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Abstract

The dividend-growth based test of return predictability, proposed by Cochrane 

[2008, Review of Financial Studies 21, 1533-1575], is similar to a likelihood-based 

test of the standard return-predictability model, treating the autoregressive param-

eter of the dividend-price ratio as known. In comparison to standard OLS-based 

inference, both tests achieve power gains from a strong use of the exact value pos-

tulated for the autoregressive parameter. When compared to the likelihood-based 

test, there are no power advantages for the dividend-growth based test. In common 

implementations, with the autoregressive parameter set equal to the corresponding 

OLS estimate, Cochrane’s test also suffers from severe size distortions.
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1 Introduction

A standard empirical framework for testing return predictability consists of a predictive

regression for returns and an autoregressive (AR) process for the dividend-price ratio. In

an influential study, Cochrane (2008) adds a predictive regression for the dividend-growth

rate to this standard model, and links the three equations through the Campbell and

Shiller (1988) present value identity. Cochrane’s key insight is that under the identity that

links returns, prices, and dividends, a given degree of predictability in returns corresponds

exactly to some degree of predictability in dividend growth. Thus, if one is testing the

null hypothesis of no return predictability, using the dividend-price ratio as predictor, this

null hypothesis has an exact translation in terms of predictability in dividend growth.1

In this paper, we show that Cochrane’s dividend-growth based test is very similar to

a test based on the full information maximum likelihood (ML) estimator for the standard

return and dividend-price ratio system, with the AR parameter of the dividend-price ra-

tio treated as known. Cochrane’s test can thus be viewed as an economically motivated

(approximate) derivation of the ML estimator in the case of a known AR parameter.

This finding explains why the dividend-growth based test, as implicitly formulated by

Cochrane, appears more powerful than the return-based test using the simple OLS estima-

tor. However, if one were to use the same assumptions when formulating the return-based

test, one could use an ML procedure that (asymptotically) dominates the dividend-growth

based test. That is, if one compares testing approaches based on the same information

set, or the same set of assumptions—treating the AR parameter as known and equal to

1Cochrane’s proposed modelling framework and testing approach has received great interest in the
profession, and there is now a host of papers that evaluates both return predictability as well as dividend-
growth predictability. Papers explicitly using Cochrane’s (2008) approach to test for return predictability
include Chen (2009); Engsted and Pedersen (2010); Golez and Koudijs (2018). Related works that
consider both return and dividend-growth predictability include, among others, Lettau and Ludvigson
(2005); Binsbergen and Koijen (2010); Lacerda and Santa-Clara (2010); Lettau and Ludvigson (2010);
Chen et al. (2012); Kelly and Pruitt (2013); Golez (2014); Bollerslev et al. (2015); Maio and Santa-Clara
(2015); Detzel and Strauss (2016). Koijen and Van Nieuwerburgh (2011) provides a review on return and
dividend-growth predictability.
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some given value—there are no apparent gains from using the dividend-growth regression

in testing for return predictability.2

The ML procedure is extremely sensitive to the specific value used for the AR parame-

ter of the dividend-price ratio, and by implication so is Cochrane’s procedure. Specifically,

the choice to treat the OLS estimate of the AR parameter as the “true” value, which ap-

pears to have been adopted in subsequent empirical studies (e.g., Chen, 2009; Engsted

and Pedersen, 2010; Golez and Koudijs, 2018), leads to severe size distortions. A test

with a nominal size of five percent is shown to have actual rejection rates in excess of 20

percent under the null hypothesis. On the other hand, if the value of the AR parameter

is set high enough, such that it is greater than or equal to the true parameter value in

the data, the size of the resulting test can be controlled. For instance, under an assump-

tion that the dividend-price ratio is stationary, setting the AR parameter equal to unity

would ensure that it is greater than the true parameter value in the data. In this case,

Cochrane’s test becomes similar to the conservative sup-bound test developed in Lewellen

(2004) and analyzed further in Campbell and Yogo (2006).

To form some intuition for our results, note that Cochrane’s predictive model is made

up of three regressions. The regression equations are linked together by the Campbell

and Shiller (1988) present value identity, which implies an exact relationship among the

slope coefficients as well as the error terms in the three regressions. Thus, any one of the

three equations is redundant in the model formulation and the standard bi-variate pre-

dictive system, consisting of a predictive regression for returns and an AR process for the

dividend-price ratio, must contain exactly the same information as the tri-variate system.

Our results essentially confirm this basic intuition: Adding a fully redundant equation

to a regression system should not lead to any statistical gains. From the perspective of

2Within the same framework, Cochrane also discusses tests of long-run predictability. We do not
consider the properties of these tests here, as their formulation is based on a re-scaled version of the
return coefficient, and does not explicitly rely on inference in the dividend-growth regression.
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empirical research, our findings imply that if one is interested in testing for return pre-

dictability, there is no extra information available in the dividend-growth equation, and

equally or more powerful tests can be formulated from the standard predictive regression

setup.

An empirical application to aggregate U.S. stock returns illustrates our main theoreti-

cal results. Specifically, we show that the dividend-growth based test provides very similar

results to an ML-based test, and that both tests depend strongly upon the assumption

on the maximum feasible value for the AR parameter in the dividend-price ratio. If one

is not willing to impose any stronger assumption than stationarity of the dividend-price

ratio, both tests fail to reject the null hypothesis of no return predictability at the five

percent significance level. On the other hand, if one is willing to assume that the AR

parameter in the dividend-price ratio is below about 0.97 in annual data, the evidence

would point in favor of return predictability. Seemingly small changes in the assumptions

on the AR parameter can thus lead to rather drastic changes in inference.

2 Testing return predictability

2.1 Model formulation

Our predictive model is identical to the one used by Cochrane (2008). Let rt denote the

log-returns from period t−1 to t, dt the time t log-dividends, and dt−pt the corresponding

log dividend-price ratio. The joint model of return and dividend-growth predictability is

formulated as the following restricted first-order VAR system,

rt = αr + βr (dt−1 − pt−1) + εrt , (E1)

∆dt = αd + βd (dt−1 − pt−1) + εdt , (E2)

dt − pt = αdp + φ (dt−1 − pt−1) + εdpt . (E3)
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By Campbell and Shiller (1988), the following (approximate) present value identity

holds,

rt = ρ (pt − dt) + ∆dt − (pt−1 − dt−1) . (1)

The identity is obtained through a log-linearization of returns around the long-run mean

of the dividend-price ratio, denoted by ρ and empirically defined as

ρ =
e−(d−p)

1 + e−(d−p)
, (2)

where d− p is the average dividend-price ratio. The parameter ρ is subsequently treated

as a fixed and “known” quantity. In the CRSP data used by Cochrane, ρ = 0.9638, and

this is the value that we use throughout this study as well.

The present value identity in equation (1) implies the following restrictions on the

coefficients and error terms in the predictive equations (E1)-(E3),

βr = βd + (1− ρφ) , (R1)

and

εrt = εdt − ρε
dp
t . (R2)

The restrictions in (R1) and (R2) imply that any one of the three model equations is

redundant, and an equivalent model formulation would be retained by dropping any one

of the equations (E1)-(E3).3

Let εt =
(
εrt , ε

d
t , ε

dp
t

)′
denote the vector of mean zero innovations, and let Σ ≡ E [εtε

′
t]

be the covariance matrix for εt, where σij, i, j = 1, 2, 3, denotes the elements of Σ. By

3The identity in equation (1) is only approximate, and the restrictions stated in equations (R1)
and (R2) are therefore also approximate. However, as shown by Cochrane (2008), as well as in many
subsequent papers (e.g., Binsbergen and Koijen, 2010; Koijen and Van Nieuwerburgh, 2011; Engsted
et al., 2012; Kelly and Pruitt, 2013), the restrictions in (R1) and (R2) hold very closely empirically, and
we will therefore treat them as exact throughout the paper. This is also in line with how Cochrane deals
with them, and all his simulation results make explicit use of their exact identity.
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restriction (R2), the covariance matrix Σ can be written as

Σ =


σ11 σ11 + ρσ13 σ13

σ11 + ρσ13 σ11 + ρ2σ33 + 2ρσ13 σ13 + ρσ33

σ13 σ13 + ρσ33 σ33

 . (3)

It is easily seen that Σ is not full rank, reflecting the redundancy in the equation system

(E1)-(E3).

2.2 Standard OLS-based inference

Cochrane’s (2008) key idea is that the absence of return predictability must imply the

presence of dividend-growth predictability. That is, the coefficient restriction (R1) implies

that if βr = 0,

βd = − (1− ρφ) < 0, (4)

provided ρφ < 1. Thus, under the assumption of φ < 1 (or at a minimum ρφ < 1), it

follows that βr = 0 ⇒ βd = − (1− ρφ) 6= 0 and βd = 0 ⇒ βr = (1− ρφ) 6= 0. Cochrane

therefore suggests that instead of testing just the usual simple null, βr = 0, one should

also test whether βd = − (1− ρφ). Thus, the “joint” null hypothesis can be formulated

as

H0 : βr = 0 and βd + (1− ρφ) = 0. (5)

Under the maintained model specification, the coefficient restriction βr = βd+(1− ρφ)

is exact and the restriction also applies to the estimated values (see Appendix A), such

that

β̂r,LS = β̂d,LS +
(

1− ρφ̂LS
)
, (6)

where β̂r,LS, β̂d,LS, and φ̂LS are the OLS estimators of the corresponding parameters. Since

this equality holds numerically for the OLS estimates in any sample, the distribution of
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β̂r,LS and β̂d,LS +
(

1− ρφ̂LS
)

must also be identical. Thus, provided all three parameters,

βr, βd, and φ are estimated (by OLS), there is no distinction between testing the joint

null in equation (5) viz-á-viz the standard simple null of βr = 0, and no power gains can

therefore be achieved through such an approach.

2.3 Cochrane’s simulation approach

In contrast, Cochrane (2008) proposes a simulation-based approach—from which finite-

sample distributions of the estimators are obtained—and reports substantially stronger

evidence of return predictability when considering a test based on βd rather than βr. The

simulations are intended to replicate the estimated model as closely as possible, while

imposing the null of no return predictability.

Specifically, the simulated model is specified as follows. The AR parameter φ is set

equal to the OLS estimate from the data being used (below, we also discuss alternatives

to this parameterization). Given this value of φ, βd is set such that βr = βd + (1− ρφ) =

0, thus imposing the null of no return predictability. That is, βd = − (1− ρφ). The

parameter ρ is set to 0.9638 and the covariance matrix Σ is also set equal to the empirical

estimate from the data.

Samples from this model are simulated, and βr and βd are estimated in each of these

samples. In particular, equations (E2) and (E3) are simulated, and the values in the

return equation (E1) are inferred from the identity (1). The present value identity thus

holds exactly in the simulations, and by implication the restrictions (R1) and (R2) also

hold exactly.

In each draw i of the simulation, coefficient estimates β̂
i,sim

r,LS , β̂
i,sim

d,LS , and φ̂
i,sim

LS are

obtained through OLS estimation. For each simulated sample, these are related as

β̂
i,sim

r,LS = β̂
i,sim

d,LS +
(

1− ρφ̂
i,sim

LS

)
. (7)
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Let bDatar ≡ β̂
Data

r,LS and bDatad ≡ β̂
Data

d,LS denote, respectively, the OLS coefficient estimates of

βr and βd in the actual data. The simulations are then used to evaluate how rarely the

events β̂
i,sim

r,LS ≥ bDatar and β̂
i,sim

d,LS ≥ bDatad occur. That is, treating bDatar and bDatad as given,

the probabilities

Pr
(
β̂
i,sim

r,LS ≥ bDatar

)
≡ pr, (8)

and

Pr
(
β̂
i,sim

d,LS ≥ bDatad

)
≡ pd, (9)

are determined based on the empirical distributions of β̂
i,sim

r,LS and β̂
i,sim

d,LS . These p-values

capture the likelihood of observing the empirically estimated coefficients bDatar and bDatad ,

if the null of no return predictability was true.4 Cochrane finds that pd ≈ 2% whereas

pr ≈ 22%, which is interpreted as the dividend-growth based test providing much stronger

evidence against the null of no return predictability than the predictability test for the

actual returns. That is, the bDatad outcome is highly unlikely to have been generated under

the null model, whereas the bDatar outcome is not that unlikely. Based on these results, it

is concluded that the test based on βd is more powerful.5

Why are the two p-values, pr and pd different? According to the discussion in the

previous sub-section, one would expect the tests of βr and βd to be identical. Consider

first the case outlined above, where the value of φ used to simulate the dividend-price

ratio process is set to φData ≡ φ̂
Data

LS . This specification is the one that seems to have

been adopted in subsequent empirical studies (Engsted and Pedersen, 2010; Golez and

Koudijs, 2018), although Cochrane also considers other scenarios that we discuss further

4Cochrane also considers the empirical distribution of the t-ratios β̂
i,sim

r,LS /(V ar(β̂
i,sim

r,LS ))1/2 and

β̂
i,sim

d /(V ar(β̂
i,sim

d,LS ))1/2. The subsequent literature seems to have primarily adopted the tests based
directly on the coefficients (e.g., Golez and Koudijs, 2018), and we similarly focus on these in our anal-
ysis. In non-reported Monte Carlo simulations, we find size results for the dividend-growth t-ratio test
that are similar to those we document for the coefficient test in Section 3.2 below.

5The word “power” is used here in a somewhat imprecise sense. Formally, power is defined as the
probability of rejecting the null under a given alternative. In Cochrane’s simulations, the rejection
probabilities are all obtained under the null and are therefore not, in the true sense, a measure of power.
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below. To see the implications of this formulation of the simulated model, write

bDatad = bDatar −
(
1− ρφData

)
= bDatar −

(
1− ρφ̂

i,sim

LS

)
+ ρ

(
φData − φ̂

i,sim

LS

)
, (10)

where the first step uses the restriction on the coefficients from the data and the second

step simply adds and subtracts ρφ̂
i,sim

LS .6 Using this expression together with the restriction

on the estimated coefficients in the simulations (equation (7)), it follows that

Pr
(
β̂
i,sim

d,LS ≥ bDatad

)
= Pr

(
β̂
i,sim

r,LS −
(

1− ρφ̂
i,sim

LS

)
≥ bDatar −

(
1− ρφ̂

i,sim

LS

)
+ ρ

(
φData − φ̂

i,sim

LS

))
= Pr

(
β̂
i,sim

r,LS − ρ
(
φData − φ̂

i,sim

LS

)
≥ bDatar

)
6= Pr

(
β̂
i,sim

r,LS ≥ bDatar

)
(11)

whenever φ̂
i,sim

LS 6= φData.

How does this simulation-based testing approach differ from the standard OLS infer-

ence discussed in the previous sub-section, where the βr- and βd-based tests of return

predictability were shown to be identical? The key difference stems from the fact that if

one wishes to use the estimate of βd to test a null of βr = 0, the relevant null hypothesis for

βd is in fact not fully known since βr = 0⇔ βd = − (1− ρφ). In the simulation approach,

the p-values for the βd-based test reflect the sampling uncertainty in the estimates of βd,

but ignore the uncertainty coming from the fact that the value of the AR parameter in

the original data is in fact unknown. In effect, the p-values correspond to a test of the

null hypothesis βd = −
(
1− ρφData

)
, which postulates that the true AR parameter in the

data is known and equal to φData.

Because of the downward bias in the OLS estimator of the AR coefficient φ, it follows

6The restriction on the coefficients (R1) does not hold exactly for the OLS estimates in the actual
data, but the discrepancy is empirically very small.
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that on average, φData − φ̂
i,sim

LS > 0, and it is therefore reasonable to assume that

Pr
(
β̂
i,sim

d,LS ≥ bDatad

)
= Pr

(
β̂
i,sim

r,LS − ρ
(
φData − φ̂

i,sim

LS

)
≥ bDatar

)
≤ Pr

(
β̂
i,sim

r,LS ≥ bDatar

)
,

(12)

which goes some way towards explaining the results in Cochrane (2008). In fact, one

can get a stronger result. The full information ML estimator of βr with a known φ (see

Campbell and Yogo, 2006) is given by

β̂r,ML (φ) = β̂r,LS +
σ13
σ33

(
φ− φ̂LS

)
. (13)

In Cochrane’s data, σ13/σ33 ≈ −0.9 and β̂r,ML ≈ β̂r,LS − 0.9
(
φ− φ̂LS

)
. With

ρ ≈ 0.96, it follows that

β̂
i,sim

r,LS − ρ
(
φData − φ̂

i,sim

LS

)
≈ β̂

i,sim

r,LS − 0.96
(
φData − φ̂

i,sim

LS

)
≈ β̂

i,sim

r,ML

(
φData

)
, (14)

where β̂
i,sim

r,ML

(
φData

)
is calculated using the true autoregressive parameter, φData, in the

simulated model. Further, note that the ML estimator of βr, with the least squares

estimate of φ treated as the known true value, trivially reduces to the OLS estimator of

βr. That is, bDatar = β̂
Data

r,LS = β̂
Data

r,ML

(
φData

)
, where β̂

Data

r,ML

(
φData

)
is the ML estimator of βr

in the original data, treating φData = φ̂
Data

LS as the true value of φ. Defining bDatar,ML

(
φData

)
≡

β̂
Data

r,ML

(
φData

)
= bDatar , equations (12) and (14) thus give

Pr
(
β̂
i,sim

d,LS ≥ bDatad

)
≈ Pr

(
β̂
i,sim

r,ML

(
φData

)
≥ bDatar

)
= Pr

(
β̂
i,sim

r,ML

(
φData

)
≥ bDatar,ML

(
φData

))
.

(15)

The test based on β̂d,LS in this setup of Cochrane’s simulation-based approach therefore

turns out to be very similar to a test using the ML estimator of βr, when φ is treated as

fixed and known and equal to the OLS estimate in the data.
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2.4 Altering the value of φ in the simulations

What happens if the value for φ used in the simulations is changed from φData = φ̂
Data

LS to

some other value? As shown in Appendix B, a similar result to that derived above holds,

except the βd-based test now corresponds to a test based on the ML estimator using this

alternative value for the AR parameter as the true value of φ. In particular, if one sets the

AR parameter in the simulations equal to some maximum feasible value for φ, say φMax,

one ends up with a test that is similar to Lewellen’s (2004) test, interpreted by Campbell

and Yogo (2006) as a sup-bound test. Provided the assumption φ ≤ φMax indeed holds,

the resulting test will generally be conservative, in the sense that if φ < φMax, the rejection

rate under the null hypothesis will be smaller than the nominal significance level of the

test. That is, analogous to the actual ML-based tests, setting the AR parameter large

enough in Cochrane’s simulation-based test is a way of constructing tests that do not

over-reject the null.

2.5 Is the similarity with ML coincidental?

The near-equivalence of the dividend-growth based test and the ML-based test is seem-

ingly somewhat accidental, and depends on the specific values of σ13 and σ33. Should

one in general expect the two procedures to be close? If σ13/σ33 = −ρ, the approximate

equality in equation (15) is exact. By the restrictions in the covariance matrix Σ (equation

(3)), σ13/σ33 = −ρ is equivalent to σ23 = 0. Therefore, the near-equivalence of the tests is

a result of the near-zero correlation between the dividend-growth and dividend-price ratio

innovations observed in the data used by Cochrane (2008), which cover the U.S. market

from 1927 to 2004.

However, σ23 ≈ 0 does not seem to be a universal fact. The empirical literature

has documented a relatively strong correlation (ranging from 0.3 to 0.5) between the

dividend-growth and dividend-price ratio innovations in both earlier U.S. data (Chen,
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2009) as well as in international data (Engsted and Pedersen, 2010). In these contexts,

σ23 is significantly different from zero, and the dividend-growth based test may differ

substantially from the ML-based test.

3 Size and power of the test

3.1 Lessons from the ML estimator

The dividend-growth based test was shown to be similar to an ML-based test, where the

value of the AR parameter φ specified in the simulation design is treated as the “true”

AR parameter in the ML estimator. Cochrane’s dividend-growth based test therefore

(approximately) inherits the properties of the ML procedure, for a given specification of

the AR parameter.

In case the AR parameter in the simulation design is set to the OLS estimate from

the data, the result is a test that is severely over-sized. We illustrate this below by

reporting actual rejection rates from a Monte Carlo simulation, under the null of no return

predictability. However, the general idea can quite easily be understood by considering the

properties of the ML estimator. As remarked above, the ML estimator using φ̂LS instead

of the true value φ, reduces to the OLS estimator. However, if one now proceeds as if

φ̂LS was indeed the true known value for φ, the (asymptotic) variance of the estimator

would erroneously be calculated as (see Appendix A)

V ar
(
β̂r,ML

(
φ̂LS

))
=
(
1− δ213

)
V ar

(
β̂r,LS

)
≤ V ar

(
β̂r,LS

)
, (16)

where δ13 = σ13
/√

σ11σ33 is the correlation between the return and the dividend-price

ratio innovations. Since β̂r,ML

(
φ̂LS

)
= β̂r,LS, the variance of the ML estimator would

therefore be severely under-estimated for large absolute values of δ13 (in Cochrane’s data,
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δ13 ≈ −0.7). Resulting test statistics based on this (erroneous) result would be over-sized.7

In general, one never has full knowledge of φ, but one might be willing to impose some

upper limit on the range of possible values for φ. Most prominently, one might assume

that the dividend-price ratio is a stationary process, such that φ < 1. More generally,

suppose one imposes the assumption that φ ≤ φMax. In that case, provided σ13 < 0, one

can form a “conservative” (downward biased) estimator of βr,

β̂r,ML

(
φMax

)
= β̂r,LS +

σ13
σ33

(
φMax − φ̂LS

)
. (17)

This is essentially the approach taken by Lewellen (2004), although his motivation

comes from the finite sample bias result for β̂r,LS, derived in Stambaugh (1999). Camp-

bell and Yogo (2006) also discuss this type of conservative estimator and associated test

statistics. Under the assumption that φ ≤ φMax, and provided σ13 < 0, tests based on

the resulting estimator are conservative (i.e., under-sized).8

3.2 Monte Carlo simulations

The above results are for the actual ML procedure. Given the close similarity between

the ML-based test and Cochrane’s dividend-growth based test, similar results should

also apply to the latter. To verify this, we perform a Monte Carlo simulation where

the actual rejection rates under the null of no return predictability are obtained. To be

clear, Cochrane’s testing procedure is in itself a simulation-based procedure, and here

we evaluate the finite sample properties of that procedure in a controlled Monte Carlo

experiment. The details of the Monte Carlo simulation are given in Appendix C, but the

7The OLS estimator is also biased, which further invalidates inference.
8A conservative implementation is not the only approach to making ML-based inference feasible (i.e.,

dealing with the fact that the true value of φ is unknown). For instance, Campbell and Yogo (2006) use
a bonferroni method to obtain a feasible version of ML-based inference. Analogous implementations of
the dividend-growth based test might also be considered, but they add little to the principal discussion
regarding the relationship between the ML and dividend-growth based tests.
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basic setup is described below.

The dividend-growth and dividend-price ratio equations ((E2) and (E3)) are simulated,

and the return equation (E1) is inferred from the present-value identity in equation (1).

The null hypothesis βr = 0 is imposed and for a given value for φ, which varies between 0.9

and 0.995, the dividend-growth coefficient βd is implicitly determined by the parameter

restriction in equation (R1). The innovations, εdt and εdpt , are drawn from an iid normal

distribution with variances and covariances set equal to the empirical estimates presented

in Table 2 in Cochrane (2008). Intercepts are fitted in all regressions, although these are

not commented on below. The sample size in each simulation draw is set to T = 78,

the size of Cochrane’s original sample. As noted earlier, in the U.S. CRSP data set used

by Cochrane, the parameter σ23 is close to zero and the approximation ρ ≈ −σ13/σ33

therefore holds well (specifically, σ13/σ33 ≈ −0.9 and ρ ≈ 0.96). All simulation results are

based on 10,000 repetitions.

We fix the nominal size of Cochrane’s test procedure to five percent in a one-sided

test against a positive alternative. That is, in each round of the simulations, we reject

the null hypothesis of no return predictability for p-values less than or equal to 0.05.

As a comparison to Cochrane’s test, we also calculate rejection rates for the ML-based

test described in Campbell and Yogo (2006), which takes the shape of an adjusted t-

test (referred to as the Q-test in Campbell and Yogo’s notation). For this test, the

empirical rejection frequencies are calculated using standard critical values (i.e., reject for

test statistics greater than 1.65).

The results from the Monte Carlo simulations are reported in Figure 1, with the size of

the tests plotted as functions of the true parameter value φ in the data generating process.

The dividend-growth based test, using the least squares estimate of φ as the “true” AR

parameter, performs very poorly in terms of size. This is true for any underlying AR

parameter φ, with rejections rates always in excess of 20 percent for a nominal-sized 5
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percent test. The ML-based test implemented in an analogous manner—using the least

squares estimate of φ as the “true” AR parameter—suffer from even larger size distortions

than the dividend-growth based test, as also illustrated in Figure 1. This is to be expected,

since the ML-based test makes even stronger use of the value for the AR parameter.

Figure 1 also presents results for the conservative ML-based test, using equation (17),

and the dividend-growth based test performed in an analogous conservative way, where the

upper bound for the autoregressive parameter is set to φMax = 0.995. In this conservative

implementation, both tests exhibit rejection rates that are typically well below the nominal

five percent significance level. As the true parameter φ gets closer to the specified upper

bound φMax, the rejection rates approach five percent.

[Insert Figure 1 here]

3.3 Power

Given the large size distortions of the dividend-growth based test that uses the OLS

estimate of φ as the “true” AR parameter, there is little use in analyzing the power

properties of this specific implementation of Cochrane’s dividend-growth based test. The

conservative test maintains size well. However, as argued above, this test is similar to

Lewellen’s (2004) test and Campbell and Yogo’s (2006) sup-bound test. Based on their

studies, it is therefore clear that power gains can be achieved by using the dividend-growth

equation, but only viz-á-viz standard OLS tests, not against ML-based tests that also use

information on the AR parameter. The ML-based test is asymptotically the most powerful

(see Campbell and Yogo, 2006), and the dividend-growth based test can therefore at best

(asymptotically) achieve the power of the ML-based test.9

9Strictly speaking, the optimality properties of the ML-based test refers to the case when the AR
parameter is fully known. In a conservative formulation of the tests, power comparisons are difficult
since, by definition, the tests are not correctly sized in general. In non-reported simulations, we show
that under the parameter estimates in Cochrane’s study, the power of the ML and dividend-growth based
tests are very close in finite samples, both in a conservative implementation and in an implementation
where one makes use of the true value of the AR parameter (which is possible in a Monte Carlo exercise).
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4 Empirical results

We use the annual value-weighted CRSP returns, including and excluding dividends, to

calculate the dividend-price ratio and the dividend growth. The sample period is 1927 to

2016, and we use real returns calculated with inflation defined as the monthly change in

the Consumer Price Index.10

Our focus is on Cochrane’s dividend-growth based test, and we compare it to the

ML-based test. Specifically, we estimate equations (E1)-(E3), using the full 1927 to 2016

sample, and calculate the p-values for each test over a range of different values postulated

for φ. That is, we do not use the OLS estimator of φ in creating either of the test statistics,

since this test suffers from large size distortions. Instead we calculate the range of p-values

obtained for φ ∈ [0.95, 0.995].

Figure 2 illustrates the sensitivity of the test results with respect to the assumptions

made on the AR coefficient φ. In particular, the figure shows the p-values of the ML-based

and the dividend-growth based tests as a function of the (maximum) value specified for φ.

As is seen, if one is willing to assume that φ ≤ 0.97, one starts to find significant results.

[Insert Figure 2 here]

Figure 2 also clearly illustrates how the empirical results can be viewed as conditional

on one’s beliefs regarding the autocorrelation in the dividend-price ratio. If one is will-

ing to make stronger assumptions than merely assuming that the dividend-price ratio is

stationary, more significant results are obtained. It is worth pointing out that the OLS

estimate of φ is equal to 0.94, and using this value as the “true” AR value in the test

procedures would thus have led to a strong rejection of the null hypothesis.

10Using excess returns (over the 3-month Treasury Bill rate) or restricting the sample to end in 2004,
as in the original study by Cochrane, leads to very similar results to those reported here.
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5 Conclusion

We provide a detailed analysis of the properties of the dividend-growth based test of

return predictability in Cochrane (2008). We show that Cochrane’s test is similar to a

full-information maximum likelihood test, using an explicit assumption on the degree of

persistence in the predictor variable. Using this assumption gives both Cochrane’s test

and the ML-based test additional power over the standard OLS-based test. Cochrane’s

test can be viewed as an economically motivated proxy for the statistically motivated

efficient ML method, and as such Cochrane’s test does not add power over and above the

previously existing ML-based test. Importantly, we also show that unless one specifically

imposes a conservative approach to the formulation of Cochrane’s procedure, the test will

tend to over reject the null hypothesis of no return predictability.
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Figure 1: Actual size of the tests

Notes: The figure presents the actual size of one-sided nominal-sized five percent tests of
the null hypothesis of βr = 0 against a positive alternative. That is, the graphs indicate the
average rejection rates, for the corresponding tests, under the null hypothesis of no return
predictability. The dashed (solid) line is the dividend-growth (ML-) based test using the

OLS estimate φ̂
Data

LS as the value for the AR parameter. The dashed (solid) line with circles
represents the rejection rates for the conservative dividend-growth (ML-) based test using
φMax = 0.995 as the value for the AR parameter. The ML-based tests use standard normal
critical values (i.e., reject for test statistics greater than 1.65). The results are based on the
Monte Carlo simulation described in the main text with 10,000 repetitions.
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Figure 2: Empirical p-values as a function of φMax

Notes: The graph shows the p-values of tests of return predictability. The p-values are
plotted as functions of the value specified for the upper bound, φMax, on the AR parameter.
The dashed line represents the dividend-growth based test, and the solid line represents
the ML-based test (using critical values from the standard normal distribution). Both tests
specify that the value for the autoregressive parameter is set to the corresponding value for
φMax.
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Appendix

A Properties of the OLS and ML estimators

For ease of notation, define xt = dt − pt, and let X−1 denote the vector of stacked lagged

observations for xt. Similarly, denote r as the vector of observations on returns, and let

εr, εd, and εdp, denote the stacked innovations. We treat the model without intercepts,

but the results generalize immediately to regressions with fitted intercepts by replacing

all variables by their demeaned versions.

The OLS estimator of β = (βr, βd, φ)′ is now equal to

β̂LS =


β̂r,LS

β̂d,LS

φ̂LS

 = β +
(
X ′−1X−1

)−1


X ′−1ε
r

X ′−1ε
d

X ′−1ε
dp

 . (18)

Using βr = βd + (1− ρφ) and εr = εd − ρεdp,

β̂r,LS = βr +
(
X ′−1X−1

)−1
X ′−1ε

r

=
(
βd +

(
X ′−1X−1

)−1
X ′−1ε

d
)

+
(

1− ρ
(
φ+

(
X ′−1X−1

)−1
X ′−1ε

dp
))

= β̂d,LS +
(

1− ρφ̂LS
)
. (19)

If φ < 1 and εt is an iid or martingale difference sequence, it follows straightforwardly

from classical asymptotic results that as the sample size T →∞,

√
T
(
β̂LS − β

)
d→ N(0,

(
V ar

(
x2t−1

))−1
Σ), (20)

where Σ is given in (3), and V ar
(
x2t−1

)
= σ33

1−φ2 .11 Using the the shape of Σ given in (3),

11For φ close to one, the asymptotic distribution result stated in (20) does not hold up well in finite
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the asymptotic variance of the ML estimator of βr can now be expressed as follows,

V ar
(
β̂r,ML

)
= V ar

(
β̂r,LS +

σ13
σ33

(
φ− φ̂LS

))
= V ar

(
β̂r,LS

)
+
σ2
13

σ2
33

V ar
(
φ̂LS

)
− 2

σ13
σ33

Cov
(
β̂r,LS, φ̂LS

)
= V ar

(
β̂r,LS

)
+
σ2
13

σ2
33

σ33
σ11

V ar
(
β̂r,LS

)
− 2

σ13
σ33

σ13
σ11

V ar
(
β̂r,LS

)
= V ar

(
β̂r,LS

) (
1− δ213

)
. (21)

B The simulation-based test parametrized with φMax

Before analyzing the simulation-based test, recall first the “conservative” ML estimator

in equation (17),

β̂r,ML

(
φMax

)
= β̂r,LS +

σ13
σ33

(
φMax − φ̂LS

)
. (22)

In a conservative test, the value of β̂r,ML

(
φMax

)
is evaluated against the critical value

that would apply if the AR parameter in the data was indeed equal to φMax. Provided

the true value of the AR parameter in the data is less than or equal to φMax, and σ13 < 0,

the resulting estimator will be downward biased, and tests based on this estimator will

be conservative against a positive alternative.

Consider now the simulation-based test, where the simulated model is parametrized

with an AR parameter φMax. Let β̂
i,sim

r,ML

(
φMax

)
be the ML estimator of βr in the simu-

lations, and let bDatar,ML

(
φMax

)
≡ β̂

Data

r,ML

(
φMax

)
be the conservative ML estimate of βr in

the actual data. In the simulated data β̂
i,sim

r,ML

(
φMax

)
is the “correct” ML estimator, since

the simulated model has an AR parameter equal to φMax, whereas in the original data

the estimator is conservative (provided the true AR parameter is less than or equal to

φMax). In order to show that the simulation-based dividend-growth test is similar to the

samples, and the stationarity condition (φ < 1) is by no means necessary for our main analysis. However,
it enables a simple comparison of the (asymptotic) variances of the OLS and ML estimators.
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conservative ML test in this case, we need to show that

Pr
(
β̂
i,sim

d,LS ≥ bDatad

)
≈ Pr

(
β̂
i,sim

r,ML

(
φMax

)
≥ bDatar,ML

(
φMax

))
. (23)

That is, Pr
(
β̂
i,sim

r,ML

(
φMax

)
≥ bDatar,ML

(
φMax

))
compares the conservative ML estimate from

the data, bDatar,ML

(
φMax

)
, to the distribution of the ML estimator in a setting where φMax

is indeed the true value for the AR parameter.

For ρ ≈ −σ13/σ33, the ML estimator of βr in the simulations can be written as

β̂
i,sim

r,ML

(
φMax

)
= β̂

i,sim

r,LS +
σ13
σ33

(
φMax − φ̂

i,sim

LS

)
≈ β̂

i,sim

r,LS − ρ
(
φMax − φ̂

i,sim

LS

)
. (24)

As in Section 2.3, let bDatar ≡ β̂
Data

r,LS and bDatad ≡ β̂
Data

d,LS . By restriction (R1),

bDatad = bDatar −
(

1− ρφ̂
Data

LS

)
= bDatar −

(
1− ρφ̂

i,sim

LS

)
+ ρ

(
φ̂
Data

LS − φ̂
i,sim

LS

)
, (25)

and β̂
i,sim

d,LS = β̂
i,sim

r,LS −
(

1− ρφ̂
i,sim

LS

)
. The conservative ML estimator in the actual data,

using ρ ≈ −σ13/σ33, can be written as

bDatar,ML

(
φMax

)
≈ bDatar − ρ

(
φMax − φ̂

Data

LS

)
. (26)

It follows that

Pr
(
β̂
i,sim

d,LS ≥ bDatad

)
= Pr

(
β̂
i,sim

r,LS −
(

1− ρφ̂
i,sim

LS

)
≥ bDatar −

(
1− ρφ̂

i,sim

LS

)
+ ρ

(
φ̂
Data

LS − φ̂
i,sim

LS

))
= Pr

(
β̂
i,sim

r,LS ≥ bDatar + ρ
(
φ̂
Data

LS − φ̂
i,sim

LS

))
= Pr

(
β̂
i,sim

r,LS − ρ
(
φMax − φ̂

i,sim

LS

)
≥ bDatar − ρ

(
φMax − φ̂

Data

LS

))
≈ Pr

(
β̂
i,sim

r,ML

(
φMax

)
≥ bDatar,ML

(
φMax

))
. (27)
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C Implementation of Monte Carlo simulations

For a given set of parameter values, the procedure is summarized by the below steps. For

a simulation with 10,000 repetitions, steps 1-4 are repeated 10,000 times.

1. Simulate a single sample of size T = 78 of the system in equations (E1)-(E3), under

restrictions (R1) and (R2).

2. From the simulated sample, obtain OLS estimates of all regression coefficients, as

well as estimates of all parameters in the covariance matrix Σ. Denote the OLS

estimates of βr, βd, and φ as β̂
sim

r,LS, β̂
sim

d,LS, and φ̂
sim

LS , respectively.

3. Parametrize the same system as in step (1), imposing the null of no return pre-

dictability and replacing all other parameters of the model with the empirical esti-

mates from step (2). That is, in this parametrization, βr = 0, βd = −
(

1− ρφ̂
sim

LS

)
,

and all other parameters are set equal to the empirical estimates obtained in step

(2). Simulate 50,000 sample paths of size T = 78 from this empirically parametrized

system that imposes the null of no return predictability. For each of the simulated

samples, obtain OLS estimates of βr and βd.

4. Based on the resulting empirical distributions of the OLS estimators in step (3),

calculate the p-values for the coefficient estimates β̂
sim

r,LS and β̂
sim

d,LS, obtained from

the initial simulated sample in steps (1) and (2). Classify as rejection/non-rejection

depending on whether the respective p-value is less or greater than 0.05.

The above steps refer to the implementation of Cochrane’s procedure where the

parametrization in step (3) uses the OLS estimate of φ obtained in step (2). We also

consider a conservative test where the value of φ used to parametrize the simulated sys-

tem in step (3) is set to φMax = 0.995 and the value of βd is adjusted accordingly to ensure

that the null of no return predictability is imposed (i.e., βd = −
(
1− ρφMax

)
).
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