account. This contrasts them with direct error measures such as RMSE or MAE that
only measure the error in pointwise predictions when compared to observed values.
Since we use Bayesian methods, it is natural to in this way account for more of the
posterior predictive distribution and not only their means.

Unlike model performance measures such as DIC or WAIC [Gel+13, Ch. 7], scoring
rules do not penalise model complexity. To avoid over�tting it is therefore paramount
to use separate training and test data. We achieve this by using 10 random splits of the
streets into 90% training data and 10% testing data and comparing by the average score
on the test datasets for each model. The same train-test-splits where used for each model
to ensure fairness.

As for the speci�c scores we use, the main ones are log score and quasi-ignorance
score (QI score). The log score of an observation ytest

k
is the negative of the log posterior

predicitve distribution, i.e.

logscorek = − logπ
(
ytest
k

��ytrain
)
.

The QI score is essentially the same log score, but assuming that the posterior pre-

1Note that [GR07] uses the opposite sign convention and hence seeks to maximize the score instead.
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dictive distribution is normal. It is given by

QIk =
(
µ − ytest)2

σ 2 + logσ

where µ,σ are the mean and standard deviation of the posterior predictive distribution.
This is no longer a strictly proper scoring rule as it gives the same score to all distribu-
tions with the same mean and variance as the true one. It is still proper however. To get
a single value from the scoring rules we take the average of the scores across all of the
training data.

Both of these scores are computed as MC averages of samples from the posterior
distribution. To give a little more detail, the posterior predictive distribution is given by
an expectation, namely

π
(
ytest
k

��ytrain
)
=

∫
π

(
ytest
k

��ηk , s ) π (
ηk , s

��ytrain
)
d(ηk , s)

= Eηk ,s∼π(ηk ,s | ytrain)

[
π

(
ytest
k

��ηk , s ) ] .
This expectation can then be approximated as

Eηk ,s∼π(ηk ,s | ytrain)

[
π

(
ytest
k

��ηk , s ) ] ≈ 1
I

I∑
i=1

π
(
ytest
k

���η(i)k , s(i))
where η(i)

k
, s(i) are samples from the posterior π

(
ηk , s

��ytrain) . For this report, I = 1000
was used. By taking negative logarithms we get an approximation of the logscore. Sim-
ilar calculations can be performed to approximate the mean and standard deviation of
the predictive distribution, and hence the QI score.

We follow this with a minor comment on the choice of scoring rule. Initially the idea
was to mainly use the continuous ranked probability score (CRPS). This is de�ned as

CRPS = E
��Y − ytest�� − 1

2
E |Y − Y ′|

where Y ,Y ′ are independent and distributed accoring to the posterior predictive distri-
bution for ytest. However, this score su�ers from giving more weight to parts of the
predictive distribution where there is more variability. Since the variability of the nega-
tive binomial distribution scales with the mean this will give more weight to streets with
large counts which is not appropriate as the goal is to get good results for all kinds of
streets. Hence the more scale-invariant log score and QI score were chosen.

In addition to these scores we will also compute 95% posterior predictive intervals
for the test data and check their coverage. This helps ensure that the models estimate
their own uncertainty properly – too low coverage is an indication that the model un-
derestimates its uncertainty.

Finally, we will use the probability integral transform, or PIT as a model check. It
serves as an alternative to the normal QQ-plot in ordinary linear regression. Such QQ-
plots are not directly applicable here as the theoretical posterior is not known and in all
likelihood not normal. The PIT is based on the following idea from probability theory:
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if X is a (continuous) random variable with cdf F , then F (X ) is uniformly distributed on
[0, 1]. For an observation k the PIT is de�ned as

PITk = P (Yk ≤ yk |y−k)

where Yk is distributed according to π (yk |y−k), i.e. the predictive distribution of obser-
vation k given all other observations. The PIT values are computed as a part of model
�tting in R-INLA. If the model is appropriate for the data then this predictive distribution
is really the ‘true’ distribution for yk , and hence PITk should be uniformly distributed.
One can therefore asses the model by for example plotting sorted PIT values against the
corresponding uniform quantiles.

There are two concerns with this. The �rst is that the PIT values are subject to
random error so it might therefore by good to try to �gure out how much they are
expected to vary. The second is that the uniformity in some sense relies on having a
continuous distribution – the data considered here is discrete, so it might not be that the
distribution of the transformed values is uniform in this case. To handle these to issues
we will also create simulated PIT values, and compare these to the observed ones. This
is done by sampling new data from the posterior, re�tting the model to this new data
and computing the PIT values.
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Chapter 4

Results and Discussion

In this section we describe and discuss the results from the modelling. We divide the
results section as follows:

1. Results for the main model,
2. comparisons to other models,
3. looking at cities separately.

4.1 Main model results
We begin by showing the results for the main model. When looking at the estimates
from the model, there are essentially three things to consider: the overall mean levels
(i.e. the �xed e�ects), the structure over time (i.e. the functional e�ects) and the hyper-
parameters. We will get to each of these in order. Then we look at more ‘overall model
diagnostics’, e.g. PIT, and checking dispersion.

4.1.1 Fixed e�ects

We begin by looking at the �xed e�ects estimates, shown in Figure 4.1. These are of
less interest than the time e�ects but there are a couple things to consider. We see that
there is a rather clear di�erence between the di�erent types and Cities. The mean value
for Amsterdam is largest, followed by Stockholm with London last. It is worth stating
that this might just be an e�ect of the speci�c streets that where measured in each city.
Regarding the ‘attraction covariates’ the schools seem to have very small e�ect, while
the markets and public transport stops have larger e�ects. The street-level local markets
e�ect is estimated to zero, so is probably not worth including at all. The mean e�ect for
density type 6 also has an interval that covers zero, but since it is really part of an overall
density e�ect it would make little sense to drop this e�ect. Note also that the fact that
these e�ects might be zero should not have any bearing on the predictive ability of a
model including them compared to one leaving them out, and since the goal is not to
model these �xed e�ects it is perhaps not worth spending so much time on optimizing
them. However, it is interesting to see what �xed e�ects a�ects pedestrian �ow.

Overall the density �xed e�ects estimates seem natural considering what the types
represent; it is no surprise that the typical city centre types 3 and 5 have clearly larger
estimates than the other types. Type 6 (Spacious Mid-rise) has the lowest pedestrian
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Figure 4.1: Fixed e�ects estimates for the main model. Points show posterior means
and lines 95% credible intervals.

counts, followed by types 2 and 4 which are pretty much even. Looking back at the
descriptions of the types this is natural, with these types roughly corresponding to sub-
urban and industrial areas where not so much pedestrian tra�c is to be expected. It is
worth noting that for all these density types (2 through 6) the e�ect estimates are posi-
tive. Due to the way the model is speci�ed type 1 is taken as a baseline, with a1 = 0 by
de�nition. This type has villa areas which probably have very low pedestrian counts and
the all-positive estimates simply mean that all other types of areas have larger pedestrian
counts than the villa areas.

Similarly, street type 1 which consists of background streets is taken as a baseline so
that b1 is �xed to 0, and thus the positive estimates for b2,b3,b4 mean that background
streets are the least travelled by pedestrians.
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Figure 4.2: Baseline e�ect over time (black) with 95% pointwise (darker) and simulta-
neous (lighter) credible intervals.

4.1.2 Functional e�ects

The next point to discuss is the time e�ects. We will begin by looking at the e�ects for
each density and street type one by one and then combine the e�ects and compare this
to the data.

We begin by looking at the e�ects one by one. INLA directly gives pointwise (i.e.
hour-wise) credible intervals; the simultaneous credible intervals were computed using
the excursion method of [BL15]. Since density/street type 1 is taken as baseline, i.e.
α1 = β1 = 0, we only plot levels 2 and up of these e�ects.

Figure 4.2 shows the baseline e�ect µ. For this e�ect we see that there are two peaks,
one in the morning and one in the evening. We also see that the e�ect is clearly nonzero
– the simultaneous credible interval does not contain the zero function.

Figure 4.3 shows the time e�ects αi for each density type. With the exception of type
6, these are all clearly negative in the early morning. Since type 1 is taken as baseline,
this means that the other types will have lower average pedestrian counts in the morning
compared to type 1. Looking at the credible intervals, only the one for type 6 contains
the zero function, and hence the density type seems to have a real e�ect on the counts
over time.

The time e�ects βj of each street type are shown in Figure 4.4. Unlike the baseline and
density type e�ects, these have credible intervals containing zero, meaning that there
might plausibly be no real time e�ect of the street type. It might therefore not really be
worth it to include a time e�ect for the street types. However, Figure 4.1 shows that the
bj are clearly nonzero so it is still helpful to include a �xed e�ect for the street types.
This is discussed further below when comparing the models.
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Figure 4.3: Time functions for di�erent density types. Solid lines are posterior means,
shaded regions 95% pointwise (darker) and simultaneous (lighter) intervals. Note that
e�ects are normalized so they sum to one.

One overall trend is that the street type e�ects are smaller in magnitude than the
density type e�ects and vary less. This can also be seen by looking at the precision
parameters κµ ,κα ,κβ . Figure 4.5 shows the posterior distribution of the corresponding
standard deviations 1/√κµ , 1/

√
κα , 1/

√
κβ . We see directly that the standard deviation

for β is smaller than the others, indicating less variability.

We next move to the main point of interest which is the actual time e�ect curves we
get for each type combination when we combine the µ-, α-, and β-e�ects, and include the
inverse link function. What is of course of interest is to see whether these agree with the
actual data. This is investigated in Figure 4.6. This plot compares the average observed
counts with the e�ects for each type combination. We are mainly interested in the shape
of these curves as the mean values are mainly controlled by the �xed e�ects. To be able
to focus on the shapes we normalize both the estimated and observed curves. This means
that the numbers in the plot are not (directly) interpretable – only the overall shapes of
the curves are. This plot also ignores the �xed e�ects and the random intercepts entirely,
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1: Background network 2: Neighbourhood streets 3: City streets
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Figure 4.4: Time e�ects for di�erent street types. Solid lines are posterior means, shaded
regions 95% pointwise (darker) and simultaneous (lighter) credible intervals.

as these would only appear as a scaling factor,

µk(t) = exp (ηk(t)) = exp
(
Xkϕ + µ(t) + αi[k](t) + βj[k](t) + γk

)
= exp (Xkϕ + γk) exp

(
µ(t) + αi[k](t) + βj[k](t)

)
,

and when this is normalized the corresponding factor exp (Xkϕ + γk) will disappear.
Looking at the �t of the curves we see that it is rather good overall, with some excep-

tions here and there. In particular, the model does seem to have some trouble capturing
the more rapid changes in the data. This is consistent with the RW2 priors tendency
towards smooth curves, making very rapid turns unlikely. Of course, the �tted curves
are rather rigid compared to the possible variability in the data so a perfect �t is not to
be expected anywhere.

We note also that this is probably not just because of the smoothness from the RW2
model. Changing to a RW1 model a�ected the �tted curves only very slightly. It thus
seems that some of the rigidity is due to the small number of time e�ects we have allowed
ourselves to use when compared to the possible variability of the observed data.

We can see that the behaviour in the data di�ers between types. Two types of pat-
terns are worth noting. The �rst concerns the length of trends over time. The counts
in some groups seem to be on average the same throughout the day; variation in these
groups is mostly on a shorter time scale. This happens pretty much across every street
type in density type 6 (spacious mid-rise). In contrast we have behaviour like in type
3 where there is an overall almost linear increase in pedestrian counts throughout the
day until they drop o� again quickly in the evening. Here there are trends over longer
intervals of time.
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Figure 4.5: Posterior standard deviations. Shaded regions are 95% credible intervals.

The other interesting pattern is the variability in the number of peaks of the curve.
Some groups, e.g. density 4 - street 4 do not really have peaks at all. Some, e.g. density
1 - street 4 has peaks in the morning and evening and dips in between. Finally some
groups (for example 2-2) have three clear peaks: morning, evening and a middle peak
which happen slightly after lunchtime.

It is possible to give reasoning behind some of these behaviours. For example, take
the clear two-peak group 4-1. Streets from this group are often in suburban villa areas.
In these areas people live but they (usually) do not work there. Thus, we get a peak in
tra�c in the morning and evening when people travel to and from work, but in between
it is quiet. In more central areas, i.e. density type 3, there is often a ‘lunch peak’ as well
– people go out to eat.

One curious phenomenon is that the model seems to have trouble capturing the
morning peak at about 8-9 in street type 3, regardless of the density type. Maybe this is
because the peaks really fall at slightly di�erent times but seems to be consistent under-
estimation going on. Looking back at the distribution of types in Table 2.2 street type 3
is the least common, but this should not necessarily give bad estimates across this type,
especially not in such a consistent manner.

Comparing the estimates to the distribution of types also gives some overall results.
The estimates pretty much agree with data in all the groups with 5% or above of the data
(all of street type 1, and density types 2,3 in street type 4), perhaps with the exception
of density 4-street 1 where the estimate has a spurious morning peak.
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Figure 4.6: Normalized true counts (blue, solid) and pointwise 95% CIs (blue, dashed)
vs normalized estimated counts (Red), split by density type (rows) and street type
(columns). Data from all cities. The normalization consists of subtracting the mean
and dividing by the standard deviation. This is done separately for the mean counts and
the mean e�ects. The CI width is divided by the same standard deviation as the mean
estimate.
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4.1.3 Model checks
In Figure 4.7 we see the posterior overdispersion (that is, the posterior of 1/s where s is
the size parameter). The overdispersion is with high likelihood (about 0.95) between 1.51
and 1.6, so it is clearly nonzero. Thus the negative binomial distribution (or some other
overdispersion adjustment) is thus necessary, and Poisson regression is not appropriate
for this data. Hence we can not simplify the model and use a Poisson regression without
undermining the integrity of the model.

Figure 4.8 shows sorted PIT values compared to uniform quantiles, with PIT on 20
simulated datasets in grey.

The PIT values of the �t do not seem to be uniformly distributed. However, the
values on the data do not look so di�erent from the simulated values, and these do not
look uniform either. Thus, the conclusion from this plot is twofold. The �rst is that
(as was suspected) we do not actually get uniformly distributed PIT values in this case.
The second is that the model seems appropriate for the data – the behaviour of the PIT
values on the observed data is similar to the values for simulated data with the assumed
distribution.
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Figure 4.7: Posterior distribution of overdispersion. The shaded region shows a 95%
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Figure 4.8: PIT-QQ-plot: Sorted PIT values versus uniform quantiles (black); 20 simu-
lated runs in grey.
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4.2 Model Comparisons
We next compare di�erent models. The chief model comparison results are shown in
Table 4.1.

This table displays the test data scores of the models considered, and some further
summary statistics (i.e. predictive interval coverage, RMSE and MAE). What can be
seen from this is that the best models seem to be the main model and the model with
no street type time e�ects. These models perform similarly with respect to both scores
used (logarithmic and QI) and outperform the others, with the exception of the random
intercept model. The random intercept model actually has the best performance with
respect to QI score, and logarithmic score performance that is not not far behind that
of the main model and the model without street type e�ects. It does however have
markedly worse performance with respect to CRPS. Thur, the ‘safer bet’ is probably to
go with the main model, but models with some form of random intercept can be worth
investigating further.

Thus, the conclusions regarding model selection is that the main model is a reason-
able choice but that the street type time e�ects are perhaps not strictly needed, as was
alluded to above when discussing their estimates. The scores indicate that the other
parts of the model (the �xed e�ects, the other time e�ects etc.) do improve the accuracy
and should not be dropped without good reason.

The predictive interval coverage for all models is close to 95% so it seems that the
uncertainty is estimated correctly in all cases.

Finally, the time e�ect estimate comparisons of Figures 4.9, 4.11, and 4.10 show that
the model is reasonably robust. The removal of �xed e�ects and the inclusion of random
intercepts do not change the time e�ects greatly, perhaps changing the street type e�ects
a bit more than the density type e�ects. This indicates that the exact choice of model is
not very important if the main interest is in time e�ect estimates in the vein of Figure 4.6.
We can therefore quite safely reason about these based only on the results of the main
model.

Model Log Score QI Score CRPS Coverage (%) MAE RMSE
Main 4.43 4.22 6.74 95.9 13.89 124.1
No �xed e�ects 4.48 4.62 7.01 96.1 16.89 123.1
No street type 4.43 4.24 6.71 96 14.01 124.2
Only mean e�ect 4.44 4.37 6.67 95.7 14.66 120.6
No time e�ects 4.48 4.34 7.14 95.9 14.78 126.5
Street random intercept 4.45 4.16 7.42 95.6 14.09 133

Table 4.1: Average scores and other summary statistics on test data across 10 random
train-test splits. The same splits were used for all models. MAE and RMSE are computed
using posterior means as predictions.
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Main No fixed effects Random intercept
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Figure 4.9: Estimated mean e�ect µ for di�erent models. The �gure shows the posterior
mean (solid line), and 95% pointwise (dark grey) and simultaneous (light grey) credible
intervals.

Main No fixed effects Random intercept

1: B
ackground netw

ork
2: N

eighbourhood streets
3: C

ity streets

10 15 20 10 15 20 10 15 20

−0.8

−0.6

−0.4

−0.2

0.0

0.2

−0.50

−0.25

0.00

0.25

−0.4

−0.2

0.0

0.2

time

ef
fe

ct

Figure 4.10: Estimated Street type e�ects βj for di�erent models. The �gure shows the
posterior mean (solid line), and 95% pointwise (dark grey) and simultaneous (light grey)
credible intervals.
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Figure 4.11: Estimated density type e�ects αi for di�erent models. The �gure shows
the posterior mean (solid line), and 95% pointwise (dark grey) and simultaneous (light
grey) credible intervals.
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4.3 Pro�les for individual cities
As a last result we �t the main model to one city at a time and plot the resulting time
pro�les. These are shown for Stockholm in Figure 4.12, Amsterdam in Figure 4.13, and
London in Figure 4.14. Due to the smaller datasets some groups are missing completely,
and some have only one street in them.

The peaks are less obvious in Amsterdam, and in some cases (density type 3) more
clear in London. Stockholm has no streets in density type 4, and the model does not seem
to work so well for density type 1 in this city. The overall �t is not so good in Stockholm
but is arguably better in Amsterdam and London than the �t to all cities simultaneously.
This is natural if the shape over time of the data di�ers between cities which (considering
the data curves in the �gures) seems to be the case. When �tting the model to one city
at a time there is also less data for the model to adapt to, while the ‘degrees of freedom’
remain the same. So in this sense it is also easier for the model to �t to one city at a time.

We can also compare the type e�ect estimates when �tting the model to cities one
at a time. Figure 4.15 compares the density type e�ects αi between using all cities, just
Amsterdam and just London (Stockholm is not included due to the lack of density type 4
streets). We can see that there is a rather clear di�erence between the e�ect for Amster-
dam and London by looking at types 4 and 5. The Amsterdam and London estimates also
di�er from the estimates when using all cities, both in uncertainty (which is to be ex-
pected) and shape. Similar behaviour happens for the baseline and street e�ects, though
we do not show them here. This is an additional indication that there is a di�erence
between the cities that is naturally not captured well by the main model.

In the light of these remarks a natural extension of the model to investigate is one
where we let the time e�ects vary by city as well. However, the inclusion of city-by-city
variation in this manner impedes the generalisability of the model to cities not in the
dataset so if this is to be done one has to make sure that this is not at odds with the
modelling goals.
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Figure 4.12: Normalized true counts (blue, solid) and pointwise 95% CIs (blue, dashed)
vs normalized estimated counts (Red), split by density type (rows) and street type
(columns). Data from Stockholm. The normalization is as in Figure 4.6. Note that there
are no streets in density type 4.
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Figure 4.13: Normalized true counts (blue, solid) and pointwise 95% CIs (blue, dashed)
vs normalized estimated counts (Red), split by density type (rows) and street type
(columns). Data from Amsterdam. The normalization is as in Figure 4.6
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Figure 4.14: Normalized true counts (blue, solid) and pointwise 95% CIs (blue, dashed)
vs normalized estimated counts (Red), split by density type (rows) and street type
(columns). Data from London. The normalization is as in Figure 4.6
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Figure 4.15: Density type e�ects (αi ) for the main model compared to models �tted
separately to Amsterdam and London. Lines are posterior means, shaded regions are
95% pointwise (dark grey) and simultaneous (light grey) credible intervals.
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Chapter 5

Conclusions and Possible Extensions

In this report we have modelled pedestrian counts over time in three European cities.
We have seen that functional ANOVA based on the types described in [Ber+17] is rather
successful as a method for this, giving estimates in good agreement with the data. This
rather simple model manages to capture even the time dependence rather well; especially
considering how simple the categorical covariates are. This bodes well for the earlier
mentioned usage of these models in the planning of urban developments – the types have
rather simple interpretations in terms of what types of buildings they correspond to, and
thus predicting hour-by-hour pedestrian �ows based on what is being built should be
possible. There are also plans for future projects incorporating this type of analysis in
actual planning of urband developments.

Throughout this project there has been many wishes, thoughts, and ideas that never
made it into this report. This has been for di�erent reasons – lack of data, lack of time, or
simply because they seemed to show little promise after doing some initial experiments.
While the last category is perhaps not so important, some ideas from the �rst two can
be worth divulging.

The obvious one is the eternal wish in all statistical projects: that there would bemore
data available, both in terms of sheer amount and in terms of the number of explanatory
variables. For an example of the latter, it might be interesting to look at weather data in
conjunction with the data already used. It is quite natural that the number of pedestrians
is correlated with weather conditions such as rain. It would also be interesting to have
data for more hours of the day, i.e. data through the night and not just from 6 to 21.
With such data it could also be possible to leverage the cyclic structure (i.e. 24=00) to
get estimates that unlike ours do not have increasing uncertainty towards the edges.

Another idea is to look into using the spatial structure in the data. The random in-
tercept model (with its inconclusive results) is a �rst primitive foray into this direction
but more complex ideas are possible. It did not make it into this report but models using
Matérn random �elds based on the distance between streets were tried in this project,
with computations using the SPDE methods of [LRL11]. They did however not seem
to give much better results than the plain random intercepts and they greatly increased
computation time. This might be an indication that a spatial model needs to work di-
rectly with the road network topology rather than distances to work well. It might be
possible to leverage ‘Kircho�’s law’ (the number of people that enter an intersection
must equal the number that exit it) to get better �tting models. This is however com-
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plicated by the fact that the data features isolated clusters of streets, so pedestrians can
enter and exit the data, giving leakage. This ties back to the wish for more data: if
there was data on every single street this would not happen. Overall this seems to be a
non-trivial problem that can yield interesting results if investigated further.

As a �nal ‘idea’ it would be nice to work more on visualising the results. In the
introduction we mentioned a web GUI where the time-independent results have been
visualised, and also that there has not yet been time to incorporate the results of this
thesis into the GUI. This was originally part of the plan for this project but the focus
ended up shifting more towards the modelling itself. Clear visualisation is often very
helpful when developing statistical models and the modelling here is unlikely to be an
exception. In particular, the GUI, which includes visualisation on maps of the cities,
might be very helpful if one wants to develop proper spatial models for this and related
data. Some di�culty arises from trying to simultaneously visualise the data and model
over both time and space, but this di�culty might be worth dealing with to get a better
understanding of the data.

However, we have reached the end of this masters thesis, and so all these ideas are
perhaps best left for other theses.
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Appendix A

Some notes on the total count
analysis

In this Appendix we give some notes on the total counts results from the analysis per-
formed in [Sta+19] and preliminary analyses leading up to that. We do not give any
detailed results in this section; we instead mention a few insights from the earlier anal-
yses that carried over to the time analyses used here.

The main distinguishing element in these analyses compared to the current report
is the outcome variable. In the current report, the focus is on the hour-by-hour pedes-
trian �ow intensity while in previous analyses only aimed at predicting total pedestrian
counts throughout the entire day. Adding up the values over the entire day has the ef-
fect of increasing the values, which makes a continuous approximation more reasonable.
The analysis in [Sta+19] shows some success transforming the counts as log(1 + y) and
then applying ordinary linear regression, achieving comparable performance to nega-
tive binomial regression. With the lower counts we get wehn we split them up by hour
such a model is not really reasonable however.

There are also di�erences in the covariates used. In the functional ANOVA method
used for the time analysis the most important covariates are the density and street types,
which are categorical. As was mentioned above, these are based on clustering of contin-
uous variables. In the total counts analysis the types are not used. Instead (some of) the
clustered continuous variables are used as covariates themselves. This makes the model
a more typical GLM regression even in the negative binomial case. It was noted that the
variables used when creating the density types were signi�cant in the model. Working
with these continuous covariates also showed that it was necessary to normalize them,
especially so as the same priors are used for all �xed e�ects.

The �nal normal and negative binomial models used in the total counts analysis
were preceded by attempts at using Poisson. The Poisson models showed indications
of rather strong overdispersion which lead to the negative binomial models. This then
carried over to the analysis performed in this report. One might have thought of retrying
a Poisson model, but as the posterior overdispersion estimates (Figure 4.7) show the
negative binomial is also justi�ed by the data for the time-based models considered here.

Finally, the idea of using PIT as a major model checking tool arose in connection
with the total counts analysis. For the log-transformed normal models, normal QQ-
plots were useful as a model checking tool. They were however not directly applicable
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to the negative binomial models as the distribution of a residual from such a model is
not known. This lead to the idea of using PIT as an alternative and thus get something
with a known (uniform) distribution.
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