THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Empowering Empirical Research in Software Design:
Construction and Studies on a Large-Scale Corpus of
UML Models

TRUONG HO-QUANG

Division of Software Engineering
Department of Computer Science & Engineering
Chalmers University of Technology and University of Gothenburg
Gothenburg, Sweden, 2019

Empowering Empirical Research in Software Design:
Construction and Studies on a Large-Scale Corpus of UML Models

TRUONG HO-QUANG

Copyright (©2019 Truong Ho-Quang
except where otherwise stated.
All rights reserved.

ISBN 978-91-7833-608-1 (PRINT)
ISBN 978-91-7833-609-8 (PDF)

ISSN 0346-718X

The thesis is available in full text online
http://hdl.handle.net/2077/61704

Technical Report No 173D

Department of Computer Science & Engineering

Division of Software Engineering

Chalmers University of Technology and University of Gothenburg
Gothenburg, Sweden

Cover illustration: Steps of printing a Dong Ho painting (called “Ga Da Xu6ng”)
Photos taken by Phiing Hong Kon.

This thesis has been prepared using IXTEX.
Printed by Chalmers Reproservice,
Gothenburg, Sweden 2019.

ii

“Bxtraordinary Claims Require Extraordinary Fvidence.”
- Carl, Sagan.

iv

Abstract

Context: In modern software development, software modeling is considered
to be an essential part of the software architecture and design activities. The
Unified Modeling Language (UML) has become the de facto standard for
software modeling in industry. Surprisingly, there are only a few empirical
studies on the practices and impacts of UML modeling in software development.
This is mainly due to the lack of empirical data on real-life software systems
that use UML modeling.

Objective: This PhD thesis contributes to this matter by describing a method
to build and curate a big corpus of open-source-software (OSS) projects that
contain UML models. Subsequently, this thesis offers observations on the
practices and impacts of using UML modeling in these OSS projects.

Method: We combine techniques from repository mining and image classifi-
cation in order to successfully identify more than 24.000 open source projects
on GitHub that together contain more than 93.000 UML models. Machine
learning techniques are also used to enrich the corpus with annotations. Finally,
various empirical studies, including a case study, a user study, a large-scale
survey and an experiment, have been carried out across this set of projects.

Result: The results show that UML is generally perceived to be helpful to
new contributors. The most important motivation for using UML seems to be
to facilitate collaboration. In particular, teams use UML during communication
and planning of joint implementation efforts. Our study also shows that the use
of UML modeling has a positive impact on software quality, i.e. it correlates
with lower defect proneness. Further, we find out that visualisation of design
concepts, such as class role-stereotypes, helps developers to perform better in
software comprehension tasks.

Keywords

Software Modeling, Software Design, Empirical Research, UML, Modeling Prac-
tice, Impacts of Modeling, Open Source System, Mining Software Repository,
Data Mining, Data Curation, GitHub.

Acknowledgment

To accomplish this 5-year Ph.D project, I have received lots of encouragement
from colleagues, friends and my family. I would take this opportunity to thank:
My main supervisor Prof. Michel R. V. Chaudron, for the continuous support
to my Ph.D study, for your patience, motivation, and immense knowledge.
Thanks for being not only a great academic adviser but also an intimate friend.
My co-supervisor Regina Hebig, for voluntarily supporting me and providing
me with tips and comments whenever needed.

My former co-supervisor Patrizio Pelliccione, for offering interesting discus-
sions and constructive comments in the first two years of my Ph.D.

My examiner Prof. Ivica Crnkovic, for your encouragement, for hard ques-
tions which incent me to widen my research from various perspectives.

Directors of Ph.D study Jan Jonsson and Agneta Nilsson, for always giving
constructive recommendations and reminding me to add buffers to my often-
ambitious-research plans.

To all of my colleagues at the Software Engineering Division, including
of course administrative staff: Thank you all for creating such a friendly and
productive work environment. I particularly thank Rodi Jolak for sharing the
office with me, for interesting discussions and lots of push-up exercises at work.
Hugo, Federico, Grischa, Salome: for being good and helpful neighbours.

My research would have not been possible without support from my collab-
orators. I would express my deeply thanks to all 24 people who co-authored

papers with me. In particular, I thank Gregorio Robles and Miguel Angel
Fernandez for being part of the best team that I've ever had. Many thanks
to Arif Nurwidyantoro, Alexandre Bergel, Adithya Raghuraman, Alexander
Serebrenik, Bogdan Vasilescu for our regular discussions despite the major time
differences. To Dave, Hafeez and Bilal: I am thankful to be part of our team.
Thanks to your help, I came to the Ph.D life less nervous.

To all friends, near and far away, especially the Vietnamese “gangs”’ in
Gothenburg: I sincerely thank you for sharing lots of joys during the years and
recharging my battery when it was getting low.

And to the most important people in my life: My lovely wife and daughter
- thank you for stepping into my life and making it full of joy and happiness
everyday. I also owe much of my success to my parents and grand-fathers, who
supported me spiritually throughout writing this thesis and my life in general.
Last but not least, I would give many thanks to my brothers and their families
for the great suggestions and motivation during my Ph.D life.

Truong Ho-Quang
Gothenburg, 2019.

vii

List of Publications

Included publications

This thesis is based on the following eight (8) papers:

[A]

T. Ho-Quang, M.R.V. Chaudron, I. Samdelsson, J. Hjaltason, B. Karas-
neh, H. Osman “Automatic Classification of UML Class Diagrams from
Images”.

Published in the Proceedings of the 21st Asia-Pacific Software Engineering
Conference (APSEC 2014), Jeju, Korea, December 1 - December 4, 2014.

R. Hebig, T. Ho-Quang, M.R.V. Chaudron, G. Robles, F. Miguel Angel
“The Quest for Open Source Projects that Use UML: Mining GitHub”.
Published in the Proceedings of the ACM/IEEE 19th International Con-
ference on Model Driven Engineering Languages and Systems (MODELS
2016), Saint-Malo, France, October 2 - October 7, 2016.

T. Ho-Quang, R. Hebig, G. Robles, M.R.V. Chaudron, F. Miguel Angel
“Practices and Perceptions of UML Use in Open Source Projects”.
Published in the Proceedings of the 39th International Conference on
Software Engineering - Software Engineering in Practice Track (ICSE
SEIP 2017), Buenos Aires, Argentina, May 20 - May 28, 2017.

M.H. Osman, T. Ho-Quang, M.R.V. Chaudron, “An Automated Ap-
proach for Classifying Reverse-engineered and Forward-engineered UML
Class Diagrams”.

Published in the Proceedings of the 44th Euromicro Conference on Soft-
ware Engineering and Advanced Applications (SEAA) (pp. 396-399),
Prague, Czech Republic, August 29-31, 2018.

T. Ho-Quang, M.R.V. Chaudron, R. Hebig, G. Robles “Challenges and
Directions for a Community Infrastructure for Big Data-driven Research
in Software Architecture”

Accepted as a chapter in the book “Model Management and Analytics for
Large Scale Systems”, To be published by Elsevier (Expected release date:
November 1, 2019).

A. Raghuraman, T. Ho-Quang, M.R.V. Chaudron, A. Serebrenik,
B. Vasilescu “Does UML Modeling Associate with Higher Software Qual-
ity in Open-Source Software?”

Accepted at the 16th International Conference on Mining Software Repos-
itories (MSR2019), Montréal, Canada, May 26 - May 27, 2019.

ix

[G]

T. Ho-Quang, A. Nurwidyantoro, M.R.V. Chaudron “Using Machine
Learning for Automated Classification of Class Responsibility Stereotypes
in Software Design”.

Under Submission.

T. Ho-Quang, A. Bergel, A. Nurwidyantoro, M.R.V. Chaudron “In-
teractive Role Stereotype-Based Visualization To Comprehend Software
Architecture”.

Under submission.

xi

Other publications

The following publications were published during my PhD studies, or are
currently in submission. However, they are not appended to this thesis, due to
contents overlapping that of appended publications or contents not related to
the thesis.

[a]

[f]

H. Osman, M.R.V. Chaudron, P. van der Putten, T. Ho-Quang “Con-
densing Reverse Engineered Class Diagrams Through Class Name Based
Abstraction”

4th World Congress on Information and Communication Technologies
(WICT’14), Malacca, Malaysia, December 8 - December 10, 2014.

D.R. Stikkolorum, T. Ho-Quang, M.R.V. Chaudron “Revealing Stu-
dents’ UML Class Diagram Modelling Strategies with WebUML and
LogViz”

41st Euromicro Conference on Software Engineering and Advanced Ap-
plications (SEAA), Funchal, Madeira, Protugal, August 26 - August 28,
2015.

D.R. Stikkolorum, T. Ho-Quang, B. Karasneh, M.R.V. Chaudron “Un-
covering Students’ Common Difficulties and Strategies During a Class
Diagram Design Process: an Online Experiment”

Educators Symposium at ACM/IEEE 18th International Conference on
Model Driven Engineering Languages and Systems (EduSymp@MoDELS
2015), Ottawa, Canada, September 29, 2015.

R. Hebig, T. Ho-Quang, M.R.V. Chaudron, G. Robles, F. Miguel Angel
“The Quest for UML in Open Source Projects Initial findings from GitHub”
Published in the Proceedings of the Doctoral Consortium at the 12th
International Conference on Open Source Systems (0SS 2016), Gétebory,
Sweden, May 30, 2016

R. Jolak, E. Umuhoza, T. Ho-Quang, M.R.V. Chaudron, M.Brambilla
“Dissecting design effort and drawing effort in UML modeling”

Published in the Proceedings of the 43rd Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), Vienna, Austria, 2017.

G. Robles, T. Ho-Quang, R. Hebig, M.R.V. Chaudron, F. Miguel Angel
“An extensive collection of UML files in GitHub”

Published in the Proceedings of the 14th International Conference on
Mining Software Repositories (MSR 2017).

R. Jolak, T. Ho-Quang, M.R.V. Chaudron, R.R.H. Schiffelers “Model-
Based Software Engineering: A Multiple-Case Study on Challenges and
Development Efforts”

Published in the Proceedings of the 21th ACM/IEEE International Con-
ference on Model Driven Engineering Languages and Systems, 2018.

Y. El Ahmar, X. Le Pallec, S. Gérard, T. Ho-Quang “Visual Variables
in UML: a First Empirical Assessment”

Workshop in Human Factors in Modeling (HuFaMo 2018), MODELS
2018, Austin, US, 2018.

xii

[i]

M.R.V Chaudron, A. Fernandes-Saez, R. Hebig, T. Ho-Quang, R. Jolak
“Diversity in UML Modeling Explained: Observations, Classifications and
Theorizations”

In International Conference on Current Trends in Theory and Practice
of Informatics (SOFSEM 2018), Krems, Austria, January 29 - February
2, 2018.

A. Nurwidyantoro, T. Ho-Quang, M.R.V. Chaudron “Automated Clas-
sification of Class Role-Stereotypes via Machine Learning”

Published in the Proceedings of the Evaluation and Assessment in Soft-
ware Engineering conference (EASE 2019), Copenhagen, Denmark, 1/
April - 17 April, 2019.

T. Ho-Quang, M.R.V. Chaudron, G. Robles, G.B. Herwanto “Building
an Infrastructure for Empirical Software Architecture Studies: Challenges
and Directions”

Accepted at ICSE workshop on Establishing a Community- Wide Infras-
tructure for Architecture-Based Software Engineering (ECASE 2019)

Research Contribution

My contributions to Paper A are study design, data analysis and the majority of
paper writing. The tool that was used for extracting image-processing features
in the paper was implemented by I. Samelsson and J. Hjaltason. The remaining
authors contributed with reviews and improvement suggestions.

Studies reported in Paper B and C were conducted in collaboration with
the Grupo de Sistemas y Comunicaciones (GSyC) E| at the Universidad Rey
Juan Carlos (URJC)EI In the two papers, the major effort in classifying UML
images and validating the classification results was made by me.

In Paper B, I participated and contributed in designing the study, formulat-
ing research questions, analyzing data and discussing results. I wrote a majority
of the publication regarding Introduction, Methodology and Threats to validity.

In Paper C, I took the leading role in study design, data collection and
data analysis. My main effort in this work consists of identifying UML images,
executing the survey and analyzing the data. In term of paper writing, I wrote
the majority of the sections Research Questions, Methodology, Results/Findings
and Conclusion.

In Paper D, my main contribution lies in: i) coordinating the process of
building the ground truth; ii) implementing a tool for extracting machine
learning features from .xmi files; and iii) interpreting the classification results.
I also contributed by writing a major part of Methodology and Discussion
sections. As an extension to the paper, I applied the trained classification model
to classify the entire Lindholmen dataset.

In Paper E, I took the leading role in proposing CoSARI - a reference
architecture for a community-based infrastructure for big-data driven research
in software architecture. I also actively participated in: i) reporting experiences
on building and sharing Lindholmen dataset; and ii) discussing challenges to
empirical research in the field and requirements for such the infrastructure.

In Paper F, I contributed mostly in filtering/validating “UML projects’
from the Lindholmen dataset and interpreting the result of data analysis. I also
participated in writing up the Methodology and Threats to Validity sections.

Paper G is an extended version of Paper [j] (in the list of Other publications).
In both papers, I took the leading role in designing the study, building the
ground truth and analysing the classification results. As part of its data
analysis, I developed a visualisation tool to explore the collaboration patterns
between role-stereotypes. I also contributed by writing a major part of the
paper, including Introduction, Methodology, Discussion of new applications of
role-stereotypes.

The study described in Paper H was done in collaboration with the Intelligent
Software Construction laboratory (ISCLab E[) of the University of Chile. In the
paper, I worked closely with the second authors to create RoleViz - a tool that
visualises class role stereotypes. I took a leading role in designing, conducting
the evaluation user-study and analysing the obtained data. In this paper, I
wrote a major part of Methodology, Data Collection & Analysis, Discussion
and participated in writing/reviewing the other parts.

b

Home page of GSyC - https://gsyc.urjc.es/
2Home page of the Universidad Rey Juan Carlos (Madrid, Spain) - http://www.urjc.es/
3ISCLab’s homepage: https://isclab.dcc.uchile.cl/

https://isclab.dcc.uchile.cl/

xiv

Contents

v
|[Acknowledgement| vii
G FPublications ix
[Personal Contributionl xiii
1__Introductionl 1
[T ResearchFocud 2
[1.1.1 Goals of the Ph.D Study|. 2

[1.1.2° Scope and Expected Outcomes of the Ph.D Study| . . . 3

[1.1.3 Research questions of the Ph.D thesis| 7

.2 Background| oo 7
[L.2.1 The Unified Modeling Language (UML)| 7

[1.2.2 Existing Corpora of Software Modeling Artifacts 8

[1.2.3 UML use and impacts of using UML in software engi- |

| neering projects|. oL 11
1.3 Methodologyl, 13
[L3.1 Constructive researchf 14

(1.3.2 Empirical research|o 15

L4 Contributionsl L oL 16
[1.4.1 Paper A: Automatic classification of UML class diagrams |

| from images| 17
[1.4.2 Paper B: The quest for open source projects that use |

| UML: mining GitHub| 18
[1.4.3 Paper C: Practices and perceptions of UML use in open |

| source projects|o 20

(1.4.4 Paper D: An Automated Approach tor Classifying Reverse-

engineered and Forward-engineered UML Class Diagrams| 21

[1.4.5 Paper k: Challenges and Directions for a Community ‘

Infrastructure for Big Data-driven Research in Software |

Architecturel. 23
[1.4.6 Paper I': Does UML Modeling Associate with Higher |
[Software Quality in Open-Source Software? 24

[1.4.7 Paper G: Using Machine Learning for Automated Classi- ‘

ication o ass Responsibility Stereotypes in Software

XV

xvi CONTENTS
[1.4.8 Paper H: Interactive Role Stereotype-Based Visualization |

| To Comprehend Software Architecturel 27
1.5 Summary ot Research Findings| 28
[1.5.1 Answer to RQ1. How to build a large corpus of models?| 28

[1.5.2 Answer to RQ2. How can we share and promote use of |

| the corpus of UML models?| 31
[1.5.3 Answer to RQ3. What are purposes of using UML in |

| 0% projects? . - - - . - .. 31
[1.5.4 Answer to RQ4. How 1s UML used in OSS projects?| . . 32

[1.5.5 Answer to RQ5. What are practices for using UML mod- |

[eling in software development? 32
[1.5.6 Answer to RQ6. What are perceived impacts of using |

| UML 1 OS5 projects?|. 33
[1.5.7 Answer to RQ7. Does the use of UML modeling correlate |

| with lower defect proneness?| 33
[1.5.8 Answer to RQS8. Does using class role stereotypes cor- |

relate with better understanding of designs of software |

SYSTEINT] © « v v e e e e e 34

L6 DISCUSSIONl - « « « « v v v e e e e e e 34
[1.6.1 Software Modeling and Design Practices in Industry] . . 34

[1.6.2 Alternatives of the Machine Learning Approach|. 38

[L.7 Threats to validity| L. 39
.8 Future Workl 40
[1.8.1 Extending the Lindholmen data set| 40

[1.8.2 Extending the understanding about UML use and impact: |

| enablers, inhibitors and context|. 42
[1.8.3 Building guidelines tor UML use| 46

[1.8.4 Other directionsl 47

Pap A 49
I Tntroductionl. 50
2.2 Related Workl 51
[2.2.1 Tmage classification|. 51

[2.2.2 Diagram feature extraction| 52

2.3 Research Questions|. 52

4 App hl . . 52
2.4.1 Overall frameworkl 52

[2.4.2 Image processing| 53

243 Feature extractionl 54

244 UML CD dlassificationl 57

[2.4.5 Amalyse Result| 58

2.5 Experiment Description| 58
251 Dafasell 58

2.5.2 Fvaluation measuresl 58

[2.5.3 Experiment settings| 59

2.6 Analysis Of Results|. 59
[2.6.1 RQI: Intluence of features| 59

[2.6.2 RQ2: Classification algorithms performance| 60

[2.6.3 RQ3: Set of features Performance|. 61

CONTENTS xvii
E7DISCUSSION « « v v vove e e e e e e 62
[2.7.1 TImage Processing Time| 62
[2.7.2 Image Processing Features Performance] 63
[2.7.3 Classification Algorithms| 64
[2.7.4 Threats to validity| 64

2.8 Conclusions and Future Workl 64
Pap B 67
B.1 Introductionl. 68
3.2 Research questions| 69
B3 Related researchl 70
B31 Useof UMLInFOSY 70

V Ol e e e e e e e 71

8.4 Methodologyl 71
B.41 Occurrence of UMTI 72
B.42 Data Collectionl 73
B.43 UMLfilters] oo oo 74
[3.4.4 Metadata Extraction and Queryingf. 76

BE Resultd. o oo 76
[3.5.1 RQI1: UML in GitHub projects| 77
[3.5.2 RQ2: Versions of UML models| 77
[3.5.3 RQ3: Time of UML model introduction| 78
[3.5.4 RQ4: Time span of active UML|. 80
[3.5.5 RQb: Duplicates| 82

B _DISCUSSION - -« « v v v e e e 83
3.7 Threats to validity| 86
[3.7.1 Threats to construct validity] 87
[3.7.2 Threats to external validity] 87
[3.7.3 Threats to conclusion validity|. 88

B8 Conclusiond 88
4 Pap 91
I Tntroductionl. 92
4.2 Research Question| 93
4.3 Related workl oo 94
[4.3.1 Modeling in Industry|. 94
[4.3.2 Modeling in Open Source Softwarel 94

4.4 Research Methodology| 95
(441 Data Collectionl 95
[4.4.2 Filtering the obtained projects and contributors] 96
[4.4.3 Conducting the survey| 96
[4.4.4 Data Analysig[. 0L 98

BB Rosalo/Fmangs . - . . o« o oo eeeee e 99
[£51 Respondent Demographics|. 99
[4.5.2 Why is UML used?|. 100
4.5.3 Is UML part of the interaction of contributors?| 101

4.5.4 What is the impact/benefit of UML?. 104
............................. 106

[4.6.1 Comparison to Insights to Related Works| 107

xviii CONTENTS

[4.6.2 Tmplications|. oL 107
[4.6.3 Threats to Validity|. 108
4.7 _Conclusion and Future work| 109

4.8 Appendix 1. Distribution of survey respondents by countries|. . 110
4.9 Appendix 2. Distribution of survey respondents by continents| . 110

Pap D 111
b1 Introductionl. 112
B2 RelatedWorkl 113
9.3 Research Questions|. 115
5.4 Approach| 115

[5.4.1 Data Collectionl. 115
[b.4.2 Feature Extraction & Establishing Ground Truth|. . . . 117
[5.4.3 Model Learning|. 119
.44 Fvaluation of Resultsl 119

b.5 Result and Findings| 120
[5.5.1 RQI1: Analysis of Selected Features| 120
[5.5.2 RQ2: Classification Model Performance| 121

0.6 Discussion and Future Workl o000 123
5.6.1 Feature Selectionl, 123
B62 Dafasef]lo 123
[5.6.3 Classification Algorithm| 123
[5.6.4 Threats to Validity|. 125

b7 Conclusions oL 125
6 Paper K 127
6.1 Introductionl. 128
62 Related Workl 128
[6.2.1 Existing Corpora of Software Modelling Artefacts|. . . . 129
6.2.2 Other Software Architecture Collections 130
[6.2.3 Mining Architectural Knowledgel 130
[6.2.4 Scientific Workflow Systems|. 131

6.3 Experiences in Creating & Sharing a Collection of UML Software |
[Design Models| 132
[6.3.1 Models FExtraction from GitHubl 132
6.32 Data Curationl 133
[6.3.3 Sharing the Lindholmen dataset| 133

6.4 Challenges for Big-data Driven Empirical Studies in Software |
| Architecturel 133
6.5 Directions for a Community Infrastructure for Big-data Driven |
mpirical Research in Software Architecturel. 136

6.6 Overview of CoSARI 139
[6.6.1 Overview of the CoSARI Frameworkl 139
6.6.2 Main Use-cases of CoSARI 143
[6.6.3 Omngoing and Future Work{. 144

6.7 Summary and Conclusions|. 145

CONTENTS Xix

7 Paper F 149
[t.1 Introductionl. 150
[7.2 Methodologyl 151

............................. 151

[7.2.2 Operationalization| 152
7.2.3 Analysis|.o 153

[r.3 Results and Discussion| 153
[r.4 Threats to validity| L. 154
[th Conclusions Lo 155

157
81 Introductionl. 158
8.2 Class Role Stereotypes| 159
8.3 Related Worklo oo 159
8.4 Methodologyl 161

B.4.1 Data Collectionl. 161
[8.4.2 Ground Truth step 1: Criteria for Role Stereotypes| . . . 162
[8.4.3 Ground Truth step 2: Manual Labeling and Consolidation{164
[8.4.4 Feature Extractionl 164
[8.4.5 Machine Learning Classification Experiments| 167
[8.4.6 Generalizability of the Trained ML Classifier| 167
8.5 Experiment Results[. 168
3.5.1 Multi-role Classification of all Stereotypes| 168
8.5.2 Single Role (Binary) Classification| 168
[8:6 Classification Feature Importance. 170
8.7 Generalizability of the Classifier|. 172

[8.7.1 Generalizability Experiment 1: Single Case Training| . . 172
[8.7.2 Generalizability Experiment 2: Double Cases Training| . 173

8.8 New Applications of Role Stereotypes| 175
[8.8.1 Stereotype-specitic Design Metrics| 175
[8.8.2 Using Role Stereotypes for Profiling Software Design |

| Intention/Principles| 177
[R:8:3 Collaboration Pattern between Stereotypes 181

8.9 Threats to Validity] 182
8.10 Conclusion and Future Workl 182
Pap [185

9.1 Introductionl.o 186

9.2 Role Stereotypelo 187

93 RoleVid 187
9.3.1 RoleViz i a Nutshelll. 187
[9.3.2 Compilation Unit|. 188
9.3.3 Package]o oo 189
0.34 TInteractionl 189

9.4 Research Questions|. 191

9.5 User Study] 191
9.51 Baseline 191
[9.5.2 Comprehension Tasks| 192

9.5.3 Participants|.o oo 193

CONTENTS

[9.5.4 Training Period|. L. 194
9.5.5 Work Session|o 194

9.6 Data Collection & Analysis| 195
[9.6.1 Background Questionnairef. 195
9.6.2 TLX Questionnaire|. 195
9.6.3 SUS Questionnaire| L. 196
[9.6.4 Understanding Questionnaire] 196
[9.6.5 Post-study Questionnaire| 197

D7 Resultl 197
[9.7.1 Demographics of Participants| 197
9.7.2 re the Comprehension Tasks Comparable?| 198
9.7.3 RQI1: Comparison between RoleViz and Softagram| . . . 199
[9.7.4 RQZ2: Participant’s perception on the features of RoleViz| 201

9.8 Discussions 202
[9.8.1 Does participant’s experiences correlate with their per- |
ceived SUS, TLX and Understanding scores? 203

[9.8.2 Threats to Validity|. 203

9.9 Related Workl L 204
9.10 Conclusion and Future Workl 205
bliograp 207

Chapter 1

Introduction

Modeling is used in many walks of life, spanning over time and disciplines.
Going back to early civilizations such as Ancient Egypt, Rome and Greece,
modeling was used to create small-scale plans prior to building temples and
sculptures [1]. In various science and engineering domains, modeling is widely
used to provide abstractions of a system (to be implemented) at some levels of
detail and precision. In the Software Engineering domain, software modeling is
defined as “the designing of software applications before coding”, according to
the Object Modeling Group (OMG) [2].

In modern software development, software modeling is considered as an
essential part of the software architecture and design activity. Software models
- one of the main outcomes of the modeling process - provide means to design
solutions to the problem domain that needs to be addressed by software systems.
Literature promises many benefits of software modeling in sofrware development.
For example, by modeling a system, one can be assured that design decisions
captured in the software models are well documented, thus minimizing loss of
information and misinterpretation in communicating the decisions taken during
development. Software models also help to facilitate communication between
team members. Besides, there exists evidences that software modeling has also
been used in many industrial projects [3H5].

Despite the widely assumed benefits of software modeling, its actual usage
and impacts to software development projects are subject to research. In the
last decade, a number of empirical studies into software modeling has been
conducted. As the Unified Modeling Language (UML) has become the de facto
standard for software modeling in industry (since 1990s), many of these studies
explore the effectiveness of UML modeling in software development, focusing
on a costs and benefits perspective, and on industrial practice [3,4,6HL3]|.
The findings, however, are diverse and partially contradictory. In a large-scale
interview, Petre [13] found that the majority of the interviewees refused to use
the UML because of its complexity, lack of formal semantics, inconsistency,
and issues of synchronization between different diagrams. However, there are
case-studies where UML is actively used and positively impacts software system.
In another large scale survey (of over 250 professionals) about the state of the
practice of MDD, Hutchinson et al. found that 73.4% of the people that have
adopted MDD in their development process assert that models are used for

2 CHAPTER 1. INTRODUCTION

understanding a problem at an abstract level [14].

These seemingly contradict results trigger the following questions: Why is
UML modeling successfully adopted in some cases but not in others?, Are there
any common practices for applying UML modeling in software projects? Are
there any common impacts of UML modeling in the development?. We find that
it is difficult to properly answer the questions because: i) there is a surprising
lack of empirical evidence on the use and impacts of software modeling [10L12];
ii) software modeling artifacts (including software models) exist in many forms
and formats, making it hard to systematically collect them for research; and iii)
existing corpora of software models do not capture relevant context information
in which software models are used (such as: purpose/goals of the models, stage
of development where modeling is used, team composition). As a consequence,
existing results are often not generalizable or comparable between different
projects and case studies [15}/16].

The overall aim of this Ph.D study is to empower empirical studies in
software design and modeling by collecting and studying a large cor-
pus of software modeling artifacts from real-life software systems.

According the Cambridge dictionary, “to empower” is defined as “to en-
courage and support the ability to do something”ﬂ In this Ph.D study, on the
one hand, we aim to provide a large corpus of curated software modeling arti-
facts that enables researchers in the field to conduct various empirical studies
into software modeling and design. On the other hand, we expect knowledge
learned from conducting empirical studies on the corpus could encourage new
(empirical) research directions into software modeling and design.

The remainder of this chapter is constructed as follow. Section [I.1] presents
in detail the research goals, research questions and scope of the thesis. Sec-
tion provides reader with background of the study. Section discusses
the methodology. Section [I.4] presents a short summary of each paper and
their contribution to the goals of the thesis. In Section [I.5] we put together
findings from individual papers to answer eight research questions of the study.
Subsequently, we provide a discussion on the fulfillment of the research goals
of this Ph.D study. Section provides further discussions on the software
modeling and design practices. Section presents the threats to validity to
this Ph.D study and Section wraps up this chapter with recommendations
for future work.

1.1 Research Focus

This section will provide readers with details about the research goals, research
questions and scope of this Ph.D study.

1.1.1 Goals of the Ph.D Study

This Ph.D study aims at enabling empirical studies in software design and
modeling by collecting and studying a large corpus of software modeling artifacts
from real-life software systems. The three goals of this Ph.D study are:

Thttps://dictionary.cambridge.org/dictionary/english/empower

https://dictionary.cambridge.org/dictionary/english/empower

1.1. RESEARCH FOCUS 3

Goal G1. To build and share (with researchers and practitioners in the field)
a large corpus of curated software modeling artifacts.

Goal G2. To conduct empirical studies on practices of software modeling in
real-life software development.

Goal G3. To conduct empirical studies on impacts of software modeling in

real-life software development.

G3. Impacts
of modeling

Knowledge

Dataset

Figure 1.1: Pyramid of goals of the PhD Study

Figure [[.1] presents the three goals of this Ph.D study in a pyramid shape,
indicating the direction in which empirical insight /knowledge is gained from
analysing raw-data. In particular, at the bottom layer of the pyramid, G1
aims at building and establishing a large corpus of software modeling evidence.
This is the foundation on which empirical studies in G2 and G3 (presented in
higher layers of the pyramid) build.

Figure [I.1] also shows the bi-directional relationship of the goals. On the
one hand, G1 provides empirical data for G2 and G3. On the other hand,
knowledge gained from conducting quantitative and qualitative analyses on the
dataset can be used to better organize the original data.

The Ph.D study is designed in a replicable manner. Accordingly, data
obtained from G1 is open for public access. Methods are described step by
step, limitations and threats to validity are carefully discussed in the chapters.

1.1.2 Scope and Expected Outcomes of the Ph.D Study

In this section, we firstly present the general scope of this Ph.D study. Subse-

quently, we present the scope and expected outcomes of the three main goals
of this thesis.

4 CHAPTER 1. INTRODUCTION

1.1.2.1 General Scope of the Ph.D Study.

This Ph.D study concerns with practices and impacts of software modeling and
software design in software development. Therefore, it is needed to understand
the scope of this Ph.D study towards software modeling and software design as
the following:

Definitions: software design and software modeling. According to the
Cambridge dictionary, design (Noun) is “the plans, drawings, etc., that show
how something can be made”ﬂ Software design can be understood as the
process of making decisions about the software that is to be built or created.
Different from software design, software model is an abstract representation of
a system. Software modeling is defined as “the process of creating a software
model, i.e. choosing what to represent and how to represent it”.

Scope: Software design and software modeling. Modeling and design-
ing often go hand-in-hand. A model is used to understand, reason, analyse,
break-down, which leads to adaptation and refinement of the design. Software
design and models are often documented together in same documents and there
is no clear distinction between them. In the context of this Ph.D study, we aim
to collect both software design and software modeling artifacts. We chose to
start with collecting software models in a common modeling language which is
the Unified Modeling Language (UML). This choice of data collection has a
consequence on the type and subjects of empirical studies of this Ph.D study.
In particular, we are able to study practices and impacts of UML modeling in
software projects.

1.1.2.2 Scope and Expected Outcomes of Goal G1

Goal G1 refers the creation of a large collection of curated software modeling
artifacts. We scope the type of modeling artifacts, place to collect data, data
curation activities and the expected outcomes as the following:

Scope: What software modeling artifacts? Software modeling artifacts
exist in a very wide range of files and formats. Most common modeling artifacts
include software models, software architecture documentation. The focus of
our corpus is on software models that describe (parts of) the design of software
systems by means of the UML modeling language. In particular, we shall collect
UML models and relevant context information (such as source code, descriptive
information of the corresponding projects) as the main parts of the corpus.

Scope: Where to collect data? When it comes to data collection, an
obvious question is where to collect the data from. One option is to collect
UML models from industrial companies. This has pros and cons. The main
advantage of industrial data is industry-relevant contexts (including rationale,
business decisions) behind UML use. The main drawback lays in data availability.
Particularly, it is difficult to collect industrial cases where UML is used, because
companies consider their design as commercially sensitive information or as

%https://dictionary.cambridge.org/dictionary/english/design

https://dictionary.cambridge.org/dictionary/english/design

1.1. RESEARCH FOCUS 5

a reflection of their state of IT-affairs. This could further limit the study’s
replication. An alternative option is to collect UML practices from OSS projects.
Data availability and transparency are clearly the main advantage of OSS
projects compared with industrial cases. Public access to not only UML file
but also other resources such as source code, documentation, issues, commit
message, etc. would allow researchers to put the UML file in its usage context.
The main challenge is to identify OSS projects that use UML. This is due
to the large variety of UML file formats and the lack of support from most
open source platforms, such as GitHub, for model versioning. Goal G1 of this
thesis focuses on finding UML modeling artifacts in OSS projects and takes
the challenge of identifying OSS projects that use UML.

Scope: Data curation. According to Lord et al., data curation is defined
as “the activity of managing and promoting the use of data from its point of
creation, to ensure it is fit for contemporary purpose, and available for discovery
and reuse” [17]. The authors further added that “Higher levels of curation will
also involve maintaining links with annotation and other published materials”.
In the context of this Ph.D study, data curation is undertaken as the sequential
steps of data collection and might include the following activities:

e Enriching understanding about the collected data. This can be done by
means of observational or analytical assessment on the characteristics of
the data.

e Enriching the (meta-data of the) collected data with knowledge gained
from systematic analyses/studies on the data, e.g. by annotating research
findings to the data.

e Filtering relevant data for conducting empirical research in the field of
software modeling.

Expected Outcomes. A corpus of UML models and their relevant context
information from GitHub OSS projects. The UML models should be labeled by
some their characteristics such as “type of the UML models”, etc. The corpus
should be designed in an easy-to-maintain manner so that other researchers
can reuse and contribute to labeling of the models.

1.1.2.3 Scope and Expected Outcomes of Goal G2

Goal G2 aims at conducting empirical studies on practices of software modeling
with the following scope and expected outcomes:

Scope: What are modeling practices? According the Cambridge dictio-
nary, the noun “practice” means “something that is usually or regularly done,
often as a habit, tradition, or custom”E| In the context of this Ph.D thesis,
“modeling practices” is understood as “the ways/habits in which modeling is
often done or applied within a software project”.

Shttps://dictionary.cambridge.org/dictionary/english/practice

https://dictionary.cambridge.org/dictionary/english/practice

6 CHAPTER 1. INTRODUCTION

As being the behaviours formed inside human brain, (modeling) practices
can be categorised into conscious and unconscious practices. Conscious mod-
eling practices refers to modeling practices which are well acknowledged by
software practitioners, e.g. using UML as the common modeling language, using
UML models for communication. Unconscious modeling practices, in contrast,
are those practices that appear across many software projects without much
conscious attention, e.g. introduction time of the UML models, time span of
UML models.

In the context of this Ph.D thesis, we take both types of modeling practices
into account. The type of studying modeling practices would subsequently
drives the selection of methods for collecting the practices. For example, to
collect conscious practices, it might be enough to conduct a survey anong
modeling practitioners, while identifying unconscious practices might be done
via statistical analysis on a big sample of projects.

Scope: Notion of “good” modeling practices. It is a common thought
that following “good” practices often lead to producing good results ([18],
pp-110). In fact, it is difficult to explicitly conclude whether a modeling practice
is good or bad without a consideration of the context in which the practice is
used. For example, a modeling tool that is effectively used in a project might
not be generally applied to other projects where the needs are different (e.g.
some projects might prefer drawing tools over modeling tools). In this Ph.D
thesis, we report our observation on the modeling practices without making
judgement on whether they are good or bad.

Expected Outcomes. Quantitative and qualitative analyses of the practices
of UML modeling in software systems. Examples of such analyses are time
period when UML is introduced, whether UML models are updated, and
rationale behind the use of UML.

1.1.2.4 Scope and Expected Outcomes of Goal G3

Goal G3 refers conducting empirical studies on impacts of software modeling
in software development. The scope and expected outcomes of G3 are the
following:

Scope: Impacts in software development. Impact is defined as “a marked
effect or influence”, according the Cambridge dictionaryﬁ In the context of this
Ph.D research, we study the effects of software modeling and design on various
aspects of software development, e.g. communication between team members,
software quality. For example, empirical findings regarding impacts of UML
modeling should investigate whether use of UML models related /associated
with improved/reduced quality aspects of the software systems. We follow
the cost and benefit model proposed by Chaudron et al. to categorise the
impacts [19].

Expected Outcomes. We hope to establish relation between the use of
UML modelling and different aspects of software development.

‘https://dictionary.cambridge.org/dictionary/english/impact

https://dictionary.cambridge.org/dictionary/english/impact

1.2. BACKGROUND 7

1.1.3 Research questions of the Ph.D thesis

To reach the goals of the Ph.D thesis, we formulate the following research
questions:

e RQ1. How to build a large corpus of models?

e RQ2. How can we share and promote use of the modeling corpus?
e RQ3. What are purposes of using UML in OSS projects?

e RQ4. How is UML used in OSS projects?

e RQ5. What are practices for using UML modeling in software develop-
ment?

e RQ6. What are perceived impacts of using UML in OSS projects?

e RQT7. Does the use of UML modeling correlate with lower defect prone-
ness?

e RQ8. Does using class role stereotypes correlate with better understand-
ing of designs of software system?

Among the research questions, RQ1 and RQ2 aim for G1; RQ3, RQ4
and RQ5 aim for G2; RQ6, RQ7 and RQS8 target G3.

Different from RQ3 to RQ7 which focus on practices and impacts associated
with UML modeling, RQ8 questions the impacts of using a software design
concept (i.e. class-role-stereotype) on assisting developers in their software
comprehension tasks.

1.2 Background

In this section, we aim to provide readers with background knowledge on
which the thesis builds. Firstly, this thesis focuses on the Unified Modeling
Language (UML) as the main software modeling artifact. Section [L.2.1] gives a
brief overview of the UML.

One of the main focuses of this thesis is to build a corpus of modeling
artifacts for empirical research in the field. Section will give a review of
existing corpora of modeling artifacts, including corpora of UML models.

Another focus of this thesis is conducting empirical research in software
modeling. Section highlights a number of empirical findings in the field,
with a focus on impacts of using UML in software engineering projects.

1.2.1 The Unified Modeling Language (UML)

The evolution of UML is described in detail by Kobryn [20]. The UML
emerged from the competition in creating notations for object-oriented design
by Booch [21], Rumbaugh et al. [22], Jacobson et al. [23] and other researchers
in the early nineties of the 20th century. The 1.1 version was proposed in
January 1997 and officially adopted by the Object Management Group (OMG)

8 CHAPTER 1. INTRODUCTION

Diagram

[1
Structure Behavior
Diagram Diagram
T T T [[1
; Component Object Activity Use Case State Machine
Class Diagram Diagram Diagram Diagram Diagram Diagram
Composite
stiu‘::lure Deployment Package Interaction
d Diagram Diagram Diagram
Diagram 9
[2)
[[
Profile Diagram Sequence IBI:::::;::‘
Diagram ’
Diagram

Communication Timing
Diagram Diagram

Figure 1.2: Taxonomy of UML diagrams (UML 2.0)

later that year. Since then, the UML has undergone many revisions, with UML
2.0 released in 2005 and most recently UML 2.5 in June 2015.

UML 2.5 has 14 diagram types. They are divided into two categories,
namely structure- and behavior- diagrams. Structure diagrams show the static
structure of systems, while behavior diagrams show the dynamic behavior of
systems, including their methods, collaborations, activities, and state histories.
Figure [[.2] shows a taxonomy of UML diagrams.

In the OMG’s view, “modeling is the designing of software applications before
coding”. The OMG promotes model-driven architecture as the approach in which
UML models of the software architecture are developed prior to implementation.
However, as the UML is a language and not a method, there are much more ways
of using it, e.g. for reverse engineering, refactoring, documenting an existing
system, etc. In addition, the UML is a methodology-independent language, one
could use it in different software development processes (e.g. when planning,
analyzing requirements) and in different software development methods (e.g.
water fall or agile approach). In this thesis, the UML is considered in all contexts
where it is used, not limited to model-driven per se. Figure shows examples
of three different types of UML diagrams.

1.2.2 Existing Corpora of Software Modeling Artifacts

Storrle et al. introduced the Software Engineering Model Index (SEMI) which
contains a list of contemporary model repositories . We take this as a
starting point for our search of software modeling corpus. In fact, 3 our of 8
corpora to be reviewed in this section are listed in SEMI. In the paper, the
authors also outline four main challenges when building a successful model
repository: i) Archiving (“How to archive data with very high reliability, for
very long time, yet readily accessible, and economically viable?”), ii) Access
Support (“How to search for models?”), iii) Intellectual Property (“How to
manage intellectual property such as models?”), and iv) Incentives (“How to
motivate researchers/practitioners to publish their models?”).

1.2. BACKGROUND 9

nterface android.app::Activity
— # onCreate(state: Bundie)
+addCallback(callback: SurfaceHolder.Callback) # onStart()
,,,,, + removeCallback(callback: SurfaceHolder,Callback) $onsum) "
+ et : Integer) onDes!
- sufmmmm Im:pm} + onCreateOptionsMenu(menu: Menu): Boolean
+ getSurface(): Surface + onOptionsltemSelected(item: Menultem): Boolean
e auser awser ——— generalization
ainterface» CameraDemo
android.view::SurfaceHolder Callback PSp———
~ buttonClick: Button
+ surfaceChanged (hoider: SurfaceHolder, - shutterCallback ShutterCallback ~——___|
format: Integer, width: Integer, height: Integer) ~ rawCallback: PictureCallback dlass
dependency + surfaceCreated(holder: SurfaceHolder) - - attributes.
LT U |PCT e RS oot | Create(savedinstanceState: Bundie)
2 #onS
— ¢ #lonStop()
/ #JonDestroy()
android.view::SurfaceView + lonCreateOptionsMenu(menu: Menu): Boolean
+ [draw(canvas: Canvas)
+ getHolder(): SurfaceHolder —
riacs _ aggregatin
i B\ / -
Proview android.hardware::Camera
~mHolder: SurfaceHolder preview e e
""" + getParameters(): Parameters.
— + ecreaten Preview(context: Context) + :szmmmux(p(arams: Parameters)
consictor + IsurfaceChanged (holder: SurfaceHolder, format: + setProviewDispiay (holder: SurfaceHolder) {fnal)
Integer, width: Integer, height: Integer) ko + startPreview() {final)
+ IsurfaceCreated(holder: SurfaceHolder) + stopPreviews) {final)
Ty s .
. , raw:
+ Idraw(canvas: Canvas) postview: PictureCallback, jpeg: PictureCallback) {final}

domodapraons
(a) Class diagram

sd submit_comments J lifeline «serviet»

specification «ajax»

:DWRServiet
i «javascripty
window :Comments }-Q
gate
i | | object creation
validate() > message |
synchronous validate() _ I
message —— >
¢ [«c:ea_tei «ajax» |
execution N Proxy |
specification i |

return «ajax»
message _l <—————— /

asynchronous

/‘P T | message
gate
10..200ms]
{ ! | I «callback» D
Lo) errors
duration | | |‘ T |
constraint L
ref destruction
/_ Handle Errors occurrence
specification
interaction use J_J
| uml-diagrams.org

L

(b) Sequence diagram

subject,
business boundary

«Business»
association Airport business use case
business actor

N

include

" | relationship
generalization Tour Guide «include» :4/

between actors

Individual
Check-In,

extend

N relationship

«extend» ™

Baggage
Check- /

business actor 1.7
Passenger

multiplicity business use case

© uml-diagrams.org

(c¢) Use-Case diagram

Figure 1.3: Examples of UML diagram (Source: http://www.unl-diagrams.org/)

http://www.uml-diagrams.org/

10 CHAPTER 1. INTRODUCTION

The Repository for Model Driven Development (ReMoDD) is created to
support researchers and practitioners in sharing exemplar models and other
modeling practices [25]. Currently, it contains around 90 modeling artefacts,
including models in different modeling languages and artefacts of some MDD
conferences. Models are stored in various formats, mostly PDF but also some
in XMI.

The Open Models Initiative (OMI ,EL similar to ReMoDD, offers a platform
that allows researchers and practitioners to share models. It is currently hosting
around 70 models stored mostly in image-formats. There is no report on whether
the models are derived from industrial or academic contexts.

Karasneh et al. used a crawling approach to automatically fill an online
repository with so far more than 700 model imagefﬂ from Google Image
Search [26]. This work focus on the models only and do not take their project
context into account. Further, Karasneh et al. do not distinguish between
models that stem from actual software development projects and models that
are created for other reasons, e.g. teaching.

Mengerink et al. collected a data set of 9,188 OCL expressions derived from
504 EMF meta-models in 245 GitHub repositories |27]. To this end, the authors
firstly performed a couple of GitHub searches, then downloaded all .ecore and
.ocl files in the result list, then removed all duplicated files and finally parsed
all the unique files to extract OCL expressions.

Basciani et al. built MDEForge as a web-based modeling platform which
aims at fostering a community-based modeling repository [28]. The number of
meta-models hosted in this platform is not available.

GenMyModeﬂ is a web-based online tool that supports collaborative mod-
eling for UML, BPMN, RDS, and flowcharts [29]. At the time of writing,
GenMyModels claims to host about 777,000 diagrams. However, it is not clear
how many of these diagrams are open to public access and how many are
private.

While they do not represent software designs, it is interesting to look at
the neighbouring discipline of business process models as they do share a lot of
commonalities, a.o. in being a model-centric approach. Moreover, there have
been significant efforts in building corpora of BPM models: The BPM Academic
Initiative (BPM Al) is a platform where business process models are shared for
teaching purposes [30]. A business process model is defined as a set of business
activities and execution constraints between these activities [31]. It can be used
to describe complex interactions between business partners and to indicate
related business requirements on an abstract level. Currently, BPM Al claims
to host 29,285 business process models in various machine-readable formats.
The dataset has however not been updated since 2012. The process of collecting
models is not clearly mentioned; apparently, most of the models in the dataset
derive from students as part of modeling assignments.

In summary, the existing corpora are rather small in term of number of
modeling artifacts. In addition to their small size, these repositories seldom
include other artifacts than the models, making it impossible to study the
models in the environment of actual projects. In this Ph.D study, we collect not

Shttp://openmodels.org
Shttp://models-db.com/
"https://www.genmymodel . com/

http://openmodels.org
http://models-db.com/
https://www.genmymodel.com/

1.2. BACKGROUND 11

only UML models but also meta-data of the projects in which the models are
found of the UML models (e.g. UML file commits, corresponding committers,
project founders, number of contributors, etc.).

1.2.3 UML use and impacts of using UML in software
engineering projects

In this section, we provide reader with an overall picture of UML use and
impacts of using UML in industry and in OSS projects by summarizing related
works.

1.2.3.1 UML use in industry

UML is widely studied in industry, however, there are needs for
more experiments and case studies Budgen et al. [12], in their systematic
review, identified 49 empirical studies of UML published up to the end of
2008. Among them, 12 papers were about UML metrics, 14.5 about model
comprehension, and 7.5 about model quality (half points indicate papers with
more than one focus). Only 2 papers addressed UML adoption, i.e. by Anda et
al. |3] and Grossman et al. [4]. These two studies identify a range of benefits and
drawbacks associated with the adoption of UML. They particularly highlight
the need for further research relating to the UML and its adoption as well as
the need for, and importance of, an adequate level of training.

Another systematic review conducted by Fernandez-Séez et al. [5] identified
38 papers (published up to the end of 2010) that report 63 empirical studies
of UML use in software maintenance processes. Only 3 of them are case-
studies. Most research (60 empirical studies) concerns the maintainability and
comprehensibility of the UML diagrams themselves. The authors conclude
that there is a need for more experiments and case studies to be performed in
industrial contexts.

Nugroho and Chaudron [10] also argue that “Despite the fact that UML is
widely used in practice, little is known about how UML is actually used”.

UML adoption and its impacts are still under discussion Modeling
has been widely studied in industry, in particular in several survey studies.
Torchiano et al. [32] found that models help to improve design and documenta-
tion. However, they also found that model usage is connected to extra effort,
especially due to a lack of supporting tooling. Forward et al. [33] found that
models are primarily used for design and documentation, while code generation
is rather seldom. Gorschek et al. [34] focused on a different population, which
are programmers, partially working in industry and open source. Within their
sample design models are not used very extensively. However, models and UML
are found to be used mainly for communication purposes. Further, they report
on a higher use of models for less experienced programmers.

Hutchinson et al. studied the state of the practice of model driven develop-
ment (MDD) for which over 250 professionals were surveyed [14]. Analyses of
the responses show that people that have adopted MDD in their development
process use models for various purposes, e.g. for communication with team

12 CHAPTER 1. INTRODUCTION

members, for testing and for model simulations (for verification and validation
purposes).

Chaudron et al. discuss the effectiveness of UML modeling with a special
focus on its cost and benefits [19]. Figure shows their views on benefits of
UML modeling to different aspects of software development characteristics. In
particular, UML modeling can benefit software development projects in many
ways, e.g. developers can use UML models to obtain better understanding
about problem domain as well as the solution space. We discuss our findings
about impacts of UML modeling with a reference to this benefit model.

[UML Modeling]

Developer Process Product
Benefits Benefits Benefits

Better > Improved
Understanding requirements
Problem Domain
' \
! Improved Design
0 Compliance
i

Better
Understanding

A

>
= Improved
ewer Quali
Defects > v
Improved
Productivity

Reduced L
rework

4

Reduced
testing
effort

Improved
Design Quality

ore efficient
Testing

ore efficient
Maintenance

Solution Space

i
i
Improved ; Shared
Communication i System Model

Reduced
maintenance
effort

v v
Better Risk ||, More | Project Maragement leads to
management O
Estimating

Figure 1.4: Benefits of UML modeling. Source: Figure 6, Chaudron et al. [19]

Dobing and Parsons [6] report on a survey of 171 UML users (plus 11
who use UML components within another OO methodology). The authors
found that "only class diagrams are being used regularly...". The majority
of respondents found that all aspects of UML are useful for most projects.
The authors also suggest that complexity and lack of usage guidelines are the
biggest concerns with UML.

Lange et al. [8] conducted a web-based survey in 14 industrial companies. On
the basis of the responses, they identified four main classes of problems encoun-
tered: scattered information (e.g., design choices dependencies); incompleteness,
disproportion (more detail for some parts than others), inconsistency.

Nugroho et al. [10] conducted a survey among 48 professional developers
(from 10 different countries) about their perception toward correspondence
between source code and design. Respondents identify incompleteness of the
UML design as the most prominent factor that often forces them to deviate
from a UML design.

Scanniello [11] conducted a survey at 22 companies regarding the use of
UML in software development and maintenance. Survey responses show that
the majority of the companies (20) use UML in the analysis and design phases.

Besides these big surveys, case studies were performed in order to investigate
the impact of the modeling/UML usage. For example, Baker et al. |7] found

1.3. METHODOLOGY 13

an increase of productivity when using UML in Motorola. Also Nugroho et
al. [35] investigated an industrial case study and found that UML usage has
the potential to reduce the defect density and, thus, increase the quality of
software. Just as in the case described by Kuhn et al. [36], most of the case
studies draw a picture of model use, where models are actually artifacts that
are produced and consumed by different people. Anda et al. [3| reports a case
study in ABB. This paper found anecdotal advantages of modeling such as
improved traceability. This paper also pointed to potential trade-offs, such as
time spending to integrate legacy code with models and organizational changes
needed to accommodate modeling.

Petre et al. [13] reported a series of interviews conducted over 2 years with
more than 50 practicing professional software developers. The author found
out that the majority of interviewees do not use UML, and those who do use it
tend to do so selectively and often informally.

Dzidek et al. |9] performed a controlled experiment to investigate the
influences of the use of UML to maintenance task (20 professional developers).
The result of the experiment shows a positive influence of the presence of UML
for maintainers. UML also helps novice developers to produce code of better
quality.

1.2.3.2 UML in OSS projects

Much less study has been done on UML use in OSS. One reason for this is the
challenge to actually find cases that can be studied. For example, Badreddin et
al. studied 20 projects, without finding UML and concluded that it is barely
used in open source [37]. Similarly, Ding et al. |38] found only 19 projects with
UML when manually studying 2000 open source projects.

There are several investigations of single or very small numbers of cases of
open source projects that use UML, e.g. by Yatani et al. [39], who found that
models are used to describe system designs, but are rarely updated. Osman et
al. [40] studied to what extent classes in the diagrams are implemented in the
code. Finally, Kazman et al. [41] investigate the Hadoop Distributed File System
to learn how documentation impacts communication and commit behavior in
the open source system. There are some studies that approach model use in
open source with a quantitative perspective, studying large numbers of projects.
For example, to study the use of sketches, Chung et al. [42] collected insights
from 230 persons contributing to 40 open source projects. Finally, Langer et
al. [43] studied the lifespan of 121 enterprise architect models in open source
projects.

1.3 Methodology

In this thesis, we employ constructive research methods and empirical research
methods to achieve the three goals G1, G2 and G3. In particular, G1 can be
addressed constructively: by building a system that satisfies the goal. Goal
G2 and G3 deal with the practices and impact in actual software development
projects. Hence these are best answered by conducting empirical research on
real-life software systems.

14 CHAPTER 1. INTRODUCTION

Table shows the use of the research methods in the 8 papers included
in this thesis. Sections [[.3.1] and discuss the use of each method across
the papers. A more-detailed discussion of the research strategies is found in
the included papers.

Table 1.1: Summary of research methods used in this Ph.D study

Paper AIB|C|DIE|F| G|H

- Constructive X | X[X |X |X X

£ Survey X | X

§ % Empirical Experiment X

é S Case study X
User study X

1.3.1 Constructive research

According to Crnkovic [44], the constructive research method implies building
of an artifact that solves a domain specific problem in order to create knowledge
about how the problem can be solved (or understood, explained or modeled)
in principle. Artifacts such as models, diagrams, plans, organization charts,
system designs, algorithms and artificial languages and software development
methods are typical outcomes of constructive research. In the context of this
Ph.D study, we followed the constructive research approach to achieve goal G1
and part of goal G3 as the following:

Constructing a process to build and share a large corpus of software
modeling artifacts. To achieve goal G1, we construct a process to: i) iden-
tify UML models from OSS projects in GitHub; ii) crawl the identified models
and meta-data of corresponding projects from GitHub to form the corpus; iii)
curate the corpus and iv) promote the use of the corpus among researchers and
practitioners in the field. The steps are documented and can be (selectively)
applied to collect other modeling artifacts (such as software architecture docu-
mentation) from various Git data sources other than GitHub (such as GitLab
or any company’s in-house Git server).

The constructive method is applied in the five studies A, B, C, D, and E.
In particular, in paper A, we proposed an automated method for automatically
identifying UML class diagram images among ordinary images. In paper B, the
method described in Paper A was combined with other data-mining techniques
(e.g. GHTorrent [45], CVSAnalY [46]) in a complete process to identify and
crawl UML diagram files in 10% of GitHub non-forked repositories (about 1.2
million projects). In paper C, we applied the process described in paper B to
obtain UML files and meta-data of corresponding projects from all GitHub
non-forked repositories (around 12 million projects). The collected data (called
Lindholmen dataset) has gone through some steps of curation. The curation
steps are discussed in detail in paper C and paper D. Finally, in paper E, we
presented a reference architecture of an infrastructure (called CoSARI) that
promotes the use of the corpus as well as collaborative research in the field of
software architecture.

1.3. METHODOLOGY 15

Constructing a visualisation tool for software comprehension. We
applied the constructive method to build a visualisation tool called RoleViz
for software comprehension. In particular, the visualisations in RoleViz were
developed via a number of iteration of collecting ideas, building prototype,
collecting and analysing feedback, and implementing/updating the visualisation.
The process is described in paper H.

1.3.2 Empirical research

The aim of empirical research methods is to gain knowledge by means of direct
and indirect observation or experience [47]. In the context of this Ph.D study,
empirical methods are used to enrich understanding of the use of UML modeling
and its impacts within OSS projects. In particular, four empirical methods, i.e.
survey study, experiment, case study, and user study were used to achieve goal
G2 and goal G3.

Survey study. Survey study is commonly used to identify the characteristics
of a broad population of individuals [47]. In this Ph.D study, survey studies
were used to establish a representative picture of the practical use and impacts
of using UML in OSS projects. Survey research is most closely associated
with the use of questionnaires for data collection. Survey research can also be
conducted by using structure interviews, or data logging techniques [48]. We
used different data collection methods for the survey studies presented in paper
B and C.

In paper B, we surveyed 3,295 OSS projects which were identified as using
UML modeling. By quantitatively analysing meta-data of the projects, we
could gain understanding on the pratical use of UML in OSS projects at the
descriptive level, e.g. whether UML models are used/updated, and if so, active
time of UML models, etc.

In paper C, qualitative and quantitative data was collected using a survey
questionnaire. While quantitative data gives us an overview of OSS developer’s
opinion regarding purposes and impacts of using UML, qualitative data provides
us with the rationale behind developer’s answers. We combined quantitative
and qualitative analysis in order to draw implications concerning UML use.

Experiment. An experiment is “an investigation of a testable hypothesis
where one or more independent variables are manipulated to measure their
effect on one or more dependent variables” [48]. Experiments are therefore
often used to determine in precise terms whether a cause—effect relationship
exists between the variables.

In the context of this Ph.D study, an experiment was used to study the intu-
itive and widely held belief that “the use of UML modeling, on average, should
correlate with higher software quality”. In particular, in paper F, we employed
a “quasi-experiment” to compare the defect proneness between two groups of
OSS GitHub projects: a treatment group of 50 projects using UML models; and
a control group of 93 projects sampled randomly using GHTorrent [45]. The
term "quasi" refers to the fact that the study unit (having UML models) was
not randomly assigned to experimental groups. Independent variables include
project age, primary programming language, number of contributors, etc. In

16 CHAPTER 1. INTRODUCTION

order to test our hypothesis, we built a multiple linear regression model, a
robust technology which enables us to estimate the effects of having UML
models on defect proneness while holding the other independent variables fized.

Case study. According to Yin, empirical case study refers to “an empirical
inquiry that investigates a contemporary phenomenon within its real-life context,
especially when the boundaries between phenomenon and context are not clearly
evident” [49]. Case studies help to achieve in-depth understanding of how and
why certain phenomena occur and the mechanisms by which cause—effect
relationships might happen [50].

In paper G, a multiple-case study was conducted to understand the existence
of class role-stereotype and its relationship to design characteristics of source
code in three studied software systems. In particular, we quantitatively analysed
the correlation between class’s role-stereotype and its design characteristics
(such as WMC' - weighted method per class and CBO - coupling between objects).
Result obtained from the analysis allows us to propose new applications of
role-stereotype, e.g. in capturing software system’s design style and intention.

User study. User studies focus on understanding user behaviors, needs, and
motivations through observation techniques, task analysis, and other feedback
methodologies. According to Kuniaysky, it is “the process of understanding the
impact of design on an audience” [51]. In the context of this Ph.D study, a
user study is used to understand the impact of software modeling in assisting
developers in software comprehension tasks. In particular, in paper F, we created
an interactive visualization called RoleViz that visualizes system architectures
in which architectural elements are annotated with their role-stereotypes. Then,
we conducted a comparative user-study in which developers use RoleViz and
Softagram (a commercial tool for software architecture comprehension) to solve
two separate comprehension tasks on a large open source system. We compared
RoleViz against Softagram in terms of participants’: (i) perceived cognitive
load, (ii) perceived usability, and (iii) understanding of the system.

1.4 Contributions

In this section, we summarize and state the main contributions of the eight
papers on which this Ph.D thesis builds. Figure offers an overview of the
contributions of the eight papers to the main goals and research questions
of the Ph.D thesis. The included papers are presented in a rectangle shape
and the research questions are presented in a round shape. The papers and
research questions are placed at one or more layers of the Ph.D Goal Pyramid
corresponding to the goals they contribute to. Papers that span over multiple
layers of the pyramid are expected to contribute to more than one goals, e.g.
paper C contributes to all three goals of the Ph.D study. The arrows between
rectangles indicate the direction in which the papers are built and extended.
In particular, the paper/study at the head-end extends the study/paper at the
tail-end. For example, the machine learning classification model presented in
paper A was used as part of the mining process in paper B.

1.4, CONTRIBUTIONS 17

In this overview, paper E has two instances at both the bottom and top
layers of the pyramid for two reasons:

[a] Paper E aims at building an infrastructure for collaborative research in
software design, thus belong to the foundation layer.

[b] The infrastructure in paper E, once built, will enable the application of
the automated classification model presented in paper G. The dashed
rectangle and arrow indicate that such infrastructure has not been built
yet.

Research questions are subsequently answered in section |1.5

Legend

=~ RQ8— —RQ8
ol E @
Impacts RQ _RQ7

— ij Research

Question

Q5

G2-
Practices RG Q3 8 Paper 2
- extends

paper1

Q1 Q1
Q1

G1

Corpus

Q1 Q!

Figure 1.5: Contributions of papers to specific goals and research questions

1.4.1 Paper A: Automatic classification of UML class di-
agrams from images

The UML is a graphical modeling language. Therefore, it is common to store
UML models in graphical file formats such as .png, .jpg, etc. While there
is a need for collecting UML models for empirical research, current research
methods often lack the systematical identification of images that represent
UML diagrams.

Paper A presents an automated classification method for images that
represent UML class diagram (UML CD). Building the classification would
on one hand help improving the data collection process of the existing UML
repositories, such as the one by Bilal et al. . On the other hand, and more
importantly, this could further open up the possibility to automate the UML
crawling process and to build a larger collection of UML class diagrams.

To build the classifier, we use a combination of image processing and
machine learning. Figure shows the processes of the paper A (this is cloned
from Figure in the Chapter 2). We first introduced 23 features that capture
statistical and geometric characteristics of UML class diagrams. A tool that
extracts these features from images was built accordingly. Finally we employed 6

18 CHAPTER 1. INTRODUCTION

(om (5) Analyse result)

Image —
@ Processing 4) Classification

Contours & Shapes
Horiz. & Vert. lines UML CD features/metrics
C Rectangles D) |

C Joining lines D —p 3) Feature extraction

Figure 1.6: Overall process of paper A

well-known classification algorithms, including Decision Table, Random Forest,
Support Vector Machine, Logistic Regression, REP-Tree and J48 Decision
Tree |52], to build the classifier. The classification performance of the defined
image processing features and algorithms was assessed in terms of classifying
accuracy and robustness via several metrics, i.e. information gain, specificity
and sensitivity. A dataset of 1 300 different images was collected from the
Internet through Google Image Search (750 UML CD images and 750 non-UML
CD images) for training and testing the classifier ﬂ This dataset was shared as
a benchmark.
The main contributions of the paper are:

[a] A machine learning method to build an automated classifier of UML
CD images. We find out that our method could reach 95.9% and 91.4%
(respectively) of correct classification of input images for UML CD and
non-UML CD.

[b] Evaluation of classification performance of six algorithms on different
feature-sets in terms of classifying accuracy and robustness.

[c] A dataset of 1,300 images was shared as a benchmark for other classifica-
tion methods.

Overall, paper A encourages us to believe that it is possible to automate the
process of identifying images that contain UML notations with high accuracy.
This is a first step towards building up an automated process to identify UML
models from OSS projects (part of goal G1). This work can be extended in
different ways: e.g. i) Using the same approach to create classifiers for sequence
diagram, use-case diagram images; and ii) Involving text-recognition to enhance
classification performance.

1.4.2 Paper B: The quest for open source projects that
use UML: mining GitHub

Little is known about UML use in open source projects. This is due to the so
far limited success in identifying open source projects that use UML modeling.

8Image set - http://bitly.com/dtsUMLClassifier

http://bitly.com/dtsUMLClassifier

1.4. CONTRIBUTIONS 19

The lack of available data is the reason why so far no answers could be given to
different basic questions on the amount of UML files in open source projects,
the time span during which models are created or updated during the open
source project, or the question which of the project’s contributors do create

models.
— >
GHTorrent “

I@ Data collection I |‘ @ Analyse result ‘l
Potential UIML file list ‘
4
@) Filter UML files I@ Query database I
t

UML Image Textual
Filter Filter UML CVSAnalY MySQL

g |
[Validation] mt-l@ Extract Meta-data I

Figure 1.7: Overall process of paper B

In paper B, we contribute to this body of knowledge by following a five-step
approach. Figure shows the steps in a sequential order (this is cloned from
Figurein the Chapter 3). First, we combined different technologies, including
the classifier in Paper A, to form a semi-automated process for collecting UML
models stored in images, .xmi, and .uml files from over 1.2 millions GitHub
projects (10% of the whole) (Step 1 and 2). Secondly, in step 3, 4 and 5, we
collected meta-data of the projects that used UML and quantitatively analyzed
the data to address the following research questions:

e Are there GitHub projects that use UML? Which are these projects?

e Are there GitHub projects in which the UML models are also updated?
e When in the project are new UML models introduced?

e What is the time span of “active” UML creation and modification?

e Are UML models copied across projects?

The main contributions of the paper are:

[a] A semi-automated process for collecting UML models stored in over 1.2
millions GitHub projects (goal G1).

[b] A list of 21,316 UML diagrams from 3,295 GitHub projects and their
meta-data. The list is available at the replication package of the paper ﬂ
This is the first time the modeling community can establish a corpus
comparable to collections already exist for source code only (goal G1).

9http://models.cs.chalmers.se/oss/Downloads/ReplicationPackage/

http://models.cs.chalmers.se/oss/Downloads/ReplicationPackage/

20 CHAPTER 1. INTRODUCTION

[c] Quantitatively answering a number of research questions regarding the
use of UML in OSS projects (goal G2).

1.4.3 Paper C: Practices and perceptions of UML use in
open source projects
Paper B reveals some facts about the use of UML based on quantitative analysis

on meta-data of OSS projects. These facts trigger us to discover the rationales
behind the use of UML and impacts of using UML in OSS projects.

Sent | 20294 emails
GHTorrent ~12 millions projects Received | 1628 comp\ete. resp.
from 1559 projects
Inputto | 485 completeresp.
analyses | 485 respondents
458 projects
@ Data collection @ Filter data
UML Non-UML Merge Filter —'[@ Conduct Survey l—'l @ Analyse result
projects projects contributors projects
Define | 93 648 UML models Working | 4650 UML projects
in 24797 UML proj. set | 99319 contributors

Figure 1.8: Overall process of paper C

Paper C represents our large-scale survey on software developers of GitHub
projects that use UML. The overall process is shown in Figure (this is
cloned from Figure in Chapter 4). We first extended the data collection
method presented in paper B to 100% of all GitHub repositories (over 12.8
millions repos). This resulted in a dataset of over 93,000 UML models from
over 24,000 GitHub projects. A number of filters was then applied in order to
filter out those projects that were suspected not to be representative for serious
software engineering projects, e.g. project being active less than 6 months or
having less than 2 contributors.

For the survey, we collected up to three persons per project, targeting
persons who had introduced UML models (1UC), persons who had updated
UML models (UC) and persons who had not committed UML models (NUC),
to send our survey to. As a result, we received 485 survey responses from 458
GitHub projects. Analyzing the responses allows us to answer the following
main research questions:

e Why is UML used in OSS projects?
e Is UML part of the interaction of (a team of) contributors?

e What is impact/benefit of UML?

Findings from survey responses allow us to not only answer the research
questions, but also to compare UML use and impacts of using UML in OSS
projects and related empirical research. Furthermore, a number of recom-
mendations/implications on the use of UML were given to different UML
practitioners.

The main contributions of this paper are:

[a] The Lindholmen dataset which is the biggest dataset of UML models
and meta-data from OSS projects (goal G1).

1.4. CONTRIBUTIONS 21

[b] A method for automatically curating a corpus of software modeling
artifacts (goal G1).

[c] Insights from a large scale survey of OSS developers that use UML on:

e the modeling practices that were used in their projects (goal G2).

e impacts of UML modeling to different aspects in their projects (goal
G3).

1.4.4 Paper D: An Automated Approach for Classifying
Reverse-engineered and Forward-engineered UML
Class Diagrams

Taking a closer look into the UML models in the Lindholmen dataset, we
could be able to draw some observations on characteristics of the models.
One important observation is that we have identified two main types of UML
models:

e Forward design models: those models that are hand-made as part of the
forward-looking development process; typical uses of these models are in
communicating and guiding the design [53)].

e Reverse engineered models: those models that are reverse engineered
from the source code, hence the models follow the construction of the
implementation and mostly serve as after-the-facts documentation [53].

As the two types of UML models are fundamentally different in the context
in which they are used, we saw the need of curating the Lindholmen dataset
by classifying UML models into forward-design or reverse-engineered models.
In paper D, we address this problem by provided an automated classification
model for classifying Forward Engineered Class Diagram (FwCD) and Reverse
Engineered Class Diagram (RECD). To build the classifier, we used a machine
learning approach. Figure [1.9] which is cloned from Figure [5.3] shows the steps
that were taken.

Firstly, we scanned the Lindholmen dataset to collect a set of 999 UML class
diagrams in various image formats. In the Lindholmen dataset, a project might
have UML models in different formats than image formats, e.g. in .xmi and
.uml files. Then, the manual labeling process was done by three UML experts
who have at least five years using UML class diagrams for different purposes.
Features for use in the classification were then extracted from the images by
using a 2-step process: firstly, we used the Image2UML tool to extract UML
models from the input images into .xmi files [54]; secondly, we built scripts to
extract 16 features from the .xmi files.

We experimented with 12 well-known classification algorithms (such as
Decision Table, Random Trees, Random Forest, etc.) and compared their clas-
sification performance (i.e. in terms of correctness, precision, recall, F-Measure
and AUC) to obtain the best classifier. The best performing classification
algorithm is Random Forest with an accuracy rate, F-Measure and AUC scores
of 90.74, 0.94 and 0.96, respectively. As a final step, we use the classifier to
classify all UML class diagrams in the Lindholmen dataset. The classifier was

22 CHAPTER 1. INTRODUCTION

i~ s EmEEEEEEEEEEEEE- ~
(Data Collection \
| [!
| UML Class- . _ ClassDiagrams| |mage to XMI 1
I Diagrams Images Conversion |
I |
\ XMl files 1

~ o o o o GRSl _——
P e EE
(Feature Extraction & \
I Establishing Ground Truth 1
P O
1 | Data labelling I S E';f;té‘tfgn I :
1 |Feamms |
1 Label Merging Label and 1
| Features Dataset)
\

S m— - |BEE | ___7
(Model|Learning \I
1 Classification Classification Model |
| el Construction]
N | TS | i

Model Performance Univariate
Evaluation Analysis

Figure 1.9: Overall processes of paper D

able to identify 10,845 FwCD and 9,821 RECD. The result was then annotated
in the dataset.
The main contributions of this paper are the following:

[a] A dataset with ground truth for classifying FwCD and RECD. The data
is available in the replication package of this paper IE

[b] Identification of features that can be used to classify FwCD and RECD
diagrams.

[c] A suitable machine learning algorithm for classifying FwCD and RECD.

[d] A comparative analysis of the performance of various machine learning
algorithms.

Overall, by applying the classification model presented in paper D, we are
able to make a step further in curating FwCD and RECD in the Lindholmen
dataset. With this, we proved that it is possible to build an automated “curator”
with high accuracy by using features extracted from the UML model’s content.
This is different from the curation reported in paper C in which UML models
were curated by process data (about their frequency of use).

Ohttp://models.cs.chalmers.se/oss/Downloads/SEAA2018/ReplicationPackage/

http://models.cs.chalmers.se/oss/Downloads/SEAA2018/ReplicationPackage/

1.4. CONTRIBUTIONS 23

1.4.5 Paper E: Challenges and Directions for a Commu-
nity Infrastructure for Big Data-driven Research in
Software Architecture

While much of the research in software architecture has been inspired by
industrial experiences, little of the research was validated beyond individual case
studies. At the same time, many scientific disciplines are currently harvesting
fruits from large scale data collection about their subjects of study. Paper E
contributes a discussion of challenges and directions for big-data driven studies
of software architecture. In particular, in paper E, we discussed the following
five challenges (see details in Section :

C1: Finding a common representation for software architectures.

C2: Capturing relevant context information.

C3: The high effort for crawling big-data.

C4: The High effort for curating.

C5: The need for collaboration in empirical software architecture research.

Given the large amount of effort that is needed for big-data driven studies of
software architecture, a promising direction is to look into a community-based
infrastructure for enabling and supporting this type of research. We proposed
the following nine requirements/directions to building such infrastructure (see

details in Section :

R1: Be able to host big & heterogeneous data of software architecture docu-
mentations (SAD).

R2: Share not only data but also software architecture knowledge and analysis.
R3: Enable links to contextual data.

R4: Support evolving artefacts and architectural knowledge.

R5: Keep annotations separately.

R6: Crowd-source annotations.

R7: Enable comparison & aggregation of research findings.

R8: Encourage discussion and peer-review.

R9: Promote collaborative research and enrich a collaboration network.

In this paper, we also shared lessons that we learned through the building
of various tools. Indeed, these tools could form building-blocks in such an
infrastructure. Based on these lessons, we synthesized a reference architecture
for creating a community-wide infrastructure for big-data-based research in
software architecture (called CoSARI). Figure (which is cloned from
Figure shows the architecture of CoOSARI. A detailed description of CoOSARI
can be found in Section [6.6] of Chapter [6]

The main contributions of paper E are:

24 CHAPTER 1. INTRODUCTION

4 :)
Data Exploration Interface Collaborative Research Workspace
Explore & AP AK Feedback/Evaluation ResearchTeam Experiment
Visualization - .
Query Summarizer Collector Interfaces workflow interfaces
S
e B

Analytical Services (AS) experiment Research Mang. | "ew [AK Management)

result . knowledge| .
; Services (RMS) Services (KMS)
Design Abftract Corresp Metrics || Statistics i
flaws ion ondence Scientific workflow P© "‘{ Crowd-source
g)/ management i
-

Presentation

J

services

Py S
Extraction Services (ES) / existing 2
: knowledge -
Image arch. |[np Reverse Team/project. Ontology &
\prccessing b engineering) management services 2= ~Semantic models
—

Business Layer (SaaS)

()
90 Raw Data Storage Research notebook AK Storage
S f—f— Queries, visualizations, —f~——
5 Requir Ar‘ch, Source annotations, analysis Art1.not l:etta
© ements designs code scripts (R) ation ata
-
© — —
o
h

T crawlingrawdata | l T 5
e I L |

Third party apps

Figure 1.10: Architecture of CoSARI

[a] Lessons learned from building a big corpus of software models (i.e. the
Lindholmen dataset).

[b] A discussion on challenges and directions for big-data driven studies in
software architecture.

[c] CoSARI - A reference architecture of a community-based infrastructure
for big-data driven studies in software architecture (goal G1)

1.4.6 Paper F: Does UML Modeling Associate with Higher
Software Quality in Open-Source Software?

The benefits of modeling the design to improve the quality and maintainability
of software systems have long been advocated. Yet, the empirical evidence on
this remains scarce. In paper F, we fill this gap by empirically studying the
relationship between UML modeling and software defect proneness in a large
sample of OSS GitHub projects. We conducted a quasi-experiment to compare
the defect proneness between two groups of OSS projects: a treatment group
of 50 projects using UML models; and a control group of 93 projects sampled
randomly using GHTorrent [45]. Figure shows the steps that were taken.

In the treatment group, 50 projects were selected from the curated list
of 4,650 projects reported in paper C (from the Lindholmen dataset) based
on criteria such as the project’s number of issues, the language (used in the
description of issues), the project’s GitHub stars, and the project time span.
Applying the same criteria, we collected another set of 93 GitHub projects

1.4. CONTRIBUTIONS 25

@ Data Collection
Treatment group Control group
93 nonUML projects Ny 50 UML projects
(GHTorrent) (Lindholmen DS)

A\ 4

@ Operationalization

Independent variables Dependent variable
project age, prog. lang.,

num. contributors, etc. bug-related issues

A 4

[@ Analysis]

Figure 1.11: Overall process of paper F

(that are not part of the Lindholmen dataset) to form the control group by
using GHTorrent. In these projects, our crawler and classifier together did not
find files that represented UML designs of the system.

Next, we operationalized the variables for the study:

i) Dependent variable being number of bug-related issues; and

ii) Independent variables are project-level measures such as project age,
number of commits, number of contributors, number of GitHub stars, and
has license.

Finally, we built a multiple linear regression model to estimate the effects of
having UML models on defect proneness. The result shows that projects in
which UML models were found experience 35% fewer bugs reported, and thus
have a lower defect proneness, than projects without UML models.

Overall, the main contributions of paper F are:

[a] Empirical evidence on the relation between (UML-based) software mod-
eling and an aspect of software quality, i.e. defect proneness (goal G3).

[b] A method to measure defect proneness in OSS projects using textual
description of issues.

[c] Data and source code of the study are made available for other researchers
to reuse [

https://github.com/adi1234567890/UML-defect-proneness

https://github.com/adi1234567890/UML-defect-proneness

26 CHAPTER 1. INTRODUCTION

1.4.7 Paper G: Using Machine Learning for Automated
Classification of Class Responsibility Stereotypes
in Software Design

The concept “Class role-stereotype” stems from Wirfs-Brock’s theory about
responsibility driven software design. Role-stereotypes indicates generic respon-
sibilities that software classes play in the design of software system. Wirfs-Brock
identifies 6 of these role-stereotypes, namely: controller, information holder,
interfacer, structurer, service provider and coordinator. Knowledge about class
role-stereotypes can help in various tasks in software development and main-
tenance, such as program understanding, feature location and quality assur-
ance [5559]. Paper G presents an automated machine learning-based approach
for classifying the role-stereotype of classes in Java projects. Figure shows
the steps that were taken.

Feature
extraction

v v

Experiment with
machine learning
algorithms

Y

Data collection

Define role
stereotype criteria

Evaluate classification
performance &
use of role stereotypes

Manual labeling &
consolidation

Figure 1.12: Overall process of Paper G

Firstly, we selected three open source software projects and collected their
source code. Three experienced developers carefully manually labeled all classes
of the three projects, which altogether are 1,547 classes. As a result, we obtained
a ground truth of 1,547 classes labeled with corresponding role stereotypes.
In the next step, we built a small application to extract 23 features from the
the source code of these projects. These features were then used as input for
building classification models. We evaluated the performance of the classification
models in terms of precision € recall, F1-score and MCC' score. The evaluation
allowed us to draw conclusions about which classification models yield the
best classification performance, and which features are most predictive for this
purpose.

In summary, the main contributions of paper G are the following;:

[a] A machine learning method to address the problem of automatically
inferring the class role-stereotype of a class based on its source code
features.

The fact that the classifier works in an automated way enables the rapid
labeling of role-stereotypes for large collections of classes, and in practice
for large code-bases of entire systems. This, in turn, enables novel analyses
that sheds light on the anatomy of software designs, such as for example

1.4, CONTRIBUTIONS 27

analysis of the frequency of particular collaboration patterns between
different stereotypes.

[b] An illustration of the potential uses of class role-stereotypes, i.e. in
generating tailored thresholds for design metrics in design-smell detection
and in profiling software system’s design intention and style.

[c] The ground truth of 1,547 classes labelled with corresponding role stereo-

types F_zl

1.4.8 Paper H: Interactive Role Stereotype-Based Visu-
alization To Comprehend Software Architecture

Software visualization has long been recognized as a helpful tool for compre-
hending the architecture of large software systems. Software visualisation has
a long traditions of representing various structural perspectives of software
systems. In paper H we enriched this perspective by adding the notion of class
role-stereotype. The role-stereotype of a class carries information about the
responsibilities that a class plays in software systems as well as the types of
collaborations that it typically has with other classes. We created an interac-
tive visualization called RoleViz that visualizes system architectures in which
architectural elements (e.g. class, interface) are coloured according to their
role-stereotypes. Figure shows an example of the visualisation.

VA g >
BALAS

Figure 1.13: An overview of RoleViz visualisation

Subsequently, we conducted a user-study in which developers use RoleViz
and Softagram (which is a well-known software architecture visualization tool
used by industrial software developers and architects) to solve two software
comprehension tasks on a large open source system. A comparative evaluation
was done to answer the following two research questions:

e How does RoleViz compare to Softagram? In particular, we compare the
two visualisation tools in terms of:

— participant’s perceived cognitive load,

— participant’s perceived usability,

12http://models.cs.chalmers.se/oss/Downloads/JSS2019_SCAM_ReplicationPackage/

http://models.cs.chalmers.se/oss/Downloads/JSS2019_SCAM_ReplicationPackage/

28 CHAPTER 1. INTRODUCTION

— participant’s understanding of the software system regarding the
tasks.

By “understanding”, we refer to the participant’s ability to: a) locate
components/entities of the system relevant to the tasks, b) describe the
responsibility of the located components/entities and relationship between
them, and c) formulate a plan to solve the tasks.

e What are the perceptions of the participants on the current features of
RoleViz?

Determining whether RoleViz meets the expectation of the participants
is crucial to identify where exactly RoleViz falls short of features. In
addition, this research question helps formulating the future direction of
RoleViz.

The main contributions of this paper are the following:

[a] RoleViz - an innovative visualization tool that overlays roles on top of a
software architecture.

[b] A user study that assesses how RoleViz can help developers in real compre-
hension task, e.g. bug fixing. This study helps to reveal some impacts of
software architecture visualisation and role-stereotype in comprehension
tasks (goal G3).

[c] A comparison of effectiveness between RoleViz and Softagram .

Overall, paper H provides a novel visualisation that assists developers in
comprehending software systems. This, in the long run, can be combined with
the classification tool reported in paper G to provide an automated presentation
of architecture of software systems under the view of class role-stereotypes.

1.5 Summary of Research Findings

In this section, we combine the findings from the individual research study
chapters to provide answers to the eight research questions of this Ph.D study.

1.5.1 Answer to RQ1l. How to build a large corpus of
models?

We created the Lindholmen dataset (available for public access and use at
http://models.cs.chalmers.se/oss/)) which contains so far 93,648 UML
models from 24,797 GitHub repositories and meta-data of the repositories.
Figure shows the data schema of the Lindholmen dataset E Creation of
this big corpus comprises two steps: collecting UML models from GitHub and
curating the data.

13A downloadable version is available at http://models.cs.chalmers.se/oss

http://models.cs.chalmers.se/oss/
http://models.cs.chalmers.se/oss

1.5. SUMMARY OF RESEARCH FINDINGS 29

Data Collection. The UML models in the Lindholmen dataset were collected
from GitHub. We learned that UML diagrams are often stored in various image
formats. Paper A presents a machine-learning-based method for automatically
determining whether an arbitrary image represents a UML class diagram. Paper
B demonstrates one approach to systematically identify UML models in a large
part of GitHub projects (about 1.2 millions GitHub projects). This approach
joins together different technologies, i.e. mining software repositories (provided
by the research group of Gregorio Robles in Madrid), text-based search and
the classification technique proposed in paper A. In the study presented in
paper C, the data collection method described in paper B was applied to obtain
UML models from all repositories in GitHub (around 12 million at that time).
This collection method can in principle be used to automatically collect UML
models from any large source code hosting/versioning system. We published
the replication package of our approach online so that other researchers can
replicate these steps (http://models.cs.chalmers.se/oss/)). To our best
knowledge, this is the first time such a large corpus is established and made
available to the research community.

Data curation. For our project, data curation denotes the principled creation
(including cleaning, completing), verification and enriching of data. Curation
of the Lindholmen dataset was done in both manual and automated manners.
Specifically, manual efforts were spent on verification (are the identified images
indeed class diagrams) and on identifying UML sequence diagrams. Through
manual effort we managed to identify 6,576 UML sequence diagrams in GitHub
repositories. The field uml_type of table umlifiles (in the Lindholmen dataset)
is used to store information about types of the UML models (currently it can
have 3 values: Class, Sequence and Other).

Some data curation can also be automated. Paper C demonstrates a way
to curate a list of 4,650 software engineering projects. The 50 projects in
Paper F are obtained by further filtering this list with more strict conditions
in terms of project time-span, language and number of GitHub issues. These
lists of projects were documented as part of the replication packages in the
corresponding papers but were not annotated in the Lindholmen dataset (based
on the annotation guidelines presented in Section . Paper D presents an
automated approach to classify UML class diagrams into Forward (FwCD) and
Reverse Engineered (RECD) diagrams. This way of creating the UML models
is relevant for understanding their use and their impact in software projects.
This data was used to enrich the Lindholmen database (it is represented in the
meta-data by the field isFwd in the table umlfiles).

http://models.cs.chalmers.se/oss/

UML Project Meta-data

id INT11)
<> name LONGTEXT

< commit_id INT(11)

< repo_id INT(11)

< filetype VARCHARI45)
& commits_id INT(11)

©id INT{11)

> email VARCHAR(255)

©id INT(11)
< gh_id VARCHAR(255)

< people_id INT(11)

< commi_date DATETIME
< cochanged INT(11)

< repos_id INT(11)

& repos_id1 INT(11)

& poople_id1 INT(11)

©id INT(11)

< umifiles_name VARCHAR(512)
> umifies_url VARCHAR(512)

< commits_id INT(11)

< repo_id INT(11)

< has_xmi INT{1 1)

< uml_type VARCHAR(45)

< isFwD TINYINT(1)

% xmi_id INT{11)

@ isFWD INT(11)

©id INT(11)
< repos_name VARCHAR(255)
< founder VARCHAR(255)

< repos_url VARCHAR(255)

< number_commits INT(11)

< first_commit DATETIME

% last_commit DATETIME

©id INT{11)

©id INT(11)

Dcls_id INT(11)

<5 opr_xmi_id VARCHAR(255)
< opr_name VARGHAR(255)
< opr_visibility VARGHAR(255)

< opr_id INT(11)

< < param_name VARCHAR(255)
<> param_visbility VARCHAR(255)
<& cd_aperation_id INT(11)

id INT(11) & cd_class_id INT(11)

< xmiid INT(11)
< cls_xmi_id VARCHAR(255)
< cls_name VARCHAR(255)
< cls_vishbiity VARCHAR(255)
% xmi_id1 INT(11)

7777777777777777777777 < xmi_filePath LONGTEXT = ————

2 id INT(11)
xmiid INT{1)

< dep_xmi_id VARCHAR (255)
<> dep_name VARCHAR(255)
< dep_supplier INT(11)

< dep_client INT(11)

& xmi_id? INT(11) i INT(11)

& xmiid INT(11)
<> gen_xmi_id VARCHAR(255)
<> gen_name VARCHAR(255)
< gen_child INT(11)

< gen_parent INT(11)
& xmiid1 INT(11)

©id INT{11)
©cls_id INT(11)
< attr_xmi_id VARCHAR(255)
< © attr_name VARGHAR(255)
 attr_visibility VARCHAR(255)
& attr_type VARCHAR(255)
% cd_class_id INT(11)

Vi INT(11)
< xmiid INT{11)

|
|
|
|
|
|
L

< assoc_xmi_id VARCHAR(255)
2maore...

id INT(11)
< xmi_id INT(11)
< els_id INT(11)
> assoe_id INT(11)

<> assocEnd_xmi_id VARCHAR(255)

> ass06ENd_name VARCHAR(255)

< assoeEnd_isNavigable VARCHAR(255)
< assocEnd_ordering VARCHAR(255)

< assoeEnd_aggregation VARCHAR(255)
& xmi_id! INT(11)

id INT(11)
< xmiid INT(11)
< real_xmi_id VARCHAR(255)
— < > real_name VARGHAR(255)
< real_client INT(11)
< real_supplier INT(11)

@ xmi_idt INT(11)

Figure 1.14: The data schema of the Lindholmen dataset

0¢

T H4LdVHD

NOILONAOY.LNI

1.5. SUMMARY OF RESEARCH FINDINGS 31

1.5.2 Answer to RQ2. How can we share and promote
use of the corpus of UML models?

We have put significant efforts in sharing and promoting the Lindholmen dataset
to various public audiences since September 2016. The first version of the our
dataset was published as the main outcome of paper B at the 19th MODELS
conference, targeting model-driven software and systems engineering community.
The second version of the Lindholmen dataset (with 93k+ UML models) was
shared in the Software Engineering In Practice (SEIP) track of the 39th ICSE
conference as part of the paper C with a target to industrial audiences. We
subsequently presented the dataset to various research communities, i.e. the
Data Mining community and open source community (paper [f] and [d] in the
“Other publications” list, respectively).

Since the introduction of the Lindholmen dataset, the dataset has been
well received by researchers in many research communities. In particular,
we regularly receive requests for using the data set. We have been actively
supporting the researchers to effectively use the dataset for their research. To
the best of our knowledge, 11 published studies (by authors other than the
researchers that were involved in its creation) have used data extracted from the
Lindholmen data set, i.e. Arora et al. [60], El Ahmar et al. [61}/62], Kretschmer
et al. [63], Schulze et al. [64], Ott et al. [65], de la Vega et al. [66], Babur et
al. [67], Agt-Rickauer et al. [68], Torre [69], Baddreddin and Rahat [70]. We
reported our experiences in building, sharing and promoting the use of the
Lindholmen data set in paper E.

In paper E, we also show a vision on building a collaborative environment
for big-data driven studies in software architecture (called CoSARI). The
tools and methods used/produced as part of this Ph.D study can be used as
building-blocks in this environment. In this vision, the application area of the
tools and methods go beyond the scope of software modeling: the approach
can be generalized /customized to support other types of software development
artifacts. The paper also suggests and promotes an interesting empirical research
direction in which knowledge is shared and built on top of empirical evidences
and findings.

1.5.3 Answer to RQ3. What are purposes of using UML
in OSS projects?

We ran a survey under 485 practitioners from 458 OSS projects (paper C) in
order to answer research question RQ3. A summary of key findings is the
following:

The majority of UML models are intended for creating software designs
and documenting software systems. Non-UML contributors (NUCs) use UML
models to comprehend a system and to communicate with team members.
In most software projects that use UML models, these models are used for
the following purposes: communication, making architecture decisions and for
mentoring. UML models are adopted/implemented in most cases during the
implementation phase. Most often, these models are implemented by a group
of 2 - 5 persons.

32 CHAPTER 1. INTRODUCTION

1.5.4 Answer to RQ4. How is UML used in OSS projects?

In the study reported in paper B, by quantitatively analysing 21,316 UML
models from 3,295 GitHub repositories, we were able to draw quantitative
answers to RQ4:

Models are introduced during all possible phases in the lifespan of an OSS
project. Indeed, a peak of introducing models is during the first 10% of the
duration of the projects. A few projects are active with UML during their
entire lifetime. However, most projects work very shortly on UML, usually at
the beginning of the project. The majority of models is never updated. Those
projects that do update their models do this regularly. Out of our entire corpus
of 21,316 UML models, we found that 2,300 models (10.8% were duplicated.
Half of the duplicates spread over more than one GitHub repositories.

Paper D contributes to answer this research question by applying a machine
learning classification model to automatically classify FwCD and RECD in the
Lindholmen dataset. With the machine learning model built in , we are able to
identify 10,845 FwCD and 9,821 RECD.

1.5.5 Answer to RQ5. What are practices for using UML
modeling in software development?

By studying UML use and impacts of using UML in OSS (paper B and C) and
other settings (such as industry, from related work), we were able to see both
shared and unique aspects of UML modeling practices. We split the answer to
this research question into three parts, i.e. common practices, unique practices
and our opinion on what can be learned from others contexts.

Common practices. We found a similarity in the ways of using of UML
between OSS and industry: UML is mainly used for design and documentation,
and much less so for code generation within OSS. Similar observations have
been made for industrial usage by Torchiano et al. [32] and Forward et al. [33].

The finding that UML is used for communication purposes within OSS
aligns with observations that were already made about the use of documentation
by Kazman et al. [41] and about the use of sketches by Chung et al. [42]. This
aligns with the insights of Gorschek et al. [34] and Hutchison et al.” |14], who
also observed a use for communication within industrial and OSS programmers.

The observation that new contributors seem to benefit from the use of UML
confirms the first anecdotal evidence that Chung et al. collected [42]. Gorschek
et al. found similar tendencies in their survey, where the use of models was
found to be higher for novices [34].

Unique UML modeling practices. We found a hint of a contrast in the
use of UML: We observed that the architectures defined though UML models
are often implemented by multiple developers. This is similar between OSS
and industry. We also observed that in most cases all these contributors had
participated in the model creation. This seems to be in contrast to the practice
in many industrial cases, where those who create the models are not necessarily
the ones who create the code, as, e.g., observed by Kuhn et al. [36].

1.5. SUMMARY OF RESEARCH FINDINGS 33

Besides, we made two observations on the OSS modeling practices for which
we have not seen any industrial evidence. The first phenomenon is “passive
benefits”: many of the participants of OSS projects who are not themselves
involved in creating UML models, do consider the existence of UML models
beneficial to the project. The second phenomenon being “partial adoption”
many models are only partially adopted during implementation. It would
be interesting to see whether this conforms to or is in contrast to industrial
practice.

We also note that there are industrial practices for which we cannot find
evidence that they are also used in OSS projects. We further discuss these
practices in the Discussion section.

Implications. By observing the practices of UML modeling in both the
settings of open source projects and that of industrial projects, we were able
to see the aspects where each side could learn from each other. In particular:

e To OSS practitioners: Use UML to coordinate team-work!
e To OSS seniors: Provide UML to support junior peers!
e To Industrial companies: Let’s adopt team-modeling!

e To University teachers: Promote the consumption (i.e. reading/under-
standing) of UML models as first experiences when learning UML (rather
than creating them).

1.5.6 Answer to RQ6. What are perceived impacts of
using UML in OSS projects?

For this question we focus on the perception of developers of open source
projects. Using a survey (paper C) we collected responses from 485 practitioners
in 458 OSS projects. From this survey we find out the following: UML is helpful
for new contributors to get up to speed. However, UML does not seem to
have the potential to attract new contributors. One third of the respondents
reported changes of the working routine due to UML, mainly in the planning
phase, the development process and in communication. Most of the reported
changes can be considered positive.

1.5.7 Answer to RQ7. Does the use of UML modeling
correlate with lower defect proneness?

In paper G, we found a small (approximately 2% of the variance explained by
the model) but statistically significant effect of using UML models in software
development: other variables held fixed, projects that use UML models have
about 35% fewer bugs reported than projects without UML models.

34 CHAPTER 1. INTRODUCTION

1.5.8 Answer to RQ8. Does using class role stereotypes
correlate with better understanding of designs of
software system?

Paper G constructs a method for automatically identifying the design role of
classes using a machine learning approach. Based on this method, we propose
(in paper H) a software tool called RoleViz for creating interactive visualizations.
RoleViz visualizes system architectures in which architectural elements are
annotated with their role-stereotypes. We conducted a user-study in which
developers use RoleViz and Softagram (a commercial tool for software ar-
chitecture comprehension) to solve two separate comprehension tasks on a
large open source system. We compared RoleViz against Softagram in terms
of participant’s: (i) perceived cognitive load, (ii) perceived usability, and (iii)
understanding of the system. In total, 16 developers participated in our study.
Six of the participants explicitly indicated that visualizing roles helped them
complete the assigned tasks. The participants achieved better scores on com-
pleting software understanding tasks with RoleViz without any cognitive-load
penalty.

1.6 Discussion

In this section, we extend our findings on UML modeling practices with common
practices found in industrial contexts. Further, we discuss lesson learned from
using a machine learning approach in various studies under this Ph.D thesis.

1.6.1 Software Modeling and Design Practices in Indus-
try

In this section, we discuss and compare general practices in software develop-
ment and the practices that are known from industrial software development
practice. This discussion includes both practices that we have observed during
this Ph.D study as well as practices reported in other studies. This discussion
by no means provides a complete list of practices used in software design and
modeling.

1.6.1.1 Capturing design models

Capture design discussions and decisions on a Wiki. A project wiki
can be a collection of Web pages that can be edited easily by anyone on your
project using a Web browser. This practice implies to keep discussion and
decisions related to design at one place for easy access and search as the project
goes. This practice is especially useful if the development team is geographically
distributed.

Insert design documentation into the code itself. This practice sug-
gests to document key design decisions in code comments, typically in the
file or class header. When this approach is coupled with a documentation
extractor (such as JavaDoc), this assures that design documentation will be
readily available to a programmer working on a section of code, and it improves

1.6. DISCUSSION 35

the chance that programmers will keep the design documentation reasonably
up to date.

Choices of formal and informal design notation. While scanning images
that might contain UML models in OSS GitHub projects (as part of the study in
paper A, B and C), we recognized both formal (e.g. UML models) and informal
design (e.g. sketches or whiteboard photos) documentation of some software
systems. While informal notation gives more freedom of expressing design
ideas, formal notation enables design decisions to be clearly communicated
and formally verified. Petre et al. suggest the use of mix between formal and
informal notation when modeling |71]. McConnell gives guidelines on choosing
suitable formality of the models and level of details needed [18]. Figure [1.15]
(copy of Table 5-2 of [18]) shows recommendations on suitable level of detail
and design formality with regards specific settings of the design team.

Level of Detail Needed

Factor

in Design Before
Construction

Documentation
Formality

Design/construction team
has deep experience in
applications area.

Design/construction team
has deep experience but
is inexperienced in the
applications area.
Design/construction team
is inexperienced.
Design/construction team
has moderate-to-high
turnover.

Application is
safety-critical.
Application is
mission-critical.

Project is small.

Project is large.

Software is expected to
have a short lifetime
(weeks or months).
Software is expected to
have a long lifetime
(months or years).

Low Detail

Medium Detsail

Medium to High Detail

Medium Detail

High Detail
Medium Detail

Low Detail
Medium Detail
Low Detail

Medium Detsail

Low Formality

Medium Formality

Low-Medium Formality

High Formality
Medium-High Formality

Low Formality
Medium Formality
Low Formality

Medium Formality

Figure 1.15: Design Formality and Level of Detail Needed. Source: Table 5-2,
McConnell [18]

Choose tools that fit purposes of modeling. While browsing the Lind-
holmen data set, we observed that the UML models are developed by a large
variety of UML-editor tools (e.g. StarUML, Papyrus, Enterprise Architect,
Umple, PlantUML, etc.). Developers are now provided with a large and diverse
set of modeling tools that support the development of models, their transfor-
mation, and their integration within the software development process. This
practice suggests developers to choose the modeling tools which is of a good
fit to the modeling purposes. It also implies that developers should avoid a

36 CHAPTER 1. INTRODUCTION

"habitual-, thus unconscious selection" of modeling tools. This is supported by
many empirical studies in which the choice of modeling tools affect vastly the
adoption of modeling within the studied software projects [7,|14}32].

Some common questions developers can ask when choosing modeling tools:

e Drawing tool or modeling tool? Do developers need to only express design
in a graphical presentation or to actually apply model-checking? In [72]
Brambila et al. discuss the difference of the two type of tools in detail.
Ossher et al. present FlexiTools which was developed with characteristics
of both modeling tools and office tools for pre-requirement analysis‘ |73].

e Textual-based (e.g. Plantuml) or graphical-based (e.g. Papyrus)?

e Collaborative or single-user tool? - This question expresses the need of
collaborating in modeling.

1.6.1.2 Modeling style

Use guidelines for naming in diagrams. In order to understand a soft-
ware system and its design, one often needs to go back and forth between
source code and design models of the system. Name matching is a technique
quickly relate relevant parts of source code and design models. While many
projects enforce naming conventions to source code elements, this is not the
case for design elements. This fact might result in more efforts to understand
the design of the software system.

This practice aims to apply naming conventions in models, thus improving
model’s maintainability and project’s tracebility. Given this is a low-effort
(to implement) but high-impact (to increase maintainability of the system)
practice, we would highly recommend projects to use (and possibly enforce)
naming conventions in design models.

Use guidelines for layout of diagrams. Layout of UML diagrams has
become a factor , e.g. good layout can help developers to better understand
the design of the system [74]. This practice aims to support modelers to
create a models that are easier to understand and easier to maintain. We
recommend that a project defines and establishes among project members a
guidelines for layouting a diagram. Example of such guidelines can be found at
http://agilemodeling.com/style/general .htm.

Create models in different abstraction levels. In a software project,
design models can be consumed by many people for very different purposes.
To facilitate this, a common practice is to create models in different levels of
abstraction, e.g. with different level of details. Petre et al. also mentions this
practice as a way for expert modelers to capture both high-level as well as
important low-level details [71].

1.6.1.3 Updating design/models

Update the design to reflect the implementation A very common
pattern in software development, is that programmers prioritize coding (i.e.

http://agilemodeling.com/style/general.htm

1.6. DISCUSSION 37

producing source code) and postpone updating the design/documentation. If
this practice sustains and a team neglects to update design/documentation, then
this leads to increasingly large disparity between the actual implementation and
the design/documentation. This fairly quickly makes the design/documentation
of little value to the team and this in turn reduces the motivation to update
the design/documentation.

As a practice we recommend that a project defines as part of their working
methods who is responsible for updating (when) to use a ’definition of done’
for (updating) a model.

Models should be kept under version control. Models, as other software
development resources, are subject to change as the project progresses. While
developers seem to pay much attention to capture all updates in source code,
less efforts seems to be spent on capture changes in models. We would argue
that capturing models change is as important as capturing code change. One
of the important reasons is for all team member to easily see what is the latest
version of the design/model.

As a practice, we recommend projects to consider a modeling tool in which
model changes can be captured by the versioning system.

1.6.1.4 Apply Quality Assurance to Design/Model

Quality Assurance (QA) is a common (best) practice in software development.
Quality assurance applies to all steps and artefacts in software development.
Several of the practices that are discussed in this section are commonly applied
to source code. For unknown reasons these practices are hardly ever applied to
models/design. It seems a matter of including some steps in the development
process and appointing responsible persons for enforcing the QA-policy also
to models/designs. Of course, teams must respect the quality-processes and
management must also support them.
Typical steps of the QA for designs could include:

e Establish standards for tools, layout, naming of models of designs
e Define when designs should be updated and by whom
e Review a design for fitness for purpose (esp. communication).

e Monitor that the implementation follows the design.

Store models in editable format. About half of models in the Lindholmen
dataset are stored in images which are not editable. This makes it hard to access
models content, and almost impossible to make changes on the models. This
practice motivates developers to generate and store their models in an editable
form, thus improving the accessibility and maintainability of the models. This,
in the long term, will benefit the software project in many ways, e.g. it enables
model update and automated compliance check between code and design.

38 CHAPTER 1. INTRODUCTION

Archive design/modeling works. This practice suggests developers to
document their models for reference and reuse purpose. McConnell calls this
practice as "Save design flip charts" [18]. This also implies that models should
not be stored alone but also with information about the context in which the
models are used. There are many tools that support this practice via auto-
generation of design document from multiple software development sources
(such as Javadoc). However, the question of how to effectively archive design
knowledge happens outside of the computer (e.g. sketches on whiteboard, verbal
discussion about design) still remain.

1.6.2 Alternatives of the Machine Learning Approach

Machine learning has been utilised in this Ph.D study as the main method
for building automated classifiers for various data collection and data analytic
tasks. For example, in the study described in paper A, machine learning was
used to build a classifier for detecting images that contains UML class diagrams.
In the study described in paper G, the machine learning approach was used
to automatically referring the role-stereotypes of a given class. In this section,
we discuss alternatives for the machine learning approach and the reason why
they were not chosen.

Alternatives of machine learning approach. From the last decade, neu-
ral networks or deep learning have been regarded as powerful tools for dealing
with mining big-data. These have been shown to outperform traditional machine
learning approaches in many situations. However, we choose to use machine
learning over neural network/deep learning for some reasons:

Firstly, a deep learning solution often requires significant amount of com-
putation resources and training data. These are not always available for this
Ph.D study.

Secondly, deep learning methods often lack interpretability due to the so-
phistication of the neural networks. In particular, deep learning methods lack
the ability to explain why a result is produced in a sensible way. This, to this
Ph.D study would be a big threat to the construct validity. Machine learning
approaches have been developed for a long time together with powerful evalu-
ation tools (e.g. infoGain, AUC, confusion matrix). This enables researchers
the ability to understand and making adjustments on the machine learning
settings to achieve a higher result.

Parameter tuning. Researchers have recently shown that parameter tuning
applied to traditional machine learning approaches can have significant impacts
in the context of software engineering data [75]. In this research, the main effort
regarding improving the performance of the machine learning algorithms has
been spent mostly in enhancing feature selection and increasing the quality of
the training/testing data. At the sametime, less effort was spent on adjusting
the parameters of the machine learning algorithms. This might partly be due
to the fact that there are very few guidelines on to what and how to adjust
the parameters to achieve better classification performance. In the future, we
shall apply some existing methods for automatically optimizing the paramters
of the machine learning algorithms.

1.7. THREATS TO VALIDITY 39

1.7 Threats to validity

In this section, we give an overview of the threats to the validity of the results
of this thesis, i.e. the answers to research question RQ1 to RQ8. Detailed
threats to validity of included publications are discussed in their corresponding
chapters, from Chapter 2 to Chapter 9.

Research question RQ1 aims to establish a process of building a large corpus
of UML models from OSS repositories. We use a constructive method to build
the corpus. There were a number of threats to construct validity that might
cause the loss of UML files when performing the data collection process. First,
our collection method, which made use of a number of heuristic filters, might
overlook potential UML files which are not complying with searching terms and
file-type list. Second, limitations of the materials that were used to collect data
could probably cause the loss of potential UML models (false-negatives) or the
inclusion of files that do not actually contain UML (false-positives) Examples
of such limitations are: out-dated GHTorrent SQL dump, incorrect detection
of UML images and the limit of 5000 hits/hour of GitHub API. We partly
mitigate these threats by performing manual checking on the validatity of the
classification to the process.

Research question RQ2 aims at exploring a method to share and promote
the use of the Lindholmen data set. In paper E, we discussed a conceptual
solution for the problem. In particular, we proposed a reference architecture
CoSARI in which the Lindholmen data set and the tools produced during this
Ph.D study might serve as building blocks. There might exist other solutions
for utilizing the data set that we were not aware of. Besides, the proposed
reference architecture (COSARI) lacks proof of concept and carries the risks
associated with being oversimplified and/or incomplete. However, we consider
these types of risk are acceptable at the conceptual stage. Paper E discusses
concrete future works which would hopefully lead to a more comprehensive
solution, thus mitigating the risks.

Research questions RQ3 and RQ6 aim at revealing purposes and impact
of using UML modeling in OSS projects. Answers to these questions are drawn
from survey responses of 485 developers in 458 different GitHub projects that
use UML (paper C). There is threats to the internal validity of the answers.
That is, we focused on projects that do use UML only to ensure that questioned
developers have the experience of working in a project with UML. To ensure
those persons that prefer to not use UML are not underrepresented, we sent the
questionnaire not just to persons who either made of modified UML, but also
to contributors who did not create of change any UML files (NUCs). Therefore,
we believe that our findings provide valuable insights.

Research question RQ4 is intended to achieve understanding of the way
UML is used in OSS projects. Answera to RQ4 are drawn from a quantitative
analysis of a set of 21,316 UML models from 3,295 (from 10% of all GitHub
repositories). There are threats that could affect to the construct validity of
this answer. In particular, the loss of potential UML files might affect to this
analysis in the sense that it could make us underestimate the number of projects
with UML models and the number of UML models. Being aware about this,
we focus on getting a descriptive overview of various aspects of the use of
UML in GitHub projects and avoid giving statistical conclusions. We expect

40 CHAPTER 1. INTRODUCTION

no systematic bias concerning the aspects that we investigated.

Research question RQ5 aims to provide practices of using UML modeling
in software development. The answer to this research question is built on
understanding about how UML modeling is used in OSS (RQ3 and RQ4) and
in other settings (e.g. industry, from related work). We could, therefore, see two
sources of threats to validity. On the one hand, with regards to the practices
found in OSS projects, we could expect threats to validity from answers to RQ3
and RQ4. However, given these threats were mitigated (as explained above), we
believe that our findings in OSS projects are valid and significant. On the other
hand, with regards the modeling practices found in various studies in industrial
contexts, we expect some sorts of threats to external validity. Specifically, as
the practices were found in different studies with unique settings of UML use,
it is difficult to deliberately generalize the practices from one to other cases.
Therefore, in the answer to RQ5, we report on the existence of common and
unique practices and avoid to make comparison in different settings.

In research question RQ7, we aim at finding effects of UML modeling by
studying the correlation with a software quality aspect: defect proneness. The
answer to RQT is derived from comparing two groups of projects: 50 projects
that use UML and 93 another projects where there is no UML. There exists
small threats to internal- and construct validity. We discussed the threats in
detailed in section of paper G.

The research question RQ8 aims at understanding the impacts of using
class role-stereotype in assisting software developers in comprehending the
design of software systems. The answer to this research question is based on a
comparative user study with 16 developer participants. Threats to validity of
the study associate mostly with the selection of participants and the baseline-
visualisation. We discussed the threats and the mitigation strategy in detail in
section [0.8] of paper H.

Finally, answers to all research questions have threats to external validity.
In particular, data in this research was only taken from GitHub, but not other
OSS hosts/platforms such as SourceForge, Google Code, etc. As they differ
from each other in terms of size, functionality, users and user’s behaviors, there
is a threat that answers to questions RQ1 to RQ8 might not be generalized
to other platforms. It is possible that UML is used in a different manner within
projects at other platforms. However, as GitHub is one of the biggest player in
the field, we strongly believe that our investigation gives valuable insights to a
majority of the OSS community.

1.8 Future Work

In this section we discuss future work. In particular, sections and
1.8.3] are oriented towards possible extensions of the findings of this Ph.D
study. We suggest future research directions that now become possible with
our data set in section [[L8.4

1.8.1 Extending the Lindholmen data set

In this section, we present our views on what the Lindholmen data set should
grow into. Our views are pretty much driven towards the direction of building

1.8. FUTURE WORK 41

CoSARI (presented in paper E). Accordingly, enrichment of the Lindholmen
data set can be done by either increasing its quantity (e.g. via adding more
models) and/or quality (e.g. via curating the existing data set). We discuss
some directions in more detail next.

Adding more models and design documents. Currently, the Lindhol-
men data set contains UML models stored in what we found to be the most
common formats: .uml, .xmi, and images formats (.jpg, .png, .bmp). In general,
UML models might be stored in many other formats, e.g. formats that are
specific for UML-editors such as .plantuml, .argo, .dia and .ump. One way to
extend our corpus is to include more of such formats. In our approach we have
looked for individual files that represent UML models. Another direction to
look for more UML models is to search in files that may also contain other
information, but also contain UML models, such as: Word (doc(x)), PDF,
HTML, PowerPoint (ppt), among others. To capture these types of models and
design documents, the data collection process (described in paper B) needs to
be extended to accept more tool-specific formats and document-specific formats.
This will require the creation of new tools/techniques that automatically extract
models and/or design knowledge from such formats.

Similarly, software models that are not conforming to the UML standard
can be added to the dataset. These can be models that are members of the
UML-like family of languages, such as SysML, Capella models, or models from
other model-based approaches such as Simulink.

Adding models from industrial cases. Currently, the Lindholmen data
set contains UML models from OSS projects. While there exist some open
source projects that are driven by companies, we could not identify these in
our dataset. In the future, the Lindholmen data set could be extended by
involving more industrial cases. Given that many companies are using Git as
their versioning system, the technical process of collecting data from company’s
Git resources can be done in the same manner as our approach does for GitHub.
The main challenge here will be to convince companies to share their designs
publicly. Possibly governments could play an examplary role here. Studying
these cases will allow us to compare how UML is used in the settings of OSS
and industrial cultures.

Adding more software development artifacts. One main reason why
we collected UML class diagrams is that they are a commonly used representa-
tion for software architecture and designs. However, software designs may be
represented in other notations, and it could be interesting to compare these
and their effectiveness in software projects.

Also, besides models and design documents, various software development
artifacts can be collected so as to understand the contexts in which software
modeling practices are used. Currently, the Lindholmen data set contains only
descriptive (meta-)data of the projects in which UML models were found.
Other software development artifacts such as source code, issues, mailing list,
wiki documents could also be collected. Clearly, this leads to extra efforts
on collecting and curating relevant data outside the Lindholmen dataset. For

42 CHAPTER 1. INTRODUCTION

example, in paper F, we collected "issues”’ directly from GitHub via the GitHub
APT as a means for operationalizing the defect-proneness of software projects.

A couple of foreseen challenges towards collecting various software develop-
ment artifacts are: i) Crawling big-data is technically not always an easy task
given limited computation-resources, and ii) Many of the interesting artifacts
exist outside of GitHub repositories. Therefore, collecting them requires extra
efforts on building tools and cleaning noisy data, iii) including more types
of artefacts further increases the number of file representations/formats that
needs to be supported. For these issues, we specifically call for joint efforts of
multiple research teams. One way to collaborate could be where each team
takes the responsibility to collect and maintain one (or two) types of artifact(s)
in the corpus.

More and more data curation. Data curation is an important activity
to maintain the currency of the metadata and to make data better accessible,
easier to find, more descriptive, and more relevant. Data curation becomes
even more critical given the expected increase in the amounts of data in the
future. By conducting this Ph.D study, we learned that it is possible to curate
the dataset in both manual and automated ways. While manual curation
approaches are often time-consuming, automated curation approaches require
careful validation to ensure adequate accuracy. In the future, we can explore
hybrid approaches in which knowledge about objects to be curated can be used
to improve the performance of the automated curation |76,/77]. For example, we
can probably increase the performance of the classification models presented in
paper D by using the knowledge about the performance of the classification
features.

Besides, data curation can benefit from adding annotations to the data set. In
particular, annotations can be made at project- and model-levels. For example,
at the project level, annotations about “project license”, “business domain”, the
“goals of project when using models” (for design or documentation), “general
impacts of using UML” can be employed. At the model-level, annotations on
layout-style of the UML model, tool that was used to generate the model,
general role of the model, quality of the model, etc. could be very beneficial.

1.8.2 Extending the understanding about UML use and
impact: enablers, inhibitors and context

Within this Ph.D thesis, we performed quantitative and qualitative analyses
on the use of UML and impact of using UML in GitHub projects. As a step
further, we could aim at eliciting enablers and inhibitors of the impacts of
using UML. Toward this goal, we would think of several research possibilities
as follows.

UML use. Paper B and C discover some patterns of using UML as well as
the developer’s rationale behind the UML use. These findings can be extended
in several ways. One way is to conduct follow-up interviews to gain indeed
understanding about specific survey response(s). For example, it is interesting
to know the communication methods in which UML models were discussed,
and the CASE tools that were used.

1.8. FUTURE WORK 43

<<Java Class>> APF Monitor Panda
) fancs.ac.uk! uer
(5 ResourceMessage systom fordo
org.flexiblepower.ra

Update global work
monitor

of resourcelessageld: UUID

“APFQueve AuloPyFactory’

o resourceld: String
o timestamp: Date

4

<<Java Class>>
&5 Allocation
org.fiexiblepower.ai

4 Colculate

of controlSpaceUpdateld: UUD

o isEmergencyAliocation: boolean
[F <<Java Class>>
(© ActuatorAllocation Exports job

oo va
<<JavaClass>> | oy atoralocations | o flexbispousr.efibutter WrTe
(@ BufferAllocation

1 o :
org. flexiblepower. efi.buffer 0. actuatorid: int
o runningModeld: int Prunes job
o startTime: Date

Submit Host

(a) repo flexiblepower/fpai-documentation (b) repo edquist/autopyfactory

(c) repo madhuri2988/Book- Vending-Machine

Figure 1.16: Examples of highlighted UML diagrams - Source: GitHub repos

The other extension is to "learn" characteristics of UML models that
were successfully used in OSS projects. For example, what model layouts did
developers use and what is the average size that models have.

In addition, studying UML that occurs in images can also provide hints on
needs that OSS developers have for visual highlighting strategies. In particular,
during manual inspection of the image set, we have seen quite many diagrams
that were colored and used highlighting in various ways. Those diagrams might
possibly be “important ones” as well. Figure [I.16] shows examples of three UML
diagrams from three GitHub projects that use highlighting.

Moreover, due to the availability of UML models (and projects that they
belong to), we can be able to study how UML models and other artifacts (such as
source code, bug-reports, issues, etc.) relate to each other. For example, we know
from the survey responses in paper C that UML models are (partly) adopted
during the implementation phase but we do not know how strictly models are
implemented, or in what way models abstract from the implementation code.

Assessment of quality of UML models. One aspect that can affect UML
use/adoption is the quality of UML models. This is the case in one of the
surveyed projects in Paper C. The founder of the GitHub project answered
“I feel that it depends on (...) how elegantly and interesting the models was
structured” as a reason(s) why UML models attracted new contributors to
his/her project. We see a need for evaluating the quality of UML models and
studying its impacts on the use of UML in software projects.

44 CHAPTER 1. INTRODUCTION

Evaluating quality of UML models could allow us to classify UML models
by different quality aspects. Furthermore, knowing the quality of a UML model,
we will be able to provide recommendations on how to improve the model. At
the project level, understanding the quality of UML models of a project could
enable to identify the need for actions for quality improvement.

One way to evaluate quality of UML models is to use quality models such
as . Figure shows the relationship between characteristics of quality
of UML models and various software metrics and rules proposed by Lange et
al. . For example, communicativeness of a UML model is affected by the
depth of inheritance tree (DIT) of the UML model.

Consistency
Communicativeness
Self-Descriptiveness|
Detailedness
Conciseness
Esthetics
Correspondence

Metrics and Rules

Dynamicity

Ratios

DIT

Coupling

Cohesion

Class Complexity
NCU

NUC

Fan-In

Fan-Out

Naming Conventions
Design Patterns
Layout-Guidelines
Multi defs. Vv
ID Coverage

Message needs Method
Code Matching
Comment v

<_|<|| Completeness

<o

S S S [& &[4 & |< || Balance

<
<[

<< & & [/ Complexity

<[

< [& ||Modularity

< <<
<<

Figure 1.17: Mapping of model quality chracteristics and software metrics.
Source: Table 5, paper (78]

In this direction of research, we have recently built a tool named Ninja
UML to automatically assess different quality aspects of UML models in any
OSS project . Figure shows the GUIs of NinjaUML tool. The tool
expects a URL to a GitHub repository as the input to run. Subsequently, the
repository is downloaded and scanned for UML models in various image and
textual formats. NinjaUML inherits tools and scripts created in this Ph.D
thesis for identifying and crawling UML model files from GitHub.

Figure shows the list of all repositories that were processed. Fig-
ure shows details when entering a repository of NinjaUML, i.e. a box
showing basic information about the repository, a box showing metrics about
UML process such as “UML contributor ratio metrics”, a repository commit
history chart (Figure . Figure shows the metrics that are extracted
out of a class diagram.

1.8. FUTURE WORK

45

Extract uml files from github repository

jhipster-uml °
[]

oML res .
comeLe oL Fies 2
= conmsuToRs e

UMLFILES CONTRIBUTORS. 1
commrrs.

964
FIRST comMIT Apr 28, 2015,11520 PM

Mar 29, 2018, 8:09:39 PM

LasT commir

test_repo
#UMLFILES 5
EDITABLE UML FLES 3
#coNTRIBUTORS 2
#UMLFILES CONTRIBUTORS]
= commr

1
2019-03-24T00:0318
2019-05-04TOT:44:49

Possible issues to watch out for

Class diagrams with unused classes

conps

- (S I ey Iy T T R
- Ty Ty

test_repo °
[

8
#EDITABLE UML FILES 3
= conTmiBuTORS >
#UMLFILES CONTRIBUTORS. 1
#comms

FIRST CommIT Mar 24,2019,12:0318 AM

May 4, 2019, 1:44:49 AM

LasT commr

(a) Repository list page

UML process

UML COMMIT RATIO

S UML commi 8 Torsl commit
o
EDITABLE UML RATIO
bie UL fi /5 Totsl ML

o

UML CONTRIBUTOR RATIO

Class diagrams with multi defined objects

Untilecami

(b) Repository page

xuml-compiler
oo namins comion]

#EDITABLE UML FILES.
& comms
LasT commir

UML Content
Type of diagram
cuass iAGRAMS
SEQUENCE DIAGRAMS
UsE-cASE DIAGRAMS

ACTIVITY DIAGRAMS

(c) Repository commit history chart

Number Of classes
Number Of unused classes
Multi defiend objects

Max coupling

Depth of inhertance tree

Number of god classes

Number of classes With long parameters list operations

Ratio of classes following naming conventions

0 e (T e e e e [e

Class metrics values BoxPlot

Level of details

Cohesion

(d) Class diagram metric views

Figure 1.18: GUIs of NinjaUML tool

11

3
o
4

1

May 22,2008, 12:08:46 PM
Aug 18, 2015, 5:54:26 AM

Identified number

@

o

o o

sos@om

46 CHAPTER 1. INTRODUCTION

Software modeling in context. Fig presents the complex nested
contexts that influence the goals of modeling and thereby the various processes,
practices and tools used. This figure illustrates that there is a hierarchy of
contexts that influence how software practices are used. (generalized from [84)).
There are organizational and project factors such as the goals of the stakeholders.
For example, stakeholders may prioritize delivery date over quality of the
software. Such priorities in turn affect the ways in which modeling is done.
In particular they will affect the goals of doing modeling and via this also
the processes, practices and tools used for modeling. In the future, for a true
understanding of the value of modeling practices, efforts should be spent on
studying all these context factors.

Figure 1.19: Impacts of contexts to software modeling approach

Organization Context
/ Project Context

h _
’ Project }—as—:’ Stage ‘ Ve D
lras 1 drives S5 AL /(pproach to architectin§\
has
1 .
’Stakeholde+—: Goal |——»| SE-Goals [.5 Modeling Goals %
dri T i
”Vf % grlves 3
i o
SE-Process |o S—g——» Modeling Process =
o >
drivis 8 drives E_;
| o = 3
SE—Pra@d'—ws—-?—» Modeling Practices '§
i o a
drives! é drives g
= < 2
gJ/

\\\\ \SE-TOOlS Modeling Tools

1.8.3 Building guidelines for UML use

In paper C, we provide implications for UML use, targeting software practi-
tioners and educators. In the future, we aim at building guidelines which have
the following properties:

Content. Guidelines will be provided to specific subjects based on two sources
of understanding: i) understanding about common practices of UML use/adop-
tion observed from a large number of software projects; and ii) understanding
about the subjects (individuals or teams/companies) in terms of current use

of UML and expected level of UML adoption. The guidelines are expected to
cover:

e Methods to assess current status of UML use within a software develop-

ment team/project. This will be provided in form of a check list or an
analytical tool;

e Common mistakes on applying UML;

e Success stories of applying UML in a software projects;

1.8. FUTURE WORK 47

Characteristics. The guidelines should be actionable. Each guideline should
contain the following parts: i) Targeted subjects (individuals or teams/compa-
nies); ii) Targeted context and problem; iii) Expected outcomes; iv) Guideline
in action; v) Common mistakes; vi) Examples from real-life projects.

Second, guidelines should be evidence-based. All guidelines can be traced
back to empirical studies and real-life software projects that support them.

1.8.4 Other directions

Our dataset comprises a large number of UML models and meta-data of the
projects that they belong to. This dataset is expected to be a valuable source
for empirical research in the field, such as design—code traceability, software
quality assurance, etc. Below, we present two general cases where our dataset
could be useful:

Evaluation of scientific approaches and modeling tools. Constructive
research on software modeling often has the problem that there are not enough
real cases of models to evaluate newly developed approaches and techniques.
Currently, this limitation is worked around on the basis of toy examples or
artificially generated models. In exceptional cases, researchers are allowed to use
obfuscated industrial models or models created with the help of practitioners
for the purpose of the evaluation [85]. Our dataset provides real cases of UML
models in machine readable form. Professional tool vendors, who provide case
tools for modeling, might be able to use the dataset to test new features on
real data. One example of a study could be layout generation of diagrams.

UML for education. Software modeling and UML have been taught at
universities in various courses, ranging from programming courses to analysis
& design courses and software architcture courses. Novice software designers or
students struggle with different problems during their training tasks [86-88].
A recent research by Karasneh et al. shows that access to a corpus of UML
modeling examples helps students who are novices with UML modeling to
create better designs [89]. This is aligned with our implication for university
teachers in paper C, that teachers should promote students to consume UML
models before creating models.

48

CHAPTER 1. INTRODUCTION

Chapter 2

Paper A

Automatic Classification of UML Class Diagrams from Im-
ages
T. Ho-Quang, M.R.V. Chaudron, I. Samuelsson, J. Hjaltason, B. Karas-

neh, H. Osman

21st Asia-Pacific Software Engineering Conference (APSEC 201}),
Jeju, Korea, December 1 - December 4, 2014.

49

Abstract

Graphical modelling of various aspects of software and systems is a common
part of software development. UML is the de-facto standard for various types of
software models. To be able to research UML, academia needs to have a corpus
of UML models. For building such a database, an automated system that has
the ability to classify UML class diagram images would be very beneficial,
since a large portion of UML class diagrams (UML CDs) is available as images
on the Internet. In this study, we propose 23 image-features and investigate
the use of these features for the purpose of classifying UML CD images. We
analyse the performance of the features and assess their contribution based on
their Information Gain Attribute Evaluation scores. We study specificity and
sensitivity scores of six classification algorithms on a set of 1300 images. We
found that 19 out of 23 introduced features can be considered as influential
predictors for classifying UML CD images. Through the six algorithms, the
prediction rate achieves nearly 96% correctness for UML-CD and 91% of
correctness for non-UML CD.

Keywords: Software Engineering; UML; UML class diagram; classification;
machine learning; feature extraction.

50 CHAPTER 2. PAPER A

2.1 Introduction

In software development, UML class diagrams (CD) are used to design and
illustrate the structure of software. They are a very important tool when
engineers need to understand the basic structure of a system, e.g. when a
new engineer, that is unfamiliar with a system, needs to maintain it. UML
CDs are becoming ever more prevalent within industry and academia, where
model-driven development is becoming a common practice, and it is widely
agreed that they have become an integral part [90,91]. Accordingly, studying
UML models and sharing of modeling artefacts [92] is an emerging need in
recent years. In order to facilitate this need, a set of UML models should
be collected in some forms of repository. Recently, both commercial UML
repositories [93}94] as well as general model repositories |25] have been built. B.
Karasneh et.al [26]54.95] proposed an automated system (named Img2UML),
which has the ability to extract UML CDs from images and share these via an
online repository.

Among these repositories, enriching the one in [54] is easier, because a
large portion of UML CDs is available as images on the Internet. However, the
problem is that the automated collection of images needs a classifier to identify
which image is related or not. We consider two scenarios where the classifier
could be very useful:

e Users want to share their UML diagrams in image formats to the reposi-
tory; and

e Automatic collection of images from various online sources into the
repository. We think about several types of sources: image crawler (e.g.
Google Image Search); shared image sets (from academia), etc.

Creation of such a classifier will bring a significant opportunity to automate
the repository’s collection phase. That is our main motivation to conduct this
research.

Research Problem. This paper specifically aims at providing suitable fea-
tures and classification algorithms to decide which images should be considered
as UML CDs and which images should be left out. The classifier operates by ex-
tracting relevant information about the image and processing that information
with a machine learner. The classifier is expected to have ability of inclusion of
UML CD images and exclusion of non-UML CD images. Among these tasks,
eliminating non-UML CD images has greater value than including UML CD
images.

Since the input is images, information regarding UML CD that helps
classifying the images needs to be discovered through image processing. This
paper focusses on using basic image processing features as predictors (input
variables used by the classification algorithm). The advantage of using the
features is that these can be obtained very fast with little effort. This fits our
objective of creating a fast method that will be of practical use to automated
classification system.

We analyse the predictive power of the features to discover the influence
of individual feature on the performance of the classifier. On the other hand,

2.2. RELATED WORK 51

to find the most suitable set of features, we prepare some sets of features and
evaluating their classification performance.

In addition, with the aim at finding the most suitable classification algo-
rithm, we make a comparison between candidate algorithms based on their
classification performance. Costa et.al [96] investigated a range of measures
that can be used for evaluating classification performance. In this study, the
measures are specifically related to algorithms’ ability to eliminate non-UML
CDs.

Contribution. The contributions of this study are as below:

e Proposal of a set of features for UML CD inclusion/exclusion prediction.
It consists of 23 features formulated from the image processing properties.
The performance of the features is considered as their importance to the
classifier. The suitability of four subsets of features is discovered as well.

e Evaluation on classification performance of six algorithms in terms of
classifying accuracy and robustness. Candidate set of algorithms includes:
J48 Decision Tree, Logistic Regression, Decision Tables, Random Forests

and SVM, and REP Tree.

e Our dataset including images together with the list of extracted features
are freely provided in order for researchers to test and make comparisons.

The remainder of this paper is structured as follow: Section discusses
the related research and section [2.3] indicates research questions. Section [2.4]
explains the approach while section describes the experiment. We present
the analysis of results in section [2.6] Section [2.7] discusses our findings and
section ends with conclusions and future work.

2.2 Related Work

Recognition of special types of graphics is an area of intensive research. A
survey of diagrams recognition and treatment can be found in [97]. UML CDs
are a type of diagram that graphically represents classes and their relationships
to one another. The majority of existing approaches to UML diagram image
classification and understanding were developed within the scenario of image
feature extraction. This section is aimed at discussing prior research on the
topic, with focus on the fields of image classification and UML diagram feature
extraction.

2.2.1 Image classification

Image classification refers to the labelling of images into one of a number
of predefined categories. D. Lu et.al. [9§] introduced major steps for image
classification process. The steps may include 1) Selection of training samples; 2)
Image pre-processing; 3) feature extraction; 4) Selection of suitable classification
approaches and 5) Classification performance assessment. In this study, we
follow these steps to build our classifier.

52 CHAPTER 2. PAPER A

Much research has been done in this field, especially for classifying remote-
sensing images [99]. With regards to diagrams, chart image classification seems
to be one of the most concerned topic [100|. However, until now (to the best of
our knowledge) there is no study about classifying UML class diagram images.

2.2.2 Diagram feature extraction

Recently, research has been conducted in this field of study, varying in method
and approach. B. Messmer et.al. [101] proposed a system for recognizing and
automatic learning of sketched graphic symbols in engineering drawings. The
objective of this research is to combine pattern recognition techniques with
machine learning concepts in order to be able to learn and recognize new
symbols in engineering diagrams. In [102H104], a range of methods for online
recognition of entirely hand drawn UML diagrams were introduced. However,
since the methods were used information regarding the movement of drawing,
which are not available in images, sketching tools cannot be carried over to
recognizing UML models in final/static images.

L. Fu et.al. [105] presented a method for converting image based engineering
diagrams (including UML models) into attributed graphs which can be used
for content-based retrieval.

B. Karasneh et.al. [95] proposed a tool to extract class diagrams from
computer-generated images. The tool recognizes UML class diagram properties
and translates them into XMI format. Geometric-based feature as well as
texture features were detected.

2.3 Research Questions

This section describes our main research question and three sub-questions. The
main question of this research is as follows: How can classification of UML class
diagram images be automated?

In order to answer this question, these sub-questions need to be figured out:

RQ1. What is the performance of image processing features in predicting
the presence of UML CD?

RQ2. What is the performance of the classification algorithms in using the
features as predictors?

RQ3. Which subset of the proposed features performs the best in classifying
UML CDs?

2.4 Approach

In this section, we describe our approach in conducting this experiment.

2.4.1 Overall framework

The overall framework of this experiment is shown in Figure To achieve
the classifier, we use a machine learning approach.

Input for the process are images (Step 1). The images are then processed by
applying a number of sub processes (Step 2) which can be listed as: Recognising

2.4. APPROACH 53

(om (5) Analyse result)

Image —
@ Processing 4) Classification

Contours & Shapes
Horiz. & Vert. lines UML CD features/metrics
C Rectangles D) |
C Joining lines) |———pp 3) Feature extraction

Figure 2.1: Overall framework

contours and shapes; Recognising lines; and joining lines in form of UML connec-
tions. Additionally, to avoid prolonged processing time on complex photographs,
images have to pass a pre-check before being processed. Section describes
the process in details. The outputs of the process are basic characteristics of
detected objects (such as size, area, etc.).

In the feature extraction phase (Step 3), information received from the
previous step is calculated into 23 invented features/metrics. The output data
of the process is represented as float numbers and is much more complicated
when metrics comparing with its input data. Detailed information about the
features is described in Section

The features are then used as input data for a UML class diagram classi-
fier (Step 4), which was trained by using our 1300-image-set in conjunction
with classification algorithms. The processes of training and predicting is also
discussed in the section 2.4.4l

Finally, at the end of the above steps (Step 5), we evaluate performance of
the said features and algorithms.

2.4.2 Image processing

This sub-section shows how we process an input image for the purpose of
extracting features. The process includes two main phases as follow:

Pre-check. In order to avoid prolonged processing time on complex pho-
tographs, images have to pass a pre-check before being processed as follows:

e The most used colour in the image has to cover at least 10

e The image’s colour-histogram median value must be above 100.

Image processing. Shape and line extraction is carried out using three
external algorithms: Hough transform (HT) |106]; Suzuki85 (S85) [107]; and
Ramer—-Douglas—Peucker (RDP) [108]. The contours that S85 finds are used
to find various shapes and are subsequently broken down into straight lines.
Using the algorithm in conjunction with HT leads to better detection of lines.
The lines are then processed, so that horizontal and vertical lines, that are on

54 CHAPTER 2. PAPER A

the same axes and represent the same line, are joined together into a single
line. Rectangles that are not caught by using S85 are then extracted by finding
horizontal lines that are parallel and in the same position on the x-axis, and
have the same two vertical lines intersecting them on each end. RDP is used
to find different types of polygon: rectangles, rhombuses, triangles and ellipses.

_|IIIM

| |
Il
L1

i

T
| M

-

k

B. Hough transform C. Contours
i 2 —1

==
—

D. Joined lines #1 E. Joined lines #2 F. Extracted elements

i

[

Figure 2.2: Image processing

Figure 2:2) shows the basic steps of the image processing. As can be seen in
picture B in Figure [2.2] with HT, many of the rectangle lines are not extracted,
or the extracted lines are segmented and/or incomplete. Such lines make it very
difficult to find the rectangles in the image. S85 returns an unlimited amount
of points in each contour. The extracted contours from S85 can be seen in
picture C. By examining that picture, it is apparent that the algorithm catches
more of the lines than HT. The lines are joined in three phases:

(1) The contours that are found are split into lines, and horizontal and
vertical lines are extracted;

(2) Horizontal and vertical lines that HT finds are collected and joined
with (1);

(3) Lines, found by HT, that are not vertical or horizontal are collected and
joined with (1).

After the phases (1) and (2) (picture D), rectangles are collected through
the above-mentioned method. After the rectangles have been collected, phase
(3) (joining lines; picture E) is conducted, and then all lines within shapes are
removed, results in picture F.

2.4.3 Feature extraction

As a diagram, a UML CD image can be distinguished from other images by
detecting diagram’s main characteristics such as lines, rectangles, number of
colours, etc. The task becomes more complicated when recognising UML CD
from another type of (engineering) diagram. This section explains the problems

2.4. APPROACH 55

and describes the features we extract for solving this classification problem in
detail.

2.4.3.1 Which features set UML CD apart from other diagrams?

Tl

MySQL
Instaltation

i |
(o) (o= (==

Assistants

Figure 2.3: Diagram examples.
(1) —= UML Class diagram; (2) — UML Sequence diagram; (3) — Flow chart; (4)
- E/R model

Diagrams come in all shapes and forms (Figure , and for this reason, it
was important to consider not only CDs, but also other different but similar
diagrams such as Entity-relationship models (E/R), UML Sequence diagrams
and Flowcharts amongst others, when finding the right features.

Three key factors that can be used to describe UML CDs are: (1) Classes,
in the form of rectangles; (2) the classes are related to each other in the form of
connecting lines; and (3) the classes are divided into sections with the name of
the class, attributes and operations. The 3rd describing factor is, though, not
universal. It does not apply to all classes within the diagram, but in almost all
UML CDs there are classes divided in this manner. As can be seen in Figure 1,
the 1st and 2nd of the defined characteristics of UML Class diagrams can apply
to many types of diagrams or charts. Because of that it was also important
to extract more information from the image, than only information that is
descriptive of CD. As a result, other geometrical shapes (i.e. ellipses, rhombuses,
and triangles) and statistical metrics (e.g. distribution of shapes) had to be
extracted as well.

In order to obtain a general solution, we considered it important that the
input images cover wide ranges of sizes, colours and number of objects. In order
to make our features comparable, we use normalisation: all extracted features
are represented in the form of ratios and percentages.

2.4.3.2 Extraction features in details

There are 23 features that are calculated from image processing images. Table[2.1]
describes the features in details.

Table 2.1: Extracted Features

Feat. | Name Description
Fo1 Rectangles’ portion of image, % | Dividing the sum of the area of all the rectangles with the area of the image
F02 Rectangle size variation, ratio Dividing the rectangle size standard deviation with the rectangle average size
FO3 The image is divided into four equally sized sections and the area of the rects
-06 Rectangle distribution, % inside the sections is then divided by the total area of the rects. The 4 sections
sum up to 100%
. Calculated by counting all rectangles that are connected to at least one rect.,
Fo7 Rectangle connections, % and dividing};hat num%)er by the %otal amount of rectangles in the image
FO8 The rectangles are split into three groups, with rectangles that have: no dividing
10 Rectangle dividing lines, % lines (F08); one or two dividing lines (F09); or three or more dividing lines (F10).
This produces 03 numbers that represent the percentage of rects. within each group
. Sides of rectangles, horizontal (F11) and vertical (F12), that are aligned with sides
Fll Rec?angles horlzontauy/ of other rectanéles are counted(. Th<)a numbers are (divi(ied with the Eumber of detected
F12 vertically aligned, ratio
rect. in the image, resulting in two ratios on rect. horizontal & vertical alignments
F13 | Average horizontal/ Average size of horizontal (F13) and vertical (F14) lines that are larger than 2/3 of the
F14 vertical line size, ratio images width or height, divided by the images width or height, respectively
F15 Parent rectangles in Rectangles that have rectangles within them can possibly be packages. This feature is
parent rectangles, % the percentage of the area of those parent rectangles that is within other parent rects.
F16 Rectangles in rectangles, % This is calculated in the same manner as F15, but with rects., instead of parent rects.
F17 Rectangles height-width ratio The average ratio between the height of the rectangles and the width of the rects.
F18 Geometrical shapes’ portion The same as F01, but with rhombuses, triangles and ellipses
Lines connecting geometrical The number of connecting lines from shapes, other than rectangles, divided by the
F19 . . .
shapes, ratio number of detected shapes in the image
F20 Noise, % Detected lines that are outside of rectangles, divided by the number of all lines
F21 Three most frequent colours in the image are found. Then a percentage out of all
Colour frequency, % . .
-23 appearing colours is found for the three colours

9¢

V 44dvd ‘¢ H4LdVHD

2.4. APPROACH 57

2.4.4 UML CD classification

This subsection explains how we choose a classifier. The process includes two
main tasks: 1) Choosing the most suitable classification algorithm; 2) Training
for the classifier with the chosen algorithm. The influence of extracted features
and correlation-based feature-sets are discovered as well.

2.4.4.1 Choosing the most suitable classification algorithm

We selected the algorithms that represent different approaches in classification.
The six classification algorithms are listed as: (1) Decision Table (DT); (2) Ran-
dom Forest (RF); (3) Support Vector Machine (SVM); (4) Logistic Regression
(LR); (5) REP-Tree (RT) and (6) J48 Decision Tree (J48) [52].

At first, we use Information Gain Attribute Evaluator (InfoGain) to find
out the influence of extracted features. Secondly, by applying the Correlation-
base feature selection (CFS) algorithm described in [109] on the extracted
features, we prepared several sets of predictors. The set of predictors used for
this evaluation are top 3, top 6, top 9 and “top-all” of most suitable features.
Then, we apply these sets of features to all classification algorithms to get their
false-positive (FP) and true-positive (TP) rates on our dataset.

2.4.4.2 Training classifier

This sub-section shows the phase of training the UML CD classifier. To that
end, we use our 1300-image-set as training data and a supervised learning
approach. The collection of the image-set and configurations for training and

testing set are described in and respectively.

(a) Training

features (f, ..., fn)

Feature
extracton

Machine leaming
algorithm(s)
!
+

(b) Testing produces

YES

Dataset Feature Classifier
extraction

NO

Figure 2.4: Supervised classification - (a) Training phase; (b) Predicting phase

As shown in the Figure during the training phase, the feature extraction
is to convert each input image to a feature set as mentioned in section [2.4.3
Feature sets are then inputted into the chosen machine learning algorithm
to train a model. During the prediction phase, the same feature extraction
is applied to the test data, and the extracted feature sets are input into the
model to generate the predicted labels.

58 CHAPTER 2. PAPER A

2.4.5 Analyse Result

The InfoGain measures and the FP and TP rates from the classification process
are analysed. We compare the performance of the evaluated classification
algorithms across all datasets. The detailed analysis is demonstrated in the
section of this paper.

2.5 Experiment Description

This section explains the dataset that we used in this study and the evaluation
measure for analysing the results.

2.5.1 Dataset

The images that were used for training machine leaner collected by using Google
Image Search. The image collection consisted of two separate accumulation
phases: collecting images that represented CDs; and collecting non-CD images
and images that represented similar diagrams.

To search for CDs the phrase “UML Class diagram” was used. Various types
of diagram such as blueprint, sequence diagram, chart, flow chart, E/R model,
and architectural diagram were found by their corresponded phrases.

It was verified that no duplicates are in the set. The end-result was a
collection of 650 UML CDs and 650 non-UML diagrams (1300 images in
total). The non-UML images include 60 sequence diagrams, 34 use-cases, 61
ER diagrams, 80 architectural diagrams and 155 charts. Our dataset together
with the results that are presented later in the paper can be found online via:
http://bitly.com/dtsUMLClassifier.

2.5.2 Evaluation measures

This subsection describes the evaluation measures used in this experiment. The
evaluation measures are the following:

2.5.2.1 Features Predictive Performance

In order to measure predictive performance of extracted features we uses the
information gain with respect to the class.

The Information Gain Attribute Evaluation (InfoGain Attribute Evaluation)
is a method that evaluates the worth of an attribute by measuring the informa-
tion gain with respect to the class [110]. This method is able to evaluate the
predictive power of an attribute (an extracted feature in our case). Accordingly,
we use the method to identify the influence of a feature in UML CD prediction.
The InfoGain Attribute Evaluation produce a value from 0 to 1 in which a
higher value indicates a stronger influence.

2.5.2.2 Classification Algorithm Performance

We use a confusion matrix to evaluate the machine learning classification
algorithms. Table shows a confusion matrix. In this table, for the case of
the actual data is positive (Y), TP represents the number of correct predictions

2.6. ANALYSIS OF RESULTS 59

(true positive) and FN represents the number of incorrect predictions (false
negative) by the classification algorithms. In the case of the actual data is
negative (N), FP represents the incorrect predictions (false positive) while TN
represents correct predictions (true negative).

Table 2.2: Confusion matrix

Actual | Prediction Result
Result | Y N

Y TP FN

N FP TN

We use Sensitivity and Specificity to evaluate the performance of classifica-
tion algorithms. Sensitivity (or True Positive Rate) measures the proportion of
images, which actually are UML CDs, are correctly identified as UML CDs.
Specificity (or True Negative Rate) denotes the proportion of actual non-UML
CD images that are correctly classified as non-UML CDs. In other words, while
specificity represents the ability of excluding non-UML CD images, sensitiv-
ity represents the ability of including UML CD images. The two metrics are
calculated from the confusion matrix as below:

specificity = TNR = % ; sensitivity = TPR = TPZ%

For our purpose, the exclusion of non-UML CDs is more important than
the inclusion of UML CDs. As a result, specificity is considered more important
than sensitivity. The two measures range from 0% to 100%. The higher the
value of the measures, the better classification algorithm.

2.5.3 Experiment settings

This subsection describes the experiment setting in this study. We choose 10-fold
cross-validation [111] for performance evaluation where all images are randomly
split into ten exclusive folds. For each of the ten experiments, typically a single
fold is retained as a validation data, and the remaining nine folds are used
as training data. The default settings suggested from WEKA were used for
classification algorithms.

2.6 Analysis Of Results

This section describes the analysis of results. Every subsection is presented to
answer the questions specified in Section [2.3]

2.6.1 RQ1: Influence of features

The overall results for this evaluation are illustrated in Table 2.3] in which
features are sorted by descending order of InfoGain values.

Overall, 19 out of 23 proposed features are considered as influential pre-
dictors (InfoGain value > 0) for classifying UML CD images. F09 and F08
(ranked first and fifth respectively) are features formulated by calculating
splitting lines in the rectangle. Thus, this result shows that splitting lines
the rectangle gives a high impact in predicting class diagrams from images.

60 CHAPTER 2. PAPER A

Table 2.3: Information Gain

No. | Features | Value || No. | Features | Value
1 F09 0.473 13 F18 0.111
2 F20 0.433 14 F14 0.086
3 FO1 0.374 15 F10 0.07
4 F13 0.352 16 F21 0.055
5 FO8 0.306 17 F19 0.052
6 F02 0.302 18 F22 0.039
7 FO7 0.255 19 F15 0.008
8 F04 0.241 20 F23 0
9 FO05 0.227 21 F16 0
10 F03 0.208 22 F12 0
11 F06 0.206 23 F11 0
12 F17 0.201
Note: Features that have InfoGain value greater than 0 are
highlighted

Another important feature is F'20, which is defined to eliminate those images
that have too much information outside rectangles. Also, FOI (ranked third)
which denotes rectangle coverage, is one of the most vital features.

F23, F16, F12 and F11 have a trivial impact on the classification. Thus,
these features are then omitted from the feature-set.

2.6.2 RQ2: Classification algorithms performance

The classification algorithms were evaluated by measuring specificity and
sensitivity over 10 runs for the feature set.

Table 2.4: Specificity and Sensitivity Scores

SVM | RF J48 LR RT DT
0.89 | 0.904 | 0.901 | 0.914 | 0.901 | 0.895
0.04 | 0.04 | 0.04 | 0.03 | 0.04 | 0.04
0.924 [0.959 | 0.925 | 0.902 | 0.92 | 0.919
0.04 | 0.03 | 0.03 | 0.04 | 0.04 | 0.04

Spec.

Sens.

Table 2.5: Confusion matrix — Logistic Regression Classification

Actual | Prediction Result
Result | Y N

Y 596 54

N 63 587

Table 2.4] shows the evaluation result. The first row and the second row
show specificity score and sensitivity score, respectively. Followers are their
standard deviation.

2.6. ANALYSIS OF RESULTS 61

As can be seen in the Table IV, in term of sensitivity, Random Forest shows
an excellent result with almost 96% UML CDs images were correctly classified.
This follows with J/8 and SVM with 92.5% and 92% respectively.

On the other hand, in term of specificity. LR performed the best with
91.4% of correctly classified non-UML CDs images. SVM performed the worst
specificity with 89%.

The results also show that the standard deviation on the results are rela-
tively small (0.01- 0.05) that indicate the results are considered reliable (small
variation). In summary, LR performs the best in term of eliminating non-UML
CD images. Accordingly, LR is considered as the best classification algorithm
for our classifier with mentioned-extraction features.

The confusion matrix in Table illustrates the classification result gener-
ated by applying the LR classifier to our dataset. From total of 1300 images,
1183 images were classified correctly. 596 out of 650 UML CD images were
correctly predicted as UML CDs. Also 587 out of 650 non-UML CD images
were correctly recommended as non-UML CDs. On the other hand, among 117
incorrectly classified images, there was 54 false positives (predicted as UML
CDs, but actually non-UML CDs) and 63 false negatives.

2.6.3 RQ3: Set of features Performance

In this subsection, we describe the sets of features that were used as candidate
dataset and the comparison between these sets in terms of the performance that
classification algorithms can reach on them. Again, specificity and sensitivity
are the two measures that are used to evaluate the performance of the feature
set.

For this evaluation, we form four feature-sets by grouping the features into
3, 6, 9 and all features. For groups of feature that have 3, 6, and 9 features, we
used Correlation-based Feature Selection (CFS) Evaluator to select the suitable
features. These sets are as follows:

e Feature set 0 (FS0) = All features

e Feature set 1 (FS1) = F01, F09, F13

e Feature set 2 (FS2) = F01, F02, F09, F13, F18, F20

e Feature set 3 (FS3) = F01, F02, F06, F07, F08, F09, F13, F18, F20

As can be seen in Table[2.6] the set of all feature (F'S0) shows a more positive
result compared with other sets in almost of all classification algorithms. Two
out of six classification algorithms gained the best result on both specificity and
sensitivity scores with the set of all features. With regards to specificity score,
FS0 is the most suitable feature-set for SVM, LR and DT, while RF, J48 and
DT perform the best on the 6-feature-set (FS2). In terms of sensitivity, FS0 is
considerably higher than other sets as it is the best choice for 4 algorithms.

With focus on the best algorithm (Logistic Regression) that is analysed
above, FS0 is the best choice in both specificity and sensitivity, at 91.4% and
90.2%, respectively.

62 CHAPTER 2. PAPER A

Table 2.6: Specificity and Sensitivity Scores Across Datasets

SVM RF J48 LR RT DT
FSO 0.890 + 0.904 0.901 0.914 + 0.901 0.895 +
0.924 * | 0.959 * | 0.925* | 0.902 * 0.92 0.919
FS1 0.873 0.898 0.908 0.861 0.903 | 0.895 +
0.839 0.926 0.92 0.858 0.919 0.921 *
FS2 0.874 | 0.907 + | 0.916 + 0.882 0.905 0.895 +
0.894 0.947 0.922 0.853 0.924 * 0.919
FS3 0.885 0.906 0.908 0.901 0.907 + | 0.895 +
0.915 0.949 0.925 * 0.892 0.922 0.919

Note: For each feature set: The first row is specificity and the second row is
sensitivity cells that have highest value across all algorithms are highlighted
as yellow and orange, respectively. For each algorithm: cells that have highest
specificity and sensitivity are marked 4+ and *, respectively.

2.7 Discussion

In this section, we summarize and explain the result in the previous section.
We also explain the threats to validity of this study.

2.7.1 Image Processing Time

The image processing and input image-set are described in the Section [2.4.2
and Section [2.5.1] respectively. Overall, the average processing time is 5.84
seconds per image. Those images that have big sizes and large amounts of lines
need much time to be processed.

In order to discover extraction time’s dependence on images size and number
of lines, we use Pearson’s correlation tests. Obtained results show that there is
a moderate relationship between execution time and image’s pixel size (corr.
= 0.535). Meanwhile, execution time has a relatively high correlation, at 0.85,
with the number of lines. Figure [2.5] indicates the relationship along with its
linear model.

300
250 —
200
150 —
100

Execution Time (s)

50 -

0 | cii——

T T T T T T
0 500 1000 1500 2000 2500 3000

Number of Lines

Figure 2.5: Relationship between exec. time and number of extraction lines

As the above discussion attests, processing on architectural diagrams, maps
and blueprints might take a lot of time and system resource. Among the 4 most

2.7. DISCUSSION 63

§ . =
. L e

t=1642s
n=2607
s=2106 x 1402

t=3159s
n=3085
s = 4758 x 3404

t=200s
n=2663
s =2260 x 1942

t=155s
n= 1854
s = 3075 x 2326

Figure 2.6: The most time-consuming cases
(t) — extraction time; (n) — no. of extraction lines; (s) — image size in pixel

time-consuming images showed in the Figure[2.6] only the 2nd one is a UML CD.
Therefore, an early recognition of such the images will significantly decrease
the execution time. It can be done by applying template-based matching and
image pyramids [112].

2.7.2 Image Processing Features Performance

Table shows the prediction performance of the six classification algorithms
using the features. The classification performance ranges from 89% to 91.4% in
terms of specificity and from 90.2% to 95.9% in terms of sensitivity. Therefore,
we are certain that the proposed features are suitable for classifying UML
diagram based on the input images.

The four features whose InfoGain values equal 0 can be considered of
too small of influence and can be excluded from the feature set. We check
this exclusion by comparing the performance of the classification algorithms
on the two features sets: one is full-feature set (so called FS2%), and the
other is the reduced-feature set (so called FS19). The result is shown on
Table [2.7) explicitly shows that the exclusion helps the classification algorithms
to improve their performance of eliminating non-UML CDs. Comparing with
FS523, while sensitivity scores recorded on FS19 slightly decrease with at most
0.2% through all algorithms, specificity values increase from 0.2% to 0.7% on 3
out of 6 algorithms.

Table 2.7: Comparision between FS23 and FS19

SVM | RF J48 LR RT DT
FS23 0.895 | 0.902 | 0.901 | 0.906 | 0.899 | 0.898
0.929 | 0.961 | 0.927 | 0.903 | 0.92 | 0.919
FS19 0.89 | 0.904 | 0.901 | 0.914 | 0.901 | 0.895
0.924 | 0.959 | 0.925 | 0.902 | 0.92 | 0.919

On the other hand, results from Table III show that features which relate to
class’s geometric shapes are the most powerful. 8 out of 10 top placed features
are about rectangles (distribution, divided lines inside). The two other features
are related to connecting lines and information outside rectangles.

64 CHAPTER 2. PAPER A

2.7.3 Classification Algorithms

The results show that LR is a suitable classification algorithm in this study as it
produces the best specificity score. However, as can be seen from Table LR
is not the best classification algorithm for all feature sets. There is a remarkable
decrease when applying LR on FS1, as its sensitivity is 5.3% less than FS0.
The most suitable algorithm for FS1, FS2 and FS3 is J48 Decision Tree whose
specificity scores ranges from 90.8% to 91.6%.

In term of sensitivity, RF maintains its first rank and a reliable performance
through all feature sets. Its sensitivity scores range from 94.7% to 95.9% with
a small standard deviation at 3%. From this analysis, we can conclude that
RF is the most suitable algorithm for detecting the UML CDs.

2.7.4 Threats to validity
2.7.4.1 Threats to Internal Validity

Image processing phase is done by applying a process mentioned in the sec-
tion However, the process itself has some weakness which is formed by
HT, 585, RDP‘s disadvantages [113]. The weakness may causes misdetection
of classes and connecting lines. Accordingly, the features that are extracted
from the images may not be accurate. Picture F, Figure is an example of a
misdetection: 2 classes are missing in the final step. Using the algorithms in
combination with line-segment merging/grouping algorithms such as [114}/115]
should improve the weakness.

2.7.4.2 Threats to External Validity

The class diagrams that we used are collected from the Internet. We believe they
are representative for the syntactical representation used in various modeling
tools including generic drawing tools. One threat to validity is that we have not
included industrial class diagrams. In discussions about this research, people
claim these industrial diagrams could be larger in terms of number of classes
per diagram. On the other hand, our experience is that large diagrams are
decomposed into diagrams that consist of around 10 — 12 classes per diagram.

2.7.4.3 Threats to Construct Validity

To measure the classification algorithm performance, we use specificity and
sensitivity as our evaluation measures. Specificity and sensitivity can be con-
sidered as standard measures in data mining [52]. Therefore, we believe there
is little threat to construct validity.

2.8 Conclusions and Future Work

This paper presents an automated classification method for images that rep-
resent UML Class diagram. To this end, we discuss features extracted from
images as input to the classifier for UML class diagrams. In this study, we
introduced 23 features that capture statistical and geometric characteristics of
diagrams. We find that using these metrics as predictors for the classification

2.8. CONCLUSIONS AND FUTURE WORK 65

reaches 95.9% and 91.4% (respectively) of correct classification of input images
for UML CD and non-UML CD. For this study 1300 different images are
collected from the Internet through Google Image Search. We make this dataset
available as a benchmark.

We take a step further by examining the classification performance by
considering different sets of features. We find out that the full-feature set is the
most suitable predictors for most of all classification algorithms. However, we
argue that using the full-feature set leads to a time-consuming feature extraction.
Therefore, in order to speed up the classification, using other smaller feature-set
like FiS2 or FS3 have only a little lower correct prediction rate, but are faster
to compute.

We also study which classification algorithms perform the best on classifying
UML CDs. To do that, we calculate and compare their classification performance
based on the two measures specificity and sensitivity. Amongst these two
measures, specificity is in our case considered more important than sensitivity.
Logistic Regression is found to produce the highest correct predication rate, at
91.4%, on identifying non-UML CDs.

Evaluating the performance of classification through the feature sets allows
us to identify the most reliable classification algorithms. Random Forest is
the most reliable algorithm in term of detecting UML CDs. Meanwhile, J48
Decision Tree obtains top specificity score on 3 subsets of features.

For future work, we will try to improve the performance of the classifier
using features based on text-recognition. Another direction would be to try to
get a semantic understanding of the diagrams. This could for instance allow
the classifier to distinguish organizational charts from class diagrams even if
these organizational diagrams cannot formally be discriminated from UML CD
syntax.

Also, our classifier allows us to think about a UML CD Crawler which
we can use to build a larger collection of UML CDs. Moreover, we consider a
classifier for identifying UML sequence diagrams.

66

CHAPTER 2. PAPER A

Chapter 3

Paper B

The Quest for Open Source Projects that Use UML: Min-
ing GitHub

R. Hebig, T. Ho-Quang, M.R.V. Chaudron, G. Robles, F. Miguel An-
gel

ACM/IEEE 19th International Conference on Model Driven Engi-
neering Languages and Systems (MODELS 2016), Saint-Malo, France,
October 2 - October 7, 2016.

67

Abstract

Context: While industrial use of UML was studied, little is known about
UML use in Free/Open Source Software (FOSS) projects.

Goal: We aim at systematically mining GitHub projects to answer the ques-
tion when models, if used, are created and updated throughout the whole
project’s life-span.

Method: We present a semi-automated approach to collect UML stored in
images, .xmi, and .uml files and scanned ten percent of all GitHub projects (1,24
million). Our focus was on number and role of contributors that created /updated
models and the time span during which this happened.

Results: We identified and studied 21 316 UML diagrams within 3 295
projects.

Conclusion: Creating/updating of UML happens most often during a very
short phase at the project start. 12% of the distinct models occurred sev-
eral times. Duplicates are in average spread across 1,88 projects. Finally, we
contribute a list of GitHub projects that include UML files.

Keywords: UML, open source, free software, GitHub, mining software repos-
itories

68 CHAPTER 3. PAPER B

3.1 Introduction

The Unified modeling language (UML) provides the facility for software engi-
neers to specify, construct, visualize and document the artifacts of a software-
intensive system and to facilitate communication of ideas [116]. For commercial
software development, the use of UML has been introduced and commonly
accepted to be a prescribed part of a company-wide software development
process.

When it comes to Free/Open Source Software (FOSS) development, char-
acterized by dynamism and distributed workplaces, code remains the key
development artifact [37]. Little is known about the use of UML in open source.
Researchers in the area of modeling in software engineering have performed
some efforts to collect examples of models and of projects that use modelling.
However the results are often limited [24]. For example, the Repository for
Model Driven Development (ReMoDD) [25] is an initiative driven by an interna-
tional consortium of leading researchers in the field of modeling. Nevertheless its
content is growing at a low rate: after 7 years (summer 2014) it contains around
60 models. Industrial projects are very reluctant to share models because they
believe these reflect key intellectual property and or insight into their state of
[T-affairs.

Due to the so far limited success in identifying open source projects with
UML, many researchers (including the authors themselves at the start of this
study) are rather pessimistic finding much use of UML in open source projects.
Furthermore, since most open source platforms, such as GitHub, do not provide
facilities for model versioning, such as tools for model merging, we were even
more pessimistic about finding examples of UML models that were updated
over time.

The lack of available data is the reason why so far no answers could be
given to several basic questions on the amount of UML files in open source
projects that are static or updated, the time span during which models are
created or updated during the open source project, or the question which of
the project’s contributors do create models. Thus it seems that UML is not
frequently present in FOSS projects. However, there is no exact quantification
of its presence.

GitHub hosts around 10 million of non-forked repositories, which makes
it a good starting point to obtain an estimation of the use of UML in FOSS
projects. GitHub’s web search is limited for this type of endeavor as it targets
mainly source code searches by developers. However, there are many other
ways to access GitHub data (GHTorrent or the GitHub API), but as we will
show obtaining data on UML usage is not trivial.

In this paper we present our efforts to mine GitHub in order to gain a
list of open source projects that include UML models. Due to the required
manual steps, it is not yet feasible to investigate all 12 million GitHub projects.
Instead we focus on a random sample of 10% of all GitHub projects (1,24
million of the 12 million repositories). It turned out that for achieving this goal
we required to join forces and expertise from different fields. The first challenge
is the identification of non-forked repositories in GitHub with the help of the
GHTorrent |45] in order to retrieve candidates for files that might include UML
diagrams. Since these many of these diagrams are stored in formats that can

3.2. RESEARCH QUESTIONS 69

also include other information than models, e.g. images or XML based files,
it is further necessary to perform an automated recognition of those files that
actually are UML. Therefore, it is required to perform two different checks,
one for XML based formats and one for images, which is a state of the research
technology that just became available in 2014 [117]. Finally, with the retrieved
list of UML models, the git repositories of these projects were triggered in order
to retrieve information about the repositories and further information about
commit and update histories of these models. As a result we gain out of over
1 240 000 repositories a first list of 3 295 projects containing UML models.

The contributions of this paper are: 1. A first list of 3 295 GitHub reposi-
tories including altogether including 21 316 models. This list can be used by
other researchers in future to find case studies and experimental data, e.g. for
developing model versioning technologies or for studying how design decisions
in models transfer to the code. 2. Based on this data we give for the first time
answers descriptive questions about the number of models that are subject to
updates, the number of model duplicates that can be found, and the point in
a projects life time where models are created and updated. 3. Furthermore,
this research provides the basis to ask when UML models are introduced and
updated. Surely the approach has still limitations, for example we will not be
able to identify how often the models are read. However, we believe that these
first descriptive results are just a starting point. They enable us and other
researchers to formulated and address more advanced questions about UML
usage and its impacts on a project in future work.

The remainder of our paper is structured as follows. In Section we
formulate a number of research questions. Section [3.3] shows our review on
relevant works. We describe our study approach in detail in Section [3.:4} Our
findings are presented and discussed in Section [3.5]and Section [3.6] respectively,
including the threats to validity. We conclude our paper in Section

3.2 Research questions

The data set that we are assessing in this work would allow for a multitude
of analysis, e.g. for assessing the distribution of different model types more
precisely than it has been done in related work so far. However, answering
all questions at once is not possible due to space limitations, but also due to
limitation of time. Therefore, we decided to focus in this paper on a set of
descriptive questions that had not been addressed in related work so far and
that provide a necessary starting point and frame for future analysis:

RQ1: Are there GitHub projects that use UML? Which are these projects?

RQ2: Are there GitHub projects in which the UML models are also updated?

These first two questions are interesting for two reasons. First, their answer
represents a description of the state of practice that was simply not available so
far. Second, projects with updates are ideal candidates for future investigations
on model usage. For example, they might be used to evaluate facilities for
model versioning.

RQ3: When in the project are new UML models introduced?

Is it at the beginning of the project or later? What span of the project
life time is covered by the phase where UML models are actively created

70 CHAPTER 3. PAPER B

or modified? Again the descriptive character of this questions is important.
Only with the answer, we will be capable to formulate more precise questions
on the model usage in future work. For example, whether these figures are
homogeneous amongst open source projects or not, will imply directions for
future investigations. In long term/ future work this might lead to investigations
what form of model usage is most efficient and so on.

RQ4: What is the time span of “active” UML creation and modification?

With this question we want to know how long is the time span during which
models are in active use during a project? A limitation of our methodology is
that we cannot investigate how often and when models are read. However, we
can have a look at the time span of active UML creation and modification, i.e.,
the time between the first introduction of a UML file and the last introduction
or update of UML files within a project.

RQ5: Are UML files originals? Special model versioning techniques such
as model merging are not explicitly supported by GitHub. Therefore, we are
interested in the question how many of the found models are duplicates of
other models.

Despite the big interest in these questions, it was until now not possible
to answer them. The reason is that simply no systematic knowledge exists
about UML in open source projects. Furthermore, even if projects are known, it
requires advanced mining of the repository in order to get related information
about changes and contributors.

3.3 Related research

This paper builds on previous research done in two research communities: the
software modelling- and the mining software repositories communities.

3.3.1 Use of UML in FOSS

Studies on the usage of UML are frequently done amongst in industry (mostly
through surveys) [32/118]. However, only few studies focus on freely available
models, such as can be found in open source projects. Reggio et al. |11§]
investigated which UML diagrams are used based on diverse available resources,
such as online books, university courses, tutorials, or modeling tools. While
this work was done mainly manually, Karasneh et al. use a crawling approach
to automatically fill an online repositoryﬂ with so far more than 700 model
images [26] Both works focus on the models only and do not take their project
context into account. Further, they do not distinguish between models that
stem from actual software development projects and models that are created
for other reasons, e.g. teaching.

An index of existing model repositories can be found online |24]El However,
in addition to their small size, these repositories seldom include other artifacts
than the models, making it impossible to study the models in the environment
of actual projects.

Thttp://models-db.com/
?Index of model repositories http://www2.compute.dtu.dk/ hsto/fmi/models.html

http://models-db.com/
http://www2.compute.dtu.dk/~hsto/fmi/models.html

3.4. METHODOLOGY 71

Further, there are some works addressing small numbers of case studies of
modeling in open source projects. Yatani et al. studied the models usage in
Ubuntu development by interviewing 9 developers. They found that models
are forward designs that are rarely updated [39]. Osman et al. investigated 10
case studies of open source projects from Google-code and SourceForge that
use UML. They focused on identifying the ratio of classes in the diagrams
compared to classes in the code. They find only seldom cases where models are
updated [40].

Finally, there are three works that actually approach a quantitative in-
vestigation of models in open source projects. Chung et al. questioned 230
contributors from 40 open source projects for their use of sketches [42] and
found that participants tend to not update these sketches. A study that fo-
cuses on software architecture documentation in open source projects was
performed by Ding et al. They manually studied 2 000 projects from Source-
Forge, Google code, GitHub, and Tigris. Amongst those projects that used
such documentations they identified 19 projects that actually use UML [38].

The work that is probably closest to our study is the one of Langer et
al. They searched for files conforming to the enterprise architect file format
(which is a format that can be used to store UML files) within Google code,
assembla, and GitHub. They identified 121 models. They further assessed the
model lifespan (between introduction and last update) to be in average 1 247
days [43]. However, studying a single file format is a rather limited view on
UML. Furthermore, the project perspective is not considered and they rather
put a focus on the used UML concepts.

3.3.2 Mining

Mining software repositories has mainly focused on aspects related directly to
(programming) source code. However, projects may include non-source-code
sources such as images, translation, documentation or user interface files, that
can be usually identified by their extension |[119]. By doing so, research has
shed some light on the variation and specialization of workload that exist in
FOSS communities [120].

The study of specific file formats that are non-source code can be found
as well in the research literature: McIntosh et al. have investigated the build
system for its evolution [121] and effort |[122], or the analysis of infrastructure
as code that has become mainstream in the last years [123].

3.4 Methodology

In this section, we describe our study approach. The overall process is shown
in Figure 3.1}

First, we obtained a list of 10% of the GitHub repositories from GHTor-
rent [45] that are not forks. This resulted in a list of files of 1 240 000 repositories,
those who had a downloadable branch. From this list, potential UML files were
collected using several heuristic filters based on the creation and storage nature
of UML files (Step 1). Section and Section describe our approach in
detail.

72 CHAPTER 3. PAPER B

GHTorrent GitHub

A 4

@ Data collection @ Analyse result

1 A

Potential UML file list

4

@ Filter UML files @ Query database
UML Image Textual t
Filter Filter UML CVSAnalY MySQL
g |
P File list
{ Validation J »{ 3) Extract Meta-data

Figure 3.1: Overall processes

An automated process was built to examine the existence of UML notation
in the obtained files (Step 2). A manual validation step is taken in order to
consolidate the classification result. In the end, we had 21 316 files that contain
UML diagrams. We describe the classification method in Section [3.4.3

We have then obtained the meta-data from those repositories where a UML
file has been identified by means of using the CVSAnalY tool [124] (step 3).
Section discusses tool’s settings and the meta-data structure.

In step 4, we queried the metadata (taken in Step 3) with respect to our
research questions. We answer the research questions by analyzing the result
(Step 5). Note that during the data analysis further files got lost for diverse
reasons (see discussion section . Thus, we were finally able to analyze a set
of 21 316 UML model files.

A replication package of our analysis is available online [125].

3.4.1 Occurrence of UML

To understand how we searched for files containing UML, it is important to
understand how these files are created and stored. Figure illustrates the
different sources of UML files (at the bottom in green). UML models might be
created by manual drawing (sketching). Possibilities to create models directly
with a computer are the usage of tools that have drawing functionality, such as
Inkscape, or dedicated modeling tools, such as Modelio or Argo UML. Some of
the modeling tools even provide the possibility to generate UML models, e.g.
based on source code. This differences in tool support lead to a wide variety of
ways in which UML models are represented by files. The different possibilities
are illustrated in blue at the top of Figure 3.2} Firstly, manual sketches are
sometimes digitized with the help of scanners or digital cameras and thus lead
to image files of diverse formats. Secondly, tools with drawing capabilities can

3.4. METHODOLOGY 73

either store the UML models as images, such as .jpeg and .png or .bmp, or
may have file specific formats, e.g. "pptx". Thirdly, dedicated modeling tools
work with tool specific file formats, e.g. the Enterprise Architect tool stores
files with a “.eap” extension. Also some tools work with ’standard’ formats
for storing and exchanging UML: “.uml” and “.xmi”. Yet, modeling tools with
specific formats often allow to export and import these standard formats and
allow to export the models as images. As a consequence, when searching for
UML many different file types need to be considered.

\ UML Models
Standard formats for storing and Tool specific file
Image Formats, transferring UML models: formats, e.g.
e.g.: .jpg, .png ... * .uml .eap, .pptx, .argo,
* .xmi .ecore ...
f «export» «export/store as» Lestore as»
«store asy| «export/storeasy - T Nl
«store as» 3
Manual sketches, Tools with drawing Modgling tools, e.g.:
e.g. scans functionality, e.g. PowerPoint * Eclipse UML2 Tools,
* Enterprise Architect,
* Modelio,
* ArgoUML,

* Microsoft Visio,

Figure 3.2: There is a large variety of tools for creating and formats for storing
UML models

3.4.2 Data Collection

For all repositories from GHTorrent [45] that are not marked as forks, we
used the GitHub API: i) To obtain file list for master branch; ii) If no master
branch found, ask for default branch; iii) To obtain the file list from default
branch. With up to three GitHub calls (i, ii and iii) for each repository, given
the GitHub API limitation of 5 000 requests/hour, it took over two weeks to
retrieve the complete file list once the machinery was set up.

As explained in section different file formats need to be taken into
account. However, as not every image file is UML, also not every xmi file or
files with the endings of tool specific format extensions are UML. Therefore,
the filtering process does not only consist of the collection of files with a specific
extension, but also of a check whether the collected files are really UML files. It
makes no sense to collect files in the first step, for which we have no automated
support for the second step.

Since image files as well as standard formats are more common and are
created by most modeling tools. For each the development of approaches to
identify UML has a good cost-benefit ratio. The applied methods are explained
below in section [3.4:3] However, for tool specific formats this ratio can be very
low. Therefore, we searched only files of those formats where we could exclude
two cases:

e The format is used within the tool exclusively for UML models.

74 CHAPTER 3. PAPER B

e The file extension of the format is not used by other tools. For example
the extension of Enterprise architect files (“.eap”) is also used for Adobe
Photoshop exposure files.

To identify these formats we used as a starting point the list of UML modeling
tools collected on WikiPediaEl, which we as experts consider as one of the most
complete lists available. We checked whether the file formats used by these
tools do not fulfill the two obstacles mentioned above.

Thus, we search for following file types:

e Images: Common filenames for UML files (such as "xmi", "uml", "dia-
gram", "architecture", "design") that have following extensions ("xml",

”bmp" "jpgl Ujpeg" llgif" "png" "SVg")
Y))))
e Standard formats: ["uml", "xmi"]

e UML file extensions that solely relate to specific UML Editor tools:
["aird", "argo", "asta", "dfClass", "dfUseCase", "ecore", "mdj", "simp",

"txvels", "umlx", "ump", "uxf", "zargo", "zuml", "zvpl", "plantuml"|

Hence we do not consider document formats such as word (.doc(x)), .pdf and
powerpoint (.ppt(x)). The main reason is that currently technology is not yet
capable of extracting UML models out of such general documents.

3.4.3 UML filters

At this stage, the files obtained from Step 1 were checked if they really contain
UML notation. More specifically, the files which solely belong to specific UML
editor tools were automatically added to the final UML file list.

3.4.3.1 Identify UML images

Firstly, all images were automatically downloaded. Files that could not down-
loaded or unreadable were eliminated (Result: Successfully downloaded files
downloads: 55 747; errors: 1 819). In addition, observations on downloaded
images showed a remarkable number of icons and duplicate images. While it’s
mostly impossible to find reasonable UML content in icon-size images, includ-
ing duplicate images in candidate set could definitively cause redundancies
to classification phase. Therefore, we eliminated icon-size images. Duplicate
images were proceeded as: i) Duplicate images were automatically detected;
ii) Representative images were added to classification candidate list; iii) After
classification phase, duplicate images of an image will be marked as the same
label as the image.

In particular, 15 726 images that have icon-dimension-size no bigger than
128 x 128 were excluded. Subfigures [3.3al, [3.3b] and [3.3¢ show examples of such
images.

In order to detect duplicate images, we created a simple detection tool
by using an open source .NET library "Similar images finder" El Given two

3List of modeling tools https://en.wikipedia.org/wiki/List_of_Unified_Modeling_
Language_tools, Last visited 9th December 2015
%https://similarimagesfinder.codeplex.com/

https://en.wikipedia.org/wiki/List_of_Unified_Modeling_Language_tools
https://en.wikipedia.org/wiki/List_of_Unified_Modeling_Language_tools
https://similarimagesfinder.codeplex.com/

3.4. METHODOLOGY 75

(b) Dup 1b (c) icon

Figure 3.3: Example of duplicates and icon-size images

images, the tool calculates differences between their RGB projections to say
how similar they are. In our case, we chose a similarity threshold at 95% since
it gave the best detection rate through a number of tests on a subset of our
images. Downloading of images took 27 hours.

The final image set of 19 506 images were classified as UML or non-UML
images by using a classifier from our prior research [117]. The classifier was
trained by a set of 1 300 images (650 UML-CD images and 650 non-UML-CD
images). The Random Forest algorithm was chosen since it performed the best
in term of minimizing the amount of false-positive rate (expecting below 4%).
The automated classification too 26.5 hours. In order to eliminate false-positive
and false-negative cases, we manually checked the whole image set. It took
6 working days of effort of an UML expert to complete the checking. This
manual check allowed us to prove our classification method and to consolidate
classification results. It turned out that the automated analysis had a 98.6%
precision and 86.6% recall. The false positives and negatives could be identified
due the the manual check.

Gradually, we manually picked up UML in other types (i.e., Sequence
Diagram - SD, Component Diagram - CPD, Deployment Diagram - DLD,
State Machines - SM and Use-case - UC). UML files that are sketches (SKE)
were counted, too. The list of images was marked with a number of labels:
"UNREAD", "SVG", "SMALL", "DUP", "CD", "SD", "CPD", "DLD", "SM",
"UC" and "SKE".

3.4.3.2 Identify UML files among .xmi and .uml files

Both .xmi and .uml files are specific XML formats. The later ones can include
uml models, only and we found 10 171 of them. XMI is a standard format that
should enable exchange of models between different tools. In theory it should
be simple to identify whether an XML file in general contains a UML model:
the schema reference in the XML file defines the content’s format.

We performed the analysis in 3 steps:

[a] In practice the schema reference are often generated in different forms
by tools. For example, we found following three schema references to the
UML: “org.omg/UML", “omg.org/spec/UML’, and “http://schema.omg.
org/spec/UML". Therefore we first of all searched with a simple search
function for the string “UML” and “MOF” (the meta meta model of the

org.omg/UML
omg.org/spec/UML
http://schema.omg.org/spec/UML
http://schema.omg.org/spec/UML

76 CHAPTER 3. PAPER B

UML language) in a random subset of the models. This way we could
come up with a list of 7 strings representing UML schema references.

[b] In a second step we automatically downloaded the identified xmi files
and parsed them for the schema references. We could identify 876 files
with UML schema references. However, 359 files could not be downloaded
automatically (for diverse reasons). Here we applied a manual check for
the schema references.

[c] In a last step we wanted to double check that the existence of such
a schema reference is sufficient to assume that the file includes UML.
Therefore, we took a sample of four open source projects containing
together 53 (between 1 and 33 respectively) links to xmi files. In addition
to the check for schema references, we went manual through the content
of the 53 files to assess whether and what kind of models they include. A
comparison of the results with the data from the step above confirmed
that the existence of an UML/MOF schema is a reliable indicator for
rating a file as UML: of the 53 xmi files, 30 had been rated by both
approaches as UML, while the other 23 were rated as non-UML.

Finally we run a duplicate detection on .xmi and .uml files by calculating
and comparing hash values of the file contents.

3.4.4 Metadata Extraction and Querying

We downloaded all repositories where at least one (real) UML file was identified
and extracted its metadata with the help of CVSAnalY [124]. 100 repositories
from the initial list could not be retrieved, due to various reasons, from some
giving errors to others having changed to private repositories.

In average, around 30.000 projects per day were downloaded for each Github
account. Taking these results a time span of 14 months ((12.847.555 projects /
30000) / 30) would be required for the analysis, when using one single Github
account. As this would have made this study in feasible, we parallelized the
retrieval of the JSON files through many Github accounts, which were donated
during this process. This reduced the time span to approximately one month.
While the download is an automated process, but the parallelization is not. It
took around 1 h 30’ each day to run and check each set of repositories, using
up to 21 Github accounts. Altogether this process took 6 weeks.

After this process, we had 21 316 of the identified UML files from 3 295
repositories and the corresponding meta-data in a SQL database. A new SQL
table was added to the ones provided by CVSAnalY with just the UML files
for easy and efficient querying. A set of Python scripts where then used to
answer the RQs stated in this paper by querying the database and aggregating
the data accordingly. This final step took 14 days.

3.5 Results

This section presents the results of our investigation. Together with this research
an ample amount of data have been used, usually handled by scripts developed

3.5. RESULTS 7

by the authors. Detailed information of the former and the code of the latter
can be obtained in the replication packageﬂ

3.5.1 RQ1: UML in GitHub projects

We downloaded 1 240 000 non-forked GitHub repositories obtained from GHTor-
rent. After filtering the data for potential UML files based on type, we retrieved
a list of 100 702 links. Of those, 21 316 were classified as UML.

The further extraction of model related data, turned out to be an additional
filter, since details could not be extracted for all files. The reason for this is
due to the fact that our retrieval procedure takes so much time that context
changes. So, for instance, in the time that goes from the retrieval of information
of the files the are included in a project (July/August 2015) to the time where
the git repositories where downloaded (November/December 2015), some of
them were renamed, deleted or made private.

In consequence, 21 316 files could be retrieved for the following analysis
(as summarized in Table . These files belong to 3 295 GitHub projects. Of
these 1 947 include a single UML file, only and 1 169 projects include between
2 and 9 UML files. Furthermore, we identified 158 projects with 10 to 99 UML
files and 4 projects with more than 100 UML files. In the following analysis,
the later 21 projects are taken separately, when statistics per model are shown.
The reason is that they show very different characteristics and would, with
their large number of modelsﬁ7 strongly bias and hide trends that occur within
the other projects. This first list of identified GitHub projects that include
UML can be found online [125].

Table 3.1: Found distribution of model files by formats

gif
16.6%

bmp
0.2%

jpeg
4.7%

uml
44.9%

xmi

3.4%

png
29.6%

SvVg
0.6%

Share

Results for RQ1: The here identified repositories with UML files
represent already 0.28% of the GitHub repositories. Of these, two
thirds of the projects contain a single UML file.

3.5.2 RQ2: Versions of UML models

The next important question was whether models are ’read-only’ or also
sometimes updated.

Table [3:2] summarizes the distribution of model files by number of updates
per model. Our results show that the vast majority of the UML files (18 867)
are never updated. Nonetheless, we found that more than 11% of the UML
files in our sample (2 449 models) were updated one or more times. Further,
the number of updates of models that are updated is on average 3,0 times
(although the median, which is more significant given the skewed distribution,

5Replication package http://oss.models-db.com
60ne of the projects is “eclipse/emf.compare/”, which includes more than 6 000 models.
We strongly assume that many of these models are generated, e.g. for tests.

http://oss.models-db.com

78 CHAPTER 3. PAPER B

is 1 time). Furthermore, Table summarize the distribution of projects by
sum of model updates or all models of a project.

26.67% of the projects in our sample include at least one model update.
Models are less often updated in projects that have more than 100 models
(38.09% in our sample), in contrast to 26.60% of the models in projects with
less than 100 models are updated. There are only 11 projects that include more
than 100 model updates.

Table 3.2: Distribution of files / projects by number of updates

number || models in | models in || projects
of up- || projects projects
dates with 1 to 99 | with > 100
models models
0 7947 10 921 2416
1 946 466 332
2 336 42 157
3 151 19 78
4 107 7 64
5 82 2 51
6 67 4 34
7 38 1 18
8 24 3 17
9 24 1 12
10 11 2 8
<20 70 3 20
<30 24 0 25
<40 14 0 8
<50 1 0 6
<60 2 0 2
<70 0 0 0
<80 0 0 2
<90 1 0 3
<100 1 0 1
>100 0 0 11

Results for Q2: Only 26% of the investigated projects updated
their UML files at least once.

3.5.3 RQ3: Time of UML model introduction

Figure shows the dates of the introduction models considering the amount
of days since the start of the project, while Figure displays the same
information by dividing the duration of the project from the start to nowadays
in a normalized way (so, the 50% mark would be half of the project duration
since its start until today).

Projects with less than 100 UML models seem to have a tendency to
introduce models at the project start. In contrast, the 21 projects with 100
or more models show a different graph. We decided to show the numbers

3.5. RESULTS 79

3500 3259
3000
2500 5586
0
2 2000
=
]
3
£ 1500
1000 965 883
500 390 291 323 103 402
131 149 97 135 99
4 53 81
0 I II I m 0 0 = [A
S T T N N e
N S I IS TS T ITFT TS S SS S ®
NP PP LFEFLSFHFFIS IS
A M A M 9 \'?Q Q‘;) Q’Q \,\‘/') \,,?0 Q‘o

Project age in days at a models initial commit

Figure 3.4: Distribution of model files sorted by project’s age in days when
the diagram was introduced (models within projects that have less than 100

models)

separately, since these projects with partially more than 1 000 models would
easily bias the presented view.

8000

7129
7000
6000
5000
"
[
2
T 4000
°
i<}
=
3000
2000
1000 819
. 8 = 162 399 111 152
8 83
R o N BN o & BN o N o
<$é§3 <§é§> <§é§) <$‘&3 <§3§> <§6é) <$é§3 <§éé> <§ééb ek?$$
S < <& @ & g © <Q N &

Percentage of days (relative to time between the respectives project's start and today) alreday passed,
when the model files was initially committed

Figure 3.5: Distribution of model files sorted by percentage of project time that
passed when the UML file was introduced (for projects that have less than 100
models)

However, we found that calender time (days) may not be the best way to
consider a project’s progress, since the amount of activities can highly vary
during the lifetime of open source projects. Figure [3.6| shows the distribution
of the models based on the time of their introduction when measured by the

80 CHAPTER 3. PAPER B

percentage of the project’s commits.
3000
2452

2500

2000

3
1500
H
s 1134
1000 884
786 823 702 788 782 837
I I I [I I I
) I I
0
N o S N o S N o S o
N S S S B 'S N o S S
S ¥ ¥ K S o S o o o
N N\ < & & € © < & &

Amount of overall number of commits already done within the respective project, when the model file
was committed

Figure 3.6: Distribution of files sorted by number of overall commits done when
the diagram was introduced (For models in projects that have less than 100
models)

An interesting difference between the two views is that the consideration
of time in terms of amount of commits shows a much more balanced view.
While this may not be the most intuitive notion, it helps to place the modeling
activities relative to the active phases of the project. Thus we can see whether
model introduction happened before or after a majority of other development
activities (such as coding or documenting). In addition, it helps to better
represent projects that had their main activity in the past and/or have become
inactive. From our results, it can be seen that new models are introduced
predominantly in the early phases (above 25% of them in the first 10% of the
commits), but that new UML models are introduced in later phases too.

Finally, as mentioned above the results look very different for the 21 projects
that have 100 or more models. As Figure [3.7) illustrates there most models are
introduce during the last third of the project activities.

Results for Q3: UML models are introduced in all active phases of
a project with a tendency towards the early phases.

3.5.4 RQ4: Time span of active UML

In this RQ, we have looked at the time span of active UML creation and
modification, i.e., the time between the first introduction of a UML file and
the last introduction or update of a UML file within a project.

Figure 3.8 summarizes these time spans. The maximum time span found
is thereby 100% of the projects commits, while the median of the time spans
is 5.8%. We found that by far most projects seem to introduce (and update)
all models within a single day. Model creation and updating plays only in a
minority of the projects a role during more than 10% of the project’s commits.

3.5. RESULTS 81

4000
3523
3500
3000
2500 2429
»
2
E 2000
<} 1618
=
1500
1127
1000 870 795 794
107
27
0 =L | -
o o o o o o o o o o
@\‘\9 °°\°"LQ g\‘?)Q @\‘@ g\f’o g\‘fbQ @\é\e @\5%0 Q"\"90 e\o"\’QQ
S < 4 <@ & g © <Q N &

Amount of overall number of commits already done within the respective project, when the model file
was committed

Figure 3.7: Distribution of files sorted by number of overall commits done when
the diagram was introduced (For models of the 21 projects that have 100 or
more models)

2000 1898
1800
1600
1400
1200

1000

Projects

800
600

400 348

242 196 195
Bz H i 2 2w
0 | - [|
o N o o o o o o
; ; P <& A £ Y
o o o o S S S S
© © Q @

Time between first and last model commit or modification in amount of project's commits

$
N

o

QQ

Figure 3.8: Projects by time between first model commit and last model
update-or-commit as percentage of project’s commits

82 CHAPTER 3. PAPER B

As with RQ3, we use commits as an alternative measure of the time where
UML introductions/updates occur. Figure presents the active UML phase
for all 3 295 projects from this perspective. The active UML phase of a project
is given horizontally in percentages of commits done, starting when the first
model is introduced and ending when the last model is introduced or updated.
The diagram illustrates nicely the findings from above that a minority of
projects (less than 10%) have UML active phases that cover nearly the whole
project life time. For a majority of projects the active UML phase is very short,
many of them concentrating this activity in the first commits.

w

and modification)

of active UML creation

ngth of phase

Projects (sorted by ler

100%

o 10% 20 30% 0% 0% 60 70% B o
efore

m%icom

Figure 3.9: Plot of all 3 295 projects illustrating the placement of active UML
creation and manipulation phase within the overall project life span. Time is
measured in percentages of commits done, when the first model is introduced
and the last model is introduced or updated. The projects are sorted by the
relative amount of the active modeling phase (projects with a relatively long
active modeling phase are at the top, projects with a shorter phase are at the
bottom).

Results for Q4: Few of the studied projects are active with UML
during their whole lifetime. In general, the projects work very
shortly on UML, usually at the beginning.

3.5.5 RQ5: Duplicates

Our final question was whether the 21 316 found model files are all distinct
originals. To answer the question we used automated duplicate detection, as
indicated in the method section.

As a result we identified that 16 576 of the 21 316 found models where
unique in our sample. The remaining 4 741 model files represent 2300 models
of which each occurs at least twice. Thus, 21 316 found model files include
together 18 876 distinct models. In Figure [3.10] we summarize how often models
with duplicates occurred in our sample. Interestingly, one of the models was
found 79 times. In average, models that are duplicated are duplicated 3,63
times.

Furthermore, we investigated, whether duplicates of a model belong to
the same project. To our surprise this is only for the half of the models

3.6. DISCUSSION 83

1400 1587

1200

1000

800

600 590

Number of models

400

200 123

5262182918275820330320
i n

N e Q@\ o QvQ\ 0%0\ Q@\ Q«Q\ Q%Q\ 009\
PFFEEEE S
Number of found occurences of a model

Figure 3.10: Histogram of models that were found at least twice indicating how
often models occur.

with duplicates the case. However, the roughly the half of these models have
occurrences in multiple repositories (up to 43). In average the number of projects
over which duplicates of a model are spread is 1,88. Figure [3.11] summarizes
the results in form of a histogram.

While duplicates that occur in the same repository might be result of
attempts to model versions, we cannot explain the high number of cases were
models occur in multiple projects. A possible explanation might be that models
might be stored as part of platforms or plug-ins that are reused in multiple
projects. Another explanation could be project forks that are done manually
by cloning repositories instead of using GitHubs fork mechanism.

Results for Q5: While most models seem to be unique, a large
number of identified distinct models (12%) occur several times. In
average duplicates are spread over 1,88 projects.

3.6 Discussion

Considering our initial expectations we were surprised to find such a big number
of projects with UML. Surely, 3 295 projects are still a small number compared
to the overall number of GitHub projects. Nonetheless, the identification of
21 316 UML models exceeds by far the expectations that we had based on the
numbers of models found so far in open source projects in related work, e.g.
121 models by Langer et al. or 19 projects with UML by Ding et al. .

Data consistency We want to shortly discuss the type of data that we can
get with the presented mining method. The method we applied is not trivial
and consist of several steps of data collection. For example, we search for UML
candidates using a GHTorrent dump, but accessed the GitHub API to retrieve

84 CHAPTER 3. PAPER B

1400
1200 1149
1000
800

600 548 533

400
200
. 22 18 9 10 2 0 0 7 0 1 1 0
Noov D % 9 ©

A% 9 O QQ§\ ¢?§> Q;S> Q;§\ Q§§\
NEEACEE RN

Number of projects that include dublicates of the same model

Number of models

Figure 3.11: Histogram of models that have duplicates in one or more projects.
The histogram shows the number of models by number of projects within which
occurrences of a model were identified.

further information about model contributors. Due to the difference in time
between the creation of the GHTorrent dump and the request to the GitHub
API, we had drop outs of identified models/projects during the second step.

In addition, we performed this method for the first time, which had an
exploratory component in trying out what kind of data we can (and need to)
retrieve. This led to the situation that we accessed the GitHub API several
times, leading to different drop-outs in models and projects for the different
types of information collected.

A lessons learned is that, for the next analysis, we have to make a clear
planning of all required data in advance, to ensure that at least the second
threat to data consistency can be reduced. For this paper we addressed the
problem with a reduction of the finally analyzed data set to models and projects
for which we had the data points that are necessary to answer the different
research questions.

Static models A finding is that many projects use UML only in a very
static way. In such projects models are never updated and often all models
are introduced at the same point in time. These results confirm findings from
smaller studies such as Yatani et al.’s or our own (Osman et al.’s [40]), who
both found that updates of models are rare. This can have different reasons.
One optimistic interpretation would be that models are just introduced as first
architectural plans that are followed and used as documentations, but never
changed. Another rather pessimistic interpretation would be that modeling is
just “tried-out” at some point in time and then dropped. An observation that
at least supports the idea that the optimistic interpretation plays a role is that
in most projects the main activities of introducing models happen during the
first half of all commit activities.

3.6. DISCUSSION 85

Projects with regular model usage Another number that we consider
surprisingly high is the number of projects (or models) with more than 20
updates as well as projects with more than 1 year of active UML creation
and modeling. Again, compared to the number of overall GitHub projects the
here found number seem small. Nonetheless, it was unexpected to find several
projects that seem to use modeling on a regular basis.

It has to be noted that the results we found are in contrast to the study of
Langer et al. [43] who found an average model lifespan of 1 247 days, while
studying 121 enterprise architecture models in open source. We found much
lower lifespans. The difference in the findings might be caused by the fact
that enterprise architect is a modeling tool that is rather used in an industrial
context. Thus, the probability that the projects studied by Langer et al. [43]
have industrial support is very high.

Model genesis An aspect that we could not address in this study the source
of the models or the reason for model usage. Accordingly, the data set was not
filtered to exclude for example student projects. We expect this to influence the
the findings in this paper, since student projects might show different patterns
of model updates, model introduction time, and life span than non-student
projects. Addressing this threat will be subject to future work.

Different populations A finding that is supported by multiple of the figures
shown above is that there seem to be different populations of model usage.
A first hint that the data set covers different populations can be seen in
Table [3:2] There is a difference in the number of model updates between
projects with more than 100 model files and projects with less than 100 model
files. One reason for different populations could be the actual form of model
usage and creation. Models might be created manually or automatically (e.g.
through reverse engineering). They might solve as plans for system design or as
description for an already existing system. Model updates might be performed
in order to make small corrections after an initial creation (leading to updates
within in short span of time) or in order to make a documentation up to date
after a longer phase of system change. At the current state we do not know
whether these populations can actually be distinguished on their characteristic
commit and update pattern. However, a further hint that they might play a
role can be seen in the relatively constant distribution models by the amount
of commits that were already done within a project (see Figure . We can
see model introductions at all project ages. The in average short time of active
UML creation and modification speaks against the idea that these introductions
at different points in time happen within the same projects. Thus, it seems
that we have to deal with different groups of projects introducing their models
at different points in time. In future work we plan to have a closer look at the
model usage in order to study whether we can associate pattern to different
populations of model use.

Duplicates The large number of identified duplicates leads to questions.
What are the reasons for duplicates? Missing model versioning techniques alone
cannot explain the found results. Furthermore, it is not clear yet whether these
duplicates represent a form of model use. E.g. if models are adopted together

86 CHAPTER 3. PAPER B

with code from other projects, they might be used to understand the alien code
that is embedded in a new project.

Paving the way for future research Finally, one of our main contributions
is that we presented a method to systematically mine for UML models in GitHub
and that this leads to an enormously promising set (much larger than any
existing set of projects) for future analysis. On the one hand this will help us
to address in future question that arise from the findings of this paper. For
example, concerning the model updates, it would be interesting to consider
following questions:

e Are models updated by their original authors or by other people?

e In how many projects are UML files obsolete?

Further considering the time of model introduction, we would like to address
the following question further: Has the time of introduction an influence on
the “success” of an open source project, i.e. the question how many developers
join a project? And of course we would like to address the question whether
different populations of model-usages can be statistically distinguished.

Even more important, the hereby published list of open source projects
using UML can help other researchers to progress in their studies. For example:

What kind of UML diagrams are used most often?

What coding languages are used most often in combination with UML?

What files are changed together with changes in architectural models?

Can UML help to attract and integrate inexperienced developers?

Furthermore, the data can be used to find case studies for other model or
architecture related research, such as:

e Does a good architectural design in models help to create a good archi-
tecture in the code?

e Tools for traceability management and model merging can benefit from
the real case studies.

e Research that integrates models into fault prediction can be evaluated
with the help of that data.

Thus, we believe that the identified initial list of open source projects with
UML will be of great help for other researchers, too.

3.7 Threats to validity

We defined a number of threats to our research’s validity. We categorized
them by using the validity terminology introduced by Wohlin et.al [126]. We
identified three types of threats to validity, they are: Construction Validity,
External validity and Conclusion Validity.

3.7. THREATS TO VALIDITY 87

3.7.1 Threats to construct validity

There were a number of threats that might cause the loss of UML files during
data collection phase:

e With regards to the materials that were used to collect data, we used a
subset of GHTorrent SQL dump from 2015-06-18 which is out-dated at
the current time. Accordingly, newer projects have a higher probability
to be dropped out. In addition, the limitation of 5 000 hits per hour of
GitHub API made data collection last long. Requests that were done at
different points of time during the period could give different outcomes,
and probably the loss of potential UML files.

e Our collection method, which made use of a number of heuristic filters,
might overlook potential UML files which are not complying with search-
ing terms and file-type list. We noticed some cases where UML files had
been named differently such as act-cartesortir.jpg and FrameworkInter-
face.png. Further, we restricted the search to file formats for which we
had techniques to decided, whether the file includes UML. This excludes a
couple of other formats which might include models, such as some formats
from modeling or graphic tools (e.g. visio files or enterprise architect files),
but also documents that might include models as part of documentations,
e.g. pdf and word (docx) files or powerpoint.

The loss of UML files might affect to our analysis in the sense that it
could make us underestimate the number of projects with UML models and
the number of UML models. Being aware of the above consequences, in this
research, we don’t use our data to analyze the frequencies of model usage as well
as the evolution of model usage in general over *the years*. We were focused
on getting an overview of various aspects of the use of UML in GitHub projects.
We expect no systematic bias concerning the aspects that we investigated!

The applied mechanisms for duplicate detection allow us to identify dupli-
cates within the same file type. However, we cannot identify whether an image
and an .xmi file are duplicates. This might lead to an underestimation of the
amount of models in this paper. Despite this limitation, our results are already
interesting and we consider them a valuable staring point, towards a better
understanding of model usage in FOSS.

Kalliamvakou et.al discuss a number of promises and potential risks that
researcher might be faced when mining GitHub repository [127]. We found
that the threat that many active projects might not conduct all their software
development in GitHub could somehow mitigate our analysis.

3.7.2 Threats to external validity

During data collection phase, in order to minimize the possibility of incorrectly
collect non-UML files, we excluded some tool-specific file types form the search
for UML models. This might reduce the generalization of our results with
respect to these UML tools. However, most of these tools, e.g. Enterprise
Architect, are commercial. It is to be investigated in future work whether they
are used in open source projects to a similar degree as non-commercial formats.

88 CHAPTER 3. PAPER B

Data in this research was only taken from GitHub, but not other OSS
hosts/platforms such as SourceForge, Google Code, etc. As they differ to each
other in terms of size, functionality, users and user’s behaviors, the results of
this paper can hardly be generalized to the other platforms. It is possible that
UML is used in a different ration within projects at other platforms. However,
as GitHub is one of the biggest player in the field, we strongly believe that our
investigation gives valuable insights to a majority of the OSS community.

A manual glance at the retrieved list of UML models shows that several
project paths include names such as “Assignment” or “master’s thesis”. While
this is no direct threat to our results, it limits the generalizability. For example,
it is possible that many of the projects that include single UML files only,
actually are result of university teaching.

Last but not least, outcomes of this research can not be generalized to
closed source community.

3.7.3 Threats to conclusion validity

As described above, the data has some limitations which permit to do analysis
of frequencies, since we expect to have only discovered a part of the overall set
of UML models and respective projects. In particular we have not considered
powerpoint, pdf, and word-formats of documentation in which UML models
may be embedded. For that reason we do not do statistical analysis or even
predictions, but stay on a descriptive level in this paper. Nonetheless, we
are convinced that this descriptive analysis already represents a valuable
contribution to the research community.

3.8 Conclusions

In this paper we joined forces in repository mining and model identification in
order to identify open source projects on GitHub that contain UML models.

As a result we can present a list of 3 295 open source projects which include
together 21 316 UML models. This is the first time the modeling community
can establish a corpus comparable to collections already exist for source code
only, such as QualitasCorpus m Furthermore, the relatively low amount of UML
projects amongst the investigated GitHub projects (0.28%) reconfirmed that
our systematic mining approach was required in order to establish the corpus.

We analyzed the data to gain first descriptive results on UML model usage
in open source. One finding is that the majority of models is never updates,
but that projects exist that do update their models regularly. Furthermore,
we learned that models can be introduced during all possible phases in the
lifespan of an open source project. Nonetheless a peak of model introduction is
during the first 10% of the duration of projects.

A few projects are active with UML during their whole lifetime. However,
most projects work very shortly actively on UML, usually at the beginning.
We found that 12% of the distinct models occurred several times. Duplicates
are in average spread across 1.88 projects.

"QualitasCorpus |http://qualitascorpus.com/

http://qualitascorpus.com/

3.8. CONCLUSIONS 89

In the future we plan to further explore the possibilities that arise with the
here presented new method to collect data about UML usage in open source
projects. For example we plan to analyze the impact of model usage on project
dynamics, such as the number of people joining projects. We are planning to
proceed with mining GitHub in future work. Based on the now investigated 10%
of GitHub we expect that GitHub includes around 34 000 projects with UML
and together around 200 000 UML models. Furthermore, we will investigate
possibilities to identify UML models that are embedded in other files such as
manuals stored in pdf.

90

CHAPTER 3. PAPER B

Chapter 4

Paper C

Practices and Perceptions of UML Use in Open Source
Projects

T. Ho-Quang, R. Hebig, G. Robles, M.R.V. Chaudron, F. Miguel An-
gel

In Proceeding of the 39th International Conference on Software En-
gineering - Software Engineering in Practice Track (ICSE SEIP
2017), Buenos Aires, Argentina, May 20 - May 28, 2017.

91

Abstract

Context: Open Source is getting more and more collaborative with industry.
At the same time, modeling is today playing a crucial role in development of,
e.g., safety critical software.

Goal: However, there is a lack of research about the use of modeling in Open
Source. Our goal is to shed some light into the motivation and benefits of the
use of modeling and its use within project teams.

Method: In this study, we perform a survey among Open Source developers.
We focus on projects that use the Unified Modeling Language (UML) as a
representative for software modeling.

Results: We received 485 answers of contributors of 458 different Open
Source projects.

Conclusion: Collaboration seems to be the most important motivation for
using UML. It benefits new contributors and contributors who do not cre-
ate models. Teams use UML during communication and planning of joint
implementation efforts.

Keywords: UML; architecture documentation; OSS projects; GitHub; moti-
vation; communication; effectiveness of UML

92 CHAPTER 4. PAPER C

4.1 Introduction

Open Source Software (OSS), which has its roots in the free software movement,
started partially as a counter-movement to the software industry in the 80s and
90s |12§]. Even though, there was a clear border between OSS and industry,
the situation started to change in the late 90s and early 2000s. In those
years, some industry started to early adopt the OSS movement practices,
collaborating with communities [129], or some companies were created around
some communities [130]. Many projects created foundations to serve as an
umbrella to collaborate and integrate software industry partners [131].

Thus, we have witnessed a process and technology transfer between OSS
and industry that has made the line between both be vague nowadays. Notable
contributions from OSS to industry have been technologies, such as git and
GitHub, and community-managing practices, although the list of adoptions
is much larger [132]. On the other hand, OSS has embraced practices from
industry, such as (modern) code review practices and planning and requirements
analysis mechanisms [133]. Companies with a large pool of developers try to
have an “internal” OSS-like ecosystem, a concept coined as inner source [134].
Many OSS practices are commonly taught at universities, and young graduates
start their professional careers with experience in OSS, whether in languages
(Python, Perl, Ruby...), products (JQuery, Hadoop...) and tools (GCC compiler
tool chain, git and GitHub...) |135]. And the software industry is looking into
popular OSS repositories, such as GitHub, to find suitable candidates to fill
open development positions [136].

In this regard, we have seen a clash of two worlds, resulting in new practices
where industry sometimes has adopted elements from OSS and vice versa.
As the trend seems to go on, we would like to draw attention on modeling,
specifically on the use of Unified Modeling Language (UML) in OSS. UML has
been around as a graphical language for modeling software systems for about
25 years. As far as it is known, UML is not yet frequently used in OSS projects,
with a rather marginal use [137]. OSS is known to be programming-driven, with
other tasks having room for further improvement [119]. However, modeling is
used in major companies [32]. Modeling is, thus, an area where we can find a
gap between OSS and industry. Given that the use of UML in OSS is not very
well-known, we would like to shed some light into this issue with the aim of
discovering how UML is used and whether it is considered useful. We hope that
the results will help to understand whether the use of UML in OSS helps these
projects and whether industry working with OSS projects should promote its
use.

To this end, we used a technique that we developed to find UML use in
GitHub projects |137]. This effort showed the feasibility of our approach and
triggered us to come up with various research questions addressed in this paper,
where we scanned through the majority of non-forked GitHub projects (over
12 million of projects) and identified which of them use UML.

We performed a large scale survey directed at those projects that use
UML, with focus on how it is used and impacts development activities. The
contributions of this research are: i) the identification of a large set of OSS
projects that use UML, and ii) insights from a large scale survey of OSS
developers that use UML. Amongst other insights, we have found that UML is

4.2. RESEARCH QUESTION 93

used to coordinate the development. Furthermore the use of UML seems to
help new contributors to get started, although it does not seem to attract new
contributors. The set of projects we identify are a valuable resource for future
empirical studies regarding UML.

The rest of this paper is constructed as follow: We formulate a number of
research questions in Section then introduce related work in Section [£.3]and
describe our research method in Section [4:4] Section presents our findings.
Our findings, possible threats to validity and implications of our research are
discussed in Section [£.6] Conclusions can be found in Section [£.7

4.2 Research Question

To better understand the use of UML in OSS, we formulate the following three
main research questions:

RQ;: Why is UML used in OSS projects?

To get an impression of the role of UML models in OSS projects, we
formulate this first question as the following.

e SQ; ;- What are the motivations to use UML modeling?
e 50Q);.2: What are the reasons not to use UML in projects?

RQg2: Is UML part of the interaction of (a team of) contributors?

Teams and interaction between developers play an important role within
today’s software intensive industry [36]. Models are used as basis for planning
and work coordination. However, it is an open question, whether UML models
fulfill a similar role in OSS projects. We approach this question from three
aspects: 1) awareness of developers about the existence of UML models within
the project, 2) the use of UML during project planning and communication,
and 3) the role of UML during joined implementation efforts. These three
sub-research questions are structured as follows:

e SQ2. 1: Are developers aware of the existence of UML in their projects?

e 5Q2.2: Are UML models used during communication and team decision
making?

e 52 3: Are modeled designs adopted afterward during the implementation
phase by teams of OSS contributors?

RQgs: What is impact/benefit of UML? Much research has been performed
to identify benefits of UML usage in industry. However, it is not yet clear
whether UML usage impacts or even benefits development in OSS. Again, we
consider three different perspectives: 1) the role of UML for novice contributors,
2) the impact of UML on the working routine, and 3) the impact of UML
on the attractiveness of a project for potential contributors. The following
sub-research questions are structured:

e 5()s ;: Can UML models support new contributors?
e S5@Q3.2: What are the impacts of using UML in OSS projects?

e 5@Q3 .3 Can UML models help to attract new contributors?

94 CHAPTER 4. PAPER C

4.3 Related work

In the following we discuss related studies about UML or modeling in industry
and OSS.

4.3.1 Modeling in Industry

Modeling has been widely studied in industry, in particular in several surveys.
Torchiano et al. found that models help to improve design and documenta-
tion [32]. However, they also found that model usage is connected to extra
effort, especially due to a lack of supporting tooling. Forward et al. find that
models are primarily used for design and documentation, while code generation
is rather seldom [33]. Gorschek et al. focused on a different population, which
are programmers, partially working in industry and OSS [34]. Within their
sample design models are not use very extensively. However, models and UML
are found to be used mainly for communication purposes. Further, they report
on a higher use of models for less experienced programmers.

Case studies have also been performed in order to investigate the impact
of modeling/UML usage. For example, Baker et al. found an increase of pro-
ductivity when using UML in Motorola [7]. Nugroho et al. investigated an
industrial case study and found that UML usage has the potential to reduce
the defect density and, thus, increase the quality of software [35]. Just as in the
case described by Kuhn et al., most of the case studies draw a picture of model
use, where models are actually artifacts that are produced and consumed by
different people [306].

4.3.2 Modeling in Open Source Software

Much less work has been done on UML use in OSS. One reason for this is the
challenge to actually find cases that can be studied. For example, Badreddin et
al. studied 20 projects without finding UML, and concluded that it is barely
used in OSS [37]. Similarly, Ding et al. found only 19 projects with UML when
manually studying 2,000 OSS projects [38]. However, in our previous work, we
presented an approach that allows to find thousands of projects with UML by
mining GitHub [137].There are several investigations of single or very small
numbers of cases of OSS projects that use UML, e.g. by Yatani et al., who found
that models are used to describe system designs, but are rarely updated [39].
Osman et al. studied to what extent classes in the diagrams are implemented
in the code [40]. Finally, Kazman et al. investigate the Hadoop Distributed
File System to learn how documentation impacts communication and commit
behavior in the open source system [41]. There are some studies that approach
the use of models in OSS with a quantitative perspective, studying a large
number of projects. For example, to study the use of sketches, Chung et al.
collected insights from 230 persons contributing to 40 OSS projects [42]. Finally,
Langer et al. studied the lifespan of 121 enterprise architect models in OSS
projects [43].

However, to the best of our knowledge there is so far no quantitative study
targeting the use of UML within the team communication and its effects.

4.4. RESEARCH METHODOLOGY 95

4.4 Research Methodology

In this section, we describe our study method in detail. The overall process is

shown in Fig.

20294 emails
1628 completeresp.
from 1559 projects

Sent
~ 12 millions projects Received

GHTorrent

Input to
analyses

485 complete resp.
485 respondents
458 projects

@ Data collection @ Filter data

{ umL M Non-UML J [Merge J[Filter J —'[@ Conduct Survey }—'I@ Analyse result

projects projects contributors projects

Define | 93 648 UML models Working

in 24797 UML proj. set

4 650 UML projects
99 319 contributors

Figure 4.1: Overall process

4.4.1 Data Collection

The first step is to identify UML files in GitHub repositories. In our previous
work, we analyzed 1.2 million GitHub repositories to identify UML files in
them [137]. In this study, we have extended the data collection to the whole
GitHub database. A number of changes have been made in order to adapt our
method to the retrieval and analysis of such a big dataset. In this section, we
briefly summarize the data collection steps and the changes that were made.

4.4.1.1 Obtaining the full list of GitHub projects

To obtain the list of projects, we used the data from the February 1st 2015
dump of GHTorrent [45]. From this dataset we identified a list of projects that
were not deleted and non-forks. As GHTorrent does not contain information
on the files in the repositories, we made use of the GitHub API to retrieve
the list of files, for a total number of 12,847,555 repositories. The result is a
JSON file per repository with information on the files hosted in the master (or
default) branch of the repository.

4.4.1.2 Identifying UML files

The next step was to identify UML files from the file list. First, potential UML
files were collected using several heuristic filters based on the creation and
storage nature of UML files. After that, an automated process was applied
to examine the existence of UML notation in the obtained files. A manual
validation was made to consolidate the results. Details about the identification
procedure are described in Section 4 in |137]. At the end of this step, we had
93,648 UML files from 24,797 repositories.

4.4.1.3 Extracting meta-data

For all projects that contain a UML file, development meta-data from the
repositories has been retrieved. Therefore, we use perceval, an evolution of
the well-known CVSanalY software [124], that allows to obtain these data in
JSON files, allowing to perform the data extraction process in parallel. It took

96 CHAPTER 4. PAPER C

the five instances of the tool over 4 weeks to complete this task. At the end,
and after removing 240 JSON files that contained 404 Not Found responses, we
had 24,125 JSON files that were parsed and normalized, and finally converted
into SQL.

4.4.2 Filtering the obtained projects and contributors

In this phase, we aimed at mitigating a number of known threats to validity
when mining GitHub, i.e., sample/short-time projects [127] or identification of
contributors [13§].

4.4.2.1 Filtering short-time projects

For this paper we aim at projects that are interesting from an industry perspec-
tive. Thus, we focus on projects that are not short-term and that do not consist
of a single contributor. We define short-time projects as those projects that
have: 1) active time (time between the first and the latest commits) less then 6
months, OR ii) less than 2 contributors, OR iii) less than 10 commits. After
classifying and filtering short-time projects, 4,650 UML-projects (out of 24,125,
we use the term UML project to refer to GitHub projects that contain UML
file(s)) and 2,701 (out of 17,101) non-UML projects met our requirements. The
final list of the projects is shared in our replication packageﬂ

4.4.2.2 Merging duplicate contributors

A contributor can use different emails or usernames during the project time,
and thus a procedure has to be applied to merge all the identities into a unique
one. In our work, developers who have different identities are merged when
they have the same e-mail address or the same full name. In the case of the full
name, we consider them to be the same if at the full name is composed of at
least two words or of only a word and numbers, e.g., "argl23". This is a rather
conservative approach, but it minimizes the number of false positives [138].
After running the script, the original 129,276 contributors result in 99,319
distinct ones.

4.4.3 Conducting the survey

In the following, we give a short overview about how we conducted the survey.

4.4.3.1 Participant

To ensure that we obtain a balanced picture, we had to consider the role that
contributors play within the OSS projects with UML. Two dimensions of roles
are important (each questioned person would fulfill a combination of roles in
these two dimensions):

e Founder (F) vs. non-founder (NF)

e Non-UML Contributor (NUC) vs. first UML Contributor (1UC) vs. UML
updater (non-1st contributor) (UC)

IThe replication package for this paper can be found at http://oss.models-db.com/
2017-icse-seip-uml/

http://oss.models-db.com/2017-icse-seip-uml/
http://oss.models-db.com/2017-icse-seip-uml/

4.4. RESEARCH METHODOLOGY 97

Consequently, each interviewed participant fulfills one of the following six
roles: F-1UC, F-NUC, F-UC, NF-1UC, NF-NUC, NF-UC. For each project, we
randomly selected three contributors, to whom we sent the questionnaire. The
selected three contributors had to fulfill one of the following three constellations
of roles.

e F-NUC, NF-1UC, NF-UC
e F-1UC, NF-UC, NF-NUC
e F-UC, NF-1UC, NF-NUC

For those projects where we could not identify any NUC or UC (e.g., projects
that have only one UML contributor), we contacted less contributors.

4.4.3.2 Questionnaire

The questionnaire has been designed to meet the following requirements:

Multiple roles We send different question sets depending on the role of the
contributor. For example, NUCs are asked whether they are aware that UML
models exist in the project, while UCs are asked if they think that NUCs are
aware of them. Thus, depending on the role, participants received between 5
(NF-NUC) and 19 (F-1UC) questions.

Exploration We use a funneling approach (from broad to narrow) when
designing the survey. For example, if a UC uses a UML model for architec-
ture/design purpose, we would ask if the model is adopted, and eventually,
who implemented the model. Accordingly, the number of questions will not
only differ among different roles, but also among respondents who have the
same role. In addition, to gain more insights, we use a mix of close-ended and
open-ended questions in the survey.

Personalized Contact To ensure that participants know what projects and

UML models we are referring to, we personalized the email with which we con-

tacted potential survey participants by concretely referring to his/her GitHub

identification, the name of project of interest, and (if applicable) an URL to his

(first) UML commit or to a UML file committed by someone else. By follow-

ing the URL (e.g., https://github.com/rvs-fluid-it/wizard-in-a-box/

blob/master/src/doc/wizard-in-a-box-design.png), participants could get
further contextual information about the UML models, for example commit

messages, commit date, etc.

We used the Lime Survey tooﬂ as it offers the possibility to perform on-line
surveys. Our Lime Survey server is hosted at http://survey.models-db.com/.
Details about survey settings (questionnaire and its data-flow diagram) and
email templates can be found in the replication package.

2LimeSurvey homepage: https://wuw.limesurvey.org/

https://github.com/rvs-fluid-it/wizard-in-a-box/blob/master/src/doc/wizard-in-a-box-design.png
https://github.com/rvs-fluid-it/wizard-in-a-box/blob/master/src/doc/wizard-in-a-box-design.png
http://survey.models-db.com/
https://www.limesurvey.org/

98 CHAPTER 4. PAPER C

4.4.3.3 Sending out the survey

We sent 20,294 survey emails to OSS contributors in 6 days, from July 21
to July 26, 2016. More than 1,000 emails were not sent because of various
problems, including out-dated email addresses, etc. We sent reminder emails
after one week, and finally closed the survey in August 4, 2016. Altogether, we
received 2,230 responses, being 1,628 completed. After filtering responses that
belonged to short-term projects, we had 485 survey responses of respondents
from 458 projects.

Table 4.1: Number of emails sent, number of responses and number of responses
after filtering by participant categories

Founder Non-Founder
1UC | NUC | UC | 1UC | NUC | UC

SUM

Sent emails | 4509 3891 | 713 | 6737 3221 | 1223 | 20294
#£full resp. 373 293 68 564 210 | 120 1628
F#inc. resp. 167 105 24 214 56 36 602
##fil. resp. 84 79 27 176 80 39 485
Percent(%) 17.3 16.3 5.6 36.3 16.5 8.0 100

4.4.4 Data Analysis

First, we take into account completed responses only. Second, we do not consider
short-time projects.

Part of the questionnaire are free-text questions. We use these questions to
learn about phenomena for which we do not know a fixed set of answers yet. The
goal of analyzing the data is to identify re-occurring themes. Therefore, we used
a coding technique, following the constant comparison method as described by
Seaman [139]. We decided to use an empty starting set of codes and develop
them during the coding. For each of the question two of the authors coded the
answers independently. In a second step we inspected the codes together to
identify and if necessary resolve differences in the selected codes and application
of the coding. Afterward, we went a second time through the data in order to
ensure that the now fixed set of codes was assigned consistently. We did this 1)
to increase the quality of the coding and ii) to decrease the probability that we
miss interesting aspects. As a final step we checked whether codes occurred for
more than one project, in order to prioritize those themes that are of greater
relevance.

Furthermore, we took those cases where we got multiple responses for the
same project and aggregated them. This aggregation was done as follows: we
interpret observation based questions (i.e., whether UML is used for commu-
nication) as reports about a project. Thus, aggregating a “yes” and a “no”
answer for the same project to a “yes” to indicate that there is a report about
a phenomenon for that project. Similarly, we prioritized “no” over “I have no
opinion”. “I do” and “I have seen other people doing” are merged to “I do”.

4.5. RESULTS/FINDINGS 99

4.5 Results/Findings

4.5.1 Respondent Demographics

A total of 2,230 respondents from 91 countries began the survey, with 1,628
completed compulsory questions of the survey. After filtering out survey re-
sponses from short-time project participants, we ended up with 485 survey
responses of respondents from 458 projects.

Table (Appendix 1) and Figure (Appendix 2) show the distribution
of the respondents by country and continent, indicating the majority of the
responses originating from Europe with 57.52%, followed by North America
and South America.

Among the 485 respondents, 190 (about 40%) are founders of an OSS
project and 159 (32.8%) are non-UML contributors (Table [4.I)). Regarding the
educational background (as shown in Fig. , 37.73% of respondents had a
Master’s degree, 30.31% a Bachelors, 16.29% a Ph.D., and 11.75% were still in
education. About 4% of the respondents identified themselves as autodidacts.
A vast majority of the respondents reported to be familiar with architecture
documentation in different formats, mostly UML (90.31%), then auto-generated
code documentation and software models in generic formats (78%) (Fig. [4.3)).
Only a half of them (45%) were familiar with architectural notations on white
papers. There are programming languages where UML is more frequently found
(Smalltalk, Java, C# and C++). On the other side, UML has not that much
impact in the Objective-C and the Ruby community.

None/Autodidact mE 3.92%
In Education IEEEE——————— 11.75%
Bachelor IS 30.31%
Master I 37 73%
PhD I 16.29%

0 50 100 150 200

#respondents

Figure 4.2: Distribution of respondents based on their highest educational
background

UML s 0 31%
Software Models in general I 77.94%
Auto-generated code documentations IEEEEEEEGEGEGEGGGGNGNGNGNGNGNGNGG—G— 77.94%
Manuals I 71.75%
White papers I 44 .74%

0 100 200 300 400 500
#irespondents

Figure 4.3: Familiar architecture document formats (multiple choices were
allowed)

100 CHAPTER 4. PAPER C

4.5.2 Why is UML used?
4.5.2.1 What are the motivations to use UML modeling?

Fig. shows the answers from 326 UCs (from 319 projects) about the
intent of UML files they added/updated. Most of UML files served for de-
sign/architecture and documentation purposes, with 70% and 71% of votes,
respectively. For about 18% of the projects, software verification was mentioned
as one of the main purposes. Refactoring and code generation was less usual
(14.11% and 12.85% of the projects).

Among 125 NUCs that claimed to be aware of the existence of UML models,
109 people (from 109 projects) reported to find UML helpful (Fig. . 79%
of the respondents found UML useful for understanding the OSS systems.
They also found UML models helpful as the models assisted in improving
communication within their project, guiding implementation and managing
quality of the project.

Documentation (e.g. model is reverse engineered)
Design/architecture for (existing/new) systems parts
Code generation

Refactoring

Verification

Models are test data

Other
#resp = 326
#proj =319

I 71.16%
I —— 70.53%
—— 12.85%

—— 14.11%

I 17.87%

. 5.96%

m— 6.27%

0 50

100 150

projects

Figure 4.4: Intent of UML models that were added/updated

Help to understand/comprehend the system better
Help to communicate with other contributors better
| followed the models to implement the system

| used the models for quality assurance purposes

Other
#resp = 109

#proj =109
N=125

Y 5.23%
I 64.22%
T 48.62%
I 22.02%

Bl 6.42%

0 10 20 30 40 50 60 70 80 90

prjects

Figure 4.5: How did UML help non-UML contributors?

Results for SQ1.1: The majority of models are intended for creating software
designs and documenting software systems. Non-UML Contributors (NUCs)
benefit from UML models when it comes to understand a system and to
communication.

4.5. RESULTS/FINDINGS 101

0 627% 0 79.11%
6o #resp = 326 80
#proj =319 0 #resp = 159
50 #proj =158
60
8 g 50
o S
=30 21% =0
2 16.3% 30 20.89%
20
10
10 I 0%
0 0
Yes No No opinion Yes No No opinion
(a) Do UCs think that other (b) Are NUCs aware of the existence of the
contributors are aware of UML? UML models?

Figure 4.6: Awareness of developers about the existence of UML in their projects
(by project)

4.5.2.2 What are the reasons not to use UML in projects?

To complement our finding on the motivations to introduce/use UML, we asked
the 16 NUCs who did not find UML models useful the reasons for this. Respon-
dents from 6 projects actually had not used models, finding themselves not
required to learn/use UML (e.g., “there was no demand to do so”). Interestingly,
in no case license problems for modeling tools were a problem.

In 4 cases, the UML files were outdated. Other reasons that were brought
up in free-texts are: missing support for versioning models, a failed attempt to
understand the models, a preference for other means of communication (face
to face), a preference for other forms of modeling/sketching, a preference for
reading code rather than spending time for UML models, and the dislike of
UML (anti-UML attitude).

’Results for SQ1.2: Only a small number of respondents found UML not useful. ‘

4.5.3 Is UML part of the interaction of contributors?

4.5.3.1 Developer’s awareness about the existence of UML in their
projects

To answer this question, we first asked creators/maintainers of UML models
whether they think that the models are known by developers of the projects
(summarized in Fig. [.6a)). In 62.7% of the 319 projects with responses, the
UCs/1UCs believed that UML models are known by the developers of the
projects. Second, we asked NUCs of projects that use UML if they are aware
of the existence of UML models in their projects (Fig. . Surprisingly, for
the vast majority of projects (80%) NUCs stated that they are aware of UML
models.

To better understand the difference between the answers of UCs and NUCs,
we looked in detail into the 24 projects for which we received responses from
NUCs and UCs. In 10 out of 24 projects, NUCs and UCs differed. Interestingly,

102 CHAPTER 4. PAPER C

UC(s) did not expect their UML to be known by other developers although
NUCs were aware of it in 8 of them. It seems that model creators tend to
underestimate the spread of their models.

Results for SQa.1: A majority of non-UML contributors are aware of the
UML models in their projects. Awareness is higher than the one expected by
the authors of the models.

4.5.3.2 Are UML models used during communication and team
decision making?

In a first step we asked founders and UCs whether UML models are considered in
the communication between contributors. Fig. [£.7]summarizes the 405 individual
responses from 388 projects. According to the responses, UML models were
considered in communications in a large majority of the participated projects
(60%).

As a step further, we asked whether UML models were used as a basis
for architectural decision making or mentoring activities. Respondents from
a majority of the projects recalled that they had used the UML models for
making architectural decisions (58.7%) and to explain each other different
aspects of the system (58.25%) (Fig. [£.8).

60.31%
250 ’ #resp = 405

#proj =388

projects

21.91%
100 ’ 17.78%

. I l
0

UML models areUML modelsare No opinion
considered not considered

Figure 4.7: Are the UML model(s) considered in the communication between
contributors? (per project)

B UML as basis for architecture decisions B UML as a basic for mentoring

50 58.76% 58.25% #resp = 405

= #proj = 388
32.73% 31.96%
[N |

I used UML models that I've seenother contributors | have not witnessed this
way used UML models for that use of UML models

projects
NN
S
3

Figure 4.8: Is UML a basis for architectural decisions or mentoring activities?
(per project)

4.5. RESULTS/FINDINGS 103

Results for SQa.o: UML models were considered as a mean of communication,
as a basis for architectural decisions, and for mentoring in a majority of the
projects.

4.5.3.3 Are modeled designs adopted afterwards, during the imple-
mentation phase by teams of OSS contributors?

For those projects that claimed to have design models, we asked the question
“Was the UML model adopted during the implementation phase?”. Fig.
summarizes the answers of the 231 respondents from 225 projects. In most cases
UML models were adopted partly or completely during the implementation
phase (about 92%).

32.44% 35:56% #resp = 231

70 24.44% #proj=225
60
50
40
30 7.56%
20
0 [

The design was The design was ~ The design was The design was
completely adopted with partially followed not considered at
adopted minor changes all

projects
.
o

Figure 4.9: Was the UML model adopted during the implementation phase?
(by project)

If the answers were that UML models were at least partially adopted, we
asked further questions to find out who and how many contributors implemented
the modeled designs. Fig.[f.10]and Fig. [{.1T]summarise the responses per project
(based on 214 individual responses for 208 projects).

Creators of UML models are greatly involved in implementing the modeled
designs (in 88.5% of the projects). Experienced contributors helped in 35.5%
of the cases and novice contributors helped in around 13% of the cases.

In the majority of the projects (around 66%) more that one person par-
ticipated in the implementation of previously modeled designs. However, only
7% of the projects reported to have more than 5 contributors involved in such
joint implementation efforts.

The creators of the architectures/models IS 8 46 %
Experienced contributors of the project [N 35.58%
Novice contributors of the project Il 13.46%

0
#resp = 214 Other I 2.88%

#proj =208 0 50 100 150 200
projects

Figure 4.10: Who implemented the UML models? (by project)

104 CHAPTER 4. PAPER C

11 - 20 persons
6 - 10 persons 1%
5%

> 20 persons
1%

#resp =214
#proj = 208

Figure 4.11: Number of contributors who implemented UML models in a project

140 65.26% #resp=190
120 N=190 120 90.32% #resp=124

1gg 56.45% 64.52% N=190
40
60 20 I I 6.45%
18.42% 16.32% 0
Q& Q&
0 & &\3(‘\ &

Yes No Noopinion & ¢ &

=
o
]

0
=]
#irespondents
)
S

#respondents

@»

(a) Do UML models help new contrib- (b) For what tasks do models help?
utors?

Figure 4.12: Responses for the questions whether UML models help new
contributors to join a project.

Results for SQq.3: Designs introduced with UML are in most cases adopted
during the implementation phase (fully or with slight changes). Most often
these designs are implemented by groups of 2-5 developers.

4.5.4 What is the impact/benefit of UML?
4.5.4.1 Can UML models support new contributors?

We used two perspectives to approach the question whether UML models
support new contributors.

First, we ask founders if they think that UML models help new contributors
to join their projects. We received 190 responses from 84 F-1UCs, 79 F-NUCs
and 27 F-UCs. For those who agreed, we further asked with what tasks models
help. Fig. [£.12]shows the responses in detail. 124 out of 190 respondents (65.26%)
agreed that UML models can help new contributors when joining projects.
They expected models to assist new contributors in comprehending the system
(90%), during implementation phases (65%), and when communicating with
other contributors (56.5%).

Second, we asked each contributor what software artifacts he/she used when
they got started with the project. 485 contributors answered this question.

4.5. RESULTS/FINDINGS 105

Despite the fact that most of respondents were familiar with architectural
documents (as shown in Section [4.5.1)), source code still remains their first
choice to start working with an OSS project (81%) - see Fig. m Remarkably,
UML and software models in general were reported to be starting points for 55%
and 43.5% of the respondents, respectively. This is more than the proportion
of contributors who started using wikis, issues, manuals, and auto-generated
code documentation. This conforms with the answers given by the founders
about new contributors.

Software artifacts to get started working with OSS projects

Code mEmEEEssssEs—— 81.44%
UML (Unified Modeling Language) e 55 26%
Software Models in general ————— 43 51%
Wiki m———— 31.75%
Auto-generated code documentations I 30.93%
Issues I 30.31%
Manuals s 30.1%
#resp = 485 White papers mmm 11.13%

N=1458 0 100 200 300 400 500
#respondents

Figure 4.13: Software artifacts used by respondents to start working in their
OSS project (multiple choices were allowed).

Results for SQs.1: The results suggest that UML is helpful for new contributors
to get up to speed.

4.5.4.2 What are the impacts of using UML in OSS projects?

Because of their overview about the projects, we asked founders for their
impression about the impacts of introducing UML into their project. Fig.
and Fig. [£.14D] summarize the 190 answers for the two questions. A majority
of respondents (65.79%) reported positive impacts, while only a few founders
(<2%) encountered negative impacts. Only, 34% of the founders saw changes
in the way the contributors worked after UML was introduced.

To find out more about the changes, we asked those who observed changes
to describe the way the working routine had changed. We received 31 responses
to the open ended question. Comments positive to UML can be summarized in
following groups: i) Hiding complexity /improved overview (mentioned 18 times);
ii) Improved communication/ reduced ambiguity (6 times); iii) Prevention of
sub-standard implementations (5 times); iv) Improved scoping and partitioning
of work (3 times); v) Improved/easier to implement designs (9 times); vi)
Improved quality assurance (1 time); vii) Reduced architecture degradation (1
time).

We also received two answers describing negative changes, complaining
about more work and the need for developers to learn UML notation.

106 CHAPTER 4. PAPER C

140 65.79% #resp =190 80 8947% #resp=190

1 N ;g 33.68% N=190

100 o 26.84%
80 32.63% 40
60 30
40 20
20 1.58% 10
0

0 J—
Yes, the way No,thereisno Noopinion
of working change

changed

Positive Negative No specific
impact impact impact

(a) Overall impact (b) Impacts on working routine

Figure 4.14: Impacts of introducing UML in OSS projects

Results for SQs.2: One third of respondents reported changes of the working
routine due to UML, mainly in the planning phase, the development pro-
cess and in communication. Most of the reported changes can be considered
positive.

4.5.4.3 Can UML models help to attract new contributors?

We ask founders if they think that UML models help to attract new contributors
to their projects. 190 founders answered this question. Fig. shows the
responses in detail. Only a few of the respondents (21.58%) believe that UML
models can attract new contributors, while most of them think UML is not an
attractive factor (47.37%).

We asked those who think UML models attract new contributors for rea-
sons behind their thoughts. We received only 25 answers, including following
arguments: a) UML models make the project and its goals easier to understand
(mentioned 13 times), b) the potential of UML to help new contributors (by
code comprehension) (7 times), c¢) visual documentation is considered attrac-
tive (3 times), and d) UML can support communication between old and new
members (2 times).

It is worth mentioning that two of the projects have been based on executable
UML diagrams (xtUML), therefore the diagrams were considered a magnet to
contributors.

Two of the respondents who answered previously that UML is an attracting
factor, mentioned additional factors, i.e., the personality, the quality of the
model, and complexity of the project, e.g., “I feel that it depends on two things:
how perceptive the contributors are, and how elegantly and interesting the models
[were] structured”.

Results for SQs.3: Few founders think UML models attract new contributors
to their projects.

4.6 Discussions

In the following we discuss our insights in context of related works and impli-
cations of our results. Furthermore, we present the threats to validity.

4.6. DISCUSSIONS 107

100 47.37% #resp =190
.80 N =190
b5 31.05%
S 60
2 2158%
o 40
I
0
Yes No No opinion

Figure 4.15: Do UML models attract new contributors to the project?

4.6.1 Comparison to Insights to Related Works

In this section, our observations are compared with findings from related works.
Communication: The finding that UML is used for communication pur-
poses within OSS fits with observations that were already made about the
use of documentation by Kazman et al. and sketches Chung et al. [42].
Furthermore, the results fit with the insights of Gorschek et al. , who also
observed a use for communication within industrial and OSS programmers.

New contributors: The observation that new contributors seem to benefit
from the use of UML confirms the first anecdotal evidence that Chung et al.
collected . Gorschek et al. found similar tendencies in their survey, where
the use of models was found to be higher for novices [34].

Design and documentation: We could uncover a main similarity in the use
of UML in OSS and industry, as we observed that UML is mainly used for
design and documentation, and less for code generation within OSS. Similar
observations had been made for industrial usage by Torchiano et al. and
Forward et al. .

Role splits: However, we also found a hint of a contrast in the use of UML.
While we observed that the architectures defined within UML models are often
implemented by multiple developers, as it happens within industry, we also
observed that in most cases all these contributors had participated in the model
creation. This seems to be in contrast to the practice in many industrial cases,
where those who create the models are not necessarily the ones who create the
code, as, e.g., observed by Kuhn et al. .

Finally, we made two observations that should be further studied, also in
industry. Passive benefits: Many participants who do not create UML models
consider its existence in the project beneficial. Partial adoption: Many models
are only partially adopted during implementation. It would be interesting to
see whether this conforms or is in contrast to industrial practice.

4.6.2 Implications
4.6.2.1 OSS practitioners

Use UML to coordinate team work! We know that UML is used in industry
within teams - communicating and coordinating their work . The insights from
this paper indicate that this practice might actually also work to coordinate
joint efforts within OSS teams with often remotely located developers.

108 CHAPTER 4. PAPER C

4.6.2.2 OSS seniors

Provide UML to support your junior peers! In most investigated aspects the
answers given by NUCs showed a slight tendency to be more positive about
UML than the answers of UML contributors. Thus, it seems that models have
an impact on teams that affects not just the model creators positively. We hope
that OSS contributors feel motivated by these results to contributing more
models. Furthermore, it seems that the usage of UML helps new contributors
to get productive. This might be seen as an incentive for the introduction of
UML.

4.6.2.3 Industrial companies

Adopt team-modeling! The observed contrast that most people implementing
a model also participated in its creation, might be an interesting option for
industrial practice, too. Especially, when agile practices are applied, models
can be taken into the loop, e.g., as part of planing during Scrum meetings.

4.6.2.4 University teachers

Promote consumption as first experience when learning UML! Again, the
mentioned slight tendency of NUCs to be more positive about UML is worth
noting. It seems that the benefits of UML are more positive for consumers than
for creators. This is to be confirmed in future studies. It can have today an
impact on the way we teach modeling. Students still tend to learn modeling by
creating models. Our results imply that it might be a good idea to let them
consume models first.

4.6.3 Threats to Validity

In the following, we discuss internal and external threats to validity of our
study as introduced by Marczyk et al. [140].

Internal validity Some threats that are generic to research that use GitHub
data, as discussed by Kalliamvakou et al. [127], concern our study, too: First,
a large amount of GitHub projects are not software development projects or
have very few commits, only. Furthermore most GitHub projects are inactive
(Kalliamvakou et al. guess that the amount of active projects is around 22%).
To mitigate the impact of these threats on our study, we filtered the projects
based on the number of commits and size. Since such filters are always just
heuristics, it is probable that some of the remaining projects still are toy or
educational projects. However, we consider the remaining threat acceptable,
since we can assume that the vast majority of the here studied projects are
real software development projects.

We focus on projects that do use UML only, to ensure that questioned
developers have the experience of working in a project with UML. To ensure
nonetheless that persons that prefer to not use UML are not underrepresented,
we sent the questionnaire not just to persons who manipulated UML, but also
to contributors who did not change or introduce UML files (NUCs). Therefore,
we believe that our results still provide valuable insights.

4.7. CONCLUSION AND FUTURE WORK 109

External validity Our study focuses on OSS projects in GitHub. While we
do not expect a direct generalization of our results to closed source projects,
we expect them to be mostly generalizable to OSS projects. 16.29% of the
survey respondents had a PhD degree. This rate is higher than industry average.
We expect them to be more positive about UML, making them more likely
to have answered our questionnaire. Thus, there might be a selection bias
towards projects that have PhDs as contributors. We do not know whether
these projects are different in nature concerning our results. However, since
this concerns only 16.29% of our data points, we believe that our results are
nonetheless representative.

We did not limit the domain. However, there might be a bias towards
the domain that comes with the use of UML. Since we study the impact of
UML, when it is used, we consider our results valuable despite the possible
bias in study domains. We only have a look at UML models that are stored
as specific file formats. Although, it would be better to have a look at all
possible representations of UML models that exist, the selected set of formats
comprehends the standard ones (.uml and .xmi) and image files, being already
broad and allows a first valuable insight. Finally, in this study, we do not
distinguish between UML diagram types. We therefore do not conclude for
single UML types but for UML in general.

4.7 Conclusion and Future work

In this paper we study the use of UML in open source, in order to identify
commonalities and differences to the use of UML in industry. Therefore, we
performed a survey with contributors from 458 GitHub projects that include
UML files. Our study delivers some first insights that might help companies
to decide whether to promote UML usage in open source projects. In favor of
UML are the observations that UML actually helps new contributors and is
generally perceived as supportive. However, UML does not seem to have the
potential to attract new contributors. Further, we found that the use of UML
in open source projects is partially similar to industrial use. However, there
are also differences that should be considered when joining industrial projects
with open source efforts. For example, the fact that there seems to be barely
a split of roles between model creator and person implementing the modeled
system. Furthermore, we found that many modeled designs are only partially
followed during implementation.

Future works We only use a part of survey responses in this study (ignoring
responses of short-time projects). In the future, we plan to compare whether
the results for these projects are different from the ones we found. Furthermore,
we plan to use meta data to investigate whether different aspects such as size,
active time, and number of contributors of a project affect the use of models
and the perception of developers within the projects. Nonetheless, our findings
from this study are drawn for UML in general. We would love to enrich our
dataset by classifying UML diagrams by diagram type. This will enable to see
whether diagram types affect the use of UML, and what UML diagrams are in
widest use.

110

CHAPTER 4. PAPER C

4.8 Appendix 1. Distribution of survey respon-
dents by countries

Table 4.2: Respondents by countries (Top 26)

Country No. responses | Country No. responses
United States 72 Russia 9
Germany 49 Austria 8
France 46 China, People’s Republic of | 8
Brazil 35 Czech Republic 8
Spain 26 India 8
United Kingdom | 21 Belgium 7
Switzerland 20 Colombia 6
unknown 15 Slovakia 6
Canada 14 Sweden 6
Italy 12 Bulgaria 5
Netherlands 11 China, Republic of (Taiwan) | 5
Argentina 9 Denmark 5
Poland 9 Finland 4

4.9 Appendix 2. Distribution of survey respon-
dents by continents

3.09% 124%

I 8.25%

e —
o‘

0.41%

= Europe

= North America

= South America
Asia

= unknown

® Oceania

= Africa

Figure 4.16: Distribution of survey respondents by continents

Chapter 5

Paper D

An Automated Approach for Classifying Reverse-engineered
and Forward-engineered UML Class Diagrams

M.H. Osman, T. Ho-Quang, M.R.V. Chaudron

In Proceeding of the 44th Euromicro Conference on Software Engi-
neering and Advanced Applications (SEAA) (pp. 396-399), Prague,
Czech Republic, August 29 - August 31, 2018.

111

Abstract

UML Class diagrams are commonly used to describe the designs of systems.
Such designs can be used to guide the construction of software. However, recent
studies show that UML models are at least as important in the maintenance of
software: these diagrams make it easier for maintenance engineers to understand
the system and plan for corrections and extensions. In practice we have identified
two main types of using UML: i) FwCD: here diagrams are hand-made as part
of the forward-looking development process; typical uses of these models are in
communicating and guiding the design; ii) RECD: these diagrams are reverse
engineered from the source code; hence these diagrams follow the construction
of the implementation and mostly serve as after-the-facts documentation.

Our research is aimed at studying the effects of using UML modeling in
software development. Recently, empirical studies in Software Engineering have
started looking at open source projects. This enables the automated extraction
and analysis of large sets of project-data. For researching the effects of UML
modeling in open source projects, we need a way to automatically determine
the type of UML use in a project. To support this, we propose in this paper
an automated classifier for deciding whether a diagram is an FWCD or an
RECD. We present the construction of such a classifier by means of (supervised)
machine learning algorithms. As part of its construction, we analyse which
features are useful in classifying FWCD and RECD. By comparing different
machine learning algorithms, we find that the Random Forest algorithm is the
most suitable algorithm for our purpose. We evaluate the performance of the
classifier on a test set of almost 1000 class diagrams obtained from open source
projects.

112 CHAPTER 5. PAPER D

5.1 Introduction

Diagramming is used throughout software development lifecycle (SDLC) due to
the fact that diagrams may capture diverse types of information. In the early
stages of the SDLC, class diagrams may be used to represent the architectural
software design. As development progresses, class diagrams can be used to
represent information that is closer to the construction of the system (design
level class diagram). During or after the implementation of source code, a class
diagram may be recovered using reverse engineering techniques. Such a reverse
engineered class diagram is closely based on the source code and reflects the
fine-grain implementation structure of software systems [141].

Hebig et.al. [137] present Lindholmen dataset which is a repository of UML
diagrams built to serve as an informative collection of UML models. This
repository contains a large amount of UML models that are gathered from
the open source software community. This repository holds more than 24,000
UML class diagrams and includes links to the projects on GitHub where the
diagrams were found. As such it forms a valuable resource for empirical studies
on projects that use some forms of UML modeling. The classification of these
diagrams is needed to assisting the research of diagram for various purposes.
Goal: In this paper, we focus on providing information on type and purposes
of each class diagram. This study aims at providing an automated classification
model for classifying Forward Engineered Class Diagram (FwCD) and Reverse
Engineered Class Diagram (RECD). This study use the following definitions
for the FwCD and the RECD:

Definition 1. Forward Engineered Class Diagram (FwCD): “Forward engi-
neering is the traditional process of moving from high-level abstractions and
logical, implementation-independent designs to the physical implementation of
a system.” |53]

Definition 2. Reverse Engineered Class Diagram (RECD): “Reverse engineer-
ing is the process of analyzing a subject system (especially its implementation)
to identify the system’s components and their interrelationships, and create rep-
resentations of the system in another form or at a higher level abstraction.” |53]

These diagrams have different perspectives and purposes in software devel-
opment: The FwCD are mainly for describing the high level design structures of
a system (as illustrated in figure . Meanwhile, the RECD purpose is more
oriented towards describing the structure of the implementation (as illustrated
in figure . We apply supervised machine learning techniques as the method
for the classification of diagrams. We use a dataset of 999 class diagrams that
are collected from Lindholmen dataset. In order to obtain a ground truth,
this dataset is labelled by experts that have experience in working with UML
diagrams. The classification features are extracted based on (i) characteristics
of the models that were mentioned by the expert while classifying into FwCD
and RECD and, (ii) the work by Hafeez and Chaudron [142], and (iii) Nugroho
and Chaudron [143]. We evaluate 11 classification algorithms that cover diverse
type of algorithms in supervised machine learning, in order to select the best
classification algorithm for this problem.

Contribution. The contributions of this study are the following;:

5.2. RELATED WORK 113

Identification of features that can be used to classify FwCD and RECD
diagrams

A suitable machine learning algorithm for classifying FwCD and RECD

A dataset with ground truth for classifying FwCD and RECD

e A comparative analysis of the performance of various machine learning
algorithms for our problem

This paper is structured as follows. Section discusses the related work.
Section [5.3] describes the research questions and Section [5.4] explains the
approach. We present the analysis of results in Section [5.5] The discussion
and future work are presented in Section [5.6] This followed by conclusions in

Section 5.7

Workbench Part
1
0. '*
WorkbenchWindow Editor
1 0.*
0.1
1
! L L* : 0.* Yiew
<> [ive <o
Toolbar : Page Perspective
0.1 1
1 1
0..1 0..1
ShortcutBar StatusBar

Figure 5.1: FwCD Example

5.2 Related Work

To our best knowledge, there is no work that is directly targettad at the
automatic classification of FwCD and RECD. Therefore, we broaden our
discussion to works that have used class diagram information (e.g. metrics,
measures) and machine learning classification algorithms for classification or
prediction purposes.

Maneerat and Muenchaisri |144] proposed a method for predicting bad-smell
from software design model. 27 software metrics were used in this study that
consists of Basic Class Employment (basic class information), Complexity,
Diagrams, Inheritance, MOOD [145], model size and relationship. They used
seven (7) datasets that were created by extracting these metrics from reverse
engineered class diagrams. Cross-validation was used to assess the prediction
performance and for preventing over-fitting.

Halim proposed a method to Predict fault-prone classes using the
complexity metrics of UML class diagram. The prediction models were built

114 CHAPTER 5. PAPER D

= TimePeriod
2 TimePeriod (begin : TimePoint, end : TimePoint)
T 42 compareTo (timePeriod ToCompare) : int
= Formattable

{from text_formatting) |-~
2 asText ()
& asText () B 0.1 -begin 0.1, -end
g2 parse () ” || TimePoint
parse () | Egvalue : Date

n g /asFormattedString : String
' 42, TimePoint (date : Date)

: §2 TimePoint (year : int, month : int, day : int)
4§, TimePoint (date : Date, precision : TimePrecision)

42 compareTo (other : TimePoint) : int
T 42, format (preferences : Preferences) : String

42 format (locale : ProcessPuzzlelocale) : String

] TimeAmounth 4% parse (source : String, preferences : Preferences) : TimePoint
4§ parse (source : 5tring, locale : ProcessPuzzieLocale) : TimePoint

§2 TimeValue ()
§3 TimeValue ()
§2, getinMiliseconds () 1 |- precision
&2 getInSeconds () :
§2 getinMinutes ()
3 getInHours ()
2 getInDays ()
getInWeeks ()

«enumerations
[€] TimePrecision

= year

= month

= week

= day

= hour

= second

= milliSecend

Figure 5.2: RECD Example

using two classification algorithm i.e. Naive Bayes and k-Nearest Neighbors. The
models were validated by using 10-fold cross-validation and the performance
was assessed by using Receiver Operating Characteristics (ROC) curve analysis.

Bagheri and Gasevic investigated through controlled experimentation
whether a set of structural metrics can be good predictors (early indicators)
of the three main sub-characteristics of maintainability: analyzability, change-
ability, and understandability. The analyzed measures for software product
line features model consisted of size measures (e.g. Number of Features (NF),
Number of leaf features (NLeaf)), Structural Complexity Measures (e.g. Cy-
clometic Complexity (CC), Flexibility of Configuration (FoC), Number of valid
configuration (NVC)) and Length Measure (Depth of tree (DT)). They built
four (4) prediction model by using J48, ID3, CART and Logistic Regression.
Bagheri and Gasevic conclude that NLeaf, NVC, CC and FoC are the most
suitable features for predicting the aforementioned sub-characteristics of main-
tainability. Nugroho also performed a study on predicting defects based on
diagram metrics [143]. He however, used metrics that are indicators of the level
of detail used in the diagram. His study showed that higher level of detail in
UML models correlates with fewer defects in source code. This suggests that
when our classifier uses level of detail metrics, it might also be used in quality
assurance of models.

5.3. RESEARCH QUESTIONS 115

Osman et. al. [148] proposed an approach to condensed reverse engineered
class diagram by using machine learning technique. They used object-oriented
design metrics i.e. size measures (e.g. number of classes, number of operations)
and coupling measures (e.g. Import Coupling Attribute, Dependency out). The
datasets were collected from open source java projects. Nine (9) classification
algorithms involved in their experiments in order to find the best model
for classifying key classes in reverse engineered class diagram. Based on this
work, Thung et. al. [149] improved the classification result by adding Network
measure (e.g. Baycenter, PageRank). Recently, Yang et. al. [150] improves the
classification performance as well as the effort of learning.

These related works show the usage of class diagram information or object-
oriented design metrics for assessing (which is a form of classification) UML
diagrams.

5.3 Research Questions

This section describes the research questions of this study that will be answered
in section

RQ1: Which features of UML diagrams are influential predictors for classifying
diagrams into FwCD and RECD?

RQ2: What are suitable classification algorithms for classifying FwCD and
RECD?

5.4 Approach

This section describes our overall approach (illustrated in Figure that
consists of (i) Data Collection (ii) Features Extraction & Creating Ground
truth, (iii) Model learning, and (iv) Evaluation of Results.

5.4.1 Data Collection

Data preparation process consists of two (2) main activities: UML Class
Diagrams (images) Collection and Image to XMI Conversion.

5.4.1.1 UML Class Diagrams Collection

The main input for this study is UML class diagram images. These class
diagram images were collected from Lindholmen dataset |137]. It is noted that
at the time of collecting data for this study, the Lindholmen dataset were
being built. Therefore, we were able to scan 4443 projects and collect 2000
class diagrams that are stored in various image file formats. In the next step,
we refined the dataset by applying a number of filters. Firstly, the images
should have a reasonable quality, as they serve as input for an image-processing
conversion tool (see section and the tool expects reasonable-quality
images in order to generate reliable result. Therefore, we had to exclude images

116 CHAPTER 5. PAPER D

F T Em mm mm mm Em Em o o e e

(Data Collection \
| [W EEw . (|
I UML Class:- Class Diagrams| Image to XMI |
: Diagrams Images L Conversion I
[|
\ XMl files I
- — Ciass_Dla_graE;s__________/
s T T T T T T T TS

(Feature Extraction & \
Establishing Ground Truth |

| o r
I Data labellin e . '
9 J Extraction |
| "Features \ I
I Label Merging Label and |
| Features Dataset |
e oy [t il N
{ Model|Learning I
1 Classification Classification Model |
[e Construction I

Model Performance Univariate
Evaluation Analysis

Figure 5.3: Overall Approach

that have a small-size and a low resolution. Secondly, to avoid data redundancy,
we removed duplicate images from the dataset. In the end, we finalized a list of
999 class diagram images as the dataset for this study. The list of the selected
class diagram images can be found at [151].

5.4.1.2 Class Diagram Image to XMI Conversion

Since the collected class diagrams are in image formats, it is necessary to extract
and store the content of the diagrams in a standard UML file format which is
XMI (XML Metadata Interchange). The conversion of UML class diagrams in
image formats into XMI format is done by using the Image2UML tool . As
the tool does not extract methods parameters, we modify the source code (by
adding new code) in order to capture that information. Integration tests are
performed to ensure the new feature works well. Furthermore, we improve the
Image2UML tool’s XMI file structure for better representation and also to suit
our purposes.

5.4. APPROACH 117

5.4.2 Feature Extraction & Establishing Ground Truth

This subsection consists of three (3) activities: Data Labeling, Feature Extrac-
tion, and Merging Label and Features.

5.4.2.1 Data Labelling

Supervised machine learning needs a labelled data (for learning purposes).
Thus, the dataset of 999 class diagrams should be labelled either FwCD or
RECD. Since there is no explicit rule on how to distinguish those diagrams, the
labelling activity was done manually by three (3) selected UML experts who
have at least five (5) years using UML class diagrams for different purposes.
The labelling process consists of two (2) phases:

[a] Define FwCD and RECD characteristic

All the experts gathered together in a brainstorming session to outline the
characteristics of FwCD and RECD. This session aims at synchronizing
the general characteristics of FwCD and RECD among the experts and
at finding information to formulate the classification features. After the
experts defines the FwCD and RECD characteristics, we randomly select
30 class diagrams images from the dataset and let the experts apply
the defined characteristics to classify the diagrams. In this way, we can
investigate whether (i) the defined characteristics could actually help on
classifying FwCD and RECD, and (ii) the experts reaching agreement on
their views toward FwCD and ReCD.

[b] Manual Classification

Each expert is randomly assigned a set of 323 class diagrams. A simple
webpage ([151]) is created to assist the experts when performing classi-
fication. The webpage displays class diagram images together with the
defined FwCD and RECD characteristics. The experts are also asked to
provide the rationale behind their decision by choosing among the criteria
and/or using a free text box to indicate their thought if the characteristics
do not match. For each diagram, every expert needs to classify it into
different categories: “Forward Design”, “RE Design”, “For Discussion” and
“Skip For Now”. Diagrams in different categories than “RE Design” and
“Forward Design” are discussed in follow-up group meetings. The loop of
individual classification and group discussion is continued until all class
diagram images are classified into FwCD and RECD.

5.4.2.2 Feature Extraction

Based on Osman et. al. [142], there are several weaknesses of RECD produced
by commercial CASE tool, e.g. high number amount of information, unable
to detect several types of relationship and etc. These weaknesses are our basis
for selecting our classification features. Furthermore, we also used the expert
judgment on FwCD and RECD that we observed during the data labelling
activity as the basis of formulating the classification features. The detail
explanations on selected classification features are illustrated in Table

118

CHAPTER 5. PAPER D

Table 5.1: List of Features

No Features Data Type Description

1 | noCls Numeric Count number of class(es) in the
class diagram

2 | noOper Numeric Count total number of classes in
the class diagram

3 | noAttr Numeric Count the number of attribute in
the class diagram

4 | noPara Numeric Count the number of operation
in the class diagram

5 | extOperPara | Nominal (Binary) | “true” if the operation parameter
exist and “false” if it is not exist

6 | noAssociation | Numeric Count the number of operation
in the class diagram

7 | noAssocType | Numeric Count the number of type of as-
socation type exist in the class
diagram

8 | extOrpCls Nominal (Binary) | “true” if the orphan classes exist
and the “false” if it is not exist

9 | noOrpCls Numeric Number of orphan classes in a
class diagram

10| avgAttrCls Numeric Average attribute per class

11| avgOperCls Numeric Average operation per class

12| avgAssocCls | Numeric Average operation per class

13 | avgParaOper | Numeric Average parameter per operation

14| avgOrpCls Numeric Average orphan classes

15| maxAttrCls Numeric Select the highest number of at-
tribute in a class in the class dia-
gram

16 | maxOperCls | Numeric Select the highest number of op-
eration in a class in the class dia-
gram

17| isFWD Nominal (Binary) | “Yes” if the class diagram is for-

- Class Label ward design and “No” if it is a

reverse engineered class diagram

5.4. APPROACH 119

5.4.2.3 Merging Labels and Features

In this activity, we extract all the features (listed in Table from the class
diagrams (from its XMI files) into a data file (csv format). Then, we merge the
data file with the label information (isFwd - “Yes” or “No”). The data file that
consists of 999 class diagrams classification features and its label is the dataset
for this study.

5.4.3 Model Learning

In this section, we explain the classification model construction. This activity is
supported by Waikato Environment for Knowledge Analysis [WEKA] tool [152].

5.4.3.1 Classification Model Construction

Mining data is experimental. There is no algorithm that fits all situations and
all purposes. Therefore, at first, we need to find the suitable machine learning
algorithm(s) for our purposes and our dataset.

We start the selection of machine learning algorithm by conducting an
exploratory experiment on a range of machine learning algorithms. In this
exploratory experiment, we are interested to find not one suitable classification
algorithm but a set of classification algorithms that are suitable for the dataset.
Therefore, this experiment looking at the various type of machine learning
classification algorithm.

The algorithms in this experiment are selected from the different set of
algorithms representative for different approaches. For example, Decision Trees,
Stumps, Tables and Random Trees or Forests all divide the input space up into
disjoint smaller sub-spaces and make a prediction based on the occurrence of
positive classes in those sub-spaces. K- Nearest Neighbour (k-NN) and Radial
Basis Functions (RBF) Networks are similar local approaches, but the sub-
spaces here are overlapping. In contrast, Logistic Regression and Naive Bayes
model parameters are estimated based on potentially large numbers of instances
and can thus be seen as more global models [148]. According to Holte [153],
there is a possibility that a simple algorithm works well in a dataset. Hence,
OneR is selected to represent the simplest classification algorithm compared to
the algorithms mentioned above. The detail explanations of the aforementioned
algorithms can be found at [152]. We use the result of ZeroR as the baseline
(only on the accuracy measurement). ZeroR shows the probability of a guess
of whether a class diagram is ReCD or Fwd. If the result of a classification
algorithm approaching this baseline, it means that the classifier does not make
a significant contribution in classifying the ReCD class diagram.

The 10-fold cross-validation is used for evaluate the classification model
performance. To ensure a more accurate validation result, the 10-fold cross-
validation is repeated ten (10) times for every classification model. The average
value will be used as the final result.

5.4.4 Evaluation of Results

The process consists of two (2) activities: Univariate Analysis and Classification
Performance Evaluation.

120 CHAPTER 5. PAPER D

5.4.4.1 Univariate Analysis

Prior to processing the data, we explore the behaviour of the data by measur-
ing the predictive power of the predictor (classification features). To measure
predictive power of predictors, we used the information gain with respect to
the class [152]. Univariate predictive power means measuring how influential
a single predictor is in prediction performance. Normally, the result of this
analysis is used to select the suitable predictor(s), however, this study uses this
analysis for the data exploration. We aim at discovering the most influential
predictor in the dataset. We use WEKA’s Information Gain Attribute Evalua-
tor (InfogainAttrEval) in conducting this experiment. The WEKA InfoGain
Attribute Evaluator produces a value from 0 to 1. The higher value of InfoGain
(close to 1) denotes a stronger influence of the predictor.

5.4.4.2 Classification Performance Evaluation

In general, we use three (3) evaluation measures to evaluate the classification
algorithms performance i.e. (i) Percentage of correct (accuracy), (ii) Precision
and, (iii) Recall.

[a] Correctness (or Accuracy) is defined as the ratio of the number of correctly
classified items to the total number of items [154].

[b] Precision is a function of true positives and examples misclassified as
positives (false positives) [155].

[c] Recall: is a function of its correctly classified examples (true positives)
and its misclassified examples (false negatives) [155].

The aforementioned measurements are the basic evaluation measures that
are used in this study. If required, we extend this evaluation into more de-
tail measures such as F-Measure [156] and Area Under Receiver Operating
Characteristic (ROC) Curve (a.k.a AUC) [157].

5.5 Result and Findings

This section evaluates the performance of the selected features and the clas-
sification algorithms. Each of the following subsection answers the research
questions.

5.5.1 RQ1: Analysis of Selected Features

The InfoGain measure is an indicator of how significant a feature is for per-
forming a classification-task. A 0-value indicates no significance, and a higher
value indicates a higher significance. Table [5.2|shows InfoGain results for our 16
features. (predictors) produce InfoGain score >0. This result shows that every
single feature used in this study has some predictive power. In order words,
every single feature influences the classification model. The average number of
operation parameters (avgParaOper) is the most influential predictor. This is
followed by the number of parameters (NoPara) and the existence of parameter
(extOperPara). These three (3) most influential features are related to the

5.5. RESULT AND FINDINGS 121

Table 5.2: InformationGain Attribute Evaluator Results

No Predictor InfoGain Value
1 avgParaOper 0.3191
2 noPara 0.2897
3 extOperPara 0.2371
4 avgOperCls 0.2249
5 maxOperCls 0.1602
6 avgAssocCls 0.1597
7 noCls 0.1319
8 mnoAssociation 0.1304
9 noOper 0.1265

10 noOrpCls 0.0858
11 avgOrpCls 0.0668
12 avgAttrCls 0.0605
13 noAttr 0.0551
14 maxAttrCls 0.0377
15 extOrpCls 0.0238
16 noAssocType 0.0118

operation parameters. Meanwhile, the other most influential features are the
average number of operations per class (avgOperCls) and the maximum number
of operation per class (maxOperCls). Both features are related to the operations
in class diagrams. Thus, this result indicates that the class diagram operations
plays a major role in classifying the RECD and FwCD. More specifically, the
information about operation parameters is the best indicator to classify UML
diagrams into FwCD and ReCD.

On the other hand, not all features related to class relationships strongly
influence the classification performance. The average association relationship
per class (avgAssocCls) and the number of association (noAssociation) have a
high InfoGain value. Meanwhile, the number of orphan class (noOrpCls) and
the average of orphan class (avgOrpCls) moderately influence the classification
performance. The existence of orphan class (extOrpCls) and the number of
association types show the weakest influence in classification performance from
the class relationship category.

This result also shows that the features related to attributes in class diagrams
have a weak influence in classification performance. The number of attributes
(noAttr) and the maximum number of attribute (mazAttrCls) have a rather
low InfoGain value.

5.5.2 RQ2: Classification Model Performance

This subsection shows the evaluation of the classification model performance.
The evaluation is based on the classification performance score illustrated in
Table

In this evaluation, we use two (2) baselines measurements: (i) ZeroR and
(ii) OneR. The first baseline is ZeroR. For ZeroR, the benchmark only uses the
accuracy measures. The accuracy measure for ZeroR means a probability of a
random guess (in terms of percentage) for the majority of classes in the dataset.

122 CHAPTER 5. PAPER D

Table 5.3: Classification Performance

Performance Acc. Prec. Recall F- AUC
Measure Measure

OneR 88.01 0.94 0.91 0.92 0.84
Decision Table 88.33 0.93 0.93 0.93 0.93
Naive Bayes 88.10 0.97 0.88 0.92 0.91
RBFNetwork 89.32 0.95 0.91 0.93 0.92
Logistic Reg. 88.90 0.94 0.93 0.93 0.94
SVM 87.28 0.88 0.97 0.93 0.71
K-NN (1) 89.16 0.93 0.93 0.93 0.88
K-NN (5) 87.89 0.93 0.92 0.92 0.93
Decision Stump 87.69 0.98 0.87 0.92 0.89
J48 88.59 0.94 0.91 0.93 0.85
Random Tree 87.89 0.92 0.93 0.93 0.81
Random Forest 90.74 0.95 0.93 0.94 0.96

Our dataset is imbalanced: the majority of the class diagram in the dataset is
RECD. The accuracy value for ZeroR is 80.68% which means without taking
any features for prediction, the probability of correct prediction is 80.68%. Thus,
classification algorithms should perform better than ZeroR because otherwise
they would not make any significant improvement. aThe results show that all
classification models produce a significant improvement compared to ZeroR.
The relative improvement of accuracy values ranges from 7% to 10%.

The second baseline is OneR. The OneR classification algorithm uses
only one (most influential) feature to construct the classification model. This
benchmark experiment is conducted because according to Holte [153], there is a
possibility that a simple algorithm works well in a dataset. OneR represents the
simplest classification model. Thus, complex classification algorithms should
perform better to produce a significant improvement because they require
greater computational effort (e.g. for extracting all features). The results show
that the performance of SVM, k-NN (5), Decision Stump and Random Tree are
slightly lower than OneR (based on accuracy value). Thus, we exclude these
algorithms from further evaluation.

After benchmarking the classification algorithms against the baselines, we
compare the classification algorithms’ performance based on precision and
recall. This evaluation only involved the classification model constructed using
Decision Table, Naive Bayes, RBF Network, Logistic Regression, k-NN(1), J48
and Random Forest. The results show that Naive Bayes and Decision Stump
produce a high precision score. However, both classification algorithms scored
relatively low on recall. Decision Table, Logistic Regression, k-NN (1) and
Random Forest show a balance score between precision and recall. Hence, based
on this result, Decision Table, Logistic Regression, k-NN (1) and Random
Forest are suitable algorithms for our problem and dataset. In order to find
the best classification algorithms for the dataset, we compare the classification
performance score using the F-Measure. Based on the F-Measure result, the
Random Forest is the best performing classification algorithm for our purpose.

5.6. DISCUSSION AND FUTURE WORK 123

5.6 Discussion and Future Work

In this section, we reflect on our findings and outline future work based on (i)
the feature selection, (ii) the dataset and, (iii) the classification algorithms. We
discuss the threats to validity at the end of this section.

5.6.1 Feature Selection

In this study, we have selected 16 features that we believe influential in classify-
ing RECD and FwCD. These features covered a high-level structural information
as well as information about level of detail of class diagrams. For example,
we use the number of classes (noCls), the number of attributes (noAttr) and
the number of operations (noOper). This type of information can be classified
as the high-level structural information of class diagrams. Meanwhile, the
average association per class (avgAssocCls), average parameter per operation
(avgParaOper) and average attribute per class (avgOperCls) are the examples
of features that related to the level-of-detail of class diagrams.

For future work, we would like to enhance these classification features
by exploring features such as information about types of class relationship,
complexity metrics, use of inheritance (e.g. number of child, depth in inheritance
tree), attribute and operation visibility (e.g. public, private), and possibly
layout-related feature and etc.

5.6.2 Dataset

From the result, it is obviously shown that the information about the operation
in class is the most influential feature in classifying RECD and FwCD. The
top five (5) most influential features i.e. average parameter operation (avg-
ParaOper), number of parameter (noPara), existence of operation’s parameter
(extOperPara), average operation per class (avgOperCls) and maximum number
of operation per class (mazOperCls) are features related to the operations of
classes.

Initial observations of the dataset showed that most of the class diagrams
that were labelled as RECD had a higher number of parameters and level of
detail for class operation. This points in the direction that a high level of detail of
the operations in a class diagram is a strong indicator that the class diagram is an
RECD diagram. However, the InfoGain Attribute Evaluator (InfoGainAttrEval)
only evaluates the influence of individual features in isolation, and InfoGain
does not add up linearly when combining features. InfoGain does not count
the influence of a group of features. In the future, we would like to evaluate
the influence of a group of features in classifying FwCD and RECD. We also
plan to analyze the correlation between features and come out with better
predictor /feature set.

5.6.3 Classification Algorithm

We have selected 11 classification algorithms as candidates to be used in our
automated classification of FwCD and RECD. These classification algorithms
represent diverse type of supervised machine learning approaches. In this study,
we found that Decision Table, Logistic Regression, Nearest-Neighbour (k-NN(1))

124 CHAPTER 5. PAPER D

and Random Forest are suitable classification algorithms for the dataset. We
conclude that the Random Forest is the best performing classification algorithm
for this purpose. Random Forest scored 0.95 (precision), 0.93 (recall) and 0.94
(F-Measure). Furthermore, we compared this classification algorithm with other
algorithms using AUC score. Based on the AUC score, the Random Forest still
scores the highest (0.96) compared to Decision Table (0.93), Logistic Regression
(0.94) and k-NN(1)(0.88).

We took a step forward to find out why the classification algorithm (we
focused on Random Forest) failed to classify several class diagrams. Figure
shows an example of an FwCD was classified as RECD (False Negative).
We found that the class operation’s level of detail have a high influence in
classifying FwCD and RECD. Hence, the improvement on classification features
as mentioned in section [5.6.1|is required to overcome this issue.

«interface»
IBombermanModel
+updateGame(player:Player,action :PlayerAction)
+startGame(): void
+endGame(): void

upg Player, attr i : void
A}
|
1
I
|
i
BombermanModel «Abstract» «ir
-players: List<Player> GameField o i
-updatePlayerScore(player: Player, tiles: List<Tile>): void | -Tile()() map: Tile | +getToug
~handleFire() : void +createWorld() +isWalkab
+updateGame(player:Player,action :PlayerAction) +resetField() +onFire()
-move(player:Player,action :PlayerAction) +setTile(tile:Tile, pos: Position)
-placeBomb(player: Player) by ZF
-matchEnd() o '
~roundEnd it 1
+startGame(: void el !
+endGame(): void , H
+upgr : Player, attr:Attril : void 7 1
+getinstance(): Bomberman i I
, '
I e
|
2 7% '
Player «Abstracts !
-name: String Bomb 1
-pos: Position ~player: Player —
~attribute: PlayerAttribute ~timer: Timer Ry
~lives: int -actionListener: ActionLisener -toughnes
~health: int -player: Player --getRanc
-bombStack: int -notifyObserver(List <Position) pos:void | "——
-initialPosition : Position +explode(: void
+placeBomb(): Bomb +getPlayer() : Player
+move(action: Action): void
+roundReset(): void 4 4
+matchReset0: void 1 H
A,
+upgradeAttr(attr:Attribute type:UpgradeType): void

PlayerAttribute PlayerPoints
-matchAttr: Map<Attribute, Integer> ~totalScore: int
-roundAttr: Map <Attribute, Integer> -credits: int
+getAttrValue(attr: Attribute): int -destroyedObj: List<Tiles>
+upgradeAttr(-killedPlayers: int
+resetMatchAttr(: void +update(List <PointGivers:Enum>
+resetRoundAttr() : void +getScore(): int
+resetAllAttr() : void +getCredits() :int «Singelton»
+upgradeAttr(attr:Attribute type:UpgradeType): void +reduceCredits(cost:int) |_Parameters |
-upgradeMatchAttr(attr: Attribute) +reset(:void
-upgradeTurnAttr(attr: Attribute)

Figure 5.4: An Example of False Negative - FwCD that is classified as RECD

Even though the classification model can be considered to produce a reason-
ably good classification performance, we see there is a possibility to enhance
the classification performance by the following:

e Reconfigure the classification parameter
In our study, we only used the default configuration that is provided by
WEKA. We believe it is possible to enhance the classification performance

5.7. CONCLUSIONS 125

by changing the classification algorithms’ parameter configuration.

e Combination of classification algorithms
Since there are several classification algorithms that seem suitable for
our purpose, in the future, we would like to combine or stack several
classifiers.

Other future works are as follows : (i) enhance the practical usability of a
tool based on our classification model, and (ii) extend our approach to larger
datasets. Moreover, we would like to explore (iii) classifying class diagrams into
application domains by using text mining techniques.

5.6.4 Threats to Validity

This subsection describes the threats to validity of this study. We consider
Internal validity, External validity and Construct validity.

5.6.4.1 Threats to Internal validity

Our raw data (class diagrams) is collected from image-type diagrams. We
used previously developed image-recognition techniques [95] to convert these
diagram into XMI format to enable our feature extraction. There is a possibility
of inaccuracy of the extracted information. A random check has been performed
on a sample of the extracted models to make sure the converted diagrams are
correct. If the accuracy of the image recognition would be improved, then this
most likely would allow some improvements to the performance of the classifier,
because the image recognizer currently extracts a large amount of information
from the diagrams.

5.6.4.2 Threat to External Validity

In our study, class diagrams are collected from 4443 Github projects which is a
very small portion of more than 12 million projects on Github. Therefore, we
cannot claim that our dataset is representatitive for all open source projects
(on GitHub). The generalization of our approach would benefit from extending
the training and testing datasets.

5.6.4.3 Threat to Construct Validity

The dataset is quite imbalanced i.e. the percentage of RECD diagrams is
much more than the FwCD ones. Thus, is a possibility that the classification
model has a bias towards RECD. We minimized this threat by performing
10-folds cross-validation ten (10) times (repetition). For each round, the data
is randomized. We take the average of all 10 rounds as the final result.

5.7 Conclusions

This work presented the construction and evaluation of an automated classifier
for differentiating forward-designed- (FwCD) from reverse-engineered (RECD)

126 CHAPTER 5. PAPER D

class diagrams. This classifier was constructed using machine learning algo-
rithms, We investigated various properties of class diagrams as features of our
classifier. Our features covered structural information of class diagrams as well
as a features that relate to the level of detail of class diagrams.

In this study, we have shown that each of the feature that we consider
is influential in classifying FwCD and RECD. The features that relate to
parameters of operations are the most influential features for this classification
purposes. In terms of classification algorithms, we found that out of the 11
classification algorithms that were used in our experiments, only four (4)
algorithms are suitable for our dataset (i.e. Decision Table, Logistic Regression,
k-NN (1) and Random Forest). Random Forest is the most suitable classification
algorithms for our classification model. The classification model scored 90.74
(accuracy), 0.95 (precision), 0.93 (recall), 0.94 (F-Measure) and 0.96 (AUC).

As for the conclusion, this study has formulated an automated classification
model to classify FwCD and RECD. The classification model performed reason-
ably well based on the scores benchmark. As part of our future work, we would
like to apply this model to our recently collected corpus of class diagrams (in
total 24000+) from Lindholmen dataset. Through this research, we expect to
get an understanding of the different ways in which UML diagrams are used in
open source projects and ultimately an understanding of the effectiveness of
various modeling and documentation practices.

Chapter 6

Paper E

Challenges and Directions for a Community Infrastructure
for Big Data-driven Research in Software Architecture

T. Ho-Quang, M.R.V. Chaudron, Regina Hebig, G. Robles

Accepted as a chapter in the book “Model Management and Ana-
lytics for Large Scale Systems”, To be published by Elsevier (Ex-
pected release date: November 1, 201 9), Edited by Bedir Tekinerdo-
gan, Onder Babur, Loek Cleophas, Mark van den Brand and Mehmet
Aksit, 2019.

127

Abstract

Research into software architecture and design has become more and more
prominent since the 1990’s. Since then, companies started reporting how soft-
ware architecting helped them to tackle various challenges in system-design,
especially related to system-level quality properties such as scalability and
maintainability. Academic research in software architecture has focused on
several areas, including architecture description through views and architecture
description languages, and on methods for evaluating architectural designs.
While much of the contributions of research in software architecture was inspired
by industrial experiences, little of the research was validated beyond individual
case studies. Many scientific disciplines are currently harvesting fruits from
large scale data collection about their subjects of study. Therefore, this chapter
contributes a discussion of challenges and directions for big-data driven studies
of software architecture. Given the large amount of effort that is needed for
this type of research, a promising direction is to look into a community-based
infrastructure for enabling and supporting this type of research. We share
lessons learned through building various tools that could form building-blocks
in such an infrastructure. Based on these, we synthesize a reference architecture
for creating such a community-wide infrastructure for big-data-based research
in software architecture.

128 CHAPTER 6. PAPER E

6.1 Introduction

Research into software architecture and design blossomed in the 1990’s. At that
point in time, many organisations were experiencing the exponential increase
in the size of their software systems. Almost at the same time, projects were
struggling with the increasing amount of changes to the software that needed
to be handled. The practices of software architecting were proposed as one
of the main tools for addressing both the challenges of scale and evolvability.
Academic research in software architecture has focused on several areas, in-
cluding architecture description through views and architecture description
languages, and on methods for evaluating architectural designs. While much of
the contribution of research in software architecture was inspired by industrial
experiences, little of the research was validated beyond individual case studies.
Many scientific disciplines are currently harvesting fruits from large scale data
collection about their subjects of study. Indeed, such 'big data’ promises in-
sights by finding patterns by analysing large data sets. Therefore, this chapter
contributes a discussion of challenges and directions for big-data driven studies
of software architecture. We discuss lessons from various projects that focus
on particular questions that are building blocks in the overall landscape of
big data for empirical software architecture research. Based on these lessons,
we synthesize a proposal for a reference architecture for a community-wide
infrastructure for evidence-based research in software architecture and design.

The structure of this chapter is as follow: In Section we discuss existing
work related to our research topic. Then, we present our experiences on building,
maintaining and sharing a big corpus of models (Section [6.3]). This is followed
by a discussion on the challenges when conducting empirical studies in software
architecture (Section [6.4). The discussion reflects our observations on research
in the field as well as our experience building the Lindholmen dataset of
UML software designs. In Section we list nine requirements for building
such an infrastructure. Lastly, we propose a reference architecture for such
an infrastructure (called CoSARI), and our on-going efforts on building this

(Section [6.6)).

6.2 Related Work

In this section, we discuss works that are in various ways related to the topic
of this chapter. Empirical data of software architecture serves as basis for
any evidence-based research in the field. Therefore, at first, we summarize
existing corpora of software architecture artefacts. The software architecture
artefacts/documentation (SAD) can be split into software modeling artefacts
(such as UML models, DSLs, etc.) and textual-based artefacts (such as software
architecture specification, etc.).

The desired infrastructure should ultimately support researchers with not
only empirical data on software architecture but also with means for analysing
the data and sharing the analyses. Therefore, we discuss existing work on
discovering architecture knowledge and review some scientific workflow systems
as a reference for building the infrastructure.

6.2. RELATED WORK 129

6.2.1 Existing Corpora of Software Modelling Artefacts

Storrle et al. introduced the Software Engineering Model Index (SEMI) which
contains a list of contemporary model repositories [24]. We take this as a
starting point for our search of software modeling corpus. In fact, 3 our of 8
corpora to be reviewed in this section are listed in SEMI. In the paper, the
authors also outline four main challenges when building a successful model
repository: i) Archiving (“How to archive data with very high reliability, for
very long time, yet readily accessible, and economically viable?”), ii) Access
Support (“How to search for models?”), iii) Intellectual Property (“How to
manage intellectual property such as models?”), and iv) Incentives (“How to
motivate researchers/practitioners to publish their models?”).

The BPM Academic Initiative (BPM AlI) is a platform where business
process models are shared for teaching purposes [30]. A business process model
is defined as a set of business activities and execution constraints between these
activities [31]. It can be used to describe complex interactions between business
partners and to indicate related business requirements on an abstract level.
Currently, BPM AT claims to host 29,285 business process models in various
machine-readable formats. The dataset has however not been updated since
2012. The process of collecting models is not clearly mentioned; apparently,
most of the models in the dataset derive from students as part of modeling
assignments.

The Repository for Model Driven Development (ReMoDD) is created to
support researchers and practitioners in sharing exemplar models and other
modeling practices [25]. Currently, it contains around 90 modeling artefacts,
including models in different modeling languages and artefacts of some MDD
conferences. Models are stored in various formats, mostly PDF but also some
in XMI.

The Open Models Initiative (OMI /EL similar to ReMoDD, offers a platform
that allows researchers and practitioners to share models. It is currently hosting
around 70 models stored mostly in image-formats. There is no report on whether
the models are derived from industrial or academic contexts.

Karasneh et al. used a crawling approach to automatically fill an online
repository with so far more than 700 model imagesﬂ from Google Image
Search [26]. Registration is not required in order to get access to the repository.
The repository also provides a comprehensive search which could be used to
form and share subset of the data.

Mengerink et al. collected a data set of 9,188 OCL expressions derived from
504 EMF meta-models in 245 GitHub repositories |27]. To this end, the authors
firstly performed a couple of GitHub searches, then downloaded all .ecore and
.ocl files in the result list, then removed all duplicated files and finally parsed
all the unique files to extract OCL expressions.

Basciani et al. built MDEForge as a web-based modeling platform which
aims at fostering a community-based modeling repository [28]. The number of
meta-models hosted in this platform is not available.

GenMyModeﬂ is a web-based online tool that supports collaborative mod-

Thttp://openmodels.org
%http://models-db.com/
Shttps://www.genmymodel . com/

http://openmodels.org
http://models-db.com/
https://www.genmymodel.com/

130 CHAPTER 6. PAPER E

eling for UML, BPMN, RDS, and flowcharts [29]. At the time of writing,
GenMyModels claims to host about 777,000 diagrams. However, it is not clear
how many of these diagrams are open to public access and how many are
private.

The Lindholmen datasetf] contains more than 93,000 UML models from
more than 24,000 GitHub repositories |137]. Different from the above-mentioned
corpora, the Lindholmen dataset also includes meta data of the projects where
UML models are used. This enables researcher to study the use of UML models
in their context, e.g. How frequent and in which phase of the project are
the models updated? etc. The UML models are collected from GitHub using
complex settings of tools and technologies (such as image processing). The
models are provided in various formats, mostly in .uml, .xmi and image files.
This is currently the biggest data set of UML models.

6.2.2 Other Software Architecture Collections

Ding et al. present the retrieval and analysis of a collection of SADs obtained
from 108 open source projects |38]. We have reviewed this document and have
run into two issues. Firstly, many SAD links expired, resulting in 404-browser
errors. This means that either the document was moved or deleted, thus, the
URL pointing to it was faulty. Secondly, for the SAD documents that we could
find, we found they were of ‘mixed quality’: some documents were identified as
SAD but are almost empty or contain only little text.

The well-known book “The Architecture of Open Source Applications” is
a collection of SAD of 48 open source applications [158]. In particular, each
chapter describes the architecture of an open source application: how it is
structured, how its parts interact, etc. It is noted that there is no uniform
representation of the architectures. In fact, every chapter in the book has its
own structure and uses different kinds of diagramming notations.

6.2.3 Mining Architectural Knowledge

Another relevant area of empirical studies in software architecture focuses on
the notion of ‘mining’ artefacts for architectural knowledge.

The work by Soliman et al. aims to mine architectural knowledge from
natural language sources, in particular from StackOverflow [159]. They apply
advanced natural language processing and machine learning algorithms for the
recognition and classification of sentences.

Musil et al. describe a novel architecture knowledge management approach
with similar objectives: use information retrieval and natural language pro-
cessing to extract architectural knowledge about systems from all documents
available in project repositories [160]. Their approach CAKI (stands for Con-
tinuous Architectural Knowledge Integration) consists of 4 stages:

e Information acquisition - where relevant data is to be collected.

e Architecture knowledge synthesis - where architecture knowledge is auto-
matically synthesized from raw data.

‘http://oss.models-db.com/

http://oss.models-db.com/

6.2. RELATED WORK 131

e Architecture knowledge dissemination - the stage at which architecture
knowledge is represented to relevant stakeholders in various ways.

e Feedback - where inputs from user and experts are used to improve the
learning model.

CAKTI utilizes ontology-based models as a basis for personalization mecha-
nisms and exploratory search. However, in the paper, the ontology models are
not presented. This work involved industrial collaboration with Siemens.

Lin et al. propose a system (called IntelliDE) in which software big data
could be aggregated, mined and analysed to provide meaningful assistance
for developers across the software development processes [161]. Similar to
CAKI, IntelliDE follows a 3-stage knowledge discovery approach, including
Data Aggregation, Knowledge Acquisition and Intelligent Assistant. For each
stage, a number of key research issues and challenges are listed. Unlike CAKI,
IntelliDE uses a so called Software Knowledge Graph as for “storing knowledge
in software domains, projects and systems”. In order to construct such graphs
from various knowledge sources, a process of parsing and extracting knowledge
entities is proposed. However, no extra review or feedback steps are undertaken
in order to validate the knowledge to be added to the graph.

6.2.4 Scientific Workflow Systems

In various scientific disciplines, software tools have emerged for automating
sequences of (typically data-intensive) steps of a scientific analysis or experimen-
tal procedures. Such system are called ‘scientific workflow systems’ and these
build on the approaches of general workflow management tools. Automation
of workflows enables the reuse, replication and incremental improvement by
making changes to the details of the study. In a survey of existing scientific
workflow technology, Barker et al. listed 14 frameworks from the business and
scientific domain [162]. Among the listed frameworks, some specialised in par-
ticular fields of science, while others aim to be more generic. In the paper, the
authors suggest 6 key factors to consider when developing scientific workflow
systems, including: i) collaboration is key (to avoid overlapping requirements
and reinvention of any wheels); ii) use a conventional scripting language; iii)
reuse existing workflow language; iv) research your domain (before building
the systems); v) stick to standards; and vi) have a portal-based access.

In the Software Engineering domain, we find eSEE - a novel framework to
support large-scale experimentation and scientific knowledge management in
Software Engineering proposed by Travassos et al. [163] - the most relevant. Four
main requirements of eSEE are: i) having integrated experimentation support
tools; ii) being a Web System; iii) using of e-services based paradigm; and
iv) providing knowledge management mechanisms. The architecture of eSEE
consists of three three distributed macro-components, i.e. Meta-Configurator
(MC), Instantiation Environment (IE) and Execution Environment (EE). The
framework, however, does not support automated execution and data analysis
from the experiment specification for technology-oriented experiments.

132 CHAPTER 6. PAPER E

6.3 Experiences in Creating & Sharing a Col-
lection of UML Software Design Models

In this section, we summarize our experiences in building, curating and sharing
the Lindholmen Dataset which is an extensive dataset of more than 93,000 UML
models from more than 24,000 GitHub projects [137]. This dataset also contains
meta-data of the projects (such as commits, commit messages, committers,
etc.) which enables researchers to study UML models in their usage context.

6.3.1 Models Extraction from GitHub

The data extraction process is described in detail in [164]. In this section, we
provide a brief summary of the extraction steps and highlight the challenges
when extracting the dataset. In general, the data extraction comprises four steps,
including: (i) Retrieving the file list of all GitHub repositories, (ii) identifying
potential UML files, (iii) examining (and manually evaluating) the existence of
UML notation in the obtained files, and finally (iv) collecting the meta-data of
the repositories where a UML file has been identified.

In step (i) and (iv), we used the GitHub AP]E| to retrieve the list of files from
GitHub projects as well as to query meta-data from the projects that contain
UML models, respectively. At these stages, we faced two big data retrieval
challenges. Firstly, the GitHub APIT limitation (of 5000 requests/hour) could
hugely affect the crawling time. In particular, with up to three GitHub calls
for each repository, given the limit of 5000 requests/hour, it would take around
14 months to perform the retrieval of data in step (i). We worked around
this by downloading the JSON files in parallel with over 20 active GitHub
accounts, which were donated from fellow colleagues and students during this
process. This reduced the time span to approximately one month. Secondly,
while GitHub is a dynamic environment where projects change over time, we
could only work on a static snapshot (and thus, somehow outdated version)
of it (captured by GHTorrent). In particular, many repositories might have
been removed or made private in the time that goes from GHTorrent obtaining
its data (which is before February 15¢ 2016) and our request to the GitHub
API (during Summer of 2017). This resulted in a huge number of repositories
(around 3 million) where we obtained an empty JSON file or an error message
from the GitHub API.

In step (ii) and (iii), the main aim was to identify those files that actually
contain UML models. There were two main challenges. Firstly, browsing through
the enormous amount of files stored on GitHub is a challenge itself. Secondly,
the file formats in which UML models are stored are diverse, making it difficult
to develop a systematic searching approach. For example, UML models are
often stored as images to which simple textual searching approach does not
work - it required images processing technology. In fact, we split the files into
textual-format and image-format, and developed different technologies to treat
them separately. Details about the technologies that were used can be found
in [137].

Last but not least, since some steps are manually done and therefore are

Shttps://developer.github.com/v3/git/trees/#get-a-tree

https://developer.github.com/v3/git/trees/#get-a-tree

6.4. CHALLENGES FOR BIG-DATA DRIVEN EMPIRICAL STUDIES IN SOFTWARE
ARCHITECTURE 133

expensive, we could not provide updates on the dataset in a frequent and
automatic manner. This results in a number of threats to the availability of
models in the dataset, such as models become no longer available/accessible
and missing mid-flight projects in which UML models were introduced later
than the time of analysis.

6.3.2 Data Curation

Having the dataset collected, we moved on to more in-depth studies about
use of UML models in the context of open source projects. As these studies
require a set of projects and models with specific characteristics, the dataset
had to be curated. For example, when studying the practices and perception of
UML use, we were interested in the projects where we could observe long-term
use of UML models and collaboration between contributors [165]. To obtain
these projects, we applied some filters on the number of contributors, number
of commits and active time-span. With that, we are willing to accept false
rejections (e.g. ‘serious’ projects that use UML might be rejected) in favour of
no (very low) false positives.

Successful curation can also be achieved by adding extra knowledge to the
existing dataset. In particular, we performed a number of classifications: a)
Classifying types of UML models was done manually and b) Automatically
classifying reverse engineering diagrams and forward design diagrams [166].
The classification results were then added/annotated in the dataset.

6.3.3 Sharing the Lindholmen dataset

The availability of the Lindholmen dataset has attracted researchers in the field
to use and study the data set. For example, El Ahmar et al. used more than
3500 diagrams from the dataset to study the use of visual variables (such as size,
brightness, texture/grain, etc.) in UML models in open source projects [61].
Schulze et al. used 50 sequence diagrams from the Lindholmen dataset for
evaluating their automatic layout and label management [64]. Unfortunately,
the results of these research have never been integrated/annotated into the
Lindholmen data set because of two reasons. Firstly, these investigations have
been conducted with small subsets of the dataset, making it hard to generalize
the research result to the whole dataset. Secondly, there has been no systematic
and convenient way for researchers to integrate their findings to the data set.

6.4 Challenges for Big-data Driven Empirical
Studies in Software Architecture

In this section, we discuss the challenges (C) for conducting big-data driven
empirical studies on software architectures. The discussion reflects our ob-
servations on research in the field as well as our experience in building the
Lindholmen dataset.

C1: Finding a common representation for software architectures.
Source code is always represented as some type of text-file that conforms to
some formal grammar. For example, object-oriented source code consists of

134

CHAPTER 6. PAPER E

C2:

classes, methods and interfaces. Indeed the aim to be ‘compilable’ enforces
that the source code conforms to a formal grammar. Notwithstanding the
existence of standards for software architecture and UML, there is a very
high diversity in the representation of software architecture across different
projects. Software architecture documents may be represented in formats
as diverse as Word (doc(x)), PDF, HTML, PowerPoint (ppt), among
others. The content of software architecture documents is a mix of natural
language, images, and sometimes tables and diagrams. Indeed the content
is a mix of descriptions of the system architecture, sometimes including
design principles, design rationale, and even source code examples. This
complicates the definition of a common representation (data-model) of
which information to represent for each architecture.

Capturing relevant context information. Source code has as main
purpose to represent the implementation in a manner that is compilable
and executable by a computer. Software architecture on the other hand,
serves different purposes to different consumers over time: in early stages
of projects, architecture documentation is typically used to create a shared
understanding among architects. Later on such documenting happens
after (or in concert with) making the implementation, and serves as to
align architecture and implementation. Moreover, the documentation
serves as a reference for developers to record which parts of the system
have been implemented and stabilized. Also, testers of the software draw
on information from the software architecture, e.g. to understand quality
objectives as well as scoping decisions. In open source repositories, we can
observe the production of architecture, but not its use/purpose/aim(s).
The way an architecture is used is key to analysing the benefits that
can be harvested from it. This includes processes and practices of the
project (such as quality assurance, processes for monitoring conformance
of implementation, or the way in which architecture is used in producing
implementation).

Indeed, the representation, completeness and level of abstraction of the
description of an architecture depends on the stage of the project it is used
in: at the start of a project, architectures may not be crystallized very
much, hence little of the system is represented by an explicit architecture
representation. For mature projects, architecture documentation usually
focuses on high level views of the system (so as to be able to provide
one overview of the system), especially in large software projects. As
a consequence, the representation will need to leave out many details.
In summary, when we want to understand the role of architecture in a
project, we need to consider as well various contextual factors, such as
the stage of development, project size and geographical distribution of
the development team. Fig generalizes the complex nested contexts
that influence the goals of architecture and thereby the various processes,
practices and tools used (generalized from [84]). This Figure illustrates
the empirical finding that there is a hierarchy of contexts that influence
how software practices are used. There are organizational and project
factors that include the goals of the stakeholders. For example, these may
prioritize delivery date over quality of the software. Such priorities in turn

6.4. CHALLENGES FOR BIG-DATA DRIVEN EMPIRICAL STUDIES IN SOFTWARE
ARCHITECTURE 135

affect the ways in which architecting is done. In particular they will affect
the goals of doing architecting and via this also the processes, practices
and tools used for architecting. Indeed, for a true understanding of the
value of achitecture practices, all these context factors would need to be
understood. However, this contextual data is typically not obtainable via
‘artefact mining’ approaches.

Figure 6.1: Impacts of contexts to software modeling approach

Organization Context
/ Project Context

’ Project }i:’ Stage ‘ Ve N
lhas l SE Approach L
. drives pproach to architectin
has "
’Stakeholdeh Goal |——>| SE-Goals I 5 Modeling Goals
drivi é frives gf
drives 2 X o
SE-Process —%—» Modeling Process g
o >
drives 8 drives 53
s 2 | ———— 3
SE-Practices |9?S 5 Modeling Practices '§
drives g drives g
" g " g
3//

\& \SE-Tools Modeling Tools

C3: High effort for crawling big-data. Empirical research into software
architecture requires a non-trivial amount of software architecture (em-
pirical) data in order to draw representative findings and conclusions.
However, collecting/building such dataset is challenging for the following
two reasons.

Firstly, due to the vast variety in representation and use of software
architecture, identification of such SADs is a huge challenge per se. This
becomes even more challenging when searching for SADs in big data such
as GitHub, SourceForge. For example, when building the Lindholmen
dataset, it was impossible to manually scan through the whole GitHub
data to look for UML models. We had to apply some heuristic searches
and develop automated methods to identify UML models in different file
formats, including images. Building up such technology was a challenging
and time consuming task in itself [117].

In addition to the unavailability of automatic identification methods, it
is worth noting that the limited (human- and machine-) resources could
hugely affect the amount and the quality of software architecture data to
be collected. In particular, studies that involve the identification of SADs
often target a small amount of SADs because of limited human resource
within the research team (for identifying, verifying, maintaining the data),
thus running the risk of data not being representative. Moreover, to many
studies that use the GitHub API (such as [167]), the limitation of a
maximum of 5000 request per hour is a technical challenge that limits

136 CHAPTER 6. PAPER E

the speed and scope of SADs search.

C4: High effort for curation. Collecting software architecture artefacts
from open source requires a lot of curation. Firstly, public repositories are
frequently very ‘noisy’: they do not only contain software development
project, but also, e.g., student projects and course material [127]. Secondly,
as argued in the previous section, SADs exist in a very wide variety.
Studies that aim to employ ‘big data’/machine learning techniques must
realize that there are “many different animals in the SAD-zoo” that share
very little commonality. One way to understand the zoo of SADs is to
enable community/crowd-sourcing curation, e.g., through annotation and
classification. We elaborate on the need for curation in the next section.
Another recommendation is to set up mechanisms as early as possible
to monitor and improve the quality of the dataset. Given that typically
large volumes of data are involved, this must be automated as much as
possible. This is complicated by the fact that each ‘entry’/datapoint for
one software architecture is very rich in many different types of attributes
and context factors.

C5: Collaborating in empirical software architecture research. Col-
laboration has become a common practice in doing big-data driven
empirical research. This is due to the fact that such type of research often
requires a huge amount of efforts to which a single researcher might not be
able to cover all parts by his own. For example, in order to build the Lind-
holmen dataset, collaboration between researchers who are specialised in
specific fields was necessary - some researchers were more specialised in
mining big-data from GitHub, some others were responsible for developing
techniques for detecting UML content in arbitrary files. Prior to forming
the working team, it was important to establish the research intent and
look up for potential collaborators via researcher’s own network. When
analysing data, the researchers needed to communicate with each other
on the steps and progress of data analysis as well as the preliminary
results. Team effort was also needed in developing a community around
the research. This included creating website, communicating with rele-
vant research groups at various conferences/workshops and responding
to (extra-feature) requests from the research community. However, the
level of (tool-)support for the collaborative empirical research activities
was far from sufficient. The authors of the Lindholmen dataset was not
aware of any tool that supports team-working for all the above-mentioned
activities.

6.5 Directions for a Community Infrastructure
for Big-data Driven Empirical Research in
Software Architecture

Given the challenges for big-data driven empirical research in software archi-

tecture, a solution could be to build up a community-based infrastructure that
enables researchers to share and reuse software architecture artefacts as well as

6.5. DIRECTIONS FOR A COMMUNITY INFRASTRUCTURE FOR BIG-DATA DRIVEN
EMPIRICAL RESEARCH IN SOFTWARE ARCHITECTURE 137

to collaborate in their empirical studies. In this section, we discuss the main
requirements (R) for building such an infrastructure (called “the infrastructure”
hereafter).

R1:

R2:

R3:

R4:

Be able to host big- & heterogeneous data of SADs. As men-
tioned in the previous section, to many empirical studies identifying and
collecting software architecture artefacts is a big challenge. Therefore,
the first and foremost requirement is that the infrastructure should be
built upon and be able to host enormous corpus(es) of software architec-
ture artefacts. Since the representation of architecture artefacts is highly
heterogeneous, the hosting solution might need to be flexible enough to
integrate and handle both structured and unstructured data (such as
design documentations, requirements).

Share not only data but also software architecture knowledge
and analysis. Having access to a huge corpus of software architecture
artefacts is a big advantage, but it is not enough. Often, researchers
and practitioners collect data for their studies with a set of criteria in
mind. In many cases, the criteria concern not only the data itself, but
also additional knowledge about and existing analyses on the data. For
example, El Ahmar et al. browsed the Lindholmen data set manually to be
able to collect 3500 UML diagrams with different visual variables for their
study [61]. In the study, the authors found many UML diagrams where
color variable was misused and thus, could have had a negative impact
on the communication where the diagrams were used as an intermediate.
The additional knowledge and analysis (hypotheses, method & results)
could potentially serve as an input for other researchers to make a more
knowledgeable selection of data or even to make a follow-up study.

Enable links to contextual data. Mining studies have given a huge
boost to empirical studies on software development, and source code-
related studies in particular. Indeed, various important open questions
related to software architecture require studying the relation between
the architecture and the source code. For example: how does software
architecture affect the quality of the source code or how does architecture
affect the evolution/maintainability of a system.

Support evolving artefacts and architectural knowledge. Soft-
ware development is an evolving process in which software artefacts,
including architecture artefacts, are constantly updated during project’s
life time. Accordingly, software architecture and corresponding archi-
tectural knowledge are subject to change as the project progresses. In
order to facilitate research about evolution of software architecture, the
infrastructure should provide means for managing versions of not only
software architecture artefacts, but also corresponding architecture knowl-
edge. While there have been numerous solutions for managing versions
of software artefacts, collecting, organizing and administrating versions
of architectural knowledge remain challenging. This is mainly due to
the fact that the process of discovering architecture knowledge is not
always fully-automated, making it hard to collect multiple versions in a
frequent and systematic manner. Indeed, the infrastructure should help

138

CHAPTER 6. PAPER E

R5:

R6:

R7:

RS:

RO9:

to mitigate this issue by allowing users to define their scientific workflow
and enabling reuse of analysis and computational services.

Keep annotations separately. Ongoing research efforts require the
enriching of empirical data by annotations. For example, annotations
delineating the location of features in source code (such as in |168]), or
annotations indicating whether a piece of source code (or architecture) is
related to security. Performing annotations invasively by adding annota-
tions into the artefact itself is not scalable. In fact, this will become very
messy when multiple types of annotations need to be combined. Indeed
it should be a requirement that one artefact from a software project can
be annotated by multiple parties. Hence, we should implement exogenous
ways of annotating the artefacts found in software projects, i.e., the
annotations should exist outside the actual artefact. This triggers the
question on how to refer to particular parts of an artefact (source code
or document) in order to link an annotation to a fragment of an artefact.

Crowdsource annotation. Annotating large systems, possibly from
multiple perspectives is a colossal task. Possibly in some cases, such
annotations can be done automatically, either using external sources or
through machine learning algorithms. For those cases where automation
is impossible, this task is probably best addressed as a community-effort.
For supporting such efforts, the tooling-infrastructure should support
some way of crowdsourcing. When opening a system up for annotation
and crowdsourcing, one would need to also introduce mechanisms for 1)
authentication, ii) quality assurance, and iii) traceability of annotations.

Enable comparison & aggregation of research findings. Empirical
studies in software architecture sometimes contradict in their findings.
One of the main reasons is that different studies base their analyses and
findings on different samples of the population, thus, observe different
phenomena. This infrastructure provides a way for different research
to study on the same empirical process and possibly on the same data
sources, therefore it should also enable comparison and aggregation
between research findings from different studies.

Encourage discussion and peer-review. A benefit of joining a com-
munity is to get early feedback and support. This benefit should therefore
be considered as a core value when building the infrastructure. As sharing
interests in studying software architecture, researchers in the community
should indeed be able to report their experience and give comments/ques-
tions/feedback on other studies. The infrastructure should learn from
scholarly social network such as ResearchGate EI to encourage members
to interact and exchange knowledge such as bonus points and badges for
reviewers/commenters.

Promote collaborative research and enrich a collaboration net-
work. Many initiatives in creating a corpus for software architecture
artefacts have become inactive or left outdated. Only 5 out of 12 reported

Shttps://www.researchgate.net/

https://www.researchgate.net/

6.6. OVERVIEW OF COSARI 139

corpora in the SEMI index [24] are active at the time of writing this
chapter - none of them have been updated since 2014. It seems these
corpora have not been successful in growing a research community around
them. A reason could be that inadequate effort has been spent on pro-
moting the corpora as well as maintaining the research networks around
the corpora. This should be taken as a lesson learned when building the
infrastructure. For example, the following methods are successfully used
in ResearchGate: 1) suggest researchers with related studies, analyses and
questions/answers; ii) allow researchers to invite other researchers (that
might be interested) to review/visit their studies; iii) support announcing
research plans and calls for joint efforts (and then team composition).

While the above list of requirements and desiderata is by no means complete,
it should be a starting point to capture many of the core characteristics.
As the infrastructure aims at facilitating collaboration within a scientific
domain, requirements for building a scientific workflow management system are
relevant. In particular, together with the above-mentioned nine requirements,
we would recommend to consider an addition of nine requirements mentioned by
Ludéscher et al. [169] when building the infrastructure (Table [6.1] summarises
these requirements).

6.6 Overview of CoSARI

In this section, we present our proposal for the novel framework CoSARI
(Collaborative Software Architecture Research Infrastructure) and our ongoing
efforts to construct it.

6.6.1 Overview of the CoSARI Framework

Fig. illustrates the architecture of CoSARI, which is composed of three
layers: Data Storage layer, Business SaaS layer and Presentation layer.

6.6.1.1 Data Access Layer

This layer provides access to the data sources of the system, which consists of
the following:

Raw Data Storage stores SADs as well as contextual data related to
the project that the SAD belongs to (R1, R3). The contextual data includes
amongst others: source code, requirements, testing documents. Data in this
storage is crawled from common code sharing systems (such as GitHub, GitLab),
issue tracking systems (such as JIRA) and developer communication channels
(such as Slack).

Research Notebook is the component that stores research profiles of all
empirical studies conducted on the system, thus enables sharing of scientific
analysis on software architecture (R2, R4). The research profile might consist of
hypotheses, analyses, queries, progress, result, etc. of a specific empirical study.
This component also keeps track of the human records of empirical research
such as research individuals and teams which are essential for promoting
collaborative research network (R8, R9)

140 CHAPTER 6. PAPER E

Table 6.1: Nine requirements for building a scientific workflow management
(by Ludéascher et al. [169])

Requirement

Content

Seamless access to
resources and
services

Using web services for remote service execution and
remote database access.

Service composition
& reuse and
workflow design

Web services should be constructed in a way that
can be combined to do complex tasks. This is similar
to the idea of using using micro-services (in SOA
architecture).

Scalability

Should support data-intensive and compute-intensive
workflows.

Detached execution

Long running workflows require an execution mode
that allows the workflow control engine to run in the
background on a remote server, without necessarily
staying connected to a user’s client application that
has started and is controlling workflow execution.

Reliability and
fault-tolerance

To make a workflow more resilient in an inherently
unreliable environment, contingency actions must be
specifiable, e.g., fail-over strategies with alternate web
services.

User-interaction

Allows users to inspect intermediate results and select
and re-rank them before feeding them to subsequent
steps. Allows user to reconnect to the running in-
stance and make a decision before the paused (sub-
)workflow can resume.

“Smart” re-runs

A “smart” rerun would not execute the workflow from
scratch, but only those parts that are affected by the
parameter change.

“Smart” (semantic)
links

Assists users in workflow design and data binding
phases by suggesting which actor components might
possibly fit together, or by indicating which data sets
might be fed to which actors or workflows.

Data provenance

The results of a conventional experiment should be
reproducible, computational experiments and runs
of scientific workflows should be reproducible and
indicate which specific data products and tools have
been used to create a derived data product.

6.6. OVERVIEW OF COSARI 141

Figure 6.2: Architecture for Architecture Research Framework

Data Exploration Interface Collaborative Research Workspace

Explore & . I AK Feedback/Evaluation Research Team Experiment
Visualization . A
Query Summarizer Collector Interfaces workflow interfaces

N N
xw'"'":'" Research Mang.\ e AK Management
resul . knowledg A
Services (RMS) Services (KMS)

Statistics .

Scil c workflow ﬁg’f Crowd-source
S .

/\ management 4 services
\requests » oejo : Expert Review

existing -

; knowledge| (s
Reverse Team/pro;ect. <« A Ontology &
NLP engineering) management services =2t =Semantic models
S —

AK Storage

< ——
Annot Meta
ation data

Presentation
N /)

Analytical Services (AS)
Design Ab§tract Corresp Met
flaws ion ondence
Extraction Services (ES)

oretng
e

)

Business Layer (SaaS)
N (7

Raw Data Storage Research notebook

Queries, visualizations,
annotations, analysis
scripts (R)

Data Storage

External sources
(JIRA, Slack...)

External sources
(GitHub, GitLab...)

Third party apps

Architecture Knowledge Storage (AK Storage) is dedicated to stor-
ing all architecture knowledge generated on top of the raw data. Data in this
database can be annotations, meta-data, quantitative or qualitative assessment
of the software architecture artefacts. Research Notebook and Architecture
Knowledge Storage are kept separately from the Raw Data Storage for the
reasons mentioned in R5.

Data from these databases can be provided via a API for third parties to
use.

6.6.1.2 Business Layer (SaaS)

This layer provides services for the following main tasks: i) extracting and
analysing data from software artefacts in order to generate new knowledge
on top of the raw data ; ii) managing the process of reviewing and retrieving
architecture knowledge, and iii) managing the collaborative scientific-workflow
and maintaining research networks. This layer should be built on a Software-as-
a-Service (SaaS) architecture as this would allow researchers/practitioners to
create and run their own analyses on the system. This is expected to increase
the flexibility of CoSARI towards hosting and analysing various types of input
data (as mentioned in R1). The four main components of this layer are the
following:

Extraction Services (ES) are responsible for accessing and extracting
data from the Raw Data Storage. For example, this could employ services for
parsing and extracting various information from source code. This could also

142 CHAPTER 6. PAPER E

contain numerous natural language processing (NLP), image processing (IM)
and data-mining services to extract useful information from the unstructured
data. Another example could be services for reverse-engineering the software
design from source code. This could serve as a basis for various analyses about
conformance of implementation to requirements and original design, etc.

Analytical Services (AS) employ methods for analysing data collected
from the Extraction Services to provide qualitative or quantitative results for
answering research questions about the software architecture. The following
is an example of such a service: A service that computes the correspondence
between software design and implementation (source code). For this, the AS
service needs ES to provide a list of class names from source code and a list of
class names from the design documentation of the project. Then, the AS service
is responsible for checking the similarity between the names and calculating
the correspondence rate (as the naming convention used when designing and
coding might be very different, this is a challenging task itself). Other services
that might fall in this layer could be calculating design flaws (from source code
and architecture documents), analysing the role of software components in
design of a system, establishing mappings and traces between software artefacts,
building statistical analysis, etc.

Collaborative Research Management Services (RMS) provides core
services for managing the collaborative work-flow for software architecture
research (R9). This should look similar to existing scientific work-flow manage-
ment systems such as Kepler [169] with additional support for team-work and
outreach of the research. In particular, using the services, research teams should
be able to discuss, modify and experiment with various experimental settings.
RMS also allows research teams/individuals to search and compare research
profile and findings from other empirical studies (R7). Outreach services aim
at promoting the research within and outside of CoSARI by various activities
(depending on the stage of the projects), for example: i) supports creating a
project and looking for potential co-researcher in the network; ii) supports
announcing research result/event/milestone within and outside of CoSARI;
iii) allows other researchers to follow/subscribe specific studies; iv) manages
rewarding system to encourage researchers to contribute more to projects; etc.

RMS interacts with the Research Notebook in order to store and update
research profile. Besides, RMS delegates management of research findings (and
software architecture knowledge) to the Architecture Knowledge Management
Services (KMS).

Architecture Knowledge Management Services (KMS) are services
that manage architecture knowledge within CoSARI. In particular, the KMS
have two main tasks: i) Collecting and storing new architecture knowledge; and
ii) Generating meaningful answers to questions regarding software architecture
of a specific system.

Regarding the first task, new knowledge is derived from two main sources,
including human-intelligence (e.g., experts and crowd-sourcing assessments)
and results from empirical studies. The request to store/update architecture
knowledge is directed from RMS or the crowd-source services to KMS (R6).
The new knowledge might need to be reviewed before being stored /updated at
AK Storage.

Regarding the second task, the KMS makes use of an ontology which de-

6.6. OVERVIEW OF COSARI 143

scribes generic concepts used in software architecture and relationship between
the concepts. This allows KMS to be able to generate answers to both pre-
defined questions and user-articulated questions (R2). The answers will then
be returned to the RMS or to the Presentation layer. Feedback from experts
and users to the answers can be used to improve the vocabulary of the ontology.

6.6.1.3 Presentation Layer

This layer provides interfaces for end-users to explore and start a new empirical
research project on CoSARI. The interfaces can be split into the two following
categories:

Data Exploration Interface which supports users to search, identify
and understand the architecture artefacts to be used in their future research.
Example applications in this layer include textual summarization or graphical
visualization of software architecture, dashboards that show architecture quality,
etc.

Collaborative Research Workspace which supports users with every-
thing to create, corporate on a collaborative research project. This also provides
application forms for collecting feedback from users and experts. Section [6.6.2]
shows the use of applications in this layer with more details.

6.6.2 Main Use-cases of CoSARI

In this section, we provide two main use-cases of CoSARI: i) Identifying a set
of SADs to study; and ii) Starting and managing an empirical research project
on CoSARI.

Use-case 1: Identifying the set SADs to study.

A researcher wants to search for an architecture dataset in CoSARI for
his study. The researcher can either browse the existing (public) datasets
and studies hosted by CoSARI or perform a search to filter relevant data.
In particular, the researcher can choose to apply different filters on different
properties of the data. For example, he can search across all UML diagrams
that contain a specific “search-term” and are large-sized (e.g. have more than
25 classes).

Maybe the researcher wants to filter on a property that is not yet provided. In
that case, he can implement and run his own extraction services and analytical
services to extract the property from the Data Storage. Maybe the researcher
wants to further understand a specific dataset or project; he can then consult
visualizations or summaries of the architecture data.

After this step, the researcher should have identified a dataset to start with
his experimental study.

Use-case 2: Starting and managing an empirical research project.

After identifying a dataset, the researcher can start an empirical research
project by creating a work space for the project. This includes: i) creating
research profile and work plan; ii) defining scientific workflow; and iii) inviting
fellow researchers/practitioners to join the projects. CoSARI can suggest re-
searchers that might be interested in joining based on matching of their research
profiles to the chosen data-set and research topic; ii) creating the experimental
workflow, which consists of small steps of data extraction & analysis, data
visualization and statistical test, etc.

144 CHAPTER 6. PAPER E

As the project runs, CoSARI supports team-work by allowing team members
to cooperate in creating, configuring and executing analytical services. A
research team can also use outreach services provided in CoSARI to call for
joint efforts as well as to get feedback about the project’s approach. Feedback
to a research can be given via comments and discussions. The system records
updates on the experimental approach and results into the project notebook
(profile). As a result, the history of the research approach can be traced.

6.6.3 Ongoing and Future Work

In this section, we present our on-going efforts and future work on building
CoSARI.

Creating raw data storage & querying interface. The Lindholmen
dataset of UML designs is the initial dataset to be part of the core database
for CoSARI. We are constantly working on curating this dataset, for example
by labeling UML diagrams with their type (Class Diagram, Sequence Diagram,
etc.) and by identifying reverse-engineered from forward-design diagrams [166].
We provide access to the Lindholmen dataset via a website and a REST
API (these are currently under testing and not yet available for use). In
particular, the website would allow users to search for UML diagrams with
multiple filters at both project level (such as project name, founder, number
of commits/stars/issues, etc.) and model level (such as model name, type of
UML model, number of elements inside, etc.). Fig. shows the advanced
search interface of the website when searching for GitHub projects that: i) have
project name containing the word "hotel", and ii) have at least 1 and maximum
10 UML diagrams, and iii) have class diagrams that are small/medium sized,
i.e. the diagrams contain from 3 to 15 classes. Fig. [6.3b|shows the search result
which contains 25 projects that match the advanced search.

Building an ontology of software architecture knowledge. As men-
tioned in a previous section, such an ontology is an essential part for the KMS
of CoSARI. The design of our ontology was originally inspired by the ontology
demonstrated by De Graaf et al. [170]. Some modifications were made for the
ontology to be able to capture different perspectives of software architecture,
i.e., by following a 4+1 architecture view model. Moreover, the ontology is also
able to reason about requirements, rationale and implementation regarding
software architecture. For example, the rationale behind a design option of
software architecture is expressed by arguments, constrains and assumptions
and results in specific technologies (e.g. libraries, languages, frameworks, etc.).
Fig. shows a part of the ontology (a full-size version is available online E[)
Tao et al. demonstrated how to use the ontology to compose answers to various
questions that are commonly asked by developers [171].

Future work. CoSARI is as of now a reference architecture and there are
lots of work to be done in order to implement such architecture. For example,
at the Data Storage Layer, data collected from different external sources are
heterogeneous, thus needed to be standardized/hamonized (e.g. popularity
metrics are different between GitHub and Bit Bucket). Thus, CoSARI should
be equipped with an ETL (Extract-Transform-Load) tool for hamonising the
data. At the Business Layer, as of now, the RMS has not yet been implemented.

"http://bit.ly/software-explanation-composer

http://bit.ly/software-explanation-composer

6.7. SUMMARY AND CONCLUSIONS 145

A first step toward implementing it would be to evaluate how much can be
reuse from existing scientific workflow management systems [162].

As CoSARI aims at supporting the research community of software archi-
tecture, getting early feedback from the community when building it is a must.
We plan to build a prototype of CoOSARI and conduct a user-study to assess
its usability (e.g. by using the System Usability Scale SUS [172]) and improve
it accrodingly.

6.7 Summary and Conclusions

In this chapter we explored the topic of doing big-data driven empirical studies
in software architecture, and in particular reflected on what an infrastructure
would look like that could support a community to do collaborative research
on this topic. We pointed out that we can build on earlier works in the area of
scientific workflow systems and software knowledge discovery. Also we discussed
several existing and ongoing effort in creating large collections of software
architecture representations (either models or complete design documents).
We discussed some lessons learned as well as remaining challenges and future
directions. Building on these experiences, we proposed a reference architecture
CoSARI that can serve as a starting point for our community towards building
a common infrastructure for performing collaborative empirical research in
software architecture.

146 CHAPTER 6. PAPER E

Lindkolmen Database

Advanced search :
Expand the type of result you want and fill the search fields which match your requests.

. Project

Project level criteria:

hotel

1

. Diagram

Diagram level criteri

EEE T O

Select one type: O Class ® Sequent
Class gram level criteria:
:

[B pocumentation

Documentation level criteri

EEE BT O

(a) Advanced Search user interface

Lindholmen Database QUERY UPLOAD ABOUT LOGI

CETEECTEMEEET] Number of results: 25

Tyger-Waterfront-Hotel

UML models: 3 Overall quality:

Founder: AlecErasmus Project type: N# of commits : 2

N of xmi representation: 1
N# of docs:

Class diagram: Sequence Other diagram:

e

XMI: UML: NG:

#2 Hotelio

UML models: 1 Overall quality:

Founder: Aris1353 Project type: N of commits : 15

N# of xmi representation: 1
N# of docs:

Class diagram: Sequence Other diagram:

s

XM UML: MG:

(b) Search Result UI - “card” view

Figure 6.3: GUI for sharing Lindholmen DB

6.7. SUMMARY AND CONCLUSIONS 147

Figure 6.4: A part of the architecture knowledge ontology

models

modeledin

fodels
modeledin —

partOf

modeledin ppovides

modeledin
categorizedBy
explainedBy

categorizes
compriseOf
explains
realizedBy
models
satisfies performs
verifies
performedBy.

SatisfiedBy

satisfies i
itecturcFragment

resultsin

\ satisfiedBy

resultsIn

hof

partOf /hasnsFur basisFor

basisFor

148 CHAPTER 6. PAPER E

Chapter 7

Paper F

Does UML Modeling Associate with Lower Defect Prone-
ness?: A Preliminary Empirical Investigation

A. Raghuraman, T. Ho-Quang, A. Serebrenik, M.R.V. Chaudron,
B. Vasilescu

In Proceeding of the 16th International Conference on Mining Soft-
ware Repositories (MSR 2019), Montréal, Canada, May 26 - May
27, 2019 .

149

Abstract

The benefits of modeling the design to improve the quality and maintainability
of software systems have long been advocated and recognized. Yet, the empirical
evidence on this remains scarce. In this paper, we fill this gap by reporting on an
empirical study of the relationship between UML modeling and software defect
proneness in a large sample of open-source GitHub projects. Using statistical
modeling, and controlling for confounding variables, we show that projects
containing traces of UML models in their repositories experience, on average, a
statistically minorly different number of software defects (as mined from their
issue trackers) than projects without traces of UML models.

150 CHAPTER 7. PAPER F

7.1 Introduction

Software design is widely accepted as a fundamental step to developing high-
quality software [173].

By making designs developers go through a process of reflection, including
discussing trade-offs and alternatives, which should result in more thoughtful
designs and more maintainable systems [174]. The communication benefits
to explicit software design are also well understood: architectural decisions
that developers make become well-documented, reducing information loss and
potential misinterpretation during system implementation, and facilitating com-
munication among team members and the onboarding of new developers [174].
Both commercial |[174] and open-source software developers [165] alike recognize
these potential benefits.

Among modeling languages, the Unified Modeling Language (UML) is often
viewed as de-facto standard for describing the design of software system using
diagrams [165]. In practice, UML is often used in a loose/informal manner (not
adhering stricly to the standard [13]). Also UML is used selectively, focusing
on important, critical or novel parts.

Still, despite many expected benefits of UML modeling on software de-
velopment outcomes, the empirical evidence on the matter is scarce. Notable
exceptions include a study by Arisholm et al. |[L75], showing through two
controlled experiments involving students that, for complex tasks and after
a learning curve, the availability of UML models may increase the functional
correctness and the design quality of subsequent code changes. There is also
work by Ferndndez-Saez et al. [84] that suggests an overall positive outlook
of practitioners towards UML modeling in software maintenance. Finally, we
note an empirical study by Nugroho and Chaudron [174] of an industrial Java
system, showing that classes for which UML-modeled classes, on average, have
a lower defect density that those that were not modeled.

In this paper we study the intuitive and widely held belief that the use of
UML modeling, on average, should correlate with higher software quality. To
this end, we statistically analyse empirical data obtained from of 143 open-
source GITHUB projects. Many hypotheses about the benefits of UML models
on specific software maintenance outcomes have been proposed [5]. However,
more generally, one can expect that the mere practice of UML modeling as
part of software development indicates a high team- and process maturity and
deliberateness that, in turn, should lead to higher-quality code.

In search of evidence [176] to substantiate this belief, we start from a
publicly available data set of open-source software projects on GITHUB that
use UML models [164], and: 1) assemble a control group of GITHUB projects
not known to use UML models; 2) mine data from the GITHUB issue trackers
of both sets of projects (using and not using UML models), estimating their
defect rates (“bug” issue reports) as a proxy for software quality; and 3) use
multivariate statistical modeling to estimate the impact of having UML models
on defect proneness, while controling for confounding factors. Our results reveal
a small statistically significant effect of using UML models on defect proneness,
i.e., projects with UML models tend to have fewer defects.

7.2. METHODOLOGY 151

Table 7.1: GITHUB slugs for the 50 UML projects in our data set

abb-iss/SrcML.NET kite-sdk/kite
aegif/NemakiWare LibrePCB/LibrePCB
asciidocfx/AsciidocFX longkerdandy /mithqtt
boost-experimental /di lviggiano/owner
christophd/citrus lycis/QtDropbox
claeis/ili2db mbeddr/mbeddr.core
cligz-oss/keyvi MvvmFx/MvvmFx
collate/collate MyRobotLab/myrobotlab
Comcast/cats Particular/docs.particular.net
cpvrlab/ImagePlay pipelka/roboTV
crowdcode-de/KissMDA plt-tud /r43ples
dandelion/dandelion-datatables Protocoder/Protocoder
djeedjay/DebugViewPP rbei-etas/busmaster
droidstealth /droid-stealth robotology /codyco-modules
eProsima/Fast-RTPS SINTEF-9012/ThingML
Freeyourgadget/Gadgetbridge smartdevicelink /sdl _core
GeertBellekens/Enterprise-Architect-Toolpack SpineEventEngine/core-java
GluuFederation/oxAuth SpoonLabs/astor

gocd/gocd telefonicaid /fiware-cygnus
HPI-Information-Systems/Metanome timolson/cointrader
imixs/imixs-workflow UESTC-ACM/CDOJ
infinidb/infinidb uwescience/myria
IQSS/dataverse vicrucann/dura-europos-insitu
kamilfb /mqtt-spy xamarin/monodroid-samples
kermitt2/grobid xen2/SharpLang

7.2 Methodology

We designed a quasi-experiment to compare the defect proneness between two
groups of open-source GITHUB projects: a treatment group of projects using
UML models, part of a public data set [164]; and a control group of projects
sampled randomly using GHTORRENT [45]. We describe our data collection
and analysis process next.

7.2.1 Data

As part of a previous study [?], Robles et al. [164] released a data set of 4,650
non-trivial GITHUB projectsEI defined as having at least six months of activity
between their first and most recent commits and at least two contributors,
that use UML models, as identified by a manually-augmented automated
repository mining technique. As our operationalization of defect proneness
involves mining the projects’ GITHUB issue trackers (details below), we only
include in our treatment (UML) group those projects that had at least 30
issues on GITHUB as of March 2018; we determined the threshold empirically
after manual exploration of the data, to filter out largely inactive projects. In

! Available online at http://oss.models-db.com

http://oss.models-db.com

152 CHAPTER 7. PAPER F

Table 7.2: Breakdown of our data set by language

Java C# CH++

UML projects 31 6 13
Control group projects 63 10 20

addition, we identified using Google’s langdetect libraryﬂ those projects not
using English as their natural language, as our operationalization of defect
proneness makes expects issue discussions in English. We further filtered out
projects that are not primarily written in either C++, C#, or Java (as labeled
by GITHUB), the languages traditionally associated with UML. Next, we filtered
our projects with fewer than 10 stars on GITHUB and projects in which the gap
between the first commit and the first GITHUB issue is more than a year, in
an effort to further exclude student homework assignments and largely trivial
or inactive projects [127]. Finally, we excluded projects started before 2009 —
shortly after GITHUB itself started — such that all remaining projects could
have plausibly used the GITHUB issue tracker from the beginning. After all
these filters, the treatment group (Table[7.1)) consists of 50 UML projects.

Note the relatively small size of the treatment group after applying the
different activity-based filters when compared to the size of the original data
set by Robles et al. [164], and especially when compared to the size of GITHUB.
Still, to our knowledge, this is the largest data set on which our research
question has ever been studied empirically.

To assemble a control group of projects not known to use UML models, we
randomly sampled, using the March 2018 version of GHTORRENT [45], projects
that satisfied the same criteria (see above), for a total of 93 non-UML projects
after filtering; the version we queried is newer than the one used by Robles et
al. [164], hence we did not consider projects that did not already exist in the
older version. Moreover, we further ensured that the randomly selected control
projects were not already present in the treatment group.

Table presents a breakdown of our two groups of projects by program-
ming language.

7.2.2 Operationalization

Dependent variable. As a measure of a project’s defect-proneness and a proxy
for its software quality, we estimate the number of bug-related issues reported in
its GITHUB issue tracker. To identify bug-related issues, as opposed to feature
requests, tasks, or other types of issues commonly found in open-source issue
trackers |[177], we developed a Naive Bayes classifier [178]; a similar approach
was considered by Zhou et al. [179]. Our classifier takes as input the title and
the body of an issue, and produces one of two labels, bug or not bug. E|

To this end, we started with one author coding randomly sampled issues
as bug or not bug, until labelling 100 of each; unclear cases were discussed
between two authors, and subsequently resolved. After manual data labelling,

2https://pypi.org/project/langdetect/
3Classifier code and data analysis script available online at https://github.com/
adi1234567890/UML-defect-proneness

https://pypi.org/project/langdetect/
https://github.com/adi1234567890/UML-defect-proneness
https://github.com/adi1234567890/UML-defect-proneness

7.3. RESULTS AND DISCUSSION 153

we created 20 random splits of our labelled data containing two equally sized
train and test sets, trained the classifier on the train set, and computed the
accuracy on the test set; each split preserved the balanced nature of the data,
i.e., the train and test sets contained 50 bug and 50 not bug issues each. The
average accuracy of our classifier over the 20 random splits is 89%.

Ultimately, we chose the best performing of the 20 classifier instances and
ran it on the unlabelled data, i.e., all the issue reports of all the projects in our
UML and control groups. Overall, we labelled 29,983 issues as bug and 48,579
issues as non bug across the 143 (50 + 93) projects in our data.

Independent variables. Our main predictor variable is a dummy has UML
that distinguishes between the treatment and control groups. In addition, we
cloned all the GITHUB repositories locally and computed several variables
for co-variates and confounding factors: project age, i.e., the number of days
between the first and the most recent commit; primary programming language,
as reported by GITHUB; number of contributors, i.e., distinct commit authors
in the project’s history, after resolving aliases using a script publishecﬂ by
Vasilescu et al. [180]; number of commits, as a proxy for project complexity;
number of stars, as a proxy for popularity and size of user base; and programming
language, coded relative to Java as baseline. Moreover, we used Munaiah et
al.’s [181] reaperE' to compute: has CI, a dummy indicating whether or not
the project uses continuous integration; has license, defined analogously; test
suite ratio, the fraction of test lines of code to source lines of code; and code
comment ratio, the fraction of comment lines of code to all lines of code. These
variables control for projects’ level of maturity of their practices.

7.2.3 Analysis

To test our hypothesis, we build a multiple linear regression model, a robust
technology which enables us to estimate the effects of having UML models
on defect proneness while holding the other independent variables fized. We
diagnose the model for multicollinearity, checking that the variance inflation
factor (VIF) remains below 3 [182]; no variables violated the threshold. We
further check if modeling assumptions hold, and observe no significant deviation
from a normal distribution in QQ-plots and randomly distributed residuals
across the range. The model fits the data well, explaining 58 % of the variance
(Adj. R?). In addition to the regression coefficients, we also report the amount
of variance explained by each term (the Sum. sq. column in Table |7.3)), as
obtained from an ANOVA analysis; the relative fraction of the total variance
explained by the model that can be attributed to a particular variable can be
considered as a measure of its effect size.

7.3 Results and Discussion

Interpreting the regression summary in Table we observe that among the
control variables, only the number of commits, the number of stars, and the has
license dummy have statistically significant effects at 0.05 level or below. All

4https://github.com/bvasiles/ght_unmasking_aliases
Shttps://github.com/RepoReapers/reaper

https://github.com/bvasiles/ght_unmasking_aliases
https://github.com/RepoReapers/reaper

154 CHAPTER 7. PAPER F

Table 7.3: Linear regression model summary

Response: log(num_bug _issues)

Coeffs (Errors) Sum. sq.
(Intercept) 0.40 (0.63)
log(age + 1) 0.05 (0.09) 19.11%%*
log(num__commits) 0.53 (0.06)*** 58.35***
log(num__ contributors) 0.10 (0.09) 9.03***
log(stars + 1) 0.18 (0.05)*** 6.62%**
test suite ratio —0.24 (0.47) 0.02
comment_ratio 0.26 (0.54) 0.01
has_CI ~0.17 (0.13) 1.38
has_license —0.61 (0.28)" 2.73*
languageC# —0.19 (0.20) 2.60
languageC++ —0.33 (0.15)"
has UML —0.30 (0.14)* 2.24*
R? 0.61
Adj. R? 0.58
Num. obs. 143

***p < 0.001, **p < 0.01, *p < 0.05

three behave as expected: larger projects and projects with larger communities
(of users and, hence, potential issue reporters) tend to have more bugs reported,
other variables held fixed; projects that declare a license tend to have fewer
bugs reported.

Regarding programming languages, we note that C# projects are statisti-
cally indistinguishable from Java projects, while C++ projects tend to have
fewer bugs reported than Java projects, other variables held fixed.

Finally, we note a small (approximately 2 % of the variance explained by the
model) but statistically significant effect of UML models: other variables held
fixed, projects with UML models are expected to have about 35% (exp(-0.3);
note the log-transformed response) fewer bugs reported than projects without
UML models.

7.4 Threats to validity

We note several threats to validity [47].

Construct validity. We measured defect-proneness by computing the number
of bug-related issues in the issue tracker. However, issues and bugs may not
map one-one [183], e.g., several issues could pertain to the same bug, or one
issue may encompass several bugs. While imperfect, this operationalization is
common in the literature, e.g., [184]. We also note that projects may use issue
trackers outside of GITHUB, which we did not track, potentially biasing our
defect estimates. We tried to alleviate this threat by only considering projects
which used the GITHUB issue tracker substantially, thus arguably reducing the
risk that they also use external issue trackers. Another construct validity threat
stems from not accounting for different types of UML modeling, e.g., sequence
vs class diagrams, and lumping the different UML modeling techniques into
one group. We leave analysing this distinction for future work.

Internal validity. Given the multiple linear regression technology we used,
with controls for known confounding factors, our results should be relatively

7.5. CONCLUSIONS 155

robust. Still, we note a threat to internal validity from using a Naive Bayes
classifier to label issues. In particular, the algorithm works on the Naive Bayes
assumption that given the target label, each of the covariates is indepen-
dent [185], which may not always hold. Finally we also note that we did not
run the original UML mining technique on the control group projects to further
confirm absence of UML models in their repositories; since the original UML
data set was created by comprehensively mining every project from GHTOR-
RENT, we assume that the risk of mislabeling non-UML control group projects
is low. However, it must also be noted that there is the possibility of projects
having information about design/architecture in .pdf, .ppt and other such files
which therefore could’ve been wrongly classified as projects not using UML
modeling by [164].

Ezternal validity. We note, again, the relatively small size of our data set,
which can largely be explained by the small number of open source projects
that meet all selection criteria. Moreover, our sample is not representative (by
construction) of open-source or GITHUB as a whole. It is unclear without ample
future work and replications, beyond the scope of this paper, whether our results
can generalize. Another threat to the external validity comes from the dataset
used to train the Naive Bayes classifier. Mature projects are known to write
thorough issue reports while less mature projects tend to completely ignore or
very sparingly make use of the issue tracker [186]. As a result, the classifier is
inherently rigged towards learning features from more mature projects.

7.5 Conclusions

Prior work in this area focused on understanding the impact that UML design
had on software projects in a qualitative manner. Through this paper, we
try to provide a quantitative analysis of the way in which UML modeling of
design relates to the defect proneness of the projects. Our work shows that
after controlling for confounding factors, projects that use UML experience, on
average, a statistically minorly different number of software defects

Future Work. One of the immediate next steps for this work, as indicated
by the threats to validity section, is to distinguish between the type of UML
modeling in our treatment group projects. In particular, making the distinc-
tion between sequence and class diagrams and studying their corresponding
correlation with defect proneness, we believe, will further reduce the dearth
of research being done in this area. Another future work involves making a
distinction between forward designed and reverse engineered projects [187].
Work done by Ferndndez-Saez et al. [188] shows a positive outlook of prac-
titioners towards the use of forward design but empirical research regarding
the correlation between forward/reverse design and defect proneness, once
again, is scarce. A third future work involves reproducing the investigation in
a new sample of projects but performing a more precise verification of certain
variables. The project members may perhaps be also inquired to check whether
UML models were used or not and the way in which they were being used.
Lastly, we believe that UML modeling directly influences structural aspect of
the software architecture/design to some extent. For instance, we would expect
the use of UML structure-diagrams to have an influence on metrics such as

156 CHAPTER 7. PAPER F

cohesion, coupling, etc. of the software projects. Our current work opens the
door to studying these questions in the near future.

Chapter 8

Paper G

Using Machine Learning for Automated Classification of
Class Responsibility Stereotypes in Software Design

T. Ho-Quang, A. Nurwidyantoro, M.R.V. Chaudron
Under submission.

This paper is an extended version of the paper "Automated Classification of
Class Role-Stereotypes via Machine Learning", accepted at EASE2019.

157

Abstract

Role stereotypes indicate generic roles that classes play in the design of soft-
ware systems. Knowledge about the role-stereotypes can help in various tasks
in software development and maintenance, such as program understanding,
program summarization and quality assurance. This paper presents an auto-
mated machine learning-based approach for classifying the role-stereotype of
classes in Java projects. We analyse the performance of this approach against
a manually labelled ground truth for three open source projects which con-
tain altogether 1,500+ Java classes. The contributions of this paper include:
i) a machine learning (ML) approach to address the problem of automati-
cally inferring role-stereotypes of classes (for Object Oriented Programming
Languages), ii) the manually labelled ground truth, iii) an evaluation of the
performance of the classifier, iv) an evaluation of the generalizability of the
approach, and v) an illustration of 3 new uses of role-stereotypes. The evalu-
ation shows that the Random Forest algorithm yields the best classification
performance. We find however, that the performance of the ML-classifier varies
a lot for different role-stereotypes. In particular its performance degrades for
rare role-types. Among the 23 features that we study, features that relate to
collaboration-characteristics of classes and complexity of classes stand out as
the best discriminants of role-stereotypes.

158 CHAPTER 8. PAPER G

8.1 Introduction

The concept of "role stereotype" was introduced by Wirfs-Brock as a concept
to denote ideal types of well-scoped responsibilities of classes [189]. Such role
stereotypes indicate generic responsibilities that classes play in the design of a
system, such as controller, information holder, or interfacer. Knowledge about
the role-stereotypes can help in various tasks in software development and
maintenance, such as program understanding, program summarization and
quality assurance.

Dragan et al. have proposed methods for automatically inferring the role-
stereotype of classes in C++ [190]. Moreno et al. |191] migrated this approach
to Java. Both approaches are based on a collection of expert-designed decision
rules that are applied to the syntactical characteristics of the source code of
classes. This inference of role-stereotypes can be seen as an enrichment of reverse
engineering, in particular in the area of uncovering design: Role-stereotypes
indicate generic types of responsibility which characterize both the type of
functionality that a class should perform as well as the type of interactions a
class can have with other classes. Hence role-stereotypes are important clues
for the design-intention of classes.

Several studies [55H59] have demonstrated the benefits of using stereotypes in
various software development and maintenance activities. These benefits include:
program design, program comprehension, quality assurance, and program
summarization. We mention the following as concrete examples of the usefulness
of role-stereotypes as demonstrated in earlier work: Using role-stereotypes in
creating lay-outs of UML class diagrams improves the comprehensibility of the
diagrams [57H59]. Alhindawi et al. |[192] show that enhancing the source code
with stereotype information helps improve feature location in source code.

This paper makes the following contributions:

[a] We present a machine learning (ML) approach to address the problem of
automatically inferring the stereotype of Java classes. Dragan [190] and
Moreno [191] observe that the robustness of their rule-based approach
leaves room for improvement: the rules of their approach are not 'complete’:
they do not classify a fairly large portion of classes of a system. In this
paper we present an ML-based classifier which classifies all classes and
thus is very robust.

[b] We publish the first sizeable validated dataset of 1,547 Java classes and
their role-stereotypes. This dataset can serve as (groundtruth) resource for
other researchers.

[c] We evaluate the performance of our approach. From this, we infer which
features are most important for classifying stereotypes, and which machine
learning algorithm works best.

[d] We evaluate the generalizability of our approach.

[e] We illustrate three new uses of role-stereotypes: i) Use of stereotype specific
rules for quality assurance; ii) Discovery of stereotype uses for profiling
software system’s design style and intention; iii) Discovery of patterns
of collaboration between role-stereotypes: We assert that this knowledge
contributes fundamental insights into the anatomy of software design.

8.2. CLASS ROLE STEREOTYPES 159

This paper has the following structure: We first explain the key concept of
role stereotype (Section and discuss related work (Section [8.3). Next, we
explain our research methodology in Section [8:4] As part of this we explain
the taxonomy of role-stereotypes that we use in our study and how this relates
to other taxonomies. Then, we analyze the performance of various machine
learning algorithms for this classification task (Section , and identify the
most influential features (Section . Next, we investigate the generalizability
of the classifier using combination of projects in our dataset in Section [8.7}
Then we illustrate two new uses of role-stereotypes in Section We end it
with discussion, conclusions and future work.

8.2 Class Role Stereotypes

Wirfs-Brock [193] proposed an object-oriented design-approach based on the
notion that each software object should have a well-defined responsibility in
order to play one of a few generic roles in a system’s design. Wirfs-Brock
classified the roles of software objects into six stereotypes:

(CT) Controller: objects designed to make decisions and control complex tasks,

(CO) Coordinator: objects that do not make many decisions, but in a rote or
mechanical way, delegate work to other objects

(IH) Information holder: object designed to know certain information and
provide that information to others.

(IT) Interfacer: objects that transform information and requests between
distinct parts of a system. It can be a user interfacer object that interacts
with users. An interfacer can communicate with external systems or
between internal subsystems.

(SP) Service provider: objects that perform work and offer services to others
on demand.

(ST) Structurer: objects that maintain relationships between objects and in-
formation about those relationships. Structurers might pool, collect, and
maintain groups of objects.

This taxonomy aims for orthogonal non-overlapping categories. However, there
may be situations where a class can play different roles towards different
collaborators.

For our study it is important to realize that Wirfs-Brock suggests to use
role stereotypes while designing a system. In our study, we aim to establish
the role-stereotypes based on the implementation of a system. In general, the
classes that end up in an implementation are not ideal. In fact they may mix
two (or more) responsibilities.

8.3 Related Work

Dragan et al. [194] proposed an automated tool to detect stereotypes of methods
in the C++ programming language. They define a taxonomy of methods such

160 CHAPTER 8. PAPER G

as structural (accessor and mutator), collaborational, and creational. They
propose several rules to determine method stereotypes based on the type of the
method, the return type, and the way in which the method modifies the state
of the class. On top of their method for classifying method stereo-types, Dragan
et al. create rules to determine class stereotypes |[190]. The proposed class
stereotypes are: entity, minimal entity, data provider, commander, boundary,
factory, controller, pure controller, large class, lazy class, degenerate, data class,
and small class. While several of these seem close to Wirf-Brocks’s, the Dragan
classification is presented as being derived empirically from studying 21 open
source projects.

The rules in Dragan’s approach consist of a collection of conditions on
the quantities of method stereotypes; e.g. #mutators > 2 x #accessors. These
conditions include thresholds that are based on a mix of theoretical arguments
and statistical techniques (based on [195]). In [190], Dragan states that “The
rules for stereotype identification are subjective and thresholds might vary
depending on differences in subject’s interpretations.”. Moreover, these rules
leave a large number of classes in software systems unclassified. Apparently,
these rules do not cover the spectrum of possible combinations of method-
stereotypes that occurs in practice.

Based on the work of Dragan, Moreno and Marcus propose a method for the
identification of class stereotypes in the Java programming language [191]. For
this, they adapted the procedures from [190] and provided additional method-
and class stereotypes. In the classifier approach by Dragan and Moreno’s rules
are not disjoint: different rules each may assign different stereotypes to a
single class. Moreno’s subsequent research has mostly used this classifier for
automatically generating summaries of classes in natural language [196], and
seems not to have continued in improving its performance.

Budi et al. |[197] built an automated tool to detect design flaws based on
design stereotypes. They use a taxonomy of 4 role-stereotypes (different from
the ones by Wirf Brock): boundary, control, regular entity and data manager.
For these design stereotypes, there exist rules that describe how classes of
these stereotypes should be allocated to typical layers of 3-tiered software
architectures and how they are supposed to collaborate. The authors used SVM
to automatically labels classes into categories. Then, they used rules about the
relationship between the stereotypes to detects potential design flaws in the
system.

The Gang-of-Four (GoF) design patterns [198] also represent idealized
patterns of software design. However, there are important differences between
the GoF-patterns and the design stereotypes that we consider: Firstly, in general
only a small portion of the classes of a system are part of a GoF-design patterns.
Whereas in the design philosophy of Wirfs-Brock, each and every individual
class in a system should play at least one of her proposed stereotype-roles.
Secondly, GoF-patterns are defined as the specific ways in which individual
types of classes collaborate. In contrast, WB-stereotypes are the property of
individual classes. For completeness, we mention one approach by Fontana
et.al. [199] that uses machine learning to identify design patterns in source
code.

8.4. METHODOLOGY 161

8.4 Methodology

Figure shows an overview of our research methodology. First, we select
three case studies and collect their source code (Step 1). Second, we define
and establish a ground truth (Step 2 & 3). Then, we extract features from the
source code that are to be used by the machine learning algorithms (Step 4).
After that, we experiment with various machine learning algorithms (Step 5).
Finally, we evaluate the performance of the machine learning algorithms and
the discuss three new uses of the role-stereotypes (Step 6). Next, we elaborate
these steps in more detail.

Data collection > Feature
extraction

Experiment with
machine learning
algorithms

V) {

Evaluate classification
performance &
use of role stereotypes

Define role
stereotype criteria

Manual labeling &
consolidation

@

Figure 8.1: Proposed methodology

8.4.1 Data Collection

In this research, we use three open source software systems as our case studies:
K-9 Mail El, SweetHome3D E| and BitcoinWallet EL Table shows descrip-
tive information about the projects. K-9 Mail and BitcoinWallet are Android
applications and are hosted in GitHub, while SweetHome3D is a pure-Java
application and is hosted in SourceForge.

Table 8.1: Description of OSS projects used in this study
#Class is calculated at the studied version. #Release, #Contributor and
#Star are retrieved at the time of writing this paper

#|0SS project s;el;cslilsg lgzlt(zased #Class|#Release ﬁ:u?;;is #Stars
1 |K-9 Mail v5.304 |Nov. 22, 2017| 779 367 202 4276
2 |SweetHome3D| v5.6 |Oct. 25, 2017| 546 46 n.a 4.7/5.0
3 |BitcoinWallet | v6.31 | Oct. 1, 2018 | 222 274 26 1705

These projects are chosen for this study because of the following reasons:

e they are active open source projects,

Thttps://github.com/k9mail/k-9/tree/1a12b18f0c4a452b74941340179735£0383bd1fb

%https://sourceforge.net/projects/sweethome3d/files/SweetHome3D-source/
SweetHome3D-5.6-src

Shttps://github.com/bitcoin-wallet/bitcoin-wallet/releases/tag/v6.31

https://github.com/k9mail/k-9/tree/1a12b18f0c4a452b74941340179735f0383bd1fb
https://sourceforge.net/projects/sweethome3d/files/SweetHome3D-source/SweetHome3D-5.6-src
https://sourceforge.net/projects/sweethome3d/files/SweetHome3D-source/SweetHome3D-5.6-src
https://github.com/bitcoin-wallet/bitcoin-wallet/releases/tag/v6.31

162 CHAPTER 8. PAPER G

e they use Java as the main programming language,

e the projects vary in size (#Class), domain and technology (Android &
pure-Java)

e they are from domains that can be understood by non-experts

We downloaded the source code of these projects from the corresponding
GitHub and SourceForge links. We found a small number of “nested classes”
that might interfere with the feature-extraction of their outer classes. Therefore,
the next step was to extract these nested classes into independent classes. The
extraction process was performed as follows. Firstly, source code was parsed
using srcML [200]. For a given source code, srcML creates a list of classes,
including nested classes, and their details in a standardized XML representation.
Then, we used XPath query to generate all classes from the saved XML file.
As a result, every nested class was extracted into a separate Java file. We
used checkstyle EI to remove unused import statements in every class to obtain
the actual number of import statements used and the number of lines in the
class. The scripts for automating this extraction process are included in the
replication package of this paper [201]. After these steps, we obtained in total
1,547 Java classes over three cases.

8.4.2 Ground Truth step 1: Criteria for Role Stereotypes

In order to produce a ground truth for machine learning, we first establish
criteria to be used by human experts for manually classifying classes into role
stereotypes. The initial criteria were obtained by the authors by studying the
descriptions by Wirfs-Brock [193]. Then the criteria were refined and calibrated
in follow up meetings where the authors had assessed additional sets of classes
(details in section[8.4.3). The criteria can be divided into 3 categories: i) Criteria
regarding characteristics of class; ii) Criteria regarding relationship between
role stereotypes; and iii) Other criteria. We discuss each of these next.

8.4.2.1 Criteria regarding characteristics of classes

These criteria focus on intrinsic (static) properties of classes. We take the
Structurer stereotype as first example: Table [8:2] shows the criteria used to
characterize Structurer classes. In this particular case we look into data types
of attributes, library use and content of methods inside a class in order to
get an impression whether the class is capable of organizing/manipulating a
collection of objects. As a second example, the Information Holder may include
persistence mechanisms (files or databases). Other class properties such as
class name, getter/setter methods, etc. are used for other role stereotypes. A
complete list of the criteria for all stereotypes can be found in the replication
package of this study [201].

Some of the criteria are rather similar to the rules developed by Dragan and
Moreno. For example, we both consider the presence of getter and setter methods
as an indication for the Information Holder-stereotype (in our classification)
and Entity/Data Provider-type (in Dragan’s classification). However, different

4https://github.com/checkstyle/checkstyle

https://github.com/checkstyle/checkstyle

8.4. METHODOLOGY 163

Table 8.2: Properties of a Structurer class

What makes a class a Structurer?

- May contain “user defined object” type as attributes

- May extend Java’s Collection framework or equivalent

- Has method(s) to maintain relationships between objects
+ methods that manipulate the collection such as sort(),
compare(), validate(), remove(), updates(), add(), etc.
+ methods that give access to a collection of objects such as
get(index), next(), hasNext(), etc.

from Dragan and Moreno, our criteria also consider the presence of other
features, such as persistence functionality.

8.4.2.2 Criteria regarding relationship between roles

In [193] Wirfs-Brock mentions that “the roles an object plays imply certain
kinds of collaborations”. For this, we form a set of criteria that look at the
collaborations stereotypes have with other classes. From Wirfs-Brock’s theory
of role stereotypes and collaborations, we come up with the graph in Figure 8.2
This demonstrates common relationship between different role stereotypes. This
graph, for example, shows that Information Holders are used by Controllers,
Service Providers or Structurers, but not commonly by Coordinators or Inter-
facers. Hence, the presence or absence of relations can be used as a criterion in
the decision-making about the possible roles of a class.

The following are additional examples of criteria on the relationships between
roles: Structurer may link to several Information Holders. A Service Provider
can store information by collaborating with Information Holder and Structurer
classes. An Interfacer class, as an intermediate between different layers of a
system, might collaborate with Coordinators and Service Providers in each
layer to conduct a cross-layer task. An Interfacer class is often controlled by
Controller classes.

8.4.2.3 Other Considerations

We defined additional criteria aimed at essential difference in behaviour between
different role stereotypes. For example, both Service Provider and Controller
class may include some control-flow logic. The design intention of these classes
suggest that decisions made by a Controller should affect a broader control
flow of the system, while decisions made by a Service Provider should mostly
have effect on the flow within the class itself.

Secondly, we draw a special attention to Android case projects. In particular,
Android applications are built upon Android frameworks which encapsulate low-
level functionalities of the Android OS. Thus, a number of Controller, Structurer
and Interfacer classes at Ul and activity management level and collaboration
between them might be hidden away. Roles/responsibilities of those classes
that extend/implement these base functionalities might possibly be overlooked.
The experts pay extra attention by reviewing roles and collaborators of its

164 CHAPTER 8. PAPER G

RN

/’ \extends

uses control

-

)extends
4

delegates
(63)

Service Provider

extends

’ |
\
_’fextends

Figure 8.2: Relationship between role stereotypes

ancestor (Android) classes (mainly from Android’s API reference ED

Lastly, sometimes a class may carry more than one role. This possibility of
multiple roles is also discussed by both Wirfs-Brock (p-4) and Dragan .
In this case, experts discuss and choose one most prominent role for this class,
and if any secondary role is identified, then this is also recorded.

8.4.3 Ground Truth step 2: Manual Labeling and Con-
solidation

We used an iterative process to establish agreement on criteria and how to
apply them. Initially, we randomly chose 20 classes for each project. Two of the
authors and one additional Ph.D. student manually labelled these classes. They
discussed any differences in classification, and refined the criteria based on this
discussion. These steps were repeated two more times on K-9 Mail (as this is
the biggest case) until the criteria seemed sufficient/saturated. Next, two of
these persons labeled all the remaining classes. A final discussion round took
place between the two graders in order to resolve disagreement and hard-to-
stereotype cases. The whole manual labeling process took about 100 hours in
total (approx. 45 hours per each main grader and 10 hours by the extra grader)
spread out over 3 months. Ultimately, we established a ground truth of 1,547
labeled classes, which is all of the three cases [201]. Table [8.3] summarizes the
distribution of all classes in the ground truth by projects and by role-prototype.

8.4.4 Feature Extraction

Our classification is based on static analysis of the Java source code of a
system. We extract the features using the srcML tool [200]. For a given source
code, srcML creates a list of classes and their details in a standardized XML

Shttps://developer.android.com/reference/

https://developer.android.com/reference/

8.4. METHODOLOGY 165

Table 8.3: The distribution of role-stereotypes in each project under study

Project CO | CT |IH | IT | SP | ST | Total
K-9 Mail 79 20 | 231 77 | 323 49 779
SweetHome3D 21 38 | 227 63 | 159 38 546
BitcoinWallet 2 5 83 62 57 13 222
Total 102 63 | 541 | 202 | 539 | 100 1547

representation. The values of features are calculated by XPath queries. We
chose to use 23 source code features because they correspond to the criteria
used in the manual classification (see Section . In the following, we list
the features (F) together with a short subjective opinion on their relevance
to classifying different role-stereotypes. The features are categorized into five
categories (C), i.e. Accessibility, Complexity, Functionality, Naming Convention,
and Collaboration.

C1: Accessibility features represent how accessible a class and its content

C2:

1S.

Fi:

F2:

F3:

Fy:

classPublicity: the access modifier of the class. We assume that
Service Provider and Information Holder classes might offer public
access so that other classes can collaborate with them.

numPublicMethods: the number of public methods inside the class.
We assume that an Information Holder, an Interfacer, a Service
Provider or an Interfacer class might have many public methods.

numPrivateMethods: the number of private methods inside a class.
We assume that a Controller, Coordinator and Service Provider might
distribute the job on separate methods inside their class.

numProtectedMethods: the number of protected methods inside a
class. We assume that a Controller, Coordinator and Service Provider
might distribute the job to separate methods inside their class. These
methods might still be used or overrided by its sub-classes.

Complexity features represent the complexity of a class.

F5:

Fe:

F7:

FS§:

loc: the number of lines in the class’ source code. We assume that
the Controller and Service Provider stereotype will have more lines
of code than the other.

numlfs: the number of conditional statements in the class body,
i.e., if...else...switch statement. Controller classes might use lots of
conditional statements in order to make decisions and to control
work flows.

numParameters: the total number of parameters in all methods
in the class. We assume that methods in a Service Provider or a
Coordinator class might have many parameters.

numAttr: the number of attributes declared in the class. We assume
that an Information Holder class might have many attributes.

166

CHAPTER 8. PAPER G

C3:

C4:

F9:

F10:

Fii1:

numMethod: the number of methods declared in the class (construc-
tors are excluded). We assume that Service Provider and Coordinator
classes have many methods.

setters: the number of methods started with ’set’ phrase. We assume
that this method is a setter method, i.e., the method that modifies
variable in Information Holder.

getters: the number of methods started with 'get’ phrase. We assume
that this method is a getter method, i.e., the method that accesses
variable values in the Information Holder class.

Functionality features aim at detecting specific functions that a class
may have.

Fi12:

F13:

F1:

F15:

Fi6:

F17:

F18:

isPersist: a boolean value that indicates whether a class has persis-
tence features, i.e., implements a Serializable interface or importing
database connectivity libraries. We assume that Information Holder
classes are more likely to employ persistence features.

isCollection: a boolean value that indicates whether a class is a
subclass of Java’s collection library. We assume that a Structurer
might possibly need it to maintain relations between objects.

isClass: a boolean value that indicates whether the source code
file is a class. We assume that a class can represent all of the role
stereotypes.

isEmum: a boolean value that indicates whether the source code is
a Java’s enum. We assume that the enum type can represent an
Information Holder.

1sAbstractClass: a boolean value that indicates whether a class is an
abstract class.

isStaticClass: a boolean value that indicates whether a class is a
static class. We assume that a static class can represent a Service
Provider or an Information Holder.

isInterface: a boolean value that indicates whether the source code
file is a Java’s interface. We assume that an Interface can provide
methods that must be implemented by a Service Provider or a
Structurer.

Naming Convention features detect specific naming conventions in
the class name.

F19:

F20:

F21:

num WordName: the number of words in the class name. We assume
that Information Holder and Structurer role stereotypes have a simple
short name, while the others might have a longer name.

1sOrEr: a boolean value that indicates whether the class name is
ended with ’or’ or ’er’. We believe a Controller or a Service Provider
class is more likely to have a name that ends with that ’or’ or ’er’.

isController: a boolean value that indicates whether the class name
ends with ’controller’. We believe that those classes with this charac-
teristic are more likely Controller classes.

8.4. METHODOLOGY 167

C5: Collaboration features indicate level of collaboration of a class with
other classes.

F22: numlImports: the number of import statements in the class. Classes
carrying the roles like Controller, Coordinator, Interfacer and Service
Provider might need to collaborate with many other classes. Thus,
we assume that they might have many import statements.

F23: numOutboundInv: the number of invocation to outside of the class
methods. We assume that the Coordinator, Controller and Interfacer
have many invocations outside of its class.

In comparison with the approach proposed by Dragan et al. |[190] and Budi
et al. [197]: some of their features are similar to our features, i.e. numMethod,
setters, getters, and numOutboundInv. However, they only considered smaller
number of features and the majority of our features were not considered in
their work.

8.4.5 Machine Learning Classification Experiments

We experiment with 3 machine learning algorithms, i.e. Random Forest (RF),
Multinomial Naive Bayes (MNB) and Support Vector Machine (SVM). These
algorithms are widely used in machine learning research and provide good
performance on various applications. We use stratified 10-fold cross-validation
to evaluate the performance of each algorithms. The classification performance
is measured using Recall, Precision, F1 Score and Matthews Correlation Coef-
ficient (MCC).

We perform two experiments for machine learning algorithms. In the first
experiment, we analyse which algorithm provides the best performance in
classifying all role-stereotypes. For this we use each role-stereotype as a separate
classification category. Hence this constitutes a multi-class classification. We
explore the use of the SMOTE [202] resampling technique to handle the
imbalanced distribution of role-stereotypes. We compare the performance
between using the regular and the SMOTE resampling technique.

In the second experiment, we analyse which features are important for
classifying each individual role-stereotype. For this we use only one machine
learning algorithm: the one that came out best in the first experiment. In this
second experiment, we perform binary classifications for each stereotype; i.e.
we use two categories: 1) that specific stereotype, and ii) all other stereotypes
together. We then evaluate the importance of the features in this classification.
For this, we use the Scikit-toolkit for machine learning and its built-in method
to compute feature-importance based on Gini scores [203]. We can get this
score by calculating the importance of the node for each feature split divided
by the importance of all nodes in the tree, then normalize it by the sum of all
feature importance values.

8.4.6 Generalizability of the Trained ML Classifier

We study the generalizability of the trained machine learning classifier by
evaluating the use of different software projects as training data to classify
the others remaining software projects. We use the best performed machine

168 CHAPTER 8. PAPER G

learning algorithm in the previous experiment and use different combination of
software projects as the training data and measure their performance.

8.5 Experiment Results

In this section, we present experiment results on our classifier Class Role
Identifier (CRI).

8.5.1 Multi-role Classification of all Stereotypes

In the first experiment, we run the evaluation on the dataset of aggregated
data (of 1,547 classes) from our three cases, namely K-9 Mail, SweetHome3D,
and BitcoinWallet. In particular, we calculate Precision, Recall, F1 Score and
MCC using a 10-fold cross validation. Then we compare this result with the
performance reported in our previous work that used only K-9 Mail dataset [204].
We use 1000 trees in the Random Forest classifier to handle the large number
of features that we used. Table demonstrates the performance result in
these two datasets.

Table 8.4: Performance comparison of the additional dataset

Dataset | Classifier Method | Precision Recall F1 Score MCC
RF 0.74 + 0.04 | 0.73 + 0.03 | 0.71 + 0.04 | 0.63 &+ 0.05
MNB 0.58 + 0.05 | 0.59 = 0.04 | 0.58 £+ 0.04 | 0.43 4+ 0.05

All SVML 0.62 £+ 0.04 | 0.66 + 0.03 | 0.62 + 0.03 | 0.51 &+ 0.05
RF (SMOTE) 0.88 + 0.02 | 0.88 + 0.01 | 0.88 + 0.01 | 0.86 4+ 0.02
MNB (SMOTE) 0.49 + 0.03 | 0.46 + 0.03 | 0.45 + 0.03 | 0.36 + 0.03
SVML (SMOTE) | 0.43 + 0.18 | 0.40 £ 0.17 | 0.40 £ 0.17 | 0.32 £ 0.13
RF 0.69 + 0.06 | 0.70 + 0.04 | 0.67 = 0.04 | 0.57 + 0.07
MNB 0.52 + 0.11 | 0.50 + 0.09 | 0.49 + 0.11 | 0.33 + 0.13

K-9 SVML 0.54 + 0.05 | 0.59 + 0.06 | 0.55 + 0.05 | 0.40 4+ 0.08
RF (SMOTE) 0.89 + 0.06 | 0.89 + 0.06 | 0.89 + 0.06 | 0.87 &+ 0.07
MNB (SMOTE) 0.51 £ 0.06 | 0.49 + 0.05 | 0.48 = 0.06 | 0.39 &+ 0.06
SVML (SMOTE) | 0.69 + 0.03 | 0.69 + 0.03 | 0.68 £+ 0.03 | 0.63 £ 0.03

From Table we observed that Random Forest outperforms MNB and
SVML and stays as the best classification algorithm. There is an increase of
the performance of the Random Forest using all three projects compared to
the performance using only K-9 Mail. This is possibly due to the addition
of training data for less frequently role-stereotypes, such as Controller and
Structurer. On the other hand, we also observed that there are no significant
differences in applying SMOTE resampling technique in both cases. We argue
that, by using the SMOTE resampling technique, the number of dataset of
each role in both cases will still be equal. More over, the increase of the size of
the dataset from using only K-9 Mail to using all the three projects may not
large enough to increase the performance of the classifier.

8.5.2 Single Role (Binary) Classification

In the second experiment, we run a binary classification on each role-stereotype.
From our original dataset we create six new datasets (one for each role-sterotype)

8.5. EXPERIMENT RESULTS 169

that use exactly two-labels: one label for the role-stereotype at hand, and
one label ’Other’ that represents the combination of all the remaining role-
stereotypes. As for the machine learning algorithm, we use Random Forest
which gave the best performance in the multi-role classification experiment
(Section [8.5.1)). Table[8.5] shows the results for 10-fold cross-validated evaluation
for each role-stereotype classification using the imbalanced K-9 Mail dataset
from our previous work [204] and both imbalanced and SMOTE-resampled of
our three cases extended dataset.

Table 8.5: Single role (binary) classification result

Precision Recall F1-Score MCC
CO | 0.98 +0.08 | 0.29 = 0.12 | 0.43 +0.14 | 0.50 &= 0.10
CT 0.0 = 0.0 0.0 £ 0.0 0.0 & 0.0 0.0 = 0.0
IH | 0.89 &= 0.07 | 0.75 & 0.10 | 0.81 = 0.08 | 0.75 &+ 0.11
IT 0.50 £0.43 | 0.14 £ 0.13 | 0.21 £ 0.17 | 0.23 £ 0.20
SP | 0.72 4+ 0.08 | 0.65 £ 0.11 | 0.68 4+ 0.08 | 0.47 £+ 0.12
ST | 0.55 +0.44 | 0.19 &+ 0.15 | 0.27 = 0.21 | 0.30 £+ 0.25

(a) Imbalanced K-9 Mail dataset [204]

Precision Recall F1-Score MCC
CO | 0.80 = 0.42 | 0.20 £ 0.17 | 0.30 = 0.23 | 0.37 £ 0.24
CT | 091 +£0.17 | 0.43 &£ 0.16 | 0.56 = 0.14 | 0.60 £+ 0.12
IH 091 £0.17 | 0.43 £ 0.16 | 0.56 £ 0.14 | 0.60 &+ 0.12
IT 0.77 £0.14 | 0.43 £0.12 | 0.54 £ 0.10 | 0.52 = 0.10
SP | 0.77 £ 0.07 | 0.70 £ 0.06 | 0.73 & 0.03 | 0.60 £ 0.04
ST | 0.60 +0.44 | 0.15 £ 0.13 | 0.23 = 0.19 | 0.27 £ 0.21

(b) Imbalanced three cases dataset

Precision Recall F1-Score MCC
CO | 0.99 &+ 0.00 | 0.96 £ 0.02 | 0.98 & 0.01 | 0.96 £ 0.02
CT | 0.99 &+ 0.01 | 0.99 £ 0.01 | 0.99 4+ 0.00 | 0.98 £+ 0.01
IH 094 £0.04 | 094+0.04 | 0.92 £ 0.02 | 0.84 + 0.05
IT 0.96 £+ 0.01 | 0.96 = 0.01 | 0.96 = 0.01 | 0.92 £ 0.03
SP | 0.87 = 0.04 | 0.88 £ 0.02 | 0.87 & 0.03 | 0.74 £ 0.05
ST | 0.98 &+ 0.02 | 0.97 £ 0.02 | 0.97 & 0.01 | 0.94 £+ 0.02

(c) SMOTE-resampled three cases dataset

Comparing imbalanced K-9 Mail dataset (Table and imbalanced three
cases dataset (Table , we can see the increase of performance in the less
frequent role-stereotypes, such as Interfacer and Structurer. The addition of
two other projects in the dataset increased the number of those less frequent
role-stereotypes that led to the performance increase. Meanwhile, we can see
that the use of SMOTE resampling technique (Table significantly increase
the classification performance compared to the classification performance of
the imbalanced dataset (Table , especially in rare role-stereotype binary
classifiers.

Table demonstrates the excellent performance of SMOTE-resampled
dataset for binary classification in all role-stereotypes. The MCC score [205],
which is known for measuring the performance of imbalanced binary clas-

170 CHAPTER 8. PAPER G

sification [206], shows a high score in almost all role-stereotypes. We think
this happens because SMOTE resampling technique increases the number
of rare role-stereotypes (i.e., Coordinator and Controller) which leads to a
good performance. However, more frequent role-stereotypes classifiers, such as
Information Holder and Service Provider, have a slightly lower MCC score com-
pared to the less frequent role-stereotypes. We think this happens because, in
more frequent role-stereotypes, the SMOTE technique generate less “synthetic”
role-stereotypes such that it gave a little impact on the classification result.

Random Forest classifier gives the best performance in clas-
sifying role-stereotypes. The addition of two more cases in
the dataset increases the performance of the less frequent
role-stereotype binary classifiers. The use of the SMOTE re-
sampling technique increases the performance of the binary
classifier for rare role-stereotypes but has very little impact
on more frequent role-stereotypes.

8.6 Classification Feature Importance

In this section, we discuss the importance of our classification features with
regards to their performance in classifying each role-stereotype. Table shows
the average Gini scores of each feature (represented in a row) on every role-
stereotype (represented in columns) obtained from the above-mentioned binary
classification experiment. We omit some features having a very low scores (less
than 0.001) namely isStaticClass, isClass, isAbstract, and classPublicity. In
Table for each role-stereotype, the top five features (highest score) are
marked with “x”, while the features that we were expected to determine a
role-stereotype explained in Section are highlighted. For each feature, the
number of times where it ends up in the Top 5 and the number of times where
the it is expected to be determinant are computed and represented in column
“#Top.” and “#Exp.”, respectively. The rows are then sorted from highest to
lowest #Top. value.

It can be seen from Table that most of scores are greater than 0.00
(except the two cells valued 0.000 in column CT), meaning that all features
in the list have an effect on identifying a role stereotype from others. In
terms of prediction power, feature numlmports (number of import statements)
stands out as always being one of the top five most predictive features for
every role stereotypes. This implies that the level of collaboration of a class
could reveal the role stereotype the class plays in design of a software system.
Interestingly, Wirfs-Brock mentioned to the causal relationship between roles
and collaboration in her book, that “the roles an object plays imply certain
kinds of collaborations” (p.159 [193]). With this finding, which is drawn from
analysing three realistic software systems, we can confirms the statement in
the other direction “collaborations of a class could characterize its roles”.

loc (number of lines of code), isOrEr (class names end with er or or) and
numParameters (total number of parameters in method signatures of a class)
ranked second to fourth places in the list as being the most predictive features
for 4 to 5 out of 6 role stereotypes. This is interesting as we expected neither
loc nor isOrEr to play a major role in identifying Structurer. To our surprise,

8.6. CLASSIFICATION FEATURE IMPORTANCE 171

Table 8.6: Feature importance for each role-stereotype

Feature #Top. | #Exp. | CO CT TH IT SP ST

numImports 6 4 0.080* [0.073* | 0.115* [0.175% | 0.071* | 0.079*
loc 5 2 0.070* | 0.077* | 0.068* | 0.053 |0.093* | 0.070*
isOrEr 4 2 0.058 [0.166*|0.063 |0.092* |0.098* | 0.076*
numParameters 4 2 0.088%[0.039 |0.106* | 0.084* [0.060* | 0.045
numAttr 2 1 0.046 [0.032 0.116*|0.032 |0.140*|0.053
getters 2 1 0.096*0.024 0.044 |0.042 [0.042 |0.124*
numMethod 1 1 0.059 |0.059 ‘ 0.049 [0.044 |0.050 |0.064*
numWordName 1 2 0.063 [0.021 0.037 |0.067*|0.048 |0.061
isController 1 1 0.004 |0.162*|0.002 |0.003 |0.008 |0.006
numlfs 1 1 0.067 |0.089*|0.063 [0.030 |0.058 |0.056
numOutboundInvocation 1 3 0.056 |0.043 |0.054 [0.071*|0.048 |0.040
isInnerClass 1 2 0.031 |0.022 0.063*|0.050 |0.024 |0.039
numPublicMethods 1 4 0.080% |0.036 0.048 [0.043 |0.055 |0.056
setters 0 1 0.022 |0.054 0.022 |0.049 [0.041 |0.020
isPersist 0 1 0.005 |0.001 0.004 |0.001 |0.008 |0.001
isCollection 0 1 0.001 |0.001 |0.001 |0.001 [0.003 |0.047
isInterface 0 2 0.001 |0.000 |0.021 |0.004 [0.020 |0.012
isEnum 0 1 0.004 |0.000 0.034 |0.001 |0.026 |0.002
numPrivateMethods 0 3 0.018 |{0.040 [0.019 |0.047 |0.021 |0.029
numProtectedMethods 0 3 0.034 |0.017 [0.017 |0.033 |0.021 |0.021

numPatameters performs well in classifying Interfacer classes. This might be
due to the fact that Interfacers play an intermediate role between different
layers of the system (e.g. between users and system, between different layers
within the system), thus carrying complex methods with notable amount of
parameters to harmonize the communication between the layers.

To understand the how values of these features spread over different role-
stereotypes, we create boxplots of the values of top 5 predictive features as
shown in Fig. Feature isOrEr is a boolean type, thus is not shown. In
each boxplot graph, role-stereotypes are sorted from the lowest to the highest
median value of the corresponding feature. It can be seen from Fig. that
the value of the features ranges differently by role-stereotypes, some are greater
than others. For example, Information Holder classes are likely to have smaller
numImports, loc and numParameters, while having a generally higher numAttr
compared to Service Provider, Provider and Structurer classes. This supports
our expectation when selecting these features (as mentioned in Section .
There is also a case where our expectation goes otherwise: we expected Service
Provider classes to have high numImports, loc and numParameters. The graphs,
in fact, show that these values of Service Provider classes are generally lower
than that of Coordinator, Structurer, Interfacer and Controller. A consistent
trend across the boxplots is that Controllers and Interfacers are always placed
last in the list as having highest values of numImports, loc, numParameters,
numAttr.

Moreover, 3 out of 5 most predictive features (i.e. loc, numParameters,
numAtir) are Complexity features. This suggests that the complexity of a class
might characterize its role-stereotypes. We further discuss the relation between
role-stereotypes and system’s complexity in Section [8.8.2

172 CHAPTER 8. PAPER G

M #1 - numImports W #2-loc M #4 - numParameters #5 - numAttr
90 1000 120

80 . 900
100

5]
s ee
-

Structurer

Controller
Coordinator

service Provider -l

Service Provider

5 8 8 8
-« 8 8 8 8
Information Holder Jl—sss ssswe wes
Serv or Jl—sweos
e oo
S ..
o 3

Information Holder [fessssesss

Information Holder [ff—seese

Figure 8.3: Distribution of loc, numImports, numParameters, numAttr across
role-stereotypes
In each graph: Role-stereotypes are sorted from lowest to highest median value
of the corresponding feature

Most of our features contribute to identifying roles. Some fea-
tures seem to be more predictive than others. Among them,
numlImports and loc stand out as the best discriminants. Role
stereotypes and collaborations have a bidirectional relation-
ship in which the roles a class plays can be revealed by its
collaboration/collaborators and vice versa.

8.7 Generalizability of the Classifier

In this section, we study the generalizability of our approach. To this end, we
explore different choices of training- and testing-sets. In particular, we study
the use of one or two projects for training and then testing the classfier on the
remaining project(s).

8.7.1 Generalizability Experiment 1: Single Case Train-
ing

We start by applying the classifier trained with data from K-9 Mail from
our previous work to the other two cases. In this experiment, we use
the Random Forest classifier with SMOTE resampling that gave the best
performance.

Table 8.7: Performance of the classifier trained on K-9 Mail

Project Precision Recall F1 Score MCC
BitcoinWallet 0.65 0.52 0.56 0.38
SweetHome3D 0.72 0.73 0.72 0.62

8.7. GENERALIZABILITY OF THE CLASSIFIER 173

Table[8.7|demonstrates the performance of the classifier trained on K-9 Mail
on the other two cases, namely BitcoinWallet and SweetHome3D. From Table
we can see that the classifier performs average on classifying role-stereotypes
of BitcoinWallet and slightly better on SweetHome3D. We investigate this
further by the confusion matrix of the classifier for both cases presented in

Table B8l

Table 8.8: Confusion matrix of the classifier trained on K-9 Mail

Predicted Label

CO | CT |IH |IT |SP | ST
= | CO 0 0 1 1 0 0
—g CT 1 0 1 2 1
= | TH 5 1 42 7 25 3
Tg IT | 18 | 0 1 [3] 7 [0
£ | SP 7 5 4 8 32 1
<[ST 0 0 1 3 4 5

(a) BitcoinWallet (222 classes)
Predicted Label

CO|CT | IH |[IT | SP | ST
< | CO 3 4 3 0 10 1
-c% CT 0 32 0 3 3 0
= | TH 1 6 200 | 4 8 8
Tg IT | 0 2 2 (43| 13 | 3
v | SP 1 6 15 12 | 116 9
< | ST 1 2 13 7 10 5

(b) SweetHome3D (546 classes)

The confusion matrix for both cases (Table shows that the classifier
misclassified all Coordinators (2 classes) and Controllers (5 classes) in the
BitcoinWallet project (Table but managed to classify some of these two
role-stereotypes correctly for SweetHome3D (Table . We think the poor
classification happens more in BitcoinWallet because the number of Coordinator
and Controller in BitcoinWallet (2 CO and 5 CT) is much smaller than their
numbers in SweetHome3D (21 CO and 38 CT). We believe that this is the
main reason why the performance of the classifier on SweetHome3D is better
than the performance on BitcoinWallet. Another concern for the classification
of BitcoinWallet was that there was frequent misclassification of Information
Holder as Service Provider (25 cases).

8.7.2 Generalizability Experiment 2: Double Cases Train-
ing

Next, we investigate the generalizability of our approach using the combination
of two projects as training data and the remaining case as the testing data.
The aim of this experiment is to study the effect of having more training data
compared to the previous experiment (i.e., use only K-9 Mail as the training
data). Table summarizes the performance of the classifier in this experiment.

174 CHAPTER 8. PAPER G

Table 8.9: Performance of the classification trained on two cases and tested on
the remaining case

Training Data Testing Data Precision Recall F1-Score MCC
K-9 and SweetHome3D BitcoinWallet 0.65 0.55 0.58 0.41
K-9 and BitcoinWallet SweetHome3D 0.68 0.71 0.69 0.59
BitcoinWallet and SweetHome3D K-9 0.58 0.6 0.57 0.42

When comparing Table and Table it seems that the performance of
the classifier does not differ significantly. The classifier still has the same medium
performance in classifying role-stereotypes of BitcoinWallet and SweetHome3D.
In other words, the addition of another project to K-9 Mail as the training set
did not give significant impact to the classifier. Using two new projects, i.e.,
BitcoinWallet and SweetHome3D as the training set and tested it on K-9 Mail
dataset also gave similar performance.

Table 8.10: Confusion matrix of the classifier trained on two cases and tested
on the remaining case

Predicted Label Predicted Label

CO[CT [IH[IT [SP | ST CO|CT | IH |[IT | SP | ST
<s[CO 1 0 1] 0] 0 0 <[CO[1 3 6 1 9 1
SICT | 1 0 0] 03 1 S[CT[1 [32] 0 2 3 0
= 1IH | 6 0 |44 | 7 | 24| 2 A IH | 1 g8 [202 3 9 1
Tg IT | 12 0 1 [38] 11| 0 Tg IT 1 1 5 38 13 | 5
kst SP 8 0 5 7 37 0 b5 SP 1 6 26 7 109 10
<[ST | 0 1 1 3 6 2 <[ST | 1 2 5 | 7 9 4

(a) K-9 Mail and SweetHome3D (train) (b) K-9 Mail and BitcoinWallet (train) on
on BitcoinWallet SweetHome3D

Predicted Label

CO|CT | IH |[IT | SP | ST
< | CO 1 1 14 16 37 10
S[CT| 0 | 4 |3 [4] 8 |1
= | IH 0 1 170 | 7 44 9
SIIT [0 [T [4 [40] 3 |7
| SP 2 4 27 | 24 | 242 | 24
< | ST 0 1 7 4 29 8
(c) BitcoinWallet and SweetHome3D

(train) on K-9 Mail

We then investigated the confusion matrix of the classification result using
two projects training data presented in Table In Table we can see a
lot of misclassification of Coordinators in all three cases. We think this is due
to the low number of Coordinators, especially in the classification of K-9 Mail
(Table which has the smallest total number of Coordinator from two
cases in the training set (23 CO).

In the case of classifying Controller, the classifier failed to classify all
Controllers in BitcoinWallet (Table [8.10a]), even though the total number of
Controllers from the other two cases in the training set was the highest (58
CT). We think this is because the number of Controllers in BitcoinWallet is
too small (5 CT) as the result of different coding style in which the developer
decided to have only small number of Controllers.

8.8. NEW APPLICATIONS OF ROLE STEREOTYPES 175

To see how the addition of another project to the training set affects the
classification of each role-stereotypes, we also compared the confusion matrix
of classifying BitcoinWallet and SweetHome3D using K-9 Mail as training set
(Table and Table |8.8b)) with the confusion matrix of two cases training
set (Ta and T. In classifying BitcoinWallet, the addition of
SweetHome3D in the training set increases the correct classification of Coordi-
nator, Information Holder, Interfacer, and Service Provider but reduces the
correct classification of Structurer, resulted in a little increase of performance.
On the other hand, adding BitcoinWallet in the training set for classifying
SweetHome3D reduces the correct classification of all role-stereotypes except
Controller resulting in performance decrease of the classifier.

On a different angle, comparing the combination of Android applications
(K-9 Mail and BitcoinWallet) and pure Java application (SweetHome3D) as
the training and test set led to an interesting finding. The combination of two
Android applications in the training set gave better performance in classifying
pure Java application (Table . Meanwhile, combining an Android appli-
cation with a pure Java application in the training set to classify the other
Android application gave almost equal performance (Table and Table
but less than the previous combination. However, we cannot make any
further conclusion without studying more Android and pure Java application
cases.

The Random Forest classification model trained with data
from one or two projects shows a medium performance when
classifying the other project(s). Learning from two projects
does not lead to a significant increase in classification perfor-
mance compared to using one.

8.8 New Applications of Role Stereotypes

The automatic classification into role stereotypes opens up new directions for
analyzing and understanding software designs. In this section, we describe three
such new uses:

i) the discovery that different role stereotypes have different characteristics
in terms of design metrics can be used for novel approaches to checking
design quality of software.

ii) the discovery that role-stereotypes can be used for profiling software
system’s design style and intention.

iii) the discovery of patterns in the anatomy of software designs.

Next, we elaborate on these uses.

8.8.1 Stereotype-specific Design Metrics

Classes that carry different roles might differ in their design characteristics.
More specifically, on theoretical grounds we expect that Information Holders
contain little complicated logic, hence generally should have a low WMC
(Weighted Method per Class). In contrast Controllers contain complicated

176 CHAPTER 8. PAPER G

Bitcoin Wallet K-9 Mail SweetHome3D

mcho mwmc Ecbo Bwmc mcho mwmc

0
& & s & s s s s Iy & & < s S s
g £ & & 3 & K2 & &2 & £ & ¢ ¥ g
S & S & L 3 S F S & & S & L 3
S & S & & IS & o £ & o £ &
3 3 R g 3 $ 3 R @ S S R g g
§ J & & N & S & N S & N N
9 § 3 3) N o § 3 & q § 'y g q N
(&) .9 S @) (& o .9 $) o .9 $ @ 9
& = & & < Y & = &
g S g S @ S
S & & $ $ &
® d o < o 5
N N N

Figure 8.4: Distribution of CBO and WMC across role-stereotypes in three
cases

decision logic and hence generally should have higher WMC. We also expect
that Controller, Interfacer, and Coordinator to have a higher CBO (Coupling
between Object Classes), because these stereotypes communicate with many
other classes. We examine these theoretical prediction by checking whether
there is any significant difference between WMC and CBO values between
classes in different role stereotypes. For that, at first, we used a static-analytical
tool named ck [l to calculate WMC and CBO metrics of all classes from our
three cases. Then, we display the distribution of the WMC and CBO values
on three boxplots corresponding for three cases (Fig. . Lastly, we ran
one-way ANOVA tests with SPSS El to check the significance of the difference
between the mean values of WMC and CBO across the six role stereotypes.
It is observable from Fig. [B:4] that WMC and CBO values range differently
between projects. Therefore, a separate test was performed for each project
but not on the aggregated data of all projects. Table shows results of
the test. We found that in K-9 Mail and Sweet Home 3D cases, Information
Holder classes have lowest mean value of WMC and CBO, while that values of
Controller classes seem to be the highest comparing to other role-stereotypes.
In K-9 Mail and Bitcoin-Wallet cases, we also found that Interfacer classes have
significantly higher CBO compared to Information Holder, Service Provider and
Structurer classes. We could, however, not find any significant difference from
Controller and Coordinator to other role-stereotypes in Bitcoin-Wallet case.
This is possibly due to the small amount of Controller (5) and Coordinator (2)
classes in the system. We discuss about this in the next section (8.8.2). At this
point, we could conclude that finding from this analysis is largely aligned with
our aforementioned theoretical predictions.

Currently, tools aimed at detecting design smells/anti-patterns typically
work by computing design metrics for all classes and then either check these
against fixed thresholds or look for outliers (e.g. in [207]). Our analysis shows
that design metrics for different role stereotypes have very different ranges: thus

Shttps://github.com/mauricioaniche/ck
"https://www.ibm.com/analytics/spss-statistics-software

https://github.com/mauricioaniche/ck
https://www.ibm.com/analytics/spss-statistics-software

8.8. NEW APPLICATIONS OF ROLE STEREOTYPES 177

Table 8.11: Results of one-way ANOVA test on the differences in mean values
of CBO and WMC between role-stereotypes in 3 cases: K-9 Mail
(B.11ak48.11D)); Sweet Home 3D (8.11&48.11d])); Bitcoin-Walltet (8.11e&{8.111)
Note: Each cell represents the difference between mean values of CBO or
WMC between Source(S) and Target(T) role-stereotypes, i.e. S-T. Cells
marked by * denote statistical significance of more than 95%.

Source (S) Source (S)
CcO CT IH IT SP ST coO CcT IH IT SP ST
CO 0 CO 0
CT | -3.89*% 0 CT | -10.60* 0

IH | 4.81* 8.70* 0

IH | 3.26* 13.86* 0
-3.81% [0.08 -8.62* 0

-5.57% [5.02 | -8.84% 0

Target (T)
i
=
Target (T)
—
=

SP | 2.75% 6.63* -2.07* | 6.55* 0 SP | -0.86 9.74% | -4.12*% | 4.72* 0
ST 117 506* -3.65* | 498 1551 0 ST | -6.03% [457 | -9.30* [-046 -517* [0 |
(a) Differences in average CBO (K-9Mail) (b) Differences in avg. WMC (K-9Mail)
Source (S) Source (S)
[CO [CT [IH [IT | SP [ST [co CT TH IT | SP [ST
_[co| 0 __[co 0
B [CT -1558* [0 £ [CT -11719* [0
SIIE | 413 1971% [0 T TE] 2841 | 145605 0
% [IT [417 1141* 830* [0 % [IT | oas7 | 9232% | 5398* [0
& [P | 060 _ 16.18* [351 [176 0 & [SP | 1996 | 137.15% [545 4483 [D
ST | 042 16.00% [-3.71 [459 [-018 | 0 ST | 722 | 109.97* [35.62 | 17.66 | 2718 | 0
(c) Differences in avg. CBO (Home3D) (d) Differences in average WMC (Home3D)
Source (S) Source (S)
CO [CT [IH T SP_ [ST CO [CT | I IT | SP | ST
_[co o _[co o
E[CT [900 | 0 E[CT 3350 0
= [TH | 051 | 951 0 [TH [149 [3201] 0O
$ [TT | 1558 | 6:55 | 1642% | 0 § [IT | 1902 | 1438 | -17.63* | 0
& [SP_[007 | 907 | 047 _ 1595 [0 & [SP | 91 [2859 342 121% [0
ST | 392 | 508 | -4.46 11.96* [-3.99 | 0 ST | -12.50 | 21.00 | -11.01 | 6.62 | 759 | 0

(e) Differences in average CBO (Bitcoin) (f) Differences in average WMC (Bitcoin)

some value of a metric can be an outlier for an Information Holder, but would
be a normal value for an Interfacer or Controller. This implies that it makes
little sense to applying the same threshold on a design metric uniformly for all
classes, and that metric thresholds should be tailored to different (stereo)types
of classes. This is aligned with the prior work on code metrics that suggests an
adaptive approach to classes that have different design characteristics. This is
aligned with previous studies that show the distribution of code metrics can
vary due to various contextual factors, including design decision [208}[209).

Classes that carry different roles are likely to differ from each

other with respect to their design characteristics. Therefore,
design smell detection should be tailored to different role-
stereotypes. In particular, design metric thresholds should
be tailored to different role-stereotypes.

8.8.2 Using Role Stereotypes for Profiling Software De-
sign Intention/Principles

In this section we explore whether there is any regularity with respect to
the occurrence of role-stereotypes across the multiple cases that we consider.
Fig. contains three diagrams that show the frequency of occurrence of
the role stereotypes and the relationships between them for our three cases.

178 CHAPTER 8. PAPER G

In each diagram, the numbers below the role-stereotype names indicate the
absolute number of occurrences and the relative number of occurrence of the
role-stereotypes. The labels on the edges indicate the type and frequencies
of occurrence of relations between these role stereotypes. Looking at theses
diagrams side by side, we can see some similarities and differences between the
three cases. Next, we will look into these in some more detail.

The distribution of role stereotypes in systems is imbalanced In Fig
[B:5] we can see that some stereotypes occur often and some are rare. Yet numbers
suggest that there may be regularities across software systems. For example, for
all systems, the Information Holder-stereotype covers between 30% - 40% of the
classes. As another example, the Controller stereotype seems to be rather rare:
it represents only between 2.3% - 7.0% in all systems. This finding is aligned
by a finding in the work by Dragan: in [190], by applying StereoClass on 5
open source systems, Dragan also finds that the stereotypes that they consider
differ in frequency of occurrence, but the relative frequencies of occurrence are
somewhat regular across systems.

We note that the the categories of stereotypes used by Dragan have similar-
ities to our categories, but also have differences. Both our and their approaches
use categories for Information Holder’ and ’Controller’ for which their seman-
tics indeed seem to match. For these categories we find quite similar percentages
of occurrence: Information Holder on average 29.6% and Controller on average
and 1.9%) comparing to that amounts of Information Holders and Controllers
across our three cases (avg. 34.0% and 4.0% respectively). Indeed, The fact
that this distribution of occurrence of stereotypes is very unbalanced has a
negative effect on the performance of the machine learning algorithms.

On the occurrence of stereotypes and the complexity of systems
Coordinators are present in the designs of systems when there is a need for
coordinating or delegating jobs from one class to another class. This need
arises when a class become too big (in size) and complicated. This suggests
that Coordinators are seen less often in small systems and more often in large
systems. From our 3 cases we observe indeed that the frequency of Coordinators
increases with the size of the systems. In particular, in the case of Bitcoin-
Wallet, there are only 2 Coordinator and 5 Controller classes - together less
than 4 percent of all classes. On a closer look, these classes contain little logic
for the controlling and coordinating of workflows from Interfacer- to Service
Provider- and Information Holder classes. In fact, in Bitcoin Wallet, most user
requests are distributed directly to Information Holders and Service Providers
by Interfacers. This results in a high frequency of collaboration between these
role stereotypes. This is different from the SweetHome3D and K-9 Mail cases
where a large amount of work is coordinated via Coordinators and Controllers.

Indeed, the fairly small amount of Coordinators and Controllers in Bit-
coinWallet can partly be explained by looking into the design intention of the
system. That is, BitcoinWallet has a focus on providing wrapper functions
to the bitcoinj-library for Android devices. It relies on bitcoinj in order to
maintain a wallet and send/receive transactions in Bitcoin protocols. As a
consequence, the logics and workflows defined in BitcoinWallet are mostly used
for monitoring the process and adapting it for Android users to use. Given

8.8. NEW APPLICATIONS OF ROLE STEREOTYPES 179

" Mextends (51
H 'exten s (51)

Interfacer
77 (9.9 %)

notifies

uses (109 (9) ==~
i jextends
- ’
exfends) Coordi)1 uS(')S(‘I‘?')rController @2
(12)) 79 (101%) 20 (2.5 %)
-A

returns (23)
u;

ses

delegates
(63)

extends
Information Holder (90)
231 (29.7 %) ™

Service Provider
323 (41.5 %)

4
extends, J
(206) ==

extends
s~/ (21)

\

(a) K-9 Mail

Pt
(;ex!ends (33)

Interfacer 2
63 (11.5 %)

requests
50)

4
uses (13), *
s Controller -
38 (7.0 %)
returns (23)
uses

(71

uses (149

exfends) Coordinator
\@) 21 (3.8 %)
-A

delegates
(16)

Information Holder
227 (41.6%)

Service Provider
159 (29.1 %)

I
extends, J
(120) ==

(b) SweetHome3D

-

e ~
(;extends (58)

Coordinator
2 (0.9 %)

returnsj

()

Service Provider uses Information Holder
57 (25.7 %) 24 83 (37.4 %)
! 4 . B
l - 4]
extends, ’ f P
a7 N uses (5 storesfofganizes extends

(14) (64)

13 (5.9 %)
4 extends
~—-/ (1)
(c) BitcoinWallet
Figure 8.5: Occurences of role stereotypes in three cases:
(a) K-9 Mail, (b) SweetHome3D; (c¢) BitcoinWallet

180 CHAPTER 8. PAPER G

this characteristic of the design, the direct contact from Interfacers (where user
requests are made) to execution units (Service Providers) and data storage
(Information Holder) can be considered as efficient. Compared to BitcoinWallet,
K-9 Mail and SweetHome3D can be considered as being more complex in the
sense that the main logic/workflows are defined within the system itself and
whereas BitcoinWallet can build on a lot of logic that is contained in an external
library. In particular, while K-9 Mail handles the mailing process from the
level of mail protocols to end-user management level (such as multiple account
management, scheduling services), Sweet Home 3D provides services for design-
ing home plans which might include creating/joining walls, arches, insertion
of windows, doors etc. The complexity of the systems/services requires more
fine-grained coordination mechanisms, i.e. via employing Coordinators and
Controllers in between Interfacers and Service Provider/Information Holders.

The presence and distribution of role stereotypes in a system reflects
its architectural characteristics Our analysis of three different systems
from the perspective of role-stereotypes has led us to understand that such
analysis can uncover that the architectural design of a system follows some
architectural design or design principles. In this section, we illustrate some
of the insights that can be obtained from such analyses. For understanding
these analyses, recall that BitcoinWallet and K-9 Mail are built on the Android
framework, while SweetHome3D is a pure-Java desktop application.

In Android apps there is smaller amount of Controllers (2.5% & 2.3%)

compared to the pure-Java app (7%). This can partly be explained by the
nature of Android applications: they are built upon Android frameworks which
encapsulate low-level functionalities of the Android OS. Thus, a number of
Controller, Structurer and Interfacer classes at Ul and activity management
level and collaboration between them might be hidden away.
The Android framework offers encapsulated basic functions such as for example
persistence, activity life-cycle management. As a result, fewer control logic needs
to be created as part of an overall application. In SweetHome3D, persistence
tasks are implemented via basic java.io functions and the user interfaces are
mostly implemented by using and customizing Swing components. Moreover,
being a pure Java app, extra control-logic is needed for handling portability
across different execution environments (such as different operating systems
(Windows and Macintosh)). Implementing these could results in extra control-
and data-units. For this we can expect a higher occurence of Controller and
Information Holder classes).

For the two Android applications, we observe that the portion of Interfacers
in BitcoinWallet is much higher than the portion of Interfacer in K-9 Mail. On
the other hand, K-9 Mail contains more Service Providers (41.5%) compared to
BitcoinWallet (25.7%). This suggests that BitcoinWallet is required to handle a
greater amount of user-interaction and a smaller amount of actual transactional
services, whereas K-9 Mail has a greater focus on building business mailing
services. This is aligned with a finding from the paper [210] by Bagheri et
al. The authors, via studying a set of 200 Android applications in Google
Play store, found out that Android applications in different domains have
different architecture characteristics regarding type and number of components.
In particular, finance apps, such as BitcoinWallet and other banking or payment

8.8. NEW APPLICATIONS OF ROLE STEREOTYPES 181

systems, provide richer user-interface compared to the other kinds of apps. App
for which communication is the key feature, such as K-9 Mail, largely depend
on listening, receiving and handling system events. Such events in turn are
typically handled by a Service Provider-type of class.

The role a class plays within a software system reflects design
intention. Design intention is, in its turn, affected by archi-
tecture style, choices of technology/library use and domain-
specific requirements. Therefore, it is possible to use role-
stereotypes of as a tool for profiling/capturing software sys-
tems’ design style and intention. This also enables a possibil-
ity to compare designs of different software systems via their
role-stereotypes.

8.8.3 Collaboration Pattern between Stereotypes

<<INTERFACER>>
MessageContainerView

{

<<COORDINATOR>>

MessageWebView
<<INFORMATION <<SERVICE
HOLDER>> PROVIDER>>
Theme AttachmentResolver

Figure 8.6: Typical Fragment of Collaboration between Stereotypes (Example
from K-9 Mail)

To find patterns, we firstly created reverse-engineering class diagrams of the
three cases using the parsed srcML files and plantuml EL Then, we visualize the
role of every class by coloring based on its role-stereotype. The visualisation
and its source (in plantuml format) can be found in the replication package
of this study [201]. The following findings are based on the researchers’ visual
assessment of patterns in a visualisation architecture models of the three cases.

Fig shows a typical pattern of collaboration between role stereotypes in
K-9 Mail case: on the top, there is an Interfacer which receives Ul-events and
reacts to the events by sending messages to an associated Coordinator. This
Coordinator contains logic to break down the task and to pass requests to one
or more associated Service Providers and one or more associated Information
Holders. The Coordinator is also responsible for gathering the results from the
Service Provider(s) and Information Holder(s) and finally returning the results
to the Interfacer. Via our visualisation, we have found multiple occurrences of
this pattern in K-9 Mail and Sweet Home 3D. This pattern empirically confirms
the architectural control style for user events described by Wirfs-Brock (p.

8http://plantuml.com/

http://plantuml.com/

182 CHAPTER 8. PAPER G

207 [193]). Moreover, the repeated occurrence of this pattern of stereotypes
implies that there is a regularity in the design of software systems that can be
made visible by looking through the ’lens’ of role-stereotypes.

8.9 Threats to Validity

Threats to Internal Validity. An OOP class may be responsible for multiple
roles and responsibilities [193]. In this study, we however have chosen to build
a machine learner that captures only one role for each class. This choice might
cause an incomplete view of roles and responsibilities of a single class. However,
given that only a low number of classes carry multiple roles (68 out of 1547
classes, =~ 4.4%), we consider this threat is acceptable and is a trade-off to be
made to keep our classification model rather simple.

Threats to FExternal Validity. In this study, our machine-learning classifica-
tion model was trained and evaluated on two Android projects and one pure
Java project. There might be threats to the generalization of the classification
model to other projects. In the future, we plan to extend the ground truth
and possibly retrain the classification model proposed in this study with more
projects, e.g. more pure Java projects or projects in other languages than Java.

We believe the methods used in this study can be generalized to other OOP
systems in various programming languages because of the following reasons:
i) the notion of class role-stereotype applies to OOP in general, regardless
implementation programming languages; ii) scripts [201] used in this study can
be used to extract source code features from different languages than Java.
The XPath queries that was used to extract features from parsed srcML files
can be adapted to other languages such as C#, C/C++ by following srcML
language and grammar rulesﬂ

We however would not generalize the result of this study to programming
languages and mechanisms other than OOP.

8.10 Conclusion and Future Work

In this paper we presented a machine learning based approach for the automatic
classification of role-stereotypes of classes of Java software. We find that
the Random Forest algorithm enhanced by SMOTE resampling to address
imbalanced data yields the best performance for the multi-class classification
with an F1-Score = 0.88. For the binary classification, we experienced challenges
with an imbalanced dataset, i.e. some role-stereotypes are rare compared to
others. On the imbalanced data, the classifier performs good (MCC score = 0.60)
at detecting some role stereotypes (Controller, Information Holder and Service
Provider, medium good (MCC score = 0.52) at detecting others (Interfacer)
and poor (MCC score < 0.37) at detecting a third category (Coordinator and
Structurer). Partially this can be explained by the low frequency of occurrence
of these roles in the design (offering few training examples). The SMOTE
resampling technique increases the number of rare role-stereotypes in the
dataset, thus resulting in a more balanced training data. Ultimately, we could

9srcML grammar rules: https://www.srcml.org/documentation.html

https://www.srcml.org/documentation.html

8.10. CONCLUSION AND FUTURE WORK 183

achieve better performance for classification of all role-stereotypes with MCC
Score between 0.74 and 0.98.

At this point of the research, we identified some other directions that
could potentially help to improve the performance of the classifier: i) using a
probabilistic iterative approach, i.e. roles with high-precision can swing the
classification of other classes based on the relationship between these classes,
ii) combining machine learning with the rule-based approach (in an ’ensemble
method’, thereby exploiting that rules are not sensitive to small numbers of
training data), iii) combining individual binary classifiers, and iv) using deep
learning methods (although this probably requires a much larger training set).

The fact that the classifier work in an automated way enables the rapid
labbelling of role-stereotypes for large collections of classes, and in practice for
entire source code of systems. This, in turn, enables novel analysis that sheds
light on the anatomy of software designs, such as for example analyses of the
frequently of particular collaboration patterns between different stereotypes. We
believe there are yet undiscovered regularities in the anatomy of software designs
that can be uncovered through further studying these role-stereotypes for larger
sets of projects. Moreover, now that we have a robust automatic classifier
for role-stereotypes, we can study advanced questions such as: How do the
distributions of role-stereotypes differ across different types of architectures or
business domains? Can role-stereotypes help us to better understand evolution
of software over time? Can role-stereotypes be used for tailoring test-generation
strategies?

184 CHAPTER 8. PAPER G

Chapter 9

Paper H

Interactive Role Stereotype-Based Visualization To Com-
prehend Software Architecture

T. Ho-Quang, A. Bergel, A. Nurwidyantoro, M.R.V. Chaudron

Under submission.

185

Abstract

Motivation: Software visualization can be helpful in comprehending the archi-
tecture of large software systems. Traditionally, software visualisation focuses
on representing the structural perspectives of systems. In this paper we enrich
this perspective by adding the notion of role-stereotype. This role-stereotype
carries information about the type of functionality that a class has in the
system as well as the types of collaborations with other classes that it typically
has.

Objective: We propose an interactive visualization called RoleViz, that visualizes
system architectures in which architectural elements are annotated with their
role-stereotypes.

Method: We conducted a user-study in which developers use RoleViz and Softa-
gram (a commercial tool for software architecture comprehension) to solve two
separate comprehension tasks on a large open source system. We compared
RoleViz against Softagram in terms of participant’s: (i) perceived cognitive
load, (ii) perceived usability, and (iii) understanding of the system.

Result: In total, 16 developers participated in our study. Six of the participants
explicitly indicated that visualizing roles helped them complete the assigned
tasks. Our observations indicate significant differences in terms of participant’s
perceived usability and understanding scores.

Conclusion: The participants achieved better scores on completing software
understanding tasks with RoleViz without any cognitive-load penalty.

186 CHAPTER 9. PAPER H

9.1 Introduction

Software architecture visualization is a tool that can be used to understand
complex software system. It can help developers maintain and further develop
the system. In particular, it can be utilized to improve the search, navigation,
and exploration of software architecture design [211] [212].

In UML, stereotypes are a way to add complementary semantic information
to the elements of a software design. Using such stereotypes in visualisation
has been demonstrated to aid in the comprehension of software architectures.
For instance, Genero et al. use object interaction stereotypes to improve the
comprehension of UML sequence diagram [56]. Another example, Ricca et al.
propose the use of web-specific notations to make UML applicable to model
web application [55]. Beside those, a number of work focus on investigating the
usefulness of class stereotype [213] to better understand UML class diagram [57]
[58] [59] [214].

The well-known class stereotypes, namely boundary, control, and entity,
were introduced by Jacobson et al. as an extension to UML [213|. However, their
definition of stereotypes is quite simple. Alternatively, Wirfs-Brock proposes
role-stereotypes as the responsibilities that a class can have in an object-oriented
system [189]. Some of both stereotypes are similar (e.g. entity and information
holder), but Wirfs-Brock provides additional stereotypes beyond the class
stereotypes. For example, a service provider is a class that performs work and
offers services to others, which is not fit in any class stereotypes definition. To
the best of our knowledge, no visualization tool has utilized role-stereotypes to
help understand software architecture.

In this paper, we present RoleViz, a role-stereotypes-based visualization tool,
and evaluate its usefulness to understand the architecture of an object-oriented
system. We use the role-stereotypes [189] of a manually labeled ground-truth
provided in [204]. Our study shows the effectiveness of RoleViz to help developers
in realistic software comprehension tasks.

Contributions. This paper makes the following contributions:

e We present RoleViz, an innovative visualization tool that overlay roles
on top of a software architecture.

e We conduct a user study to investigate how RoleViz can help developers
in real comprehension task, e.g. bug fixing.

e We compare the effectiveness of RoleViz against Softagram as our base-
line. Softagram is a well-known software architecture visualization tool
commonly used by software developers and architects.

Outline. The paper is structured as follows: provides background of Wirfs-
Brock’s role stereotypes; describes the RoleViz visualization; |9.4] presents
the research questions that leads our evaluation; [0.5] presents the user-study
we conducted in order to answer the research questions; describes sources
of data we collected and the methods for analysing the data; [9.7] presents the
result of our analysis; [9.8| discusses a number of aspects of our work (including
threats to validity); rieﬂy presents the related work; concludes and
outlines our future work.

9.2. ROLE STEREOTYPE 187

9.2 Role Stereotype

Our visualization is centered around the notion of role of an object-oriented
class. Wirfs-Brock |189] identified six stereotypical role types that a class can

play:
(CT) Controller makes decisions and control complex tasks;

(CO) Coordinator does not make many decisions, but in a rote or mechanical
way, delegates work to other classes;

(IH) Information holder holds certain information and provides that informa-
tion to others;

(IT) Interfacer transforms information and requests between distinct parts of
a system. It can be a user interfacer class that interacts with users. An
interfacer can communicate with external systems or between internal
subsystems;

(SP) Service provider performs specific work and offers services to others on
demand;

(ST) Structurer maintains relationships between classes and information about
those relationships. Structurers might pool, collect, and maintain groups
of classes.

It is noted that each class should play at least one role. There is a possibility
where a class may carry more than one role. In this study we decided to
only consider the primary responsibilities of the class as documented in the
replication package of [204] where the authors attempted to classify role-
stereotypes of a class automatically.

9.3 RoleViz

We will use the K-9 Mail application as the running example to illustrate
RoleViz. K-9 Mail is an open source alternative mail application in Android.
K-9 Mail is composed of 779 classes distributed in 52 different packages. K-9
Mail totals over 97 kLOC. Note that although K-9 Mail is written in Java,
RoleViz is not tied to the Java programming language or Android platform.

9.3.1 RoleViz in a Nutshell

Figure [9.1| shows the use of RoleViz on K-9 Mail. RoleViz locates K-9 Mail’s
52 packages in a circular fashion. Each package contains abstract class, class,
enum, and interface. Each structural unit is colored according to the role it
has.

Dependencies between two packages are represented with a bimetric line
(number of dependencies are mapped to the size of the extremities, as described
below). The package k9 has classes heavily used in the system (indicated with
tall inner colored boxes, marked with a), while activities has classes with
outgoing dependencies variables (indicated with wide inner colored boxes,

188 CHAPTER 9. PAPER H

Figure 9.1: Example of RoleViz

marked as ¢). Although, the application does not exhibit an architecture with
crystal clear modularity boundaries, some tendencies may be visually inferred:
for example, many packages depend on the package k9, while k9 has relatively
few external dependencies. Similarly, many packages depend on the package
mail.

RoleViz is a polymetric view in which software metrics are applied to
visual dimensions, including height, width, and colors, as described below.

9.3.2 Compilation Unit

The source code in Java is organized as compilation unit, which is a technical
jargon in Java to designate a definition contained in a .java file. We will,
therefore, use this term along this paper to refer to a class, an enum, an
abstract class, or an interface. Each unit is represented as a colored box,
contained in a package.

Color legend
Service

[l nformation holder preferences
. Service provider
[] stucturer

[] controter

l:‘ Coordinator
B reertacer

Mail

‘|’fan—in

fan-out

Figure 9.2: Compi- Figure 9.4: High-
lation unit detail Figure 9.3: Package detail lighting a package

details the visual representation of a compilation unit. The visual
representation of a unit U uses two metrics:

[a] the height of a unit represents the fan-in, i.e., number of units that
depends on U;

[b] the width of a unit represents the fan-out, i.e., number of units that U
depends on.

9.3. ROLEVIZ 189

The shape of the box is, therefore, an indicator for visually spotting ex-
ceptional entities |216). For example, in the K-9 Mail example , one can
recognize classes with a high fan-in value (marked as & and B in the figure)
and a high fan-out (c). The visual shape is not meant to give an accurate
value of the associated metrics, but instead, to give an idea of where significant
visual differences lay in the visualization. As indicated below, in Section
the visualization offers a number of interactions to obtain details about exact
numerical values and offer numerous options to drill-down complementary
information. A unit color indicates its role.

Edges between units indicates dependencies between these units. To not
overload the visualization, edges are presented as bidirectional (i.e., one cannot
distinguish a caller from a callee). Hovering the mouse above a unit highlight
callers and callees, as described below, as described in in Section

9.3.3 Package

[0-3] details the representation of a package. A package is represented as a labeled
gray box. The label, located above the gray box, is extracted from the name of
the represented Java package.

The gray box contains inner colored boxes, representing the compilation
units contained in the package. Units having dependencies between them
are located on the right hand-side using a force-based layout (i.e., units are
assimilated as repulsing magnets and edges as springs, A in . Note that
edges between units are scoped to the package, i.e., only dependencies between
units that belong to the same package are represented. Units not connected
with other units within the same package are simply located as a grid and
sorted by their role (8).

Dependencies between packages are deduced from the dependencies between
units. Inter-package dependencies are represented using a bimetric line, in which
the number of dependencies from the package preferences to k9 is represented
by the extremity size on the package preferences (¢). Similarly, dependencies
initiated in k9 toward preferences are represented in the extremity size close to
ko (D).

Such a bimetric line is adequate in presence of multiple birectional con-
nections. clearly indicates that preferences heavily depends on k9, while x9
depends little on preferences.

9.3.4 Interaction

RoleViz offers a number interactions to ease the exploration of the software
under analysis.

Mouse hovering. Hovering the mouse cursor above a package highlight in
red dependencies between dependent and depending packages. illustrates
the overall K-9 Mail application with k9 highlighted. In addition, a popup
appears to give the full package name of it. The figure shows that x9 has little
dependencies toward other packages however many are depending on k9.
When hovering the mouse cursor above a compilation unit, lines between
the pointed unit toward all dependent other units appear (not shown in the
figure). Lines are also colored according to the role of the dependent class.

190 CHAPTER 9. PAPER H

<DeletePolicy>

<Expunge>
elements

<FolderMode> 24.0

<MessageFormat>

<QuoteStyle>
<Searchable> o
<ShowPictures>
<SortType> * Adapter for the Choose identtys/ems ls view. 8.0
<Acgount:
<AccountSettings>

o

0.0
<BooleanSetting> (/;0\ o,“b\ @c\ q;\;\\ q;o\

A N Vv g g
<ColorSetting: & & o & O
g O < & & o
. Setting ¥ ¥ > N &
EnumSetting> NS &$ & & &
L &8 & <& 0,\6
<IntegerRangeSetting> 55 & N o o
& N
<SettingsDescription \Q\Q &
&
<SettingsUpgrader>
$StringSetting>
o
Unit outgoing dependencies Unit source code Package role composition

Figure 9.5: Drill down

Drill down. In a graphical environment, drill-down is an action to obtain
detailed data about a particular visual element. Clicking on a package augment
the main visualization with the package role composition histogram, indicating
the proportion of different roles. In the histogram indicates that 68.75% of
the compilation units contained in the k9 package have the Information Holder
role.

Clicking on unit shows two views. Unit outgoing dependencies is a visualiza-
tion that indicates the outgoing dependencies of the selected unit. Unit source
code gives the source code, in which one can search using regular expressions.
The view obtained when drilling down are displayed next to the main RoleViz
visualization. For example, the source code may be shown all the time while
using RoleViz.

Visualization Alteration. RoleViz offers five actions to alter the visualization.
(i) First, packages and classes matching a provided a regular expression may be
highlighted using a stark color. Such a feature is useful to highlight a particular
cross cutting concern. The highlight remains until the user decides to explicitly
remove it. (ii) Second, selected elements may be kept while all the others
are removed. (iii) Third, selected elements may be removed. (iv) Fourth, the
visualization can be reset to its original state, thus removing all the alterations.
(v) Fifth, the visualization may be spawned into a new window, thus leading
to a second instance of the visualization. This interaction allows for parallel
unrelated system explorations. This can also be used in combination with the
other alteration actions to produce a new visualization with smaller number of
elements, e.g. the ones that match the search terms, thus allows users to focus

9.4. RESEARCH QUESTIONS 191

on a specific parts of the system.
These interactions alter the visualization. As a consequence, they are likely
to be triggered after a shallow exploration using mouse hovering and drill down.

9.4 Research Questions

The research objective of our study is to determine whether RoleViz helps in
enhancing the understandability of software architecture. We form two research
questions to guide our study:

RQ1: How does RoleViz compare to Softagram? In particular, we compare the
two visualisation tools in terms of:

e participant’s perceived cognitive load,
e participant’s perceived usability,

e participant’s understanding of the software system regarding the
tasks.

By “understanding”, we refer to the participant’s ability to: a) locate
components/entities of the system relevant to the tasks, b) describe
the responsibility of the located components/entities and relationship
between them, and ¢) formulate a plan to solve the tasks.

RQ2: What are the perceptions of the participants on the current features of
RoleViz?

Determining whether RoleViz meets the expectation of the participants
is crucial to identify where exactly RoleViz falls short of feature. In
addition, this research questions helps formulating the future direction
of RoleViz.

9.5 User Study

To answer the research questions stated above, we designed and conducted a
user study. The design of the user study involves the following five components.

9.5.1 Baseline

The performance of RoleViz has to be compared against a baseline visualization.
Softagram, which is a commercial tool to visualize software systerrﬂ was chosen
to be the baseline tool for two main reasons.

Firstly, Softagram has been defined to address concrete problems of visual-
izing software architecture and it has been developed under a strong industrial
influence. The visualization metaphor is UML-inspired: a software entity (e.g.
a file, a package or a class) is represented as a node with attributes and links to
other nodes. The associations between software entities are used to show various
types of relationship (between the entities), such as inheritance, library usage,
method-calls, etc. [0.6] shows K-9 Mail with Softagram. At the center we see

Thttps://softagram.com

https://softagram.com

192 CHAPTER 9. PAPER H

ot

Figure 9.6: Softagram main GUI - Structural View

different packages, to which the red fading indicates a metric, number of lines
of code in this example. Different layouts are accessible from the control panel
located on the top of the window. On the right-hand side different properties
to adjust the visualization are available.

Secondly, Softagram allows for a software exploration in an interactive
fashion. In particular, users can drill down/up to navigate among levels of
data ranging from the top package (up) to variables of a class (down). Mouse
scroll can be used to zoom in/out at specific parts of the visualization canvas,
thus allowing users to read details when the diagram is too large. Similarly to
RoleViz, associations of an entity are highlighted when clicking on the entity.
Moreover, Softagram also provides two search options which allow users to
search globally in all entities of the studying system or locally within the
entities showed on the main canvas.

Softagram can also be used to highlight architectural changes (such as new
dependencies) introduced by the pull request author. Softagram does not offer
source code view within the application but can direct users to the Github
page of the source code file (via a web browser and the Internet).

9.5.2 Comprehension Tasks

We need to define two comprehension tasks. We started by defining a number
of criteria (C) as the following:

C1: Realistic. The comprehension tasks should be derived from realistic soft-
ware development or maintenance issues/tasks.

C2: Simple. The tasks should be simple enough so that participants can
complete them within the limited time of the study.

C3: Independent. The two tasks should not depend on each other and should
not be semantically close. As we use a within-subject method, this criterion
aims to mitigate the learning effects from solving one to another task.

C4: Comparable. The two tasks should be comparable in terms of complexity.
With this criterion, we expect the differences between the tasks do not
create any additional cognitive load or lead to any major changes in the
performance of participants.

9.5. USER STUDY 193

C5: Verifiable. We assess participant’s understanding based on their solutions
to the tasks. The assessment method should be built on top of a verified
solution to the tasks. Therefore, it is important to find the tasks but also
the solutions that are confirmed to solve the tasks.

Then, we looked into the issue tracking system of K-9 Mail to find realistic
issues (C1). The issues were labeled by senior contributors of the project. We
relied on these labels in order to filter relevant tasks for the study. In particular,
we filtered those issues that were labeled as good first issue (for simplicity and
comparability - C2 & C4) and were solved/closed at the time of searching (so
a working solution exists - C5). We found two issues namely “ Export/Import
Settings” (#2969) and “ Attachment Size Format” (#3343) that satisfied the
criteria.

Then, two comprehension tasks were built on the basis of the identified
issues. Task “Export/Import Settings” (EXPORT/IMPORT) concerns with
the problem that email settings (including preferences, contacts, etc.) do not
display in the same order when being exported and imported from an old to a
new Android device. Task “Attachment Size Format” (ATTACHMENT SIZE)
aims at changing the size format of downloaded attachments from long number
of bytes to a more human-readable form (e.g. in KB, MB, GB). The two tasks
are independent and are not semantically close (C3).

It is noted that the main aim of the comprehension tasks is to locate and
build up understanding around the part(s) of the software system that is(are)
relevant to solving the given issues, not to implement or evaluate specific code
changes. Details of the tasks can be found in the replication package of this
study [217].

For each selected task, the following information was collected:

e The description of the issue is collected directly from the issue tracking
system. The instructors do not modify or add any text to the description.

e The discussion about the issue includes messages regarding the issue and
relevant /similar issues. Instructors of the user study focus on building up
knowledge on the following two aspects when browsing the discussion: i)
context /clarification of the issue; ii) solution(s) to resolve the task: This
is the part of discussion where solutions are discussed.

e The implementation of the solutions is assessed against the code approved
by the K-9 Mail community.

During the user study, participants are given the description of the issue only.
The instructor of the user-study have access to all the information and used
it to: i) build up understanding about the issue and the context where it
arises. With this, the instructor is expected to be able to answer participant’s
questions regarding the task during the user study; ii) create a grading schema
for assessing participant’s understanding. We elaborate on the grading schema
in Section

9.5.3 Participants

The user study targets participants who have some kinds of experience with
software development in Java programming language. The participants do not

194 CHAPTER 9. PAPER H

need to have prior understanding on the role-stereotypes or have any experience
of using software comprehension tools.

We sent a call for voluntary participation to the user study via personal
networks of the authors. In the call, the following information was clearly
mentioned: i) a short description about the study; ii) requirements to the
participants; and iii) expected time and duration of the study as well as
expected amount of work from the participants. After two weeks, we received
numerous responses and could finalize a list of 16 participants for the study. 2
weeks prior to the working session of the study (see Section , an email with
training materials (see Section[9.5.4) and an URL to the online background form
was sent to the participants. The instructor of the study also communicated
with the participants in order to schedule time and location for the working
session.

9.5.4 Training Period

The aim of the training period is to equip the participants with essential infor-
mation to work effectively during the working session. By essential information,
we refer the following pieces of knowledge: 1) use of visualisation tools, i.e. func-
tions and interaction mechanism of the visualisation tools; ii) role-stereotypes,
i.e. what is the responsibility of each role.

We provided the participants with several training materials, including
presentation slides about role-stereotypes and two self-designed tutorial videos
on RoleViz EI and Softagram El These training materials were sent to the
participants two weeks prior to the working session. The materials are included
in the replication package of this study [217]. During this training period,
the instructor was open to any questions regarding both of the tools and
role-stereotypes.

9.5.5 Work Session

After the training period, we assume all participants have proper knowledge to
start working on the comprehension tasks. The working sessions were designed
to be 80 minutes long and were conducted on a desktop computer provided by
the instructor in a scheduled time and room. All participants used the same
screens and input devices. The activity (A) of a participant was structured as
follow:

A1: Introduction (5 mins): The instructor gave a brief introduction about the
purpose and procedure of the session.

A2: Warm-up (15 mins): During this time, the participant was allowed to
actually use the visualisation tools. The main aim was for the participant
to be more familiar with the control and interaction mechanism of the
tools. The participant was also allowed to adjust the settings of the
desktop computer and input/output devices (such as keyboard, mouse,
screen) to fit his/her preferences.

Zhttps://youtu.be/HqCUAlaidqw
Shttps://youtu.be/YXizTrJ5j71

https://youtu.be/HqCUAlai4qw
https://youtu.be/YXizTrJ5j7I

9.6. DATA COLLECTION & ANALYSIS 195

A3: Comprehension sessions (50 mins): Each participant performed two
comprehension tasks (ATTACHMENT SIZE and EXPORT/IMPORT),
each with help of a visualisation tool (RoleViz or Softagram). Each
comprehension session was scheduled in 25 minutes with the following
activities:

A3.1: Giving task description (3 min);
A3.2: Comprehending with a visualisation tool (15 mins);

A3.3: Answering post-task questionnaire (7 mins).

A4: Post-study Questionnaire (10 mins): Participants were asked to answer
open questions regarding their perceived benefit of using RoleViz and
desired improvements of the tool.

9.6 Data Collection & Analysis

We collected the following data (i) background information, (ii) NASA Task
Load Index (TLX) Questionnaire, (iii) System Usability Scale (SUS) Question-
naire, (iv) Understanding Questionnaire, (v) Video Recording, (vi) Post-study
Questionnaire. Next, we discuss how the data is collected and analyzed.

9.6.1 Background Questionnaire

Prior to the working session, participants were asked to fill in a background
questionnaire. The questionnaire contains 10 questions regarding participant’s
experiences with Java programming language, Android and K-9 Mail system.
If a participant answers that he knows/has experience with K-9 Mail, 2 extra
questions are asked for clarification about this.

9.6.2 TLX Questionnaire

Measurement. The NASA-TLX is a widely used technique for measuring
subjective mental workload [218]. It relies on a multidimensional construct to
derive an overall workload score based on six workload sources: mental demand,
physical demand, temporal demand, performance, effort, and frustration level.
There are two ways to compute the total workload score. One way, called
Weighted TLX, involves a two-step process where participants first give rating
for the six workload sources, then make a series of 15 pairwise comparisons
between each pair of the sources as a basis for calculating weight of each source.
The second way, called Raw TLX, is a light-weight approach in which the total
mental workload score is simply calculated as the average of the ‘raw ratings’ of
the six workload sources [219]. In this study, we chose to follow this light-weight
approach to collect TLX data and calculate the total TLX score.

Data collection. After finishing a comprehension task (A3.2), participants
were directly given a TLX rating sheet in paper form and a pen to mark on it.
In total, each participant gave two rating sheets after the two comprehension
sessions. We collected the sheets and transferred the result into a csv file for
computational purpose. The instructor only gave explanation or clarification

196 CHAPTER 9. PAPER H

regarding the TLX scale based on NASA’s TLX manual [220]. The instructor
did not interfere or influence participant’s ratings in any mean.

Data analysis. We compare the mean values of TLX scores between the
two tasks in order to see the workload. Since our study is within-subject, we
will use Wilcoxon signed-rank test to measure the differences.

9.6.3 SUS Questionnaire

Measurement. The System Usability Scale is an easy, standard way of evalu-
ating the usability of a system [172]. It is a form containing ten statements,
and users provide their feedback on a 5-point scale (1 is “strongly disagree” and
5 is “strongly agree”). It effectively differentiates between usable and unusable
systems by giving a measure of the perceived usability of a system. It can be
used on small sample sizes and be fairly confident of getting a good usability
assessment [221].

Data collection. The ten SUS questions were integrated into the post-
task questionnaire (A3.3). The participants were given the questionnaire after
finishing with a comprehension task and the corresponding TLX ratings paper.

Data analysis. We follow the formula proposed by Brooke [172] to calculate
the total SUS scores reported by the 16 participants. After that, we calculated
the average of the usability values of all participants split by visualization tool
to obtain the overall usability score of RoleViz and Softagram. We compare
these values in order to examine the difference in usability of the two tools.
In order to obtain a more detailed view of the difference (if any), we compare
mean values of ratings to each of the 10 SUS questions between the two tools.
We test the significance of the differences by using a Wilcoxon signed-rank test
which is non-parametric and is often used in situations in which there are two
sets of scores derived from same participants [222].

9.6.4 Understanding Questionnaire

Measurement. In order to measure participant’s understanding of K-9 Mail
system regarding to the tasks, firstly, we ask the participants to answers the
following three questions (Q).

Q1. Can you name 5 elements (packages/classes/methods) that are the most
relevant /important to the task?

Q2. What are the responsibilities of the elements chosen for the question
above in performing the functionality related to the task?

Q3. Which changes of the elements chosen for question above are needed to
complete the task? (Describe your plan/solution)

These three understanding questions aim to assess the three aspects of “under-
standing” (as defined in Section [9.4).

Next, we build and use a 11-point scale grading schema, i.e., with the lowest
score being 0 and the highest score being 10 points, to evaluate participant’s
answers. For each comprehension task, a grading schema is created by (same)
one author of this paper based on the three sources of information regarding
the task, including description of the task, discussion about the task and

9.7. RESULT 197

approved implementation of solutions to the task (as described in Section .
The grading schema consists of answers to the three understanding questions
and criteria to judge the level of participant’s understanding toward each
questions. It is noted that different questions are given different maximum
points based on our subjective judgment on their importance to forming
participant’s “understanding”. In particular, answers to Q1, Q2 and Q3 could
get maximum 5 points, 2 points and 3 points, respectively. More details about
the grading schema can be found in the replication package of this paper [217].

Data collection. The 3 understanding questions are placed in the post-
task questionnaire together with the 10 SUS questions (A3.3). During the
comprehension time, participants were encouraged to take note about the
relevant elements of the system to the tasks, thus they could quickly transfer
their notes to the answer form. Their answers were then graded by two authors
of this paper using the above-mentioned grading schema. Total understanding
score was calculated as a sum of the three component scores.

Data analysis. Similar to TLX and SUS score, we compute the total
understanding scores of all participants and compare the mean values of
understanding scores between the two visualization tools and the two tasks. In
order to gain an insight about which aspect(s) of “understanding” contribute to
the difference (if any), we also compare the scores between the understanding
questions by visualization tools and tasks. We test the significance of the
differences by using a Wilcoxon signed-rank method.

9.6.5 Post-study Questionnaire

Data collection. All participants were given a post-study questionnaire (A4)
after they have finished with two comprehension sessions. The post-study
questionnaire contains 7 open questions aiming at collecting participant’s
perceived benefit of using RoleViz in program comprehension and desired
improvements of the tool.

Data analysis. We used the Grounded Theory research method [223] to
analyze answers of the post-study questionnaire. We first identified concepts
and key phrases are identified and moved into subcategories, and then grouped
into categories.

9.7 Result

In this section, we first present demographics of the participants of this study.
Then, we explore the comparability of the two comprehension tasks used in
the study. Lastly, we answer the two research questions of the study.

9.7.1 Demographics of Participants

In total, 16 people, with ages ranging from 23 to 36, participated in this study.
These include 7 Master students, 4 Ph.D. candidates, 1 post-doc researcher
and 4 software development engineers from 3 software companies. All of the
participants have some experiences with the Java programming language, rang-
ing from less than 1 year (2 participants) to more than 8 years (1 participant).

198 CHAPTER 9. PAPER H

The majority of the participants (10 out of 16) have 3-8 years experience with
Java.

10 out of 16 participants reported to be familiar with the Android de-
velopment framework. Among them, 5 participants have less than 1 year of
experience, 2 participants have 1-2 years experience and 3 participants have
3-5 years of experience with the Android framework.

Only 5 out of 16 participants answered to know the K-9 Mail application
and/or the K-9 Mail development project. 3 of them have been using the K-9
Mail application in a daily basis for managing emails on their Android devices.
None of the participants reported to have comprehended the K-9 Mail system
prior to the study.

14 participants watched the introduction videos of RoleViz and Softagram
prior to the work session. For the two participants who did not watch the
introduction videos, the instructor spent extra time (15 - 20 minutes) at the
starting of the work session to guide them through important parts of the
videos.

9.7.2 Are the Comprehension Tasks Comparable?

The two comprehension tasks used in our study were carefully selected (as
described in Section with the expectation that the tasks are comparable.
In this section, we examine this comparability in terms of participant’s TLX,
SUS and Understanding Questionnaire scores.

Figure [9.7] shows the mean values of participant’s perceived TLX, SUS and
Understanding scores for the two comprehension tasks. A Wilcoxon signed-rank
test confirmed that the small differences are statistically insignificant, with
p-values being 0.80, 0.85 and 0.17 (all are well-above 0.05) for TLX, SUS and
Understanding scores, respectively. We therefore conclude:

e The two comprehension tasks require similar cognitive load to solve (TLX
score).

e Solving different tasks does not result in different perceived usability
score (SUS score).

e Participants achieved comparable understanding scores after solving the
two tasks (Understanding score).

The meaning of this result is two-fold. Firstly, it confirms that our task
selection method is effective. Secondly, it suggests that we can ignore the factor
of “task-difference” when analysing the difference between visualisation tools.

The two comprehension tasks are comparable in terms of
complexity, required cognitive-load, usability score and un-
derstanding score. With this, we can eliminate the ‘“task-
difference” factor when analysing the difference between vi-
sualisation tools.

9.7. RESULT 199

100.00 100.00 10.00

80.00 80.00 8.00

§67.97 @63-75 En

60.00 60.00 600 Fs75

40.00 Pa1.20 142-13 40.00 4.00

20.00 20.00 2.00

0.00 ——————— 0.00 ——————— 0.00

(a) TLX Score (b) SUS Score (c¢) Understanding Score

Figure 9.7: Differences in mean values of (a) TLX, (b) SUS and (c) Under-
standing Scores (4 /-1 SD) between two comprehension tasks: ATTACHMENT

SIZE (&) and EXPORT/IMPORT ()

9.7.3 RQ1: Comparison between RoleViz and Softagram
9.7.3.1 TLX Task Load Score

Table shows mean values of the overall- and component TLX scores across
the two visualisation tools. The average task load index associated using RoleViz
and Softagram in the comprehension tasks are 39.43+13.24 and 43.914+13.68,
respectively. These scores indicate a low to moderate effort according [224].

Table shows that the mean values of overall- and component task load
associated with using RoleViz are always smaller, with the differences ranging
from 0.63 to 12.19, compared to that of Softagram. The Wilcoxon signed rank
test, however, shows that none of the differences are statistically significant
(all p-values are above 0.05).

Table 9.1: Comparison of average TLX scores by the two visualisation tools

(N=16)

RoleViz Softagram | Wilcoxon S.R.

Mean Mean
(M1) SD (M2) SD | M1-M2 | p-value
Overall TLX 39.43 | 13.24 | 43.91 | 13.68 | -4.48 0.155
= Mental 52.19 | 21.68 | 56.88 | 21.36 | -4.69 0.347
g 2 Physical 24.69 | 18.02 | 25.31 | 18.66 | -0.63 0.857
= £ | Temporal 50.63 | 28.63 | 54.69 | 26.86 | -4.06 0.262
—;8 Performance | 33.75 | 15.33 | 36.25 | 24.87 | -2.50 0.975
& @ [Effort 42.19 [17.89 | 54.38 [20.65 | -12.19 | 0.088
Frustration | 33.13 | 24.07 | 35.94 | 24.71 | -2.81 0.371

The average task load associated with using RoleViz and
Softagram for the comprehension tasks is comparable.

200 CHAPTER 9. PAPER H

9.7.3.2 Usability Score

Table [9.2] shows the mean values of total SUS scores and component SUS scores
associated with the two visualisation tools. RoleViz achieves an average of
72.434+14.93 in overall SUS score. This is significantly higher compared to that
value of Softagram, which is 64.32£17.62 (p-value = 0.035). According [225],
RoleViz is graded “C+” which indicates a good usability score, while Softagram
is graded “C” which is considered as a moderate usability score.

In order to get an idea on which aspects of usability constitute the difference,
we take a deeper look at the ten component SUS scores. We find that RoleViz
tends to achieve higher (mean values of) rating to questions regarding the
positive aspects of usability (i.e. Q1, Q3, Q5, Q7 and Q9). Meanwhile, Softagram
seems to score “higher” for questions regarding the negative aspects of usability
(i.e. Q2, Q4, Q6, Q8 and Q10). This plain comparison (of mean values) suggests
that RoleViz achieved a “better” usability score for most of all component
usability aspects (except for the required learning-effort where the mean values
was equal).

A Wilcoxon signed rank test confirms that this difference is statistically
significant. In the post-study questionnaire, one participant reported a comment
that may explain this difference: “source code is not easily accessible using
Softagram”, whereas in RoleViz it is easy to navigate between design and source
code perspectives.

Table 9.2: Comparison of average SUS scores between RoleViz and Softagram

(N=16)
RoleViz |Softagram|Wilcoxon S.R.
Mean Mean
(M1) SD (M2) SD |M1-M2| p-value
Total SUS Score 72.34|14.93|64.38|17.62| 7.97 | 0.035*
B Q1: Willing to use the system| 3.50 | 1.10 | 3.25 | 1.13 | 0.25 0.210
g Q2: Complexity of the system | 2.00 | 1.03 | 2.56 | 0.63 | -0.56 | 0.090
@ 1Q3: Ease of use 3.7510.9313.38|1.15| 0.38 | 0.110
2 Q4: Need of support to use 1.88 1 0.81|2.25|1.13 | -0.38 | 0.190
3 Q5: Integrity of functions 3.690.87]3.13|0.96 | 0.56 | 0.020*
2 [Q6: Inconsistency 1.56 [0.89 | 1.81 | 0.98 | -0.25 | 0.250
2| Q7: Intuitiveness 3.8810.96 | 3.88|10.96 | 0.00 1.000
% Q8: Cumbersomeness to use | 1.94|0.85|2.31 | 1.14 | -0.38 | 0.080
8| Q9: Feeling confident to use | 3.44]0.81|3.00 | 1.21]| 0.44 | 0.080
P | Q10: Required learning-effort | 1.94 [0.931.94 | 1.12 | 0.00 | 0.940

RoleViz is reported to have a significantly higher usability
score compared to Softagram. Participants also valued the
high level of integrity of available functions of RoleViz over
Softagram.

9.7.3.3 Understanding Score

Table [9.3] shows the mean values of total Understanding scores and component
Understanding scores associated with the two visualisation tools. Participants

9.7. RESULT 201

scored on average 6.56+1.82 points with RoleViz. This is significantly higher
(by 10%) compared to an average of 5.504+2.28 points when using Softagram
(p-value = 0.025).

To gain an insight into the participant’s performance on different aspects
of understanding, we calculate and analyse the component understanding
scores. Table [9.3| shows that participants achieved higher scores for all three
understanding questions. In particular, we observe a difference of 0.31, 0.25 and
0.50 points for the questions regarding Identification (of relevant components),
Responsibility (between the identified components) and Solution formation,
respectively.

The Wilcoxon signed rank test confirms that participants could indeed
produce a better solution to the comprehension tasks with RoleViz compared
to Softagram (p-value = 0.033).

Table 9.3: Comparison of average Understanding scores between RoleViz and
Softagram (N=16)

RoleViz | Softagram | Wilcoxon S.R.

Mean Mean

(M1) SD (M2) SD | M1-M2 | p-value
Understanding Score | 6.56 | 1.82 | 5.50 | 2.28 1.06 0.025*
8. | Identification 2.69 [1.20| 2.38 | 1.26 | 0.31 0.353
g Responsibility 144 [0.51| 1.19 | 0.54 | 0.25 0.102
O | Solution 2.44 10.63] 1.94 | 1.00 | 0.50 | 0.033*

Participants achieved significantly higher understanding
scores (by 10%) and produced better solutions when using
RoleViz (for comprehension tasks) compared to using Softa-
gram.

9.7.4 RQ2: Participant’s perception on the features of
RoleViz

The post-study questionnaire focused on collecting the perceptions and sug-
gestions for improvement of RoleViz. The questions are open and need to be
answered in plain English. We applied the Grounded Theory [223] to process
the post-experiment feedback . ﬂ The analysis identified 10 general
themes. Below, each general theme is annotated with the number of times
it appears in the transcripts and the number of participants who explicitly
expressed it. The general themes that we consider as positive are:

e Usability and Efficiency (50 occurrences / 14 participants): This theme
covers the positive aspects of RoleViz regarding the efficiency (e.g., accu-
racy of the provided information, helpful, searching, no need to read class
names, support comprehension, identifying starting point) and usability
(e.g., clarity of the visualizations, narrowing down).

4The analysis can be found in the replication package of this paper

202

CHAPTER 9. PAPER H

e Role (12 / 6): Overall, participants have positively perceived the way roles

are presented by RoleViz (e.g., “coordinator helpful to identify starting
point”; “used only the roles to complete the tasks”).

e Relevant view (9 / 8): Participants have explicitly indicated that the main

RoleViz visualization is helpful to complete the tasks. The possibility to
have the source code always present is also reported as important.

o Visual aspect (5 / 5): Few participants have indicated some positive

aspects of the visual cue. In particular, it was reported that the circle
layout gives a good overview of the system. The highlighting and coloring
are perceived as useful.

The general themes that we consider as negative toward RoleViz are:

e Possibility for improvement (34 / 15): We asked the participants to

answer the question “Do you have any suggestions for improvements
in RoleViz?”. All participants but one made suggestions about various
aspects of RoleViz. In particular, being able to navigate within the
source code by only scrolling and textual searching is a limitation. One
participant reported that the use of color is problematic (red usually
refers to a problem and we use it to represent the information holder role,

cf9.2).

e Missing information (7 / 7): Participants criticized missing information

about methods and variable accesses. Currently, methods are listed within
the source code, obtained by clicking on a compilation unit. Participants
found this not convenient.

o Issue when showing source code (7 / 6): Source code is poorly supported

by RoleViz.

e Bugs (5 / 5): A few bugs were reported, in particular that the legend is

not always visible.

o Issue with the experiment (1 / 1): One participant found that not all

the information provided by the visualization are necessary to solve the
tasks.

o Visual element not useful (3 / 2): Two participants reported that the

information about roles and dependencies between elements are not useful.

of RoleViz to complete the tasks. In total, 6 participants re-
ported the importance of annotating the software architec-
ture with roles information. Participants missed information
about methods, in particular the need to inspect a method
call graph was reported by 7 participants. Also, source code
should be better supported with syntax highlighting and
searching.

Overall, participants appreciate the usability and efficiency

9.8 Discussions

We

first examine whether participant’s background is correlated with their

SUS/TLX/Understanding scores. Then, we discuss possible threats to validity

9.8. DISCUSSIONS 203

of our study.

9.8.1 Does participant’s experiences correlate with their
perceived SUS, TLX and Understanding scores?

In order to answer this question, we examine the correlation between partici-
pant’s number of years of experiences with Java and Android (called “Java Exp.”
and “Android Exp.”) and their SUS, TLX and Understanding scores. This in-
formation was collected via the background questionnaire. As Java Exp. and
Android Exp. are ordinal data, we use Spearman’s rank correlation coeffi-
cient (a.k.a. Spearman’s rho), which is a non-parametric statistical method, for
measuring the correlation.

Table [9.4] shows the result of the Spearman’s rho test. Each cell of the table
shows Spearman’s correlation coefficient between a pair of the following five
variables: Java Exp., Android Exp., Understanding, SUS Score and TLX Score.
Cells marked with “*’ or “**’ indicate a confidence interval of at least 95%
(p-value <= 0.05). There is a significant moderate positive relationship between
participant’s understanding score and their experiences with Java language.
That is, participants with more years of experiences with Java are likely to
achieve a better understanding score.

Table also reveals an interesting negative relationship between partici-
pant’s TLX score and both their understanding and SUS scores. It is more
likely that participants who report a high task load also give a low
usability score and achieve a low understanding score. We do not ob-
serve any significant correlation between participant’s experiences with Android
to their SUS/TLX/Understanding scores.

Table 9.4: Correlation between participant’s SUS/TLX/Understanding scores
and their experiences.

Java | Android | Under- SUS TLX
Exp. Exp. standing | Score | Score
Java Exp. 1
Android Exp. | 0.520*%* 1
Understanding | 0.453** | 0.045 1
SUS Score 0.032 -0.235 0.12 1
TLX Score -0.15 0.092 -0.448% | -0.552%* 1

9.8.2 Threats to Validity
9.8.2.1 Threats to Construct Validity

Participants, who are in the network of the authors of this paper, might be
biased towards the visualisation that the authors created. We mitigate this
issue by not revealing the authorization of the two visualisation tools until the
end of the study.

204 CHAPTER 9. PAPER H

9.8.2.2 Threats to Internal Validity

All of the participants are not familiar with both Softagram and RoleViz prior
to the study. The unfamiliarity might hinder participant’s effective use of the
tools for comprehension tasks, thus results in a low SUS/Understanding score
and a high task load index. The training period and the warm-up sessions
are involved as part of the study to mitigate this threat. In fact, participant’s
answers to the question 4 of the SUS form (Table indicates a small need
of assistance when using the two tools.

9.8.2.3 Threats to Conclusion Validity

Our answers to RQ1 base mostly on statistical tests on a small sample size.
Therefore, there is a threat that the conclusion might not be representative of
our analysis. A mitigation strategy could be to involve more people to the next
round of tool evaluation.

9.9 Related Work

Several studies investigated the effect of using stereotypes on software com-
prehension tasks. Staron et al. [214] conducted a set of controlled experiments
both in academia and in the industry to evaluate the effect of role-stereotypes
on UML models comprehension. They found that stereotypes play a significant
role in the comprehension of models. In particular, the participants who used
stereotyped models scored more correct answers in tests checking the level
of understanding. Moreover, these participants required less time to answer
comprehension questions and identify the correct answers.

Genero et al. [56] conducted a controlled experiment to investigate the
impact of using stereotypes on UML sequence diagrams comprehension. They
analyzed the use of sequence diagrams with and without stereotypes. They
found that there is a slight tendency in favor of the use of stereotypes in
facilitating the comprehension of UML sequence diagrams.

Ricca et al. [55] run a series of experiments to test whether the use of
the stereotyped UML diagrams supports the comprehension and maintenance
activities of web applications with significant benefits. They compared the
performances of subjects in comprehension tasks where they have the source
code complemented either by standard UML diagrams or by stereotyped dia-
grams. They suggested that organizations can achieve a significant performance
improvement by letting their less experienced developers (i.e., juniors) adopt
stereotyped UML diagrams for comprehension tasks.

Sharif and Maletic [59] studied the effect of two different stereotyped
layouts on the comprehension of UML class diagrams: orthogonal and clustered.
The orthogonal layout minimizes edge crossing and bends and does not use
information about the class stereotype in layout positioning. The clustered
layout uses information about the class stereotype to position classes into
multiple clusters in the diagram. They found that the use of stereotyped-
clustered layouts demonstrates a significant improvement in subject accuracy
and efficiency in solving problems in comprehension tasks.

9.10. CONCLUSION AND FUTURE WORK 205

In the same direction, Andriyevska et al. [57] designed and conducted a
user study to evaluate the effect of using a stereotyped UML class diagram
layout on diagram comprehension. Andriyevska and her colleagues suggested
that stereotyped UML class diagrams support software comprehension tasks
by letting developers build better mental models, hence gain more information
about the considered software system.

Yusuf et al. [58] conducted a study to assess the effect of using layout, color,
and stereotypes on UML class diagram comprehension. As a mean to achieve
their goal, the authors used eye-tracking equipment to collect data on subjects’
eye gaze which are then used to analyze the cognitive process involved in the
visual data processing. They suggested that the use of class stereotypes plays a
substantial role in the comprehension of UML class diagrams. Moreover, they
suggested that the use of layouts with additional semantic information about
the design is the most effective for diagrams comprehension.

Blouin et al. [212] proposed an interactive visualisation tool for compre-
hending large meta-models. Their tool, Ezplen, used a model slicing technique
to allow users focus on subset of model elements of interest. A comparative
evaluation of Ezxplen with EcoreToolsEI showed that Ezplen outperforms in
improving large meta-models understanding.

Unlike the previous work which focused on adding role as an extension
of static UML models, we built an interactive polymetric view visualisation
without referring to UML models. We also utilise the 6 role-stereotypes invented
by Wirfs-Brock [189], which are at a different level of abstraction compared
to the class-stereotypes used by other previous work [57] [58] [59] [214]. Our
visualisation tool also proven to be scalable, i.e. can visualise 700+ classes,
compared to the previous work which focuses on assisting the comprehension
task of a subset of the model of interest.

9.10 Conclusion and Future Work

In this paper we studied the visualisation of large software systems in order to
aid comprehension of the design of the system. In particular, we contribute the
use of role-stereotypes and a visualisation-tool called RoleViz. We compare our
tool to an industrial tool Softagram via a user study with 16 people.

Results from the study indicate that RoleViz achieves a higher score on
usability than Softagram. In particular, users like the integration features that
enable exploring a software system at both the design and the source code
levels of abstraction. According to Sauro’s benchmark data, Roleviz achieves
‘good’ usability, and Softagram achieves ok’ usability.

Performing comprehension tasks using RoleViz or Softagram is experienced
as comparable with respect to the required cognitive effort. According to the
benchmark data, the cognitive load of both tool is rated as ’low to moderate’
effort.

Participants achieved about 10% better score on comprehension tasks when
using RoleViz compared to using Softagram. Specifically, when using RoleViz,
participants perform better in the ability to propose a solution to bug-fixing.
The factor that may explain this is: RoleViz has as scoping mechanism that

Shttps://www.eclipse.org/ecoretools

206 CHAPTER 9. PAPER H

allows users to effectively focus on certain parts of the system that are relevant
for the task at hand.

We found that some participants use classes with particular stereo-types
as starting-points for particular understanding tasks: for example, for tasks
that deal with ’user interface’ issues, participants start their exploration of the
system by looking at classes labelled as ’interface’-type.

For the future directions of the research, the participants in our study
prominently pointed out at the need for also visualizing behavioral information
(e.g., call-graphs) at a level between source code and architecture level of
abstraction.

Bibliography

[1]

O. Palagia, Greek sculpture: function, materials, and techniques in the
archaic and classical periods. Cambridge University Press Cambridge,
UK, 2006.

“Definition of software modeling by omg,” https://www.omg.org/UML/
what-is-uml.htm, accessed: 2019-08-20.

B. Anda, K. Hansen, I. Gullesen, and H. K. Thorsen, “Experiences from
Introducing UML-based Development in a Large Safety-critical Project,”
Empirical Softw. Engg., vol. 11, no. 4, pp. 555-581, Dec. 2006.

M. Grossman, J. E. Aronson, and R. V. McCarthy, “Does UML make the
grade? Insights from the software development community,” Information
and Software Technology, vol. 47, no. 6, pp. 383-397, 2005.

A. M. Fernandez-Séez, M. Genero, and M. R. V. Chaudron, “Empirical
studies concerning the maintenance of UML diagrams and their use in
the maintenance of code: A systematic mapping study,” Information and
Software Technology, vol. 55, no. 7, pp. 1119-1142, 2013.

B. Dobing and J. Parsons, “How UML is Used,” Commun. ACM, vol. 49,
no. 5, pp. 109-113, may 2006.

P. Baker, S. Loh, and F. Weil, “Model-Driven Engineering in a large
industrial context—Motorola case study,” Model Driven Engineering
Languages and Systems, pp. 476—491, 2005.

C. F. J. Lange, M. R. V. Chaudron, and J. Muskens, “In practice: UML
software architecture and design description,” IEEE Software, vol. 23,
no. 2, pp. 4046, 2006.

W. J. Dzidek, E. Arisholm, and L. C. Briand, “A Realistic Empirical
Evaluation of the Costs and Benefits of UML in Software Maintenance,”
IEEFE Trans. Softw. Eng., vol. 34, no. 3, pp. 407-432, may 2008.

A. Nugroho and M. R. V. Chaudron, “A Survey into the Rigor of UML Use
and Its Perceived Impact on Quality and Productivity,” in Proceedings of
the Second ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement, 2008, pp. 90-99.

207

https://www.omg.org/UML/what-is-uml.htm
https://www.omg.org/UML/what-is-uml.htm

208

BIBLIOGRAPHY

[11]

[20]

[21]

[22]

G. Scanniello, C. Gravino, and G. Tortora, “Investigating the Role of
UML in the Software Modeling and Maintenance-A Preliminary Industrial
Survey.” in ICEIS (8), 2010, pp. 141-148.

D. Budgen, A. J. Burn, O. P. Brereton, B. A. Kitchenham, and R. Preto-
rius, “Empirical evidence about the UML: A systematic literature review,”
pp- 363-392, 2011.

M. Petre, “UML in practice,” in Proceedings - International Conference
on Software Engineering, 2013, pp. 722-731.

J. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristoffersen, “Empirical
assessment of mde in industry,” in Proceedings of the 33rd international
conference on software engineering. ACM, 2011, pp. 471-480.

M. Galster and D. Weyns, “Empirical Research in Software Architecture:
How Far have We Come?” in 2016 13th Working IEEE/IFIP Conference
on Software Architecture (WICSA). IEEE, 2016, pp. 11-20.

J. Lung, J. Aranda, S. M. Easterbrook, and G. V. Wilson, “On the Diffi-
culty of Replicating Human Subjects Studies in Software Engineering,” in
Proceedings of the 30th International Conference on Software Engineering,
ser. ICSE '08. New York, NY, USA: ACM, 2008, pp. 191-200.

P. Lord, A. Macdonald, L. Lyon, and D. Giaretta, “From data deluge to
data curation,” in Proceedings of the UK e-science All Hands meeting.
Citeseer, 2004, pp. 371-375.

S. McConnell, Code complete. Pearson Education, 2004.

M. R. V. Chaudron, W. Heijstek, and A. Nugroho, “How effective is UML
modeling?” Software & Systems Modeling, vol. 11, no. 4, pp. 571-580,
oct 2012.

C. Kobryn, “UML 2001: A Standardization Odyssey,” Commun. ACM,
vol. 42, no. 10, pp. 29-37, oct 1999.

G. Booch, Object Oriented Design with Applications. Redwood City,
CA, USA: Benjamin-Cummings Publishing Co., Inc., 1991.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen,
Object-oriented Modeling and Design. Upper Saddle River, NJ, USA:
Prentice-Hall, Inc., 1991.

I. Jacobson, Object-oriented software engineering: a use case driven
approach. Pearson Education India, 1993.

H. Storrle, R. Hebig, and A. Knapp, “An Index for Software Engineer-
ing Models,” in International Conference on Model Driven Engineering
Languages and Systems (MoDELS) 2014, 2014, pp. 36—40.

R. France, J. Bieman, and B. H. C. Cheng, “Repository for model driven
development (ReMoDD),” in International Conference on Model Driven
Engineering Languages and Systems. Springer, 2006, pp. 311-317.

BIBLIOGRAPHY 209

[26]

[27]

29

[30]

[31]

B. Karasneh and M. R. V. Chaudron, “Online Img2UML Repository: An
Online Repository for UML Models.” in EESSMOD@ MoDELS, 2013,
pp. 61-66.

J. Noten, J. G. M. Mengerink, and A. Serebrenik, “A data set of OCL ex-
pressions on GitHub,” in Proceedings of the 14th International Conference
on Mining Software Repositories. 1EEE Press, 2017, pp. 531-534.

F. Bascianidi, J. Di Rocco, D. Di Ruscio, A. Di Salle, L. Iovino, and
A. Pierantonio, “MDEForge: an Extensible Web-Based Modeling Plat-
form.” 2014.

M. Dirix, A. Muller, and V. Aranega, “Genmymodel: an online UML case
tool,” in ECOOP, 2013.

M. Kunze, P. Berger, and M. Weske, “BPM Academic Initiative-Fostering
Empirical Research.” 2012.

M. Weske, Business Process Management: Concepts, Languages, Archi-
tectures, 2nd ed. Springer-Verlag Berlin Heidelberg, 2012.

M. Torchiano, F. Tomassetti, F. Ricca, A. Tiso, and G. Reggio, “Relevance,
benefits, and problems of software modelling and model driven techniques
- A survey in the Italian industry,” Journal of Systems and Software,
vol. 86, no. 8, pp. 2110-2126, 2013.

A. Forward, O. Badreddin, and T. C. Lethbridge, “Perceptions of software
modeling: a survey of software practitioners,” in 5th workshop from code
centric to model centric: evaluating the effectiveness of MDD (C2M:
EEMDD), 2010.

T. Gorschek, E. Tempero, and L. Angelis, “On the use of software design
models in software development practice: An empirical investigation,”
Journal of Systems and Software, vol. 95, pp. 176-193, 2014.

A. Nugroho and M. R. V. Chaudron, “Evaluating the Impact of UML
Modeling on Software Quality : An Industrial Case Study,” Springer-
Verlag, pp. 181-195, 2009.

A. Kuhn, G. C. Murphy, and C. A. Thompson, An Ezxploratory Study of
Forces and Frictions Affecting Large-Scale Model-Driven Development.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 352-367.

O. Badreddin, T. C. Lethbridge, and M. Elassar, “Modeling Practices in
Open Source Software,” Open Source Software: Quality Verification - 9th
IFIP WG 2.18 International Conference, OSS 2013, pp. 127-139, 2013.

W. Ding, P. Liang, A. Tang, H. Van Vliet, and M. Shahin, “How do open
source communities document software architecture: An exploratory sur-
vey,” in Proceedings of the IEEE International Conference on Engineering
of Complex Computer Systems, ICECCS, 2014, pp. 136-145.

210

BIBLIOGRAPHY

[39]

[40]

[41]

[44]

[45]

K. Yatani, E. Chung, C. Jensen, and K. N. Truong, “Understanding how
and why open source contributors use diagrams in the development of
Ubuntu,” Proceedings of the 27th international conference on Human
factors in computing systems - CHI 09, p. 995, 2009.

H. Osman and M. R. V. Chaudron, “UML Usage in Open Source Software
Development : A Field Study,” in Proceedings of the 3rd International
Workshop on Ezxperiences and Empirical Studies in Software Modeling co-

located with 16th International Conference on Model Driven Engineering
Languages and Systems (MoDELS 2013), 2013, pp. 23-32.

R. Kazman, D. Goldenson, I. Monarch, W. Nichols, and G. Valetto,
“Evaluating the Effects of Architectural Documentation: A Case Study
of a Large Scale Open Source Project,” IEEE Transactions on Software
Engineering, vol. 42, no. 3, pp. 220-260, mar 2016.

E. Chung, C. Jensen, K. Yatani, V. Kuechler, and K. N. Truong, “Sketch-
ing and Drawing in the Design of Open Source Software,” in Proc.
VL/HCC, 2010, pp. 195-202.

P. Langer, T. Mayerhofer, M. Wimmer, and G. Kappel, “On the usage of
UML: Initial results of analyzing open UML models,” Modellierung 2014,
vol. P225, pp. 289-304, 2014.

G. D. Crnkovic, Constructive Research and Info-computational Knowledge
Generation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp.
359-380.

G. Gousios and D. Spinellis, “GHTorrent: Github’s data from a fire-
hose,” in Mining Software Repositories (MSR), 2012 9th IEEE Working
Conference on. 1EEE, 2012, pp. 12-21.

G. Robles, S. Koch, J. M. Gonzalez-Barahona, and J. Carlos, “Remote
analysis and measurement of libre software systems by means of the
CVSAnalY tool,” in Proceedings of the 2nd ICSE Workshop on Remote
Analysis and Measurement of Software Systems (RAMSS). IET, 2004,
pp. 51-56.

C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and A. Wess-
lén, Experimentation in software engineering. Springer Science & Busi-
ness Media, 2012.

S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, Selecting Em-
pirical Methods for Software Engineering Research. London: Springer
London, 2008, pp. 285-311.

R. K. Yin, Case study research and applications: Design and methods,
5th ed. Sage publications, 2013.

B. Flyvbjerg, “Five misunderstandings about case-study research,” Qual-
itative inquiry, vol. 12, no. 2, pp. 219-245, 2006.

M. Kuniavsky, Observing the user experience: a practitioner’s guide to
user research. Elsevier, 2003.

BIBLIOGRAPHY 211

[52]

[53]

[54]

[55]

[56]

[61]

[62]

J. Han, J. Pei, and M. Kamber, Data mining: concepts and techniques
(8rd edition). Elsevier, 2011.

E. J. Chikofsky and J. H. Cross, “Reverse engineering and design recovery:
A taxonomy,” IEEFE software, vol. 7, no. 1, 1990.

B. Karasneh and M. R. V. Chaudron, “Extracting UML models from
images,” in 2013 5th International Conference on Computer Science and
Information Technology, mar 2013, pp. 169-178.

F. Ricca, M. Di Penta, M. Torchiano, P. Tonella, and M. Ceccato, “How
Developers’ Experience and Ability Influence Web Application Com-
prehension Tasks Supported by UML Stereotypes: A Series of Four
Experiments,” IEEE Trans. Softw. Eng., vol. 36, no. 1, pp. 96-118, jan
2010.

M. Genero, J. A. Cruz-Lemus, D. Caivano, S. Abrah&o, E. Insfran, and
J. A. Carsi, “Does the Use of Stereotypes Improve the Comprehension
of UML Sequence Diagrams?” in 2nd Symposium on Empirical Software
Engineering and Measurement, ser. ESEM 08, 2008, pp. 300-302.

O. Andriyevska, N. Dragan, B. Simoes, and J. I. Maletic, “Evaluating
UML Class Diagram Layout based on Architectural Importance,” in 3rd
IEEE International Workshop on Visualizing Software for Understanding
and Analysis, 2005, pp. 1-6.

S. Yusuf, H. Kagdi, and J. I. Maletic, “Assessing the comprehension of
UML class diagrams via eye tracking,” in 15th Int. Conf.on Program
Comprehension. ICPC’07. 1EEE, 2007, pp. 113-122.

B. Sharif and J. I. Maletic, “The effect of layout on the comprehension of
UML class diagrams: A controlled experiment,” in 5th IEEE Int. WS. on
Visualizing Software for Understanding and Analysis (VISSOFT 2009).
IEEE, 2009, pp. 11-18.

V. Arora, R. Bhatia, and M. Singh, “Synthesizing test scenarios in UML
activity diagram using a bio-inspired approach,” Computer Languages,
Systems & Structures, vol. 50, pp. 1-19, 2017.

Y. El Ahmar, X. Le Pallec, S. Gérard, and T. Ho-Quang, “Visual Variables
in UML: a First Empirical Assessment,” in Human Factors in Modeling,
2017.

Y. E. Ahmar, X. L. Pallec, and S. Gérard, “The visual variables in UML:
how are they used by women?” in Proceedings of the 12th FEuropean
Conference on Software Architecture: Companion Proceedings. ACM,

2018, p. 17.

R. Kretschmer, D. E. Khelladi, A. Demuth, R. E. Lopez-Herrejon, and
A. Egyed, “From abstract to concrete repairs of model inconsistencies: An
automated approach,” in 2017 24th Asia-Pacific Software Engineering
Conference (APSEC). 1EEE, 2017, pp. 456-465.

212

BIBLIOGRAPHY

[64]

C. D. Schulze, G. Hoops, and R. von Hanxleden, “Automatic Layout
and Label Management for Compact UML Sequence Diagrams,” in 2018
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). IEEE, 2018, pp. 187-191.

J. Ott, A. Atchison, and E. J. Linstead, “Exploring the applicability of
low-shot learning in mining software repositories,” Journal of Big Data,
vol. 6, no. 1, p. 35, 2019.

A. de la Vega, P. Sanchez, and D. Kolovos, “Pinset: A DSL for Extracting
Datasets from Models for Data Mining-Based Quality Analysis,” in
2018 11th International Conference on the Quality of Information and
Communications Technology (QUATIC). I1EEE, 2018, pp. 83-91.

O. Babur, L. Cleophas, and M. van den Brand, “Towards Distributed
Model Analytics with Apache Spark.” in MODELSWARD, 2018, pp.
T67-772.

H. Agt-Rickauer, R.-D. Kutsche, and H. Sack, “Automated recommen-
dation of related model elements for domain models,” in International

Conference on Model-Driven Engineering and Software Development.
Springer, 2018, pp. 134-158.

D. C. Torre, “Definition and validation of consistency rules between uml
diagrams,” Ph.D. dissertation, Carleton University, 2018.

O. Baddreddin and K. Rahad, “The impact of design and uml modeling
on codebase quality and sustainability,” in Proceedings of the 28th Annual
International Conference on Computer Science and Software Engineering.

IBM Corp., 2018, pp. 236—244.

M. Petre and A. van der Hoek, Software Design Decoded: 66 Ways Experts
Think. The MIT Press, 2016.

M. Brambilla, J. Cabot, and M. Wimmer, “Model-driven software engi-
neering in practice,” Synthesis Lectures on Software Engineering, vol. 3,
no. 1, pp. 1-207, 2017.

H. Ossher, R. Bellamy, I. Simmonds, D. Amid, A. Anaby-Tavor,
M. Callery, M. Desmond, J. de Vries, A. Fisher, and S. Krasikov, “Flexible
modeling tools for pre-requirements analysis: conceptual architecture and
research challenges,” in ACM Sigplan Notices, vol. 45, no. 10. ACM,
2010, pp. 848-864.

H. Storrle, “On the impact of layout quality to understanding UML
diagrams,” in 2011 IEEE Symposium on Visual Languages and Human-
Centric Computing, 2011, pp. 135-142.

W. Fu, T. Menzies, and X. Shen, “Tuning for software analytics: Is it really
necessary?” Information and Software Technology, vol. 76, pp. 135-146,
2016.

BIBLIOGRAPHY 213

[76]

[81]

[82]

H. Zhang, S. K. Moon, and T. H. Ngo, “Hybrid Machine Learning Method
to Determine the Optimal Operating Process Window in Aerosol Jet
3D Printing,” ACS Applied Materials € Interfaces, vol. 11, no. 19, pp.
17994-18 003, 2019.

R. Raina, Y. Shen, A. Mccallum, and A. Y. Ng, “Classification with hybrid
generative/discriminative models,” in Advances in neural information
processing systems, 2004, pp. 545-552.

C. F. J. Lange and M. R. V. Chaudron, “Managing model quality in UML-
based software development,” in Proceedings - 13th IEEE International
Workshop on Software Technology and Engineering Practice, STEP 2005,
ser. STEP ’05, vol. 2005. Washington, DC, USA: IEEE Computer
Society, 2005, pp. 7-16.

ISO 25010:2011, “Systems and software engineering - Systems and software
Quality Requirements and Evaluation (SQuaRE) - System and software
quality models,” International Organization for Standardization, Geneva,
CH, Standard ISO 25010:2011, mar 2011.

J. Bansiya and C. G. Davis, “A hierarchical model for object-oriented
design quality assessment,” IEEFE Transactions on software engineering,
vol. 28, no. 1, pp. 4-17, 2002.

J. A. McCall, P. K. Richards, and G. F. Walters, “Concepts and definitions
of software quality,” Factors in Software Quality, NTIS, vol. 1, 1977.

B. W. Boehm, J. R. Brown, and M. Lipow, “Quantitative evaluation of
software quality,” in Proceedings of the 2nd international conference on
Software engineering. IEEE Computer Society Press, 1976, pp. 592-605.

B. Hussein, “Automated quality-assessment for UML models in open
source projects,” Master’s thesis, University of Gothenburg, 2019.

A. M. Fernandez-Saez, M. R. V. Chaudron, and M. Genero, “An industrial
case study on the use of UML in software maintenance and its perceived
benefits and hurdles,” Empirical Software Engineering, pp. 1-65, 2018.

P. Pietsch, D. Reuling, U. Kelter, J. Folmer, and B. Vogel-Heuser, “Expe-
riences on the Quality and Availability of Test Models for Model Differ-
encing Tools,” in FMI 2014-Free Models Initiative Workshop Proceedings,
2014, p. 11.

J. Kramer, “Is abstraction the key to computing?”’ Communications of
the ACM, vol. 50, no. 4, pp. 36—42, 2007.

D. R. Stikkolorum, C. Stevenson, and M. R. V. Chaudron, “Assessing
Software Design Skills and their Relation with Reasoning Skills.” in
EduSymp@ MoDELS, 2013, pp. 1-8.

F. Leung and N. Bolloju, “Analyzing the quality of domain models devel-
oped by novice systems analysts,” in System Sciences, 2005. HICSS 05.
Proceedings of the 38th Annual Hawaii International Conference on.
IEEE, 2005, pp. 188b—-188b.

214

BIBLIOGRAPHY

[89]

[92]

[93]
[94]

[95]

[96]

B. Karasneh, R. Jolak, and M. R. V. Chaudron, “Using Examples for
Teaching Software Design: An Experiment Using a Repository of UML
Class Diagrams,” in Software Engineering Conference (APSEC), 2015
Asia-Pacific. TEEE, 2015, pp. 261-268.

K. C. Thramboulidis, “Using UML in control and automation: a model
driven approach,” in Industrial Informatics, 2004. INDIN °04. 2004 2nd
IEEFE International Conference on, jun 2004, pp. 587-593.

C. Secchi, C. Fantuzzi, and M. Bonfe, “On the Use of UML for Model-
ing Physical Systems,” in Proceedings of the 2005 IEEE International
Conference on Robotics and Automation, apr 2005, pp. 3990-3995.

R. P. L. Buse and T. Zimmermann, “Information Needs for Software
Development Analytics,” in Proceedings of the 34th International Con-
ference on Software Engineering, ser. ICSE ’12. Piscataway, NJ, USA:
IEEE Press, 2012, pp. 987-996.

“Enterprise Architect,” http://www.sparxsystems.com/.
“Visual Paradigm,” http://www.visual-paradigm.com /.

B. Karasneh and M. R. V. Chaudron, “Img2UML: A System for Extracting
UML Models from Images,” in 2018 39th Euromicro Conference on
Software Engineering and Advanced Applications, sep 2013, pp. 134-137.

E. P. Costa, A. C. Lorena, A. Carvalho, and A. A. Freitas, “A review of per-
formance evaluation measures for hierarchical classifiers.” in Fvaluation
Methods for Machine Learning II: papers from the AAAI-2007 Work-
shop, AAAI Technical Report WS-07-05, C. Drummond, W. Elazmeh,
N. Japkowicz, and S. A. Macskassy, Eds. AAAI Press, jul 2007, pp.
182-196.

D. Blostein, E. Lank, and R. Zanibbi, Treatment of Diagrams in Document
Image Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000,
pp- 330-344.

D. Lu and Q. Weng, “A Survey of Image Classification Methods and
Techniques for Improving Classification Performance,” Int. J. Remote
Sens., vol. 28, no. 5, pp. 823-870, jan 2007.

J. A. Shine and D. B. Carr, “A comparison of classification methods for
large imagery data sets,” JSM, pp. 3205-3207, 2002.

A. Mishchenko and N. Vassilieva, “Model-based chart image classification,”
in International Symposium on Visual Computing. Springer, 2011, pp.
476-485.

B. T. Messmer and H. Bunke, “Automatic learning and recognition of
graphical symbols in engineering drawings,” in International Workshop
on Graphics Recognition. Springer, 1995, pp. 123-134.

http://www.sparxsystems.com/
http://www.visual-paradigm.com/

BIBLIOGRAPHY 215

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

E. Lank, J. S. Thorley, and S. J.-S. Chen, “An interactive system for
recognizing hand drawn UML diagrams,” in Proceedings of the 2000
conference of the Centre for Advanced Studies on Collaborative research.

IBM Press, 2000, p. 7.

T. Hammond and R. Davis, “Tahuti: A geometrical sketch recognition
system for uml class diagrams,” in ACM SIGGRAPH 2006 Courses.
ACM, 2006, p. 25.

E. Lank, J. Thorley, S. Chen, and D. Blostein, “On-line recognition of UML
diagrams,” in Document Analysis and Recognition, 2001. Proceedings.
Sizth International Conference on. IEEE, 2001, pp. 356—-360.

L. Fu and L. B. Kara, “From engineering diagrams to engineering models:
Visual recognition and applications,” Computer-Aided Design, vol. 43,
no. 3, pp. 278-292, 2011.

R. O. Duda and P. E. Hart, “Use of the Hough transformation to detect
lines and curves in pictures,” Communications of the ACM, vol. 15, no. 1,
pp. 11-15, 1972.

S. Suzuki and Others, “Topological structural analysis of digitized bi-
nary images by border following,” Computer vision, graphics, and image
processing, vol. 30, no. 1, pp. 32-46, 1985.

J. C. Russ, The Image Processing Handbook (3rd Ed.). Boca Raton, FL,
USA: CRC Press, Inc., 1999.

M. A. Hall, “Correlation-based feature selection for machine learning,”
Hamilton, Tech. Rep., 1999.

“Waikato Environment for Knowledge Analysis (WEKA))”
http://www.cs.waikato.ac.nz/ml/weka/.

I. H. Witten, E. Frank, and M. A. Hall, Data Mining: Practical Machine
Learning Tools and Techniques, 3rd ed. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2011.

E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt, and J. M. Ogden,
“Pyramid methods in image processing,” RCA engineer, vol. 29, no. 6, pp.
33-41, 1984.

A. Herout, M. Dubska, and J. Havel, “Review of hough transform for line
detection,” in Real-Time Detection of Lines and Grids. Springer, 2013,
pp- 3-16.

D. Lagunovsky and S. Ablameyko, “Fast line and rectangle detection
by clustering and grouping,” in International Conference on Computer
Analysis of Images and Patterns. Springer, 1997, pp. 503-510.

K. Murakami and T. Naruse, “High speed line detection by Hough trans-
form in local area,” in Pattern Recognition, 2000. Proceedings. 15th
International Conference on, vol. 3. IEEE, 2000, pp. 467—470.

216 BIBLIOGRAPHY

[116] G. Booch, J. Rumbaugh, and 1. Jacobson, Unified Modeling Language
User Guide, The (2Nd Edition) (Addison-Wesley Object Technology Se-
ries). Addison-Wesley Professional, 2005.

[117] T. Ho-Quang, M. R. V. Chaudron, I. Samuelsson, J. Hjaltason, B. Karas-
neh, and H. Osman, “Automatic classification of uml class diagrams
from images,” in 2014 21st Asia-Pacific Software Engineering Conference,
vol. 1. IEEE, 2014, pp. 399-406.

G. Reggio, M. Leotta, and F. Ricca, “Who Knows/Uses What of the UML:
A Personal Opinion Survey,” in Model-Driven Engineering Languages
and Systems. Springer, 2014, pp. 149-165.

118

119

G. Robles, J. M. Gonzalez-Barahona, and J. J. Merelo, “Beyond source
code: the importance of other artifacts in software development (a case
study),” Journal of Systems and Software, vol. 79, no. 9, pp. 1233-1248,
2006.

[120] B. Vasilescu, A. Serebrenik, M. Goeminne, and T. Mens, “On the variation
and specialisation of workload - a case study of the Gnome ecosystem
community,” Empirical Software Engineering, vol. 19, no. 4, pp. 955-1008,
2014.

[121

S. McIntosh, B. Adams, and A. E. Hassan, “The evolution of ant build sys-
tems,” in Mining Software Repositories (MSR), 2010 Tth IEEE Working
Conference on. 1EEE, 2010, pp. 42-51.

[122

S. MclIntosh, B. Adams, T. H. D. Nguyen, Y. Kamei, and A. E. Hassan,
“An empirical study of build maintenance effort,” in Proceedings of the
33rd international conference on software engineering. ACM, 2011, pp.
141-150.

[123

Y. Jiang and B. Adams, “Co-evolution of Infrastructure and Source Code
- An Empirical Study,” in 12th {IEEE/ACM} Working Conference on
Mining Software Repositories, { MSR} 2015, Florence, Italy, May 16-17,
2015, 2015, pp. 45-55.

[124

G. Robles, J. M. Gonzalez-Barahona, D. Izquierdo-Cortazar, and I. Her-
raiz, “Tools for the study of the usual data sources found in libre software
projects,” International Journal of Open Source Software and Processes,
vol. 1, no. 1, pp. 24-45, 2009.

[125

R. Hebig, T. Ho"Quang, G. Robles, and M. R. V. Chaudron, “List of identi-
fied projects with UML and replication package,” \url{http://oss.models-
db.com}.

[126] C. Wohlin, P. Runeson, M. Hést, M. C. Ohlsson, B. Regnell, and A. Wess-
1én, Experimentation in Software Engineering: An Introduction. Norwell,
MA, USA: Kluwer Academic Publishers, 2000.

[127

E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and
D. Damian, “The Promises and Perils of Mining GitHub,” in Proceedings
of the 11th Working Conference on Mining Software Repositories, ser.
MSR 2014. New York, NY, USA: ACM, 2014, pp. 92-101.

BIBLIOGRAPHY 217

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

C. Gacek and B. Arief, “The many meanings of open source,” IFFE
software, vol. 21, no. 1, pp. 34-40, 2004.

B. Fitzgerald, “The transformation of open source software,” Mis Quar-
terly, pp. 587-598, 2006.

D. M. German, “The GNOME project: a case study of open source, global
software development,” Software Process: Improvement and Practice,
vol. 8, no. 4, pp. 201-215, 2003.

D. Riehle, “The economic case for open source foundations,” Computer,
vol. 43, no. 1, pp. 8690, 2010.

@. Hauge, C. Ayala, and R. Conradi, “Adoption of open source soft-
ware in software-intensive organizations—A systematic literature review,”
Information and Software Technology, vol. 52, no. 11, pp. 1133-1154,
2010.

K. Crowston, K. Wei, J. Howison, and A. Wiggins, “Free/Libre open-
source software development: What we know and what we do not know,”
ACM Computing Surveys (CSUR), vol. 44, no. 2, p. 7, 2012.

K.-J. Stol, M. A. Babar, P. Avgeriou, and B. Fitzgerald, “A comparative
study of challenges in integrating Open Source Software and Inner Source
Software,” Information and Software Technology, vol. 53, no. 12, pp.
1319-1336, 2011.

D. Spinellis and C. Szyperski, “How is open source affecting software
development?” IEEE Software, vol. 21, no. 1, p. 28, 2004.

C. Hauff and G. Gousios, “Matching GitHub developer profiles to job
advertisements,” in Proceedings of the 12th Working Conference on Mining
Software Repositories. IEEE Press, 2015, pp. 362-366.

R. Hebig, T. H. Quang, M. R. V. Chaudron, G. Robles, and M. A.
Fernandez, “The quest for open source projects that use uml: mining
github,” in Proceedings of the ACM/IEEE 19th International Conference
on Model Driven Engineering Languages and Systems. ACM, 2016, pp.
173-183.

I. S. Wiese, I. Steinmacher, C. Treude, J. T. D. Silva, and M. Gerosa,
“Who is who in the mailing list? Comparing six disambiguation heuristics
to identify multiple addresses of a participant,” in Proceedings of the 32nd
International Conference on Software Maintenance and Fvolution, 2016.

C. B. Seaman, “Qualitative methods in empirical studies of software
engineering,” IEEE Transactions on software engineering, vol. 25, no. 4,
pp. 557-572, 1999.

G. Marczyk, D. DeMatteo, and D. Festinger, Essentials of research design
and methodology. John Wiley & Sons Inc, 2005.

218

BIBLIOGRAPHY

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

M. H. B. Osman et al., Interactive scalable condensation of reverse
engineered UML class diagrams for software comprehension. Leiden
Institute of Advanced Computer Science (LIACS), Faculty of Science .. .,
2015.

H. Osman and M. R. V. Chaudron, “An assessment of reverse engineer-
ing capabilities of UML CASE tools,” in 2nd Int. Conf. on Software
Engineering Application, 2011, pp. 7-12.

A. Nugroho, B. Flaton, and M. R. V. Chaudron, “Empirical Analysis of
the Relation between Level of Detail in UML Models and Defect Density,”
in Conference, MoDELS 2008, Toulouse, France, 2008. Proceedings, ser.
LNCS, vol. 5301. Springer, 2008, pp. 600-614.

N. Maneerat and P. Muenchaisri, “Bad-smell prediction from software
design model using machine learning techniques,” in 2011 Eighth Interna-
tional Joint Conference on Computer Science and Software Engineering
(JCSSE), may 2011, pp. 331-336.

F. B. e Abreu, “The MOOD metrics set,” in proc. ECOOP, vol. 95, 1995,
p- 267.

A. Halim, “Predict fault-prone classes using the complexity of UML class
diagram,” in 2013 Int. Conf. on Computer, Control, Informatics and Its
Applications (IC3INA), nov 2013, pp. 289-294.

E. Bagheri and D. Gasevic, “Assessing the maintainability of software
product line feature models using structural metrics,” Software Quality
Journal, vol. 19, no. 3, pp. 579-612, 2011.

M. H. Osman, M. R. V. Chaudron, and P. v. d. Putten, “An Analysis
of Machine Learning Algorithms for Condensing Reverse Engineered
Class Diagrams,” in 2018 IEEE International Conference on Software
Maintenance, sep 2013, pp. 140-149.

F. Thung, D. Lo, M. H. Osman, and M. R. V. Chaudron, “Condensing
class diagrams by analyzing design and network metrics using optimistic
classification,” in Proc. of the 22nd Int. Conf. on Program Comprehension
(ICPC). ACM, 2014, pp. 110-121.

X. Yang, D. Lo, X. Xia, and J. Sun, “Condensing class diagrams with
minimal manual labeling cost,” in COMPSAC, 2016, IEEFE 40th, vol. 1.
IEEE, 2016, pp. 22-31.

Replication package of paper D. http://models.cs.chalmers.se/oss/
Downloads/SEAA2018/ReplicationPackage/.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The WEKA Data Mining Software: An Update,” SIGKDD
Ezxplor. Newsl., vol. 11, no. 1, pp. 10-18, nov 2009.

R. C. Holte, “Very simple classification rules perform well on most com-
monly used datasets,” Machine learning, vol. 11, no. 1, 1993.

http://models.cs.chalmers.se/oss/Downloads/SEAA2018/ReplicationPackage/
http://models.cs.chalmers.se/oss/Downloads/SEAA2018/ReplicationPackage/

BIBLIOGRAPHY 219

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

M. Junker, R. Hoch, and A. Dengel, “On the evaluation of document
analysis components by recall, precision, and accuracy,” in Document
Analysis and Recognition, 1999. ICDAR’99. Proceedings of the Fifth
International Conference on. IEEE, 1999, pp. 713-716.

M. Sokolova, N. Japkowicz, and S. Szpakowicz, “Beyond accuracy, F-score
and ROC: a family of discriminant measures for performance evaluation,”
in Australasian joint conference on artificial intelligence. Springer, 2006,
pp. 1015-1021.

D. Billsus and M. J. Pazzani, “Learning Collaborative Information Filters.”
in Ieml, vol. 98, 1998, pp. 46-54.

J. A. Hanley and B. J. McNeil, “The meaning and use of the area under a
receiver operating characteristic (ROC) curve.” Radiology, vol. 143, no. 1,
pp- 29-36, 1982.

A. Brown and G. Wilson, “The architecture of open source applications,
volume i&ii,” Ebook, May, 2012.

M. Soliman, A. R. Salama, M. Galster, O. Zimmermann, and M. Riebisch,
“Improving the Search for Architecture Knowledge in Online Developer
Communities,” in {IEEE} International Conference on Software Archi-
tecture, {ICSA} 2018, Seattle, WA, USA, April 30 - May 4, 2018, 2018,
pp- 186-195.

J. Musil, F. J. Ekaputra, M. Sabou, T. Ionescu, D. Schall, A. Musil,
and S. Biffl, “Continuous Architectural Knowledge Integration: Making
Heterogeneous Architectural Knowledge Available in Large-Scale Orga-
nizations,” in Software Architecture (ICSA), 2017 IEEE International
Conference on. 1EEE, 2017, pp. 189-192.

7.-Q. Lin, B. Xie, Y.-Z. Zou, J.-F. Zhao, X.-D. Li, J. Wei, H.-L. Sun, and
G. Yin, “Intelligent development environment and software knowledge
graph,” Journal of Computer Science and Technology, vol. 32, no. 2, pp.
242-249, 2017.

A. Barker and J. Van Hemert, “Scientific workflow: a survey and re-
search directions,” in International Conference on Parallel Processing
and Applied Mathematics. Springer, 2007, pp. 746—753.

G. H. Travassos, P. S. M. dos Santos, P. G. Mian, A. C. D. Neto, and
J. Biolchini, “An environment to support large scale experimentation
in software engineering,” in Fngineering of Complex Computer Systems,
2008. ICECCS 2008. 13th IEEFE International Conference on. IEEE,
2008, pp. 193-202.

G. Robles, T. Ho-Quang, R. Hebig, M. R. V. Chaudron, and M. A.
Fernandez, “An extensive dataset of UML models in GitHub,” in IEEFE
International Working Conference on Mining Software Repositories, 2017,
pp- 519-522.

220

BIBLIOGRAPHY

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

T. Ho-Quang, R. Hebig, G. Robles, M. R. V. Chaudron, and M. A.
Fernandez, “Practices and Perceptions of UML Use in Open Source
Projects,” in International Conference on Software Engineering (ICSE):
Software Engineering in Practice Track. 1EEE, 2017, pp. 203—-212.

M. H. Osman, T. Ho-Quang, and M. R. V. Chaudron, “An Automated
Approach for Classifying Reverse-engineered and Forward-engineered
UML Class Diagrams,” in 2018 44th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA). TEEE, 2018, pp. 396—
399.

D. Rusk and Y. Coady, “Location-based analysis of developers and tech-
nologies on github,” in 2014 28th International Conference on Advanced
Information Networking and Applications Workshops (WAINA). 1EEE,
2014, pp. 681-685.

J. Kriiger, M. Mukelabai, W. Gu, H. Shen, R. Hebig, and T. Berger,
“Where is my Feature and What is it About? A Case Study on Recovering
Feature Facets,” Journal of Systems and Software, 2019.

B. Ludéscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones,
E. A. Lee, J. Tao, and Y. Zhao, “Scientific workflow management and
the {K}epler system,” Concurrency and Computation: Practice and Ex-
perience, vol. 18, no. 10, pp. 1039-1065, 2006.

K. A. De Graaf, A. Tang, P. Liang, and H. Van Vliet, “Ontology-based
software architecture documentation,” in Software Architecture (WICSA)
and European Conference on Software Architecture (ECSA), 2012 Joint
Working IEEE/IFIP Conference on. 1EEE, 2012, pp. 121-130.

A. Tao and M. Roodbari, “Towards automatically generating explanations
of a software systems,” Master’s thesis, Chalmers University of Technology,
Gothenburg, Sweden, 2018.

J. Brooke and Others, “SUS-A quick and dirty usability scale,” Usability
evaluation in industry, vol. 189, no. 194, pp. 4-7, 1996.

C. Larman, Applying {UML} and patterns: an introduction to object
oriented analysis and design and interactive development. Pearson, 2012.

A. Nugroho and M. R. V. Chaudron, “The impact of {UML} modeling
on defect density and defect resolution time in a proprietary system,”
Empirical Software Engineering, vol. 19, no. 4, pp. 926-954, 2014.

E. Arisholm, L. C. Briand, S. E. Hove, and Y. Labiche, “The impact of
UML documentation on software maintenance: An experimental evalu-
ation,” IEEFE Transactions on Software Engineering, vol. 32, no. 6, pp.
365-381, 2006.

P. Devanbu, T. Zimmermann, and C. Bird, “Belief & evidence in empirical
software engineering,” in Software Engineering (ICSE), 2016 IEEE/ACM
38th International Conference on. IEEE, 2016, pp. 108-119.

BIBLIOGRAPHY 221

[177]

[17]

[179]

[180]

[181]

[182]
[183)

[184]

[185]
[186]

[187]

[188]

[189)]

[190]

K. Herzig, S. Just, and A. Zeller, “It’s not a bug, it’s a feature: how
misclassification impacts bug prediction,” in International Conference on
Software Engineering (ICSE). IEEE, 2013, pp. 392-401.

I. Rish, “An empirical study of the naive bayes classifier,” T. J. Watson
IBM Research Center, Tech. Rep., 2001.

Y. Zhou, Y. Tong, R. Gu, and H. Gall, “Combining text mining and data
mining for bug report classification,” Journal of Software: Evolution and
Process, vol. 28, no. 3, pp. 150-176, 2016.

B. Vasilescu, A. Serebrenik, and V. Filkov, “A data set for social diversity
studies of GitHub teams,” in International Conference on Mining Software
Repositories (MSR). 1EEE, 2015, pp. 514-517.

N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan, “Curating GitHub
for engineered software projects,” Empirical Software Engineering, vol. 22,
no. 6, pp. 3219-3253, dec 2017.

P. D. Allison, Multiple regression: A primer. Pine Forge Press, 1999.

G. Rodriguez-Pérez, A. Zaidman, A. Serebrenik, G. Robles, and J. M.
Gonzalez-Barahona, “What if a Bug Has a Different Origin?: Making Sense
of Bugs Without an Explicit Bug Introducing Change,” in Proceedings
of the 12th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, ser. ESEM ’18. New York, NY, USA:
ACM, 2018, pp. 52:1—52:4.

B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov, “Quality
and productivity outcomes relating to continuous integration in GitHub,

year = 2015,” in Joint Meeting on Foundations of Software Engineering
(ESEC/FSE). ACM, pp. 805-816.

H. Zhang, “The optimality of naive Bayes,” AA, vol. 1, no. 2, p. 3, 2004.

J. Cabot, J. L. C. Izquierdo, V. Cosentino, and B. Rolandi, “Exploring
the use of labels to categorize issues in open-source software projects,” in
International Conference on Software Analysis, Evolution and Reengi-
neering (SANER). TEEE, 2015, pp. 550-554.

N. Medvidovic, A. Egyed, and D. S. Rosenblum, “Round-Trip Software
Engineering Using UML: From Architecture to Design and back,” 1999.

A. M. Fernandez-Séez, M. Genero, M. R. V. Chaudron, D. Caivano,
and I. Ramos, “Are Forward Designed or Reverse-Engineered UML di-
agrams more helpful for code maintenance?: A family of experiments,”
Information & Software Technology, vol. 57, pp. 644-663, 2015.

R. Wirfs-Brock, “Characterizing Classes,” {IEEE} Software, vol. 23, no. 2,
pp- 9-11, 2006.

N. Dragan, M. L. Collard, and J. I. Maletic, “ Automatic identification
of class stereotypes,” in 26th {IEEE} International Conference on Soft-
ware Maintenance {(ICSM} 2010), September 12-18, 2010, Timisoara,
Romania, 2010, pp. 1-10.

222

BIBLIOGRAPHY

[191]

[192]

(193]

[194]

[195]

[196]

[197]

[198]

[199]

200]

[201]

202]

203]

[204]

L. Moreno and A. Marcus, “JStereoCode: automatically identifying
method and class stereotypes in Java code,” in {IEEE/ACM} Int. Conf.
on Automated Software Engineering, ASE’12, Essen, Germany, Septem-
ber 3-7, 2012, 2012, pp. 358-361.

N. Alhindawi, N. Dragan, M. L. Collard, and J. I. Maletic, “Improving
feature location by enhancing source code with stereotypes,” in 29th Int
Conf on Software Maintenance (ICSM), 2013. 1EEE, 2013, pp. 300-309.

R. Wirfs-Brock and A. McKean, Object design: roles, responsibilities, and
collaborations. Addison-Wesley Professional, 2003.

N. Dragan, M. L. Collard, and J. I. Maletic, “Reverse Engineering
Method Stereotypes,” in 22nd {IEEE} ICSM 2006, 24-27 September
2006, Philadelphia, Pennsylvania, {USA}, 2006, pp. 24-34.

M. Lanza and R. Marinescu, Object-oriented metrics in practice: using
software metrics to characterize, evaluate, and improve the design of
object-oriented systems. Springer Science & Business Media, 2007.

L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. L. Pollock, and K. Vijay-
Shanker, “Automatic generation of natural language summaries for Java
classes,” in {IEEE} 21st ICPC (2013) San Francisco, 2013, pp. 23-32.

A. Budi, Lucia, D. Lo, L. Jiang, and S. Wang, “Automated Detection
of Likely Design Flaws in N-Tier Architectures,” in Proceedings of the
23rd International Conference on Software Engineering & Knowledge
Engineering (SEKE’2011), USA, July 7-9, 2011, 2011, pp. 613-618.

E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994.

M. Zanoni, F. A. Fontana, and F. Stella, “On applying machine learning
techniques for design pattern detection,” Journal of Systems and Software,
vol. 103, pp. 102-117, 2015.

M. L. Collard, “Addressing source code using srcml,” in IEEFE Interna-
tional Workshop on Program Comprehension Working Session: Textual
Views of Source Code to Support Comprehension (IWPC’05), 2005.

“Replication package of paper G,” http://models.cs.chalmers.se/oss/
Downloads/JSS2019 SCAM ReplicationPackage/.

K. W. Bowyer, N. V. Chawla, L. O. Hall, and W. P. Kegelmeyer, “SMOTE:
Synthetic minority over-sampling technique,” CoRR.

L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and
Regression Trees. Monterey, CA: Wadsworth and Brooks, 1984.

A. Nurwidyantoro, T. Ho-Quang, and M. R. V. Chaudron, “Automated
classification of class role-stereotypes via machine learning,” in Proceedings
of the Fvaluation and Assessment on Software Engineering. ACM, 2019,
pp. 79-88.

http://models.cs.chalmers.se/oss/Downloads/JSS2019_SCAM_ReplicationPackage/
http://models.cs.chalmers.se/oss/Downloads/JSS2019_SCAM_ReplicationPackage/

BIBLIOGRAPHY 223

205)

206]

[207]

208]

209]

[210]

[211]

[212]

[213]

[214]

[215]

[216]

[217]

B. W. Matthews, “Comparison of the predicted and observed secondary
structure of T4 phage lysozyme,” Biochimica et Biophysica Acta (BBA)-
Protein Structure, vol. 405, no. 2, pp. 442-451, 1975.

S. Boughorbel, F. Jarray, and M. El-Anbari, “Optimal classifier for im-
balanced data using Matthews Correlation Coefficient metric,” PloS one,
vol. 12, no. 6, p. e0177678, 2017.

K. A. M. Ferreira, M. A. S. Bigonha, R. S. Bigonha, L. F. O. Mendes,
and H. C. Almeida, “Identifying thresholds for object-oriented software
metrics,” Journal of Systems and Software, vol. 85, no. 2, pp. 244-257,
2012.

M. Aniche, C. Treude, A. Zaidman, A. Van Deursen, and M. A. Gerosa,
“SATT: Tailoring code metric thresholds for different software architec-
tures,” in 2016 IEEE 16th International Working Conference on Source
Code Analysis and Manipulation (SCAM). IEEE, 2016, pp. 41-50.

F. Zhang, A. Mockus, Y. Zou, F. Khomh, and A. E. Hassan, “How does
context affect the distribution of software maintainability metrics?” in
2013 IEEE International Conference on Software Maintenance. ITEEE,
2013, pp. 350-359.

H. Bagheri, J. Garcia, A. Sadeghi, S. Malek, and N. Medvidovic, “Software
architectural principles in contemporary mobile software: from conception
to practice,” Journal of Systems and Software, vol. 119, pp. 31-44, 2016.

M. Shahin, P. Liang, and M. A. Babar, “A systematic review of software
architecture visualization techniques,” Journal of Systems and Software,
vol. 94, pp. 161-185, 2014.

A. Blouin, N. Moha, B. Baudry, H. Sahraoui, and J.-M. Jézéquel, “ Assess-
ing the Use of Slicing-based Visualizing Techniques on the Understanding
of Large Metamodels,” Inf. Softw. Technol., vol. 62, no. C, pp. 124-142,
jun 2015.

I. Jacobson, G. Booch, and J. Rumbaugh, The Unified Software Develop-
ment Process. Boston, MA, USA: Addison-Wesley, 1999.

M. Staron, L. Kuzniarz, and C. Wohlin, “Empirical assessment of using
stereotypes to improve comprehension of UML models: A set of exper-
iments,” Journal of Systems and Software, vol. 79, no. 5, pp. 727-742,
2006.

M. Lanza and S. Ducasse, “Polymetric Views—A Lightweight Visual
Approach to Reverse Engineering,” Transactions on Software Engineering

(TSE), vol. 29, no. 9, pp. 782-795, sep 2003.

S. Demeyer, S. Ducasse, and O. Nierstrasz, Object-Oriented Reengineering
Patterns. Morgan Kaufmann, 2002.

“Replication package of paper H,” http://models.cs.chalmers.se/oss/
Downloads/MODELS2019 ReplicationPackage/, accessed: 2019-03-09.

http://models.cs.chalmers.se/oss/Downloads/MODELS2019_ReplicationPackage/
http://models.cs.chalmers.se/oss/Downloads/MODELS2019_ReplicationPackage/

224

BIBLIOGRAPHY

[218]

[219]

[220]
[221]

[222]

[223]

[224]

[225]

S. G. Hart and L. E. Staveland, “Development of NASA-TLX (Task Load
Index): Results of empirical and theoretical research,” in Advances in
psychology. Elsevier, 1988, vol. 52, pp. 139-183.

E. A. Bustamante and R. D. Spain, “Measurement invariance of the Nasa
TLX,” in Proceedings of the Human Factors and Ergonomics Society
Annual Meeting, vol. 52, no. 19. SAGE Publications Sage CA: Los
Angeles, CA, 2008, pp. 1522-1526.

NASA.

T. S. Tullis and J. N. Stetson, “A comparison of questionnaires for assess-
ing website usability,” in Usability professional association conference,
vol. 1. Minneapolis, USA, 2004.

F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics
bulletin, vol. 1, no. 6, pp. 80-83, 1945.

S. Anselm and J. Corbin, Basics of qualitative research: techniques and
procedures for developing grounded theory. SAGE Publications, Thousand
Oaks, USA, 1998.

R. A. Grier, “How high is high? A meta-analysis of NASA-TLX global
workload scores,” in Proceedings of the Human Factors and Ergonomics
Society Annual Meeting, vol. 59, no. 1. SAGE Publications Sage CA:
Los Angeles, CA, 2015, pp. 1727-1731.

J. Sauro, A practical guide to the system usability scale: Background,
benchmarks & best practices. Measuring Usability LLC Denver, CO,
2011.

	Abstract
	Acknowledgement
	List of Publications
	Personal Contribution
	Introduction
	Research Focus
	Goals of the Ph.D Study
	Scope and Expected Outcomes of the Ph.D Study
	Research questions of the Ph.D thesis

	Background
	The Unified Modeling Language (UML)
	Existing Corpora of Software Modeling Artifacts
	UML use and impacts of using UML in software engineering projects

	Methodology
	Constructive research
	Empirical research

	Contributions
	Paper A: Automatic classification of UML class diagrams from images
	Paper B: The quest for open source projects that use UML: mining GitHub
	Paper C: Practices and perceptions of UML use in open source projects
	Paper D: An Automated Approach for Classifying Reverse-engineered and Forward-engineered UML Class Diagrams
	Paper E: Challenges and Directions for a Community Infrastructure for Big Data-driven Research in Software Architecture
	Paper F: Does UML Modeling Associate with Higher Software Quality in Open-Source Software?
	Paper G: Using Machine Learning for Automated Classification of Class Responsibility Stereotypes in Software Design
	Paper H: Interactive Role Stereotype-Based Visualization To Comprehend Software Architecture

	Summary of Research Findings
	Answer to RQ1. How to build a large corpus of models?
	Answer to RQ2. How can we share and promote use of the corpus of UML models?
	Answer to RQ3. What are purposes of using UML in OSS projects?
	Answer to RQ4. How is UML used in OSS projects?
	Answer to RQ5. What are practices for using UML modeling in software development?
	Answer to RQ6. What are perceived impacts of using UML in OSS projects?
	Answer to RQ7. Does the use of UML modeling correlate with lower defect proneness?
	Answer to RQ8. Does using class role stereotypes correlate with better understanding of designs of software system?

	Discussion
	Software Modeling and Design Practices in Industry
	Alternatives of the Machine Learning Approach

	Threats to validity
	Future Work
	Extending the Lindholmen data set
	Extending the understanding about UML use and impact: enablers, inhibitors and context
	Building guidelines for UML use
	Other directions

	Paper A
	Introduction
	Related Work
	Image classification
	Diagram feature extraction

	Research Questions
	Approach
	Overall framework
	Image processing
	Feature extraction
	UML CD classification
	Analyse Result

	Experiment Description
	Dataset
	Evaluation measures
	Experiment settings

	Analysis Of Results
	RQ1: Influence of features
	RQ2: Classification algorithms performance
	RQ3: Set of features Performance

	Discussion
	Image Processing Time
	Image Processing Features Performance
	Classification Algorithms
	Threats to validity

	Conclusions and Future Work

	Paper B
	Introduction
	Research questions
	Related research
	Use of UML in FOSS
	Mining

	Methodology
	Occurrence of UML
	Data Collection
	UML filters
	Metadata Extraction and Querying

	Results
	RQ1: UML in GitHub projects
	RQ2: Versions of UML models
	RQ3: Time of UML model introduction
	RQ4: Time span of active UML
	RQ5: Duplicates

	Discussion
	Threats to validity
	Threats to construct validity
	Threats to external validity
	Threats to conclusion validity

	Conclusions

	Paper C
	Introduction
	Research Question
	Related work
	Modeling in Industry
	Modeling in Open Source Software

	Research Methodology
	Data Collection
	Filtering the obtained projects and contributors
	Conducting the survey
	Data Analysis

	Results/Findings
	Respondent Demographics
	Why is UML used?
	Is UML part of the interaction of contributors?
	What is the impact/benefit of UML?

	Discussions
	Comparison to Insights to Related Works
	Implications
	Threats to Validity

	Conclusion and Future work
	Appendix 1. Distribution of survey respondents by countries
	Appendix 2. Distribution of survey respondents by continents

	Paper D
	Introduction
	Related Work
	Research Questions
	Approach
	Data Collection
	Feature Extraction & Establishing Ground Truth
	Model Learning
	Evaluation of Results

	Result and Findings
	RQ1: Analysis of Selected Features
	RQ2: Classification Model Performance

	Discussion and Future Work
	Feature Selection
	Dataset
	Classification Algorithm
	Threats to Validity

	Conclusions

	Paper E
	Introduction
	Related Work
	Existing Corpora of Software Modelling Artefacts
	Other Software Architecture Collections
	Mining Architectural Knowledge
	Scientific Workflow Systems

	Experiences in Creating & Sharing a Collection of UML Software Design Models
	Models Extraction from GitHub
	Data Curation
	Sharing the Lindholmen dataset

	Challenges for Big-data Driven Empirical Studies in Software Architecture
	Directions for a Community Infrastructure for Big-data Driven Empirical Research in Software Architecture
	Overview of CoSARI
	Overview of the CoSARI Framework
	Main Use-cases of CoSARI
	Ongoing and Future Work

	Summary and Conclusions

	Paper F
	Introduction
	Methodology
	Data
	Operationalization
	Analysis

	Results and Discussion
	Threats to validity
	Conclusions

	Paper G
	Introduction
	Class Role Stereotypes
	Related Work
	Methodology
	Data Collection
	Ground Truth step 1: Criteria for Role Stereotypes
	Ground Truth step 2: Manual Labeling and Consolidation
	Feature Extraction
	Machine Learning Classification Experiments
	Generalizability of the Trained ML Classifier

	Experiment Results
	Multi-role Classification of all Stereotypes
	Single Role (Binary) Classification

	Classification Feature Importance
	Generalizability of the Classifier
	Generalizability Experiment 1: Single Case Training
	Generalizability Experiment 2: Double Cases Training

	New Applications of Role Stereotypes
	Stereotype-specific Design Metrics
	Using Role Stereotypes for Profiling Software Design Intention/Principles
	Collaboration Pattern between Stereotypes

	Threats to Validity
	Conclusion and Future Work

	Paper H
	Introduction
	Role Stereotype
	RoleViz
	RoleViz in a Nutshell
	Compilation Unit
	Package
	Interaction

	Research Questions
	User Study
	Baseline
	Comprehension Tasks
	Participants
	Training Period
	Work Session

	Data Collection & Analysis
	Background Questionnaire
	TLX Questionnaire
	SUS Questionnaire
	Understanding Questionnaire
	Post-study Questionnaire

	Result
	Demographics of Participants
	Are the Comprehension Tasks Comparable?
	RQ1: Comparison between RoleViz and Softagram
	RQ2: Participant's perception on the features of RoleViz

	Discussions
	Does participant's experiences correlate with their perceived SUS, TLX and Understanding scores?
	Threats to Validity

	Related Work
	Conclusion and Future Work

	Bibliography

