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Abstract

The representation of written language semantics is a central problem of
language technology and a crucial component of many natural language
processing applications, from part-of-speech tagging to text summariza-
tion. These representations of linguistic units, such as words or sentences,
allow computer applications that work with language to process and ma-
nipulate the meaning of text. In particular, a family of models has been
successfully developed based on automatically learning semantics from
large collections of text and embedding them into a vector space, where
semantic or lexical similarity is a function of geometric distance. Co-
occurrence information of words in context is the main source of data
used to learn these representations.

Such models have typically been applied to learning representations
for word forms, which have been widely applied, and proven to be highly
successful, as characterizations of semantics at the word level. However, a
word-level approach to meaning representation implies that the different
meanings, or senses, of any polysemic word share one single represen-
tation. This might be problematic when individual word senses are of
interest and explicit access to their specific representations is required.
For instance, in cases such as an application that needs to deal with
word senses rather than word forms, or when a digital lexicon’s sense
inventory has to be mapped to a set of learned semantic representations.

In this thesis, we present a number of models that try to tackle this
problem by automatically learning representations for word senses in-
stead of for words. In particular, we try to achieve this by using two sep-
arate sources of information: corpora and lexica for the Swedish language.
Throughout the five publications compiled in this thesis, we demonstrate
that it is possible to generate word sense representations from these
sources of data individually and in conjunction, and we observe that
combining them yields superior results in terms of accuracy and sense
inventory coverage. Furthermore, in our evaluation of the different repre-
sentational models proposed here, we showcase the applicability of word
sense representations both to downstream natural language processing
applications and to the development of existing linguistic resources.





Sammanfattning

Att representera semantiken för skrivet språk är ett centralt problem
inom språkteknologin. Semantiska representationer för språkliga enheter
– framför allt ord men även meningar, stycken och hela dokument –
används i en rad olika tillämpningar, allt från ordklassmärkning till sam-
manfattning. Dessa representationer är en förutsättning för att applika-
tioner som hanterar språk ska kunna resonera om språkliga enheters
betydelse. En grupp av metoder för ordrepresentation som har visat sig
praktiskt användbara representerar ord genom att inbädda dem i ett
vektorrum, och genom denna inbäddning kan semantiska relationer ges
en geometrisk tolkning. Dessa metoder utnyttjar information från stora
mängder textmaterial, framför allt statistik om ords samförekomst.

Sådana metoder har typiskt använts för att skapa representationer för
enskilda ordformer, och har på senare år blivit självklara standardverk-
tyg för att praktiskt hantera ords semantik i språkteknologiska tillämp-
ningar. En nackdel med representationsmetoder som helt och hållet base-
ras på ordformer är att om ett ord har flera möjliga betydelser (på grund
av homonymi eller polysemi) så kommer representationen att bestå av en
blandning av dessa betydelser. Detta kan vara problematiskt i tillämp-
ningar där det är viktigt att skilja på de olika betydelserna, till exempel
då tillämpningen uttryckligen behöver förhålla sig till digitala lexikon
där ordbetydelser ingår.

I denna avhandling presenteras ett antal olika modeller som kringgår
denna svårighet genom att automatiskt skapa representationer för ord-
betydelser i stället för ordformer. För att åstadkomma detta utnyttjas
svenskspråkiga korpusar och lexikon. I de fem artiklar som presenteras
i avhandlingen visar vi att det är möjligt att skapa representationer av
ordbetydelser utifrån korpusdata och lexikondata dels separat och dels
kombinerat, och vi konstaterar att en kombination av de olika datakäl-
lorna ger oss bättre kvalitet i tillämpningar och bättre täckning av ordens
olika betydelser. I utvärderingarna av de olika representationerna kan vi
se att de kan fungera i språkteknologiska tillämpningar som betydelsedis-
ambiguering, samt i lexikografiska tillämpningar där de kan användas för
att föreslå tillägg till existerande lexikon.
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Part I

Introduction and background





1 Introduction

1.1 Motivation

During the last decade, computer assistance performed through the use
of human language is solidifying from a long-anticipated concept into
an everyday sideshow that lets us interact with our ever-increasing layer
of technological apparatus. This inconspicuous success is owed to a sus-
tained research effort in the different fields that coexist under the um-
brella of Language Technology (LT): Artificial Intelligence (AI) applied
to human language, computerized linguistic models, and speech technol-
ogy.

Interestingly, the comparatively fast development on LT that is oc-
curring in the last few years, contextualized in the enthusiasm for any
and all AI technologies that appears to be the norm nowadays, follows
a long dry period known as AI Winter, starting in the late 1980s, which
decelerated progress in the field of AI motivated by lack of interest and,
hence, funding: “At its low point, some computer scientists and software
engineers avoided the term artificial intelligence for fear of being viewed
as wild-eyed dreamers.” (Markoff 2005). That lack of interest was itself
due to a number of reasons from failure to live up to the hype created to
budget-cutting policies for universities. Not small among these factors
was the unavailability of computational power needed for neural net-
work models to fulfill their potential. And part of today’s more optimist
standpoint is precisely due to hardware advancements which increase the
capabilities of neural networks.

However, the decade of the 1990s was not devoid of advances in LT. It
was precisely during this period that the “statistical revolution” (John-
son 2009) took place, a paradigm switch from rule-based to data-driven
systems: an increase in available digital data and computational power fa-
vored informing systems with statistical data over sets of rules grounded
in linguistic theory. In this context, meaning representation models based
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on statistics thrived. A family of models focused on providing words with
semantic representations in a vector space, usually configured using co-
occurrence statistics gathered from corpora, grew and, slowly but surely,
started paving the way towards widespread adoption (Deerwester et al.
1990; Schütze 1993; Lund and Burgess 1996; Landauer and Dumais
1997).

From a variety of approaches to obtain vector representations of words
and other lexical units, representations learned by neural networks stem-
ming from neural language models (Bengio et al. 2003) have recently
attracted the community’s attention for their efficiency generating accu-
rate semantic representations from large collections of text. Having high
quality semantic representations has proven beneficial in a large number
of Natural Language Processing (NLP) tasks such as syntactic parsing
(Socher et al. 2013), named entity recognition and chunking (Turian,
Ratinov and Bengio 2010), part-of-speech tagging and semantic role la-
beling (Collobert et al. 2011), or sentiment analysis (Glorot, Bordes and
Bengio 2011). This good record, paired with ML advancements facili-
tated by increased accessibility to new and old, revisited powerful neural
network models, has resulted in a myriad of refined representation mod-
els. Given that the main data source on which these models feed is text, it
is not surprising that the majority of these models focus on representing
the key building brick of that kind of data: word forms.

However, word representations suffer from a well-known limitation:
they ignore polysemy, homonymy, and other related phenomena by which
one word form may have more than one meaning. Word representation
models, by forcing each word to be represented by one vector, may con-
flate several meanings into one representation, making recovery of an in-
dividual meaning difficult or impossible to achieve. Since in many cases
these vectors are used to represent the input to NLP systems that carry
out the tasks on which they are applied, this misrepresentation is propa-
gated through them early on and is hardly recoverable. This is the main
issue addressed in this thesis: to develop semantic representation models
that are aware of the multiple meanings of a word and consequently learn
representations for each of them.

To tackle this task, we build on previous work on recent word repre-
sentation models that learn automatically from text. However, as men-
tioned above, unannotated textual data may not be the most adequate
source of information from which to derive knowledge about the different
meanings, or senses, of a word, and producing annotations for the large
amounts of text that such models consume is usually unfeasible or unre-
liable. For this reason we propose to engage an extra source of informa-
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tion where this missing knowledge is readily available: linguistic resources
such as lexica. Computational linguists have built and curated a trove of
resources that store formally structured knowledge in machine-readable
format: thesauri (Borin, Allwood and de Melo 2014a), knowledge bases
(Miller 1995), and lexica (Gellerstam 1999), among others, which have
helped to develop countless NLP applications. In this work, we show
that it is possible to combine the structured information contained in
a lexicon with the running text from which neural models traditionally
learn semantic representations, and to derive word sense representations
from those separate sources of data.

All of the models presented in this thesis showcase their capabili-
ties in the Swedish language; not in vain, this work was developed at
Språkbanken (the Swedish Language Bank), a unit at the Department
of Swedish of the University of Gothenburg which devotes a large part
of its work in computational linguistics to developing resources for the
Swedish language. Access to said resources and expert advice is granted
in such an environment, and it would be unreasonable not to take advan-
tage from it. However, there is a conscious choice behind the development
of these models in order for them to not be dependent on any specific
language: the models we present here do not make any language-specific
assumptions and so they are able to learn from any language, provided
that they are fed with adequate data. This choice is made in the hope
that our contribution is maximally useful to the international community
in which it has been nurtured.

1.2 Research questions

This thesis work is mainly concerned with the creation of word sense se-
mantic representations. In particular, we are interested in applying neural
network models to the task of automatically learning those representa-
tions as their internal parameters. (See chapter 3 for detailed descriptions
of neural network architectures for this purpose.) We frame this task as
an improvement over recent models dedicated to learning word repre-
sentations, or word embeddings; a specific characteristic of recent word
embedding models that has contributed to their successful implementa-
tion in NLP systems, and that we would like to conserve in our models,
is their computational efficiency in dealing with large amounts of textual
data to achieve high quality representations.
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As such, we can formulate our first research question as follows:

Q1. Can embedding models be adapted to successfully transition
from representing words to providing separate representations for
different senses of a word, while keeping their semantic represen-
tation capabilities and computational efficiency?

Operationalizing this question requires us to test two characteristics of
any model proposed in this frame of reference: (1) the quality of the
word sense embeddings it learns, and (2) the computational overhead
it would add relative to a comparable word embedding model. Evaluat-
ing the quality of embeddings is a complex task which, on account of
their relative novelty, still lacks an evaluation standard accepted by the
community. Usually, test applications like word similarity are designed
to assess the intrinsic quality of embeddings, while their extrinsic util-
ity is tested on downstream applications like sentiment analysis. (See a
detailed discussion about evaluation techniques in chapter 4.) The com-
putational efficiency of embedding models can be measured, for example,
as the amount of time they require to be trained under controlled con-
ditions; training times of different models can then be compared to give
an assessment of their relative efficiency.

As mentioned before, it is our plan to include linguistic resources in
these models. Specifically, our aim is to take advantage of knowledge
about word senses encoded in lexica through inventories of senses per
word and lexical and semantic relations between word senses to help
steer the learning process of our models towards representations of word
senses that accurately portray lexicographic definitions of senses. Thus,
an addendum to question Q1 could be:

Q2. Can the knowledge manually encoded in lexicographic re-
sources be leveraged to help improve representations learned by
word sense embedding models trained on a corpus?

The quality of embeddings emerges again as the core of this question,
which makes it necessary to assess the intrinsic and/or extrinsic per-
formance of different models so that their respective capabilities can be
compared against each other, as explained above. Ideally, we should be
able to measure the differences in performance between models that do
not use lexicographic knowledge as part of their training data and those
that do so. The formulation of question Q2 deliberately contrasts the
different natures of lexicographic and corpus data: while the latter con-
sists mainly of unstructured text in which the main assets are repetition
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and words acting as context for other words (see chapter 3), the former’s
strength lies in carefully crafted structure and annotation rather than
in the amount of data and its distribution. Part of the answer to this
question must thus examine the success in integrating the two types of
data, especially since we deal with models designed to work mainly with
the latter type. In order to do this, we need to be able to tell apart
the influence each type of data has on trained word sense embeddings
and judge whether these influences contribute more or less equally to
create sound meaning representations. (See chapter 8 for examples of
experiments addressing this specific issue.)

Finally, we would also like to measure the value added by word sense
representation models to the community. One way to do so is to test
the performance of embeddings on downstream applications: for exam-
ple, if precision scores on a semantic frame prediction task (chapter 8)
rise when using word sense embeddings as features over using word em-
beddings while all other conditions remain equal, we can say that word
sense embeddings do add value to this task. Counting with word sense-
dedicated representations also might enable the use of embeddings as
features in tasks like word sense disambiguation or induction, where it
is not as straightforward to apply them when the object represented are
word forms. Using downstream applications to evaluate models provides
us then with a measure of added value. However, we could look at those
same lexical resources we propose to use for training our models as ob-
jects that could also benefit from this work. Indeed, such resources are
labor-intensive since they require human input to be built, so any means
of automation would simplify their maintenance and expansion. Thus,
we ask:

Q3. How well suited are word sense embeddings to improve lexi-
cographic resources?

Answering this question requires us to specify what improving means
for a specific resource. There exist several aspects of any lexicographic
resource that might be improved, like coverage or correctness of existing
content. For example, in chapter 9 we evaluate the capabilities of word
sense embeddings to suggest new entries for a lexicon by selecting in-
stances from a corpus that might contain word senses not included in the
lexicon, or in chapter 8 we try to classify word senses into semantic frames
for the Swedish FrameNet (Friberg Heppin and Gronostaj Toporowska
2012). Designing such tasks as evaluation strategies for our models allows
us to measure their potential impact on resource building.
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In summary, questions Q1, Q2, and Q3 encapsulate the goals of this
thesis work, namely, to transition from word embedding models to word
sense embedding models, to enroll the help of lexicographic resources in
this endeavor, and to measure the capability of word sense embeddings
to improve those resources. These questions also define the criteria by
which we can measure the achievement of said goals: by assessing and
comparing the intrinsic and extrinsic quality of embeddings learned by
different models, along with these models’ computational efficiency; by
testing the integration and influence of different types of data sources
that inform our models; and by posing evaluation strategies that let us
identify the potential applications that word sense embeddings have.

1.3 Contributions

The main contributions of this thesis are presented through a compi-
lation of published articles in part II. These comprise different models
dedicated to automatically learning word sense semantic representations
from corpora and lexica, along with evaluation methodologies intended
to help determine the models’ strengths and weaknesses. The different
models developed for this work are intended to explore the possibilities at
our disposal for distilling useful linguistic knowledge about word senses
from existing resources and combining it with distributional data from
corpora.

In order to achieve that, we work with a spectrum of the type of data
used to train our models that ranges from pure text from a corpus to
lexical-semantic relations from a lexicon. Training models on different
points on this spectrum and assessing their performance on different
tasks allows us to (1) determine the suitability of each type of data for the
task of learning semantic representations for word senses, and (2) control
the influence of each type of data on the resulting representations in
order to establish the optimal proportion of each of them in terms of
performance. In particular, we present the following models:

1. In article 1 (Nieto Piña and Johansson 2015), contained in chapter
6, a model is introduced that learns word sense embeddings solely
from a corpus with the exception that the number of senses for any
given word is derived from a lexicon. This model is based on Skip-
gram (Mikolov et al. 2013a), a word embedding model known for its
computational efficiency; our modifications allow it to learn several
representations per word, while only introducing a 10% computa-
tional overhead. Throughout this study we observe that such an
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approach is able to distinguish different meanings associated with
the same word form and that these meanings correlate better with
word usage rather than lexicographic senses; i.e., the word senses
of a word discovered by the model are differentiated necessarily by
the different contexts in which this word is used, since this is the
only information available to the model.

2. The other end of the spectrum is explored in article 2 (Nieto Piña
and Johansson 2016) (chapter 7), where a model is trained to learn
word sense embeddings from data generated from a lexicon. This
model is presented along with a word sense disambiguation method
based on the word sense embeddings learned, in an effort to show-
case their utility on this task. This serves to show that, even if the
method does not reach state-of-the-art levels of performance, the
type of model used, initially designed to be trained on corpora,
is effectively able to extract useful information about separation
between senses of a word from lexicographic information. Further-
more, the disambiguation method presented is orders of magnitude
faster than other graph-based methods.

3. Having studied the prospects offered by each type of data, the mid-
dle ground of the spectrum is examined in article 3 (Nieto Piña and
Johansson 2017), found in chapter 8. A new embedding model is
presented here which is able to learn word sense representations
jointly from textual and lexicographic data in adjustable propor-
tions. Its aim is to put to work the lessons learned while design-
ing the two previous models by trying to compensate one model’s
shortcomings with the other’s advantages. As it is possible to con-
trol the proportion of each type of data that feeds the model, we
are able to find a balance between them and measure their impact
on the results and we show with our evaluation strategy that what
can be considered the ideal proportion for one specific downstream
task may not be optimal for a different one.

In addition to these models, we provide an extensive study of dif-
ferent evaluation strategies that can be used to measure the quality of
word sense embeddings. This has proven to be a non-trivial endeavor for
different reasons. (See chapter 4 for a detailed discussion on the topic.)
On one hand, the very definition of meaning of a word is a contested
issue (Kilgarriff 1997; Lenci 2008), which in turns makes it difficult to
establish criteria for evaluating the quality of a semantic representation.
While a number of tasks like word similarity have been adopted as a
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standard to test embedding models, these are usually geared towards
word embeddings and are not straightforward to adapt to the case of
word sense embeddings. (See, for instance, the approach taken to test
word similarity by Neelakantan et al. 2014.) On the other hand, a more
pragmatic obstacle is the lack of resources to be applied in evaluation.
Many evaluation approaches involve comparing the results obtained by
the system being evaluated against a standard which would be manually
annotated or checked by humans. For example, in a word sense disam-
biguation task used for evaluation, the target words need the correct
disambiguation to be provided in order to check the quality of the au-
tomatic disambiguation results. Such resources are not always readily
available, especially for languages outside a small set of well resourced
ones like English; this is the case for the Swedish language, which we
used to build our semantic representations.

To counter these issues, we design evaluation plans that fit the model
onto which they are applied in terms of providing an accurate assessment
of its characteristics, in the hope that they may serve others in the com-
munity when presented with similar challenges. A key point in achieving
this is a complete coverage of a model’s attributes in the evaluation, so
whenever possible we perform several assessment tasks on each model
that are used to inspect its different aspects. Qualitative assessments are
used to provide intuitive understanding of a model’s capabilities, and
quantitative evaluation is performed through different tasks that mea-
sure a model’s performance in disparate scenarios; such tasks include
comparison of sets of related terms in a vector space versus a lexicon,
similarity tests, word sense disambiguation, or sentiment analysis.

Additionally, as one of our goals is to study the viability of automat-
ically learned semantic representations for improvement of resources, we
provide a framework for assessing word sense embeddings in this task.
For this purpose, a system is developed in article 4 (Nieto Piña and
Johansson 2018), contained in chapter 9, that extracts instances from
a corpus containing word senses with a high probability of not being
listed in a lexicon, as a way of providing suggestions to lexicographers
for expansion of the lexicon and partially automating their work. Fur-
thermore, we show in chapter 8 the capacity of word sense embeddings
to predict membership of a term in a semantic frame of the Swedish
FrameNet (Friberg Heppin and Gronostaj Toporowska 2012), in such a
manner that could be applied to add new entries to the knowledge base.
In article 5 (Borin, Nieto Piña and Johansson 2015) (chapter 10) we test
the performance of different types of semantic representations of senses
on the task of linking entries in a modern lexicon with entries in an older
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thesaurus, which serves to facilitate access and manipulation of an out-
dated resource, as well as to pave the way for its potential expansion and
modernization with new entries from the contemporary lexicon.

Finally, a word sense disambiguation mechanism based on word sense
embeddings that was developed during this thesis work has been incorpo-
rated to Sparv1 (Borin et al. 2016), Språkbanken’s annotation tool. This
disambiguation mechanism was introduced by Johansson and Nieto Piña
(2015) and has been adapted for the evaluation of the models described
in chapters 7 and 8 of this text. As part of Sparv’s annotation pipeline,
the mechanism is used to automatically disambiguate and label instances
of Swedish words in an input corpus, using a sense inventory obtained
from the lexicon SALDO (Borin, Forsberg and Lönngren 2013).

1.4 Thesis structure

The rest of the text is structured as follows. Part I, which includes the
current introductory chapter, sets the context for the work and gives
background and detailed descriptions of our models’ main components.
Chapter 2 formalizes our working definition of word senses and discusses
the types of resources on which our models are trained: lexica and cor-
pora; chapter 3 introduces the distributional hypothesis, then discusses
distributional models for obtaining word and word sense embeddings, as
well as options available to introduce lexicographic knowledge into them;
chapter 4 reviews common evaluation methods used on embedding mod-
els and describes the evaluation strategies we applied on our models;
finally, chapter 5 closes part I with conclusions reached in this thesis.

Part II consists of a compilation of articles published during the de-
velopment of this thesis which contain the models and their applications
that constitute the core of the thesis work. Chapter 6 presents an un-
supervised model to learn word sense embeddings from corpora; as a
counterpoint, chapter 7 introduces a model for learning word sense em-
beddings only from a lexicon which are applied to perform word sense
disambiguation; chapter 8 describes a joint approach to learning word
sense embeddings from both a corpus and a lexicon; chapter 9 explores
the potential of linking word sense embeddings with lexicon entries in
order to find word senses not listed in the lexicon; and chapter 10 investi-
gates the applicability of word sense representations to link entries of two
different lexical resources in order to facilitate access to and modernize
outdated resources.

1https://spraakbanken.gu.se/eng/research/infrastructure/sparv

https://spraakbanken.gu.se/eng/research/infrastructure/sparv
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Linguistic resources provide us with the data needed to train and test
our representation models. The kinds of data resources that we consider
under this term are compiled (and possibly annotated) by computational
linguists to contain language samples and lexicographic inventories re-
lating to one or more languages; in particular, we are interested in lexica
and corpora. Lexica provide inventories of a language’s vocabulary, while
corpora contain samples of written text intended to facilitate the con-
duction of linguistic analysis. In our models, we take advantage of that
information to try and obtain semantic representations that are derived
automatically from those resources; also, in some instances, the perfor-
mance of these models is assessed with help of resources such as anno-
tated corpora. (See chapter 3 for a description of different ways in which
representational models learn from these data resources, and chapter 4
for an account of how models are evaluated using annotated data.)

In this chapter we also offer a description of the concept of word sense
as used in this thesis work. Word senses are the target of our research as
the linguistic unit for which we aim to create semantic representations.
By processing the explicit and implicit information about word senses
present in linguistic resources, our models are able to learn to represent
them in a vector space, providing us with mathematically manipulable
semantic objects easily handled by NLP applications. Such applications
that need to process meaning, like machine translation, sentiment anal-
ysis, or named entity recognition, among many others, rely on using
accurate semantic representations of the texts onto which they are ap-
plied. The linguistic unit most commonly represented, however, is the
word form; since such representations are commonly obtained from cor-
pora, composed of text documents in a more or less unprocessed form,
it is straightforward for this to be the case. Nevertheless, employing one
representation per word form may conflate several meanings in the cases
of words that have more than one, which has the potential to damage
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the modeling power of the semantic vector space (Neelakantan et al.
2014; Yaghoobzadeh and Schütze 2016) and the performance of systems
that work with semantic representations (Li and Jurafsky 2015; Pilehvar
and Collier 2016). Our goal is to study ways in which word sense rep-
resentations can be derived from corpora and lexica in order to obtain
a more fine-grained representation of meaning that is oriented towards
representing distinct word senses rather than word forms.

2.1 Word senses

The larger part of this thesis work concerns the automatic creation of
suitable representations for word senses. While working at the word form
level, any word w is given a single representation v; in many cases, such
representations are vectors in a real-valued multidimensional space, so
that v ∈ RN . (See chapter 3 for a discussion on semantic representa-
tions.) However, linguistic phenomena like polysemy, by which a single
word form is assigned more than one meaning, raise an issue with this
approach to semantic representation. For example, if the noun rock were
represented by a vector v, both of its two main meanings (‘a mineral ma-
terial’ and ‘a type of music’) would share one representation. Conflation
of the different senses of a word might impact negatively the perfor-
mance and quality of certain applications that use such representations
(Li and Jurafsky 2015; Yaghoobzadeh and Schütze 2016). Our aim in
these terms, then, is to devise ways in which a word w with multiple
senses like rock can attain a separate representation vi, i ∈ 1,2, . . . ,n, for
each of its n senses.

When a word can take several distinct meanings, through phenomena
such as polysemy or homonymy, each of those meanings is known as
a word sense. E.g., a small rodent is one sense of mouse, but another
meaning of the word is a computer peripheral used to move a pointer on a
screen. Given that there is no explicit indication of the intended meaning
of an instance of a polysemous word, word sense disambiguation has to
be performed on it in order to choose the word sense relevant for that
occurrence and thus clarify its meaning. Such a process is informed by
the context in which that instance is found; i.e., the meaning contributed
by words accompanying the ambiguous word in a sentence, a document,
or a collection of documents.

Context is the main source of information for the task of disambiguat-
ing an instance of a word, both for humans and machines. In order to
prepare an inventory of word meanings for a lexicon, a lexicographer
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needs to inspect the context of instances of each word in a corpus in
order to categorize those instances into separate word senses.

Similarly, in machine-based approaches (Navigli 2009) to automatic
discrimination of word senses (for the purpose of word sense disambigua-
tion or induction, for example,) data-driven techniques are usually de-
ployed to compare contexts of different instances of a word and classify
them into word senses.

The result of any of these disambiguation processes, performed by
humans or machines, relies on the assumption that the corpus employed
contains a more or less faithful representation of the language. This is so
because any process of word sense discovery or disambiguation based on
linguistic evidence from a corpus will be affected by the sense inventory
found in the corpus: whether one particular word sense will result from
such a process is subject to whether the corpus contains enough evidence
for it. Especially in machine-based methods, where human insights into
language are more difficult to operationalize, the dependence on corpus
evidence to track the different meanings of a word tends to shift the
concept of word sense towards word usage: automatic disambiguation or
discovery of word senses solely based on corpus data gravitates towards
identifying differences in usage of a word that may differ from lexico-
graphic word sense definitions of that same word. For example, consider
the noun mushroom to be defined in a coarse-grained lexicon as having a
single meaning: a fungal growth in the shape of a domed cap on a stalk,
with gills on the underside of the cap; it is conceivable that a process of
automatic discovery of the word senses of mushroom based on corpus ev-
idence could conclude with the word having two senses derived from two
distinct contexts in which the word is commonly used: one pertaining to
biology, and another to culinary subjects. This disparity can potentially
be addressed by making lexicographic resources, such as lexica, available
to the machine-based process in a way that the lexicographic descriptions
of senses guide the sense discovery process.

Related to this, the granularity of word senses needs to be deter-
mined as a conscious choice. In the example for mushroom above, the
lexicographers in charge of building that lexicon would have chosen it
to be coarse-grained; it is entirely reasonable that another, more fine-
grained lexicon would separate the biological and culinary meanings of
mushroom. As an example of such discrepancies, Palmer, Dang and Fell-
baum (2007) studied the differences in word sense granularity between
the sense inventories in the Senseval-1 (Kilgarriff and Rosenzweig 2000)
and Senseval-2 (Edmonds and Cotton 2001) tasks for automatic word
sense disambiguation (WSD): Senseval-1 obtains its sense inventory from
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the Hector lexicon (Atkins 1992), which results in the verbs used having
7.79 senses on average; on the other hand, Senseval-2 extracts its En-
glish sense inventory from WordNet (Miller 1995) (known for its high
granularity,) which gives the verbs used an average of 16.28 senses. Such
design decisions need to be taken into account whenever a sense inven-
tory is derived from a lexicon or other resource, since it will determine
the behavior of the system that inherits it.

Furthermore, the definition of word sense and its relation to word us-
age is not free of debate. For example, Kilgarriff (1997) fails to find an
operational definition for word sense in the context of WSD, and con-
cludes that a fixed, general-purpose inventory of senses is not indicated
for use in NLP applications; rather, word senses would only be defined
as they are needed by the application of interest and, thus, they should
emerge as abstractions of clusters of instances of word usage. That is, it
is his view that word senses exist only as clusters of instances of a word,
and that such clusters are only defined on a need-to-exist basis dictated
by the task that calls for the clustering action. Thus, issues of complete-
ness or granularity are resolved by stating a set of task-specific clustering
guidelines. This implies that there cannot be a task-independent sense
inventory.

While such ideas merit discussion, we intend to distance this work
from theoretical debates about the nature of word meaning. The ques-
tion that guides this work is whether computational models for meaning
representation are able to capture different senses of a word and, in par-
ticular, whether lexica can help in such a task. Thus, for the purpose
of this thesis, we consider a word sense for any given word when it is
defined as such in the lexicon. As a result, our computational models
usually work with a fixed, discrete, and finite word sense inventory that
originates in the lexicon. In this context, we do not consider this a short-
coming since the lexicon’s inventory is used as a gold standard for our
models’ testing or training: one form of model evaluation that we apply is
to measure how well a model is able to represent the inventory of senses
found in the lexicon (chapter 6); in other cases, the lexicographic sense
inventory is used to steer the word sense learning process of the model
(chapter 8). It is thus acknowledged that the lexicon used will have an
influence on the results; this is not necessarily a negative effect since our
goal is not to obtain the ideal sense inventory for a particular task but
rather, given a sense inventory, find high-quality representations for it.
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2.2 Lexica

A lexicon is the collection of lexical items, represented by lemmas, of a
language. It is intended to function as a complete inventory of a lan-
guage’s main vocabulary and it can be complemented by additional in-
formation about its entries, such as their morphological characteristics
or a structure of links between entries that specify relations between
them (e.g., synonymy relation between word senses which share the same
meaning, such as exists between movie and film; or hypernymy-hyponymy
relation between a more general and a more specific term, such as plant
and ivy.)

Opposed to traditional lexical compilations, like dictionaries, which
are built for human consumption, modern lexica are intended for use
in NLP processes, and store relevant lexical information in machine-
readable formats that can effectively be used in such processes. For ex-
ample, the meanings of entries can be encoded by establishing links be-
tween them (which exploit semantic relations as mentioned above; see
also WordNet below) so that entries are defined in function of other en-
tries; e.g., car is a hyponym of vehicle, and tire, engine, and chassis are
all related to car as being parts of it. Entries in a lexicon can also be
decomposed into primitive concepts that clarify their meaning and allow
to relate different entries which share the same or a related meaning. For
example, in a frame semantics approach to building electronic lexical re-
sources, word meaning is defined by assigning words to semantic classes,
or frames; in FrameNet (Baker, Fillmore and Lowe 1998), one such re-
source for English, car belongs to the frame Vehicle, and engine, trunk,
and seatbelt belong to the frame Vehicle_subpart. These approaches
to structuring lexical information are related to knowledge bases, or on-
tologies, which are used to encode human general knowledge or domain-
specific information for processing by computer systems by structuring
information via classes and subclasses linked by relations between them.
For an example of a general knowledge ontology, see Google’s Knowledge
Graph (Singhal 2012).

Lexical resources also differ in the data and methods used for com-
piling them (Hazman, El-Beltagy and Rafea 2011): Obtaining lexical in-
formation from unstructured (corpora) or structured (databases) data,
via a manual process by lexicographers or an automatic method that
leverages statistics and patterns in the source data, or a semi-automatic
method that filters the source data for further processing by humans.

Lexical resources have been the object of study and development on
the field of Language Technology since its early days (Reichert, Olney and
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Figure 2.1: A sample of WordNet’s synset graph.

Paris 1969; Smith and Maxwell 1973) with the goal of creating machine-
readable resources that can be used to incorporate lexical knowledge into
NLP systems. Computerized resources have the advantage of being able
to store and process large amounts of information, which allows them
to be enriched with additional information at a lower cost than their
traditional, paper-based counterparts. Abstract data types in Computer
Science, such as graphs, also allow greater flexibility in how the data
is stored and used. These assets have been taken advantage of to create
large, wide-ranging lexical resources which contain substantial quantities
of information ready to be used for language processing. An example of
this is WordNet (Miller 1995), an English lexical database built as a
graph connecting groups of synonyms (synsets) by means of semantic
and lexical relations, such as hypernymy-homonymy. (See figure 2.1 for
a sample of WordNet’s graph around the synset Event; relations in this
graph are indicated by directed arrows signaling the origin as a hypernym
of the destination.)

For our work on Swedish word sense representation, we have made use
of such a resource for the Swedish language: SALDO (Borin, Forsberg
and Lönngren 2013).
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2.2.1 A Swedish lexicon: SALDO

SALDO is a lexical-semantic network which, similarly to WordNet, rep-
resents concepts in a graph’s nodes and connects them using a variety of
lexical-semantic relations. The principles followed to build this network,
however, are different from WordNet’s central concept of synonym sets.
SALDO is organized as a hierarchy. Any of its entries, has one or several
semantic descriptors of which one is unique and mandatory: the primary
descriptor. Semantic descriptors are also entries in the lexicon, so any
entry has at least one semantic descriptor, but can also be a semantic
descriptor of other entries. The characteristics of the relation formed be-
tween an entry and one of its semantic descriptors establishes SALDO’s
hierarchical structure.

In the case of the primary descriptor (PD), an entry must be a se-
mantic neighbor of, and more central than another in order to be its PD.
Two entries in the lexicon are semantic neighbors when there exists a
semantic relation between them, such as synonymy or hyponymy. Cen-
trality is defined in terms of different criteria, such as frequency (words
with higher frequency are more central than words with lower frequency),
stylistic value (stylistically neutral words are more central than stylisti-
cally marked ones), derivation (words with lower derivational complexity
are more central than those with higher complexity), and type of relation
in the case of asymmetrical relations (e.g., a hypernym is more central
than a hyponym). In practice, most PDs are synonyms or hypernyms of
the entry they describe.

The stipulation by which any entry in SALDO must have one and only
one PD (but can potentially be PD of several other less central, semanti-
cally related entries) confers its underlying structure a tree architecture.
This also implies that there must be a root node, called PRIM, at the
top of the PD hierarchy; this is an artificial entry created solely for this
purpose, and bears no linguistic relation to the entries of which it is a
PD. (See a portion of SALDO’s PD tree around the term music in figure
2.2; relations in the tree are indicated by directed arrows signaling the
PD of the arrow’s origin.)

Other semantic descriptors are secondary descriptors (SD). An entry
can have more than one SD, and their chief purpose is to assist in de-
scribing the entry’s meaning, especially in the case of its PD not being
a synonym. (Observe that in the case that the PD is a synonym, its se-
mantic description is rather complete.) There are no restrictions on the
type of relation that must exist between an entry and its SDs.

Each entry in SALDO is a sense of a word. A polysemous word, for
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lata..2 ’to sound’

musik..1 ’music’

rock..2 ’rock music’

ljud..1 ’sound’

jazz..1 ’jazz’ spela..1 ’to play’

’instrument’’hard rock’ instrument..1

gitarr..1 ’guitar’

hardrock..1
o

o

Figure 2.2: A sample of SALDO’s primary descriptor tree.

instance, will have one entry for each sense; e.g., the Swedish word rock
is described as having two meanings: ‘coat’ and ‘rock music’, so there
are two entries, rock1 and rock2, one for each sense of rock. Due to the
principles followed for distinguishing senses to be included in this re-
source, SALDO’s sense granularity is coarser than that of WordNet. As
described in its original formulation by Borin, Forsberg and Lönngren
(2013), the average number of senses for base forms in SALDO is 1.1
and approximately 7% of all base forms are polysemous, with the most
polysemous one having 10 senses; meanwhile in WordNet 17% of base
form-part of speech combinations are polysemous, with the most pol-
ysemous one having 59 senses. Furthermore, entries in SALDO are not
restricted to single-word elements, but it also includes multi-word expres-
sions. In addition to word sense information, entries contain information
about their part-of-speech and their inflectional pattern.

2.3 Corpora

A corpus is a collection of texts which, in the field of corpus linguistics,
are used to perform different kinds of linguistic analysis: gather statis-
tics, retrieve occurrences and linguistic evidence, or conduct comparative
studies, among others. Modern corpora are stored in computer-readable
form, so that tools developed by computational linguists can be applied
onto them. A corpus can have a general aim, by collecting texts from
different types of sources, styles, and authors with the aim of providing
a representative sample of the language (or languages) covered; or it can
have a narrow focus to enable the study of a specific aspect of language,
by sampling only texts relevant to the subject: a historical period, a spe-
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cific language variety, or a particular form of online communication, for
example. In the cases where corpora are used to train language models
or semantic representations, as is the case in several models presented
in this thesis, the selection of texts has an important influence over the
resulting models. As was discussed earlier in this chapter, such models
learn the semantics of the language by analyzing its usage in text; it can
be inferred from this that the models trained on a corpus will reflect
the language contained in it and, thus, this is a factor to be taken into
account when choosing a corpus for these purposes. In our work, we have
striven towards representing language as used in a wide range of genres,
topics, registers, and styles in contemporary Swedish; to achieve this, we
compiled a training corpus from different sources in order to account for
the desired variation (see below).

Besides differences in the language type and topic covered, corpora
may differ in a number of aspects that are defined when a corpus is
compiled, such as the size of included texts and the proportion of different
text types, or what annotation and metadata are to be added onto the
raw text, among others. A type of annotation of special interest for our
work is word-sense annotation, by which all or part of the words or
lemmas contained in a corpus are annotated with the sense corresponding
to each instance, according to a pre-specified word sense inventory which
can be extracted from a lexicon, or related annotations such as semantic
frames. Such corpora, while laborious to produce due to the amount of
human input needed, have an added value for training and evaluating
models such as are presented in this thesis, whose main goal is to identify
and represent word senses. For an example of a contemporaneous corpus
annotation effort which combines human input with help of language
technology tools, see the descriptions provided by Johansson et al. (2016)
for annotating a Swedish corpus with word senses.

The use of the Internet by an ever increasing part of the population
to communicate, share knowledge and data, and access news and en-
tertainment in the last decades generates an extremely large amount of
written language in the form of articles, blog posts, chat logs, product
reviews among many others. In the period from 1986 to 2007, Hilbert
and López (2011) estimated the growing global storage capacity at 2.6,
15.8, 54.5, and 295 exabytes (1 EB equals 1018 bytes) in 1986, 1993, 2000,
and 2007, respectively; according to this same study, the proportion of
these amounts of data stored in digital versus analog platforms grew from
25% in 2000 to 94% in 2007. Even if most of this vast amount of data
is not textual (according to a Cisco (2017) white paper, 73% of global
IP traffic during 2016 was video traffic), the rapid growth and reach of
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digital data also affects this medium. Large collections of text available
online have proven to be an invaluable source of data not only for the
study of language itself, but for analyzing text-generating users’ behavior
from sociological and market points of view. The academic and industrial
value of this data has in turn motivated the creation and refinement of
language analysis tools able to leverage it. In summary, there currently
exists a thriving ecosystem revolving around corpora that enables acqui-
sition of insight from primary language data at an unprecedented level
in terms of quantity, availability, and analytic capacity.

2.3.1 Swedish corpora used in this thesis

For those models presented in this thesis that need a corpus to be trained
on, a Swedish language corpus is used consisting of approximately 1
billion words.

This corpus was compiled by aggregating a number of corpora2 fea-
turing different text sources in an attempt to achieve a balanced rep-
resentation of written Swedish language. It comprises text from social
media (corpora Bloggmix 1998-2013; Twitter mix, August 2013; Swedish
Wikipedia, August 2013), print and online newspaper texts (DN 1987;
GP 1994, 2001-2012; Press 65, 76, 95-98), texts from different science
and popular science publications (Forskning och framsteg; Läkartidnin-
gen 1996-2005; Smittskydd; Academic texts - Social science), fiction lit-
erature (Bonniersromaner I, II; SUC novels), and corpora with mixed
contents (SUC 3; Parole).

Furthermore, the texts in the corpus were tokenized, lemmatized, and
POS-tagged using Språkbanken’s Korp NLP pipeline (Borin, Forsberg
and Roxendal 2012). The tokenizer and lemmatizer used are tools de-
veloped specifically for this pipeline, while the POS-tagger is HunPos
(Halácsy, Kornai and Oravecz 2007). Automatic segmentation of com-
pounds was also applied on the texts to split compound words into their
components when a compound word’s lemma was not found in SALDO
(see section 2.2.1).

Besides the main corpus described above that was used to train our
models, we used a number of additional corpora in some of the evaluation
tasks applied to test the performance of models. In particular, these are
corpora that include sense annotations for all or part of their contents
that we used for the purpose of solving word sense disambiguation (WSD)
tasks.

2Available for download at https://spraakbanken.gu.se/eng/resources.

https://spraakbanken.gu.se/eng/resources
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Two of these corpora were compiled collecting sentences used as gloss-
ing to illustrate the use of Swedish word senses contained in the Swedish
FrameNet (Friberg Heppin and Gronostaj Toporowska 2012) and SALDO
(Borin, Forsberg and Lönngren 2013). These sentences have been selected
by lexicographers as examples of word sense usage for entries in those
resources and, thus, contain a word annotated with its sense each. In the
case of the Swedish FrameNet glosses, a total of 1 197 sentences were an-
notated in terms of its semantic frames (for which a mapping to SALDO
senses exist); the SALDO glosses correspond to 1 168 sentences and are
annotated with SALDO senses.

Another sense-annotated corpus was compiled with sentences from
the Swedish Senseval-2 task (Kokkinakis, Järborg and Cederholm 2001).
This collection contains 8 237 sentences, originally divided into two sub-
sets for training and testing. Each sentence contains an ambiguous word,
from a list of 40 possible words, annotated with its correct sense. In this
case, the word sense inventory used originally was obtained from the
Gothenburg Lexical Database/Semantic Database (Allén 1981), but a
manual mapping to SALDO word senses was used to homogenize it with
the rest of corpora (Nieto Piña and Johansson 2016); due to the differ-
ences between sense inventories, the number of ambiguous words changed
from 40 to 33.

Finally, the mixed-genre, sense-annotated corpus from the Koala an-
notation project (Johansson et al. 2016) was used. This corpus comprises
seven sub-corpora containing Swedish texts from different genres: blogs,
novels, Wikipedia articles, European Parliament proceedings, political
news, newsletters from a government agency, and government press re-
leases. The version we used (since the annotation project was still ongo-
ing at the time) was composed of 11 167 sentences containing one sense-
annotated word each, using the sense inventory from SALDO. The inter-
annotator agreement for two annotators on this corpus is given by a κ

coefficient (Cohen 1960) of 0.70 and an estimated agreement probability
of 0.90.





3 Distributional
representations

Distributional representation models allow us to generate representations
for words and other linguistic units of meaning. A distributional represen-
tation is a collection of features that identify the meaning of a linguistic
unit, such as a word, in terms of its distributional properties; i.e., the
meaning of a linguistic unit is represented as a function of the contexts in
which it tends to appear. Distributional representations are derived from
word co-occurrence statistics obtained from text, either directly from
counting co-occurrences, or indirectly through learning models that au-
tomatically analyze and transform such statistics (Turian, Ratinov and
Bengio 2010; Levy and Goldberg 2014a). The shape that distributional
representations usually take nowadays is that of high-dimensional, real-
valued, dense vectors called distributed representations (Hinton et al.
1984) or word embeddings which are computationally efficient for use in
NLP systems. When derived directly from co-occurrence counts, which
produce sparse vectors, dense representations are obtained by means of
dimensionality reduction techniques.

The kind of context used to derive such representations influences the
semantics they portray. For example, when larger contexts such as whole
documents are used, the semantics represented tend to be topical. Thus,
related words to any given one will be topically similar, such as concert
and guitar. On the other hand, when only words in close proximity to
the target are considered as context, the represented semantics tend to
be substitutional. In this case, related words to any given one will be
functionally similar in such a way that one can be substituted by the
other in a sentence, such as spaghetti and cannelloni (Bansal, Gimpel
and Livescu 2014; Levy and Goldberg 2014b; Melamud et al. 2016).

While dense embeddings derived from distributional data occupy much
of the research effort into semantic representations, these are not the
only means to representing the meaning of words and other linguistic
units. Symbolic representations are a counterpart to this approach: in
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a symbolic paradigm, the semantic unit is represented by a discrete
atomic symbol such as a string of characters or an arbitrary sequence
of numbers. Symbolic representations hold the advantage of being eas-
ily interpretable by humans, since knowing the correspondence between
symbol and object allow us to understand the representation; they also
facilitate representing composition, so that a sequence of objects like
words can be represented as a sequence of symbols, for example. On
the other hand, distributed representations, in the context of massive
parallel computation brought by very large neural networks, or deep
learning (LeCun, Bengio and Hinton 2015; Schmidhuber 2015), pro-
vide an efficient medium to store and manipulate meaning through large
scale computation. This kind of representation also enables the notion of
graded similarity: since real-valued features of the represented object are
distributed across the vector’s dimension, comparison of these features
among different vectors is possible. Symbolic representations do not al-
low such comparison, since each symbol is equally different from all other
symbols.

In the rest of this chapter, we discuss the distributional hypothesis
that is at the base of distributional models. After a brief example of a
classic model that illustrates how this hypothesis can be applied to gen-
erate semantic representations that are apt to be used in computational
models, we explore current models used to automatically generate distri-
butional representations for words and word senses from large collections
of text. We also consider different approaches to use linguistic resources
such as lexica as a source of data to train such models.

3.1 The distributional hypothesis

The distributional hypothesis (Harris 1954) states that

the degree of similarity between lexical objects A and B is a func-
tion of the degree of similarity between the environments in which
A and B appear.

In other words: if A and B are two words which tend to appear in the
same contexts, they will have similar meanings. Or, as summarized by
Firth (1957), “You shall know a word by the company it keeps.”

This hypothesis brings forth the concept of distributional semantics,
which attends to the study of word meaning based on context. Under this
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assumption, the meaning of words can be studied, at least partly (see
Lenci 2008), by analyzing their distributional characteristics; i.e., the
environments or contexts in which they appear. As an intuitive example,
consider the sentence “After the mountain pass, we made our way down
the rocky kambotke which run among trees and shrubs.” While this might
be our first encounter with the made-up word kambotke, it could be
inferred from the context that it is likely a feature of the landscape,
one which possibly can be transited not unlike a dry river bed or other
naturally occurring track.

The original framework in which this hypothesis was formulated was
that of distributional analysis, which was intended to provide a formal
scientific methodology for the study of linguistics in general, from the
phonological to the semantic levels. With regards to word meaning,
the distributional hypothesis helps explaining it in terms of differences
(Sahlgren 2008): by providing an instrument to measure the distribu-
tional differences between words, a distributional model represents the
meaning of one word in terms of how different it is from other words.
Note that this implies that an isolated distributional representation of
any given linguistic unit is not interpretable by itself, but it is rather in
comparison to other units’ representations, by measuring how different
they are, when it acquires significance.

Language Technology has made extensive use of the distributional
hypothesis in the last couple of decades. In this recent context, the tra-
ditional approach to building distributional models was based on comput-
ing co-occurrence matrices to be processed for dimensionality reduction.
A co-occurrence matrix usually has its rows indexed by words and its
columns by contexts. (E.g., words, documents.) Its cells contain either
raw co-occurrence counts between word and context, or a derived statis-
tic such as tf-idf. Once computed, a co-occurrence matrix’s rows can be
used as sparse vector representation of their indexed words, or it can be
further processed to reduce the number of dimensions and avoid spar-
sity for improved computational performance using matrix factorization
techniques such as Singular Value Decomposition. In either case, words
which usually occur in similar contexts will have similar corresponding
vector representations. Hence, vector similarity is an analogue of seman-
tic similarity in this paradigm. Classic examples of this approach are
Word Space (Schütze 1993), Hyperspace Analogue to Language (HAL)
(Lund and Burgess 1996), Latent Semantic Analysis (LSA) (Landauer
and Dumais 1997), or Random Indexing (Sahlgren 2005).

The renewed success of neural networks in different areas of Machine
Learning that started at the turn of the century permeated research
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efforts in statistical language modeling, whose goal is to learn the proba-
bility distribution of sequences of words in text. Bengio et al. (2003) pro-
posed such a model using a one-hidden layer neural network to model the
probability of the next word wt given a sequence of n preceding words:

P(wt |wt−1, . . . ,wt−n+1)

The neural network’s hidden layer’s weights, trained over samples of nat-
ural language texts using error backpropagation, are interpreted as word
representations of the vocabulary in this model. These representations
are real-valued, dense vectors of distributed features.

Since this model is trained by inspecting a word’s context (the pre-
ceding sequence of n words), words appearing in similar contexts are
expected to receive similar representations. This constitutes an instance
of the distributional hypothesis at work. Note how this is coherent with
the model’s training objective: two closely related words will both have
a high probability of continuing a sequence which constitutes a proba-
ble context for both. This approach to solving NLP tasks with a neu-
ral network which learns representations as a by-product proved to be
rather productive. A good example of this is the architecture for mul-
titask learning proposed by Collobert and Weston (2008), by which the
model is trained to solve different tasks at the same time, from language
modeling to part-of-speech tagging. The resulting representations are
naturally able to represent different aspects of written natural language
and, thus, adept at generalization.

The improved performance of neural networks’ automatically learned
representations inspired a shift in the research focus on this area: from
using these models to solve one or more specific NLP tasks, the interest
veered towards the networks’ internal representations of linguistic ob-
jects themselves. By understanding and improving the process of train-
ing representations, powerful sets of features could be made available for
any task susceptible of profiting from their representational ability. For
example, Mikolov et al. (2013a) proposed applying simplifications over
aspects of earlier neural language models that, while important to the
task of language modeling, could be dropped when the main object of
interest was the learned representations and not the learning task. In
this particular case, this resulted in increased computational efficiency,
which allows the model to learn from larger amounts of data in benefit
of the learned representations.

Much of the recent work on learning semantic representations apply-
ing the distributional hypothesis defines context as preceding, succeeding,
or surrounding words in a window of predefined size. However, it is worth
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noting that the concept of context can be defined in a number of ways
depending on the type of semantics that need to be captured for the task
at hand. For example, whole documents in which a word occurs can be
used as its context, causing the learned representations to contain topi-
cal information, as is the case of LSA (Landauer and Dumais 1997). An
alternative to define context as the words in a sequence surrounding the
target is to define it in terms of syntactic relations given by dependency
trees as a way of introducing linguistic structure into running text (Padó
and Lapata 2007). Translations of the training data into other languages
from parallel corpora have also been used as additional context as a way
to diminish the ambiguity of polysemic words (Ghanimifard and Johans-
son 2015). Multimodal context, which includes other types of data such
as images in addition to text, has also successfully been used to generate
semantic representations (Lazaridou et al. 2015).

3.2 A simple distributional model: bag-of-words

From a language technology point of view, lexical representations pro-
vide characterizations of lexical units that are manipulable by computers
for use in applications that handle human language. For example, a sim-
ple approach for representing text is the bag-of-words (BoW) model used
to represent a document as a collection, or bag, of words that is useful
for analyzing the document’s contents and comparing it to other docu-
ments. Suppose that we intend to represent the following toy collection
of documents, one per line:

I’ve seen it all
I’ve seen the dark
I’ve seen the brightness
In one little spark

(Guðmundsdóttir, Sigurðsson and von Trier 2000)

which, after tokenizing, results in the following vocabulary V of size N =
11:

V = {I’ve, seen, it, all, the, dark, brightness, in, one, little, spark}

(Contractions have not been tokenized separately here for simplicity.) In
the BoW model, after establishing the vocabulary, each document can be
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represented by a vector of size N in which each dimension corresponds
to a word and its value indicates the frequency of that word in the
document. In our example, following the ordering of V , our documents
di, i ∈ [1,4], could be represented as follows with 11-dimensional vectors:

d1 = [1,1,1,1,0,0,0,0,0,0,0]

d2 = [1,1,0,0,1,1,0,0,0,0,0]

d3 = [1,1,0,0,1,0,1,0,0,0,0]

d4 = [0,0,0,0,0,0,0,1,1,1,1]

In a rudimentary manner, such vector representations can be used to
determine how similar two documents are by comparing their vectors;
for instance, it is easy to tell that d4 is more different from the other
three documents in terms of vocabulary than these three are between
them. However, this approach enables more sophisticated analysis by
manipulation of the matrix M that represents the whole collection of
documents, or term-document matrix:

M =

©­­­­­­­­­­­­­­­­­­«

1 1 1 0
1 1 1 0
1 0 0 0
1 0 0 0
0 1 1 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1

ª®®®®®®®®®®®®®®®®®®¬
Each column in M represents a document; note that this also gives us
representations for the words in V : one per line in their original order
from top to bottom. When applied to real collections containing hundreds
or thousands of documents, these representations tend to become very
sparse as the vocabulary grows (since any document will not contain
most words.) In order to address this, matrix factorization procedures
like singular-value decomposition (SVD) of the term-document matrix
are used in techniques like latent semantic analysis (LSA) (Deerwester
et al. 1990) to reduce the dimensionality. The resulting dense vector
representations for documents and words can be tested for similarity
using simple geometrical operations like obtaining the cosine of the angle
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between vectors, which facilitates analyses of the data. Representations
derived this way have been widely applied in NLP tasks like document
summarization (Gong and Liu 2001), sentiment analysis (Maas et al.
2011), or word sense disambiguation (Pino and Eskenazi 2009), among
many others.

In fact, while more modern models built on neural networks, some
of which are discussed below, learn dense distributed representations
directly without transforming a co-occurrence matrix, Levy and Gold-
berg (2014a) showed that there are indications that the representations
learned by such models are asymptotically equivalent to those that could
be obtained by performing matrix factorization on a co-occurrence ma-
trix.

3.3 Word embedding models

In the context of the shift of focus from obtaining word vector repre-
sentations as a by-product of solving an NLP task to making these rep-
resentations the object of research, a number of models were developed
like Skip-gram (Mikolov et al. 2013b), or GloVe (Pennington, Socher and
Manning 2014). Under this approach, research efforts focused on identi-
fying which characteristics make word vector representations into com-
petitive linguistic feature sets, and on refining techniques to streamline
their training process.

3.3.1 The Skip-gram model

A large part of the models and techniques presented in this thesis work
is based on the Skip-gram model (Mikolov et al. 2013b). In turn, Skip-
gram builds upon the neural probabilistic language model developed by
Bengio et al. (2003) introduced in the previous section. Specifically, Skip-
gram tries to improve the computational efficiency of the former model
by eliminating architectural complexity in the neural network and intro-
ducing simplifications in the operations performed. These improvements
make it feasible to train the model on larger corpora, which results in
higher quality, more stable representations.

The Skip-gram model is based on learning word vector representa-
tions (also known as word embeddings) that are adequate for, given a
target word wt , predicting its surrounding context words, wt−c, · · · ,wt+c,
where c is the size of the context. Its original formulation for this goal as
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wt

v(wt)

v′(wt+2)

v′(wt+1)

v′(wt−1)

v′(wt−2)

Figure 3.1: Skip-gram training objective: word vectors v(wt ) for words wt op-
timized as predictors of context word vectors v′(wt±i).

training objective function is to, given a sequence of T words, w1, . . . ,wT ,
maximize the average log-probability:

1

T

T∑
t=1

∑
−c≤ j≤c

j,0

log p(wt+j |wt )

In order to implement this training objective, the Skip-gram model trains
two separate sets of vector representations, one for target words (or in-
put, denoted here v(w) for any given word w) and one for context words
(or output, denoted here v′(w) for any given word w). The context repre-
sentations are intended only to be used for the model’s internal calcula-
tions, while the target representations are usually viewed as the model’s
trained word representations. With these two sets of vectors, the condi-
tional probability p(wc |wt ) from the objective function formulated above
is defined as follows:

p(wc |wt ) =
ev
′(wc )

ᵀv(wt )∑ |V |
w=1 ev′(w)ᵀv(wt )

where |V | is the number of words in the vocabulary V ; note how the de-
nominator would be computationally very costly to calculate, given the
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usually large size of vocabularies. To address this problem, Skip-gram of-
fers two alternatives to approximating the calculation of the vocabulary:
hierarchical softmax and negative sampling.

In the approximation given by hierarchical softmax, a computational
speed-up proposed by Morin and Bengio (2005), the |V | words in the
vocabulary are represented by the leaves of a binary Huffman tree. This
structure substitutes the flat softmax output layer of the neural network.
For each word w ∈ V there exists a path from the node of the tree to the
corresponding leaf and, at any given node in this path, the probability of
going either left or right is calculated. Then, at the leaf node representing
w, the probability of w is given as the product of probabilities obtained
by tracing this path on the tree. Note that this probability is already
normalized, since the probabilities of all leaf nodes in a binary tree must
sum up to 1. This saves having to calculate |V | probabilities, reducing
this number to an average of log2(|V |), the depth of a balanced binary
tree.

On the other hand negative sampling, a variation of Noise Contrastive
Estimation (Gutmann and Hyvärinen 2010; Mnih and Teh 2012), uses
noisy samples to train the model to differentiate between genuine (posi-
tive) contexts from the training corpus and negative context words sam-
pled from a noise distribution, hence modifying the model’s training ob-
jective. For each positive context-target training sample from the corpus,
k negative samples are generated; the model is then trained to increase
the probability of predicting the positive context word for that given tar-
get and, conversely, to decrease the probability of predicting any of the
k negative samples. Instead of performing |V | calculations for a training
iteration, only k +1 computations are required, where recommended val-
ues of k range between 2 and 20. Negative sampling thus defines a new
expression that substitutes p(wc |wt ) in the original objective function:

logσ(v′(wc)
ᵀv(wt )) +

∑
wj ∈NSk (wt )

logσ(−v′(wj)
ᵀv(wt ))

where σ denotes the logistic function, σ(x) = 1/(1+ e−x), and NSk(wt ) is
the set of k negative samples wj , j ∈ [1, k], generated for wt . The training
algorithm for word vectors in Skip-gram with negative sampling using
backpropagation with stochastic gradient descent is given in algorithm 1.

In addition to the simplification alternatives sketched above, a sub-
sampling of training words is also part of the Skip-gram model. This
technique drops words from the training data with a probability pro-
portional to their frequency in the corpus. This reduces the amount of
training instances over very frequent words with two implications: the
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Algorithm 1: Training of word vectors using Skip-gram with negative sampling.
Input: Sequence of words w1, . . . ,wN , window size n, learning rate α,

number of negative words Nneg

Output: Updated vectors v(wi) of words wi, i = 1, . . . ,N
for t = 1, . . . ,N do

/* Define target and context words for this iteration */
w = wt

context(w) = {c1, . . . , cn | ci = wt+i, i = −n, . . . ,n, i , 0}
for i = 1, . . . ,n do

/* Calculate and propagate gradient for context words */
f = σ(v′(ci)ᵀv(w))
g = α(1 − f )
∆ = g · v′(ci)
v′(ci) = v′(ci) + g · v(w)
for j = 1, . . . ,Nneg do

/* Calculate and propagate gradient for negative words */
dj ← word sampled from noise distribution, dj , ci
f = σ(v′(dj)

ᵀv(w))

g = −α · f
∆ = ∆ + g · v′(dj)

v′(dj) = v′(dj) + g · v(w)

end for
/* Propagate gradient for target word */
v(w) = v(w) + ∆

end for
end for

training process becomes shorter, and the representations for rare words
gain in quality (Mikolov et al. 2013b).

Since the goal of Skip-gram is to learn word representations, the sim-
plifications it introduces are partly owed to disregarding constraints that
have to be taken into account when the task is language modeling. These
simplifications make Skip-gram an efficient approach to learning word
representations.

3.4 Word sense embedding models

The elephant in the room for any given word-based embedding model is
the existence of phenomena such as polysemy and homonymy. A word
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embedding model ignores the fact that some words may have more than
one meaning, so in effect all meanings found in the training corpus for
any given word are conflated into the same representation. When such
representations are expected to portray accurately the meaning of words,
as they often are, disregarding polysemy might become a shortcoming of
the model.

While it is true that the learned representation for a polysemic word
might contain information about all senses of the word present in the
training data, it would not be a trivial task isolating a single sense from
in an embedding, since there is no clear indication of which of the em-
bedding’s dimensions correspond to which sense. Furthermore, conflating
multiple senses into one embedding affects the configuration of the se-
mantic vector space as a metric space through the triangle inequality
(Neelakantan et al. 2014): given a distance function d in the semantic
space, and embeddings for any three words a, b, and c, the following
relation holds:

d(a, c) ≤ d(a, b) + d(b, c)

Consider a word b with two distinct senses, like rock (‘music style’ and
‘mineral’), and unrelated words a and c each of which is closely related to
one of the senses of b, like blues and boulder. As the training process con-
figures the semantic space and pulls a and c towards a given their respec-
tive semantic relatedness, a and c are pulled towards each other despite
not being related. An effect of conflating multiple senses in one embed-
ding can be seen when inspecting the closest embeddings to a given word
in the vector space according to a similarity measure like cosine distance.
For example, consider the following list of the 10 nearest neighbors of the
word mouse in a vector space trained with the Skip-gram model: mickey,
mice, keyboard, cat, rat, giant, disney, walt, pet, duck. It contains words
related to mouse as an animal, as a cartoon character, and as a computer
component with no clear distinction among them, signaling an evident
mix of unrelated meanings in one representation. A two-dimensional pro-
jection of the nearest neighbors of mouse from a 200-dimensional word
vector space3 can be seen in figure 3.2. Some attempts have been made
to address this particular undesirable result of mixed senses in nearest
neighbor lists. For example, Cuba Gyllensten and Sahlgren (2015) pro-
pose to structure these lists according to embeddings’ locations relative

3The projection into two dimensions was obtained by applying principal compo-
nents analysis (Jolliffe 1986) onto the original 200-dimensional space trained with
Word2vec (Mikolov et al. 2013b) for a vocabulary of 71 291 words. The visual-
ization was produced by TensorFlow’s (Abadi et al. 2016) Embedding Projector
(https://projector.tensorflow.org).

https://projector.tensorflow.org
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Figure 3.2: 2D projection of the nearest neighbors of mouse from a 200-
dimensional word vector space.

to each other in the vector space. Such an approach makes it possible
to disentangle neighborhoods in the presence of conflated senses and es-
tablish sub-regions that relate to different senses of a polysemous word.
However, it increases the computational complexity of semantic similar-
ity calculations using a distance function that is one of the main appeals
of semantic spaces; in contrast, having separate representations for dif-
ferent word senses would eliminate the need for considerations of the
vector space’s structure in such situations. Besides its influence on the
intrinsic properties of these spaces, and while meaning conflation might
not affect the performance of NLP systems in some tasks, using separate
embeddings for different word senses of a word does have an impact on
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tasks like part-of-speech tagging, semantic similarity, or semantic rela-
tion identification (Li and Jurafsky 2015). Furthermore, embeddings can
also be applied to automating certain processes involved in the develop-
ment of linguistic resources, such as suggesting new entries (see chapters
9 and 10). In cases where those resources differentiate between senses
of a word, it is useful to have dedicated word sense embeddings so that
a mapping between representations and entries in the resource can be
established. This would allow to manipulate those entries in a semantic
vector space and take advantage of its graded similarity properties.

In the wake of successful application of word embeddings as linguistic
features in NLP, an amount of research has gone into adapting these
models to make them able to learn separate representations for each
meaning of any given word. Exploring the possibilities of learning sep-
arate representations for distinct meanings of a word and testing their
potential applications are the main objective of this thesis.

Approaches to tackle this problem can be classified in a number of
ways. In this text we focus on the distinction between approaches that
are either supervised or unsupervised by a lexicon: we consider the super-
vision as a training signal coming from a linguistically informed resource
different from the training corpus.

3.4.1 Lexicon-unsupervised models

Lexicon-unsupervised approaches, usually rely on methods that are able
to classify instances of a word in context into one of its possible mean-
ings. Models in this category differ in which method is used to perform
classification and how the set of possible meanings is defined.

One of the earlier and most popular methods used for this purpose is
clustering, applied either on word instances from a corpus or on word-
level representations. For example, Schütze (1998) proposes to automat-
ically find word sense representations in his earlier distributional Vec-
tor Space (Schütze 1993) as centroids of clusters of context vectors for
any given word. Widdows and Dorow (2002) describe an incremental
procedure for modeling semantic relatedness between nouns in a graph
constructed using grammatical relations, such as lists of nouns, found
in a corpus. This graph can be used to infer the different senses of a
word used in the corpus by inspecting clusters of nouns related to a
given word. Pantel and Lin (2002) use clustering of word feature vectors
constructed using transformed word-context frequency counts. The clus-
tering algorithm allows to identify subsets of features of a word that fit
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a particular cluster so that, effectively, a word can be assigned to more
than one cluster. The different senses of a word are then identified by the
separate clusters it is assigned to. Similarly, Véronis (2004) make use of
clustering in a co-occurrence graph of words to detect distinct usages of
a word in the text used to build the graph.

Reisinger and Mooney (2010) propose to cluster occurrences of a word
w in a corpus into a preset number K of clusters based on the context
of each occurrence; the centroid of each cluster is used as the prototype
vector that represents the meaning of a particular usage of w defined by
the context of the occurrences of w assigned to that cluster. Huang et al.
(2012) also apply clustering based on context: first, a single-prototype-
per-word is trained using a neural network; then, for each occurrence
of a word w, a context vector c is calculated by averaging the vector
representations of words in a context window around w; the context
vectors c collected are clustered into K clusters and the resulting clusters
are used to label each occurrence of w in the corpus; finally, the labeled
corpus is used to train new representations.

Neelakantan et al. (2014) also use contextual clustering to modify the
Skip-gram model. Given a context window around a word w from the
training corpus, a context vector c is calculated by averaging the context
words’ word vectors. c is then clustered into one of K possible clusters
for w; this cluster is in correspondence with one of K possible sense
representations being learned by the model, which is then selected to be
trained by this instance with a procedure similar to the original Skip-
gram. The authors also propose a non-parametric version in which K is
not fixed. An advantage of this model over the previous one is that sense
representations are obtained in a single pass of the training algorithm.

In the model described in chapter 6 (Nieto Piña and Johansson 2015)
we also propose to modify Skip-gram to train a number Kw of represen-
tations per word w. Instead of maintaining cluster centroids to which to
compare an average context vector c, an approximation of the softmax
function is used to calculate the probability of each sense of w given the
instance’s context; the most probable sense is selected to have its rep-
resentation trained with that instance. The number of senses per word,
Kw, can be individually specified for each word, which avoids keeping a
fixed number of senses even for monosemous words. See figure 3.3 for a
graphical representation of the training objective of such a model.

Li and Jurafsky (2015) and Bartunov et al. (2016) embed a prior
from a Dirichlet process into the Skip-gram model, using the Chinese
restaurant process (CRP) (Pitman 1995), in order to be able to account
for a variable number of senses per word. For each training instance of
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Figure 3.3: Training objective for a lexicon-unsupervised word sense embed-
ding model: each word wt can be mapped to several word sense
vectors, v(wt ,k), each of which are optimized to predict their corre-
sponding context word vectors, v′(wt±i). Cf. the word embedding
model shown in figure 3.1.

a word w, the stochastic process helps to assign it to any of the exist-
ing senses created with previous instances or, if the current instance is
deemed to be different enough from those based on their similarity to
the instance’s context, creates a new sense. Once a sense is selected for
an instance, Skip-gram’s training algorithm updates the corresponding
representation.

3.4.2 Lexicon-supervised models

The alternative to lexicon-unsupervised models is to take an existing
inventory of senses per word, such as exists in a lexicon, and taking
advantage of this information to inform the model. Lexica encoded in
semantic networks, such as WordNet (Miller 1995), are particularly useful
for this kind of approaches since they not only are useful for obtaining
sense inventories, but also can establish semantic and lexical relations
between concepts in their network structures.

Chen, Liu and Sun (2014) and Iacobacci, Pilehvar and Navigli (2015)
propose to apply word sense disambiguation algorithms based on seman-
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tic networks (WordNet in the first case; BabelNet (Navigli and Ponzetto
2012) in the second) onto training corpora to automatically obtain sense-
annotated data. This data can then be used to train a word embedding
model that will learn representations for word senses. The quality of
sense-annotated corpora depends heavily on the method used to disam-
biguate them: automatic disambiguation algorithms might produce in-
complete or inaccurate results, while human annotation is usually costly
to procure. For this reason, several models for training word sense repre-
sentations have been developed that approach the task without making
use of sense annotations. Johansson and Nieto Piña (2015) present a
retrofitting algorithm that incorporates knowledge from a semantic net-
work onto a pre-trained word vector space and splits single-word embed-
dings into several word sense embeddings. By approaching this task as an
optimization problem, the pre-trained word embeddings are considered
linear combinations of several word sense embeddings while minimizing
the distances of these to related concepts as described by the semantic
network. Similarly, Jauhar, Dyer and Hovy (2015) describe a method for
retrofitting pre-trained word vectors to a semantic network. One of the
models introduced by Jauhar, Dyer and Hovy (2015) is based on a graph
learning technique applied to the task of finding representations for word
senses.

3.5 Enriching embedding models with lexicographic data

In this and the previous chapter we have discussed the ways in which
linguistic knowledge can be stored and operationalized for use in com-
putational methods, as well as how computer models can automatically
extract word meaning from text. In the present section we propose to in-
tersect these two aspects of language technology in an attempt to create
improved models of word meaning. We hypothesize that current auto-
matic embedding models can benefit from formal lexical knowledge, with
the added benefit that integrating existing linguistic resources in today’s
data-driven models could simplify the process of keeping them up-to-date
by easing the need for manual work.

3.5.1 Embedding graphs

As a preliminary step before discussing the approaches to combining
structured data from a lexicon with text from corpora as a mixed source
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of training data for embedding models, it is interesting to consider re-
search efforts that have been made in the direction of creating distributed
representations of information contained in graphs, given that such data
structures are widely used to encode lexicographic information.

Graphs are well suited to representing relations between objects, such
as those that exist between entries in a lexicon identifying semantic rela-
tions such as synonymy, hypoynymy, or meronymy. This is also the case
in knowledge bases, where relations between entities give them structure.
Being able to embed such structured information into a continuous vec-
tor space adds the potential to perform simple similarity measures based
on the geometry of the vector space (as opposed to using graph-based
similarity metrics.) It also adds the generalization power of embeddings;
i.e., it is possible to embed new entities in an existing vector space in such
a manner that it facilitates adding new knowledge to the corresponding
graph-based resource. From our perspective, being able to embed graphs
opens the possibility to use lexicographic information to our word sense
embedding models.

There are different approaches to embedding graphs. In relation to
language technology, embedding WordNet’s (Miller 1998), a lexical da-
tabase formed by sets of synonyms connected by relations between them,
has been the focus of several experiments in this respect. For example,
Bordes et al. (2013) propose to model the relationship r between two
nodes in the graph, a and b, as three vectors in a vector space that are
trained so that r functions as a translation of a into b in the vector space,
or a ∼ b + r. The learned embeddings are tested in a relation prediction
between entries, which illustrates the potential application of embedded
graphs for resource expansion. WordNet has also been used to learn word
embeddings: Goikoetxea, Soroa and Agirre (2015) propose to generate
a synthetic sentences that can be fed into a word embedding model like
Skip-gram (Mikolov et al. 2013b) in replacement of a corpus. The syn-
thetic data is generated by performing random walks over the graph, so
that entries related by their lexical and semantic relations form sequences
that are treated as sentences by the learning model. The resulting word
embeddings are tested in word similarity and word relatedness tasks,
showing that such an approach is able to capture word semantics from
a lexical database.
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3.5.2 Combining structured and unstructured data sources

The word and word sense representations learned by the methods intro-
duced in previous chapters are, by the nature of said methods, obtained
from unstructured data. That is, embeddings are able to express semantic
information obtained from unannotated corpora by means of leveraging
the distributional properties of words, and no other knowledge is taken
into account when these representations are learned.

In chapter 2, however, linguistic resources were discussed as tools tai-
lored to be used in NLP systems which contain lexicographic information
in machine-readable form. The existence of these resources in the form
of lexica usually predates the advent of modern automatic word embed-
ding methods since lexica have been applied to NLP tasks for decades.
As a result of this, a trove of linguistic knowledge is encoded in these
resources and available to be used.

The specific work addressed in this thesis, namely automatically pro-
ducing semantic representations for word senses, could potentially benefit
from curated lexicographic knowledge as contained in these resources. As
mentioned above, current embedding methods for words and word senses
based on distributional information rely completely on the content of
corpora, which can raise a number of issues related to the language con-
tained in the corpus. For example, only those meanings of a word that
are found sufficiently often in the corpus can be accurately represented:
if we assume that the word mouse has two separate meanings, ‘a small
rodent’ and ‘a device to move the cursor on a computer screen’, a system
to represent these two meanings using only information from a corpus
needs that both meanings are well represented in that corpus; if the texts
included in the corpus are heavily biased towards technology articles, it
is possible that the sense of mouse related to an animal may not appear
at all in the corpus or, even if some of the texts contain references to
mouse as an animal, they may not be enough to produce a good rep-
resentation of it in comparison to mouse as a hardware item which is
over-represented in the corpus.

It is in this light that we may view computer-readable lexica as a
source of information that could be used to balance the shortcomings of
representation models when they are exclusively based on corpora. In a
situation as the one in the example above, we would like to supply the
model with data from a lexicon that balances out the lack of information
about mouse as an animal, since we expect the linguistic resource to
provide a rather complete coverage of the language’s lexicon.
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A question that might be raised is, if we consider the coverage of word
senses in lexica to be more balanced and complete than what may be
found in corpora, why not make lexica the main source of data as opposed
to corpora? There are several issues that might affect such a model. First
is the difference in the nature of data that can be obtained from corpora
and lexica: distributional models are conceived to learn representations
from co-occurrence information, which is not present in lexica. While
data can be generated from a lexicon in a format that mimics that of
a corpus (see section 3.5.2.1 and chapter 7), statistics generated from it
will not reflect any real co-occurrence patterns as found in corpora. For
this reason, lexicographic data cannot substitute textual data.

An additional issue is that the representational power of modern em-
bedding models relies on their ability to process large amounts of un-
structured text to learn representations; it has been shown (Alsuhaibani
et al. 2018) that the quality of representations tends to increase with
the amount of text. The amount of data to train a distributional model
that can be generated from a lexicon is limited by the number of possible
combinations of lexicon entries. This number is bound to be smaller than
the virtually limitless amount of variation that can be found in a corpus,
and even smaller if those combinations of entries are restricted to be se-
mantically coherent. This might affect the quality of the representations
learned by the model.

Finally, while we expect a mature lexicon to have a wide coverage
of a language’s vocabulary, we cannot rule out the existence of gaps in
this coverage. Since a lexicon is a manually crafted resource, it is entirely
possible that some word senses are left out. The reasons for this could
range from accidental omission to new senses appearing after the lexicon
was created. Any such gaps would be inherited by any model trained
exclusively on the lexicon. While it is not guaranteed that such gaps
do not exist in a corpus, it is certainly simpler to increase the size of a
corpus to ensure sufficient coverage than it is to do so in a lexicon.

In view of these issues it would seem than lexica and corpora might
work better as complementary sources of data rather than one of them
completely substituting the other. The question, then, would rather be
whether lexica can be used to complement the distributional information
contained in corpora in order to successfully train distributional models.
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3.5.2.1 Generating training data from a lexicon

A common approach to introduce lexicographic data into representations
learned by a model is to use a lexicon to generate a synthetic corpus that
can subsequently be employed as training data for learning embeddings;
for example, synthetic sentences can be generated from a lexicon encoded
in a graph by performing random walks on the graph which output at
random a series of nodes linked to words in the lexicon.

This is the approach taken by Goikoetxea, Soroa and Agirre (2015),
who train Skip-gram and CBOW models (Mikolov et al. 2013b) on syn-
thetic text generated by random walks on WordNet (Miller 1995), and
report a performance on word similarity and relatedness tasks similar to
that of a Skip-gram model trained on a corpus.

In a similar vein, the article presented in chapter 7 (Nieto Piña and
Johansson 2016) explores the idea of building word sense embeddings for
Swedish by training a modified Skip-gram model on a synthetic corpus
generated by performing random walks on the Swedish lexicon SALDO
(Borin, Forsberg and Lönngren 2013); in this case, the embeddings are
intended to be used in a word sense disambiguation task.

3.5.2.2 Refining pre-trained embeddings with lexicographic knowledge

An alternative to explicitly generating data from lexica on which to train
representations is to use their linguistic data to adjust, or retrofit, already
trained embeddings on a corpus.

An example of this approach is the work by Faruqui et al. (2015),
where the authors propose to iteratively adapt a set of word vectors
to reflect relations in a graph-encoded lexicon such as WordNet: the
retrofitting procedure tries to bring the vectors of words that share links
in the lexicon graph closer together according to the Euclidean distance
between them.

Johansson and Nieto Piña (2015) (not included in this thesis) also
take this approach by posing the retrofitting task as an optimization
problem whose goal is to obtain Swedish language word sense embed-
dings from word embeddings: by inspecting the lexicon to establish the
different senses of any given word together with a set of semantically or
lexically related word senses, or neighbors, a pre-trained word embed-
ding is decomposed into a linear combination of word sense embeddings
which are in turn optimized to minimize the distance from each of them
to their respective neighbor senses in the lexicon’s graph.
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A different take on leveraging lexicographic information to adapt pre-
trained word embeddings is to make use of dictionary definitions or
glosses. For example, Hill et al. (2016) initialize a neural network lan-
guage model with existing word embeddings and train it to predict the
word embedding of the word whose dictionary definition is given as input,
as an attempt to study sentence representations.

3.5.2.3 Jointly training embeddings from a lexicon and a corpus

A third way of integrating automatic embedding models with linguistic
knowledge from resources is to modify the learning algorithm so that it
can perform a joint training process which uses data from both a corpus
and a lexicon.

Yu and Dredze (2014) propose a simple approach to this idea: extend-
ing Skip-gram’s objective function (which maximizes the probability of
context words given a target word) to semantic relations obtained from
a lexicon. In this way, their model codifies these relations into the em-
beddings by optimizing them to maximize the conditional probability of
related words given a target word, while at the same time keeping the
original objective which learns from corpus data; the influence of each
separate learning objective can be moduled through a single parameter.

Kiela, Hill and Clark (2015) explore both retrofitting and joint-learning
approaches to injecting lexicographic knowledge into embedding models.
Their proposal for joint learning is, given a target word in the Skip-gram
training process, to sample a word from the set of all words in the lexicon
semantically related to the target. Then that word is used as an extra
context word and used for training normally as if it had been read from
the corpus. The rest of the training process proceeds normally with the
rest of context words from the corpus.

The model described in chapter 8 (Nieto Piña and Johansson 2017)
uses a joint approach to learning Swedish word sense embeddings with
data from a corpus and a lexicon. This model builds upon a modified
version of Skip-gram (Nieto Piña and Johansson 2015), detailed in chap-
ter 6, that is able to learn several embeddings per word solely from a
corpus as a way of capturing different meanings of polysemous words.
In the newer model, a regularizer function is applied onto the objective
function. This regularizer encourages embeddings of word senses which
share direct connections in a lexicon’s graph to be closer together in the
vector space.
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Similarly to the work on training embeddings from dictionary defini-
tions and glosses discussed above, Tissier, Gravier and Habrard (2017)
propose to obtain a large amount of such data from different resources
and aggregate it to a corpus. The resulting dataset is fed into a Skip-gram
algorithm modified to make optimal use of the dictionary data.



4 Model evaluation

The work presented in this thesis introduces several models that au-
tomatically learn word sense representations. Evaluating the quality of
such representations, or embeddings, is a challenging endevour for sev-
eral reasons. In the first place, the mere notion of word sense is hard to
define (see the discussion in section 2.1) and, by extension, so is assessing
what constitutes a good representation for a word sense. Consider two
models applied to representing the meanings of the noun rock. The first
one assigns it two representations: one to represent its mineral sense and
another to represent the type of music; the second model, however, learns
three representations: one for rock as a material, another for rock as an
object made of that material, and a third for the music style. Could we
compare these two models based on those results and determine that one
is better than the other? Kilgarriff (1997) would possibly argue that the
answer depends entirely on the intended application of the representa-
tions. Not having an objective frame of reference by which to judge the
quality of semantic representations makes it difficult to formulate and
execute evaluation strategies.

There is also the fact that the objects of study, word sense embed-
dings, or vectors representing the the semantics of word senses in a vo-
cabulary, are not easily interpretable: they are collections of real numbers
arranged in a fixed set of dimensions, but these dimensions do not have
an explicit interpretations due to the nature of the models developed to
train them. These models act as a black box, where an input of corpus text
complemented with lexicographic data is used to automatically codify the
meaning of word senses into vectors that are observed as the model’s out-
put. The learning process, usually stochastic, thus decides automatically
which semantic aspects are represented by each dimension and there are
no explicit indications that might lead to a clear understanding of them.
The lack of interpretability impedes assessing the quality of embeddings
directly as would be possible with symbolic representations, where the



48 Model evaluation

mapping between objects and symbols provides an understanding of the
representation. Evaluating embeddings, thus, has to be done in indirect
ways that rather focus on testing the properties of the vector space (for
instance, by looking at clusters of embeddings) or the performance of
embeddings in downstream tasks (such as word sense disambiguation.)

In order to evaluate the models presented in this thesis, we have tried
to give a complete overview of their strengths and weaknesses. We have
often applied a twofold evaluation strategy to achieve this: illustrating
characterizing properties of the trained semantic vector spaces, on one
hand, and applying the obtained word sense representations on down-
stream tasks, on the other. The first point allows us to provide intuitive
insight into the semantics learned by the model, while the second pro-
vides a demonstration of the applicability of the representations as well
as a quantifiable measure to compare their performance against a suit-
able counterpart, such as a comparable model from the literature or a
linguistic resource used as reference.

Another potential source of difficulty is the lack of benchmarks on
which to evaluate a model. While this might not be a problem when
working with English and a few other resource-rich languages in the
NLP community, it can hinder the development of models in other, less
favoured languages. The context in which this thesis was developed made
it natural to work mostly with Swedish language data and, while our
models are not language-specific and could be applied to data in different
languages, they were trained with Swedish resources and hence should
be evaluated on Swedish benchmarks.

In the rest of this chapter we look at different ways of evaluating
semantic representations using qualitative and quantitative approaches.
We also give an overview of the evaluation methodologies used in the
articles contained in this thesis.

4.1 Qualitative evaluation

As a way of offering some insight into this aspect of embeddings, we
perform an qualitative evaluation of word sense embeddings on most
models, based on exploring a set of nearest neighbors for some selected
word senses. Note that the most salient characteristic of a semantic vec-
tor space is that it is configured so that, given any three word senses,
the embeddings of those two that are more semantically related will be
separated by a distance shorter than that between any of them to the
third, less related one. A corollary of this is that clusters of embed-
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dings (defined, for example, as the set of all embeddings located within
a sub-region of the semantic space bounded by a maximum distance to a
given point in the space) will share some semantic similarity that is not
necessarily present in embeddings located outside this cluster. We take
advantage of this property to perform a manual assessment of the quality
of word sense embeddings by collecting the nearest neighbors of a word
sense as a way of examining its meaning as learned by the model by in-
specting which are its most related, or closest in the space, word senses.
Thus we can ask questions like ‘Is the model able to learn the difference
between the two senses, s1 and s2, of word w?’ or ‘Which senses si of
word w is the model able to learn?’ By looking at the nearest neighbors
of each sense of w, we can in many cases understand their meanings as
learned by the model.

For example, given the Swedish word rock, which has two senses,
‘coat’ and ‘rock music’, we can check that a model we have trained
has managed to capture these two separate meanings by inspecting the
nearest neighbors of each sense’s embeddings:

Sense 1 Sense 2
syrtut ‘frock coat’ punk ‘punk music’
kappa ‘coat’ rappa ‘to rap’
kåpa ‘cowl’ rap ‘rap music’
päls ‘fur coat’ pop ‘pop music’
mudd ‘cuff’ jam ‘music jam’

From these results (obtained from the model described in chapter 8 with
a balanced mix of training data from a corpus and a lexicon) we could
conclude that the model did learn to separate those two meanings of
rock, from which ‘coat’ would correspond to ‘sense 1’, and ‘rock mu-
sic’ to ‘sense 2’, given that the nearest neighbors of each of these two
respresentations cluster neatly around those two different topics. (I.e.,
clothing items versus musical terminology.) However, we could instead
have obtained the following results when querying for nearest neighbors:

Sense 1 Sense 2
syrtut ‘frock coat’ hårdrock ‘hard rock music’
Rythm ‘rhythm music’ pop ‘pop music’
rockband ‘rock band’ jazza ‘to jazz’
Peepshows ‘Peepshows’ punk ‘punk music’
skaband ‘ska band’ dödsmetall ‘death metal music’

In this instance (obtained from the same model from chapter 8 but where
the influence of the lexicon on the training data is negligible,) the re-
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trieved nearest neighbors evidence that the model struggles to acquire
the ‘coat’ meaning of rock: most of the nearest neighbors of ‘sense 1’, and
all of them for ‘sense 2’, are music-related terms. (Possibly signaling an
over-representation of the ‘rock music’ sense in the training data to the
detriment of the ‘coat’ sense.) Such cases may be of help when diagnos-
ing the model’s shortcomings since they may lead to understanding and
explaining their causes.

Word sense embeddings may be induced from textual data only (using
an unsupervised model) or, if a lexicographic resource is used, they may
be linked to lexicographic senses (in a supervised model). In the first case,
exploring sets of nearest neighbors is a way to clarify the meaning of each
sense si of a word w as learned by the unsupervised model: by studying
those other word senses closest in the vector space to each si, a notion of
the general meaning associated with si can be formed. Since in this case
there are no explicit links from si to lexicographic senses, inspection of
nearest neighbors (either manually or automatically; see chapter 9 for an
example of automatic linking) can be used to establish such links if they
are needed to, for example, use word sense embeddings to annotate a text
with a predefined set of lexicographic senses. In the case of a supervised
system, it is possible that links between learned representations si and
lexicographic senses are set by the training algorithm; in such a system,
inspecting nearest neighbors can be useful to ascertain whether the model
correctly learns the expected meaning of each sense si of w. For instance,
in the second example above, if the model has been trained in such a way
that we know that s1 corresponds to ‘coat’ and s2 to ‘rock music’, the
resulting sets of nearest neighbors would make it clear that the model
has not been able to learn the meaning of s1 satisfactorily.

This evaluation method, however, is limited in the sense that it cannot
cover the whole inventory of senses learned by a model, since it requires
manual inspection of lists of word senses and it would not be feasible to
apply it to the whole vocabulary. It is then usually offered as a quali-
tative assessment of a select number of cases deemed interesting for the
model at hand as a way of acquiring insight into its strengths and weak-
nesses, and of illustrating the representation characteristics it exhibits.
This approach to manually selecting interesting cases risks introducing
confirmation bias into the results by, wittingly or unwittingly, choosing
clusters of word senses that corroborate the author’s hypotheses. In or-
der to avoid such situations it is important to choose sets of examples
that give a fair illustration of a model’s capabilities and shortcomings.
In our experiments, we have attempted to achieve this by counterposing
positive examples, where the model works as expected, to negative ones,
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where the model underperforms. Only by analyzing both kinds of out-
comes can this qualitative assessment approach be put to use to improve
current models.

4.2 Quantitative evaluation

Quantitative evaluation methods with regards to semantic representa-
tions revolve around tasks which offer measurable results. For example,
through a metric that rates the performance of the representations ap-
plied on a well-defined problem, such as the precision and recall exhibited
by a system that employs word sense embeddings to select synonyms.
While the methods devised to apply representations on such tasks might
or might not need annotated data to be trained on depending on the na-
ture of each specific task, in order to obtain performance measurements,
it is usually the case that manually annotated data is needed to compare
against the evaluation task’s results; for example, in the case of synonymy
detection, sets of synonyms created by an automatic method using word
sense embeddings would be compared against manually created lists of
synonyms (possibly from a thesaurus) to measure their similarity. This
requirement and the availability of annotated data might play a rather
mundane but ineludible role in selecting an evaluation strategy.

The type of quantitative evaluation also depends on the object of
evaluation itself. When the goal is to measure the quality of the repre-
sentation themselves, an intrinsic evaluation task is used; evaluating the
performance of the representations in a downstream task is referred to
as extrinsic evaluation.

4.2.1 Intrinsic evaluation

Intrinsic evaluation strategies aim at evaluating the semantic character-
istics that the vector space has acquired in the learning process that
produced the representations; their goal is to measure the quality of
said representations, as opposed to determining their performance on a
downstream application.

Of the different semantic properties of representations that can be
evaluated, one of the most common is semantic similarity. Due to how
multidimensional semantic spaces are usually configured, relating geo-
metric distance with semantic similarity, this property is one of the most
straightforward ways of characterizing such spaces. A semantic similarity
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task is typically formulated by defining pairs of semantically similar lex-
ical units, such as (money, cash), and evaluating a model’s capability to
replicate that similarity; the most common lexical unit for which this task
is formulated is the word form. (Note that applying word sense repre-
sentations to the types of tasks described in this section would introduce
an additional level of difficulty; selecting the right word for a similarity
pair or an analogy tuple only needs that the represented vocabulary and
the one used in the task coincide, while using word sense representations
additionally requires coinciding word sense inventories, if one is defined
for the task, or introducing a ad hoc mechanism that selects senses for
the words of interest in the task.) To this end, a number of benchmarks
with particular characteristics have been created as standardized tests:
WordSim-353 (Finkelstein et al. 2002) and SimLex-999 (Hill, Reichart
and Korhonen 2015) contain pairs of English words along with an aver-
age score provided by human annotators which grades the pairs from less
to more similar with scores from 0 to 10; the Stanford Contextual Word
Similarity dataset (SCWS) (Huang et al. 2012) similarly contains pairs of
words, but includes sample sentences for each of them so that similarity
judgments are not made in isolation but rather in context, which could
potentially allow for a more robust testing of word sense embeddings
since contexts can be used to disambiguate ambiguous instances. Several
SemEval tasks have expanded this idea by providing benchmark datasets
for semantic similarity tests directed towards a wider range of semantic
representations; for example, SemEval-2017 Task 1 (Cer et al. 2017) fo-
cuses on whole sentence similarity, while Task 2 (Camacho-Collados et al.
2017) contemplates word pair similarity in five languages, both for pairs
in the same language as in different languages.

Word analogy is another task that can be used to perform intrinsic
evaluation of word embeddings. In this case, three words a, a′, and b′

are supplied, with a and a′ sharing a specific relation, and the task is to
find the word b that has the same type of relation with b′, so that, for
example, queen would be the solution to the triad

king – man
? – woman

or Berlin would answer

Amsterdam – Netherlands
? – Germany

When using vector representations to solve this task, the geometric prop-
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erties of the vector space can be taken advantage of by finding the miss-
ing word b using vector space algebra; for example, b could be the word
with its representation being the closest to the vector resulting from the
operation a − a′ + b′. The ability of the model to capture the relation
between the two types of words then plays a role in the success on this
task; benchmarks like the Google Analogy dataset (Mikolov et al. 2013a)
tend to loosely categorize analogies as either semantic (such as the ex-
amples given above) or syntactic, where the relation between words has
a grammatical nature, such as a morphological analogy

traveled – travel
? – walk

where a past tense form walked would be the answer. Gladkova, Drozd
and Matsuoka (2016) provide a more fine-grained classification of rela-
tions in their BATS dataset in an effort to formalize this type of task.

Other tasks usually applied to perform intrinsic evaluation of repre-
sentations are synonym detection (Jarmasz and Szpakowicz 2004), where
a synonym for a target word has to be selected from a set of words; out-
lier detection (Camacho-Collados and Navigli 2016), where one or more
outlier words have to be identified in a set where the rest of the words are
semantically related; or concept categorization (Baroni et al. 2010), where
a set of words has to be divided into a number of clusters of semantically
related words.

4.2.2 Extrinsic evaluation

An alternative evaluation strategy is to turn to an extrinsic approach:
using word sense embeddings as features in a downstream application
such as word sense disambiguation (WSD). The quality assessment ob-
tained from such a process focuses then on the properties of embeddings
applied to a specific task, instead of directly testing their semantic rep-
resentational ability as is done with intrinsic methods. On one hand,
this approach allows to evaluate embeddings on practical applications
on which they could be applied; on the other, downstream applications
might not offer a general assessment of the quality of embeddings, as dif-
ferent applications could make use of different aspects of semantic repre-
sentations, thus making it difficult to extrapolate performance results on
one application to another. Combining intrinsic and extrinsic evaluation
methods is recommended as a way of obtaining a more complete overview
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of the strengths and weaknesses of semantic representations learned by
a particular model.

Given the ubiquity of semantic representations as features in NLP
tasks, the choice of application on which to evaluate is extensive. The
task chosen will have an impact on the aspects being evaluated; e.g., the
role of embeddings in a WSD task is typically different from that in a ma-
chine translation. Therefore, evaluation results obtained in a particular
downstream application cannot be taken to be representative of the per-
formance of the same set of embeddings on a different application. (See
for example the comparative study on the performance of word sense
embeddings on different downstream applications by Li and Jurafsky
2015.)

Word sense disambiguation as a downstream application consists of an
ambiguous target word situated in context (usually given as surrounding
words in a sentence, although larger contexts can be used such as a com-
plete document) which needs to be disambiguated; that is, assigned the
specific word sense that fits the context. For example, the noun canteen
can either mean ‘restaurant’ or ‘bottle’; disambiguating it in the sentence
The soldier shook the metal canteen to check whether it still contained
any water would entail selecting the second sense (bottle) based on the
provided context.

Given its focus on word senses, WSD is a task well suited to evaluate
word sense representations, since it can be used to test the effectivity of
the representations at discriminating between the different meanings of
a word. WSD counts with a long history dating back to the genesis of
NLP, and thus there exist a myriad of techniques and approaches ap-
plied to this task (Navigli 2009). Regarding the data needed for training
supervised WSD systems (which consistently outperform unsupervised
ones; Raganato, Camacho-Collados and Navigli 2017), it can either con-
sist of an annotated corpus or a knowledge base like a graph-based lex-
icon. For WSD to be used as an evaluation application, besides any
training data in the format required for the chosen disambiguation sys-
tem, there needs to be a benchmark of correctly disambiguated samples
against which to compare the automatic disambiguation results; ideally,
said samples would be disambiguated by humans to obtain a measure
of the disambiguation system in terms of human performance. Some of
these benchmarks include Senseval-2 (Edmonds and Cotton 2001) with
annotations in ten different languages, and Semeval-2015 task 13 (Moro
and Navigli 2015) with annotations in English, Spanish, and Italian; ex-
amples of sense-annotated corpora are SemCor (Miller et al. 1994) in
English and Koala (Johansson et al. 2016) in Swedish.
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Other examples of downstream applications that can be used as ex-
trinsic evaluation test beds for semantic representations are word sense
induction (WSI) (Neelakantan et al. 2014; Pelevina et al. 2016), sen-
timent analysis, part-of-speech tagging, or named entity recognition (Li
and Jurafsky 2015; Fang et al. 2016).

4.3 Evaluation strategies used in this thesis

4.3.1 Article 1

In article 1 (chapter 6), a model is introduced to automatically learn
representations for Swedish word senses where the only training data
extraneous to a corpus is the number of senses a given word is expected
to have. (I.e., given a word, the model is informed of how many senses it
should learn for it, but is not given any indications as to the meaning of
those senses.) Since this implies that there is no mapping between lexi-
cographic senses and the learned word sense embeddings, the approach
taken to evaluate the model’s performance must be able to work with-
out sense annotation; for instance, evaluating on an WSD task based on
selecting one word sense embedding out of a set of possible ones could
not be used here given that there is no mapping between the embed-
dings and the word senses used to annotate the test data. WSI is also
a relevant task that could potentially be applied to evaluation without
a mapping between word sense embeddings and a fixed sense inventory,
but usual approaches to evaluating performance on this task tend to rely
on a sense-annotated corpus, which was not available in Swedish at the
time when this work was developed.

An initial qualitative inspection of nearest neighbors is performed as a
way to highlight descriptive characteristics of the model: since the model
is forced to learn a fixed number of senses per word, it is expected that
the meaning of the senses learned will not always coincide with those
described in a lexicon, as successfully obtaining a representation for any
given sense depends on sufficient available data in the corpus covering
instances of that sense; furthermore, there might be word senses used in
the corpus that are not listed in the lexicon. Contrasting examples are
given to illustrate these phenomena by means of listing a word’s senses’
nearest neighbors . E.g., the two recorded senses of flyga (‘to travel by
airplane’ and ‘to move through the air’) seem to correspond to the senses
learned by the model; meanwhile, the two lexicographic senses of böna
(‘bean’ and a slang term for ‘girl’) are not found by the model: the sense
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corresponding to a slang term for ‘girl’ is not common in the corpus, so
the model has instead made a distinction between ‘bean as a plant’ and
‘bean as a food’ in order to satisfy the requirement that böna must have
two meanings.

At the time of writing this article, as mentioned above, no significantly
large sense-annotated corpora or word similarity test sets (such as de-
scribed in section 4.2.1) existed for the Swedish language; these resources
have been commonly used to evaluate English word sense embeddings
in the literature. (Such as word similarity tests used to perform intrinsic
evaluation of the semantic space, Iacobacci, Pilehvar and Navigli 2015;
or sense-annotated corpora as a source of test data to assess their per-
formance on downstream tasks like, for example, WSD; Turian, Ratinov
and Bengio 2010.) In order to provide a more comprehensive evaluation
of the model that circumvented this lack of test benchmarks, an alterna-
tive quantitative assessment of the learned word sense embeddings was
performed.

The proposed evaluation idea is to compare the word senses learned
by the embedding model with the corresponding word senses as described
in the lexicon. Again, lists of nearest neighbors are obtained as descrip-
tions of the word senses in the vector space; as a lexicon counterpart,
lists of the most similar word senses to any given one are generated using
a graph similarity metric on the lexicon’s underlying graph. The com-
parison of pairs of lists is systematized using three different clustering
metrics intended to measure how similar these lists are. These measure-
ments, then, are intended to offer an evaluation of how well the word
sense representations are able to recreate the word senses as listed in
the lexicon by comparing the lists of the closest terms to a given word’s
senses in each space. Note that there was no lexicon supervision in this
model, which implies that the model was not optimized for this task.

The evaluation task is performed on a list of 300 lemmas (100 nouns,
100 verbs, and 100 adjectives), selected based on frequency and to be
representative of the different parts-of-speech. Different list lengths are
used, from 10 to 160 nearest neighbors. In order to provide a baseline
against which to compare, a comparable word sense embedding model
by Neelakantan et al. (2014) is trained on the same data and evaluated
on the same task. This evaluation strategy, thus, manages to deal with
scarcity of annotated data by proposing an alternative which leverages
an existing lexicographic resource and balances its novelty with a variety
of metrics and a baseline from the literature for comparison purposes.

An example of lists of concepts related to the noun smak ‘taste’ from
the lexicon and the vector space can be seen in table 4.1. The Swedish
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Lexicon s1 Lexicon s2

citrussmak ‘citrus flavor’ smakriktning ‘trend in taste’
metallsmak ‘metal flavor’ smaksak ‘matter of taste’
fruktsmak ‘fruit flavor’ smakfullhet ‘elegance’
blodsmak ‘blood flavor’ tycke ‘inclination’
bismak ‘off flavor’ motvilja ‘dislike’
arrakssmak ‘arrack flavor’ sympati ‘sympathy’
viltsmak ‘wild flavor’ gottegris ’sweet tooth’
jordgubbssmak ‘strawberry flavor’ kortoxe ‘card game maniac’
eftersmak ‘aftertaste’ kaffemoster ‘coffee aunty’
blecksmak ‘tin flavor’ kitsch ‘kitsch’

Vector space sa Vector space sb
smaksinne ‘sense of taste’ citrussmak ‘citrus flavor’
tycke ‘inclination’ fruktsmak ‘fruit flavor’
finsmakare ‘gourmet’ arom ‘aroma’
ekovin ‘ecologic wine’ beska ‘bitterness’
preferens ‘preference’ pomerans ‘Seville orange’
doftsinne ‘olfactory sense’ citronsorbet ‘lemon sorbet’
stil ‘style’ sorbet ‘sorbet’
efterapning ‘imitation’ frukt ‘fruit’
smakriktning ‘trend in taste’ passionsfrukt ‘passion fruit’
kombination ‘combination’ citrus ‘citrus’

Table 4.1: Word lists for smak ‘taste’ from the lexicon (top) and vector space
(bottom). Matching items in bold font.

word smak is defined in the lexicon as having two senses: flavor that can
be perceived with the sense of taste (s1) and personal preference (s2).
Note that this distinction seems to also be captured by the unsupervised
model based on the lists of nearest neighbors of each sense in the bottom
table. (sa corresponding to s2, and sb to s1.) However, the typically
large size of the vocabulary makes it difficult that the word lists from
the lexicon and the vector space have matching entries, and even more
difficult that they appear in the same order. This results in low values
for the clustering metrics used to compare the lists; the use of three
different metrics in our experiments is intended to compensate for this by
providing several assessments of the similarities between lists in order to
provide a reliable measure of performance. In most cases, the magnitude
of the measurements obtained are consistent across metrics.
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4.3.2 Article 2

In article 2 (chapter 7), the focus shifted from a corpus to a lexicon’s
graph as a source of data from which to learn word sense representations.
Random walks over the graph are used to emit sequences of terms related
to a given seed word sense; these sequences are then used as synthetic
contexts for the seed word sense, and inputted as training data into an
embedding model.

In this case, an explicit mapping between word sense embeddings and
lexicon entries is possible since the representations are trained on se-
quences of lexicon entries. Furthermore, efforts were underway to create
Swedish word sense-annotated corpora. Unlike in the model introduced
in the previous article, these conditions allowed us to prepare a WSD
task on which to evaluate this word sense embedding model. The eval-
uation method in this case is solely extrinsic, and seeks to validate the
hypothesis that, if the embeddings are able to codify the lexicographic
information on which they are trained on, they should be effective at
disambiguating word senses. The way the model is trained on a lexicon
marks a difference with the model in the preceding article regarding the
evaluation: since the lexicon has been used as training data, an evalua-
tion by comparing the resulting representations to entries in the lexicon
would not provide a completely fair assessment beyond a confirmation
that the model is indeed learning the lexicographic data correctly.

The WSD task is performed on a test dataset composed of sentences
containing one identified ambiguous word, one of whose possible senses
has been selected to disambiguate it by annotators; this annotation uses
the sense inventory of SALDO (Borin, Forsberg and Lönngren 2013). A
disambiguation mechanism (Nieto Piña and Johansson 2015) is applied
onto these sentences to select one the ambiguous word’s senses, and its
success is measured by comparing its output to the annotation; its per-
formance is thus measured by accuracy, or the proportion of the total
number of sentences correctly disambiguated. The mechanism used in
this article makes use of semantic vector spaces’ property that associates
lexico-semantic relatedness with a vector similarity metric, the dot prod-
uct. Using word sense and word embeddings for the target ambiguous
word and the rest of (context) words in the sentence, respectively, the
disambiguation mechanism measures the similarity between each pos-
sible word sense and its context, and selects the most similar sense to
disambiguate the sentence.

The evaluation is complemented with three baselines: a random-sense
baseline which chooses one of the possible senses for a word at random,
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a first-sense baseline which selects the first (usually the most frequent)
sense according to the ordering in the lexicon, and the disambiguation
results from a comparable, but more technically complex, graph-based
WSD mechanism, UKB (Agirre and Soroa 2009), based on the Person-
alized PageRank algorithm (Brin and Page 1998). These baselines are
compared to the WSD results of two variants of the model introduced in
this article, which differ in the way the random walks are parameterized
to produce synthetic contexts.

The aim of the model presented in this article was to adapt the suc-
cessful embedding models to be able to learn from a structured lexico-
graphic resource instead of from running text as found in corpora. The
evaluation of such a model, then, should strive towards assessing whether
this is a feasible endeavor and to what point such a system is able to
learn to represent the semantics of word senses. Besides, as mentioned
above, an evaluation approach such as a was used in the preceding ar-
ticle (where word sense representation quality was assessed comparing
clusters of related terms in the lexicon and the vector space) would not
suffice here, since the test data used there (sets of terms related in the
lexicon) is the training data for the present model. Hence, using a WSD
task as evaluation strategy seems a natural fit for this purpose. On one
side, it is an independent downstream task; on the other, a successful
assimilation of the information contained in a lexicon, which describes
lexical and semantic relations between word senses, should be helpful
towards discriminating which particular sense of a word is being used in
an instance presented in context.

4.3.3 Article 3

The model presented in article 3 (chapter 8) learns from corpus data with
supervision from a lexicon, in an attempt to guide the automatic learning
of word sense representations from text with lexicographic definitions
of senses. Such an approach is intended to address problems detected
in the previous studies by reinforcing the learning process with formal
knowledge of word senses while keeping the robustness and coverage of
corpus-based representational models. The system introduced here, thus,
tries to achieve a balance by drawing information from both a corpus and
a lexicon and merging these two signals into a single training objective.
Differences in the way this information is used and what proportion of
it comes from each source give rise to several variants of the model.

The first assessment of this proposal is again a manual inspection
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of nearest neighbors of selected word senses. As before, this qualitative
evaluation is useful for the purpose of illustrating particularities of the
model being introduced. In this case, it is able to offer an intuitive un-
derstanding of the model’s mix parameter ρ ∈ (0,1) which decides how
much information from the lexicon is used to train the embeddings. For
the examples given, an increased lexicographic influence shows more ac-
curate results in terms of separation between senses of a polysemous
word. Additionally, filtering nearest neighbors to only those not listed in
the lexicon helps clarifying how well the two sources of information are
being combined by the joint model, by means of checking whether those
neighbors that only receive information from the corpus are the kind of
concepts that one would expect associated with the word sense of which
they are neighbors in the vector space.

After the qualitative assessment, a more systematic, quantitative eval-
uation is performed through two downstream applications: WSD and
frame prediction. The WSD task proceeds as explained in the previous
section, with three variants of the model being compared against the
same three baselines described before. Maintaining this evaluation task,
then, allows us to draw comparisons between this model and the previous
one. As a result, we observe an improvement when using data combined
from a lexicon and a corpus over using only data from a lexicon. This,
combined with what we noted in the inspection of nearest neighbors
where it is apparent that the lexicographic information has a positive
influence in separating the senses of a word, allows us to conclude that
combining these two sources of information provides better results than
what would be possible with just one of them.

The second downstream application on which this model is evalu-
ated is a frame prediction task. In a frame-semantics approach to word
meaning (Fillmore and Baker 2009), words are classified into broad se-
mantic classes known as frames in such a way that their meaning is
defined by said frames. For example, the word pizza would belong to
the frame Food. Furthermore, words with more than one meaning can
be associated to more than one frame. For example, the first sense of
the polysemous word slag, ‘type’, would belong to the frame Type; its
second sense, ‘hit’, would belong to the frame Impact; its third sense,
‘battle’, would belong to the frame Hostile_encounter, etc.

In our second evaluation task, we intend to find out how effective the
word sense embeddings learned by our model are as predictors of frame
membership. To do so, we collect a number of frames from the Swedish
FrameNet (Friberg Heppin and Gronostaj Toporowska 2012) and train a
linear support vector machine (SVM) classifier (Cortes and Vapnik 1995)
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for each frame to predict whether a word sense as represented by a vector
belongs to that frame or not. A similar approach has been shown to be
useful for the task of automating the suggestion of new lexical units to
be included in FrameNet (Johansson 2014). The metric used to evalu-
ate this system’s performance is average precision applied to the ranking
derived from each word sense’s SVM score on a particular frame. A suc-
cessful outcome of this type of evaluation is thus the case where those
word senses that belong to the frame achieve the highest scores. As a
baseline, the scores of our model’s variants are compared to an embed-
ding model’s trained lemma representations. Expanding this comparison
with different parameterizations of our model with several values of ρ
allow us to evaluate the impact of the lexicographic information on this
task.

In summary, the extensive evaluation strategy applied in this article
allows for a detailed assessment of the model’s behavior under different
conditions and requirements. It is specially useful in the case of a highly
configurable model like the one proposed here, where different learning
configurations and parameterizations cause variations in performance on
different tasks.

4.3.4 Article 4

In article 4 (chapter 9), we assess the capability of an independently
trained word sense embedding model to link its sense representations to
entries in a lexicon. A model able to represent words with a variable
number of senses, Adaptive Skip-gram (Bartunov et al. 2016), is trained
on a Swedish corpus and a mechanism is put into place to find the most
similar entry in a lexicon to any given word sense embedding based on
neighbor similarity. Investigating the possible links between automati-
cally trained word sense representations and potential counterparts in
a manually crafted inventory, the model opens the possibility to study
mismatches between the two resources in order to identify possible new
additions to the lexicon of new meanings of a word or, conversely, to clar-
ify limitations in the lexicographic coverage of the corpus. Ultimately,
resolving such a mapping between lexicon entries and an indeterminate
number of automatically learned word sense representations provides us
with representations for those entries in the lexicon linked with an em-
bedding plus representations for word senses absent from the lexicon by
those embeddings that remain unlinked. This results in an increased vo-
cabulary coverage not limited by a fixed sense inventory, but grounds



62 Model evaluation

autmatically learned representations in the lexicon whenever possible.
The evaluation strategy in this case is oriented towards that aspect:

we propose to assess whether we can take advantage of the proposed
mapping between sense representations and lexicon entries to identify
instances in text that correspond to senses not listed in the lexicon. A
number of words are manually selected as having instances in the corpus
whose meanings are not listed in the lexicon. The words selected for
testing are divided into two groups: the first composed of those words
with observed out-of-lexicon, new meanings, and the second comprising
words for which the model has learned out-of-lexicon meanings that we
consider spurious, such as brand names or foreign words with the same
spelling.

A dataset of full sentences containing these words is then used to
perform this test. By disambiguating these instances, they are assigned
one of the possible sense representations learned by the model with a
certain probability. This probability is used to assign each sentence a
score, and thus the sentences can be ranked from most to least proba-
bly containing an out-of-lexicon sense; the ranking is matched against
a manual annotation of these sentences, and the resulting performance
is assessed using area under the receiver operating characteristic curve
(AUC) as a measure of the probability that out-of-lexicon instances will
be ranked higher than instances of senses listed in the lexicon. AUC is
chosen as the metric rather than, for instance, precision and recall since
AUC can be interpreted in terms of a ranking, which suits our test data
results. (E.g., the AUC can be understood as the expected proportion of
positive classification results before a random negative one is uniformly
sampled.)

Table 4.2 shows an example of sentences containing the adjective fet
which, besides its two senses contained in the lexicon, ‘fat’/‘fatty’ and
‘fertile’, is a slang term for ‘cool’, not listed in our lexicon. The three
top sentences are ranked highly, and the three bottom ones are ranked
low. The scores given in the table are the probabilities of each sentence
to contain an instance of fet with a sense not listed in the lexicon. Note
that the language used in highly ranked sentences is informal, as would
typically be the case when using the fet as ‘cool’; in particular, the second
sentence is ranked high even if the meaning of fet is one listed in the
lexicon; however, the language used in the text is informal as the context
for the slang usage of fet would usually be, which may have confused the
classifier.

The evaluation method followed in this work is geared towards a spe-
cific downstream application which is closely related to the linking mech-
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Sentence Probability
@lundwall @sativaulrika Frågan var vilken som var en
fet låtrad och @Pstq o @PetterAlexis nämndes med
låten “Pissar på dig.”

0.310

‘@lundwall @sativaulrika The question was which was
a cool song verse and @Pstq and @PetterAlexis were
mentioned with the song “Pissar på dig.”
[...] och sen var det någon kille som började mucka
med oss och fjanta sig haha och en fet kille ba till oss:
va tittar ni på?!

0.310

‘[...] and then there was some guy who began to mess
with us and act foolish haha and a fat guy was just
like to us: what are you looking at?!’
[...] snubben är sjuk hur han får igång publiken med
sina sköna låtar och med hans snabba feta rhymes! 0.310

‘[...] the guy is insane how he energizes the public with
his nice songs and with his fast, cool rhymes.’
En fatig chardonnay passar lika bra till fet fisk som lax,
som till ljust kött, framför allt kyckling och fläskfilé. 0.123

‘A barrel chardonnay combines equally well with fatty
fish like salmon, as with light meat, especially chicken
and pork tenderloin.’
Ingredienser: 1 burk tonfisk 2 msk fet creme fraiche 1
msk fet majonnäs (jag lägger till lite finhackad rödlök
och en sväng med pepparkvarnen också.)

0.123

‘Ingredients: 1 can of tuna 2 spoonfuls of fatty crème
fraîche 1 spoonful of fatty mayonnaise (I add a little of
finely chopped red onion and a sweep with the pepper
mill too.)’

Table 4.2: Ranked sentences containing the adjective fet and their probability
of being an instance of a sense not listed in the lexicon. The first
three ones belong to the top of the ranking and the last two to the
bottom.

anism being evaluated, namely taking advantage of lexicon entries not
linked by the proposed mechanism in order to identify instances in text
of out-of-lexicon word senses. Success in this task, measured by com-
paring these findings to annotations, is meant to exemplify a possible
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application of automatically learned word sense embeddings towards im-
proving existing linguistic resources by suggesting potential new entries
in a lexicon. In particular, sentences scored highly in this task indicate
a high probability of them being an instance of a word sense not listed
in the lexicon; these sentences could be reported to lexicographers for
consideration under a lexicon expansion process, thus alleviating their
workload by reducing the amount of instances that need to be revised.

4.3.5 Article 5

In article 5 (chapter 10), semantic representations are applied to creat-
ing links between entries in a modern lexicon and an outdated thesaurus.
This serves the purpose of integrating the older resource into a contempo-
rary ecosystem of language technology tools, and ultimately paving the
way to modernizing it with addition of new entries from the more modern
resource. Two kinds of word sense representations, one symbolic based on
the lexicon’s tree structure (Johansson 2014) and one distributed learned
by a post-processed word embedding model (Johansson and Nieto Piña
2015), are used to link word senses from the lexicon to words in the the-
saurus in those cases where the word is ambiguous by being an entry
in more than one of the thesaurus’ classes. (For example, the polysemic
Swedish word fil is present in at least two classes, Friction and Con-
tinuity, corresponding to the word’s senses ‘file-tool’ and ‘row.’) Once
entries in both resources have been assigned representations, these are
used to resolve these ambiguities in two separate ways: as features in a
logistic regression classifier that assigns word senses from the lexicon to
classes in the thesaurus, and by measuring similarity of word senses to
classes using distances in the vector space.

The two types of representations and the two techniques to disam-
biguate entries are tested in this linking task by comparing the perfor-
mance of each approach to a manually disambiguated gold standard from
a sample of the ambiguous entries to be linked. These experiments show
that word sense representations can be applied to mapping existing re-
sources to one another, thus expanding the possible applications of such
resources. Additionally, the favorable results obtained open the way to
automatize the modernization of an outdated resource with up-to-date
knowledge from a modern resource.



5 Summary and
conclusions

At the onset of this thesis work, our main research aim was to investigate
whether contemporary word embedding models could be adapted to ob-
tain more fine-grained representations of word meaning, as described in
research question Q1 formulated in chapter 1, by means of transitioning
from representing word forms to representing word senses that can pro-
vide accurate representations of a lexicographic inventory of word senses
in a particular language. A more detailed plan to achieve this with the
help of lexicographic resources was drawn in research question Q2, and
an inquiry into potential benefits of word sense representations towards
automatizing expansion and maintenance of said lexicographic resources
was proposed through research question Q3.

In the rest of this chapter, we review the outcomes of this undertaking
by examining our work through the lens of the aforementioned research
questions and the contributions that resulted from this work. We also
sketch possible future lines of research that could be based on these
developments.

5.1 Conclusions

In addressing the research lines laid by question Q1, we showed that
it is indeed possible to adapt current neural word embedding models to
automatically represent the different meanings of a word in separate vec-
tors in the article presented in chapter 6. Additionally, this was achieved
with little computational overhead with respect to the original word-
based model. In the evaluation of the model described in that article
we learned that, given the number of senses expected from a word, the
model is able to separate and represent meanings associated with it by
inspecting instances in different contexts. While these meanings do not
always correlate with lexicographic definitions of a word’s senses, this
shows that the model learns meanings associated with different usages
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of the word, which we posit as a device that might help list potentially
new senses.

Furthermore, by implementing additional modifications to word em-
bedding models in the articles contained in chapters 7 and 8, we showed
that not only is it possible for these models to learn to separate several
meanings of a word, but also to learn them solely from lexicographic
data or a combination of that with textual data from a corpus.

Those efforts relate to research question Q2; we demonstrated that
lexicographic data can be leveraged by these models to derive high qual-
ity word sense representations in a vector space. In chapter 7 we showed a
possible way of operationalizing this kind of manually crafted knowledge
to derive representations as real-valued vectors which are useful in down-
stream applications such as WSD. In chapter 8 we took advantage of that
fact and used lexicographic data as a source of training data in order to
address shortcomings of a corpus-based model such as the one presented
in chapter 6, resulting in word sense representations that better resemble
their lexicographic definitions. In this third model, enabling control over
the influence of the two separate sources of data in the training process
allowed us to observe in detail the effects of lexicographic data in such
a model, showing that it is possible to achieve a balance between lexi-
con and corpus as sources of data in order to improve performance in
downstream applications.

In the different evaluation strategies applied to these models, we
demonstrated that word sense embeddings are conducive to improved
semantic representations. Accurate representations of individual word
senses originate in semantically coherent vector spaces, as evidenced by
lists of nearest neighbors to distinct senses of polysemic words. Further-
more, we observed an improvement in performance of word sense embed-
dings over word embeddings at predicting semantic frame membership.
We also showed that the applications of these semantic representations
is not limited to established NLP problems, but are also apt to help im-
prove existing lexicographic resources by providing manipulable repre-
sentations for lexicon entries that can be used to automate lexicographic
work. These results address our final research question, Q3.

Indeed, in the article contained in chapter 9 we showed that by means
of establishing links between automatically learned word sense embed-
dings and word senses listed in a lexicon, it is possible to generate sugges-
tions of potentially new entries for the lexicon extracted from a corpus
along with linguistic evidence. We propose that such a system be used
to partly automate the task of expanding a lexicon in a way that reduces
the human work load. Another example of automating the expansion of
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resources is described in chapter 10: in this case, word sense representa-
tions are successfully applied to the task of linking ambiguous entries in
an older thesaurus with word senses listed in a modern lexicon as a way of
increasing the accessibility of the thesaurus for use in NLP applications.

In summary, throughout this thesis work we have demonstrated dif-
ferent approaches to automatically learning word sense representations
from corpora and lexica in three separate models, and demonstrated their
relevance both in several NLP downstream applications as well as in two
instances of lexicographic resource improvement.

5.2 Future work

We envision several lines of research as a continuation of this thesis work.
On one hand, we acknowledge the possibility of improving the quality
of word sense embeddings as a way of delivering greater semantic repre-
sentational power for NLP applications; improving models used to learn
the representations and providing efficient evaluation methods are two
key pieces in achieving increased quality in word sense representations.
On the other hand, we propose that there are additional applications
in the context of lexicographic resource expansion on which word sense
representations could have an role.

Having shown that integrating lexicographic knowledge as part of the
training data does have a positive impact in the meaning representations
learned by word sense embedding models, we hypothesize that refining
the mechanisms which are used to extract that knowledge from resources
might still yield further benefits regarding the quality of representations.
We explored several approaches to injecting data from a lexicon into the
embedding model in chapter 8 and observed the influence of this step into
the resulting embeddings’ performance on downstream tasks. Continuing
this line of inquiry in a more exhaustive study could help determine an
optimal mechanism for merging lexicographic information and corpora
as training data for models with similar architectures.

A common topic of discussion when addressing the automatic gener-
ation of word sense representations is the approach used to parameterize
the number of senses per word. In our models, we have chosen to fol-
low the lead given by a lexicon to determine this number, but this just
relegates the question to lexicographers and we should note that there
is little agreement on the ideal sense granularity between different lex-
ica. (See the discussion about this point in chapter 2.) There have been
attempts to automatize this parameterization based on contextual ev-
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idence from a corpus (Neelakantan et al. 2014; Kågebäck et al. 2015;
Bartunov et al. 2016) but, again, the result depends heavily on how the
underlying resource (in this case, the corpus) is constructed. In this case,
the completeness of the sense inventory would depend on the coverage of
contexts in the corpus; i.e., if a sense is underrepresented in the corpus,
it would probably not acquire representation in the model. From our
point of view, this information would ideally be rooted in both lexico-
graphic input and distributional data. As such, we believe that a truly
complete sense inventory should not ignore lexicographic definitions of
word senses, but those should be complemented with senses emerging
from language use as can be found in corpora; such information could
effectively cover the gaps that might exist in the lexica. Research dealing
with modeling language change across time in corpora (Mitra et al. 2014;
Hamilton, Leskovec and Jurafsky 2016; Tahmasebi and Risse 2017) does
provide interesting techniques that could be useful for this purpose. The
empirical study of semantic change across time calls for a flexible defini-
tion of word meaning in order to allow for new word senses to emerge and
be captured in the semantic space, and thus provides examples of how to
approach the construction of variable word sense inventories. Combining
sense discovery techniques from word sense induction (Pantel and Lin
2002; Brody and Lapata 2009; Amrami and Goldberg 2018) with lex-
icographic word sense definitions in order to define the sense inventory
used by a representational model could help learning more reliable word
sense representations with regards to achieving an adequate coverage
based on the needs of the different scenarios in which they are applied.

Deep neural networks, as data-driven models that learn to general-
ize are tightly related to representation learning and their application
in NLP reaches back to the early 2000s (Gers and Schmidhuber 2001;
Bengio et al. 2003). Recent developments in deep learning methods have
enabled innovative approaches to what kind of data can be used to train
semantic representations, from strings of characters rather than whole
words (Bojanowski et al. 2017; Athiwaratkun, Wilson and Anandku-
mar 2018) to complex features extracted from neural language models
like internal representations of the textual context (Peters et al. 2018;
Amrami and Goldberg 2018; Devlin et al. 2018). Such approaches avoid
some constraints characteristic of models centered around word forms as
the main unit of linguistic information, which has the potential to evade
problems related to conflation of multiple meanings by allowing more
flexibility in choosing contexts used to learn the different meanings of a
word.
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Reiterating our discussion about evaluating representations in chap-
ter 4, it should be stated that aiming for higher quality representations
without suitable tools to evaluate their quality would turn out to be a
mindless endeavor. Particularly in the case of evaluating word sense rep-
resentations, we have found that the lack of sense-annotated resources
and standard non-English benchmarks hinders the evaluation process
and, as a result, it is an impediment to the development of models. Based
on that, we stress that creation and maintenance of resources is a key
piece in the struggle for better semantic representations. It would also
be important to achieve a standardized evaluation approach that settles
a principled evaluation strategy in terms of tasks, downstream appli-
cations, metrics, and precisely defined semantic aspects to be tested.
Counting with a broadly accepted evaluation approach would allow for
a streamlined process for new semantic representations to be assessed
relative to existing models. Some recent research efforts have been put
forward towards achieving such an unified evaluation strategy for se-
mantic representations (Camacho-Collados and Navigli 2016; Raganato,
Camacho-Collados and Navigli 2017), but the community still needs to
find a standard that is flexible enough to cater to the broad variety of
approaches to learning semantic representations.

Finally, we illustrated the possibilities of word sense representations
applied to resource expansion in chapters 8, 9, and 10. These serve as
examples of how to alleviate a usual bottleneck in resource improvement:
time-consuming and expensive human labor. We are confident that there
are many more similar tasks that could benefit from semantic represen-
tations as a tool to expedite such tasks, as a way to tackle the issues
raised in the previous paragraph.
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This chapter is a postprint version of the following publication:

Luis Nieto Piña and Richard Johansson 2015. A simple and efficient method to
generate word sense representations. Proceedings of the International Confer-
ence Recent Advances in Natural Language Processing, 465–472. Hissar, Bul-
garia.

Abstract

Distributed representations of words have boosted the performance of
many Natural Language Processing tasks. However, usually only one
representation per word is obtained, not acknowledging the fact that
some words have multiple meanings. This has a negative effect on the
individual word representations and the language model as a whole. In
this paper we present a simple model that enables recent techniques for
building word vectors to represent distinct senses of polysemic words.
In our assessment of this model we show that it is able to effectively
discriminate between words’ senses and to do so in a computationally
efficient manner.

6.1 Introduction

Distributed representations of words have helped obtain better language
models (Bengio et al. 2003) and improve the performance of many nat-
ural language processing applications such as named entity recognition,
chunking, paraphrasing, or sentiment classification (Turian, Ratinov and
Bengio 2010; Socher et al. 2011; Glorot, Bordes and Bengio 2011). Re-
cently, the Skip-gram model (Mikolov et al. 2013a, b) was proposed,
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which is able to produce high-quality representations from large collec-
tions of text in an efficient manner.

Despite the achievements of distributed representations, polysemy or
homonymy are usually disregarded even when word semantics may have
a large influence on the models. This results in several distinct senses of
one same word sharing a representation, and possibly influencing the rep-
resentations of words related to those distinct senses under the premise
that similar words should have similar representations. Some recent at-
tempts to address this issue are mentioned in the next section.

We present a simple method for obtaining sense representations di-
rectly during the Skip-gram training phase. It differs from most previous
approaches in that it does not need to create or maintain clusters to dis-
criminate between senses, leading to a significant reduction in the model’s
complexity. It also uses a heuristic approach to determining the number
of senses to be learned per word that allows the model to use knowledge
from lexical resources but also to keep its ability to work withouth them.
In the following sections we look at previous work, describe our model,
and inspect its results in qualitative and quantitative evaluations.

6.2 Related work

One of the first steps towards obtaining word sense embeddings was
that by Reisinger and Mooney (2010). The authors propose to cluster
occurrences of any given word in a corpus into a fixed number K of
clusters which represent different word usages (rather than word senses).
Each word’s is thus assigned multiple prototypes or embeddings.

Huang et al. (2012) introduced a neural language model that leverages
sentence-level and document-level context to generate word embeddings.
Using the approach by Reisinger and Mooney (2010) to generate multiple
embeddings per word via clusters and training on a corpus whose words
have been substituted by its associated cluster’s centroid, the neural
model is able to learn multiple embeddings per word.

Neelakantan et al. (2014) tried to expand the Skip-gram model (Mikolov
et al. 2013a, b) to produce word sense embeddings using the clustering
approach of Reisinger and Mooney (2010) and Huang et al. (2012). No-
tably, Skip-gram’s architecture allows the model to, given a word and its
context, select and train a word sense embedding jointly. The authors
also introduced a non-parametric variation of their model which allows
a variable number of clusters per word instead of a fixed K.
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Also based on the Skip-gram model, Chen, Liu and Sun (2014) pro-
posed to maintain and train context word and word sense embeddings
conjunctly, by training the model to predict both the context words and
the senses of those context words given a target word. To avoid using
cluster centroids to represent senses, the number of sense embeddings per
word and their initial values are obtained from a knowledge network.

Our system for obtaining word sense embeddings also builds upon
the Skip-gram model (which is described in more detail in the next sec-
tion). Unlike most of the models described above, we do not make use of
clustering algorithms. We also allow each word to have its own number
of senses, which can be obtained from a dictionary or using any other
heuristic suitable for this purpose. These characteristics translate into
a) little overhead calculations added on top of the initial word-based
model; and b) an efficient use of memory, as the majority of words are
monosemic.

6.3 Model description

6.3.1 From word forms to senses

The distributed representations for word forms that stem from a Skip-
gram (Mikolov et al. 2013a, b) model are built on the premise that, given
a certain target word, they should serve to predict its surrounding words
in a text. I.e., the training of a Skip-gram model, given a target word
w, is based on maximizing the log-probability of the context words of w,
c1, . . . , cn:

n∑
i=1

log p(ci |w). (1)

The training data usually consists of a large collection of sentences or
documents, so that the role of target word w can be iterated over these
sequences of words, while the context words c considered in each case are
those that surround w within a window of a certain length. The objective
then becomes maximizing the average sum of the log-probabilities from
equation 1.

We propose to modify this model to include a sense s of the word w.
Note that equation 1 equals

log p(c1, . . . , cn |w) (2)
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if we assume the context words ci to be independent of each other given
a target word w. The notation in equation 2 allows us to consider the
Skip-gram as a Naïve Bayes model parameterized by word embeddings
(Mnih and Kavukcuoglu 2013). In this scenario, including a sense would
amount then to adding a latent variable s, and our model’s behaviour
given a target word w is to select a sense s, which is in its turn used to
predict n context words c1, . . . , cn. Formally:

p(s, c1, . . . , cn |w) =

p(s |w) · p(c1, . . . , cn |s) =

p(s |w) · p(c1 |s) . . . p(cn |s).

(3)

Thus, our training objective is to maximize the sum of the log-probabilities
of context words c given a sense s of the target word w plus the log-
probability of the sense s given the target word:

log p(s |w) +
n∑
i=1

log p(ci |s). (4)

We must now consider two distinct vocabularies: V containing all
possible word forms (context and target words), and S containing all
possible senses for the words in V , with sizes |V | and |S |, resp. Given
a pre-set D ∈ N, our ultimate goal is to obtain |S | dense, real-valued
vectors of dimension D that represent the senses in our vocabulary S
according to the objective function defined in equation 4.

The neural architecture of the Skip-gram model works with two sepa-
rate representations for the same vocabulary of words. This double rep-
resentation is not motivated in the original papers, but it stems from
word2vec’s code4 that the model builds separate representations for con-
text and target words, of which the former constitute the actual output
of the system. (A note by Goldberg and Levy 2014 offers some insight
into this subject.) We take advantage of this architecture and use one of
these two representations to contain senses, rather than word forms: as
our model only uses target words w as an intermediate step to select a
sense s, we only do not need to keep a representation for them. In this
way, our model builds a representation of the vocabulary V , for the con-
text words, and another for the vocabulary S of senses, which contains
the actual output. Note that the representation of context words is only
used internally for the purposes of this work, and that context words are
word forms; i.e., we only consider senses for the target words.

4http://code.google.com/p/word2vec/

http://code.google.com/p/word2vec/
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6.3.2 Selecting a sense

In the description of our model above we have considered that for each
target word w we are able to select a sense s. We now explain the mech-
anism used for this purpose. The probability of a context word ci given
a sense s, as they appear in the model’s objective function defined in
equation 4, p(ci |s), ∀i ∈ [1,n], can be calculated using the softmax func-
tion:

p(ci |s) =
ev

ᵀ
ci
·vs∑ |V |

j=1 ev
ᵀ
c j
·vs
=

ev
ᵀ
ci
·vs

Z(s)
,

where vci (resp. vs) denotes the vector representing context word ci (resp.
sense s), vᵀ denotes the transposed vector v, and in the last equality we
have used Z(s) to identify the normalizer over all context words. With
respect to the probability of a sense s given a target word w, for simplicity
we assume that all senses are equally probable; i.e., p(s |w) = 1

K for any
of the K senses s of word w, senses(w).

Using Bayes formula on equation 3, we can now obtain the posterior
probability of a sense s given the target word w and the context words
c1, . . . , cn:

p(s |c1, . . . , cn,w) =
p(s |w) · p(c1, . . . , cn |s)∑

sk ∈senses(w) p(sk |w) · p(c1, . . . , cn |sk)
=

e(vc1+ · · ·+vcn )·vs · Z(s)−n∑
sk ∈senses(w) e

(vc1+ · · ·+vcn )·vsk · Z(sk)−n
.

(5)

During training, thus, given a target word w and context words c1, . . . cn,
the most probable sense s ∈ senses(w) is the one that maximizes equa-
tion 5. Unfortunately, in most cases it is computationally impractical to
explicitly calculate Z(s). From a number of possible approximations, we
have empirically found that considering Z(s) to be constant yields the
best results; this is not an unreasonable approximation if we expect the
context word vectors to be densely and evenly spread out in the vector
space. Under this assumption, the most probable sense s of w is the one
that maximizes

e(vc1+· · ·+vcn )·vs∑
sk ∈senses(w) e

(vc1+· · ·+vcn )·vsk
(6)

For each word occurrence, we propose to select and train only its most
probable sense. This approach of hard sense assignments is also taken in
Neelakantan et al. (2014)’s work and we follow it here, although it would
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Algorithm 2: Selection of senses and training using Skip-gram with Negative
Sampling. (Note that vx denotes the vector representation of word/sense x.)
Input: Sequence of words w1, . . . ,wN , window size n, learning rate α,

number of negative words Nneg

Output: Updated vectors for each sense of words wi, i = 1, . . . ,N
for t = 1, . . . ,N do

w = wt

K ← number of senses of w
context(w) = {c1, . . . , cn | ci = wt+i, i = −n, . . . ,n, i , 0}
for k = 1, . . . ,K do

pk = e
(vc1+···+vcn )·vsk∑K

j=1 e
(vc1+···+vcn )·vsj

end for
s = arg maxk=1,...,K pk
for i = 1, . . . ,n do

f = 1
1+evci ·vs

g = α(1 − f )
∆ = g · vci
vci = vci + g · vs
for j = 1, . . . ,Nneg do

dj ← word sampled from noise distribution, dj , ci
f = 1

1+e
vdj

·vs

g = −α · f
∆ = ∆ + g · vd j

vd j = vd j + g · vs
end for
vs = vs + ∆

end for
end for

be interesting to compare it with a soft updates of all senses of a given
word weighted by the probabilities obtained with equation 5.

The training algorithm, thus, iterates over a sequence of words, select-
ing each one in turn as a target word w and its context words as those in
a window of a maximum pre-set size. For each target word, a number K
of senses s is considered, and the most probable one selected according
to equation 6. (Note that, as the number of senses needs to be informed
– using, for example, a lexicon – monosemic words need only have one
representation.) The selected sense s substitutes the target word w in
the original Skip-gram model, and any of the known techniques used to
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train it can be subsequently applied to obtain sense representations. The
training process is drafted in algorithm 2 using Skip-gram with Negative
Sampling.

Negative Sampling (Mikolov et al. 2013b), based on Noise Contrastive
Estimation (Mnih and Teh 2012), is a computationally efficient approx-
imation for the original Skip-gram objective function (equation 1). In
our implementation it learns the sense representations by sampling Nneg

words from a noise distribution and using logistic regression to distin-
guish them from a certain context word c of a target word w. This process
is also illustrated in algorithm 2.

6.4 Experiments

We trained the model described in section 6.3 on Swedish text using a
context window of 10 words and vectors of 200 dimensions. The model
requires the number of senses to be specified for each word; as a heuris-
tic, we used the number of senses listed in the SALDO lexicon (Borin,
Forsberg and Lönngren 2013). Note, however, that such a resource is not
vital and could be substituted by any other heuristic. E.g., a fixed num-
ber of senses per word, as Neelakantan et al. (2014) do in their parametric
approach.

As a training corpus, we created a corpus of 1 billion words down-
loaded from Språkbanken, the Swedish language bank.5 The corpora are
distributed in a format where the text has been tokenized, part-of-speech-
tagged and lemmatized. Compounds have been segmented automatically
and when a lemma was not listed in SALDO, we used the parts of the
compounds instead. The input to the software computing the embed-
dings consisted of lemma forms with concatenated part-of-speech tags,
e.g. dricka-verb for the verb ‘to drink’ and dricka-noun for the noun
‘drink’.

The training time of our model on this corpus was 22 hours. For the
sake of time performance comparison, we run an off-the-shelf word2vec
execution on our corpus using the same parameterization described above;
the training of word vectors took 20 hours, which illustrates the little
complexity that our model adds to the original Skip-gram.

5http://spraakbanken.gu.se

http://spraakbanken.gu.se
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6.4.1 Inspection of nearest neighbors

We evaluate the output of the algorithm qualitatively by inspecting the
nearest neighbors of the senses of a number of example words, and com-
paring them to the senses listed in SALDO.

Table 6.1 shows the nearest neighbor lists of the senses of two words
where the algorithm has been able to learn the distinctions used in the
lexicon. The verb flyga ‘to fly’ has two senses listed in SALDO: to travel
by airplane and to move through the air. The adjective öm ‘tender’ also
has two senses, similar to the corresponding English word: one emotional
and one physical. The lists are semantically coherent, although we note
that they are topical rather than substitutional; this is expected since
the algorithm was applied to lemmatized and compound-segmented text
and we use a fairly wide context window.

Sense 1 Sense 2
flyg ‘flight’ flaxa ‘to flap wings’
flygning ‘flight’ studsa ‘to bounce’
flygplan ‘airplane’ sväva ‘to hover’
charterplan ‘charter plane’ skjuta ‘to shoot’
SAS-plan ‘SAS plane’ susa ‘to whiz’

(a) flyga ‘to fly’

Sense 1 Sense 2
kärleksfull ‘loving’ svullen ‘swollen’
ömsint ‘tender’ ömma ‘to be sore’
smek ‘caress’ värka ‘to ache’
kärleksord ‘word of love’ mörbulta ‘to bruise’
ömtålig ‘delicate’ ont ‘pain’

(b) öm ‘tender’

Table 6.1: Examples of nearest neighbors of the two senses of two example
words.

In a related example, figure 6.1 shows the projections onto a 2D space6

of the representations for the two senses of åsna: ’donkey’ or ’slow-witted
person’, and those of their corresponding nearest neighbors.

For some other words we have inspected, we fail to find one or more of
the senses. This is typically when one sense is very dominant, drowning

6The projection was computed using scikit-learn (Pedregosa et al. 2011) using
multidimensional scaling of the distances in a 200-dimensional vector space.
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åsna-1

mulåsna(mule)

kamel(camel)

tjur(bull)
får(sheep)lama(llama)

åsna-2

idiot

dummer(fool)

fåne(jerk)

tönt(dork)

fårskalle(muttonhead)

Figure 6.1: 2D projections of the two senses of åsna (’donkey’ and ’slow-
witted person’) and their nearest neighbors.

out the rare senses. For instance, the word rock has two senses, ‘rock
music’ and ‘coat’, where the first one is much more frequent. While one
of the induced senses is close to some pieces of clothing, most of its
nearest neighbors are styles of music.

In other cases, the algorithm has come up with meaningful sense dis-
tinctions, but not exactly as in the lexicon. For instance, the lexicon
lists two senses for the noun böna: ‘bean’ and ‘girl’; the algorithm has
instead created two bean senses: bean as a plant part or bean as food. In
some other cases, the algorithm finds genre-related distinctions instead
of sense distinctions. For instance, for the verb älska, with two senses ‘to
love’ or ‘to make love’, the algorithm has found two stylistically different
uses of the first sense: one standard, and one related to informal words
frequently used in social media. Similarly, for the noun svamp ‘sponge’
or ‘mushroom’/‘fungus’, the algorithm does not find the sponge sense
but distinguishes taxonomic, cooking-related, and nature-related uses of
the mushroom/fungus sense. It’s also worth mentioning that when some
frequent foreign word is homographic with a Swedish word, it tends to be
assigned to a sense. For instance, for the adjective sur ‘sour’, the lexicon
lists one taste and one chemical sense; the algorithm conflates those two
senses but creates a sense for the French preposition.
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6.4.2 Quantitative evaluation

Most systems that automatically discover word senses have been evalu-
ated either by clustering the instances in an annotated corpus (Manand-
har et al. 2010; Jurgens and Klapaftis 2013), or by measuring the effect
of the senses representations in a downstream task such as contextual
word similarity (Huang et al. 2012; Neelakantan et al. 2014). However,
Swedish lacks sense-annotated corpora as well as word similarity test
sets, so our evaluation is instead based on comparing the discovered
word senses to those listed in the SALDO lexicon. We selected the 100
most frequent two-sense nouns, verbs, and adjectives and used them as
the test set.

To evaluate the senses discovered for a lemma, we generated two sets
of word lists: one derived from the lexicon, and one from the vector space.
For each sense si listed in the lexicon, we created a list Li by selecting
the N senses (for other words) most similar to si according to the graph-
based similarity metric by Wu and Palmer (1994a). Conversely, for each
sense vector vj in our vector-based model, a list Vj was built by selecting
the N vectors most similar to vj , using the cosine similarity. We finally
mapped the senses back to their corresponding lemmas, so that the two
sets L = {Li} and V = {Vj} of word lists could be compared.

These lists were then evaluated using standard clustering evaluation
metrics. We used three different metrics:

• Purity/Inverse-purity F-measure (Zhao and Karypis 2001), where
each of the lexicon-based lists Li is matched to the vector-based
list Vj that maximizes the F-measure, the harmonic mean of the
cluster-based precision and recall:

P(Vj, Li) =
|Vj∩Li |

|C j |
R(Vj, Li) =

|Vj∩Li |

|Li |

The overall F-measure is defined as the weighted average of indi-
vidual F-measures:

F =
∑
i

|Li |∑
k |Lk |

max
j

F(Vj, Li)

• B-cubed F-measure (Bagga and Baldwin 1998), which computes
individual precision and recall measures for every item occurring
in one of the lists, and then averaging all precision and recall values.
The F-measure is the harmonic mean of the averaged precision and
recall.
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• V-measure (Rosenberg and Hirschberg 2007), the harmonic mean
of the homogeneity and the completeness, two entropy-based met-
rics. The homogeneity is defined as the relative reduction of entropy
in V when adding the information about L:

h(V, L) = 1 −
H(V |L)
H(V)

Conversely, the completeness is defined

c(V, L) = 1 −
H(L |V)
H(L)

.

Both measures are set to 1 if the denominator is zero.

Table 6.2 shows the results of the evaluation for nouns, verbs, and
adjectives, and for different values of the list size N. As a strong baseline,
we also include an evaluation of the sense representations discovered by
the system of Neelakantan et al. (2014), run with the same settings as
our system. This system is available only in its parametric version. (I.e.,
the number of senses per word is a fixed parameter.) As the words used
in the experiments always have two senses assigned, this parameter is
set to 2. This accounts for fairness in the comparison with our approach,
which is given the right number of senses by the lexicon (and thus in this
case also 2). We used the three metrics mentioned above: Purity/Inverse-
purity F-measure (Pu-F ), B-cubed F-measure (B3-F ), and V-measure
(V ). As we can see, our system achieves higher scores than the baseline
in almost all the evaluations, despite using a simpler algorithm that uses
less memory. Only for the V-measure the result is inconclusive for verbs
and adjectives; for nouns, and for the other two evaluation metrics, our
system is consistently better.

6.5 Conclusions and future work

In this paper, we present a model for automatically building sense vectors
based on the Skip-gram method. In order to learn the sense vectors, we
modify the Skip-gram model to take into account the number of senses
of each target word. By including a mechanism to select the most prob-
able sense given a target word and its context, only slight modifications
to the original training algorithm are necessary for it to learn distinct
representations of word senses from unstructured text.

To evaluate our model we train it on a 1-billion-word Swedish corpus
and use the SALDO lexicon to inform the number of senses associated
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Pu-F B3-F V
N N-14 ours N-14 ours N-14 ours
10 9.4 10.7 2.5 2.8 8.9 10.6
20 9.5 10.8 2.1 2.4 6.7 8.9
40 9.0 9.9 1.8 2.0 5.1 7.2
80 7.8 8.9 1.4 1.7 4.3 5.6
160 7.4 8.2 1.3 1.5 3.9 4.7

(a) Nouns.

Pu-F B3-F V
N N-14 ours N-14 ours N-14 ours
10 9.1 10.8 2.0 2.5 11.3 7.6
20 8.1 9.3 1.4 1.7 6.7 7.5
40 7.3 8.2 1.0 1.3 4.5 4.5
80 7.5 8.7 1.0 1.3 3.7 3.2
160 8.2 10.3 1.2 1.7 1.2 1.5

(b) Verbs.

Pu-F B3-F V
N N-14 ours N-14 ours N-14 ours
10 6.8 7.6 1.4 1.7 9.4 10.7
20 6.5 7.6 1.3 1.5 8.5 7.2
40 6.4 7.3 1.1 1.3 5.4 5.8
80 6.5 7.0 1.0 1.1 5.2 4.7
160 6.9 7.5 1.0 1.1 4.1 4.4

(c) Adjectives.

Table 6.2: Evaluation of the senses produced by our system and that of Nee-
lakantan et al. (2014).

to each word. Over a series of examples in which we analyse the nearest
neighbors of some of the represented senses, we show how the obtained
sense representations are able to replicate the senses defined in SALDO,
or to make novel sense distinctions in others. On instances in which a
sense is dominant we observe that the obtained representations favour
this sense in detriment of less common ones.

We also give a quantitative evaluation of the sense representations
learned by our model using a variety of clustering evaluation metrics, and
compare its performance with that of the model proposed by Neelakantan
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et al. (2014). In most instances of this evaluation our model obtains
higher scores than this baseline, despite its relative lower complexity.
Our model’s low complexity is characterized by a) the simple word sense
disambiguation algorithm introduced in section 6.3.2, which allows us
to fit word sense embeddings into Skip-gram’s existing architecture with
little added computations; and b) the flexible number of senses per word,
which takes advantage of the monosemic condition of most words to make
an efficient use of memory. This low complexity is demonstrated by our
training algorithm’s small increase in running time with respect to that
of the original, word-based Skip-gram model.

In this work, our use of a lexicon is limited to setting the number of
senses of a given word, While this information proves useful for obtaining
coherent sense representations, an interesting line of research lies in fur-
ther exploiting existing knowledge resources for learning better sense vec-
tors. E.g., leveraging the network topology of a lexicon such as SALDO,
that links together senses of semantically related words, could arguably
help improve the representations for those rare senses with which our
model currently struggles, by learning their representations taking into
account those of neighbour senses in the network.
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Luis Nieto Piña and Richard Johansson 2016. Embedding senses for efficient
graph-based word sense disambiguation. Proceedings of TextGraphs-10: the
Workshop on Graph-based Methods for Natural Language Processing, NAACL-
HLT 2016, 1–5. San Diego, USA.

Abstract

We propose a simple graph-based method for word sense disambigua-
tion (WSD) where sense and context embeddings are constructed by
applying the Skip-gram method to random walks over the sense graph.
We used this method to build a WSD system for Swedish using the
SALDO lexicon, and evaluated it on six different annotated test sets.
In all cases, our system was several orders of magnitude faster than a
state-of-the-art PageRank-based system, while outperforming a random
baseline soundly.

7.1 Introduction

Word sense disambiguation (WSD) is a difficult task for automatic sys-
tems (Navigli 2009). The most accurate WSD systems build on super-
vised learning models trained on annotated corpora (Taghipour and Ng
2015), but because of the difficulty of the sense annotation task (Artstein
and Poesio 2008), the luxury of supervised training is available for a few
languages only.

An approach that circumvents the lack of annotated corpora is to take
advantage of the information available in lexical knowledge bases (LKBs)
like WordNet (Miller 1995, 1998). This kind of resource encodes word
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sense lexicons as graphs connecting lexically and semantically related
concepts. Several methods are available that use LKBs for WSD (Navigli
and Lapata 2007; Agirre and Soroa 2009). These approaches usually
apply a relatively complex analysis of the underlying graph based on the
context of a target word to disambiguate it; e.g., Agirre and Soroa (2009)
use the Personalized PageRank algorithm to perform walks on the graph.
However, these methods are computationally very costly, which makes
them practically useless for large corpora.

In this paper, we investigate a more time-efficient approach to graph-
based WSD. We represent the concepts in the LKB by training vector
space models on synthetic datasets created using random walks on the
LKB’s graph. These synthetic datasets are built on the assumption that
a random walk starting at a given node in the graph will be composed
of inter-related concepts, effectively building a context for it. Training a
vector space model on a collection of such data generated for each node
in an LKB’s graph would result in related concepts being represented
near each other in the vector space, according to the distributional hy-
pothesis (Harris 1954). We then use these representations to perform
context-based disambiguation taking advantage of the geometric notions
of similarity typical of vector space models. Using simple mechanisms
for disambiguation and random walks allows our method to be orders of
magnitude faster while keeping its accuracy well above the random-sense
baseline.

7.2 Model

7.2.1 Word sense vector space model

The Skip-gram model (Mikolov et al. 2013b) is a neural network lan-
guage model (Bengio et al. 2003) intended to produce high-quality word
vector representations trained on large collections of text. In its original
formulation these representations are limited to a vocabulary of word-
forms extracted from the corpus used to train the model. The repre-
sentations are dense vectors in a high-dimensional space in which it is
expected that words with a similar meaning are represented near each
other, which allows to associate a similarity measure with a geometri-
cal distance measure. These representations are trained to, given a word,
predict its context; the training algorithm, thus, works with two separate
vector spaces in which context and target words are represented.
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Skip-gram introduced a highly efficient approach to language mod-
eling using a shallow neural architecture, which has also been extended
to handle word sense representation (Neelakantan et al. 2014; Chen,
Liu and Sun 2014; Johansson and Nieto Piña 2015; Nieto Piña and
Johansson 2015). Our aim in this paper is to build graph-based word
sense embeddings and apply them to the task of WSD as follows: Given
a sentence with an ambiguous word, we can then compare the repre-
sentation of its context words with each of the ambiguous word’s sense
representations to decide which of them fits the context better.

For this purpose we use a modified version of the original Skip-gram
implementation by Levy and Goldberg (2014b), word2vecf, which speci-
fies separate target and context vocabularies, making it possible to rep-
resent word senses as targets while keeping the context vocabulary re-
stricted to word forms.

7.2.2 Random walks as contexts

Given a node in a graph G, a random walk generates a random sequence
of interconnected nodes by selecting randomly from the edges of the
current node at each step. The length of the random walk is controlled by
a stop probability ps. I.e., at each node visited in the walk, the probability
of stopping is ps; if the walk does not stop, one of the node’s edges is
followed to include another node in the walk. We repeat this process a
number of times Nwalk for each node in G to obtain |G | × Nwalk random
walks, where |G | is the number of nodes in G.

The nodes in G are expected to represent word senses, while its edges
connect semantically related word senses. Thus, a sequence of nodes gen-
erated by a random walk is a set of related word senses. Our assumption
is that such a sequence can be considered a context of its starting node:
a set of words that are related to, and can appear together in real texts
with, the word sense represented by that node, thus emulating real text
sentences; to what extent this assumption holds depends of course on
the structure of the LKB we are using. Previous efforts in building word
embeddings have shown the plausibility of this approach (Goikoetxea,
Soroa and Agirre 2015).

It can also be argued that different senses of a word appear in different
contexts (e.g., it is plausible that themusic sense of rock appears together
with play and concert, while not so much with mineral or throw). By
generating contexts semantically related to a given sense of a word, we
expect the resulting vectors trained on them to be effective in the task
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of word sense disambiguation. At the same time, as the same number of
contexts (random walks) are generated for each word sense (node in G),
no word sense in the vocabulary contained in G is under-represented, as
can be the case in real text corpora.

In order to conform to the definition of context vocabulary given
above, given that nodes in G represent senses, those senses that form
part of a context in a random walk will have to be mapped to their
word-forms using a dictionary.

7.2.3 WSD mechanism

Given an ambiguous target word wi in context ci, j , j = 1, . . . ,n, our
disambiguation mechanism assigns a score to each of its senses si,k , k =
1, . . . ,K, based on the dot product of the sense vector v(si,k) with the
sum of the context vectors v(ci, j):

v(si,k)ᵀ ·
n∑
j=1

v(ci, j) (7)

Note that all the information used to disambiguate originates from
the LKB in the form of co-occurrence of concepts in RWs on the graph;
no external information, like a priori sense probabilities, are used. The
scores in equation 7 are derived from the probability of the context words
given a sense, calculated using the softmax function:

p(ci,1, . . . , ci,n |si,k) =
ev(si ,k )

ᵀ ·
∑n

j=1 v(ci , j )∑K
k′=1 ev(si ,k′ )

ᵀ ·
∑n

j=1 v(ci , j )
.

This expression is based on Skip-gram’s objective function used to
maximize the probability of a context given a target word. In our method,
then, each ambiguous word is disambiguated by maximizing its sense
scores (Eq. 7) and selecting the highest scoring sense for that instance.

7.3 Experiments

We built a WSD system for Swedish by applying the random walk-based
training described above to the SALDO lexicon (Borin, Forsberg and
Lönngren 2013). In the experiments, we then evaluated this system on
six different annotated corpora, in which the ambiguous words have been
manually disambiguated according to SALDO, and compared it to ran-
dom and first-sense baselines and UKB (Agirre and Soroa 2009), a state-
of-the-art graph-based WSD system.
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7.3.1 The SALDO lexicon

SALDO is the largest freely available lexical resource of this kind avail-
able for Swedish: the version used in this paper contains roughly 125,000
entries organized into a single semantic network. Similarly to WordNet
(Miller 1998), SALDO is a large, manually constructed, and general-
purpose lexicon that defines the senses in terms of a semantic network.
But there are also important differences between WordNet and SALDO,
first of all that the sense distinctions in SALDO tend to be more coarse-
grained than in WordNet.

The SALDO network is defined in terms of semantic descriptors. A de-
scriptor of a sense is another sense used to define its meaning. The most
important descriptor is called the primary descriptor (PD), and since
every sense in SALDO (except an abstract root sense) has a unique PD,
the PD subgraph of SALDO forms a tree. A sense can be related to its
primary descriptor through hyponymy, synonymy, meronym, antonymy,
or some other relationship such as a predicate–argument relationship;
this is another contrast with WordNet, where it is the hyponymy sub-
graph that forms the backbone. In practice, most PDs in SALDO are
either synonyms or hypernyms.

lata..2 ’to sound’

musik..1 ’music’

rock..2 ’rock music’

ljud..1 ’sound’

jazz..1 ’jazz’ spela..1 ’to play’

’instrument’’hard rock’ instrument..1

gitarr..1 ’guitar’

hardrock..1
o

o

Figure 7.1: A part of the primary descriptor tree in SALDO.

To exemplify, figure 7.1 shows a fragment of the PD tree. In the ex-
ample, there are some cases where the senses are connected through
hyponymy, such as hard rock being a type of rock music, but there are
also other types of relations, such as to play being defined in terms of
music.
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In this work, we use the PD tree to generate the random walks. For
instance, a random walk starting at rock music might consist of the senses
corresponding to music, play, instrument, guitar. As mentioned above,
these senses are then mapped back to their corresponding lemmas before
being used as context features in word2vecf.

7.3.2 Evaluation corpora

For development and evaluation, we used six different collections of sense-
annotated examples. The first two, the SALDO examples (SALDO-ex)
and Swedish FrameNet examples (SweFN-ex) consist of sentences se-
lected by lexicographers to exemplify the senses (Johansson and Nieto
Piña 2015). The former is dominated by the most frequent verbs, while
the latter has a more even distribution. In our experiments, these two
collections were used as a development set to tune the system’s param-
eters.

The additional four collections are taken from an ongoing annotation
project (Johansson et al. 2016); each collection corresponds to a domain:
blogs, novels, Wikipedia, and Europarl (Koehn 2005). Unlike the two
collections mentioned above, in which the instances have been selected
by lexicographers to be prototypical and to have a good coverage of
the sense variation, the instances in these four collections are sampled
uniformly from running text.

Corpus Size n̄s

SALDO-ex 1055 3.1
SweFN-ex 1309 2.9
Blogs 1014 2.9
Europarl 1282 2.7
Novels 1204 3.0
Wikipedia 1311 2.7

Table 7.1: Evaluation corpus statistics.

We preprocessed the examples in the six collections to tokenize, compound-
split, and lemmatize the texts, and to determine the set of possible senses
in a given context. We used content words only: nouns, verbs, adjectives,
and adverbs. All unambiguous instances were removed from the sets, and
we also excluded sentences where the target was a multiword expression
or a part of a compound word. We also removed a few instances that
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could not be lemmatized unambigously.7 Table 7.1 shows the number of
instances in each collection, as well as the average number of senses per
instance (n̄s).

7.3.3 Evaluation

A model is trained on synthetic datasets compiled from random walks
on SALDO. These walks are parameterized by their stop probability
pstop, which effectively controls the length of the random walk and has
two effects: it impacts the size of training data (a lower pstop will gen-
erate longer walks on average, and vice versa); and it controls the level
of relatedness between the target sense and the words included in the
context—a longer walk will wander away from the initial sense, including
increasingly unrelated concepts, while a shorter one will keep its concepts
closely related.

We tuned the model by training several versions with different pstop
and evaluated their performance on the development datasets. As the
best-performing parameterization, we chose pstop = 0.25, which generates
random walks with an average length of 3.75 nodes and achieves an
accuracy of 51.6% on the development datasets. In all cases, the vector
space’s dimensionality for senses and contexts is 200, and 10 iterations
of the training algorithm are used.

Using this parameterization, we trained models on two different RW
datasets: on one, random walks were performed on an unweighted version
of SALDO (i.e., all edges are equally probable from any given node);
on the other, the graph was weighted favoring the selection of a node’s
unique PD, with probability 0.5, over inverse (incoming) PD connections,
which were uniformly distributed over the remaining probability mass.

The disambiguation mechanism explained in section 7.2.3 is applied
to sentences containing one ambiguous word using the sense and context
representations that result from training the models: A score is calculated
for each of the senses of an ambiguous target word in a context window
of size 10 (to each side of the target word) and the highest scoring sense
is selected to disambiguate the entry. The accuracy of the method is then
obtained by comparing these selections with the annotations of the test
datasets.

7Note that this is done only to facilitate comparison to the UKB model; it is not
necessary for our system.
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The results of evaluating this models on each component of the test
dataset are shown in table 7.2. The performance of the UKB model8

by Agirre and Soroa (2009) on our datasets is also shown in this table,
along with first-sense (S1) and random-sense baselines (Rand). These fig-
ures show that the first-sense approach is still a hard baseline. Amongst
our two models (RW), the one trained on a weighted graph (w) per-
forms consistently better; both of them outperform by a wide margin the
random-sense baseline. The accuracy on the development sets is gener-
ally lower, especially in the case of the first-sense baseline, underlying
their difference in nature with respect to the test sets (see section 7.3.2).

Corpus RW (uw) RW (w) UKB S1 Rand
SALDO-ex 52.1 51.6 55.5 53.2 39.3
SweFN-ex 51.0 49.5 53.7 54.3 40.3
Blogs 49.8 58.0 70.0 72.4 40.8
Europarl 55.7 59.4 67.6 67.9 42.3
Novels 56.6 59.9 70.1 77.2 40.1
Wikipedia 60.4 59.6 69.5 76.8 41.2

Table 7.2: WSD accuracies on the development and test sets.

Regarding execution times, the tested models take a few hours to
train and, once trained, are able to disambiguate over 8 000 instances
per second, significantly surpassing the UKB model’s times, which dis-
ambiguates approximately 8 instances per second. This is related to the
fact that the complexity of our disambiguation mechanism is linear on
the context vectors (see equation 7), while the UKB model’s is dependent
on the graph size.

7.4 Conclusion

In this paper we have presented a WSD method trained on a synthetic
corpus composed of random walks over an LKB’s graph. This method
has been shown to be very efficient, disambiguating thousands of words
per second. While the accuracy obtained by the method does not beat
that of comparable approaches, it is several orders of magnitude faster
while outperforming a random-sense baseline. As has been shown in the
results, the way in which random walks are generated seems to have an

8We used version 2.0 of UKB, run in the word-by-word mode, using an unweighted
graph based on the PD tree.
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influence on the results; exploring alternative ways of generating training
datasets might be a way of improving the model’s results while retaining
its efficiency.
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Abstract

We propose to improve word sense embeddings by enriching an auto-
matic corpus-based method with lexicographic data. Information from
a lexicon is introduced into the learning algorithm’s objective function
through a regularizer. The incorporation of lexicographic data yields em-
beddings that are able to reflect expert-defined word senses, while retain-
ing the robustness, high quality, and coverage of automatic corpus-based
methods. These properties are observed in a manual inspection of the
semantic clusters that different degrees of regularizer strength create
in the vector space. Moreover, we evaluate the sense embeddings in two
downstream applications: word sense disambiguation and semantic frame
prediction, where they outperform simpler approaches. Our results show
that a corpus-based model balanced with lexicographic data learns better
representations and improve their performance in downstream tasks.

8.1 Introduction

Word embeddings, as a tool for representing the meaning of words based
on the context in which they appear, have had a considerable impact
on many of the traditional Natural Language Processing tasks in recent
years. (Turian, Ratinov and Bengio 2010; Collobert et al. 2011; Socher
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et al. 2011; Glorot, Bordes and Bengio 2011) This form of semantic
representation has come to replace in many instances traditional count-
based vectors (Baroni, Dinu and Kruszewski 2014), as they yield high-
quality semantic representations in a computationally efficient manner,
which allows them to leverage information from large corpora.

Due to this success, some attention has been devoted to the question
of whether their representational power can be refined to further ad-
vance the state of the art in those tasks that can benefit from semantic
representations. One instance in which this could be realized concerns
polysemous words, which has led to several attempts at representing
word senses instead of simple word forms. Doing so would help avoid the
situation in which several meanings of a word have to be conflated into
just one embedding, typical of simple word embeddings.

Among the different approaches to learning word sense embeddings, a
distinction can be made between those that make use of a semantic net-
work (SN) and those that do not. Approaches in the latter group usually
apply an unsupervised strategy for clustering instances of words based on
the context formed by surrounding words. The resulting clusters are then
used to represent the different meanings of a word. These representations
characterize word usage in the training corpus rather than lexicographic
senses, and run the risk of marginalizing under-represented word senses.
Nonetheless, for well represented word senses, this strategy proves to be
effective and adaptable to changes.

The alternative is to integrate an SN in the learning process. This kind
of resource encodes a lexicon of word senses, connecting lexically and
semantically related concepts, usually in the form of a graph. Methods
that take this approach are able to work with lexicographic word senses
as defined by experts, usually integrating them in different ways with
corpus-learned embeddings. However, their completeness depends on the
quality of the underlying SN.

In this paper, we present an approach that tries to achieve a balance
between these two variants. We propose to make use of an SN for learning
word sense embeddings by leveraging its signal through a regularizer
function that is applied on top of a traditional objective function used
to learn embeddings from corpora. In this manner, our model is able
to merge these two opposed sources of data with the expectation that
each one will balance the limitations of the other: flexible, high-quality
embeddings learned from a corpus, with well defined separation between
the expert-defined senses of any given polysemic word. The influence of
each source of information can be regulated through a mix parameter.
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As the corpus-based part of our model, we use a version of the Skip-
gram (Mikolov et al. 2013b) model that is modified so that it is able
to learn two distinct vocabularies: word senses and word forms as intro-
duced by Nieto Piña and Johansson (2015). Regarding the SN data, we
focus our attention on its underlying graph. We assume that neighboring
nodes in such a graph correspond to semantically related concepts. Thus,
given a word sense, a sequence of related word senses can be generated
from its neighbors. A regularizer function can then be used to update
their corresponding embeddings so that they become closer in the vector
space. This has the benefit of creating clear separations between the dif-
ferent senses of polysemic words, precisely as they are described in the
SN, even in the cases where this separation would not be clear from the
data in a corpus.

We give an overview of related work in section 8.2, and our model is
described in detail in section 8.3. The resulting word sense embeddings
are evaluated in section 8.4 on two separate automated tasks: word sense
disambiguation (WSD) and lexical frame prediction (LFP). The exper-
iments used for evaluation allow us to investigate the influence of the
lexicographic data on the embeddings by comparing different model pa-
rameterizations. We conclude with a discussion of our results in sec-
tion 8.5.

8.2 Related work

The recent success of word embeddings as effective semantic represen-
tations across the broad spectrum of NLP tasks has led to an increased
interest in developing embedding methods further in order to acquire
finer-grained representations able to handle polysemy and homonymy.
This effort can be divided into two approaches: those that tackle the
problem as an unsupervised task, aiming to discover different usages of
words in corpora, and those that make use of knowledge resources as a
way of injecting linguistic knowledge into the models.

Among the earliest efforts in the former group is the work of Reisinger
and Mooney (2010) and Huang et al. (2012), who propose to cluster
occurrences of words based on their contexts to account for different
meanings. With the advent of the Skip-gram model (Mikolov et al. 2013b)
as an efficient way of training prediction-based word embedding models,
much of the research into obtaining word sense representations revolved
around it. Neelakantan et al. (2014) and Nieto Piña and Johansson (2015)
make use of context-based word sense disambiguation (WSD) during
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corpus training to allow on-line learning of multiple senses of a word with
modified versions of Skip-gram. Li and Jurafsky (2015) and Bartunov
et al. (2016) apply stochastic processes to allow for representations of a
variable number of senses per word to be learnt in unsupervised fashion
from corpora.

The embeddings obtained using this approach tend to be word-usage
oriented, rather than represent formally defined word senses. While this
is descriptive of the texts in the corpus at hand, it can be problematic
for generalization. For instance, word senses that are underrepresented or
absent in the training corpus will not be assigned a functional embedding.
On the other hand, due to the ability of these models to process large
amounts of data, well-represented word senses will acquire meaningful
representations.

The alternative approach to unsupervised methods is to include data
from knowledge resources, usually graph-encoded semantic networks (SN)
such as WordNet (Miller 1995). Chen, Liu and Sun (2014) and Iacobacci,
Pilehvar and Navigli (2015) propose to make use of knowledge resources
to produce a sense-annotated corpus, on which known techniques can
then be applied to generate word sense embeddings. A usual way of
circumventing the lack of sense-annotated corpora is to apply post-
processing techniques onto pre-trained word embeddings as a way of
leveraging lexical information to produce word sense embeddings. The
following models share this method: Johansson and Nieto Piña (2015)
formulate an optimization problem to derive multiple word sense repre-
sentations from word embeddings, while Pilehvar and Collier (2016) and
one of the models proposed by Jauhar, Dyer and Hovy (2015) use graph
learning techniques to do so.

A characteristic of this approach is that these models can generate
embeddings for a complete inventory of word senses. However, the de-
pendence on manually crafted resources can potentially lead to incom-
pleteness, in case of unlisted word senses, or to inflexibility in the face
of changes in meaning, failing to account for new meanings of a word.

The model that we present in this article tries to preserve desirable
characteristics from both approaches. On one side, the model learns word
sense embeddings from a corpus using a predictive learning algorithm
that is efficient, streamlined, and flexible with respect to being able to
discriminate between different usages of a word from running text. This
learning algorithm is based on the idea of adding an extra latent variable
to the Skip-gram objective function to account for different senses of a
word, that has been explored in previous work by Jauhar, Dyer and
Hovy (2015) and Nieto Piña and Johansson (2015). On the other side,
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the learning process is guided by a regularizer function that introduces
information from an SN, in an attempt to achieve a clear, complete, and
fair division between the different senses of a word. Furthermore, from a
technical point of view, the effect of the regularizer function is applied in
parallel to the embedding learning process. This eliminates the need for
a two-step training process or pre-trained word embeddings, and makes
it possible to regulate the influence that each source of data (corpus and
SN) has on the learning process.

8.3 Model description

8.3.1 Learning word sense embeddings

The Skip-gram word embedding model (Mikolov et al. 2013b) works on
the premise of training the vector for a word w to be able to predict
those context words ci with which it appears often together in a large
training corpus, according to the following objective function:

n∑
i=1

log p(ci |w)

where p(ci |w) can be approximated using the softmax function, The
model, thus, works by maintaining two separate vocabularies which rep-
resent word forms in their roles as target and context words. The resulting
word embeddings (usually those vectors trained for the target word vo-
cabulary) are able to store meaningful semantic information about the
words they represent.

The original Skip-gram model is, however, limited to word forms in
both its vocabularies. Nieto Piña and Johansson (2015) introduced a
modification of this model in which the target vocabulary holds a variable
number of vectors for each word form, intended to represent its different
senses. The training objective of such a model now has the following
shape:

log p(s |w) +
n∑
i=1

log p(ci |s) (8)

Thus the word sense embeddings are trained to maximize the log-probability
of context words ci given a word’s sense s plus the log-probability of
that sense given the word w. For our purposes, this prior is a constant,
p(s |w) = 1

n , as we do not have information on the probability of each
sense of a given word.
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This formulation requires a sense s of word w to be selected for each
instance in which the objective function above is applied. This word sense
disambiguation is applied on-line at training time and based on the target
word’s context: The sense s chosen to disambiguate an instance of w is
the one whose embedding maximizes the dot product with the sum of
the context words’ embeddings.

arg max
s

es
∑

i ci∑
s es

∑
i ci

(9)

This unsupervised model learns different usages of a word with mini-
mal overhead computation on top of the original, word-based Skip-gram.
The number of senses per word can be obtained from a lexicon or set to
a fixed number.

8.3.2 Embedding a lexicon

In order to adapt the graph-structured nature of the data in an SN to be
used in continuous representations, we propose to introduce it through
a regularizer that can act upon the same embeddings trained by the
unsupervised model described above.

Any given node s in a graph will have a set of neighbors ni directly
connected to it. In the graph underlying an SN, we assume ni to be lexi-
cally or semantically similar to s. In this setting, a collection of sequences
composed of word senses s and ni can be collected by visiting all nodes
in the SN’s graph and collecting its immediate neighbors. Note that ex-
tracting such a collection of sequences from a semantic graph follows
quite naturally, but in fact it could be generated from any other resource
that relates concepts, such as a thesaurus, even if it is not encoded in
a graph, as long as the relations it contains are relevant to the model
being trained.

We propose to use a collection of sequences of related word senses to
update their corresponding word sense vectors by pulling any two vectors
closer together in their geometric space whenever they are encountered
in a sequence. This action can be easily modeled by minimizing the
following expression:

k∑
i=1

| |s − ni | |2 (10)

for each sequence of word senses (s,n1,n2, . . . ,nk). By minimizing the dis-
tance in the vector space between vectors representing interconnected
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concepts according to the SN’s organization, the vector model is effec-
tively representing that organization in a way that geometrical distance
correlates with lexical or semantical relatedness, a central concept in the
word embedding literature.

8.3.3 Combined model

The two preceding sections describe the two parts of a combined model
that is able to learn simultaneously from a corpus and an SN. This is
achieved by training embeddings from a corpus with the objective de-
scribed in equation 8, and complementing this procedure with lexico-
graphic data by means of using equation 10 as a regularizer. The extent
of the regularizer’s influence on the model is adapted by a mix parameter
ρ ∈ [0,1]: the higher the value of ρ, the more influence the SN data has
on the model, and vice versa.

Thus, the objective function of our model is as follows:

log p(s |w) + (1 − ρ)
n∑
i=1

log p(ci |s) − ρ
m∑
j=1

| |s − nj | |
2

In practice, this objective is realized by alternating updates through
each of the model’s parts, the number of which is regulated by ρ. Updates
on the corpus-based part are executed with Skip-gram with negative
sampling (Mikolov et al. 2013b), adapted to work with a vocabulary of
word senses as explained in section 8.3.1.

On top of the formulation of the lexicon-based part of the model
given in the previous section we propose two variations on this model
in order to explore the extent to which the SN data can be used to
influence the combined model explained in the following section. The
initial formulation of the model will be referenced as V0 in this paper.

In the first variation (henceforth V1) we propose to only apply equa-
tion 10 on word senses pertaining to polysemous words. If by using the
SN we intend to learn clear separations between different senses of a
word, it attends to reason to limit its application to those cases, while
monosemous words can be sufficiently well trained by the usual corpus-
based approach, and act as semantic anchors in the broader vector space.

The second variation (henceforth V2) deals with the specific architec-
ture of the corpus-based training algorithm. As mentioned in the previous
section, this model trains a target and a context vocabulary. We propose
to use the regularizer to act not only on word sense vectors, but also
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on context (word form) vectors. By doing this we expect the context
vocabulary to be ready for instances of different senses of a word, train-
ing context vectors to be potentially more effective in the disambiguation
scheme introduced in equation 9. This variation introduces an extra term
into equation 10,

n∑
i=0

| |w(s) − w(ni)| |2

where w(x) is a mapping from a given sense x to its corresponding word
form.

8.4 Experiments

8.4.1 Experimental setting

We trained the three variants of our model using different parameteri-
zations of ρ ∈ (0,1). Each of these instances learned target and context
embeddings of 50 dimensions, using a window of size 5 on the corpus-
based part of the training algorithm, for a total number of 5 iterations
over a number of updates equal to the size of the training corpus.

Below we describe the lexicon and corpus used to train the sense
embeddings.

8.4.1.1 SALDO: a Semantic Network of Swedish Word Senses

SALDO (Borin, Forsberg and Lönngren 2013) is the largest graph-struc-
tured semantic lexicon available for Swedish. The version used here con-
tains roughly 125,000 concepts (word senses) organized into a single se-
mantic network.

The sense nodes in the SALDO network are connected by edges that
are defined in terms of semantic descriptors. A descriptor of a sense is
another sense used to define its meaning. The most important descriptor
is called the primary descriptor (PD), and since every sense in SALDO
(except an abstract root sense) has a single unique PD, the PD subgraph
of SALDO forms a tree. In most cases, the PD of a sense s is a hypernym
or a synonym of s, but other types of semantic relations are also possible.

To exemplify, figure 8.1 shows a fragment of the PD tree. In the exam-
ple, there are some cases where the PD edges correspond to hypernymy,
such as hard rock being a type of rock music, which in turn is a type of
music, but there are also other types of relations, such as music being
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defined in terms of to sound.

lata..2 ’to sound’

musik..1 ’music’

rock..2 ’rock music’

ljud..1 ’sound’

jazz..1 ’jazz’ spela..1 ’to play’

’instrument’’hard rock’ instrument..1

gitarr..1 ’guitar’

hardrock..1
o

o

Figure 8.1: A fragment of the network in SALDO.

8.4.1.2 Training corpus

For training the embedding models, we created a mixed-genre corpus
of approximately 1 billion words downloaded from Språkbanken, the
Swedish language bank.9 The texts were tokenized, part-of-speech-tagged
and lemmatized. Compounds were segmented automatically and when a
compound-word lemma was not listed as an entry in the SALDO lexicon,
we used the compound parts instead. For instance, hårdrock ‘hard rock’
would occur as a single token in the corpus, while rockstjärna ‘rock star’
would be split into two separate tokens.

8.4.2 Qualitative inspection of word senses

By inspecting lists of nearest neighbors to a given embedding, some in-
sight can be gained into how a model represents the meaning of the
concept it represents. It is especially interesting in the case of polyse-
mous words, where the neighbors of each of its senses can help judging
how well it manages to separate their different meanings.

In table 8.1 we list nearest neighbors for each of the two senses of the
Swedish word rock : ‘coat’ and ‘rock music’. The neighboring concepts
in the table are extracted from two separate vector models trained with

9http://spraakbanken.gu.se

http://spraakbanken.gu.se
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rock-1 ‘coat’
ρ = 0.01 ρ = 0.5

syrtut ‘frock coat’ syrtut ‘frock coat’
Rhythm ‘rhythm music’ kappa ‘coat’
rockband ‘rock band’ kåpa ‘cowl’
Peepshows ‘peep shows’ päls ‘fur coat’
skaband ‘ska band’ mudd ‘cuff’

rock-2 ‘rock music’
ρ = 0.01 ρ = 0.5

hårdrock ‘hard rock music’ punk ‘punk music’
pop ‘pop music’ rappa ‘to rap’
punk ‘punk music’ rap ‘rap music’
jazza ‘to jazz’ pop ‘pop music’
dödsmetall ‘death metal music’ jam ‘music jam’

Table 8.1: Nearest neighbors for the two senses of rock ‘coat’ and ‘ rock music’
for different ρ.

different parameterizations for the mix parameter ρ: The first, ρ = 0.01,
has little influence from the lexicon and thus is similar to a corpus-only
approach; the second, ρ = 0.5, allows for more information from the
lexicon to influence the embeddings. In our corpus, the music sense is
overrepresented; this can be seen in the table, where both senses trained
with ρ = 0.01 have most of their nearest neighbors semantically related
to music. The model that is more influenced by the lexicon with ρ = 0.5
is, however, able to learn two distinct senses. Note how the music sense is
not negatively affected by this change: many of its nearest neighbors are
the same in both models, and all of them keep the music-related topic
in common.

It is also interesting to filter these lists of nearest neighbors to limit
them to unlisted words; i.e., words that are not present in the lexicon
and appear only in the corpus. This provides an observation of how well
those embeddings that are trained by both parts of the model are in-
tegrated with those others whose training is based only on the corpus.
Table 8.2 contains such lists of unlisted items for the two senses of rock on
two models with different parameterization. It presents a similar behav-
ior to the previous experiment: In a model with low influence from the
lexicon, the representations of both senses tend towards that of the over-
represented one; when more influence from the lexicon is allowed, a clear
separation of the two senses into their expected meanings is observed.
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rock-1 ‘coat’
ρ = 0.01 ρ = 0.5

Rhythm ‘rhythm music’ jesussandaler ‘Jesus sandals’
Peepshows ‘peep shows’ tubsockar ‘tube socks’
skabandk ‘ska band’ blåjeans ‘blue jeans’
Punkrock ‘punk rock’ snowjoggers ‘snow joggers’
sleaze ‘to sleaze’ midjekort ‘doublet jacket’

rock-2 ‘rock music’
ρ = 0.01 ρ = 0.5

nu-metal ‘nu metal’ metal ‘metal music’
goth ‘ goth music’ rnb ‘RnB music’
psytrance ‘ psytrance music’ indie ‘indie music’
boogierock ‘boogie rock’ dubstep ‘dubstep music’
synthband ‘synth music band’ goth ‘goth music’

Table 8.2: Nearest unlisted neighbors for the two senses of rock ‘coat’ and
‘rock music’ for different ρ.

8.4.3 Word sense disambiguation

We trained and evaluated several parameterizations of our model on a
Swedish language word sense disambiguation (WSD) task. The aim of
this task is to select a sense of an instance of a polysemous word in con-
text. For this purpose, we use a disambiguation mechanism similar to the
one introduced in section 8.3.1. Given an ambiguous word in context, a
score is calculated for each of its possible senses by applying the expres-
sion in equation 9; however, to correct for skewed sense distributions, we
replaced the uniform prior with a power-law prior P(sk |w) ∝ k−2, where
k is the numerical identifier of the sense. The highest scoring sense is
then selected to disambiguate that instance of the word.

As baselines for this experiment, we used random sense and first
sense10 selection. Additionally, we show the results achieved by a disam-
biguation system, UKB, based on Personalized PageRank (Agirre and
Soroa 2009), and which was trained on the PD tree from SALDO. The
implementation of this model makes no assumptions on the underlying
graph and thus it is easily adaptable to work with any kind of SN. Our

10No frequency information is available for SALDO’s sense inventory and the senses
are not ordered by frequency. The senses are ordered by lexicographers so that the
lower-numbered senses are more “central” or “primitive”, which often but not always
correlates with the sense frequency.
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models were all parameterized with ρ = 0.9 based on the results obtained
on the SweFN dataset. All evaluated systems including the baselines are
unsupervised: none of them has used a sense-annotated corpus during
training.

8.4.3.1 Sense-annotated Datasets

We evaluated the WSD systems on eleven different datasets, which to our
knowledge are all sense-annotated datasets that exist for Swedish. The
datasets consist of instances, where each instance is a sentence where a
single target word has been selected for disambiguation.

Two datasets consist of lexicographical examples (Lex-Ex): the SALDO
examples (SALDO-ex) and Swedish FrameNet examples (SweFN-ex).
The latter of these is annotated in terms of semantic frames, but there
is a deterministic mapping from frames to SALDO senses.

Two additional datasets are taken from the Senseval-2 Swedish lex-
ical sample task (Kokkinakis, Järborg and Cederholm 2001). It uses a
different sense inventory, which we mapped manually to SALDO senses.
The lexical sample originally consisted of instances for 40 lemmas, out of
which we removed 7 lemmas because they were unambiguous in SALDO.
Since we are using an unsupervised experimental setup, we report results
not only on the designated test set but also on the training set.

The other datasets come from the Koala annotation project (Johans-
son et al. 2016). The latest version consists of seven different corpora,
each sampled from text in a separate domain: blogs, novels, Wikipedia,
European Parliament proceedings, political news, newsletters from a gov-
ernment agency, and government press releases. Unlike the two lexico-
graphical example sets and the Senseval-2 lexical sample, in which the
instances have been selected by lexicographers to be prototypical and to
have a good coverage of the sense variation, the instances in the Koala
corpora are annotated ‘as is’ in running text.

The sentences in all datasets were tokenized, compound-split, and
lemmatized, and for each target word we automatically determined the
set of possible senses, given its context and inflection. We only considered
senses of content words: nouns, verbs, adjectives, and adverbs. Multi-
word targets were not included, and we removed all instances where
only one sense was available.11

11In addition, to facilitate a comparison to the UKB system as a baseline, we
removed a small number of instances that could not be lemmatized unambiguously.
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8.4.3.2 Disambiguation results

Table 8.3 shows disambiguation accuracies for our models on the datasets
described above, along with the scores achieved by our baselines and the
UKB model. The results of each variant of our model were obtained
with a parameterization of ρ = 0.9, which was chosen as the best scoring
value on the Swe-FN subset used as validation set. The model which
only applies the regularizer to polysemous words (V1) dominates most
highest scores, overtaken in some instances by V0 and in one by the first
sense baseline. Note how the general magnitudes of the scores within
each type of dataset underline their different characteristics explained
above.

Additionally, for the sake of making a more detailed analysis of the
influence of the parameter ρ that dominates the extent of the lexicon’s
influence on the model, figure 8.2 shows the average performance of our
models on each dataset for a wide range of values for ρ. There is a clear
pattern across all models and datasets by which a greater input from
the SN translates into a better performance in WSD. These figures also
confirm the superior performance of the variant V1 of our model seen in
table 8.3.

8.4.4 Frame prediction

In our second evaluation, we investigated how well the sense vector mod-
els learned by the different training algorithms correspond to semantic
classes defined by the Swedish FrameNet (Friberg Heppin and Gronos-
taj Toporowska 2012). In a frame-semantic model of lexical meaning
(Fillmore and Baker 2009), the meaning of words is defined by asso-
ciating them with broad semantic classes called frames; for instance,
the word falafel would belong to the frame Food. Important classes of
frames include those corresponding to objects and people, mainly pop-
ulated by nouns, such as Food or People_by_age; verb-dominated
frames corresponding to events, such as Impact, Statement, or Inges-
tion; and frames dominated by adjectives, often referring to relations,
qualities, and states, e.g. Origin or Emotion_directed.

In case a word has more than one sense, it may belong to more than
one frame. In the Swedish FrameNet, unlike its English counterpart,
these senses are explicitly defined using SALDO (see section 8.4.1.1):
for instance, for the highly polysemous noun slag, its first sense (‘type’)
belongs to the frame Type, the second (‘hit’) to Impact, the third (‘bat-
tle’) to Hostile_encounter, etc.
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Figure 8.2: Average WSD accuracies on all instances of each dataset for dif-
ferent values of ρ on the three variants of our model.

In the evaluation, we trained classifiers to determine whether a SALDO
sense, represented as a sense vector, belongs to a given frame or not.
To train the classifiers, we selected the 546 frames from the Swedish
FrameNet for which at least 5 entries were available. In total we had
28,842 verb, noun, adjective, and adverb entries, which we split into
training (67% of the entries in each frame) and test sets (33%). For each
frame, we used Liblinear (Fan et al. 2008) to train a linear support vec-
tor machine, using the vectors of the senses associated with that frame
as positive training instances, and all other senses listed in FrameNet as
negative instances.
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Figure 8.3: MAP scores for the frame prediction classifiers for the different
types of models.

8.4.4.1 Evaluation Results

At test time, for each frame we applied the SVM scoring function of its
classifier to each sense in the test set. The ranking induced by this score
was evaluated using the Average Precision (AP) metric commonly used
to evaluate rankers; the goal of this ranking step is to score the senses
belonging to the frame higher than those that do not. We computed
the Mean Averaged Precision (MAP) score by macro-averaging the AP
scores over the set of frames.

Figure 8.3 shows the MAP scores of frame predictors based on dif-
ferent sense vector models. We compared the three training algorithms
described in section 8.3 for different values of the regularization strength
parameter ρ. As a baseline, we included a model that does not distin-
guish between different senses: it represents a SALDO sense with the
word vector of its lemma.

As the figure shows, almost all sense-aware vector models outper-
formed the model that just used lemma vectors. The result shows ten-
dencies that are different from what we saw in the WSD experiments.
The best MAP scores were achieved with mid-range values of ρ, so it
seems that this task requires embeddings that strike a balance between
representing the lexicon structure faithfully and representing the cooc-
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currence patterns in the corpus. A model with very light influence of the
lexicon was hardly better than just using lemma embeddings, and unlike
what we saw for the WSD task we see a strong dropoff when increasing
ρ.

In addition, the tendencies here differ from the WSD results in that
the training algorithm that only applies the lexicon-based regularizer to
polysemous words (V1) gives lower scores than the other two approaches.
We believe that this is because it is crucial in this task that sense vectors
are clustered into coherent groups, which makes it more useful to move
sense vectors closer to their neighbors even when they are monosemous;
this as opposed to the WSD task, where it is more useful to leave the
monosemous sense vectors in place as “anchors” for the senses of poly-
semous words. The context-regularized training algorithm (V2) gives no
improvement over the original approach (V0), which is expected since
context vectors are not used in this task.

Frame Lemma V0 V1
Animals 0.73 0.86 0.76
Food 0.72 0.84 0.77
Removing 0.20 0.50 0.22
Make_noise 0.40 0.62 0.46
Origin 0.90 0.90 0.89
Color 0.73 0.88 0.80
Frequency 0.40 0.43 0.35
Time_vector 0.40 0.52 0.27

Table 8.4: Frame prediction AP scores for selected frames dominated by
nouns, verbs, adjectives, and adverbs, respectively.

To get a more detailed picture of the strengths and weaknesses of
the models in this task, we selected eight frames: two frames dominated
by nouns, two for verbs, two for adjectives, two for adverbs. Table 8.4
shows the AP scores for these frames of the lemma-vector baseline, the
initial approach (V0), and the version that only regularizes senses of
polysemous words (V1). All lexicon-aware models used a ρ value of 0.7.
Almost across the board, the V0 method gives very strong improvements.
The exception is the frame Origin, which contains adjectives of ethnicity
and nationality (Mexican, African, etc); this set of adjectives is already
quite coherently clustered by a simple word vector model and is not
substantially improved by any lexicon-based approach.
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8.5 Conclusion

In this article we have introduced a family of word sense embedding
models that are able to leverage information from two concurrent sources
of information: a semantic network and a corpus. Our hypothesis was
that by combining them, the robustness and coverage of embeddings
trained on a large corpus could achieve a more balanced and linguistically
informed representation of the senses of polysemic words. This point has
been proved in the evaluation of our models on Swedish language tasks.

A manual inspection of the word sense representation through their
nearest neighbors exemplified it in section 8.4.2. Indeed, an increased
influence from the SN causes a clearer distinction between different senses
of a word, even in the case where one of them is underrepresented in the
corpus.

A WSD experiment was carried out on a variety of sense-annotated
datasets. Our model consistently outperformed random and first sense
baselines, as well as a comparable graph-based WSD system trained on
a Swedish SN, which underlines the fact that the strength of our model
resides in a combination of lexicon- and corpus-learning.

This is further confirmed in the evaluation of our model on a frame
prediction task: A well balanced combination of lexicon and corpus data
produces word sense embeddings that outperform common word embed-
dings when used to predict their semantic frame membership. Further-
more, this superiority is uniform across common frames dominated by
different parts of speech.

An analysis of different values of our model’s mix parameter ρ showed
the value of using lexicographic information in conjunction with corpus
data. Especially on WSD, larger values of ρ (i.e., more influence from
the SN) generally lead to improved results.

In conclusion, we have shown that automatic word sense representa-
tion benefits greatly from using a semantic network in addition to the
usual corpus-learning. The combination of these sources of information
yields robust, high-quality, and balanced embeddings that excel in down-
stream tasks where accurate representation of word meaning is crucial.
Given these findings, we intend to continue exploring more refined ways
in which data from a semantic network can be leveraged to increase
sense-awareness in embedding models.
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Abstract

Automatically learnt word sense embeddings are developed as an attempt
to refine the capabilities of coarse word embeddings. The word sense
representations obtained this way are, however, sensitive to underlying
corpora and parameterizations, and they might be difficult to relate to
word senses as formally defined by linguists. We propose to tackle this
problem by devising a mechanism to establish links between word sense
embeddings and lexical resources created by experts. We evaluate the
applicability of these links in a task to retrieve instances of Swedish
word senses not present in the lexicon.

9.1 Introduction

Word embeddings have boosted performance in many Natural Language
Processing applications in recent years (Collobert et al. 2011; Socher
et al. 2011). By providing an effective way of representing the meaning
of words, embeddings facilitate computations in models and pipelines
that need to analyze semantic aspects of language.

Based on their success, an effort has been concentrated in improving
embedding models, from devising more computationally effective models
to extending them to cover other semantic units beyond words, such as
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multi-word expressions (Yu and Dredze 2015) or word senses (Neelakan-
tan et al. 2014). Being able to represent word senses solves the problem
of conflating several meanings of one polysemic word into a single embed-
ding (Li and Jurafsky 2015). Furthermore, having complete and accurate
word sense representations brings embedding models closer to a range
of existing, expert-curated resources such as lexica. Bridging the gap
between these two worlds arguably opens a road to new methods that
could benefit well-established, widely used resources (Faruqui et al. 2015;
Speer, Chin and Havasi 2017).

This is the focus of the work we present in this article. We propose an
automatic way of creating a mapping between entries in a lexicon and
word sense representations learned from a corpus. By having an iden-
tification between a manual inventory of word senses and word sense
embeddings, the lexicon obtains capabilities by which its entries can be
manipulated as mathematical objects (vectors), while the vector space
model receives support from a linguistic resource. Furthermore, by ana-
lyzing the disagreements between the lexicon and the embedding model,
we can acquire insight into the shortcomings of their respective coverage.
For instance, unlinked lexicon entries evidence those instances that the
vector model is unable to learn, while unlinked word sense embeddings
may suggest new usages of words found in the corpora. Being able to
locate these cases opens the way towards improving lexica and embed-
ding models. Automatic discovery of novel senses has been shown as a
feasible and productive endeavor (Lau et al. 2012). In our evaluation we
provide some insight into these situations: we use a mapping to calculate
the probability that a word in a sentence from a corpus is an instance of
an unlisted sense (i.e., not present in the lexicon.)

This mapping process, and some of its potential applications, are ex-
plained in detail in the following sections. Section 9.2 contains a de-
scription of the mapping mechanism. Section 9.3 goes on to evaluate the
performance of this mapping on finding instances of unlisted senses. We
present our conclusions in section 9.4.

9.2 Model

9.2.1 Lexicon

A lexicon which lists word senses and provides relations between them is
required; for instance, a resource that encodes these relations in a graph
architecture, such as WordNet (Miller 1998).



9.2 Model 119

We need to retrieve word senses related to any given target word
sense in order to obtain a set of neighbors which put the target sense in
context. This context will be used to compare it with sets of neighbors
extracted from a word sense vector space for senses of the same lemma,
and thus find the best match to establish a link.

In our experiments on Swedish data we use SALDO (Borin, Forsberg
and Lönngren 2013) as our lexicon. It is encoded as a network: nodes
encode word senses, which are connected by edges defined by semantic
descriptors: the meaning of a sense is defined by one or more senses, its
descriptors. Among others, each sense has one primary descriptor (PD)
and, in turn, it may be the primary descriptor of one or more senses.
E.g., the PD of the musical sense of rock would be music, which would
be the PD of hard rock. The PD network of SALDO traces back to a root
node (which does not have a PD) and, thus, it has a tree topology. In
general, senses with more abstract meanings are closer to the root, while
more concrete ones are located closer to the leaves.

9.2.2 Word sense embeddings

Word sense embeddings allow us to create an analogy between semantic
relatedness among words and geometric distance between their represen-
tations in a vector space. In particular, a word sense embedding model
assigns multiple representations to any given word, each of which is re-
lated to a distinct word sense. For our purposes, we make use of Adaptive
Skip-gram (Bartunov et al. 2016), an adaptation of the hierarchical soft-
max Skip-gram (Mikolov et al. 2013b).

The hierarchical softmax model is described by its training objective:
to maximize the probability of context words v given a target word w

and the model’s parameters θ:

p(v |w, θ) =
∏

n∈path(v)

1

1 − e−ch(n)x>wyn
, (11)

where xw are the input representations of the target words w, and the
original output representations of context words yn are associated with
nodes in a binary tree which has all possible vocabulary words v as leaves;
θ is the set of these representations as weights of the vector model. In
this context, path(v) are the nodes n in the path from the tree’s root to
the leaf v, identified by ch(n) being -1 or 1 depending on whether n is a
right or left child.
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The Adaptive Skip-gram (AdaGram) model expands this objective to
account for multiple word senses to be represented in the input vocab-
ulary X. It does so by introducing a latent variable z that determines a
concrete sense k of word w. The output vocabulary Y remains unchanged.
This model uses a Dirichlet process (stick-breaking representation) to au-
tomatically determine the number of senses per word. They define a prior
over the multiple senses of a word as follows:

p(z = k |w, β) = βwk

k−1∏
r=1

(1 − βwr ),

p(βwk |α) = Beta(βwk |1, α),

where β is a set of samples β from the Beta distribution and α is a
hyperparameter. By combining this prior with a pre-specified maximum
number of prototypes and a threshold probability, the model is able
to automatically determine the number of word senses any given word
is expected to have. The objective function that defines the AdaGram
model is defined as follows:

p(Y, Z, β |X, α, θ) =
V∏

w=1

∞∏
k=1

p(βwk |α)

N∏
i=1

[
p(zi |xi, β)

C∏
j=1

p(yi j |zi, xi, θ)

]
,

(12)
where V is the word vocabulary size, N is the size of the training corpus, C
is the size of the context window, and p(βwk |α) is the prior over multiple
senses obtained via the Dirichlet process described above. The granular-
ity in the distinction between word senses is controlled by α. A trained
model produces representations for word senses in a D-dimensional vec-
tor space where those with similar meanings are closer together than
those with dissimilar ones.

For the purposes of this work, we trained a word sense embedding
model on a Swedish corpus (cf. section 9.3.1) using the default param-
eterization of AdaGram: 100-dimension vectors, maximum 5 prototypes
per word, α = 0.1, and one training epoch. (See AdaGram’s documenta-
tion for a complete list.)

9.2.3 Lexicon-embedding mapping

Our goal is to establish a mapping between lexicographic word senses
and embeddings that represent the same meanings. The approach we
take is to generate a set of related word senses for each sense of any
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Lexicon Vector space
rock-1 ‘jacket’ rock-b (clothing)
rock-2 ‘rock music’ rock-a, rock-c,

rock-d, rock-e (music)

Table 9.1: Example mapping for rock.

given word, both from the lexicon (via relations encoded in its graph’s
edges) and from the vector space (via cosine distance), to measure their
relatedness and define mappings.

To obtain sets of neighbors from the lexicon, given any target word
sense, any senses directly connected by an edge to the target’s node is
selected as a neighbor. In the vector space, nearest neighbors based on
cosine distance are selected.

In order to measure relatedness using geometric operations we need
to assign provisional embeddings to lexicographic neighbors in order to
measure their distance to vector space neighbors. We do this by using
AdaGram’s disambiguation tool: given a target word and a set of context
words, it calculates the posterior probability of each sense of the target
word given the context words according to the hierarchical softmax model
(equation 11). The word in context is disambiguated by selecting the
sense with the highest posterior probability. (In our case, for any given
sense, the rest of senses in the set act as context.)

We expect some lexicon-defined senses to not be present in the vector
space and some word senses captured by the embedding model to not be
listed in the lexicon. Additionally, the AdaGram model may create two
or more senses for one word which relate to the same lexicographic sense.
We address this by making the mapping 1-to-N to allow a lexicon sense to
be linked to more than one sense embedding if necessary. Additionally, in
order to make it possible for lexicon senses to be left unlinked, we propose
to use a false sense embedding that acts as an attractor for those lexicon
senses with weak links to real embeddings.

The mapping mechanism is shown in algorithm 3. For each word in
the vocabulary, a set of neighbors is generated for each of its senses in
the lexicon and in the vector space. The vector representations of these
neighbors are averaged, since averaging embeddings has been proven an
efficient approach to representing multi-word semantic units (Mikolov
et al. 2013b; Kenter, Borisov and de Rijke 2016). A probability matrix
p ∈ [0,1]n×m is calculated by applying the softmax function to pairs of
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Algorithm 3: Mapping algorithm.
for all words w do

/* Lexicon neighbors */
n ← #lexical senses of w
si ← ith lexical sense of w, i ∈ [1,n]
for all si do

ai ← set of neighbors of si
for all neighbor k in ai do

v(aik) ← embedding for aik
end for

end for
/* Vector space neighbors */
T ← max #senses per word
m ← #nearest neighbors (NN) per sense
zj ← jth sense embedding of w, j ∈ [1,T]
for all zj do

bjl ← lth NN of bj , l ∈ [1,m]
end for
/* Average neighbors */
for all i, j do

v(ai) ← avg. vector over k
end for
for all j do

v(bj) ← avg. vector over l
end for
/* Mapping probabilities */
for all i, j do

pi j ← softmax(v(ai) · v(bj))
piN+1 ← softmax(

−→
0 )

end for
/* Mapping */
for j ∈ [1,T] do

if prior(sj) > ρ then
r ← indmaxi(pi j)
if r , N + 1 then

map sr to zj
end if

end if
end for

end for
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vectors. An extra column is added with scores generated by the softmax
on zero-valued vectors to account for the false sense. A row in p represents
the probability that each sense in the vector model corresponds to that
row’s lexicon sense, from which the maximum is obtained to establish a
link. (A threshold ρ exists to avoid low-probability links.)

An example of the linking performed by this mechanism is shown on
table 9.1. According to the lexicon SALDO, the noun rock has two senses
in Swedish: (1) ‘jacket’ and (2) ‘rock music’. The word sense embedding
model finds five different meanings for rock ; upon inspection of their
nearest neighbors, which give an indication of the closest senses to any
particular meaning, four of them relate to the music sense (linked to
rock-2 ) and one to items of clothing (linked to rock-1 ). As can be seen
in table 9.1, the clothing-related meaning is linked to the sense meaning
‘jacket’, while the four music-related ones is linked to the sense meaning
‘rock music’.

9.3 Evaluation

9.3.1 Training corpus

For training the AdaGram model, we created a mixed-genre corpus of ap-
proximately 1 billion words of contemporary Swedish downloaded from
Språkbanken, the Swedish language bank.12 The texts were processed
using a standard preprocessing chain including tokenization, part-of-
speech-tagging and lemmatization. Compounds were segmented auto-
matically and when the lemma of a compound word was not listed in
SALDO, we used the lemmas of the compound parts instead. For in-
stance, golfboll ‘golf ball’ would occur as a single lemma in the corpus,
while pingisboll ‘ping-pong ball’ would be split into two separate lemmas.

9.3.2 Benchmark dataset

For evaluation, we annotated a benchmark dataset. We selected five tar-
get lemmas for which we knew that the corpus contains occurrences of
word senses that are unlisted in the lexicon. In addition, we selected four
target lemmas that do not strictly have new word senses, but that tend to
be confused with tokenization artifacts, named entities, or foreign words.

12http://spraakbanken.gu.se

http://spraakbanken.gu.se
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Table 9.2 shows the selected lemma, an overview of the senses that are
listed in the lexicon, as well as the most important unlisted senses.

Lemma Listed Main unlisted
fet ‘fat’; ‘thick’ ‘cool’; emphasis
klient ‘client’ (customer) ‘client’ (application)
klubb ‘club’ (night) ‘club’
pirat ‘pirate’ ‘pirate’ (e.g. music)
sida ‘side’; ‘page’ ‘web page’
fil ‘file’; ‘row’; ‘lane’; ‘yogurt’ e.g. in fil. dr. ‘PhD’
get ‘goat’ foreign words
mus ‘mouse’; ‘pussy’ a cosmetic brand
sur ‘sour’; ‘grumpy’; ‘soaked’ foreign words

Table 9.2: Selected target lemmas.

For each of these nine target lemmas, we selected 1,000 occurrences
randomly from the corpus. Two annotators went through the selected
occurrences and determined which of them are instances of the senses
present in the lexicon, and which of them are unlisted senses. A small
number of occurrences were discarded because they were difficult for the
annotators to understand.

9.3.3 Experimental settings

Given a mapping between lexicographic word senses and automatically
discovered senses in a corpus, sentences from the benchmark dataset can
be scored by their probability of containing an out-of-lexicon instance.
A score is calculated using the linking probability between lexicographic
sense yj and vector model sense xi, P(yj |xi), and the probability of the
AdaGram sense xi in the context of the sentence ctx, P(xi |ctx):

P(yj |ctx) =
T∑
i=1

P(yj |xi)P(xi |ctx),

thus obtaining the probability of a particular lexicographic sense yj given
context ctx. The sum of all p(yj |ctx), j ∈ [1,T], yields the probability
that an instance contains one of the listed word senses. Our score, then,
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is calculated as the inverse probability:

score = 1 −
n∑
j=1

P(yj |ctx). (13)

The human annotations of the sentences are interpreted as the gold stan-
dard, and the scores as our model’s classification output that can be used
to rank the sentences from most to least probably containing an out-of-
lexicon instance of a target word. We evaluate this classification using
the Area Under the Receiver Operating Characteristic Curve (AUC). For
reference, recall that the expected AUC of a random ranking is 0.5.

The potential of the automated mapping between a lexicon and an
embedding model to help retrieve instances of word senses unlisted in the
lexicon gives us a certain measure of the quality of this mapping. The
recovery of instances of unlisted senses can only succeed if the mapping
has successfully identified listed lexicon senses in the embedding model,
leaving unlisted ones unlinked. On the other hand, failure to recover
instances of unlisted senses can expose weaknesses in the automated
mapping. (See section 9.3.4 for an analysis of unsuccessful cases.)

9.3.4 Results

We apply the scoring and evaluation process explained above on the sets
of sentences for each of the words selected for the benchmark dataset.
Table 9.3 summarizes the results obtained. We observe a clear difference

Word n AUC
fet 976 0.76
klient 959 0.02
klubb 985 0.74
pirat 907 0.53
sida 985 0.69
Sub-avg. 0.55

(a) Unlisted senses.

Word n AUC
fil 982 0.87
get 954 0.98
mus 972 0.83
sur 967 0.96
Sub-avg. 0.91
Total avg. 0.73

(b) Spurious senses.

Table 9.3: AUC scores.

between the two types of lemmas: the model’s performance is notably
higher when the lemmas may be confused with tokenization artifacts,
named entities or foreign words (table 9.3b) than when the lemmas have
meanings not listed in the lexicon (table 9.3a). This is arguably due to the
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ability of the word sense embedding model to isolate spurious meanings
in the vector space since these occurrences tend to be distributionally
quite distinct from the standard uses. However, note that also for the
case of unlisted meanings, the model generally improves over a random
baseline.

The exception to this is the case of klient, where the listed sense is
‘customer’ and the new sense is ‘client application’. Here, the ranking is
upside down, as can be seen from the very low AUC value. The cause
of this issue can be traced to the inability of the mapping algorithm to
successfully link the only lexicographic sense to its corresponding vector
space embedding. The neighbors of the AdaGram sense corresponding to
the ‘customer’ sense tend to be legal terms, which are not connected to
this sense in the lexicon. (Arguably, the legal use of ‘client’ could be seen
as a separate sense.) Compare this to the case of pirat, which performs
roughly at random (AUC ≈ 0.5), suggesting simply that the AdaGram
model has not picked up the distinction between the senses, which makes
it hard to solve the problem by simply changing the link, as would be
the case with klient.

A straightforward way to address those cases in which the mapping
fails to correctly establish a link would be to refine the way in which
the word senses are represented at the time of linking. Our approach is
to do this by averaging the embeddings of nearest neighbors, due to the
simplicity and usual robustness of this operation. However, more complex
approaches to combining embeddings have been demonstrated using, for
example, weighted averaging (Arora, Liang and Ma 2017), which could
be adapted for our needs in this work.

9.4 Conclusion

We have presented an approach to automatically link lexicographic word
senses with word sense embeddings by retrieving sets of senses related
to the different meanings of a lemma and measuring the similarity be-
tween their vector representations. We argue that potential applications
of such a system resides on those embeddings that cannot be linked to a
lexicographic sense, as this could serve to suggest potential new entries
to the lexicon, or to filter unlisted instances from a corpus. To illustrate
this point, the evaluation of our system has been focused on its ability
to retrieve instances assumed to belong to unlisted senses. Our system is
able to identify such instances in many cases, as its performance in terms
of AUC is above that of a random baseline. The performance is specially
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high in cases where the target lemma can be confused in the corpus with
spurious meanings such as foreign words. In summary, our results indi-
cate that establishing links between existing resources and embedding
models has potential applications in NLP tasks which require formal
lexicographic knowledge. In the future, we propose to examine ways to
improve the current mapping system with improved neighbor represen-
tation approaches, as well as to investigate further possible uses, such as
improving existing resources with data obtained from corpora.
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Abstract

Lexical-semantic knowledges sources are a stock item in the language
technologist’s toolbox, having proved their practical worth in many and
diverse natural language processing (NLP) applications.

In linguistics, lexical semantics comes in many flavors, but in the
NLP world, wordnets reign more or less supreme. There has been some
promising work utilizing Roget-style thesauri instead, but wider experi-
mentation is hampered by the limited availability of such resources.

The work presented here is a first step in the direction of creating
a freely available Roget-style lexical resource for modern Swedish. Here,
we explore methods for automatic disambiguation of inter-resource map-
pings with the longer-term goal of utilizing similar techniques for auto-
matic enrichment of lexical-semantic resources.

10.1 Introduction

10.1.1 The uniformity of lexical semantic resources for NLP

Lexical-semantic knowledges sources are a stock item in the language
technologist’s toolbox, having proved their practical worth in many and
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diverse natural language processing (NLP) applications.
Although lexical semantics and the closely related field of lexical ty-

pology have long been large and well-researched branches of linguistics
(see, e.g., Cruse 1986; Goddard 2001; Murphy 2003; Vanhove 2008),
the lexical-semantic knowledge source of choice for NLP applications is
WordNet (Fellbaum 1998a), a resource which arguably has been built
largely in isolation from the linguistic mainstream and which thus is
somewhat disconnected from it.

However, the English-language Princeton WordNet (PWN) and most
wordnets for other languages are freely available, often broad-coverage
lexical resources, which goes a long way toward explaining their popular-
ity and wide usage in NLP as due at least in part to a kind of streetlight
effect.

For this reason, we should certainly endeavor to explore other kinds
of lexical-semantic resources as components in NLP applications. This is
easier said than done, however. The PWN is a manually built resource,
and efforts aiming at automatic creation of similar resources for other
languages on the basis of PWN, such as Universal WordNet (de Melo
and Weikum 2009) or BabelNet (Navigli and Ponzetto 2012), although
certainly useful and laudable, by their very nature will simply reproduce
the WordNet structure, although for a different language or languages. Of
course, the same goes for the respectable number of manually constructed
wordnets for other languages.13

Manually built alternatives to wordnets are afflicted by being for some
other language than English (e.g., SALDO: Borin, Forsberg and Lön-
ngren 2013) or by not being freely available – see the next section – or
possibly both.

10.1.2 Roget’s Thesaurus and NLP

While wordnets completely dominate the NLP field, outside it the most
well-known lexical-semantic resource for English is without doubt Ro-
get’s Thesaurus (also alternately referred to as “Roget” below; Roget
1852; Hüllen 2004), which appeared in its first edition in 1852 and has
since been published in a large number of editions all over the English-
speaking world. Although – perhaps unjustifiedly – not as well-known
in NLP as the PWN, the digital version of Roget offers a valuable com-
plement to PWN (Jarmasz and Szpakowicz 2004), which has seen a fair

13See the Global WordNet Association website: http://globalwordnet.org.

http://globalwordnet.org
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amount of use in NLP (e.g., Morris and Hirst 1991; Jobbins and Evett
1995, 1998; Wilks 1998; Kennedy and Szpakowicz 2008).

It has been proposed in the literature that Roget-style thesauruses
could provide an alternative source of lexical-semantic information, which
can be used both to attack other kinds of NLP tasks than a wordnet,
and even work better for some of the same tasks, e.g., lexical cohesion,
synonym identification, pseudo-word-sense disambiguation, and analogy
problems Morris and Hirst (1991); Jarmasz and Szpakowicz (2004);
Kennedy and Szpakowicz (2008, 2014).

An obstacle to the wider use of Roget in NLP applications is its lim-
ited availability. The only free digital version is the 1911 American edi-
tion available through Project Gutenberg.14 This version is obviously not
well suited for processing modern texts. Szpakowicz and his colleagues
at the University of Ottawa have conducted a number of experiments
with a modern (from 1987) edition of Roget (e.g., Jarmasz and Szpako-
wicz 2004; Kennedy and Szpakowicz 2008), but as far as we can tell,
this dataset is not generally available, due to copyright restrictions. The
work reported by Kennedy and Szpakowicz (2014) represents an effort
to remedy this situation, utilizing corpus-based measures of semantic re-
latedness for adding new entries to both the 1911 and 1987 editions of
Roget.

In order to investigate systematically the strengths and weaknesses
of diverse lexical-semantic resources when applied to different classes of
NLP tasks, we would need access to resources that are otherwise com-
parable, e.g., with respect to language, vocabulary and domain cover-
age. The resources should also ideally be freely available, in order to
ensure reproducibility as well as to stimulate their widest possible appli-
cation to a broad range of NLP problems. Unfortunately, this situation
is rarely encountered in practice; for English, the experiments contrast-
ing WordNet and Roget have indicated that these resources are indeed
complementary. It would be desirable to replicate these findings, e.g.,
for other languages and also using lexical-semantic resources with differ-
ent structures (WordNet and Roget being two out of a large number of
possibilities).

This is certainly a central motivation for the work presented here, the
ultimate goal of which is to develop automatic methods for producing
or considerably facilitating the production of a Swedish counterpart of
Roget with a large and up-to-date vocabulary coverage. This is not to
be done by translation, as in previous work by de Melo and Weikum

14See http://www.gutenberg.org/ebooks/22 and Cassidy 2000.

http://www.gutenberg.org/ebooks/22
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(2008) and Borin, Allwood and de Melo (2014b). Instead, an existing
but largely outdated Roget-style thesaurus will provide the scaffolding,
where new word senses can be inserted with the help of two different
kinds of semantic relatedness measures:

1. One such measure is corpus-based, similar to the experiments con-
ducted by Kennedy and Szpakowicz (2014), described above.

2. The other measure utilizes an existing lexical-semantic resource
(SALDO: Borin, Forsberg and Lönngren 2013).

In the latter case, we also have a more theoretical aim with our work.
SALDO was originally conceived as an “associative thesaurus” (Lönngren
1998), and even though its organization in many respects differs signifi-
cantly from that of Roget, there are also some commonalities. Hence, our
hypothesis is that the structure of SALDO will yield a good semantic
relatedness measure for the task at hand. SALDO is described in section
10.2.2 below.

10.2 The datasets

10.2.1 Bring’s Swedish thesaurus

Sven Casper Bring (1842–1931) was the originator of the first and so
far only adaptation of Roget’s Thesaurus to Swedish, which appeared in
1930 under the title Svenskt Ordförråd ordnat i begreppsklasser ‘Swedish
vocabulary arranged in conceptual classes’ (referred to as “Bring” or
“Bring’s thesaurus” below). The work itself consists of two parts: (1) a
conceptually organized list of Roget categories; and (2) an alphabetically
ordered lemma index.

In addition, there is a brief preface by S. C. Bring, which we reproduce
here in its entirety:15

This wordlist has been modelled on P. M. Roget’s “Thesaurus of
English Words and Phrases”. This kind of wordlist can be seen as a
synonym dictionary of sorts. But each conceptual class comprises
not only synonyms, but words of all kinds which are habitually
used in discoursing on the kind of topics which could be subsumed
under the class label concept, understood in a wide sense.

15This English translation comes from the Bring resource page at Språkbanken:
http://spraakbanken.gu.se/eng/resource/bring.

http://spraakbanken.gu.se/eng/resource/bring
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Regarding Roget’s classification system, there are arguably a num-
ber of classes which ought to be merged or split. But this classifica-
tion seems to have established itself solidly through many editions
of Roget’s work as well as German copies of it. It should also be
considered an advantage that the same classification is used in such
dictionaries for different languages.

Uppsala in September 1930.
S. C. Bring

Like in Roget, the vocabulary included in Bring is divided into slightly
over 1,000 “conceptual classes”. A “conceptual class” corresponds to what
is usually referred to as a “head” in the literature on Roget. Each con-
ceptual class consists of a list of words (lemmas), subdivided first into
nouns, verbs and others (mainly adjectives, adverbs and phrases), and
finally into paragraphs. In the paragraphs, the distance – expressed as
difference in list position – between words provides a rough measure of
their semantic distance.

Bring thus forms a hierarchical structure with four levels:
(1) conceptual class (Roget “head”)
(2) part of speech
(3) paragraph
(4) lemma (word sense)

This stands in contrast to Roget, where the formal structure defines
a nine-level hierarchy (Jarmasz and Szpakowicz 2001, 2004):
(1) class
(2) section
(3) subsection
(4) category, or head group
(5) head (Bring “conceptual class”)
(6) part of speech
(7) paragraph
(8) semicolon group
(9) lemma (word sense)

Since most of the Bring classes have corresponding heads in Roget,
it should be straightforward to add the levels above Roget heads/Bring
classes to Bring if needed. There are some indications in the literature
that this additional structure can in fact be useful for calculating seman-
tic similarity (Jarmasz and Szpakowicz 2004).

Bring’s thesaurus has recently been made available in two digital ver-
sions by Språkbanken (the Swedish Language Bank) at the University
of Gothenburg, both versions under a Creative Commons Attribution
License:
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Bring (v. 1): A digital version of the full contents of the original 1930
book version (148,846 entries).16

Blingbring (v. 0.1), a version of Bring where obsolete items have been
removed and the remaining entries have been provided with word sense
identifiers from SALDO (see section 10.2.2), providing links to most of
Språkbanken’s other lexical resources. This version contains 126,911 en-
tries.17

The linking to SALDO senses in the current Blingbring version (v 0.1)
has not involved a disambiguation step. Rather, it has been made by
matching lemma-POS combinations from the two resources. For this rea-
son, Blingbring includes slightly over 21,000 ambiguous entries (out of
approximately 127,000 in total), or about 4,800 ambiguous word sense
assignments (out of about 43,000 unique lemma-POS combinations).

The aim of the experiments described below has been to assess the
feasibility of disambiguating these ambiguous linkages automatically, and
specifically also to evaluate SALDO as a possible knowledge source for
accomplishing this disambiguation. The longer-term goal of this work is
to develop good methods for adding modern vocabulary automatically to
Bring from, e.g., SALDO, thereby hopefully producing a modern Swedish
Roget-style resource for the NLP community.

10.2.2 SALDO

SALDO (Borin, Forsberg and Lönngren 2013) is a large (137K entries
and 2M wordforms) morphological and lexical-semantic lexicon for mod-
ern Swedish, freely available (under a Creative Commons Attribution
license).18

As a lexical-semantic resource, SALDO is organized very differently
from a wordnet (Borin and Forsberg 2009). As mentioned above, it was
initially conceived as an “associative thesaurus”. Since it has been ex-
tended following the principles laid down initially by Lönngren (1998),
this characterization should still be valid, even though it has grown
tremendously over the last decade.

If the fundamental organizing principle of PWN is the idea of full
synonyms in a taxonomic concept hierarchy, the basic linguistic idea
underlying SALDO is instead that, semantically speaking, the whole
vocabulary of a language can be described as having a center – or core –

16http://spraakbanken.gu.se/eng/resource/bring
17http://spraakbanken.gu.se/eng/resource/blingbring
18http://spraakbanken.gu.se/eng/resource/saldo

http://spraakbanken.gu.se/eng/resource/bring
http://spraakbanken.gu.se/eng/resource/blingbring
http://spraakbanken.gu.se/eng/resource/saldo


10.2 The datasets 135

and (consequently) a periphery. The notion of core vocabulary is familiar
from several linguistic subdisciplines (Borin 2012). In SALDO this idea
is consistently applied down to the level of individual word senses, as we
will now describe.

The basic lexical-semantic organizational principle of SALDO is hi-
erarchical. Every entry in SALDO – representing a word sense – is sup-
plied with one or more semantic descriptors, which are themselves also
entries in the dictionary. All entries in SALDO are actually occurring
words or conventionalized or lexicalized multi-word units of the language.
No attempt is made to fill perceived gaps in the lexical network us-
ing definition-like paraphrases, as is sometimes done in PWN (Fellbaum
1998b: 5f). A further difference as compared to PWN (and Roget-style
thesuruses) is that SALDO aims to provide a lexical-semantic descrip-
tion of all the words of the language, including the closed-class items
(prepositions, subjunctions, interjections, etc.), and also including many
proper nouns.

One of the semantic descriptors in SALDO, called primary, is oblig-
atory. The primary descriptor is the entry which better than any other
entry fulfills two requirements: (1) it is a semantic neighbor of the entry
to be desribed and (2) it is more central than it. However, there is no
requirement that the primary descriptor is of the same part of speech as
the entry itself. Thus, the primary descriptor of kniv ‘knife (n)’ is skära
‘cut (v)’, and that of lager ‘layer (n)’ is på ‘on (p)’.

Through the primary descriptors SALDO is a single tree, rooted by
assigning an artifical top sense (called PRIM) as primary descriptor to
the 41 topmost word senses.

That two words are semantic neighbors means that there is a di-
rect semantic relationship between them (such as synonymy, hyponymy,
meronymy, argument-predicate relationship, etc.). As could be seen from
the examples given above, SALDO includes not only open-class words,
but also pronouns, prepositions, conjunctions etc. In such cases closeness
must sometimes be determined with respect to function or syntagmatic
connections, rather than (“word-semantic”) content.

Centrality is determined by means of several criteria: frequency, stylis-
tic value, word formation, and traditional lexical-semantic relations all
combine to determine which of two semantically neighboring words is to
be considered more central.

For more details of the organization of SALDO and the linguistic
motivation underlying it, see Borin, Forsberg and Lönngren 2013.

Like Roget, SALDO has a kind of topical structure, which – again
like Roget, but different from a wordnet – includes and connects lexi-
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cal items of different parts of speech, but its topology is characterized
by a much deeper hierarchy than that found in Roget. There are no
direct correspondences in SALDO to the lexical-semantic relations mak-
ing up a wordnet (minimally synonymy and – part-of-speech internal –
hyponymy).

Given the (claimed) thesaural character of SALDO, we would expect
a SALDO-based semantic similarity measure to work well for disam-
biguating the ambiguous Blingbring entries, and not be inferior to a
corpus-based or wordnet-based measure. There is no sufficiently large
Swedish wordnet at present, so for now we must restrict ourselves to a
comparison of a corpus-based and a SALDO-based method.

The experiments described below were conducted using SALDO v. 2.3
as available for downloading on Språkbanken’s website.

10.3 Automatic disambiguation of ambiguous Bring entries

We now turn to the question of automatically linking the Bring and
SALDO lexicons: many entries in Bring have more than one sense in
SALDO, and we present a number of methods to automatically rank
SALDO senses by how well they fit into a particular Bring class. Specif-
ically, since entries in Bring are not specified in terms of a sense, this
allows us to predict the SALDO sense that is most appropriate for a given
Bring entry. For instance, the lexicon lists the noun broms as belonging
to Bring class 366, which contains a large number of terms related to
animals. SALDO defines two senses for this word: broms-1 ‘brake’ and
broms-2 ‘horsefly’, but it is only the second sense that should be listed
in this Bring class.

In this work we consider the task of selecting a SALDO sense for
a Bring entry, but we imagine that the methods proposed here can be
applied in other scenarios as well. For instance, it is possible that they
could allow us to predict the Bring class for a word that is not listed
in Bring, but we leave this task for future investigation. The methods
are related to those presented by Johansson (2014) for automatically
suggesting FrameNet frames for SALDO entries.

We first describe how we use the SALDO network and cooccurrence
statistics from corpora to represent the meaning of SALDO entries. These
meaning representations are then used to carry out the disambiguation.
We investigate two distinct ways to use the representations for disam-
biguating: (1) by selecting a prototype (centroid) for each class, and then
selecting the SALDO sense that is most similar to the prototype; (2) by
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using the existing Bring entries as training instances for a classifier that
assigns a Bring class to a SALDO entry, and then ranking the SALDO
senses by the probability output by the classifier when considering each
sense for a Bring class.

10.3.1 Representing the meaning of a SALDO entry

To be able to connect a SALDO entry to a Bring class, we must represent
its meaning in some structured way, in order to relate it to other entries
with a similar meaning. There are two broad approaches to representing
word meaning in NLP work: representations based on the structure of
a formal knowledge representation (in our case the SALDO network),
and those derived from co-occurrence statistics in corpora (distributional
representations). In this work, we explore both options.

10.3.1.1 Word senses in Bring and in SALDO

But even if we restrict ourselves to how they are conceived in the lin-
guistic literature, word senses are finicky creatures. They are obviously
language-dependent, strongly so if we are to believe, e.g., Goddard (2001).
Furthermore, there seems to be a strong element of tradition – or ide-
ology – informing assumptions about how word senses contribute to the
interpretation of complex linguistic items, such as productive deriva-
tions, compounds and incorporating constructions, as well as phrases
and clauses. This in turn determines the granularity – the degree of pol-
ysemy – posited for lexical entries.

One thing that seems to be assumed about Roget – and which if
true consequently ought to hold for Bring as well – is that multiple oc-
currences of the same lemma (with the same part of speech) represent
different word senses (e.g., Kwong 1998; Nastase and Szpakowicz 2001).
This is consistent with a “splitting” approach to polysemy, similar to that
exhibited by PWN and more generally by an Anglo-Saxon lexicographi-
cal tradition.

However, this is not borne out by the Bring–SALDO linking. First,
there are many unambiguous – in the sense of having been assigned only
one SALDO word sense – Bring lemma-POS combinations that appear in
multiple Bring classes. Second, during the practical disambiguation work
conducted in order to prepare the evaluation dataset for the experiments
described below, the typical case was not – as would have been expected
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if the above assumption were correct – that ambiguous items occurring
in several Bring classes would receive different word sense assignments.
On the contrary, this turned out to be very much a minor phenomenon.

A “word sense” is not a well-defined notion (Kilgarriff 1997; Hanks
2000; Erk 2010; Hanks 2013), and it may well be simply that this is what
we are seeing here. Specifically, the Swedish lexicographical tradition to
which SALDO belongs reflects a “lumping” view on word sense discrimi-
nation. If we aspire to link resources such as Roget, Bring, SALDO, etc.
between languages, issues such as this need to be resolved one way or
another, so there is clearly need for more research here.

10.3.1.2 Lexicon-based representation

In a structure-based meaning representation, the meaning of a concept
is defined by its relative position in the SALDO network. How do we
operationalize this position as a practical meaning representation that
can be used to compute similarity of meaning or exemplify meaning for
a machine learning algorithm? It seems clear that the way this opera-
tionalization is carried out has implications for the ability of automatic
systems to generalize from the set of SALDO entries associated with a
Bring class, in order to reason about new entries.

When using a semantic network, the meaning of a word sense s is de-
fined by how it is related to other word senses; in SALDO, the immediate
neighborhood of s consists of a primary descriptor and possibly a set of
secondary descriptors, and the meaning of s can be further analyzed by
following primary and secondary edges in the SALDO graph. In this
work, we follow the approach by Johansson (2014) and let the lexicon-
based meaning representation φ(s) of a SALDO entry s be defined in
terms of the transitive closure of the primary descriptor relation. That
is, it consists of all SALDO entries observed when traversing the SALDO
graph by following primary descriptor edges from s to the SALDO root
entry (excluding the root itself). For instance, the meaning of the fourth
sense of fil ‘file (n)’ would be represented as the set

φ(fil-4 ) = { fil-4 ‘(computer) file (n)’, datorminne-1 ‘computer memory (n)’,
datalagring-1 ‘data storage (n)’, lagring-1 ‘storage (n)’, lagra-1 ‘store (v)’,
lager-2 ‘stock/store (n)’, förråd-1 ‘store (n)’, förvara-1 ‘store/keep (v)’, ha-1
‘have (v)’ }.

Computationally, these sets are implemented as high-dimensional sparse
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vectors, which we normalize to unit length. Although in this work we
do not explicitly use the notion of similarity functions, we note that the
cosine similarity applied to this representation gives rise to a network-
based measure similar in spirit to that proposed by Wu and Palmer
(1994b):

sim(s1, s2) =
|φ(s1) ∩ φ(s2)|√
|φ(s1)| ·

√
|φ(s2)|

10.3.1.3 Corpus-based representation

Corpus-based meaning representations rely on the distributional hypoth-
esis, which assumes that words occurring in a similar set of contexts are
also similar in meaning (Harris 1954). This intuition has been realized
in a very large number of algorithms and implementations (Turney and
Pantel 2010), and the result of applying such a model is typically that
word meaning is modeled geometrically by representing co-occurrence
statistics in a vector space: this makes it straightforward to define sim-
ilarity and distance measures using standard vector-space metrics, e.g.
the Euclidean distance or the cosine similarity. In this work, we ap-
plied the skip-gram model by Mikolov et al. (2013a), which considers
co-occurrences of each word in the corpus with other words in a small
window; this model has proven competitive in many evaluations, includ-
ing the frame prediction task described by Johansson (2014).

Since our goal is to select a word sense defined by SALDO, but corpus-
based meaning representation methods typically do not distinguish be-
tween senses, we applied the postprocessing algorithm developed by Jo-
hansson and Nieto Piña (2015) to convert vectors produced by the skip-
gram model into new vectors representing SALDO senses. For instance,
this allows us to say that for the Swedish noun fil, the third sense defined
in SALDO (‘sour milk’) is geometrically close to milk and yoghurt while
the fourth sense (‘computer file’) is close to program and memory. This
algorithm decomposes vector-based word meaning representations into
a convex combination of several components, each representing a sense
defined by a semantic network such as SALDO. The vector representa-
tions of senses are selected so that they minimize the geometric distances
to their neighbors in the SALDO graph. The authors showed that the
decomposed representations can be used for predicting FrameNet frames
for a SALDO sense.
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10.3.2 Disambiguating by comparing to a prototype

The fact that corpus-based representations for SALDO senses are located
in a real-valued vector space allows us to generate a prototype for a
certain Bring conceptual class by means of averaging the sense vectors
belonging to a that class in Bring. This prototype is in the same vector
space as the sense representations, so we are able to measure distances
between sense vectors and prototypes and determine which sense is closer
to the concept embodied in the class prototype.

Thus, our first method for disambiguating links between Bring items
and SALDO senses works as follows. For each class j, a prototype cj is
calculated by averaging those sense vectors vi that are unambiguously
linked to a Bring item bi from class j:

cj =
1

n

∑
bi ∈ j

vi

where n is the number of unambiguous links in class j.
Then, for an ambiguous link between a Bring item bk in class j and

its set of possible vectors {vkl}, the distance from each vector to the class
centroid cj is measured, and the closest one is selected as the represen-
tation of the SALDO sense linked to bk :

arg min
l

d(cj, vkl)

where d is a distance function. In our case we have chosen to use co-
sine distance, which is commonly applied on the kind of representations
obtained from the Skip-gram model (Mikolov et al. 2013a) to compute
similarity between representations.

10.3.3 Disambiguating with classifiers

Statistical classifiers offer a wide range of options to learn the distri-
bution of labeled data, which afterwards can be used to label unseen
data instances. They are not constrained to work with data in a geomet-
ric space, as opposed to the method explained in the previous section.
Thus, we can apply classifiers on lexicon-based representations as well.

In our case, we are not interested so much in classifying new instances
as in assessing the confidence of such classifications. Consequently, in our
ambiguous data we have a set of instances that can possibly be linked
to a Bring entry whose class is known to us. Therefore, we would like to
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ascertain how confident a classifier is when assigning these instances to
their corresponding class, and base our decision to disambiguate the link
on this information.

For this task we use the Python library Scikit-learn (Pedregosa et al.
2011), a general machine learning package which offers a variety of sta-
tistical classifiers. Specifically, we work with a logistic regression method
(instantiated with the library’s default values, except the inverse regu-
larization strength, set to 100), which classifies instances based on the
probability that they belong to each possible class.

The classifier is trained on the set of SALDO sense vectors unam-
biguously linked to Bring items and their conceptual class information.
Once trained, it can be given a set of SALDO sense representations {vkl}
ambiguously assigned to one Bring entry bk in class j and, instead of
simply classifying them, output their probabilities {pjl} of belonging to
class j. We then only have to select the sense with the highest probability
to disambiguate the link:

arg max
l

pjl

10.4 Experiments

10.4.1 Evaluation data preparation

The Blingbring data was downloaded from Språkbanken’s website and
a sample of ambiguous Bring–SALDO linkages was selected for manual
disambiguation.

An initial sample was drawn from this data set according to the fol-
lowing principles:19

• The sampling unit was the class+part of speech-combination, i.e.,
nouns in class 12, verbs in class 784, etc.

• This unit had to contain at least 100 lemmas (actual range: 100–
569 lemmas),

• out of which at least 1 must be unambiguous (actual range: 56–478
unambiguous lemmas),

• and at least 4 had to be ambiguous.
• From the ambiguous lemmas, 4 were randomly selected (using the

Python function random-sample).

19These should be seen as first-approximation heuristic principles, and not based
on any more detailed analysis of the data. We expect that further experiments will
provide better data on which to base such decisions.
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The goal was to produce an evaluation set of approximately 1,000
items, and this procedure yielded 1,008 entries to be disambiguated.
The disambiguation was carried out by the first author. In practice, it
deviated from the initial procedure and proceeded more opportunisti-
cally, since reference often had to be made to the main dataset in order
to determine the correct SALDO word sense. On these occasions, it was
often convenient to (a) either disambiguate additional items in the same
Bring class; and/or (b) disambiguate the same items throughout the
entire dataset.

In the end, 1,368 entries were disambiguated for the experiments,
out of which about 500 came out of the original sample. The degree of
ambiguity in this gold standard data is shown in the second column of ta-
ble 10.1, while the third column shows the degree of ambiguity in the full
Blingbring dataset containing 44,615 unique lemma-POS combinations.

# senses/ GS data: Blingbring:
entry # entries # entries

1 – 39,275
2 888 4,006
3 266 873
4 122 286
5 56 102
6 18 31
7 10 18
8 7 10
9 1 3
10 – 6
11 – 5

Table 10.1: Word-sense ambiguity in the gold standard data and in Blingbring

On the other hand, unambiguous entries in Blingbring linking one
Bring item to one SALDO sense are isolated to serve as training data. As
mentioned above in section 10.3.1.1, the structure of Bring’s thesaurus
makes it possible for a word to appear in more than one conceptual
class; if the SALDO sense related to those two or more instances is the
same, we may have a training instance that spans more than just one
class. Initially, it may seem reasonable to exclude such instances from the
training data, as their presence may be problematic for the definition of
a class. But this phenomenon is quite ubiquitous: 72.6% of the senses
unambiguously associated with a Bring entry in Blingbring appear in
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Method Accuracy
Random baseline 0.4238
Corpus-based, incl. overlap 0.5731
Corpus-based, no overlap 0.5651

Table 10.2: Disambiguation accuracy using a similarity measure.

more than one class. For this reason, we define two different training
sets, one that includes overlap among the classes and one that does not,
and conduct conduct experiments separately on each of them.

10.4.2 Prototype-based disambiguation

In this section we give the results obtained with the method described in
section 10.3.2. This experiment is performed using corpus-based repre-
sentations only, as lexicon-based ones lack a geometrical interpretation,
on which the cosine similarity measure used is based.

Table 10.2 lists the accuracy of the method on our evaluation set.
Two results are given corresponding to the training set containing or not
instances that span several classes. The accuracy of a random baseline is
also given as a reference. Both of the approaches have an accuracy well
above the random baseline with an improvement of over 0.14 points, and
we observe that there is practically no difference between them, although
the approach in which instances overlapping classes are included in the
training data performs slightly better.

In table 10.3 we present for this last case a breakdown of the accu-
racy into the parts of speech that Bring classes list: nouns, verbs and
others.20 The table also lists the proportions of these classes in the data.
No significant difference can be appreciated between the diverse types of
words, although nouns fare slightly better than the other two cases.

10.4.3 Classification-based disambiguation

The results of applying the method introduced in section 10.3.3 are given
here. In this experiment we also consider lexicon-based data besides the
corpus-based representations.

20As explained in section 10.2.1, the tag others encompasses mainly adjectives,
adverbs and phrases, and unfortunately there is not enough information in Bring to
separate these classes and give a more fine-grained analysis.
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PoS Proportion Accuracy
Noun 54.8% 0.5819
Verb 21.3% 0.5538
Others 23.2% 0.5485

Table 10.3: Disambiguation accuracy by Part-of-Speech using a similarity
measure. Overlapping instances included in the training set.

Table 10.4 lists the accuracies obtained in each instance: corpus-based
or lexicon-based data, using either overlapping instances or not. The
random baseline accuracy is also shown for reference.

In this case, we observe a greater improvement over the baseline than
in the previous experiment with an increase in accuracy of 0.23 between
the best cases in each experiment. There is also a considerable differ-
ence between the two types of data: the best case using lexicon-based
representations provides an accuracy improvement of 0.12 over the best
result obtained with corpus-based data. Contrary to the experience of
the previous experiment, there is a substantial difference between the
presence or absence of overlapping instances in the training data: the
accuracy increases by 0.03 in the case of corpus-based data when over-
lapping instances are used, and by 0.13 in the case of lexicon-based data.
This behaviour may seem counter-intuitive, since using training instances
that belong to more than one class should dilute the boundaries between
those classes. It should be noted here, however, that, given a new in-
stance, the main task assigned in our problem to the classifier is not to
decide to which class the instance belongs (as this information is already
known), but to output the membership probability for a certain class,
so that we are able to compare with those of other instances. Thus, the
boundaries between classes matter less to us than the amount of train-
ing data that allows the classifier to learn the definition of each class
separately.

Table 10.5 presents an accuracy breakdown for the highest scoring
approach in the previous results (i.e., including overlap) using each type
of data. These results also differ from the ones in the previous experi-
ments, as we observe a marked difference between parts of speech: using
corpus-based representations, nouns obtain the highest accuracy with
0.10 points over the other two classes, while using lexicon based data
favours verbs, although closely followed by nouns.
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Method Accuracy
Random baseline 0.4238
Corpus-based, incl. overlap 0.6879
Corpus-based, no overlap 0.6572
Lexicon-based, incl. overlap 0.7836
Lexicon-based, no overlap 0.6499

Table 10.4: Disambiguation accuracy using a classifier.

Corpus-based
PoS Accuracy
Noun 0.7372
Verb 0.6308
Others 0.5825

Lexicon-based
PoS Accuracy
Noun 0.7885
Verb 0.8154
Others 0.7282

Table 10.5: Disambiguation accuracy by Part-of-Speech using a classifier.
Overlapping instances included in the training data.

10.5 Conclusions and future work

Summing up the main results, (1) both the corpus-based and the lexicon-
based methods resulted in a significantly higher disambiguation accu-
racy compared to the random baseline; (2) contrary to intuition, us-
ing overlapping instances yielded better accuracy than using only non-
overlapping items, which we attribute to the increased amount of training
data in the former case; and (3) the hypothesis that the SALDO-based
method would yield a better result was supported by the experiments.

The results of the lexicon-based method are already good enough
overall that it will be possible to use it as a preprocessing step in or-
der to speed up the disambiguation of the remaining ambiguous entries
considerably. The results could also be analyzed in more detail in order
to find out whether there are special cases that could be automatically
identified where the accuracy may be even higher.

For instance, it would be useful to see whether the structure of the
thesaurus can be used in a more sophisticated way. In this work we
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have only considered the top-level Bring class when selecting among the
alternative SALDO senses for an ambiguous Bring entry, but as described
in section 10.2.1, the thesaurus is organized hierarchically, and closely
related terms are placed near each other on the page.

In future work, we would like to investigate to what extent the meth-
ods that we have proposed here can be generalized to other Bring-related
tasks. In particular, it would be useful to propose a Bring class for words
in SALDO that are not listed in Bring, for instance because the word
did not exist when the Bring lexicon was compiled. This would make a
new and very useful lexical-semantic resource available for use in sophis-
ticated Swedish NLP applications.
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