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Abstract: 

This thesis investigates whether the Swedish stock market shows signs of weak form efficiency 

between January 2012 and January 2019. Weekly data is gathered from the OMXSPI and from 

three indices of different capitalization segments, namely Large cap, Mid cap and Small cap. 

The OMXSPI represents the whole market and the segments are used to see if there are possible 

patterns between size and efficiency. Each index is tested for the random walk hypothesis by 

employment of the Ljung-Box autocorrelation test, the runs test, the variance ratio test, the 

multiple variance ratio test, Wright’s test, the wild bootstrap methodology and the joint rank 

and signs test. The tests are complementary to cover for possible weaknesses.  

      We find that the whole market is following a random walk, and this indicates that the 

Swedish market is weak form efficient. Contrasted with earlier studies, this study gives the 

strongest indications of efficiency. Our results, however, do not establish that the market is 

weak form efficient. Therefore, we propose testing if it is possible to set up trading rules that 

generate excess returns on the Swedish market.  

      There are indications of a relationship between size and efficiency on the Swedish market. 

It is not established if this is caused by an inefficiency in the Small cap segment or not. We 

propose further studies to investigate whether this is due to less efficiency for small stocks, 

spurious autocorrelations caused by infrequent trading or both.  
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1. Introduction 

1.1 Background 

The efficient market hypothesis (hereafter EMH) is an old hypothesis, still relevant today. It 

states that information cannot be used to consistently make excess returns on asset markets, 

which has great implications for all members of society. The hypothesis affects investors, policy 

makers and portfolio managers. It most likely affects your pension. Therefore, this subject 

should be of interest to everyone.   

      Kendall (1953) suggested in an early study that asset prices behave like a wandering series. 

He suggested that price changes in a homogenous price series are independent of earlier 

changes, which is practically the definition of the random walk hypothesis (hereafter RWH). 

Fama (1970) reviewed, summarized and expanded on the existing literature. He also made the 

distinction between three types of the EMH, first mentioned by Roberts (1967), widely known. 

The distinctions are: weak form, semi-strong form and strong form efficiency. The weak form 

EMH answers if historical information is profitable, the semi-strong form answers if publicly 

available information is profitable and the strong form answers if private information is 

profitable for investors.  

      Many early studies were generally in favor of the EMH, leading the theory to become 

generally accepted in academic circles. Anomalies started to show up in later studies, evidence 

which was enough for some to reject the notion of efficient markets. Others did not see the 

results as evidence against market efficiency per se. They attributed the anomalies to rejections 

of the underlying theory used in making the EMH testable instead of rejections of the EMH 

itself. Those that reject the notion of efficient markets, generally ascribe the anomalies to 

different behavioral aspects, for example over- or underreaction to information by investors 

(De Bondt & Thaler, 1985; De Bondt & Thaler, 1987) or social dynamics in the society (Shiller, 

Fischer & Friedman, 1984). 

      There exists a lot of research on the EMH, especially on the weak form. The results are 

often contradictory (see the literature review), where time and methods are factors that lead to 

different conclusions. This is the case for the Swedish market, which this study covers. Some 

studies have concluded that the Swedish market is inefficient, while other studies show 

indications of efficiency. Since this is such an important topic and the studies on the Swedish 
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market give different conclusions, this study aims to bring newer insight on the efficiency of 

the Swedish market, by using more recent data and newer methods than previous studies.  

 

1.2 Purpose and Research Question 

This thesis aims to investigate whether the Swedish stock market shows evidence of weak form 

efficiency during the period 2012-01-01 – 2019-01-01. A set of statistical tests are used for this 

purpose.  

      The tests are applied to weekly data on the Swedish stock index OMXSPI, which is a value 

weighted price index of all stocks listed on the OMX Stockholm. Additionally, the tests are 

applied to indices of different capitalization from stocks on the OMXSPI: the OMXSSCPI 

(Small cap), the OMXSMCPI (Mid cap) and the OMXSLCPI (Large cap).  

      The question this paper seeks to answer is: 

• Does the Swedish stock market and its three segments of different index 

capitalization show signs of weak form efficiency from 2012 to 2019?  

The research question will be answered primarily by the tests on respective index. The RWH 

is the means by which we measure efficiency, and thus the null hypothesis is:  

• H0: The indices follow a random walk, and are therefore assumed to be weak form 

efficient 

And the alternative hypothesis is:  

• H1: The indices do not follow a random walk, and this implies that they are inefficient.  

 

1.3 Delimitations 

There are many ways to test the EMH, which means that it is not possible to cover all angles in 

a limited period of time. Therefore, it is necessary to limit the scope of this study.  

      Since weak form efficiency is a condition for the stricter forms of efficiency and the 

literature about the Swedish market is not conclusive for tests of weak form efficiency, this 

study aims to test the weak form EMH on the Swedish stock market.  

      There are different ways to test the weak form EMH. It can be done either by mechanical 

trading rules or by statistical tests. The former investigates if it is possible to set up a strategy 

that generates excess returns and the latter tests if the RWH holds. The statistical tests can be 

divided into two groups: unit root tests and tests for independence. Campbell, Lo and 
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MacKinlay (1997, p.65) mention that even though unit roots are a condition for a random walk, 

the tests cannot answer if there is predictability in the time series. Under the null hypothesis of 

a unit root, it may be possible that the first difference of the time series is predictable. Therefore, 

since the EMH is primarily concerned with predictability, this study’s authors choose to focus 

only on statistical test concerned with the RWH.  

      These tests will be employed on the whole market and on three segments differing in respect 

to capitalization size. A discussion will follow if there are some patterns regarding size and 

efficiency, but this study will not examine that relationship in a formal, statistical way.  

 

2. Theory and Literature Review 

2.1 Efficient Market Hypothesis 

The EMH states that markets are efficient with respect to information. Fama (1970) defines 

efficiency as when a security fully reflects all available information. The implication is that 

trading based on an information set cannot consistently generate excess returns. This concept 

as stated by Fama is quite vague and needs some definitions in order to make testing of 

efficiency possible. It is done by using different levels of efficiency, with the information set 

distinguishing the levels. Building on the framework of Roberts (1967), Fama defines the levels 

as weak form, semi-strong form and strong form efficiency.  

      The information set in the weak form EMH is historical price information. This implies that 

stock market prices move randomly and only react to new price information. Therefore, this 

form is often associated with the random walk hypothesis and unit roots. If a market is weak 

form efficient it is impossible to consistently make excess returns based on historical 

information alone. The practical implication is that weak form efficient markets make technical 

analysis useless (technical analysis is the practice of analyzing signals and patterns from the 

market in order to make high returns). However, if a market is weak form efficient, it might 

still be possible to earn excess returns by using other sources of information, and the practice 

of fundamental analysis might still be profitable (fundamental analysis is the practice of 

analyzing assets in order to find mispriced assets, thus yielding excess returns).  

      The information set in the semi-strong form EMH is public information, which includes 

announced earnings, dividends, mergers, scandals et cetera. It also includes all sources of 
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information contained in the weak form EMH. If a market is semi-strong efficient, fundamental 

analysis is not profitable. 

      The strictest form of efficiency has not gained much attention. The information set in this 

category is all information from the weaker forms and private information. If a market is strong-

form efficient it is impossible to make excess returns, even with monopoly access to 

information.  

      It is necessary to give the optimal market conditions for an efficient market. In an efficient 

market there should be no transaction costs, all information should be available to all investors 

for free and all investors should interpret the information exactly in the same way. Fama (1970) 

states that these conditions are sufficient for market efficiency but not necessary, because 

violations of the sufficient conditions do not necessarily violate market efficiency. He notes, 

however, that violations of these conditions are potential threats to the EMH and are something 

to be aware of. Related to the market conditions is a note by Lo and MacKinlay (1988). They 

mention that smaller stocks may be falsely rejected because of a correlation that is introduced 

in the time series because of non-trading. Large cap stocks incorporate information first, but 

Small cap stocks may need longer time for prices to adjust, because the information is 

incorporated through trading and small stocks are less frequently traded. This could result in a 

lag being introduced that could cause spurious correlations, which could lead to a false rejection 

of the RWH.  

      Since this study is focused on the weak form EMH, some things must be noted. It is difficult 

to test the EMH and conclude that a market is either efficient or inefficient. First, there is a 

difficulty called the “joint hypothesis problem” which arises due to the fact that all tests of the 

EMH need an equilibrium model to be able to calculate excess returns. Therefore, the tests 

jointly test the EMH and the equilibrium model. It is thus difficult to be certain if the reason for 

rejection lies in a market inefficiency or in the equilibrium model. Second, tests of the EMH 

concentrated on testing the RWH can be misleading because the RWH is stricter than 

necessarily implied by the EMH. A solution to this will be given in the section about the RWH, 

where the RWH is divided into three different levels. Even though the assumptions of the RWH 

are relaxed, it is nonetheless in harmony with tests of the EMH (Campbell et al., 1997, p.33).  
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2.2 Martingale hypothesis 

A martingale process can be described in terms of a fair game. Consider a game of dice between 

two players. Given that the dice are not manipulated, both players have the same odds at 

receiving a high score. No one has an advantage over the other, it is a fair game.  

      If 𝑃𝑡 represents a stochastic process, a martingale process is as follows:  

𝐸(𝑃𝑡+1|𝑃𝑡 , 𝑃𝑡−1, … ) = 𝑃𝑡 . (2.1) 

This expression says that the best estimate of the future is the value today. In terms of asset 

prices, Equation (2.1) states that the best prediction of the future price, conditional on all 

historical prices, is the present price. In a world where the only available information is 

historical price data, (2.1) constitutes a fair game for all investors. It does not matter if rich 

people could buy all historical information available and the poor could only know the price of 

today. Given that the martingale hypothesis holds, these conditions would still constitute a fair 

game.  

      The martingale hypothesis is often tested instead of the RWH when testing the weak form 

EMH. One objection raised is that the martingale hypothesis does not account for risk. This 

might be a weakness, because Leroy (1973) demonstrates that the martingale property is 

violated when investors are risk averse. However, he emphasizes that there are uncertainties as 

to how important the violation is. Thus, Leroy concludes that the martingale hypothesis can be 

a good approximation of the behavior of returns in an efficient market despite existing risk 

aversion among investors. Campbell et al. (1997, p.31) mention the study above when noticing 

the flaws with the martingale hypothesis. However, they point out that the hypothesis led to the 

formulation of the RWH, implying its usefulness.  

 

2.3 Random Walk Hypothesis 

The random walk hypothesis states that consecutive price changes are independent and 

identically distributed (hereafter iid). The RWH is a form of the martingale hypothesis but 

stricter, because the martingale hypothesis states that the expected price of tomorrow is the 

price of today while the RWH demands that the distribution is identical for all lags.  

      A random walk with drift is defined as: 

𝑝𝑡 = 𝜇 + 𝑝𝑡−1 + 𝜖𝑡 (2.2) 



6 

 

where 𝑝 is the natural logarithm of the price, the subscript t denotes time, 𝜇 is a drift parameter 

and 𝜖𝑡 is the error term which is iid with a mean of 0 and a variance of 𝜎2. Equation (2.2) can 

be rewritten as a first difference to illustrate the concept of a random walk:  

∆𝑝𝑡 =  𝜇 + 𝜖𝑡 . (2.3) 

As Equation (2.3) shows, the only thing that changes the price is the drift parameter (𝜇) and 

random shocks (𝜖𝑡). The series will therefore wander randomly and unpredictably.  

       Because the consensus is that financial data rarely has an identical distribution over time, 

the RWH in its original form is too strict (Campbell et al., 1997, p.53). However, this does not 

make the concept of random walks as tests for market efficiency useless. It is possible to 

formulate a random walk model with less restrictive assumptions. Campbell et al. (1997, pp.28-

33) divide the random walk model into three levels: RW1, RW2 and RW3. RW1 is the pure 

random walk as described above, following an iid. RW2 is independent but not identically 

distributed, which allows the error terms to be heteroscedastic, a weaker condition than the 

RW1. RW3 is the weakest form of random walk, allowing dependencies in the error term, 

except for linear dependence. For example, 𝐶𝑜𝑣(𝜖𝑡 , 𝜖𝑡−𝑞) ≠ 0 is not allowed but 

𝐶𝑜𝑣(𝜖𝑡
2, 𝜖𝑡−𝑞

2 ) ≠ 0 is. Hence, the RW3 is neither strictly independent nor identically distributed 

but it is linearly independent.  

      The RW3 is the form of the RWH mostly tested in the literature, and the one most tests in 

this study assumes.  

 

2.4 Literature Review 

There exists an extensive literature about testing the EMH, especially concerning the weak 

form. Most recent studies are concerned with emerging markets, but there are also studies about 

developed markets. To get a broad picture about the inconsistencies in the conclusions that can 

be found both in emerging and developed markets, this review presents studies conducted on 

both kinds of markets. Studies on emerging markets are followed by some studies of developed 

European markets before covering the studies in Sweden. 

     The tests in Latin America show conflicting results. Urrutia (1995) and Charles and Darné 

(2009) show inefficiencies in the Brazilian, Argentinian, Mexican and Chilean stock markets. 

Grieb and Reyes (1999) only test the Brazilian and Mexican markets but reject efficiency in 

both. Chadhuri and Wu (2003) test many emerging markets from different continents. They 

include the countries mentioned above: Brazil, Argentina, Mexico and Chile. The tests show 
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inefficiencies in the Brazilian and Argentinian markets but fail to reject efficiency for the 

Mexican and Chilean markets. Ojah (1999), in contrast, fails to reject efficiency for all the 

markets.  

      The studies of Asian markets neither give a unanimous answer as to which markets are 

efficient and inefficient. Huang (1995) shows that the markets of Japan, Indonesia and Taiwan 

follow a random walk while Hong Kong, South Korea, Malaysia, the Philippines, Singapore 

and Thailand do not. Hoque, Kim and Pyun (2007) reject efficiency for Indonesia, Malaysia, 

the Philippines, Singapore, Thailand and Hong Kong, while they do not reject efficiency for 

South Korea and Taiwan. Kim and Shamsuddin (2008) show that generally Hong Kong, Japan, 

South Korea, Singapore and Taiwan are efficient and Indonesia, Malaysia and the Philippines 

are inefficient. Thailand varies between sub-samples and it seems to become more efficient 

after 1997. To conclude, there are some countries (Malaysia, the Philippines etc.) that 

consistently reject efficiency, while other countries vary between studies (Hong Kong, 

Indonesia etc.) and some are consistently unable to reject efficiency (South Korea, Taiwan).  

      There are many tests of European emerging markets (see, for example Smith and Ryoo, 

2003; Smith, 2009; Guidi, Gupta & Maheshwari, 2011; Dragota and Tilica, 2014), but few that 

focus on developed countries in Europe. Of the few that focus on the developed countries, 

Worthington and Higgs (2004) test the weak form EMH on twenty European markets, of whom 

sixteen are considered developed. They perform an autocorrelation test, the runs test, unit root 

tests (ADF, PP and KPSS) and the variance ratio (hereafter VR) test by Lo and MacKinlay 

(1988) (hereafter LM). The results from the autocorrelation test and runs test show that 

Germany, Ireland, the Netherlands, and Portugal fail to reject. Concerning the LM-tests, 

Worthington and Higgs find that Germany, Ireland, Sweden, Portugal and the UK fail to reject 

while France, Finland, the Netherlands, Norway and Spain satisfy some requirements of a 

random walk. Specifically, they are able to reject the homoscedastic statistic but not the 

heteroscedastic one. 

      Borges (2010) is the author of the other test on developed European markets. She tests the 

random walk hypothesis on the markets of UK, France, Germany, Spain, Portugal and Greece, 

by focusing on the martingale properties of the time series. The tests she employs are the runs 

test, the LM-test, Chow and Denning’s (1993) multiple variance ratio test (hereafter CD), the 

wild bootstrap methodology (hereafter WBM) by Kim (2006), and the joint sign statistic by 

Belaire-Franch and Contreras (2004) (hereafter BFC). Greece and Portugal show significant 

positive autocorrelations, but these become less severe when considering a subperiod from 
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2003-2007, in which the two countries had become developed instead of emerging as opposed 

to earlier periods (1993-2003). UK and France are also shown to be inefficient, and even more 

inefficient in the later subperiod (2003-2007). All countries reject the EMH by some method, 

but Spain is the most effective country overall, and Germany the second most effective among 

the countries investigated.  

      Urquhart (2014) tests the impact of the introduction of the Euro on ten developed European 

countries, of which three countries have their own currencies (UK, Sweden and Norway). He 

uses the autocorrelation test, runs test, LM-test, CD-test, the rank and signs test by Wright 

(2000) (hereafter Wright’s) and the non-parametric BDS-test. The data is from 1988-2012, with 

sub-samples from 1988-1998 and 1999-2012. Generally, the Netherlands and Germany show 

high efficiency while Ireland and Italy show inefficiency for all time periods. France becomes 

inefficient after the introduction of the Euro, while Finland and Spain become efficient. Sweden 

and Norway move towards being more efficient, but with mixed results from different tests, 

which means that at least some tests reject the RWH. The tests of the European developed 

markets show that developed countries are not necessarily efficient. Worthington and Higgs 

(2004) and Urquhart include Sweden, but there are more studies that likewise do.  

      Much has happened since the 70-90s when the first studies on the Swedish market was 

conducted, but it can be profitable to have some knowledge about the results from those 

anyways. Jennergren and Korsvold (1974) study the random walk properties on some Swedish 

and Norwegian stocks by using the runs test and autocorrelation test. Their conclusion is that 

although most stocks reject a random walk, it does not necessarily mean that they are inefficient. 

Berglund, Wahlroos and Örnmark (1983) test the Finnish, Swedish, Danish and Norwegian 

markets by using the autocorrelation test, the runs test and a technical trading strategy called 

“filter rules”. All countries show serial correlations in the time series. However, the results 

using the filter rules indicate that the inefficiencies are not large enough for an investor to make 

excess returns. Thus, the authors conclude that they cannot reject efficiency. Frennberg and 

Hansson (1993) conducted an extensive study on a Swedish stock index ranging from 1919 to 

1990. They were the first ones to use the LM-test on the Swedish market. The results show a 

rejection of the RWH. However, they note the low R2 value and conclude that it might not be 

possible to gain excess returns, even though the data is serially correlated. Metghalchi, Chang 

and Marcucci (2008) answer that question by testing some trading rules on the Swedish stock 

index between 1986 and 2004. They find that their simple methods could be used during this 

period to gain excess returns.  
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      There are, to our knowledge, two more recent studies on the Swedish market. Shaker (2013) 

tests the efficiency of the Swedish and Finnish stock indices OMXS30 and OMXH25 between 

2003 and 2013. Using the autocorrelation test, a unit root test and the LM-test, he finds that 

neither market follows a random walk. The most recent study (Graham, Peltomäki & 

Sturludóttir, 2015) is primarily focused on the Icelandic market, but it includes the remaining 

Nordic countries for comparison. The primary focus is on how capital controls affect market 

efficiency, but nevertheless, the same methods that are relevant for weak form efficiency are 

used. They are the following: the LM-test, the CD-test, the WBM and the BFC-test. This study’s 

data is the most recent, covering a period from 1993 to 2013. The results indicate that for the 

full period, the Swedish market is efficient, while it is not in the subsample of 2008-2013.  

      As demonstrated, there is contradictory evidence concerning the efficiency of the Swedish 

market. Some studies (Jennergren & Korsvold, 1974; Frennberg & Hansson, 1993; Metghalchi 

et al., 2008; Shaker, 2013) seem to suggest that the Swedish market is inefficient, other studies 

(Worthington & Higgs, 2004; Graham et al., 2015) seem to point to the opposite conclusion 

while some (Berglund et al., 1983; Urquhart 2014) are not clear or conclusive in their 

conclusions. This study aims to contribute to the conversation by using more recent techniques 

and data than many studies.   

 

3. Data and Method 

3.1 Data 

The data selected for this paper is weekly data covering the period from 2012-01-01 to 2019-

01-01. Following Lo and MacKinlay (1988) we use closing prices from Wednesdays. If data 

from Wednesday is missing Thursday is chosen. If Thursday is missing, Tuesday is used, and 

if all three are missing an average between the prior observation and the following observation 

is used. The reason why we choose weekly data is to eliminate biases associated with daily 

prices, for example the day-of-the-week effect and non-trading. These biases are less prominent 

with weekly data (Lo and MacKinlay, 1988). Weekly data is preferred over monthly because 

monthly data would lose more observations than desirable.  

      The indices chosen are the OMXSPI, which is a price index of all stocks listed on the 

Nasdaq Stockholm and the indices of Large cap, Mid cap and Small cap companies on the 
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OMXSPI (OMXLSCPI, OMXSMCPI and OMXSSCPI). The Large cap segment includes 

companies with a market value over €1 billion, the Mid cap segment includes companies with 

a market value between €150 million and €1 billion and the Small cap segment includes 

companies with a market value less than €150 million. All data is collected from Nasdaq OMX 

Nordic’s web page (Nasdaq, 2019).   

      Log returns are calculated as: 

𝑥𝑡 = 𝑝𝑡 − 𝑝𝑡−1 (3.1) 

where 𝑥𝑡 is the return at time period t, 𝑝𝑡  and 𝑝𝑡−1 are the natural logarithm of the prices at t 

and t–1. 

      The statistical software “R” is used in all calculations (R Core Team, 2019). All tests that 

fall under section 3.2.3 are employed by a package developed by Kim (2014). Other packages 

used are by Komsta and Novometsky (2015) and Caero and Mateus (2014) in addition to the 

standard packages.  

 

3.2 Methods 

3.2.1 Autocorrelation and Ljung-Box’s Q 

If a market is weak form efficient, there is by definition no significant serial correlation present 

in the data. For this reason, this paper tests the return series for autocorrelations. The 

portmanteau test by Ljung and Box (1978) (hereafter Ljung-Box) is used to formally detect 

autocorrelation in the return series. Specifically, it answers whether the return series follows a 

RW1.   

      The autocorrelation coefficient 𝜌𝑞  is given by: 

𝜌𝑞 =
𝐶𝑜𝑣(𝑥𝑡 , 𝑥𝑡−𝑞)

𝑉𝑎𝑟(𝑥𝑡)
, (3.2) 

where 𝑥𝑡 denotes the present return and 𝑥𝑡−𝑞 denotes the return at lag q. If the correlation 

coefficients are statistically different from zero, there is a dependency between the present 

return and the return of the previous period. The implication is that the return series is dependent 

and it might be possible to predict future returns based on it.   

      The Ljung-Box portmanteau test is used to test the joint hypothesis that all correlations are 

simultaneously zero for all lags (𝜌1 = 𝜌2 = ⋯ = 𝜌𝑚 = 0). It is based on the Q-statistic by Box 

and Pierce (1970) but is superior for small samples as it more precisely follows a chi-square 
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distribution. If the null hypothesis is rejected, serial correlation exists in the data which implies 

that the market violates a random walk. The test statistic, Q, is expressed as follows:  

𝑄 = 𝑛(𝑛 + 2) ∑
𝜌𝑞

2

(𝑛 − 𝑞)

𝑚

𝑞=1

, (3.3) 

where n denotes the number of observations, m is the maximum number of lags, q is the present 

lag and 𝜌𝑞
2
 is the squared correlation coefficient at lag q.  

      Care should be taken, according to Campbell et al. (1997, p.47), when choosing m. If the 

maximum level is too low, high order correlations will be missed. If it is too high, the test loses 

power. Other studies use around 10-12 lags, and since this study uses weekly data which 

includes fewer observations than daily data, the choice falls on the lowest number, 10.  

 

3.2.2 Runs test 

The runs test is a non-parametric test designed to detect serial independency in a return series. 

In other words, it tests if the change in returns are random. The definition of a run is the 

sequence of successive changes in returns. These can be either positive or negative. For 

example, the sequence “+ + – + – – – ++” consists of five runs, three of which are positive and 

two negative.  

      The test assumes that the data series is random if the number of observed runs R is close to 

the number of expected runs m. If the test rejects, then there is non-randomness in the return-

series. The expected number of runs m are computed by the following equation:  

𝑚 =
2𝑁+𝑁−

𝑁
+ 1 (3.4) 

where N+ is the number of positive runs, N– is the number of negative runs and N is the sum of 

N+ and N–. The standard deviation is:  

𝜎𝑀 = √
2𝑁+𝑁−(2𝑁+𝑁− − 𝑁)

𝑁2(𝑁 − 1)
. (3.5) 

The standard normal Z-statistic is calculated as:  

𝑍 =
𝑅 − 𝑚

𝜎𝑀
. (3.6) 

If the Z-statistic is greater than |1.96| the test is rejected at a 5% level and if it is greater than 

|2.58| the test is rejected at a 1% level. The strict RW1 is evaluated in the runs test. 
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3.2.3 Variance ratio 

A variance ratio test is often used when testing a stock return series for randomness. The most 

widely used VR-test is the LM-test by Lo and MacKinlay (1988). Variants of the VR-test can 

be employed to test a price series or the first difference (i.e. returns) for an RW1, RW3 or a 

martingale difference sequence. Following sections deal with the variants of the VR-test. They 

are quite technical, but it is critical to at least grasp the intuition behind the variance ratio test. 

Read carefully.  

 

3.2.3.1 LM-test  

Lo and MacKinlay (1988) designed a test for studying the random walk hypothesis using 

variance ratios. The test exploits the fact that if a market follows the RWH, the variance of the 

return series (or price series) is a linear function of time, increasing by q for each interval. This 

means that the variance at the q:th lag is q times greater than the variance of the first lag. For 

example, if the RWH holds, the variance of two day relative log prices should be twice as large 

as the variance of daily returns. Equally, the variance of weekly relative log-prices should be 

five times larger than the variance of daily relative log-prices. A formal expression is given in 

Equation (3.7):  

𝑉𝑎𝑟(𝑝𝑡 − 𝑝𝑡−𝑞) = 𝑞 ∗  𝑉𝑎𝑟(𝑝𝑡 − 𝑝𝑡−1). (3.7) 

Expressed in terms of returns, Equation (3.7) becomes:   

𝑉𝑎𝑟(𝑥𝑡 + 𝑥𝑡−1 + ⋯ + 𝑥𝑡−𝑞+1) = 𝑞 ∗ 𝑉𝑎𝑟(𝑥𝑡). (3.8) 

      If Equation (3.7) and (3.8) holds, the ratio between the left side and right side should be 

equal to one. This is what the VR-test uses to formally test the RWH: if the variance ratio 

statistically differs from one, the RWH is rejected. 

      The variance ratio can be defined as: 

𝑉(𝑞) =  
𝑉𝑎𝑟(𝑥𝑡 + 𝑥𝑡−1 + ⋯ + 𝑥𝑡−𝑞+1)

𝑞 ∗ 𝑉𝑎𝑟(𝑥𝑡)
𝑜𝑟 

𝑉𝑎𝑟(𝑝𝑡 − 𝑝𝑡−𝑞)

𝑞 ∗ 𝑉𝑎𝑟(𝑝𝑡 − 𝑝𝑡−1)
, (3.9) 

which can be rewritten as:  

𝑉(𝑞) = 1 + 2 ∑
(𝑞 − 𝑖)

𝑞
𝜌𝑖

𝑞−1

𝑖=1

, (3.10) 

where 𝜌𝑖  is an autocorrelation coefficient for the time-series and q is the lag chosen. The 

sequence is uncorrelated if 𝜌𝑖  = 0. This makes 𝑉(𝑞) equal to one, which is assumed under the 
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null hypothesis. Reversely, correlation in the time series makes the variance ratio differ from 

one.  

      The unbiased estimator for 𝑉(𝑞) is as follows: 

𝑉𝑅(𝑞) = {𝑇𝑞−1 ∑(𝑥𝑡 + 𝑥𝑡−1 + ⋯ + 𝑥𝑡−𝑞+1 − 𝑞�̂�)2

𝑇

𝑡=𝑞

} ÷ {𝑇−1 ∑(𝑥𝑡 − �̂�)2

𝑇

𝑡=1

} (3.11) 

where, 

�̂� =
1

𝑇
(𝑥𝑡). (3.12) 

Lo and MacKinlay (1988) developed two different test statistics to test the null hypothesis that 

the variance ratio is equal to one. The first test statistic, 𝑀1(𝑞), assumes iid returns (RW1) 

while the other, 𝑀2(q), allows for conditional heteroscedasticity (RW3) in the time series. 

Under the assumption of iid returns, the test statistic 𝑀1(𝑞) is given by:   

𝑀1(𝑞) =
(𝑉𝑅(𝑞) − 1)

𝜙(𝑞)
1
2

(3.13) 

where the variance ratio follows the asymptotic variance 𝜙:  

𝜙(𝑞) =
2(2𝑞 − 1)(𝑞 − 1)

3𝑞𝑇
. (3.14) 

      𝑀1(𝑞) follows a standard normal distribution asymptotically, which means that 𝑀1(𝑞) is 

normally distributed as q is fixed and T moves towards infinity. This is convenient because the 

critical values are standardized and can be obtained from a Z-table. 

      When the return series displays conditional heteroscedasticity, Lo and MacKinlay (1988) 

suggested the robust test statistic 𝑀2(q), which also follows a standard normal distribution 

asymptotically. It is defined as: 

𝑀2(q) =
(VR(q) − 1)

𝜙∗(𝑞)
1
2

(3.15) 

where 𝜙∗(𝑞) is the asymptotic variance given by: 

𝜙∗(𝑞) = ∑ [
2(𝑞 − 𝑗)

𝑞
]

2  
𝑞−1

𝑗=1

∗  𝛿(𝑗) (3.16) 

and 

𝛿(𝑗) =  { ∑ (𝑥𝑡 − �̂�)2(𝑥𝑡−𝑗 −

𝑇

𝑡=𝑗+1

�̂�)2}  ÷ {[∑(𝑥𝑡 − �̂�)2

𝑇

𝑡=1

]

2

} . (3.17) 
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    If the RWH holds, the variance ratio must equal one for all values of q. It is therefore not 

sufficient to test only one value of q, say 𝑞 = 2, because even if  𝑉(2) equals one, it does not 

automatically mean that, say 𝑉(4), does. This study follows Lo and MacKinlay (1988) and uses 

four values of q: 2, 4, 8 and 16. The benefit of this is that multiple horizons are tested, and the 

result of the test is more reliable. A weakness is, however, that multiple hypotheses are tested 

simultaneously, which can lead to an over rejection of the composite null hypothesis; that the 

time series follows a random walk.           

     Lo and MacKinlay (1989) showed empirically that the distributions of the test statistics, 

𝑀1(𝑞) and 𝑀2(𝑞), are rightly skewed. Moreover, they pointed out that the test is weak when q 

is large relative to T. In fact, when 
𝑞

𝑇
= 0.5, the lower bound of the test statistics is -1.73. Since 

the critical value is -1.96 for the left tail, the test will never reject under these circumstances if 

the test statistic is drawn from the left side of the distribution. Generally, Lo and MacKinlay 

showed that as q increases, the reason for rejection successively becomes more due to the right 

tail and less due to the left tail. Overall, the rejection rate decreases because the left tail becomes 

less and less able to reject as q increases. The findings, that the underlying distributions of the 

test statistics are skewed, mean that the asymptotic approximations are not representative. 

However, this is only true when q is large relative to T, otherwise the test statistics are reliable. 

In the case of this study, q is far from large relative to T, so this should not be a problem.   

      For illustrative purposes on how the test statistics work, consider a random walk series as 

illustrated in Figure 1, called Series 1. Figure 2 depicts a non-random series with a VR above 1 

and Figure 3 depicts a non-random series with a VR below 1. All useful information for the 

coming examples is found in Appendix A.2. Table A.2 gives the price series to the examples.  
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Figure 1 − Display of random walk series as V(q) = 1 

 

 

      Excel is used to simulate a random walk series with a variance ratio around 1. The base 

price is 100 and the error term is normally distributed. Returns are calculated using Equation 

(3.1) and the VR estimated by Equations (3.11) and (3.12). Finally, the test statistics are 

computed using Equations (3.13) and (3.14) for 𝑀1(𝑞) and Equations (3.15-3.17) for 𝑀2(𝑞).  

This is done for lag 2.  

 

Figure 2 − Display of random walk series as V(q) > 1 

 

 

      Table A.3 gives the values of the variance ratio and test statistics. Series 1 has a VR of 1, 

Series 2 of 1.40 and Series 3 of 0.59. 𝑀1(2) takes the value 0.04 for Series 1, 2.21 for Series 2 

and –2.25 for Series 3 and 𝑀2(2) takes the values 0.06 for Series 1, 2.91 for Series 2 and –2.53 
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for Series 3. These results mean that Series 1 is not rejected while Series 2 and 3 are rejected 

by both test statistics. Thus, the series with a variance ratio of one does not reject while the 

series with variance ratios different from one reject, as expected from the method.  

 

Figure 3 − Display of random walk series as V(q) < 1 

 

 

3.2.3.2 CD-test 

Chow and Denning (1993) proposed an improvement of the LM-test in their article. The 

problem with the LM-test is that it must stay true for all values of q, and therefore several tests 

need to be employed to test all those values. This leads to an over rejection of the null 

hypothesis. To correct for this, Chow and Denning proposed a Sidak (1967) correction of the 

alpha values. This approach sets the significance level of each individual test so that the 

significance of the whole test is 5% instead of having a 5% significance level for each individual 

test. Thus, the following null hypothesis is tested: 

𝐻0: 𝑉(𝑞𝑖) = 1, 𝑓𝑜𝑟 𝑖 = 1, … , 𝑚 

𝐻1: 𝑉(𝑞𝑖) ≠ 1 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑖. 

Since the null hypothesis is rejected if one variance ratio differs from one, Chow and Denning 

proposed the following test statistics:  

𝐶𝐷1 = max
1≤𝑖≤𝑚

|𝑀1(𝑞𝑖)| (3.20) 

𝐶𝐷2 = max
1≤𝑖≤𝑚

|𝑀2(𝑞𝑖)| (3.21) 

where 𝑀1(𝑞𝑖) and 𝑀2(𝑞𝑖) are the test statistics of the LM-test. Equations (3.20) and (3.21) state 

that only the highest absolute value of the LM-test statistics is tested. Because the test statistics 
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correspond to the LM-test, the CD test statistics test the same form of random walk as the 

respective LM test statistics: RW1 for 𝐶𝐷1 and RW3 for 𝐶𝐷2. 

      The test statistics follow a studentized maximum modulus distribution for a given alpha, 

the number of q and the sample size (𝑆𝑀𝑀(𝛼, 𝑞, 𝑇)). Applying the results of Sidak (1967), 

Hochberg (1974) and Richmond (1982), Chow and Denning (1993) use the fact that when T 

moves towards infinity, the SMM distribution becomes a standard normal distribution with a 

Sidak corrected alpha value: 𝛼∗ = 1 − (1 − 𝛼)
1

𝑞. If the test statistic is greater than the (1 −

𝛼∗

2
)th percentile of the standard normal distribution, the test rejects. For a 5% significance level 

and four levels of q, 𝛼∗ = 0.01274. This means that the test statistic rejects if it is greater than 

the 99.363th percentile of the standard normal distribution instead of the 97.5th. Consequently, 

this will make the critical values larger and rejections stricter.  

      Returning to the example equations, Table A.3 gives the values of 𝐶𝐷1 and 𝐶𝐷2. If Table 

A.3 had presented the LM test statistics for all lags 2, 4, 8 and 16, the CD statistics would be 

the maximum values of those. Only lag 2 is included but the CD-statistics are calculated as if 

the lags were 2, 4, 8 and 16.  

      The new critical value for 5% significance is 2.49, which is higher than for the LM-test. 

Series 1 has 𝐶𝐷1 and 𝐶𝐷2 values of 0.93 and 1.02 respectively, Series 2 has the values 2.52 and 

2.91 and Series 3 has the values 2.25 and 2.53. The result of this is that Series 1 is not rejected, 

Series 2 is rejected by both statistics and Series 3 is rejected by 𝐶𝐷2.  

  

3.2.3.3 Wright’s test 

Wright (2000) developed and modified the original test by Lo & MacKinlay (1988). The test 

he proposes is a non-parametrical test using ranks and signs.    

      Wright (2000) provides two advantages his test has over the LM-test. First, it is possible to 

calculate the distribution. It does not suffer from size distortions, because the test does not rely 

on asymptotic theory. Second, the test handles non-normal data better than the LM-test.  

      The rank based tests can be evaluated under the assumptions of RW1 or RW3. The test 

statistics are exact under the assumptions of an RW1. If the test allows for conditional 

heteroscedasticity, assuming an RW3, the tests are not exact. However, the size distortions are 

small (Wright, 2000). The signs test statistic is exact, even under conditional heteroscedasticity.  

      𝑟1,𝑡  and 𝑟2,𝑡 are defined as: 
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𝑟1,𝑡 =  
𝑟(𝑥𝑡) −

𝑇 + 1
2

√(𝑇 − 1)(𝑇 + 1)
12

(3.22) 

𝑟2,𝑡 = 𝜙−1
𝑟(𝑥𝑡)

𝑇 + 1
(3.23) 

where 𝑟(𝑥𝑡) is the rank of 𝑥𝑡 in the series 𝑥1, 𝑥2 … 𝑥𝑇  and 𝜙−1 is the inverse standard normal 

cumulative distribution.  

      The 𝑠𝑡 in the signs test is defined as follows: 𝑠𝑡 = 2𝑢(𝑥𝑡 , 0) where 𝑢(𝑥𝑡 , 0) = 0.5 if 𝑥𝑡 is 

positive and −0.5 otherwise. This means that 𝑠𝑡 can only take the values 1 and –1 with the 

probability of 0.5 for each instance. The series 𝑠𝑡 is iid with zero mean and a variance of 1. If 

allowing for conditional heteroscedasticity the series becomes a martingale with zero mean 

without restrictions on the variance.   

      The ranks and signs test statistics, given a set of T observations of 𝑥𝑡, are as follows:  

𝑅1(𝑞) =  (
𝑇𝑞−1 ∑ (𝑟1,𝑡 + ⋯ 𝑟1,𝑡−𝑞+1)2𝑇

𝑡=𝑞

𝑇−1 ∑ 𝑟1,𝑡
2𝑇

𝑡=𝑞

− 1) (
2(2𝑞 − 1)(𝑞 − 1)

3𝑞𝑇
)

−
1
2

(3.24) 

𝑅2(𝑞) = (
𝑇𝑞−1 ∑ (𝑟2,𝑡 + ⋯ 𝑟2,𝑡−𝑞+1)2𝑇

𝑡=𝑞

𝑇−1 ∑ 𝑟2,𝑡
2𝑇

𝑡=𝑞

− 1) (
2(2𝑞 − 1)(𝑞 − 1)

3𝑞𝑇
)

−
1
2

(3.25) 

and 

𝑆1 = (
𝑇𝑞−1 ∑ (𝑠𝑡 + 𝑠𝑡−1 … + 𝑠𝑡−𝑞+1)

2𝑇
𝑡=𝑞

𝑇−1 ∑ 𝑠𝑡
2𝑇

𝑡=1

− 1) (
2(2𝑞 − 1)(𝑞 − 1)

3𝑞𝑇
)

−
1
2

. (3.26) 

The observant reader will notice that these equations are equal to the 𝑀1(𝑞) statistic. But the 

difference is that the returns are substituted by ranks or signs.  

      For illustrative purposes, the time series from the examples can be used to illustrate how 

the ranks and signs are computed. If 𝑥𝑡 is the largest log return it receives the rank 𝑟(𝑥𝑡) = 1. 

Likewise, the smallest log return receives the rank 𝑟(𝑥𝑡) = 30. Substituting T with 30 and the 

value of 𝑟(𝑥𝑡) in Equation (3.22) yields the value of 𝑟1,𝑡 for the specific observation. The same 

is done for 𝑟2,𝑡. Depending on which test statistic one chooses, the series of 𝑟1,𝑡 or 𝑟2,𝑡 is used 

in Equations (3.24) and (3.25) for calculating 𝑅1(𝑞) or 𝑅2(𝑞). The series 𝑠𝑡 consists of the 

numbers 1 and –1 depending on if the return is positive or negative. Following Equation (2.26) 

gives the value of the 𝑆1.   

      The computed test statistics for Series 1, at lag 2 are: 0.35, 0.35 and 0 for the statistics 

𝑅1(𝑞), 𝑅2(𝑞) and 𝑆1. For Series 2 they are 2.13, 1.96 and 1.46 and for Series 3 they are –2.79, 
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–2.59 and –1.83. The 5% critical values are found in Table A.4. According to Table A.4, Series 

1 is not rejected and Series 2 and 3 are rejected by 𝑅1(𝑞) and 𝑅2(𝑞) but not by 𝑆1.  

 

3.2.3.4 Belaire-Franch & Contreras test  

Wright’s test suffers from the same problem that Chow and Denning found with the LM-test, 

namely that the use of individual VR-tests leads to an over rejection of the null hypothesis. 

Therefore, using the strategy of Chow and Denning (1993), Belaire-Franch and Contreras 

(2004) designed a multiple variance ratio test based on the Wright’s test. The test statistics are 

defined as follows: 

𝐽𝑅1 = max
1<𝑖<𝑚

|𝑅1(𝑞𝑖)| 

𝐽𝑅2 = max
1<𝑖<𝑚

|𝑅2(𝑞𝑖)| 

𝐽𝑆1 = max
1<𝑖<𝑚

|𝑆1(𝑞𝑖)|, 

where 𝑅1(𝑞𝑖), 𝑅2(𝑞𝑖) and 𝑆1(𝑞𝑖) are the test statistics from Wright’s test. Like the CD-test, the 

BFC-test rejects if the maximum value of the largest test statistic is greater in absolute terms 

than the critical values. Also, because the test is based on Wright’s test 𝐽𝑅1 tests the RW1, 𝐽𝑅2 

tests the RW3 and 𝐽𝑆1 tests the martingale model.  

      Returning to our example, the maximum values of the BFC test statistics are given in Table 

A.3. For Series 1, these are 0.86 for 𝐽𝑅1, 0.89 for 𝐽𝑅2 and 0.49 for 𝐽𝑆1. In the same order they 

are 2.73, 2.46 and 1.85 for Series 2 and 2.79, 2.59 and 1.83 for Series 3. The BFC-test has larger 

critical values than Wright’s test, which makes rejections more difficult. However, this does 

not change the conclusions with the series used in this example.  

 

3.2.3.5 Wild bootstrap method 

The LM-test has some potential distributional issues, as discussed in section 3.2.3.1. Wright 

(2000) proposed the use of ranks and signs in order to deal with this, while Kim (2006) proposes 

another way.  

      The wild bootstrap method was suggested by Kim (2006) as an alternative method of 

conducting the VR-test. The WBM approximates and resamples the distribution of the data, 

which gives new critical values and a new confidence interval. A benefit with this approach is 

that the distribution of an unknown form can be approximated. The WBM allows for 

conditional heteroscedasticity and therefore tests the RW3.  
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      Kim (2006) presented the applications of the wild bootstrap on the 𝑀2(q) and 𝐶𝐷2. In his 

paper, he showed by simulations that the use of the bootstrap method has great power and 

superiority over the traditional LM- and CD-tests. The steps in conducting the bootstrap is 

explained in section A.1.1. 

      In plain words, the test works as follows: a bootstrap sample is formed, the original LM or 

CD test statistic is calculated based on the bootstrapped sample and this is repeated many times 

(this study uses 1000) in order to get a distribution of the test statistic. The statistical 

significance is obtained by the proportion of the distribution of the bootstrap test statistic 

(𝑀2(𝑞)∗or 𝐶𝐷2
∗) larger than the original test statistic (𝑀2(q) or 𝐶𝐷2).  

      Continuing with the example equations, Table A.3 displays the p-values for the test statistics 

simulated by the WBM. According to the bootstrapped sample, the conclusions are the same as 

those from the LM- and CD-tests: Series 1 is not rejected but Series 2 and 3 are rejected.  

 

4. Results 

4.1 Descriptive Statistics 

The descriptive statistics show the attributes of each index. An interesting note is that the 

OMXSSCPI and the OMXSMCPI have a lower standard deviation and higher mean returns 

than the OMXSPI and the OMXSLCPI. Further, the first two have lower maximum and 

minimum values. This is inconsistent with economic theory, which predicts that stocks either 

have higher returns and higher volatility or lower returns and lower volatility.  

      All indices are negatively skewed and have an excess kurtosis larger than zero. A negatively 

skewed distribution in terms of returns signalizes that the tails are long to the left, and thus large 

negative returns are more common than large positive returns. An excess kurtosis greater than 

zero signifies that the tails are fat, so that extreme returns are more common than in a normal 

distribution. Note should be given to the fact however, that the excess kurtosis is not that much 

greater than zero, so the magnitude of the fat tails need not have such a great impact. 
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Table 1 – Descriptive Statistics 

  OMXSPI OMXSSCPI OMXSMCPI OMXSLCPI 

Observations 365 365 365 365 

Mean 0.0014 0.0029 0.0030 0.0013 

SD 0.0199 0.0184 0.0195 0.0203 

Max 0.0625 0.0568 0.0686 0.0621 

Min -0.0619 -0.0597 -0.0638 -0.0628 

Skewness -0.2063 -0.3684 -0.3504 -0.1875 

Excess Kurtosis 0.6488 0.7122 0.691 0.6541 

Note: Skewness and Excess Kurtosis are normal at 0.  

 

4.2 Autocorrelation tests 

The autocorrelation coefficients and Ljung-Box’s Q-statistic are reported in Table 2, where 𝜌𝑞  

denotes the autocorrelation coefficient and Q-stat denotes the statistic for the Ljung-Box test. 

One interesting note is that the Ljung-Box test is unable to reject the RW1 for all indices, except 

for the OMXSSCPI, which rejects the RW1 at lags 1 through 6. The first correlation coefficient 

is 0.155 and is rejected at a 1% significance level. This means that the rejection is strong, and 

the size of the correlation coefficient is quite large. The remaining correlation coefficients for 

the OMXSSCPI are smaller and reject at a 5% significance level. Even if there is small but 

significant autocorrelation in the series, it is possible that the correlation would be too small for 

an investor to make excess returns based on that correlation.  
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4.3 Runs test 

The results from the runs test are reported in Table 3. N+ is the number of positive returns, N– 

is the number of negative returns and N is the sum of both. Note that positive returns are more 

common than negative during this period.  

      The Z-statistic is a standard normal variable that rejects the null hypothesis of independence 

if Z is greater than the absolute value of 1.96 and 2.58 respectively for 5% and 1% significance 

levels. According to Table 3 the OMXSSCPI and OMXSMCPI reject the runs test. Their Z-

statistics are greater than the absolute value of 2.58, which means that both the OMXSSCPI 

and OMXSMCPI reject randomness at a 1% significance level. A rejection of the runs test is a 

rejection of the RW1, so it can be said that the OMXSSCPI and the OMXSMCPI reject the 

RW1. The OMXSPI and OMXSLCPI, on the other hand, cannot be rejected by the runs test. 

This means that it is not possible to reject that these series follow a RW1 and have an iid.  

      The results from the runs test are different to the results of the autocorrelation tests in one 

way: in the autocorrelation test, only the OMXSSCPI is rejected but in the runs test both the 

OMXSSCPI and the OMXMCPI are rejected.  

 
Table 3 – Runs Test 

  OMXSPI OMXSSCPI OMXSMCPI OMXSLCPI 

N+ 206 216 222 204 

N− 159 149 143 161 

N 365 365 365 365 

R 177 147 151 173 

m 180.4740 177.3507 174.9507 180.9671 

Z-statistic -0.3703 -3.2929 -2.6345 -0.8470 

P-value 0.7111 0.0009* 0.0084* 0.397 

Note: N+ signifies the number of positive returns, N− signifies the number of negative returns and N the total 

number of observations. R signifies the observed number of runs and m signifies the expected number of runs.  

* signifies a rejection of independence at a 1% level.  

 

4.4 LM-test 

Table 4 shows the results from the LM-test. VR signifies the variance ratio, 𝑀1(𝑞) is the test 

statistic under homoscedastic assumptions and 𝑀2(𝑞) is the test statistic that assumes 

heteroscedasticity. The tests are performed with lags 2, 4, 8 and 16.  
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      The OMXSSCPI is the only index that is rejected by the LM-test. The 𝑀1(𝑞) rejects the 

RW1 at a 1% level at lag 2, and at a 5% level at lag 4 and 8. Similarly, the 𝑀2(𝑞) also rejects, 

but only at a 5%-level at lag 2. This rejection is a rejection of the less restrictive RW3. The shift 

to fewer rejections and smaller significance by the 𝑀2(𝑞) might be an indicator that the 

OMXSSCPI series suffers from heteroscedasticity. This does not change any conclusions, 

though, since the 𝑀2(𝑞) also rejects.   

      Using the WBM to approximate the sample distribution, new critical values are obtained. 

However, it is still only the OMXSSCPI that is rejected by this approach. The “w’s” indicate a 

5% level rejection of the null hypothesis using the approximated critical values. Lags 2 and 8 

are rejected by the bootstrap distribution. Even when the distribution is simulated by a wild 

bootstrap, the OMXSSCPI violates the RW3. 

 

Table 4 – Variance Ratio 

    q     2     4     8     16 

OMXSPI         

𝑉𝑅(𝑞)  0.9647  0.8400  0.7565  0.5992 

𝑀1(𝑞) -0.6747 -1.6341 -1.5724 -1.7394 

𝑀2(𝑞) -0.5650 -1.3712 -1.3475 -1.5340 

OMXSSCPI         

𝑉𝑅(𝑞) 1.1484 1.1976 1.3121 1.2878 

𝑀1(𝑞) 2.8342* 2.0182** 2.0155** 1.2490 

𝑀2(𝑞) 2.2493**w 1.6314 1.6996w 1.1116 

OMXSMCPI         

𝑉𝑅(𝑞) 1.0902 1.0800 1.0656  0.8769 

𝑀1(𝑞) 1.7234 0.8169 0.4235 -0.5341 

𝑀2(𝑞) 1.5237 0.7194 0.3814 -0.49711 

OMXSLCPI         

𝑉𝑅(𝑞)  0.9544  0.8206  0.7368  0.5902 

𝑀1(𝑞) -0.8711 -1.8315 -1.6998 -1.7788 

𝑀2(𝑞) -0.7334 -1.5432 -1.4571 -1.5648 

Note: 𝑉𝑅(𝑞) is the variance ratio, 𝑀1(𝑞) is the regular test statistic and 𝑀2(𝑞) is robust for heteroscedasticity.     

** and * signify a rejection at the 5% and 1% level respectively. “w” signifies a 5% rejection using critical values 

computed by Kim’s (2006) wild bootstrap methodology.  
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      Figure 4 presents a plot over the respective variance ratio for the different indices. The red 

line is the variance ratio from lag one through sixteen and the blue dotted lines are 95% 

confidence intervals. Thus, if the red line lies outside of the blue dotted line, there is a 5% 

rejection of the test statistics. 

      The OMXSPI and the OMXLCPI have quite similar variance ratios, with a negative trend 

over increasing lags. This could indicate that the series suffer from mean reversion, i.e. that bad 

periods are followed by compensating good periods. The OMXSMCPI is the index with the 

VR closest to one. The OMXSSCPI has a positive long-term trend, which could indicate price 

persistence. That is a term describing that the price series is moving away from the mean, in 

the long term. Note however, that the variance ratios are only significant for the OMXSSCPI. 

Therefore, the OMXSPI and the OMXLSCPI cannot be said to be mean reverting. However, 

the OMXSSCPI which is rejected by the LM-test is possibly price persistent.  

 

Figure 4 – Variance Ratio plots   

  

Note: The red line represents the variance ratio for lag 2 to 16. The blue dotted line represents the 95% 

confidence interval.  

 

4.5 Wright’s test 

Table 5 presents the results from Wright’s test, based on ranks and signs. 𝑅1(𝑞) and 𝑅2(𝑞) are 

the test statistics based on ranks and 𝑆1 is the statistic based on signs. The critical values are 

presented in Table A.1. They are simulated using 10.000 iterations, as in Wright (2000).  



26 

 

      From Table 5, it is possible to read that the OMXSPI and the OMXSLCPI seem to follow 

a random walk, because neither is rejected by the ranks or signs statistics. The OMXSSCPI 

index seems to be heavily rejected by all test statistics, with at least one 1% rejection by all 

ranks and signs. This means that independence is rejected, and movements are not random in 

the Small cap index. Some less evident results come from the OMXSMCPI. There, the 𝑅1(𝑞) 

rejects at a 1% level at the second lag, the 𝑅2(𝑞) fails to reject and the 𝑆1 rejects at 1% level for 

all lags. This is more interesting, since the results indicate that OMXSMCPI does not follow a 

RW1 or a martingale difference sequence, but it may follow a RW3.  

      These results are in harmony with the results from the runs test, where the OMXSMCPI is 

also rejected, but in contrast with the LM-test and autocorrelation tests where only the 

OMXSSPCI is rejected.  

 

Table 5 – Wright’s ranks and signs test.  

 q    2    4    8    16 

OMXSPI         

𝑅1(𝑞) 0.0315 -1.4531 -1.6494 -1.6455 

𝑅2(𝑞) -0.4284 -1.6320 -1.6448 -1.7766 

𝑆1 0.5758 -0.1119 -0.1681 -0.1070 

OMXSSCPI         

𝑅1(𝑞) 3.2833* 2.6183** 2.7967* 2.4484** 

𝑅2(𝑞) 2.8153* 2.0297** 2.0311** 1.4854 

𝑆1 3.7163* 3.1895* 3.9725* 4.9171* 

OMXSMCPI         

𝑅1(𝑞) 2.4440** 1.3980 0.7536 0.0666 

𝑅2(𝑞) 1.7136 0.7058 0.2948 -0.4367 

𝑆1 3.2976* 3.1336* 3.2293* 3.7190* 

OMXSLCPI         

𝑅1(𝑞) -0.2245 -1.7316 -1.8927 -1.8122 

𝑅2(𝑞) -0.7239 -1.9335 -1.8903 -1.9021 

𝑆1 0.9945 -0.0839 0.0708 0.0684 

Note: 𝑅1(𝑞), 𝑅2(𝑞) and 𝑆1 are the ranks and signs test statistics. ** and * signify rejections at the 5% and 1% level 

respectively.  
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4.6 Multiple VR-tests 

The problem of multiple hypothesis testing with the original variance ratio as pointed out by 

Chow and Denning (1993) is tested in this section. Since Belaire-Franch and Contreras (2004) 

pointed out the same issue for Wright’s test, we present the findings in the same table.  

      Table 6 presents the observed values of the test statistics. 𝐶𝐷1 and 𝐶𝐷2 represent the 

multiple variance ratio test statistics based on Lo and MacKinlay’s (1988) statistics  

𝑀1(𝑞) and 𝑀2(𝑞). 𝐶𝐷2
∗ is the modified version of 𝐶𝐷2, but with new critical values based on 

the distribution by using Kim’s (2006) WBM. Further, 𝐽𝑅1, 𝐽𝑅2and 𝐽𝑆1 are the joint statistics 

of the BFC test,  

      Table 6 shows that the OMXSPI and the OMXSLCPI fail to reject any test at 5%. The 

OMXSMCPI is rejected at 5% by the JR1 and at 1% by the JS1 and OMXSSCPI is rejected by 

all statistics, except for 𝐶𝐷2. This means that the OMXSMCPI, as the case for the individual 

Wright’s test rejects the RW1 and the martingale difference sequence but not the RW3 and the 

OMXSSCPI rejects both types of random walks and the martingale difference sequence.  

 
Table 6 – Joint tests 

  𝐶𝐷1 𝐶𝐷2 𝐶𝐷2
∗ 𝐽𝑅1 𝐽𝑅2 𝐽𝑆1 

OMXSPI 1.7394 1.5340 0.392 1.6494 1.7766 0.5758 

OMXSLCPI 1.8315 1.5648 0.309 1.8927 1.9335 0.9945 

OMXSMCPI 1.7234 1.5237 0.269 2.4440** 1.7136 3.7190* 

OMXSSCPI 2.8342** 2.2493 0.035** 3.2833* 2.8153** 4.9171* 

Note: 𝐶𝐷1 and 𝐶𝐷2 signify the test statistics for the CD-test, 𝐽𝑅1, 𝐽𝑅2 and 𝐽𝑆1 signify the test statistics for the BFC 

test and 𝐶𝐷2
∗ signify the p-value for the tests statistics based on the WBM. Critical values for 𝐶𝐷1 and 𝐶𝐷2 are 

2.4909 and 3.0222 for a 5% and 1% rejection. Critical values for 𝐽𝑅1, 𝐽𝑅2 and 𝐽𝑆1 are 2.2870, 2.2907 and 2.2942 

for 5% significance and 2.9048, 2.8934 and 2.9835 for 1% significance. ** and * signify a rejection at 5% and 1% 

respectively.  

  

5. Analysis and Discussion 

Table 7 gives an overview of the results previously presented. The OMXSPI and the 

OMXSLCPI are not rejected by any test, the OMXSMCPI is rejected by some and the 

OMXSSCPI is rejected by the majority of the tests. This means that the market as a whole and 

the Large cap segment seem to follow a random walk, while the Mid- and Small cap segments 

do not. Note that it is necessary to remember the joint hypothesis problem when drawing 
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conclusions. This means that a rejection of the RWH for the Mid- and Small cap segments are 

not necessarily rejections of the weak form EMH.   

 

Table 7 – Overview of test results                                                                                                                                    

  OMXSPI OMXSSCPI OMXSMCPI OMXSLCPI 

Ljung-Box A R A A 

Runs test A R R A 

𝑀1(𝑞) A R A A 

𝑀2(𝑞) A R A A 

𝐶𝐷1 A R A A 

𝐶𝐷2 A A A A 

𝐶𝐷2
∗ A R A A 

𝑅1(𝑞) A R A A 

𝑅2(𝑞) A R A A 

𝑆1 A R R A 

𝐽𝑅1 A R R A 

𝐽𝑅2 A R A A 

𝐽𝑆1 A R R A 

Note: R (Reject) denotes rejection and A (Accept) denotes failure to reject. 

 

      The results above allow us to answer our research question. The answer is that the market 

as a whole and the Large cap index show signs of weak form efficiency while the Mid- and 

Small Cap indices show signs of inefficiency. Since the market as a whole shows indications 

of weak form efficiency, investors have reasons to believe that the market conditions are fair, 

like a game of dice. However, the failure to reject the RWH does not necessarily mean that the 

market is weak form efficient, because the null hypothesis is not proven to be true. A suggestion 

for further studies is to test the OMXSPI for different trading techniques corresponding to the 

RW2, to see if strategies that beat the market can be used. This would in turn give a broader 

picture of whether the Swedish market is weak form efficient.  

      Another thing Table 7 indicates is that there seems to be a pattern concerning size and 

efficiency. The greater the capitalization of the index, the more efficient it seems to be. We do 

not present any statistical method to test the difference, but we may suggest why Small cap 

stocks seem to be less efficient than other stocks. It could be that the Small cap stocks are less 
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liquid than other stocks, and trade less frequently. This would imply that the rejection may not 

be attributed to inefficiency but to non-trading (Lo & MacKinlay, 1988). This is another 

suggestion for further studies: to test if non-trading is solely responsible for the OMXSSCPI 

rejection of weak form efficiency. 

 

5.1 Comparison with other studies 

The results from this study can be contrasted with the other studies that have been conducted 

on the Swedish market. Note should be given that most studies have been conducted on the 

OMXS30 as a proxy for the Swedish market while this present study uses the whole market; 

the OMXSPI. Another thing to keep in mind is that there are differences in the methods used 

and periods studied, which can be a reason why there are differences in results and conclusions. 

In this analysis we will limit our results to the OMXSPI, to enable comparisons with other 

studies. 

      Jennergren and Korsvold (1974) and Berglund et al. (1983) found, by using autocorrelation 

tests and the runs test, that there is autocorrelation and non-randomness in the return series. 

This study does not find any significant autocorrelation with the same tests. The latter authors 

also used filter rules, a technical trading rule designed to earn excess returns, and found no signs 

of inefficiency in the return series. This study does not use a similar approach, but our results 

tilt towards the same conclusion.  

      Frennberg and Hansen (1993) and Shaker (2011) rejected the RWH based on the LM-test 

while this study fails to reject. Frennberg and Hanssen (1993) commented about how the 

rejection does not necessarily mean that the market is inefficient. This was not, however, tested 

in a formal way. Metghalchi et al. (2008) is another study that used trading rules, a method that 

is not similar to ours. This also makes a comparison difficult. However, the fact that their 

trading rules were able to generate excess returns is intriguing, especially compared to our 

results that indicate the opposite conclusion.  

      Worthington and Higgs (2004), Urquhart (2014) and Graham et al. (2015), have more 

similarities with this study because they were more in favor of the RWH than the previously 

mentioned studies. However, these results are not unambiguous, because some tests rejected 

the RWH. Worthington and Higgs (2004) failed to reject the LM-test and autocorrelation test 

for Sweden, while the runs test was strongly rejected. Even if this is a difference compared with 

this study, note should be given that the runs test corresponds to the stricter RW1. A rejection 
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of the RW1 does not necessarily mean that the market is inefficient, because the RW1 is stricter 

than necessarily implied by the weak form EMH. Therefore, it is not certain that Worthington 

and Higgs could reject the weak form EMH for the Swedish market.  

      Urquhart (2014) had similar results as Worthington and Higgs (2004), but they used 

additional methods. The CD test statistic did not reject, but the joint sign and joint rank statistics 

did, while this study could not reject either test. Graham et al. (2015) did not find a rejection by 

the CD-test, neither by the joint rank test statistics but by the joint sign test statistic. These 

comparisons demonstrate that this study seems to have a stronger case than earlier studies for 

efficiency in the Swedish market.  

      When comparing all studies on the Swedish market, it is evident that no result has been in 

favor of the RWH as strongly as this study. A suggestion would be that markets might not 

always be efficient. In fact, markets might evolve between periods, as Lo (2004) proposed. This 

means that markets can be efficient in some periods and inefficient in others. Lo called his 

hypothesis the “Adaptive market hypothesis” (AMH) and it uses biological reasoning to 

reconcile the EMH with its behavioral critics. Since the same methods at the same market have 

shown different results over time, it is possible that the concept of market efficiency is better 

captured by the AMH than the EMH.  

 

6. Concluding remarks 

This study has tested the weak form EMH on the Swedish stock market by applying tests of the 

RWH and the martingale model. The results have shown that the market as a whole is following 

a random walk between 2012 and 2019. Furthermore, the OMXSLCPI shows signs of 

efficiency while the OMXSMCPI and the OMXSSCPI show signs of inefficiency.  The 

implication of the results is that it gives a clue that the market as a whole is weak form efficient, 

but that need not necessarily be the case. A suggestion was made to test the efficiency on the 

Swedish market by using some trading rules. This could give a broader picture as to whether 

the signals of weak form efficiency in this study are true or if there are other factors that cannot 

be captured by the RWH that lead to inefficiencies in the market.  

      Another thing this study gave signals to is that even though the whole market seems to be 

efficient, the Small cap segment of the market is not. However, we pointed out that there might 
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be other factors that contribute to the rejections, such as a spurious autocorrelation caused by 

illiquidity in small stocks. This was suggested a topic for further studies.  

      A final observation was that the results of the weak form tests on the Swedish market are 

conflicting, but the market seems to have become more efficient recently. The AMH was briefly 

discussed as a possible solution to reconciling the concept of efficient markets with the 

conflicting results from previous studies.  
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Appendix A.1 

A.1.1 Kim’s Bootstrap 

The WBM is employed as explained by Kim (2006):  

1. Form a bootstrap sample of T observations 𝑋𝑡
∗  =  𝜂𝑡𝑋𝑡 (𝑡 = 1, . . . , 𝑇) where 𝜂𝑡 is a 

random sequence with E(𝜂𝑡) = 0 and E(𝜂𝑡
2) = 1. 

2. Calculate 𝑀𝑉∗ ≡ 𝑀𝑉2(𝑋∗, k𝑖), the MV2(𝑋, 𝑘𝑖 ) statistic obtained from the bootstrap 

sample 

3. Repeat (1) and (2) sufficiently many, say m, times to form a bootstrap distribution of 

the test statistic {𝑀𝑉(𝑋∗, 𝑘𝑗 ; 𝑗)}
𝑗=1

𝑚
. 

A.1.2 Wright’s test critical values 

Table A.1 – Critical values for Wrights test 

q             2             4             8             16 

𝑅1(𝑞)         

1% -2.6617; 2.4783 -2.5390; 2.6261 -2.3975; 2.6357 -2.2647; 2.6067 

5% -2.0404; 1.8693 -2.0383; 1.8866 -1.9833; 1.8400 -1.9237; 1.7441 

𝑅2(𝑞)         

1% -2.6739; 2.4344 -2.5808; 2.5710 -2.4255; 2.64915 -2.2828; 2.5894 

5% -2.0735; 1.8666 -2.0281; 1.8791 -1.9832; 1.8645 -1.9435; 1.7367 

𝑆1         

1% -2.5648; 2.5648 -2.4341; 2.6299 -2.3534; 2.7516 -2.1494; 2.9342 

5% -1.9367; 1.9367 -1.9305; 1.9305 -1.8934; 1.9641 -1.8224; 1.9769 

Note: 10.000 iterations are used in the simulations, as in Wright (2000) 
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Appendix A.2 

A.2.1 Data for examples 

Table A.2 – Price series for examples 

Series 1 Series 2       Series 3 

99.45 102.33 100.33 

99.93 103.00 99.37 

97.87 102.83 99.50 

98.25 102.79 98.82 

97.16 102.82 98.63 

97.67 102.82 97.24 

97.67 101.26 97.10 

99.88 100.88 96.81 

100.78 99.08 97.36 

101.89 98.39 97.66 

102.52 98.71 97.11 

102.18 98.60 96.19 

101.33 99.18 96.41 

102.58 99.71 96.93 

103.73 99.70 96.30 

104.36 100.34 98.35 

104.74 100.88 98.83 

103.76 101.44 98.56 

102.75 101.74 99.13 

103.35 103.06 97.97 

102.45 103.68 99.21 

103.71 103.71 98.44 

103.91 102.27 97.68 

103.72 101.48 98.96 

104.56 100.06 97.89 

104.23 99.36 98.27 

104.22 99.56 96.91 

103.69 99.88 96.66 
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103.20 99.94 97.73 

102.90 101.69 96.29 

103.15 101.87 96.93 

 

A.2.2 Test statistics example 

Table A.3 – Test statistics example 

Series 1   Series 2   Series 3   

𝑉𝑅(2) 1.00 𝑉𝑅(2) 1.40 𝑉𝑅(2)  0.59 

𝑀1(2) 0.04 𝑀1(2) 2.21 𝑀1(2) -2.25 

𝑀2(2) 0.06 𝑀2(2) 2.91 𝑀2(2) -2.53 

𝐶𝐷1 0.93 𝐶𝐷1 2.52 𝐶𝐷1  2.25 

𝐶𝐷2  1.02 𝐶𝐷2  2.91 𝐶𝐷2   2.53 

𝑅1(2) 0.35 𝑅1(2) 2.13 𝑅1(2) -2.79 

𝑅2(2) 0.35 𝑅2(2) 1.96 𝑅2(2) -2.59 

𝑆1 0.00 𝑆1 1.46 𝑆1 -1.83 

𝐽𝑅1 0.86 𝐽𝑅1 2.73 𝐽𝑅1  2.79 

𝐽𝑅2 0.89 𝐽𝑅2 2.46 𝐽𝑅2  2.59 

𝐽𝑆1 0.49 𝐽𝑆1 1.85 𝐽𝑆1  1.83 

𝑀2
∗(2) 0.95 𝑀2

∗(2) 0.00 𝑀2
∗(2)  0.01 

𝐶𝐷2
∗ 0.90 𝐶𝐷2

∗ 0.00 𝐶𝐷2
∗  0.02 

Note: The variance ratio and all test statistics are presented with lag 2, but calculations are made using lags 2, 4, 8 

and 16. This is important for the joint hypothesis tests. One period joint tests are the same as individual tests. 

𝑀2
∗ and 𝐶𝐷2

∗ show the p-values of the bootstrapped LM and CD statistics. The 𝐽𝑅1, 𝐽𝑅2 and 𝐽𝑆1  critical values are 

2.11, 2.09 and 2.19 at the 5% significance level.  

 

A.2.3 Wright’s critical values − example 

Table A.4 – Wright’s critical values 

  Negative Positive 

𝑅1(2) -2.24 1.53 

𝑅2(2) -2.21 1.52 

𝑆1 -2.19 1.83 

Note: The critical values at the 5% level. 
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