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Abstract 
Despite the high expected returns of the momentum strategy, there are two main problems 

associated with it: (i) infrequent but severe losses known as momentum crashes, and (ii) high 

transaction costs. In this paper, we address the first problem with volatility timing strategies 

developed by Daniel and Moskowitz (2016) and Moreira and Muir (2017). Our results prove 

that not only are momentum crashes alleviated but returns on the WML (winner-minus-loser) 

portfolios formed with these strategies also go up remarkably compared to the simple buy-and-

hold ones. However, like the simple momentum strategy, volatility timing strategies suffer from 

large trading costs. We, therefore, propose combining these momentum strategies with the 

buy/hold spread cost-mitigation strategy formed by Novy-Marx and Velikov (2015). The 

outcome is a noticeable reduction in turnover and transaction costs, together with an 

improvement in the portfolio returns. 

Keywords: momentum, momentum strategy, momentum crash, volatility, transaction costs, 

turnover, return, volatility adjusted momentum, volatility timing 
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1. Introduction 

Although the simple buy-and-hold momentum strategy – buying stocks that performed well in the 

past and selling stocks that performed poorly – produces positive returns on average, during 

periods of high market volatility, such as the 2008-2009 financial crisis, it can experience drastic 

losses, referred to as momentum crashes. In this paper, we investigate whether two volatility timing 

strategies developed by Daniel and Moskowitz (2016) and Moreira and Muir (2017) can address 

the momentum crash problem as claimed in these studies. Both Daniel and Moskowitz (2016)1 

and Moreira and Muir (2017)2 share the idea that momentum crashes can be avoided by adjusting 

the momentum portfolio’s exposure to market risk. In particular, the weights of the simple 

momentum portfolio can be scaled in order to keep its volatility unchanged.  

Over and above, one prominent problem of using either the simple buy-and-hold momentum 

strategy or the volatility timing strategies is that they have high turnover due to the fact that the 

portfolios are rebalanced frequently (in the beginning of each month) based on past returns, which 

is a highly volatile indicator. Thus, there is a possibility that the big volume of trading costs 

incurred from implementing these momentum strategies can wipe a significant percentage off the 

portfolio gains. While Moreira and Muir (2017) did a robustness test on their strategy by checking 

the significance of the results after involving different (but generally low) levels of transaction 

costs, Daniel and Moskowitz (2016) did not even take transaction costs into account. Therefore, 

the feasibility of these volatility timing strategies, especially that of DM strategy, has come into 

question. In this study, we tackle this issue by taking the transaction costs into consideration. 

Notably, we investigate not only the effect of transaction costs on the portfolio performance but 

also the impact of their magnitude on the practicability of the above-mentioned volatility timing 

strategies. To do so, we include different trading cost components which are bid-ask spread 

estimates measures according to Abdi and Ranaldo (2017), commission fees and extra fees 

imposed on short-selling positions as recommended by Do et al. (2012).  

The fact that trading costs have a detrimental impact on the returns on the momentum portfolios 

raises another question about how to alleviate such negative effects while still avoiding momentum 

                                                             
1 Hereafter Daniel and Moskowitz (2016) strategy will be denoted DM 
2 Hereafter Moreira and Muir (2017) strategy will be denoted MM 
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crashes. Among the many cost-mitigation solutions proposed, the three strategies developed by 

Novy-Marx and Velikov (2015) are easy to understand and simple to implement: trading only 

stocks that have low transaction costs, rebalancing only a certain number of stocks in the portfolio, 

and using a buy/hold rule when rebalancing the portfolio. The idea of the buy/hold rule is that 

investors buy winner stocks if they are in the “buy” range but do not sell them until they fall out 

of the “hold” range, and similarly sell loser stocks if they are in the “sell” range and maintain these 

short positions as long as these stocks are in the “hold” range. According to Novy-Marx and 

Velikov (2015), this cost-mitigation strategy shows an apparent reduction in the trading costs of 

the momentum portfolios without compensating for portfolio returns too much compared to the 

first two strategies mentioned above. We, therefore, apply this buy/hold spread strategy to both 

the simple buy-and-hold momentum portfolio and the ones formed using two volatility timing 

strategies. Moreover, we develop different versions of this cost-mitigation strategy (simple 

10%/20%, simple 10%/30%, and either 10%/20% or 10%/30% with a fixed number of stocks in 

the portfolio over time) and check which version produces the best trade-off between trading costs 

and portfolio returns. The main contribution of our paper is to study the joint effect of volatility 

timing strategies and cost mitigation strategies on the profitability of momentum trading, which, 

to our knowledge, has not been considered by previous studies. 

Using US stock data for the period from 1980 to 2016, we obtain the following main findings. 

First, our results confirm that the DM and MM strategies not only help avoid the crashes 

experienced by the simple momentum strategy but also produce significantly higher returns on the 

momentum portfolios compared to the simple buy-and-hold one. Another important finding is that 

the DM strategy performs better than the MM strategy with the cumulative returns of the former 

by the end of December 2016 being 1.5 times higher than those of the latter. Second, as expected, 

taking into account transaction costs using bid-ask spread estimates leads to a striking decrease in 

the portfolio returns. In addition, the loss is more pronounced when transaction costs include 

additional components such as commission fees and extra fees on short positions. Third, when we 

apply cost-mitigation strategies to the momentum portfolios, both the portfolio turnovers and 

returns drop. However, among the four versions of the buy/hold spread strategy, the 10%/20% rule 

with a fixed number of stocks in the portfolio across time shows the best balance between costs 

and gains. Applying volatility timing and cost mitigation strategies jointly on momentum trading 

leads to highly profitable strategies, even after taking into account realistic transaction costs. 
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The rest of our paper is structured as follows. In section 2, we review literature on momentum 

crashes and prominent strategies used to tackle the problem so far, transaction costs associated 

with momentum portfolios and several cost-mitigation strategies. In section 3, we describe both 

the sample data and the methodologies used for our analysis. In section 4, we present the analysis 

results and discuss them in detail. Finally, in section 5, we summarize the key findings of our study 

and propose several further research directions.   
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2. Literature Review 

2.1. Momentum strategy and its crashes 

Jegadeesh and Titman (1993) were the first ones to suggest the momentum strategy: to buy stocks 

which have performed well in the past and sell stocks that have performed poorly. The authors 

managed to show that this strategy produced a compounded excess return of 12.01% per year on 

average over the 1965 - 1989 period. 

Momentum is not specific only to the USA and to stock markets. Asness et al. (2013) demonstrated 

the ubiquity of momentum profits. The authors investigated these phenomena in eight different 

markets across different asset classes and found convincing evidence of momentum premia across 

all the markets. Fama and French (2012) also referred to the international evidence (developed 

markets in North America, Europe, Japan, and Asia Pacific regions) when they explored size, value 

and momentum patterns in average returns. They found strong momentum returns in all regions 

except Japan. 

A series of other papers also addressed momentum universality, which is summarized by Barroso 

et al. (2015, p.111), who stated that “[this anomaly] has been shown in […] emerging markets, 

country stock indices, industry portfolios, currency markets, commodities […]”. Rouwenhorst 

(1998) found that return continuation was present in all twelve countries from their sample for the 

years between 1980 and 1995. Desrosiers et al. (2007) examined 21 countries over the period 

1988-2005 and found that 12-month past return did not produce good results for predicting 

expected relative country returns. However, Desrosiers et al. (2007) also found that a combination 

of fundamental and momentum-oriented variables could bring diversification benefits since these 

variables are not strongly correlated. Authors then suggested using a selection model (which 

consequently has higher returns and lower risk) based on ranking countries by both fundamental 

and momentum variables. Moskowitz and Grinblatt (1999) looked into industry momentum and 

concluded that (i) momentum returns become substantially less profitable if they control for 

industry momentum, but (ii) by buying stocks from past winning industries and selling from past 

losing industries, considerable additional profits are gained after after controlling for a number of 

factors. Okunev and White (2003) turned their attention to the currency markets, where the 

profitability of momentum strategy continued thorough 1990’s according the authors. Commodity 
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future markets were the center of Miffre and Rallis’ (2007, p. 1863) paper, which found “13 

profitable momentum strategies that generate 9.38% average return a year”. Thomas and Ellis 

(2004) confirmed the existence of momentum profits in the period 1990-2003 for the FTSE 350 

index. 

However, a more recent wave of research pointed out that the momentum strategy can experience 

large crashes when the market is in a stressed situation. For example, Daniel et al (2012) showed 

that despite high positive returns and little systematic risk, the momentum strategy experiences 

infrequent but severe losses. Barroso and Santa-Clara (2015) showed that the winner-minus-loser 

(WML) portfolio delivered -91.59% return in 1932 and -73.42% in 2009. The authors also pointed 

out that these crashes, if not managed and hedged, would wipe away the positive returns gained 

earlier, and it would take years to recover. 

Different hedging strategies were proposed in order to protect momentum from these infrequent 

large crashes. Grundy and Martin (2001) claimed that hedged portfolios based on forward-looking 

betas have a significantly improved performance. However, this approach was criticized by both 

Barroso and Santa-Clara (2015) and Daniel and Moskowitz (2016). The former paper (Barroso 

and Santa-Clara, 2015, p.117) showed that “the time-varying betas are not the main source of 

predictability in momentum risk,” while the latter pointed out that the strategy of Grundy and 

Martin (2001) is basically not implementable, because it is based on forward-looking betas. Daniel 

et al. (2012) proposed using a Hidden Markov model to capture calm and turbulent states; in case 

of the latter, part of the portfolio should go to the risk-free asset. Barroso and Santa-Clara (2015) 

suggested managing the risk of the momentum strategy through the scaling of the portfolio. They 

argued that as the realized variance is highly predictable, investors can scale long-short portfolios 

by realized volatility in order to have a constant volatility. As a result, the crash risk goes down 

significantly, and the Sharpe ratio improves from 0.53 to 0.97 (Barroso and Santa-Clara, 2015). 

Daniel and Moskowitz (2016) contributed to the topic by developing a new approach, which they 

called the “dynamic momentum strategy.” The authors revealed that crashes mostly result from 

the loser portfolio and that its behavior is similar to a written call option in the market (i.e. when 

the market falls, they gain little, but when the market rises, lose much). The authors suggested 

levering up and down the WML portfolio every month so that conditional volatility of the strategy 

is proportional to the conditional Sharpe ratio of the strategy. The weights for the momentum 
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portfolio are calculated based on expected momentum returns and volatility. Daniel and 

Moskowitz affirmed that their strategy not only outperforms standard momentum strategy but is 

also superior to the constant volatility strategy proposed by Barroso and Santa-Clara (2015). 

Zhuang (2018) explored the application of the Daniel and Moskowitz strategy in the foreign 

exchange market (9 prominent currencies were considered) and found evidence that the strategy’s 

performance is considerably better than that of the simple momentum strategy. Another example 

of a simple momentum strategy alteration based on volatility was provided by Zaremba et al. 

(2018). In the strategy, called VARMOM (the volatility-adjusted residual momentum), the residual 

returns were normalized by volatility to isolate the risk effects. The strategy produces Sharpe ratios 

two to three times higher compared to the simple momentum strategy.  

Moreira and Muir (2017) proposed a different volatility timing strategy by scaling factors (e.g. 

excess market returns, size, value, momentum and profitability factor) by the inverse of their 

conditional variance and comparing them with non-adjusted factors. The authors obtained very 

convincing results: alphas3 are substantial for all factors and almost all alphas are statistically 

significant, while the largest alpha is for the momentum factor. Chen et al (2019) investigated the 

possibilities to improve the MM strategy by using a wide variety of ARMA specifications to 

forecast future variance over a sample period 1935 to 2016 (Moreira and Muir (2017) use the 

portfolio's realized variance in the previous period as a proxy for the future variance). They 

discovered that “only the fractionally integrated ARIMA model was able to produce an increase 

in the Sharpe ratio that is significantly above that produced by the simple historical average 

volatility” (Chen et al, 2019, p. 6). 

2.2. Momentum strategy’s transaction costs 

Momentum portfolios are rebalanced monthly and, unlike other factors such as the value factor, 

the momentum factor is based on a more volatile indicator – past returns. This leads to a high 

turnover and could potentially lead to weighty transaction costs. The question whether the 

momentum strategy still generates positive excess returns after taking into account transaction 

costs has also been addressed in different papers with diverse results. 

                                                             
3 Excess returns or abnormal returns 
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Jegadeesh and Titman (1993) accounted for the transaction costs in the amount of a 0.5% one-way 

transaction cost per trade and 9.29% per year. They stated that the risk-adjusted returns after 

transaction costs are significantly positive. Other authors came up with different estimates for the 

transaction costs, but their results were aligned with Jegadeesh and Titman (1993). To name a few, 

Desrosiers et al (2007) used a transaction costs estimate at 15bps and stated that portfolio returns 

(generated based on the both countries fundamental and momentum variables) remain statistically 

significantly different from zero even after introducing realistic transaction costs. Okunev and 

White (2003) did not include transaction costs in their analysis but stated that round-trip 

transaction costs are usually 10bps for trading in currency future markets, whereas mean monthly 

return varies from 45 to 60 basis points. These numbers imply that the strategies were profitable 

after transaction costs. Miffre and Rallis (2007) declared that it was unlikely that transaction costs 

would wipe away returns of the momentum strategies in futures markets. Thomas and Ellis (2004) 

investigated the momentum returns net of the transaction costs for the FTSE 350 index and 

included both direct and indirect costs in their analysis (bid-ask spread, commissions, stamp duty, 

short selling costs and price impact costs). Their conclusion is that even with a higher estimate of 

the transaction costs, momentum profits still exist. 

Nevertheless, Lesmond et al. (2004) concluded that (for the momentum strategy) the impact of 

trading costs on price behavior is much larger than previously acknowledged and stocks that 

generate momentum returns are those with high trading costs. As a result, high momentum returns 

create an illusion of trading profit which does not really exist. It is important to state that Lesmond 

et al. (2004) used another metric for transaction costs. Unlike Jegadeesh and Titman (1993) who 

used trade-weighted mean commission and market impact of early 1985 NYSE trades to estimate 

trading costs, the authors appealed to different measures of spread (e.g. quoted spread estimate, 

direct effective spread estimate, roll effective spread estimate, quoted commission 

estimate).  When the authors used spread estimates, other relevant costs such as commissions, 

short-sale constraints, and opportunity costs were excluded. 

It is important to mention that authors who investigated volatility timing strategies did not 

generally put extra efforts on estimating transaction costs. For example, Daniel and Moskowitz 

(2016) did not address this question but instead state that transaction costs together with leverage 

(in case it gets too high) should be considered for practical implications. Barroso et al. (2015) 
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reasoned that the transaction costs for volatility timing momentum strategy should be even higher 

(by 38%) than for raw momentum in order to erode momentum returns. The authors do not make 

any direct estimates for the transaction costs. Moreira and Muir (2017) employed proportional 

trading costs at the levels of 1, 10, and 14 bps4 (note that these numbers are considerably lower 

than those used by Lesmond et al. (2014)). 

If we turn our attention to the elements of trading costs, the usual components are the bid-ask 

spread, brokerage cost, commission fees, price impact (which can be decomposed to permanent 

and temporary ones) and opportunity cost (Damodaran, 2019; Kociński, 2017). One of the main 

sources of transaction cost variation are bid-ask spreads determined by stock’s liquidity, ownership 

structure and riskiness, to name a few (Damodaran, 2019). 

There are several important observations about the transaction costs which were summarized by 

Frazzini et al (2014). As the authors have access to the internal database of a large institutional 

investor, this on one hand helped test different theories and explore transaction costs deeper; on 

the other hand it raised a question about the universality of the conclusions. Authors identified 

three groups of variables which determine transactions costs: (i) size of the trade, which can be 

expressed with the fraction of the daily trading volume, in other words, trading costs increase 

substantially with the trade size; (ii) the cost of the trading, which includes size of the firm, 

idiosyncratic volatility of the firm’s equity (as expected, the large caps and more liquid stocks have 

lower transaction costs) and (iii) variation of trading costs over time (the downward trend over 

time). The authors stated that measuring transaction costs with effective bid-ask spread (referring 

the article of Novy-Marx and Velikov (2015)) was not a good estimate for a large arbitrageur, 

mainly because it did not take into account the size of the trade. The simple momentum portfolio’s 

yearly transaction costs were estimated at the level of 4.78%, however optimization techniques 

can decrease them to 2.14% per year (based on 2000 US stocks and 2000 non-US stocks from 

1980 to 2011). However, only US equity during 1998-2011 had an annual drag of 3.51% of 

transaction costs for simple momentum strategy (0.27% monthly trading costs). 

These figures nicely correspond to the estimates made by Brandt et al (2009), who estimated 

(monthly) transaction costs of 0.6% for the smallest company and 0.35% for the largest one 

                                                             
4 Basis points, 1 bps = 0.01% 
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(CRSP5 data is used from January 1964 to December 2002). Grundy and Martin (2001) estimated 

that with the roundtrip transaction costs of 1.77% the momentum profits from 1926 to 1995 are 

driven to zero. 

Considering what was said above, we believe that transaction costs were not addressed properly 

when estimating volatility adjusted momentum portfolios and that average costs (as in Moreira 

and Muir (2017)’s paper) can be used as a simple check, but it (i) neglects the fact that transaction 

costs vary substantially for different stocks, and (ii) does not allow to check Lesmond et al. 

(2004)’s statement that momentum profits are generated by the stocks with higher transaction costs 

and that a realistic estimate of the transaction costs will erode momentum profits. Therefore, we 

turn our attention to the papers which estimate different elements of the transaction costs. 

Estimating transaction costs with the bid-ask spread (together with commission fees) is the most 

explicit way, but the bid-ask spread data is available in CRSP only from 1993 and onwards. The 

paper of Abdi and Ranaldo (2017) overcame this issue by suggesting a simple estimation of the 

spread from daily close, high, and low prices. The novelty of the paper is that it used close, high 

and low prices jointly and this bridges two approaches proposed earlier (based on close prices and 

more recent on high and low process). This estimate delivers the highest cross-sectional and 

average time-series correlation with the effective spread based on Trade and Quotes (TAQ) data, 

provides the lowest prediction errors and is not computationally difficult. All in all, the estimate 

suggested by Abdi and Ranaldo (2017) has a series of advantages compared to the counterparts 

such as HL (Corwin and Schultz’ (2012) estimate of transaction costs based on high and low 

prices), Roll (estimate based on the close price), Gibbs (a Gibbs sampler Bayesian estimation of 

the Roll model), EffTick (measure based on the concept of price clustering), and FHT estimates 

(method which simplifies the estimate based on optimization of the maximum likelihood function 

for every single month to get the monthly estimates.).  

Do et al (2012) provides transaction costs estimates for the U.S. equity market during the years 

1962 to 2009 by explicitly estimating three components of direct trading costs: commissions, 

market impact, and short selling fees. When it comes to the commission fees, the authors continued 

a downward trend and received the average yearly one-way commission for the full sample equal 

                                                             
5 Centre for Research in Security Prices 
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to 0.34% (starting from 0.87% in 1963 and going down to 0.09% in 2009). We decided to use the 

estimates of the authors for our research, however there is no data available in the article after 2009 

and we fill the gap by using the same source as Do et al (2012), namely taking commission fees 

from the ITG global trading cost review for Q4/2018 (Investment Technology Group, 2019), as 

shown in Table 1. 

Table 1. One-way commission fees in bps per transaction 
The table contains one-way commission fees. Data from 1980 to 2009 is taken from Do et al (2012), 2010-2016 from 
ITG global trading cost review for Q4/2018 (Investment Technology Group, 2019). The sources complement each 
other as Do et al used the same report for the commission fees estimate. 

Year Commission 
fee, bps 

 Year Commission 
fee, bps 

 Year Commission 
fee, bps 

1980 45 1992 19 2004 10 
1981 41  1993 17 2005 10 
1982 33  1994 17  2006 9 
1983 28  1995 16  2007 7 
1984 26  1996 14  2008 8 
1985 25  1997 10  2009 9.1 
1986 22  1998 10  2010 8.8 
1987 20  1999 10  2011 7.5 
1988 19  2000 10  2012 7.3 
1989 20  2001 10  2013 6.6 
1990 20  2002 10  2014 5.6 
1991 21  2003 10  2015 5 

      2016 5.3 

Another important question is about any additional fees associated with different positions. Foltice 

and Langer (2015) investigated the applicability of the momentum strategy for an individual 

investor and stated that short positions are associated with “hard to borrow” fees, i.e. opening short 

positions for some stocks can be done only at a high cost. Do et al (2012) added that besides 

difficulty to open the position at the times desired (or at a higher price), there is a cost of shorting 

in a form of a loan fee and there can be a limited possibility to recall a borrowed stock prematurely. 

Li et al. (2009), who investigated transaction costs of the momentum strategy (for UK companies 

over the period of 31 December 1985 – 31 December 2005), got the striking result that the average 

round-trip commission for the winners is 1.06%, while for the losers it is 1.58%. Despite the fact 

that these figures seem a bit too high, (both Lesmond et al. (2014)’s and Li et al. (2009)’s estimates 

are upward shifted compared to the other authors’ estimates above), the main idea is that the losers 
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have higher transaction costs. On the other hand, Frazzini et al (2014) were skeptical about the fact 

that short selling is more expensive, as the difference which they had found was not statistically 

significant. Do et al (2012) also mentioned that in recent years, the short sales did not lead to an 

increase in the substantial transaction costs. Nevertheless, Do et al (2012) controlled for the short 

sales constraints by including a constant loan fee of 1% per annum payable.  

If we accept the premise that the transaction costs are high, another possible avenue of research is 

cost mitigation strategies. The natural technique on transaction costs mitigation is to leave the 

stocks with lower transaction costs. The paper “Low cost momentum strategies” (Li, Brooks, & 

Miffre, Low-cost momentum strategies.(Original Article), 2009) showed that this technique can 

save over 30 percent of the costs involved in the purchase and sale of winners and losers. However, 

this strategy is computationally complicated and thus not easy to implement. Another paper which 

investigated transaction costs reduction is “An empirical investigation of methods to reduce 

transaction costs” by Moorman (2014), which addressed the problem a bit differently. Moorman 

stated that “the decision to choose optimal weights is bundled with the objective of reducing 

transaction costs” (Moorman, 2014, p.231) and turned attention to the methods of portfolio 

constructing and choice of optimal weights. He claimed that the investor will get the best result if 

a levered-momentum portfolio and an equally-weighted market portfolio are used, whereas “it is 

more difficult to recover wealth for a zero-cost momentum portfolio” (Moorman, 2014, p.231). 

Novy-Marx and Velikov (2015) evaluated the most applicable cost mitigation strategies: limit 

trading to the universe of stocks that are expected to be relatively cheap to trade, rebalancing only 

a fraction of portfolio at each rebalance point and finally the buy/hold spread strategy. The last one 

is an elegant cost mitigation strategy that is based on the so called “sS rule”, which does not require 

estimation of the transaction costs and described in more detail in the next section.   
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3. Data and Methodology 

3.1. Data 

Individual stock level data comes from the Centre for Research in Security Prices (CRSP). The 

data sample contains returns, stock prices and the number of shares outstanding for all stocks that 

are listed on the NYSE, Amex, and Nasdaq markets (CRSP exchange code 1, 2, and 3, 

respectively), and that are either US or non-US common shares (CRSP share code 10, 11, and 12). 

This sample consists of data from January 1980 to December 2018. On the other hand, data on 

daily and monthly market returns as well as daily momentum decile portfolios are obtained from 

Kenneth French’s data library6 and are available for the period from 1926 to December 2018. 

The bid-ask spread estimates are used as a proxy for our trading costs according to Abdi and 

Ranaldo (2017)’s approach and are obtained directly from Abdi’s website7. Since the authors’ bid-

ask spread estimates are available for the period of January 1926 till December 2016, in order to 

make our results comparable and ensure the consistency in our study, we decide to base our 

analysis on the period of January 1980 to December 2016. Noticeably, as the formation period of 

momentum portfolio is 12 months, the analysis results have the starting values in January 1981.  

3.2. Methodology 

As our study aims to compare the risk-adjusted momentum strategies with and without taking into 

account the transaction costs, our methodology includes the following steps. 

3.2.1. Constructing momentum deciles portfolios 

We follow Daniel and Moskowitz (2016) in forming the monthly momentum decile portfolios and 

use the same restrictions on the portfolios as they did in the paper. That is, all portfolios are value 

weighted and rebalanced at the end of each month. A firm is included in the portfolio formation 

procedure if there are no missing values in the stock price of month 𝑡 − 13, in the stock return of 

month 𝑡 − 2, and in the market capitalization of month 𝑡 − 1. Moreover, the firm is required to 

have available data on its monthly returns for at least 8 months over the past 11 months (𝑡 − 12 to 

                                                             
6 https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 
7 http://www.farshidabdi.net/index.html 
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𝑡 − 2 ). All the firms that satisfy the above requirements are then involved in the portfolio 

formation. Next, we calculate cumulative returns on each stock from month 𝑡 − 12 to 𝑡 − 2 using 

the formula: 

𝑅[()*+,()+],. = 0121 + 𝑅()4,.5
*+

46+

7 − 1 (1) 

After that, we sort stocks based on their cumulative returns calculated above into ten decile 

portfolios, where the first decile portfolio represents the losers, i.e. stocks with the lowest past 

returns, and the last decile portfolio represents the winners, i.e. stocks with the highest past returns. 

Finally, the zero cost WML (winner minus loser) portfolio includes the two extreme deciles and 

has the average return equal to 

𝑅:;<,( ==𝑤.,(𝑅.,(

?

.6*

(2) 

where 𝑤.,( are weights of the zero-investment WML portfolio at the beginning of month 𝑡 and 

satisfy the following conditions. 

⎩
⎪
⎨

⎪
⎧ =𝑤.,(𝚰2𝑤.,( > 05 = 1

?

.6*

𝑓𝑜𝑟	𝑙𝑜𝑛𝑔	𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠

=𝑤.,(𝚰2𝑤.,( < 05 = −1
?

.6*

𝑓𝑜𝑟	𝑠ℎ𝑜𝑟𝑡	𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠

(3) 

3.2.2. Cost-mitigation strategies 

We apply the buy/hold strategies introduced by Novy-Marx and Velikov (2015) to the momentum 

portfolios to mitigate their high turnover/transaction costs. The idea of the strategy is (for the 

winners) to buy stocks if they are in buy range but not sell them until they fall out from the hold 

range. The course of action with the losers is identical. For example, a 10%/20% buy/hold rule 

applied to momentum portfolios suggests that investors should buy stocks when they enter the buy 

range, which is the highest 10% of the past 11-month cumulative returns (i.e., the top decile), and 

hold them as long as they are still in the hold range which is the highest 20% (i.e., the top two 

deciles). Similarly, on the short leg, traders should short sell stocks when they enter the lowest 

10% (i.e., the bottom decile) and maintain this short position as long as they do not fall out of the 

lowest 20% (i.e., the bottom two deciles). We decide to conduct further experiments on this method 
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by trying different versions of it. First, we simply use a 10%/30% buy/hold rule, where the hold 

range is the top three momentum deciles for the winner portfolio and the bottom three momentum 

deciles for the loser portfolio. Second, we modify the 10%/20% rule by adding a restriction to it. 

In particular, we suppose that in order to lower the monthly turnover, the number of stocks in the 

winner/loser portfolios in each month should stay the same as in the initial winner/loser portfolio. 

This is done by including all stocks that were in the past winner/loser portfolios and are still in the 

hold range and additionally only the best new winners or the worst new losers. 

We assume that introducing the restrictions above to the original 10%/20% buy/hold rule will not 

only show a more significant drop in the trading costs of the WML portfolios but also produce 

higher returns compared with using the simple 10%/20% buy/hold rule alone. 

3.2.3. Transaction costs 

As mentioned in the Literature Review section, we take into account the transaction costs to check 

the feasibility of the simple momentum strategy as well as the volatility timing ones which will be 

discussed later in this section. Following Brandt et al. (2009), the cost-adjusted returns on the 

WML portfolio at month 𝑡 can be calculated as follows: 

𝑅:;<,( = 	=2𝑤.,(𝑅.,( − 𝑐.,(T𝑤.,( − 𝑤.,(U T5
V

.6*

(4) 

with 𝑤.,(U  denoting the “hold portfolio weights” resulting from changes in the returns on the 

portfolio assets in the beginning of month 𝑡 while the portfolio actually stays the same as in month 

𝑡 − 1, and is defined by the following equation. 

𝑤.,(U = 𝑤.,()* X
1 + 𝑅.,()*

1 + 𝑅:;<,()*
Y (5) 

Noticeably, from Equation (4), 𝑐.,( denotes “proportional transaction cost for stock 𝑖 at time 𝑡”, 

and can be estimated (Brandt et al., 2009, p. 3424). However, the authors suggested that the 

estimates should represent one-way transaction costs, which is approximately half of the round-

trip trading costs. In our analysis, 𝑐.,( is calculated using the three following formulas. 

When trading costs include only (round-trip) bid-ask spread estimates: 

𝑐.,( = 0.5 ∗ 𝑏𝑖𝑑 − 𝑎𝑠𝑘	𝑠𝑝𝑟𝑒𝑎𝑑	𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑠 (6) 
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As mentioned earlier, we use the round-trip bid-ask spread estimates of Abdi and Ranaldo (2017) 

during our analysis. When trading costs consist of both (round-trip) bid-ask spread estimates and 

one-way commission fees: 

𝑐.,( = 0.5 ∗ 𝑏𝑖𝑑 − 𝑎𝑠𝑘	𝑠𝑝𝑟𝑒𝑎𝑑	𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑠 + 𝑜𝑛𝑒 − 𝑤𝑎𝑦	𝑐𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛	𝑓𝑒𝑒𝑠 (7) 

The time-varying one-way commission fees used for our calculations are described in Table 1 in 

the Literature Review section. When transaction costs involve (round-trip) bid-ask spread 

estimates, one-way commission fees and short-selling fees: 

𝑐.,( = 0.5 ∗ 𝑏𝑖𝑑 − 𝑎𝑠𝑘	𝑠𝑝𝑟𝑒𝑎𝑑	𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑠 + 𝑜𝑛𝑒 − 𝑤𝑎𝑦	𝑐𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛	𝑓𝑒𝑒𝑠 + 𝑠ℎ𝑜𝑟𝑡 − 𝑠𝑒𝑙𝑙𝑖𝑛𝑔	𝑓𝑒𝑒𝑠(8) 

In line with Do et al (2012), short-selling fees are represented by a constant loan fee of 1% per 

annum. 

3.2.4. Volatility timing strategies 

We also apply the volatility DM an MM timing strategies and check whether these strategies can 

help alleviate momentum crashes. As mentioned in the Literature Review section, the main idea 

of volatility timing is to adjust the risk exposure of the WML portfolio by scaling up or down the 

portfolio weights. This idea can be demonstrated in the below equation, 

𝑅g:;<,( ==2𝓌(𝑤.,(𝑅.,( − 𝑐.,(T𝓌(𝑤.,( −𝓌()*𝑤.,(U T5
V

.6*

(9) 

where 𝓌( denotes the scaling factor applied to the portfolio weights at time 𝑡. It is noteworthy that 

𝓌( is calculated differently for the two above mentioned strategies. 

Interestingly, when investigating the two volatility timing strategies, we notice that without 

restriction on 𝓌( , the returns on the scaled momentum portfolios, 𝑅g:;<,(  become abnormally 

large due to high portfolio weights (Appendix F), questioning the practicability of these strategies. 

The only paper to our knowledge which addressed this question is Zhuang (2018) who imposed 

the restriction of [-1, 1] on the weights, which means that the portfolio is not leveraged. However, 

in order to leverage the portfolio, but not at the level that it can question the feasibility of the 

strategies, we decide to put an upper bound of 2 on scaling weights of the portfolios, i.e., an upper 

bound of 2 on the value of 𝓌(.  
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3.2.4.1. Daniel and Moskowitz (2016)’s dynamic volatility scaling approach 

As shown in their paper, in order to maximize the in-sample unconditional Sharpe ratio, Daniel 

and Moskowitz (2016) suggested that the scaling factor optimal weight on the momentum portfolio 

at time 𝑡 should be calculated as below, 

𝓌( = j
1
2𝜆l

𝜇(
𝜎(+

(10) 

where 𝜇( = 𝐸(p𝑅:;<,(q*r is the conditional expected return on the zero cost WML portfolio over 

the following month, 𝜎(+ = 𝐸( s2𝑅:;<,(q*
+ − 𝜇(5

+t	denotes the conditional variance of the WML 

return , and λ indicates a time-invariant parameter that controls the unconditional risk and return 

of the dynamic portfolio. In particular, 𝜆 is set so that the unconditional standard deviation of the 

dynamic scaled WML portfolio is the same as that of the simple buy-and-hold WML portfolio. 

Values of 𝜆  when we combine Daniel and Moskowitz (2016)’s dynamic volatility scaling 

approach with different versions of the buy/hold cost mitigation strategy are shown in Appendix 

A. 

In order to forecast the above-mentioned conditional variance of the WML returns, similar to DM, 

we fit the following GJR-GARCH model (Glosten et al., 1993) to the WML returns, 

𝑅:;<,( = 𝜇 + 𝜖( (11) 

where 𝜖(~𝒩(0, 𝜎(+) and 𝜎(+ is defined by 

𝜎(+ = 𝜔 + 𝛽𝜎()*+ + 2𝛼 + 𝛾𝐼(𝜖()* < 0)5𝜖()*+ (12) 

However, in this step, Daniel and Moskowitz (2016) fitted the GJR-GARCH model to the full time 

series, which we suppose might lead to a “look-ahead bias”. To avoid this problem, in order to 

predict the variance of the WML portfolio for month 𝑡, we estimate the coefficients of the above 

model using daily returns over 504 business days (approximately equivalent to 2 years) through 

the last day of month 𝑡 − 1.8 

Meanwhile, the conditional expected return on the WML portfolio, 𝜇( , is predicted using the 

following regression model, 

                                                             
8 Since we ran the GJR-GARCH model shown in Equation (11) and (12) 432 times in total, we cannot present all the 
coefficient estimates in the paper. 
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𝑅:;<,( = 𝛾} + 𝛾~𝐼~,()* + 𝛾��� 𝜎��,()*
+ + 𝛾.�(𝐼~,()*𝜎��,()*+ + 𝜖(̃ (13) 

where the dependent variable 𝑅:;<,(  denotes the monthly return on the zero-investment 

momentum portfolio; 𝐼~,()* denotes “the ex-ante bear market indicator, which equals one if the 

cumulative CRSP value-weighted index returns in the past 24 months is negative and is zero 

otherwise”; 𝜎��,()*+  denotes the lagged realized volatility, which is the variance of the daily market 

returns over 126 consecutive business days prior to the beginning of month 𝑡. 

Here, it is notable that according to Daniel and Moskowitz (2016), the regression (13) should be 

run on the full time series starting from 1926 to 2016. However, since doing this also leads to 

“look-ahead bias”, we decided to run the regression over the period from July 1926 to December 

1979 and use the estimated coefficients to obtain the conditional expected return for the period 

from 1980 to 2016. The coefficient estimates from the above regression are shown in Appendix 

A. 

3.2.4.2. Moreira and Muir (2017)’s time varying variance scaling approach 

Moreira and Muir (2017) suggest that the scaling factor introduced in Equation (9) should be 

computed as 

𝓌( =
𝑐
𝜎�(+

(14) 

where 𝜎�(+ is a proxy for the conditional variance of the portfolio and is calculated as the realized 

variance over the previous month 

𝜎�(+(𝑅:;<) = 𝑅𝑉(+(𝑅:;<) = = �𝑅:;<,(q� −
∑ 𝑅:;<,(q�
*
�6 *

++
22

�
*

�6 *
++

(15) 

Moreover, in Equation (14), c is a constant and satisfies the condition that the unconditional 

standard deviation of the volatility-managed momentum portfolio matches that of the buy-and-

hold portfolio. According to Moreira and Muir (2017), “c controls the average exposure of the 

strategy”. We report different values of 𝑐 when we implement both Moreira and Muir (2017)’s 

time varying variance scaling approach and Novy-Marx and Velikov (2015)’s buy/hold cost 

mitigation strategy at the same time in Appendix A. 
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3.2.5. Performance measures 

To evaluate the overall performance of all the above-mentioned strategies, we use the Sharpe ratio 

and the Maximum Drawdown as our key performance measures. 

3.2.5.1. Sharpe ratio 

In the 5th edition of “A Dictionary of Finance and Banking” (Law, 2014), the Sharpe ratio is 

defined as a “risk-adjusted measure of the performance of a portfolio” and is calculated as follows, 

𝑆ℎ𝑎𝑟𝑝𝑒	𝑟𝑎𝑡𝑖𝑜 =
𝑅� − 𝑅�
𝜎��

(14) 

where 𝑅�, 𝑅� denote the portfolio returns and the risk-free rate respectively, and 𝜎�� is the standard 

deviation of the portfolio returns. According to Pedersen (2015), the idea of using this ratio is to 

tell investors how rewarding the investment in the portfolio is compared to the risks that it takes. 

3.2.5.2. Maximum Drawdown 

Pedersen (2015) suggested that Maximum Drawdown, which is defined as the largest percentage 

loss of the investment over a fixed time period, can be seen as another key performance measure 

for a portfolio strategy,  

𝑀𝑎𝑥𝑖𝑚𝑢𝑚	𝐷𝑟𝑎𝑤𝑑𝑜𝑤𝑛� = 𝑚𝑎𝑥(��𝐷𝑟𝑎𝑤𝑑𝑜𝑤𝑛( (15) 

where 

𝐷𝑟𝑎𝑤𝑑𝑜𝑤𝑛( =
𝑚𝑎𝑥��(𝑅� − 𝑅(	
𝑚𝑎𝑥��(𝑅�

(16) 

with 𝑚𝑎𝑥��(𝑅� indicating the highest cumulative return over the past period and commonly known 

as the portfolio’s high-water mark. 

As stated by Pedersen (2015), Maximum Drawdown measures the largest loss, or peak-to-trough 

decrease in the portfolio’s value over a specific time period. This measure has become an important 

tool for investors to control the downside risk of an investment, which is the risk of suffering from 

a loss in the portfolio value due to one or several changes in the market conditions (Mendes and 

Lavrado, 2017).  

To get a better understanding of the measure, let us consider the following example. Assume that 

the initial value of a portfolio is one million dollars; over a period, the portfolio value rises to 1.25 

million dollars before plummeting to $500,000. After that, the portfolio value bounces back to 
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$700,000 before diving to $300,000. Later, it rebounds to $600,000. The maximum drawdown of 

the investment portfolio is equal to *	+�}	}}})�}}	}}}
*	+�}	}}}

= 76%. This means that the largest percentage 

loss of the portfolio over the time period is 76%, implying a very high downside risk.  
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4. Results and Analysis 

4.1. Momentum crashes and volatility timing strategies 

As discussed in the Literature review section, the simple momentum strategy – buying stocks that 

performed well over the past year and selling stocks that had a poor performance during that period 

– brings positive returns on average. The overall gain can be significant, as it can be observed in 

Figure 1, which depicts cumulative returns on zero-investment WML portfolios. With a one-dollar 

investment in the beginning of 1981, an investor could have gained a cumulative return of 204.4 

dollars on the simple momentum strategy by the end of December 2016. However, as documented 

in many previous studies, the simple buy-and-hold momentum strategy can experience infrequent 

but severe losses during the periods of high market volatility. Illustration of this phenomenon can 

also be found in Figure 1. There is a plunge in the cumulative returns on the plain WML portfolio 

during the financial crisis (2008-2009) from above 320 dollars in the beginning of 2009 to slightly 

above 90 dollars in September 2009. Moreover, referring to Table 2, the monthly Sharpe ratio of 

the simple buy-and-hold momentum portfolio for the analysis period (0.1486) is positive and just 

slightly higher than the Sharpe ratio of the US market (0.143). In addition, the distribution of the 

returns on this portfolio is highly kurtotic (8.5314) and left-skewed (-1.2279).  

Figure 1. The cumulative returns on the zero-cost momentum portfolio before and after 
applying volatility timing strategies 

The plot demonstrates the cumulative returns of the simple buy-and-hold, MM and DM momentum portfolios during 
the period 1981-2016.  
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However, the momentum crashes can be avoided if the volatility timing strategies are 

implemented. Figure 1 shows that there is no drop in the cumulative returns during the financial 

crisis on the scaled momentum portfolios constructed using the DM and MM strategies. The 

contrast between simple and volatility adjusted momentum portfolio returns proves that volatility 

adjusted strategies successfully address the problem of crashes. It is also noteworthy that the WML 

portfolios scaled using volatility timing strategies show a remarkable increase in the cumulative 

returns compared to the plain buy-and-hold one (35,159 dollars and 22,157 dollars for DM and 

MM’s WML portfolios respectively compared to the 204 dollar return on the simple buy-and-hold 

momentum portfolio). In addition, returns on the WML portfolios when applying DM strategy are 

above 1.5 times bigger than those when using MM strategy.  

In order to get a deeper understanding of how volatility timing strategies improve returns on the 

momentum portfolios, we present a graph on monthly returns of the unscaled WML portfolio and 

the market volatility for the period 1981-2016 in Figure 2. 

Figure 2. Monthly returns on WML portfolios and market volatility 

The graph shows both the monthly returns of the simple buy-and-hold momentum portfolios and the market volatility 
over the period 1981-2016. 

 

As it can be seen from Figure 2, during the turbulent times (2000 – 2002 and 2008 – 2009), there 
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Specifically, the weight of the WML portfolio goes up in the calm times and down in the volatile 

periods. To get a grasp of how volatility timing strategies work, we look at the relation between 

market volatility and the scaling weights for the WML portfolio as demonstrated in Figure 3. 

Figure 3. Smoothed scaling weights of MM and DM strategies and volatility of the market 

The plot depicts the scaling weights of MM and DM momentum portfolios along with the market volatility. It is 
noteworthy that an upper bound of 2 is set for the scaling weights of these volatility timing strategies. 

 

There are several important points we can observe from the graph.9 First, both volatility timing 

strategies share quite similar patterns. Second, scaling weights plummet right before periods with 

high volatility, and rocket right after those times. We can hypothesize that changes in the weights 

in turbulent and calm times serve different purposes: risk exposure in times of high market 

volatility is reduced to avoid crashes, whereas risk exposure in calm times is increased to gain 

more profits. Further discussion on this hypothesis can be found in section 4.5.  

Implementation of different volatility timing strategies helps avoid crashes and thus improves 

distribution characteristics of the momentum returns. Measures in the Table 1 show that the returns 

on WML portfolios with the application of volatility timing strategies have a more “normal” 

distribution with lower kurtosis and less negative skewness. Not less importantly, returns on WML 

                                                             
9 As it is pointed out in the Data and Methodology section, we set an upper bound of 2 for the scaling weights. 
Further discussions and outcomes of this decision are available in section 4.5. 
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portfolios formed from MM strategy are slightly more kurtotic but less left-skewed than those DM 

dynamic approach, implying that the former strategy might perform better than the latter upon 

dealing with momentum crashes.  

Table 2. Different measures* for WML portfolio  
before and after implementing volatility timing strategies 

The table includes monthly distributional characteristics (mean, volatility, kurtosis and skewness) of WML portfolios 
together with some performance measures (Sharpe ratio and Maximum drawdown) over the period 1981-2016. 

  Buy&Hold MM DM 

Mean 0.0171 0.0276 0.0288 
Volatility10 0.0903 0.0903 0.0903 
Sharpe ratio 0.1486 0.2663 0.2766 
Maximum drawdown 0.9355 0.7699 0.6323 
Kurtosis 8.5314 4.7696 4.7603 
Skewness -1.2279 -0.1164 -0.1492 
*All values are in monthly terms 

As expected from the higher cumulative returns depicted in Figure 1 and higher mean returns from 

Table 2, the Sharpe ratios show considerable improvement after implementing volatility timing 

strategies. Both volatility timing strategies lead to an increase in Sharpe ratio by about two times 

(0.266 and 0.277 for volatility strategies vs 0.149 for simple momentum portfolio), but the DM 

strategy performs a bit better than the MM (with larger returns and a slightly higher Sharpe ratio). 

Observably, both the simple buy-and-hold WML portfolio and those formed using MM and DM 

strategies have the same volatility of 0.0914. This is already pointed out in the Methodology 

section, where we state that the unconditional standard deviation of the volatility-managed WML 

portfolio must match that of the simple buy-and-hold one. Regarding the Maximum drawdown 

indicator, which shows how much the downside risk of the portfolio goes down when 

implementing volatility timing, we can note that MM and DM volatility timing strategies made it 

possible to decrease maximum loss since the peak by 25% and 44% respectively.  

In summary, despite positive returns on the WML portfolio, the simple buy-and-hold momentum 

strategy suffers from severe crashes. However, volatility timing strategies can help alleviate this 

problem, resulting in a significant increase in the returns and improvement in both distributional 

                                                             
10 The volatility is calculated over the full period 1981-2018 
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characteristics (kurtosis, skewness) and performance measures (Sharpe ratio and maximum 

drawdown). 

4.2. Transaction costs 

Another problem with the momentum strategy is possibly higher transaction costs caused by 

frequent and considerable rebalancing. As we discussed in the Literature Review section, the 

momentum strategy requires monthly rebalancing, which can lead to high transaction costs. In this 

section, we investigate returns after transaction costs for the simple momentum portfolio as well 

as for the volatility managed momentum portfolios. 

Figure 4 illustrates the effect of transaction costs on the portfolio returns. That is, all three graphs 

depict the cumulative returns with transaction costs on the momentum portfolios before and after 

applying volatility timing strategies; however, the transaction costs used for the first graph consist 

of only bid-ask spread estimates while the costs for the second graph involve additionally different 

commission fees for every year, and the trading costs used for the last graph include 1% of annual 

fees for short positions in addition to the bid-ask spread estimates and yearly commission fees.  

If we involve transaction costs, we expect returns to go down; however, the actual drop turns out 

to be so substantial that it almost erodes all the WML returns: with one dollar invested in the 

beginning of 1981, simple momentum portfolio has cumulative returns ranging, depending on 

transaction costs estimate, between 0.5 (which basically means a loss) and 1.6 dollars instead of 

204 (no transaction costs considered; Figure 1) by the end of 2016. After involving transaction 

costs, momentum portfolio returns become surprisingly low. Moreover, not only do the transaction 

costs themselves show a discernible impact on the returns of the momentum portfolios, but also 

their magnitude. Thus, if the transaction costs consist of only bid-ask spread estimates, the returns 

on the zeros-cost WML portfolios decrease strikingly compared to those without transaction costs. 

Nevertheless, if we add commission fee to the transaction cost, the decline in the portfolio returns 

is even more pronounced.  

The volatility timing strategies still improve returns on momentum portfolios considerably as 

before. Having said that, we should point out that the comparison between returns on portfolios 

formed from MM and DM strategies with their counterparts without transaction costs show a steep 

downfall. That is, WML returns drop from 35,159 to 36.8 (with transaction costs estimated by bid-
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ask spread only) when using the DM strategy; with the MM strategy WML returns are reduced 

from 22,157 to 21.1. 

Figure 4. Cumulative returns on WML portfolios after transaction costs 

The plots describe cumulative returns on WML portfolios after taking into account trading costs for the period 1981 
to 2016. Panel A shows portfolio returns when trading costs include only bid-ask spread estimates from Abdi and 
Ranaldo (2017). Transaction costs in Panel B involve additionally commission fees shown in Table 1. Panel C depicts 
the cost-adjusted cumulative returns when trading costs consist of bid-ask spreads, commission fees and short-selling 
fees (1% per year).  

Panel A: bid-ask spreads only 

 
Panel B: bid-ask spreads + commission fees 

 
Panel C: bid-ask spreads + commission fees + short sale fees 
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If we add commission fees and a 1% fee for short positions, the cumulative return on the unscaled 

momentum portfolio does not exceed one, meaning that that one dollar invested in these strategies 

in the beginning of 1981 has not produced any profits by the end of 2016. This powerful result 

implies that if transaction costs are not adequately managed, momentum strategies will not be able 

to generate adequate returns. Meanwhile cumulative returns on the volatility timing portfolios stay 

positive even after imposing additional fees. Thus, the cumulative return by the end of 2016 for 

the DM and the MM strategy is equal to 7.5 and 4.1, respectively if commission fees are added 

and 4.9 and 2.7 if commission fees and short position fees are added. 

Overall, it is better to involve the commission fees besides the bid-ask spread estimates in the 

transaction costs since the results tend to be more genuine. Moreover, it is more plausible to apply 

different commission fees to winner and loser portfolios (i.e. by adding an additional 1% annual 

fee for short positions) than to use the same average commission fee for all. From now on, all the 

analysis results involving transaction costs will take into consideration the different commission 

fees mentioned above (i.e., the results corresponding to Panel C in Figure 4). 

4.3. Cost-mitigation strategies  

As discussed in the methodology section, we apply several versions of the buy/hold cost-mitigation 

strategy. Let us first discuss the effect of these strategies on the portfolio’s turnover. Figure 5 

depicts the turnover, smoothed with a 12-month moving average, for each cost mitigation strategy 

while the summary of average turnovers for different strategies can be found in Table 3. 

Table 3. Average turnovers during 1981–2016 for different momentum strategies 

The table shows average turnovers over the period 1981-2016 for WML portfolios after implementing volatility timing 
strategies (MM, DM approach) and different versions of the buy/hold cost mitigation strategy. 

  WML MM DM 

Buy&Hold 1.557 2.339 2.259 
10%/20% 0.863 1.483 1.369 
10%/30% 0.678 1.245 1.132 
10%/20% Fixed number 0.793 1.358 1.247 
10%/30% Fixed number 0.673 1.225 1.108 
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It is not surprising that the average turnovers of the buy-and-hold portfolio are the highest and 

remarkably higher than the ones that use the cost-mitigation strategies. Both the 10%/20% rule 

and its fixed number version exhibit higher average turnover than the 10%/30% and 10%/30% 

fixed number cost strategies. However, the decrease in the turnover as a result of imposing 

additional fixed number condition is moderate for the 10%/20% strategy, and almost unnoticeable 

for the 10%/30%. This can be partly explained by the fact that the 10%/30% strategy has such a 

low turnover that additional rule (fixed number) does not produce any substantial gain (there is 

some gain though, as 10%/30% average turnover for 1981-2016 is 0.793 and 10%/30% fixed 

number turnover is 0.673). The illustration of the observations above can be found in Figure 5. 

Figure 5. Moving average turnovers of WML portfolios with different cost-mitigation 
strategies11 

The plot depicts turnovers smoothed with a simple moving average for 12-month period over the period 1981-2016 
for the simple buy-and-hold momentum portfolio after imposing different rules of the buy/hold spread cost mitigation 
technique. 

 

The turnovers of other strategies specifically MM and DM with cost mitigation techniques share 

similar patterns. The illustrations of these patterns together with observations on differences 

between turnovers of simple buy-and-hold and volatility timing strategies can be found in 

Appendix C.  

                                                             
11 Simple moving average for 12-month period 
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In terms of the returns, there is apparently a trade-off between the turnovers and the returns on the 

momentum portfolios (formed with these cost strategies), as can be seen in Figure 6. 

Figure 6. Cumulative returns on WML portfolios with different cost-mitigation strategies 

The plot depicts cumulative returns for the for the simple buy-and-hold momentum portfolio after imposing different 
buy/hold spread cost mitigation techniques over the period 1981-2016 without involving transaction costs. 

 

As expected, there is a fall in the returns on WML portfolios both with and without cost mitigation 

strategies during the financial crises 1999-2000 and 2008-2009. Despite having the highest average 

turnover over the whole period, the buy-and-hold WML portfolio has the highest cumulative 

returns compared with the ones formed using all four cost strategies introduced. By contrast, the 

WML portfolio formed from the 10%/30% fixed number strategy trades off the lowest turnover 

averages with the lowest cumulative returns. Noticeably, 10%/20% fixed number strategy 

produces the second highest cumulative returns while maintaining low average turnovers over 

time. In order to confirm the superiority of this cost strategy over the others, we check the 

performance of WML portfolios when the cost mitigation strategies are combined with volatility 

timing ones. The detailed results are given in the next part. 

4.4. Combing volatility timing strategies with cost-mitigation strategies 

In order to combine volatility timing and cost mitigation strategies, we first form the WML 
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scaling portfolio’s weights up and down. For the sake of brevity, we include the charts with 

cumulative returns for these strategies in Appendix D (with and without transaction costs, for the 

period from 1981 to 2016). The most important finding is that the 10%/20% fixed number strategy 

provides a good trade-off between the returns and transaction costs decrease. In addition, this cost 

strategy has the second lowest turnover, similar to its performance without volatility timing 

strategies. Thus, we decide on choosing this buy/hold rule for further analysis in the rest of the 

paper. 

A closer look at the performance of the WML portfolios returns after implementing 10%/20% 

fixed number strategy can bring interesting findings (see Figure 7). Remarkably, when we compare 

Panel A of Figure 7 with Figure 1, it is evident that cumulative returns (without taking into account 

transaction costs) fall considerably after implementing the chosen cost mitigation strategy. For the 

simple buy-and-hold WML portfolio, returns in the end of 2016 would be 204 without the cost 

mitigation strategy and 145 with it. When it comes to the comparison for MM and DM strategies, 

the returns drop similarly with 35,159 and 22,157 being the cumulative returns at the end of 2016 

(Figure 1) for DM and MM strategies, respectively, while with the implementation of the 

10%/20% fixed number strategy the returns become 16,733 for DM and 10,622 for MM strategy 

(Panel A of Figure 7).  

Accounting for transaction costs (which comprise bid-ask spreads, commission fees and short sale 

fees) leads to the opposite conclusion; returns after the transaction costs are improved considerably 

with the cost mitigation strategy implementation. A comparison of Panel B in Figure 7 and Panel 

C in Figure 4 supports this statement. The simple momentum strategy generates a loss, i.e. the 

cumulative return after the transaction costs in the end of 2016 is only 0.5 (see Panel C in Figure 

4), however with the 10%/20% fixed number strategy the returns jump to 5.1 (Panel B of the Figure 

7). The MM and DM strategy returns after the transaction costs in the end of 2016 go up from 2.7 

and 4.9 without the cost mitigation strategy to 43 and 93, respectively, with the 10%/20% fixed 

number strategy.  
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Figure 7. Cumulative returns on WML portfolios formed with 10%/20% fixed number cost 
strategy 

The plot depicts cumulative returns for simple momentum, MM and DM portfolios after imposing cost mitigation 
strategy 10%/20% and fixed number of stocks over the period 1981-2016. Panel A shows cumulative returns without 
transaction costs involved. Panel B shows cumulative return after the transaction costs which include bid-ask spreads 
estimated by Abdi and Ranaldo (2017), commission fees (different by years) and short-selling fees (1% per year). 

Panel A: without transaction costs involved 

  

Panel B: after transaction cost: bid-ask spreads + commission fees + short sale fees 
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transaction costs involved (compare the results for “Plain” in Table 4 to the results in Table 2). 

This is a striking result, which indicates that if investors utilize a simple momentum strategy 

without necessary attention to the transaction costs, the risk-adjusted returns on this portfolio will 

be lower than the risk-free rate (Sharpe ratio of simple momentum portfolio for monthly returns is 

-0.0053). This result also supports the idea proposed by Lesmond et al. (2004) that in reality, the 

momentum strategy does not generate excessive returns after considering transaction costs. If we 

impose volatility timing without explicitly addressing transaction costs, the Sharpe ratios are 

improved significantly versus the simple momentum (0.0324 and 0.0491 for MM and DM, 

respectively), but they are considerably lower than US Average Sharpe ratio (0.143) during the 

same period 1981-2016. 

Involving cost mitigation strategies leads to a sharp rise in returns and Sharpe ratios. Thus, for the 

simple momentum portfolios Sharpe ratio goes up from -0.0053 to 0.0535 with 10%/20% fixed 

number strategy. For MM and DM strategies, Sharpe ratios go up from 0.0324 and 0.0491 to 

0.1050 and 0.1257 respectively. However, even the highest Sharpe ratio of 0.1262 (DM strategy 

and 10%/30% fixed number cost mitigation strategy) falls behind the US average Sharpe ratio 

(0.143). 

We should also mention Maximum drawdown and its changes after volatility timing strategies 

implementation. This indicator goes down considerably as a result of volatility timing strategy 

implementation, indicating that maximum loss of the portfolios decreased, and the strategy has 

become less risky. Maximum drawdown for the simple WML portfolio is 0.94, while for MM and 

DM is 0.77 and 0.63 accordingly, which means a decrease by 18% to 33%. 

Appendix E contains the summary of the same indicators without the transaction costs and with 

the transaction costs including only bid-ask spreads.   
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Table 4. A summary of several indicators before and after applying volatility timing 
strategies and cost-mitigation strategies with transaction costs involved 

The table presents the summary of returns, Sharpe rations and Maximum drawdown for WML portfolios after 
implementing volatility timing strategies (MM, DM approach) and imposing different buy/hold cost mitigation 
techniques over the period 1981-2016. The cumulative returns are after transaction costs which include bid-ask spreads 
estimated by Abdi and Ranaldo (2017), commission fees (different by years) and short-selling fees (1% per year). 

  WML MM DM 

Plain 
Cumulative returns 0.5 2.7 4.9 

Sharpe ratio -0.0053    0.0324   0.0491 
Max drawdown 0.9355    0.7699    0.6323 

10%/20% 
Cumulative returns 3.7 26.1 52.8 

Sharpe ratio 0.0402    0.0923    0.1125 
Max drawdown 0.8676    0.7328    0.5149 

10%/30% 
Cumulative returns 5.0 39.4 65.3 

Sharpe ratio 0.0456    0.1059    0.1213 
Max drawdown 0.7968    0.6568    0.5703 

10%/20% 
fixed 

number 

Cumulative returns 5.1 42.8 92.9 
Sharpe ratio 0.0535    0.1050    0.1257 

Max drawdown 0.8628    0.7532    0.6095 
10%/30% 

fixed 
number 

Cumulative returns 3.1 39.2 97.6 
Sharpe ratio 0.0429    0.1026    0.1262 

Max drawdown 0.8963    0.7212    0.6748 

4.5. Robustness tests  

4.5.1. Restrictions on scaling weights 

When putting any restrictions on the optimal portfolio weights while applying volatility timing 

strategies (i.e., on the value of 𝓌( from equations (10) and (14)), we should be aware that even 

though the momentum crash problem is fixed, there is a lower gain in the portfolio returns during 

the stable periods since the portfolio weights cannot exceed the threshold. For instance, compared 

to Panel A in Figure 7 where the upper threshold value for scaling weights are set at 2, Panel A in 

Figure 8 shows that without upper bound for scaling weights, the cumulative returns by the end of 

2016 increase significantly from 10,622 to 27,019 for MM portfolios. Interestingly, the cumulative 

returns on DM portfolios fall remarkably from 16,733 (with an upper bound of 2) to 12,144 

(without upper bound). 
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Figure 8. Cumulative returns on WML portfolios without upper bound for scaling weights 

The figure shows the cumulative returns of the simple buy-and-hold, MM and DM portfolios without any restriction 
on the portfolio scaling weights over the period 1981-2016. Panel A demonstrates the cumulative returns without 
taking into account transaction costs while Panel B depicts the cost-adjusted cumulative returns when trading costs 
include bid-ask spreads, commission fees and short-selling fees (1% per year). 

Panel A: without the transaction cost involved 

 

Panel B: with the transaction costs involved: bid-ask spreads + commission fees + short sale fees 
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and in Figure 8). The aforementioned dramatic changes in the cumulative returns of the MM and 

DM portfolios, before and after the restriction is imposed on the scaling weights, question the 

feasibility of the unrestricted volatility timing strategies and justifies our decision to set an upper 

bound for the scaling weights. In order to keep the upper bound value not too low while preserving 

the feasibility of the strategies, we decided to choose the scaling bound value of 2 for our main 

analysis. 

Table 5.  The maximum scaling weights of the WML portfolios without the upper bound 

The table presents the maximum values of the scaling weights (without any restriction on them) of both MM and DM 
portfolios before and after implementing 10%/20% fixed number cost strategy. 

Strategy Max scaling weight without restrictions 
DM 9.95 

DM 10%/20% Fixed number 10.04 
MM 8.47 

MM 10%/20% Fixed number 8.07 

We also discuss the possibility of using a smaller upper bound. We expect that when we decrease 

the upper bound value, the additional gains in returns during good times decline. Hence, we decide 

to lower the upper bound of the scaling weights from 2 to 1.5 and take a look at the cumulative 

returns on the WML portfolios shown in Figure 9. It can be easily seen that the returns on WML 

portfolios for two momentum strategies show a big fall from above 10,000 (see Panel A Figure 7) 

to about 2,900 by the end of 2016 (see Panel A Figure 9). Notably, the drop in WML returns for 

DM strategy is larger than that for MM approach. In addition, the cumulative returns from the two 

volatility timing strategies are closer to each other. Thus, we predict that if the scaling bound gets 

smaller and approaches 1, the returns on WML portfolios of two volatility timing strategies not 

only become the same but also converge the returns on the simple buy-and-hold WML portfolio. 

We observe similar patterns after taking the transaction costs into consideration (see Panel B in 

Figure 7 and in Figure 9). 
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Figure 9. Cumulative returns on WML portfolios when combining both volatility timing 
strategies and cost strategy (10%/20% fixed number) with scaling bound of 1.5 

The plots depict cumulative returns for simple momentum, MM and DM portfolios after imposing cost mitigation 
strategy 10%/20% and fixed number of stocks over the period 1981-2016. Panel A shows cumulative returns without 
transaction costs involved. Panel B shows cumulative return after the transaction costs which include bid-ask spreads 
estimated by Abdi and Ranaldo (2017), commission fees (different by years) and short-selling fees (1% per year). 
Noticeably, the upper threshold on the scaling factor is 1.5 for this figure compared to 2 in Figure 7. 

Panel A: no transaction costs involved 

 

Panel B: after transaction costs: bid-ask spreads + commission fees + short sale fees 
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4.5.2. Break-even commission fees  

As shown in previous sections, when transaction costs include both bid-ask spread estimates and 

commission fees, we observe a remarkable fall in the returns on the WML portfolios. However, 

with the implementation of the buy/hold cost-mitigation strategies, the returns on the volatility-

managed WML portfolios still stay positive. Since the commission fees for the US markets take 

different values in various studies, we decide to do a further analysis on the level of commission 

fee at which the zero-cost WML portfolios break even when trading costs include  the same bid-

ask spread estimates by Abdi and Ranaldo (2017) and commission fees. The results are shown in 

the below table. 

Figure 10. The break-even commission fees for the zero-cost WML portfolios before and 
after applying volatility timing and cost mitigation strategies, bps 

The figure shows which commission fees should be added to bid-ask spread in order to break-even for different 
momentum portfolios (simple buy-and-hold momentum portfolio, MM, DM) over the period 1981-2016. 

 

It is noteworthy that the results displayed in the table are the one-way commission fees per trade 

and are assumed to remain unchanged for the period 1981-2016. Compared to the commission fees 

shown in Table 1, the values shown in Table 6, on average, are much higher, except for the break-

even commission fee for the simple buy-and-hold WML portfolio without cost-mitigation 

strategies. In addition, with the implementation of the cost mitigation strategies, the break-even 

levels increase obviously, once again supporting our finding that the buy/hold strategies help 

recover the returns that have been wiped away by the large trading costs of both the momentum 

and volatility timing strategies.  
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5. Conclusions 

Our paper investigates two volatility timing strategies which are suggested by Moreira and Muir 

(2017) and Daniel and Moskowitz (2016) so as to alleviate the momentum crashes problem. The 

basic idea of the named strategies is to scale up or down momentum portfolio weights when the 

market is in calm and volatile states accordingly. The results of implementing two volatility timing 

strategies support the conclusions made earlier by the authors; the problem of momentum crashes 

is effectively solved, and the momentum returns subsequently go up compared to simple 

momentum strategy. The cumulative returns by the end of 2016 are 204, 22,157 and 33,159 for 

simple buy-and-hold momentum strategy, MM and DM volatility timing strategies respectively. 

Moreover, the Sharpe ratio goes up from 0.15 to 0.25 and 0.26 and the distribution of the returns 

become more normal with the implementation of volatility timing strategies. 

In terms of transaction costs, we decided to investigate three versions of them: the first version 

includes only bid-ask spread estimates made by Abdi and Ranaldo (2017); the second version 

consists of both the first one and different commission fees by years (which nicely reflects the 

downward trend in total transaction costs over time); and the third version involves both the second 

one and an annual 1% commission fee only for short positions (which reflects that short positions 

suffer from higher transaction costs). Additional commissions do not change the picture much; 

after involving transaction costs, the momentum returns drop significantly by several orders of 

magnitude. Thus, if we include only bid-ask spreads, the cumulative return by the end of 2016 for 

the simple momentum strategy go down from 204 to 1.6. Having said that, we should note that 

though volatility timing strategies perform by large distance better than the simple momentum 

strategy, even after involving transaction costs (estimated with only bid-ask spreads) with the final 

cumulative returns of 21 and 37 for MM and DM strategies respectively, these figures do not seem 

extraordinarily high as before (without the transaction costs). Imposing additional commission fees 

and short-selling fees makes returns go down even steeper, to 2.7 and 4.9 for MM and DM 

momentum portfolios respectively and even not exceeding one for the simple momentum one. We 

should emphasize here that there has been no agreement about whether the momentum strategy 

pays off after the transaction costs. Some authors (Lesmond et al. (2004)) say that the strategy pays 

off anyway, others (Barroso et al. (2015), Moreira and Muir (2017)) are more inclined to think that 

the high turnover associated with the momentum strategy wipes away the returns. Our view is that 



 38 

though simple momentum strategy’s returns after the transaction costs are questionable, additional 

techniques which not only cure momentum crashes but also mitigate high transaction costs are 

able to partly recover momentum returns.  

Talking about the transaction costs mitigation strategies, we turned our attention to Novy-Marx 

and Velikov (2016)’s technique, which is based on a simple rule and helps decrease turnover of 

the portfolio significantly. We tested different modifications of the strategy (10%/20% and fixed 

number of stocks, 10%/30% and 10%/30% and fixed number of stocks) and chose the combination 

of 10%/20% and fixed number of stocks as it provides the best trade-off between the turnover 

reduction and decrease in portfolio returns. For example, for the simple momentum strategy, WML 

portfolio’s final cumulative return (without the transaction costs) goes down from 204 to 145 after 

implementing cost mitigation technique, however at the same time the average turnover also 

decreases from 1.6 to 0.8. The consequences of imposing 10%/20% and fixed number cost 

mitigation strategy on volatility-managed portfolios are similar; the final cumulative returns on 

MM and DM momentum portfolios without transaction costs fall from 22,157 to 10,622, and from 

35,159 to 16,733 respectively. Meanwhile, the average turnover declines from 2.3 to 1.4 for the 

former and from 2.3 to 1.2 for the latter. 

When taking into account the transaction costs, the imposing of cost mitigation strategies leads to 

a boost in the final cumulative returns by 9-10 times. The final cumulative returns (after the highest 

transaction costs) for MM strategy increases from 2.7 to 42.8 after implementing the cost 

mitigation technique and for DM strategy, the comparison is 4.9 vs. 92.9. Similarly, the simple 

momentum strategy’s cumulative return goes up from 0.5 to 5.1. 

For further investigations, we believe that other volatility timing strategies can be explored, such 

as Barroso et al (2014)’s strategy or the adjusted approach of Moreira and Muir (2017) suggested 

by Chen et al (2019). Researchers could also consider looking at the transaction costs more 

attentively, testing other estimates of transaction costs and combining momentum strategy with 

other cost mitigation techniques (e.g. including the stocks based on their bid-ask spreads). 

Regarding international evidence, some authors (Fan et al (2018), Zaremba et al. (2018), master 

thesis by Ye and Österberg (2018)) checked results for consistency across the markets, however 

there is still room for additional analysis here. 
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Appendixes 

A. 

The first table presents the values of the constants 𝜆 and 𝑐 shown in Equation (10) and (14) when 

we combine different versions of the buy/hold spread rule with Daniel and Moskowitz (2016)’s 

and Moreira and Muir (2017)’s volatility timing strategies respectively.  

Table A1. Values of 𝝀 and 𝒄 in Equation (10) and (14) before and after applying cost 

mitigation strategies 

Buy/hold cost mitigation strategies 𝝀 𝒄 

Simple buy-and-hold 2.5133 0.0025 

10%/20% 2.0689 0.0023 

10%/30% 1.9712 0.0022 

10%/20% + fixed number 2.2327 0.0021 

10%/30% + fixed number 2.3115 0.0022 

 

The second table shows the results of the regression model (13). 

Table A2. Regression results of model (13) 

Estimate WML 10%/20% 10%/30% 10%/20%+FN 10%/30%+FN 
𝜸𝟎� 0.0088 0.0068 0.0063 0.0063 0.0081 

t-stat 0.0048 0.0047 0.0043 0.0044 0.0051 
𝜸𝑩�  -0.0064 -0.0095 -0.0088 -0.0082 -0.0135 

t-stat 1.0092 0.9861 0.9019 0.9309 1.0763 
𝜸𝝈𝒎𝟐�  63.1815 50.6076 45.2640 60.9224 46.8633 
t-stat 0.3881 0.3988 0.4399 0.4254 0.3585 
𝜸£𝒏𝒕�  -24.9061 -12.1499 -13.1695 -25.0207 -9.8968 
t-stat 0.0069 0.0059 0.0050 0.0071 0.0060 

 

  



 

B. 

In Appendix B, we present the 12-month moving average turnovers on the zero-investment WML 

portfolios when we combine cost mitigation strategies with MM and DM volatility timing 

strategies respectively. 

Figure B. Moving average turnovers for volatility timing strategies 

Panel A: MM volatility timing strategy 

 
Panel B: DM volatility timing strategy 

 
Strikingly there are longer periods of higher and lower turnovers for volatility timing strategies 

compared with the plain WML strategy turnover.  
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C. 

Appendix C shows the returns accumulated of the zero-cost WML portfolios before and after 

implementing both cost mitigation and volatility timing strategies without taking into account 

transaction costs over the sample period. 

Figure C. Cumulative returns on WML portfolios without transaction costs  

Panel A: MM volatility timing strategy 

 
Panel B: DM volatility timing strategy 
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D. 

Similar to Appendix C, Appendix D illustrates the cumulative returns on the zero-investment 

WML portfolios before and after applying cost mitigation and volatility timing strategies from Jan 

1981 to Dec 2016. However, figures in Appendix D show returns after involving transaction costs, 

which include bid-ask spreads and commission fees. 

Figure D. Cumulative returns on WML portfolios after involving transaction costs 

Panel A: MM volatility timing strategy 

 

Panel B: DM volatility timing strategy 

 
As can be easily observed, for both DM and MM strategies, taking into account transaction costs 

reduces the returns on the WML portfolios remarkably. However, with the implementation of cost 

mitigation strategies, the returns are noticeably recovered but still significantly lower than those 

without transaction costs.   
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E. 

In Appendix E, we summarize the cumulative returns as well as two key performance measures 

(Sharpe Ratio and Maximum Drawdown) of the WML portfolios before and after applying cost 

mitigation and volatility timing strategies without transaction costs (Table E1) and with transaction 

costs including only bid-ask spread estimates introduced by Abdi and Ranaldo (2017) (Table E2). 

Table E1. A summary of several indicators before and after applying volatility timing 
strategies and cost-mitigation strategies without transaction costs  

  WML MM DM 

Plain 
Cumulative returns 204.4 22.157.4 35.158.8 

Sharpe ratio 0.1486    0.2663    0.2767 
Max drawdown 0.9355    0.7699    0.6323 

10%/20% 
Cumulative returns 97.4 5.942.1 8.669.0 

Sharpe ratio 0.1330    0.2482    0.2580 
Max drawdown 0.8052    0.5779    0.3540 

10%/30% 
Cumulative returns 63.8 3.355.1 4.097.3 

Sharpe ratio 0.1231    0.2427    0.2482 
Max drawdown 0.7567    0.5603    0.4315 

10%/20% 
fixed 

number 

Cumulative returns 144.6 10.622.3 16.733.1 
Sharpe ratio 0.1417    0.2523    0.2636 

Max drawdown 0.7895    0.6341    0.4618 
10%/30% 

fixed 
number 

Cumulative returns 60.5 6.459.2 10.992.4 
Sharpe ratio 0.1189    0.2363    0.2495 

Max drawdown 0.7980    0.6308    0.5258 
 

If the returns and performance measure are calculated without involving transaction costs, then 

after implementing cost mitigation strategies they go down considerably.  

  



 

Table E2. A summary of several indicators before and after applying volatility timing 
strategies and cost-mitigation strategies with transaction costs (only bid-ask spreads) 

  WML MM DM 

Plain 
Cumulative returns 1.6 21.1 36.8 

Sharpe ratio 0.0268    0.0864    0.1011 
Max drawdown 0.9195    0.7443    0.5882 

10%/20% 
Cumulative returns 7.5 95.3 176.8 

Sharpe ratio 0.0601    0.1298    0.1473 
Max drawdown 0.8510    0.6956    0.4816 

10%/30% 
Cumulative returns 8.8 116.1 178.0 

Sharpe ratio 0.0624    0.1395    0.1523 
Max drawdown 0.7801    0.6376    0.5368 

10%/20% 
fixed 

number 

Cumulative returns 9.6 140.8 282.6 
Sharpe ratio 0.0705    0.1372    0.1555 

Max drawdown 0.8463    0.7228    0.5836 
10%/30% 

fixed 
number 

Cumulative returns 5.4 113.2 262.8 
Sharpe ratio 0.0569    0.1306    0.1523 

Max drawdown 0.8805    0.7051    0.6525 

From the table, we can see that the patterns are similar to what we found in Table 4. 

 


