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Abstract 

In the pursuit of developing reliable tools for electoral fraud detection, tools that use statistical 

analysis have become very popular. Specifically, methods of digits pattern analysis, of election 

results, based on observations such as ‘Benford’s law’ have been deemed especially promising 

tools in electoral fraud detection. However, some versions of this digit pattern analysis have 

received a fair share of scrutiny. This paper will focus on evaluating the use of ‘last place’ digit 

pattern analysis, a method that has been shown to be the most promising in detecting electoral 

fraud by previous literature. By application to the 2018 parliamentary election in Sweden, where 

there is no reason to suspect fraud, and to the Ugandan presidential election of 2016 where a 

fraud-free election is unlikely; we find that the last digit pattern analysis failed to distinguish 

between fraudulent and non-fraudulent elections. Giving reason to question the usefulness of last 

place digit analysis. 
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Introduction 

Free and fair election is the cornerstone of a democracy. However, not all elections are 

conducted without manipulation resulting in fraudulent and unfair elections. Election 

manipulation is a prominent problem considering how you can manipulate votes at different 

levels, if one controls the bureaucracies that count the votes, they can easily be manipulated with 

little physical trace.  Additionally, in the modern day the ‘traditional’ route of fake ballots isn’t 

necessarily needed to manipulate an election. Rather “All that may be needed nowadays is access 

to an input port and a few lines of computer code” as Walter R. Mebane puts it in “Election 

Forensics: Vote Counts and Benford’s Law”(2006, p. 1). 

Some, including Mebane, have developed and applied methods to be able to detect if 

electoral fraud has occurred via mathematical analysis. One such method is based on analyzing 

the patterns of digits in vote counts and builds on observations such as ‘Benfords law’; the 

observations that certain place digits (in numerical data) have certain frequency distributions. 

Benfords law has been shown to be a promising tool for this purpose by numerous studies. The 

prospect of being able to, reliably, detect electoral fraud by simple statistical analysis using just 

the vote counts would be very useful. Not only would it cost less, since you only need to obtain 

vote counts in order to perform digit analysis. But unlike traditional methods of electoral fraud 

detection, like election commission that are often assigned by the sitting government or even 

independent observers such as the European Union's election monitors (known as the Election 

observation missions, abbreviated EUEOMs); digit-based test of electoral fraud is independent of 

human error and factors such as unobserved fraud.  

Still, the uses of digit-pattern analysis as a form of electoral fraud detection has been 

shown to not always do what it aims to. Both first- and second-digit pattern analysis have been 

shown to detect fraud where there has been non (Shikano & Mack, 2011; Deckert, Myagkov, & 

Ordeshook, 2011).  

This brings into question the usefulness of digit-pattern based tests of fraud. This paper 

will focus on evaluating the use of last digit patter analysis, specifically; a method that has been 

shown to be the most promising in detecting anomalies (Diekmann, 2007).  When using a last 

digit test to detect fraudulent vote counts, it is assumed that the last digit frequency of non-

fraudulent vote counts follows a certain (uniform) distribution. We should therefore be able to 

find such a pattern in an election where there are no real suspicions of fraud. Correspondingly, 
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we should be able to find that digit-patterns of vote counts in an election where authentic vote 

counts are unlikely deviate from the ‘expected’ distribution of non-fraudulent vote counts. The 

purpose of this paper is to tests this assumption by application on real election data.  

In the following sections Benfords law and digit analysis-based fraud detection will be 

briefly introduced, and previous research in the area will be reviewed. This will be followed by 

an attempt to evaluate the last digit test, as presented in Beber & Scacco (2012), by application 

on real-world data, namely the Swedish parliamentary election of 2018 and the Ugandan 2016 

presidential election. The former does not need a digit test to determine its validity, likewise; the 

latter does not need a digit test to determine it is fraudulent. If the last digit test does indeed 

detect electoral fraud, we should expect the results to be accordingly.  

 

 

Background 

The distribution of certain place digits 

The underlying assumption when performing a digit test is that if that digits from a 

‘naturally’ occurring data follow certain distribution while fabricated data do not follow the same 

distribution.  

Benfords Law is the observation that in sets of naturally occurring numerical data, the 

leading digits (1,2…or 9) follow a distribution that is not uniformly distributed, as one might 

intuitively expect. That is, the numbers 1 through 9 are not equally as likely to be a leading digit. 

But rather the leading digits of numerical data have a distribution where the 1 is most likely to be 

observed. This observation was first discovered by Simon Newcomb in the 19th century and 

rediscover by Frank Benford (1938). Newcomb wrote that: “That the ten digits do not occur with 

equal frequency must be evident to anyone making use of logarithm tables, and noticing how 

much faster the first pages wear out than the last ones. The first significant figure is oftener 1 

than any other digit, and the frequency diminishes up to 9.” (1881, p. 39) 

Benford had the same realisations and continued to collect set of data of varying sort and 

found that many different types of data, whether it the population of countries or the square roots 

of natural numbers, followed the frequency distribution of what was to be known as Benfords 

first digit law. Benford also developed a general digit law for the frequency distribution for the 

kth place digit (1938),  
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This ‘general digit law’ has been used obtain the expected frequencies of 2nd, 3rd, 4th and 

later place digits. Since the development of this law researchers have found that data in more 

categories follow Benford’s law. A new field of forensic statistics developed where Benfords law 

was used for detecting fraud, by researchers and professionals alike. Mark Nigrini, a prominent 

researcher within this field, used Benfords law as a tool for detecting fraud in accounting and 

auditing namely. By using Benford’s first digit law as the expected distribution in a chi-squared 

goodness-of-fit test he developed a mathematical model that would detect manipulation of the 

data.  If the data (auditing and accounting data in this case) did not follow the expected 

distribution one would assume that the data was not of natural occurrence and thus that it has 

been manipulated. Nigrini found that manipulated data not only didn’t follow Benfords law but 

deviates from it to quite an extent. With the 1st digit frequency of number 1 being close to 0% 

rather than the expected 30.1% (Nigrini, 1992). 

Benfords law has been used as a form of electoral fraud detection, in what some call 

“election forensics”(Mebane, 2006). The premise is simple: the kth place digits of non-fraudulent 

vote counts should follow a certain frequency distribution (depending on the place of digits being 

analyzed), and if the observed distribution of the digits deviates significantly from the expected 

distribution; the vote counts are likely fraudulent.  

Various studies have explored how digit analysis can be used as a tool to detect vote 

manipulation. The literature within this subject is, however, split on which place digit should be 

tested. There are three common methods in this field: first-digit analysis, second-digit analysis 

and last digit analysis. Interestingly, while the expected distribution of first place digits are 

declining in distribution (1s are more common then 9s). The expected distribution of last place 

digits is uniform in distribution assuming certain criteria are met, the mathematical explanation 

for this is given in Dlugosz & Müller-Funk (2009) and Beber & Scacco (2012).  
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 The expected distribution of first, second and last place digits are displayed in figure 1.

 

Figure 1. The distribution of 1st 2nd and last place digits  

 

Review of previous applications of digit-based tests on elections  

First digit analysis, used by, for instance, Bërdufi (2014) to detect fraud in the 2009 

Albanian election, has been criticized for its proclivity to false positives; i.e. detecting ‘electoral 

fruad’ where there has been non (Shikano & Mack, 2011; Mebane, 2007). A motivation for not 

using the first digit law when it comes to elections was given by Mebane, saying: “Imagine a 

situation where all precincts contain about 1,000 voters each, and a candidate has the support of 

roughly fifty percent of the voters in every precinct. Then most of the precinct vote totals for the 

candidate will begin with the digits ‘4’ or ’5’” (2006, p. 2). Essentially, given how first-digits of 

vote counts will inevitable be affected by factors such as vote preferences in certain 

wards/precincts, they should not be expected to follow Benfords law. 

The second digit Benford law(typically abbreviated as 2BL) has been used in plenty 

attempts at electoral fraud detection, it has been applied to the Russian election of 2007 where 

“extensive evidence of wide spread fraud” was found through 2BL testing (Mebane & Kalinin, 
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2010), and to the Iran election where fraud was also detected (Mebane, 2010). But 2BL testing 

has also received its share of scrutiny (Deckert, Myagkov, & Ordeshook, 2011; Shikano & Mack, 

2011). Where it, like first digit testing, has been criticized for giving false positives since it has 

detected fraud in elections of countries where there have been no reasonable suspicions of fraud, 

such as the German parliamentary election (Shikano & Mack, 2011). 

Furthermore, an analysis by Diekamann tested if fabricated regression coefficients can be 

detected by Benfords law and showed that anomalies are detected ‘better’ with later digits. That 

is, the rate of ‘false negatives’ (not detecting manipulation when the coefficients are indeed 

fabricated), also commonly known as type II error rate, was lower for ‘later’-digit analysis. The 

proclivity of false negatives, as well as false positives, is further elaborated on in another study 

by Diekmann, where the validity of using Benfords law to discriminate between manipulated and 

non-manipulated coefficients is discussed, it is pointed out that with an average sample size of 

100 coefficients the type II error rates are high and thus whether Benford tests are powerful tools 

in discerning between manipulated and non-manipulated data is questioned. Even here, later 

digit-tests performed better (with lower rates of false negatives/positives) (Diekmann, 2010) 

In like with Deikamanns studies, ‘later’ digit tests have also been seen a more appropriate 

choice for statistical electoral fraud analysis, last digit test being preferred by some (Beber & 

Scacco, 2012). For these reasons, this study will focus on last digit analysis of vote counts.  

The last digits of non-fraudulent vote count (i.e. vote counts that have not been 

manipulated in anyway) should follow a uniform distribution. That is, 1’s should occur in equal 

frequency to all other possible digits. See Beber & Scacco, for a more elaborate explanation.  

In previous attempts to asses a digit-analysis methods value as an indicator of electoral 

fraud some have applied it on simulation of fraudulent and non-fraudulent election like in 

Deckert, Myagkov & Ordeshook (2011). Others have applied the method on election where we 

know, with some certainty, if fraud was present or not, like in Brown & Wise (2012) and Shikano 

& Mack (2011). This paper will, similarly to the latter approach, apply digit-analysis on election 

where we know that there has or has not been fraud. But unlike Brown & Wise and Shikano & 

Mack, I will be focusing on the last digit as presented in Beber & Scacco (2012). By applying the 

test to election data where we know (with some certainty) that the vote counts have been 

tampered with or not. We can see if the test does detect vote manipulation. I will apply last digit 
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testing to the 2018 parliamentary election in Sweden, where there is no reason to suspect fraud, 

and to the Ugandan presidential election of 2016 where a fraud-free election is unlikely. 

If last digit testing is to be a considered a reliable fraud detection tool, we would expect 

the Swedish election to follow the expected distribution, while we would expect the last digits of 

the Ugandan vote counts to not follow the expected distribution of a ‘fair election’.  
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Theory 

This section intends to give a theoretical overview of two aspect of this study. Firstly the 

conditions under which the last digit of vote counts are expected to be uniform in distribution is 

outlined. Secondly an overview of the use of power analysis in the context of this study is given. 

 

Uniform distribution of last digits – in vote counts 

Unlike first and second digit tests (Mebane, 2006; Shikano & Mack, 2011), the 

assumption that that last digits of most naturally occurring data is uniform distribution is not 

directly obtained by Benfords law, given that you need a digit-place specified to obtain the 

‘Benford distribution’ according to the general digit law (Benford, 1938). However it can be 

observed that the Benford distribution of  'later placed digits'  are approximately uniform in 

distribution (Diekmann, 2007).  Additionally, Dlugosz & Müller-Funk (2009) and Beber & 

Scacco (2012) give two different mathematical proofs for the uniform distribution of last digit of 

number from continuous distribution.  

Futher, Beber & Scacco, in addition to the mathematical proofs outlined in their study, 

also showed that the theoretical result(i.e. that last digits of sets of numbers are uniform in 

distribution)holds for numbers generated from a variety of distributions: such as normal 

distribution, gamma distribution and 'mixed' distributions (see section 2.2 in Beber & Scacco, 

2012).  

Given that last digits can generally be expected to be uniform in distribution (following 

the results of Beber & Scacco and Dlugosz & Müller-Funk): non-manipulated vote counts are 

expected to follow the uniform distribution, given that two conditions are met: 

1. The vote counts do not cluster within a narrow range of numbers.  

2. The vote counts do not contain a large portion of single- or double-digit 

counts. 

Condition (1) is unlikely to pose a problem in application to the real-world vote counts as 

turnout rates and ward sizes vary enough in size (Beber & Scacco, 2012). To make sure 

condition (2) applies small candidates in the elections will be excluded in the analysis.  
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Power analysis and effect size 

The test that will be used in order to determine if the last digits of the vote counts deviate 

significantly from a uniform distribution is the Pearson chi-squared goodness of fit test. In order 

to asses if the test in underpowered for the relevant sample sizes, a power analysis will be 

performed.  

Usually the power of a chi squared test can be determined by knowing the effect size; 

“the degree to which the null hypothesis is false” (Cohen, 1988). In the case of this specific test 

the effect size would be the degree to which non-fraudulent election digits differ from the 

uniform distribution (of last digits). To calculate the effect size (ES), one needs to specify the 

alternative hypothesis, i.e. a proportion ‘𝑝1𝑗’ needs to be chosen to specify a ‘not uniform 

distribution’. The ES for a chi squared goodness of fit test is given by:  

𝐸𝑆 =  √∑
𝑝1𝑗 − 𝑝0𝑗

𝑝0𝑗

𝑛

𝑗

 

Where 𝑝0𝑗 is the proportion of digit j as theorized by the null hypothesis (i.e. 0.1 for all 

digits), 𝑝1𝑗 is the proportion of digit j as theorized by the alternative hypothesis (non-uniform 

proportions). The ES essentially give us a measure of the difference between these proportions, 

i.e. it measures the difference between the paired proportions. Intuitively, one might want to say 

that the ES should be 0, though the power of such a test (i.e. its ability to reject the null 

hypothesis when the alternative is true) would presumably be low, especially considering that the 

sample sizes are quite large. Further, the last digits of fraudulent data have only been claimed to 

be approximately uniform in distribution, not exactly uniform (Beber & Scacco, 2012). 

However, it would be of interest to see if the power is high for small effect-sizes. Cohens 

definition of a ‘small’ effect size, 0.1 will be used. The power of the test will be calculated for the 

relevant sample sizes for different effect sizes and significance levels to get an overview of the 

tests power. 
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Methodology 

As outlined in the previous sections, a last digit test the assumes that the last digits of 

vote counts follow a uniform distribution assuming that the vote returns are not single or double 

digit counts (i.e. the test can only be applied on vote counts with more than 2 digits) (Beber & 

Scacco, 2012).  

We want to test if the last digits patterns of the real-world data deviate significantly from 

the uniform, expected, distribution. If we call the vector with the observed digit distribution di 

and the expected distribution D, the testing problem is: 

• H0 : di has distribution D  

• Ha :  di does not have distribution D 

The Pearson chi-squared goodness of fit test is used to determine if the vote counts 

follow the expected distribution. The chi-square test statistic is:  

 𝜒2 = ∑
(𝑑𝑗−𝐷𝑗)2

𝐷𝑗

9
𝑗=0 , where 𝐷𝑗  is the expected frequency of digit j, and 𝑑𝑗 is the observed 

frequency of digit j.  

The test statistic is used to determine if the vote counts deviate significantly form D at 

𝛼 = 0.05 which gives us the critical value 16.9 (given 9 degrees of freedom). If values greater 

than the critical value are obtained the null hypothesis, that the last digits of the vote counts are 

uniform in distribution, is rejected. 

Since, according to previous applications of Benfords law, deviation from the ‘expected 

distribution’ indicates fraud:  a more applicable interpretation of the null hypothesis is that the 

vote counts are non-fraudulent, i.e. have not been manipulated. The alternative hypothesis being 

that the vote counts are fraudulent.  

To obtain the digit frequencies of the two elections used in this study, you first extract the 

last number of each row in relevant columns (where the columns consist of the vote counts for 

specific candidates/parties or total vote counts, and each row is vote counts obtained at each 

ward). An example for how this can be done in R (which was used in this study) can be found in 

Beber & Scacco (2012). Then the frequency at which each digit occurs is counted. These 

frequencies are then used to calculate the proportions used to calculate the chi-squared test 

statistics.  
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In a post analysis, the proportions retrieved for each set of vote counts are used to 

simulate frequencies with larger N(simply by multiplying the vector of proportions with the 

larger N’s) in order to see how much larger N would be needed to reject the null hypothesis at 

p<0.05. This is done for sizes N up to 9000. For each ‘new’ vote count frequency a chi squared 

test is performed and the p-value is noted, these calculations are done using for loop in R.  

The Chi squared test is followed by a power analysis, which is done in order to see if the 

test is underpowered, like some of the digit-based test in Deikmann (2010) were. The power 

analysis is done using the ‘pwr’ package in R (Champely, 2018). The package contains functions 

that perform power analysis in lines with Cohen (1998), where the same definition for ES is 

used. For the purpose of this analysis pwr.chisq.test:pwr was used. The power of the tests are 

calculated for ES values between 0 and 0.2 (as small effect sizes are of interest). To calculate the 

power for different ES: the significance level, number of observations and degrees of freedom is 

specified.  

 

 Description of Data  

 

The Swedish parliamentary election of 2018 and the Ugandan presidential election of 

2016 are the real-world election data to which the last digit pattern analysis will applied. The 

Swedish parliamentary election has had no reasonable doubt against its authenticity or any 

realistic accusation of fraud, this is not the case for the Ugandan election.  

Ugandas 2016 presidential election was won by Yoweri Museveni, Ugandas ruler since 

1986. Museveni won with 61% of the votes followed by his main opponent, Kizza Besigye, who 

received 35%. The results of the election were of no surprise, Museveni was expected to win, as 

he had the last 30 years. The election is unlikely to have had a free and fair ballot. Voters and 

opposition alike doubted that Museveni could ever lose, considering he controls the electoral 

commisioners, many calling it a ‘staged election’(Abrahamsen & Bareebe, 2016). Futher, in a 

press statement following the election the US pointed out “delays in the delivery of voting 

materials, reports of pre-checked ballots and vote buying” and general “irregularities and official 

conduct that are deeply inconsistent with international standards and expectations for any 

democratic process” (US Department of State Press Statement, 2016). In summary, this election 

does not need a digit test to determine its inauntheticity. 
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The data for the Swedish election was obtianed through the The Swedish Election 

Authoritys(a government agency) website. Where in you can find election results dating back 

several years though only the most recent election was choses for this study. (2018) 

The Ugandan election data was obtaineed through Development Seed (2016) who 

complied the ballots povided by the Ugandan Election Commission. The data from Development 

Seed is used for the purpose of ease (since its in cvs format rather then pdf-files) and the 

‘orignal’ files its based on can be found on the Ugandan Election Commission website (2016). 

The data used in this analysis will be vote counts at ward levels, where all vote counts 

have more than two digits. (‘valkrets’ in the Swedish data set and ‘parish’ in the Ugandan data 

set), and so the last digit is extracted from each of the vote counts from each ward, there are a 

total of 7393 wards in the Ugandan data set and 6325 in the Swedish data set. The digit 

frequencies for both elections can be seen in table 1 and 2. 

 

Table 1 

Digit frequencies for the Swedish election 
 

S M SD total votes 

0 621 630 590 653 

1 615 641 648 607 

2 623 657 599 639 

3 616 623 645 602 

4 645 614 604 657 

5 657 625 634 611 

6 647 612 651 662 

7 660 633 621 621 

8 639 640 650 629 

9 602 650 683 644 

Note: N=6325 
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Table 2 

Digit frequencies for the Ugandan election 
 

Museveni Besigye registered 

voters 

total votes 

0 736 774 731 752 

1 712 725 726 802 

2 758 733 754 739 

3 761 714 713 709 

4 663 727 770 787 

5 764 741 770 711 

6 792 759 734 714 

7 744 740 735 715 

8 728 723 734 724 

9 735 757 726 740 

Note: N=7393 
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Results 

2018’s Swedish parliamentary election  

The chi-squared statistics for the vote counts of the Social Democrats (S), Moderate Party 

(M) and Swedish Democrats (SD) and the total vote counts (see table 3) are all beneath the 

critical value (16.9) and thus the vote counts do not deviate significantly from the expected 

uniform distribution. In other words, it is reasonable to assume that the vote counts of the 

election are non-fraudulent, according to the last digit test. (see figure 2 and table 3) 

 

Table 3 

Test statistics for the Swedish election 
 

Chi-squared statistic p-value N 

S 5.528 0.786 6325 

M 3.084 0.961 6325 

SD 11.811 0.224 6325 

total votes 6.723 0.666 6325 
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Figure 2. digit frequencies for the Swedish election 
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2016’s Ugandan presidential election 

The chi-squared statistics for the vote counts of the Museveni, Besigye and the registered 

voters and the total vote counts (see table 4) are all beneath the critical value (16.9) and thus the 

vote counts do not deviate significantly from the expected uniform distribution. In other words, it 

is reasonable to assume that the vote counts of the Ugandan election are non-fraudulent, 

according to the last digit test. (see figure 3 and table 4) 

 

Table 4 

Test statistics for the Ugandan election 
 

Chi-squared statistic p-value N 

Museveni 14.817 0.096 7393 

Besigye 4.342 0.887 7393 

registered voters 4.450 0.879 7393 

total votes 12.920 0.166 7393 
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Figure 3. digit frequencies for the Ugandan election 

 

 

Further, it is worth noting that the proportion of the vote counts in the Swedish election is indeed 

closer to an exact uniform distribution than the vote counts of Museveni (see table 3 and 4), 

where the Museveni vote counts would have been considered significantly non uniform in 

distribution at p<0.1. Additionally; through simulating last-digit frequencies with the same 

proportion as the Museveni vote counts but with larger number of observations (in order to see 

how much larger N would be needed to reject the null hypothesis as p<0.05). We see, through 

the p-values of the chi square tests performed on the simulated data (illustrated in figure 4) that 

the null hypothesis would be rejected at number of observations more than N=8441; which 

corresponds to an increase of 1048 observations.  
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Figure 4. P-values of chi-squared goodness of fit tests with different N, with observed 

proportions based on Museveni vote counts.  

 

A similar simulation was done for the rest of the Ugandan vote counts for which the null 

hypothesis was not rejected for N less than 9000. Similarly, for the proportions of last digits of 

the Swedish parties the null hypotheses the null hypothesis would not be rejected even when the 

number of observations is increased to 9000 (an increase by 2675). It goes without saying, 

however, that if N was increased more the null hypothesis would be rejected for all last digit 

frequencies eventually, given that even very small differences would be detected eventually as 

𝑁 →  ∞ . This was however not the point of the simulation, rather it shows that a relatively small 

increase in N for the Museveni data results in a rejection of the null hypothesis at p<0.05; i.e. the 

assumption that the null hypothesis is non fraudulent would no longer hold. We could therefore 

say that the Museveni-data, while being the only vote counts reasonable suspected of fraud, is 

also the only set of vote counts with last digits frequencies relatively close to being significantly 

different from uniform in distribution.  
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Power analysis  

The results from the power analysis (illustrated in figure 5 and 6), show that at least for 

sizes N like that used in this study, the test can discriminate between small differences in 

distribution with high power(1); given the arbitrary definition of a ‘small’ effect size, 0.1 (Cohen, 

1988). Further, the power of the test is higher than 0.8 for effect sizes above 0.05 even at a 0.01 

significance level.  

 

Figure 5. Power for chi-squared test at different effect-sizes and significance levels (with 

N=6325) 
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Figure 6. Power for chi-squared test at different effect-sizes and significance levels (with 

N=7393) 

 

To be able to say that the test is a powerful test in discriminating between fraudulent and 

non-fraudulent vote count we would have to assume that non-fraudulent data does not differ with 

less than 0.05 effect size from the expected uniform distribution. Because if differences in 

distribution smaller then 0.05 (in effect size) are to be deemed fraudulent, the test would have a 

type II error rate higher then 0.2: i.e. it would not detect fraud, when fraud has occurred more 

than 20% of the time.  

Still, if differences smaller than 0.1 in effect size are to be deemed negligible, the test 

could by no means be considered underpowered for the relevant sample sizes (the power being 1 

in both cases). 



Evaluating a last digit-based test for electoral fraud detection 23 

Conclusion 

If the last digit frequency of non-fraudulent, authentic vote counts is uniform in 

distribution, as claimed in Beber & Scacco (2012), then the Swedish and Ugandan election are 

free of fraud according to the last digit-pattern analysis. Since both last digits frequencies of both 

elections do not deviate significantly from uniform distribution, we can reliably assert that both 

elections have last digit frequencies of uniform distribution, at a significance level of 0.05, The 

problem here is apparent: while the test can be expected to reliably distinguish between uniform 

and non-uniform distributions; the last digit analysis failed to indicate fraud where electoral 

fraud likely occurred.  

Further, given the results of power analysis, the test seems to not be underpowered when 

it comes to distinguishing between uniform and non-uniform distributions for the sample sizes in 

this study; rather it has a high power when distinguishing ‘small’ differences. The definition of a 

‘small’ effect size is, however, not a given in every case; and it ought to be decided on a case-to-

case bases, usually by knowing how a given theoretical phenomena’s expected distribution 

differs in the ‘real world’ (Cohen, 1998). What size difference between an exact uniform 

distribution of digits and real-world (non-fraudulent) vote count distributions should be deemed 

negligible is hard to answer without basing it on measuring the real discrepancy between the last 

digit vote counts proportions of a large sample of known non-fraudulent vote counts and an exact 

uniform distribution, and thus specifying an alternative hypotheses to calculate the appropriate 

effect size. However, given the lack of access to a more suitable definition of ‘small’ effect size 

for the scope of this paper, Cohen’s definition is relied on, and thus the tests are not considered 

underpowered.  

The results of the digit pattern analysis for the Swedish election is as expected, since 

other obviously non-fraudulent elections have been shown to have uniformly distributed last 

digit frequencies (Beber & Scacco, 2012). But if this last digit analysis is to be trusted, the 

Ugandan vote counts should be deemed authentic, however unlikely that is, and thus we should 

ignore valid suspicions of vote manipulation as reported by numerous sources (Abrahamsen & 

Bareebe, 2016). This raises the question: if an election obviously riddled with vote tampering 

and irregular conduct is ‘non-fraudulent’ according to the last digit analysis, then is the test 

useful? While the small scope of this paper cannot give a definite answer to this, it at the very 

least calls for the need to further asses the value of this test. Further, it could perhaps even be the 
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case that the vote counts are indeed authentic, despite the accusations of vote manipulation. One 

could argue, however, that a case like Uganda, where suppression of opposition prior to elections 

is common (Abrahamsen & Bareebe, 2016), the authenticity of vote counts still does not indicate 

a  ‘fair’ elections. This is the most obvious limitation of the digit analysis; it only indicates direct 

vote manipulation.  

It is worth considering however, that if the chi-squared goodness of for test was to be 

done at a 0.1 significance level, the null hypothesis would have been rejected for Museveni vote 

counts and they would have been deemed fraudulent. Additionally, the Museveni vote counts 

would have been rejected at 𝛼 = 0.05 if the number of observations where increased (by 1048). 

So, one could say that the Ugandan vote counts deviate ‘more’ from the expected last-digit 

distribution. This could however just be by chance, and the last digit test (as initially constructed 

with 𝛼 = 0.05) could be correct in deeming the Ugandan vote count non-fraudulent.  This bring 

into question however, what significance level is appropriate for this type of test. Do we want to 

increase the likelihood of type I error? Or should we, if anything, have a higher (say, 0.01) 

significance level? Surely, detecting fraud where there has been none is undesirable, but so is the 

reverse; if the test is to be useful.  

A problem with my analysis is that only one election of, most likely, fraudulent vote 

counts is used. A study of larger scope would be preferable, an obvious issue being the 

unavailability of obviously fraudulent election data. Perhaps then simulations of fraudulent vote, 

like in Deckert, Myagkov, & Ordeshook (2011) and Mebane (2006), would be a better approach. 

Although, both studies had vastly different approaches in what they deem constitutes ‘fraudulent 

vote counts’ simulations. Which begs the question: what does fraudulent vote counts look like? 

Or rather, what is the appropriate way of simulating them? Ideally, you could approach this 

question by looking at the distribution of the last digits of several fraudulent elections, this of 

course assumes such data could be available.  

To finish, confirming that of previous studies, last digits of non-fraudulent vote counts 

seem uniform in distribution. Yet from the results of my analysis, it does not seem obvious that 

fraudulent vote counts do not also follow this uniform distribution. Of course, further exploration 

is needed in order to make any conclusive statements about the distribution of fraudulent vote 

counts. This would be an interesting approach for further research.  
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