
Fault Prediction in
Android Systems through AI

A Method for Predicting Defects in Android Systems using Ma-
chine Learning

Master’s thesis in Computer science and engineering

MURTADA AHMED AND KIRSTEN BASSUDAY

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2019

Master’s Thesis 2019

Fault Prediction in Android Systems through AI

A Method for Predicting Defects in Android Systems using Machine
Learning

MURTADA AHMED AND KIRSTEN BASSUDAY

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2019

A Method for Predicting Defects in Android Systems using Machine Learning
MURTADA AHMED AND KIRSTEN BASSUDAY

© MURTADA AHMED AND KIRSTEN BASSUDAY, 2019. ss

Supervisor: Thorsten Berger, Department of Computer Science and Engineering
Co-Supervisor: Daniel Strüber, Department of Computer Science and Engineering
Advisor: William Leeson, Aptiv
Examiner: Richard Johansson, Department of Computer Science and Engineering

Master’s Thesis 2019
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2019

iv

A Method for Predicting Defects in Android Systems using Machine Learning

MURTADA AHMED AND KIRSTEN BASSUDAY
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Software code defect prediction is important in improving code quality and the
turnaround time of software products. In this thesis we investigate how to create
and extract features, analyze existing work to create and realize a defect prediction
technique that can be applied in an industrial setting. We conduct this investigation
on version controlled source code from Git and Jira data. We identify and define
metrics to be collected and build four Machine Learning (ML) models to predict if
a file is clean or defective. We create a Cost Effectiveness (CE) evaluation technique
to measure the performance of our ML models and achieve a score of 87% and an
accuracy of 88 % on our best models.

Keywords: Machine Learning, Data Science, Process Metrics, Git, Defect Predic-
tion, Repository Mining, Jira.

v

Acknowledgements
We would like to thank our supervisors Thorsten Berger and Daniel Strüber, and our
examiner Richard Johansson, who provided us with continued support and guidance
throughout our thesis. We would also like to acknowledge Aptiv andWilliam Leesson
who supplied us with the necessary resources, access and information.

Murtada Ahmed and Kirsten Bassuday, Gothenburg, June 2019

vii

Contents

List of Figures x

List of Tables xi

List of Acronyms xv

1 Introduction 1
1.1 Problem . 1
1.2 Goal . 2
1.3 Outline . 2

2 Theory 3
2.1 Related work . 3
2.2 Repository Mining . 4
2.3 Source Control Management . 4

2.3.1 Git and Gerrit . 4
2.3.2 Jira . 4

2.4 Metrics . 4
2.5 Supervised Learning . 5

2.5.1 Logistic Regression . 5
2.5.2 Multi-Layer Perceptron . 6
2.5.3 Gaussian Naive Bayes . 6
2.5.4 Random Forest Classifier . 7

2.6 Evaluation . 7
2.6.1 Confusion Matrix Measures 7
2.6.2 Cost Effectiveness . 8

3 Methodology 11
3.1 Literature Survey . 11
3.2 Data Gathering . 11

3.2.1 Application Programming Interface 11
3.2.2 Metric Collection . 12
3.2.3 Data Cleaning . 12
3.2.4 Data Labelling . 13
3.2.5 Data Loading and Staging . 13

3.3 Building the models . 14
3.3.1 Pre-processing Data . 14

ix

Contents

3.3.2 Types of Models Used . 15
3.4 Evaluation . 15

3.4.1 Model of Choice . 15
3.4.2 Limitations . 16

3.5 Integration into Production . 16

4 Literature Survey 17
4.1 Data Gathering and Preparation . 17
4.2 Metrics . 19
4.3 Learning Models . 21
4.4 Evaluation Criteria . 23
4.5 Validity . 24

5 Results 27
5.1 Data Set . 27
5.2 Metric Results . 27
5.3 Models . 28

5.3.1 Cost Effectiveness . 30
5.3.2 Confusion Matrix Measures 32

6 Discussion 35
6.1 Feature Importance . 36
6.2 Machine Learning vs Traditional Algorithms 38
6.3 Threats to Validity . 39

6.3.1 Conclusion Validity . 39
6.3.2 Internal Validity . 39
6.3.3 Construct Validity . 39
6.3.4 External Validity . 40
6.3.5 Granularity . 40
6.3.6 Ethical Considerations . 40

7 Conclusion 41
7.1 Summary . 41
7.2 Future Work . 41

Bibliography 43

A Appendix 1 I

x

List of Figures

2.1 Logistic Sigmoid Function [36] . 5
2.2 Multi-layer Neural Network [10] . 6
2.3 Model CE Curve [3] . 9

3.1 Data Labeling through SZZ and Keyword Matching [8] 14

5.1 CE Curve for LR . 31
5.2 CE Curve for NB . 31
5.3 CE Curve for MLP . 31
5.4 CE Curve for RF . 31

6.1 Feature Coefficient Ranges for Random Forest (RF) vs. Logistic Re-
gression (LR) . 37

xi

List of Figures

xii

List of Tables

4.1 Types and Number of Features used in Previous Studies 19
4.2 ML Models from Previous Studies . 21

5.1 Data points per Repository . 27
5.2 Metric Collection . 28
5.3 Hyper-parameters for Optimized LR Model 29
5.4 Hyper-parameters for Optimized Multi-Layer Perceptron (MLP) Model 29
5.5 Hyper-parameters for Optimized RF Model 30
5.6 Area Under the Curve (AUC) values for all four models compared to

baseline and optimal models’ AUCs which respectively are 4,688 and
9500. 30

5.7 Statistical measures for Naive Bayes (NB) 32
5.8 Statistical measures for LR . 32
5.9 Statistical measures for MLP . 32
5.10 Statistical measures for RF . 33

6.1 Top 20 Predictive Features of Defective Classes for RF and LR 36
6.2 Uninformative Features in RF and Predictive Features of Negative

Class in LR . 37

A.1 Excluded Metrics . I

xiii

List of Tables

xiv

List of Acronyms

ML Machine Learning
LR Logistic Regression
NB Naive Bayes
CSV Comma Separated Value
OO Object-Oriented
ROC Receiver Operating Characteristic
AUC Area Under the Curve
API Application Programming Interface
SCM Source Control Management
MLP Multi-Layer Perceptron
NN Neural Network
RBF Radial Basis Function
RF Random Forest
DT Decision Tree
KNN K-Nearest Neighbour
SVM Support Vector Machine
BBN Bayesian Belief Network
CE Cost Effectiveness
CVS Concurrent Versions System
CFS Correlation-based Feature Selection
LOC Lines of Code
SLOC Source Lines of Code
VP Voted Perceptron
LMT Logistic model trees
CART Classification & Regression Trees
LB Logit Boost
BN Bayesian Networks
DTNB Decision Table Naive Bayes
ADT Alternating Decision Trees
VFI Voting Feature Intervals
Bag Bagging
NNge Nearest Neighbour with generalized exemplars
BAUC Baseline Area Under the Curve
OAUC Optimal Area Under the Curve

xv

List of Tables

xvi

1
Introduction

Defect prediction in software is an important activity in software engineering [30].
Being able to correctly identify defects and error prone software can positively im-
pact the efforts of the developers and testing resources, improve the quality of the
code [30] and decrease the maintenance needed before a software release [23].

Software defect prediction can be described as grouping the code as either defective
or clean [23]. There have been many studies in this field, such as Arisholm [3]
and Zimmermann [39] who have used open source data for machine learning and
predicting which files in their Source Control Management (SCM) systems were
defective. What we can observe from these studies is that there is no single way
to achieve defect prediction in software [3, 12, 23], and studies are mainly done
on case studies in an academic or theoretical setting with different data sets, data
pre-processing steps, validation techniques and performance measures, thus making
comparisons and conclusions of the prediction results tricky [30]. This can make it
difficult to correctly choose the right techniques and methods to apply software fault
prediction in a practical industry setting. This thesis study tackles the challenge of
selecting and applying software defect prediction techniques in a industry setting.

1.1 Problem
Aptiv is global technology company that specializes in creating and delivering soft-
ware solutions in the automotive space. One of its focus areas is in Android software
for vehicle infotainment systems. This system can be described as a in-dash platform
in a vehicle that provides functions to entertain and interact with the driver and
passengers. It has components such as media player controls and file management
systems [33].

This thesis will focus on the infotainment system codebase, provided by Aptiv, where
we will create a technique to detect potential harmful code changes in files. By per-
forming early defect detection we hope to achieve a improvement on the software
quality and product, minimize debugging costs and overall increase business value.

Aptiv currently performs code reviews and unit testing to their code-base to try
minimize errors. These techniques help develop a healthy development cycle, but
does not eliminate errors. We propose a defect detection system based on machine
learning to be implemented before a code release, to help flag code changes that

1

1. Introduction

could be problematic before these changes detriment the platform and the business.
By building a defect prediction system, we aim to analyze the logs and commits
before and after a code change, in a source code file, to try identify log items caused
by the changes and recognize potential harmful changes. We will also attempt to
further investigate how to integrate this machine learning tool to the commit pro-
cess. This will flag potentially harmful changes and recognize problematic areas and
in turn trigger more detailed testing to be done on those changes.

The findings of the proposed thesis will add business value to the chain of vendors
(developers) and their customers. Better testing could be implemented and time
can be saved by the use of the proposed tool. This can result in higher quality code
and improve the development and maintenance process [19].

1.2 Goal
Our goal is to help create and realize a defect prediction technique that can be
applied within Aptiv to the infotainment system. We will create a case study to do
this and find existing work and studies through a literature survey, that uses defect
prediction techniques. Through our literature survey findings, we hope to develop a
technique to find and extract an optimal set of features (metrics) that can be used in
the defect prediction. We also aim to create a learning model and suitable evaluation
measures that will have the best performance based on these features. As a result,
we hope to find interesting patterns which would provide insight and feedback to
Aptiv’s development teams. Lastly, we also aim at integrating the defect prediction
system to Aptiv’s development cycle in order to predict when the changes are likely
to cause conflicts and errors.

1.3 Outline
In this chapter we have introduced the reader to the concept of defect prediction in
software repositories and the problem that needs to be solved.
In Chapter 2, we review some theoretical background to help establish concepts and
definitions relating to this thesis work.
In Chapter 3, we explain the methodology of our work and how we conducted the
thesis work and developed our approach in solving the defined problem.
In Chapter 4, we examine the literature survey results that find the best approach
in terms of feature collection, machine learning models and evaluation techniques.
In Chapter 5, we analyze results from the metric selection, the machine learning
model and the evaluation techniques.
In Chapter 6, we discuss and contextualize our results and design decisions. In
Chapter 7, we draw conclusions from the results and the discussion and discuss
future work.

2

2
Theory

2.1 Related work

Previous studies in this area attempted multiple combinations of techniques to pre-
dict software defects. These studies were carried out on different levels. Queiroz [27]
predicted defects on a feature level, compared to Zimmermann, who was operating
on lower levels of granularity such as packages and files. Some studies drilled down
to the class level as in Arisholm [3] and Malhotra [24]. The norm for using machine
learning in this field is to use a chronological release-based approach, meaning that
in almost all studies training data was extracted from the first n − 1 releases of a
project to build the model and hence predict faults or defects in the nth release,
which is regarded as the test set. This allows for tracking the histories of files and
learning how previous metrics (predictors) impacted the state of the file (clean or
defective).

Zimmermann et al. [39] used a release based approach to predict defects on the
Eclipse software project by looking at the history of releases. Their goal was to
answer why some components are more failure-prone than others. They looked for
corrective commits by searching for keywords such as "fixes" in the commit message;
thus, for each corrected file, its previous versions were labeled as defective. A set
of code metrics were developed and used to build LR models for defect prediction.
Other studies such as [24], [28] and [3] also proposed adding process metrics to code
metrics to improve the performance of the models as they proved to have stronger
correlations with the output class. Queiroz [27] and Moser [25] were based on the
aforementioned papers and reached similar conclusions in that, process metrics out-
perform code metrics in almost all models and for different evaluation criteria.

Evaluating models and their corresponding metrics can differ and depend on the
aim of the project, that is, a LR model using process metrics can outperform a
Support Vector Machine (SVM) model using code metrics in terms of cost effective-
ness and Receiver Operating Characteristic (ROC) curves, although not in terms of
measures such as accuracy and recall. In projects such as the one in this thesis work,
cost efficiency is an important measure since our goal is to help software testers in
identifying erroneous files efficiently and minimize testing efforts.

3

2. Theory

2.2 Repository Mining
Software repositories hold a wealth of information on the source code life. It con-
tains not only the source code, but the information around it, such as the commit
information, the authors and committers who worked on it, the Application Pro-
gramming Interfaces (APIs) used and the guidelines on how to use them, the bug
fixes made, re-factoring changes and in-line comments on new code and functions[38].
The challenge is to extract meaningful data from these repositories through the use
of repository mining. Repository Mining involves using a set of techniques and tools
to efficiently extract this data from the software repositories [6].

2.3 Source Control Management
SCM systems help manage software versions and code changes. It allows code
changes to be integrated without overwriting lines of code, when be merged from
multiple sources [2]. It provides a certain level of accountability and trace-ability
for the life cycle of the code. The most prominent example of an SCM is Github; a
platform that hosts all versions of software code changes along with its metadata.

2.3.1 Git and Gerrit
Git is a open source distributed SCM tool. It can be applied in version control of
source code as well as tracking changes within a file [29]. It can be locally enabled,
has local branching and multiple work flows. It is mainly used for team collaboration.
Gerrit is a open source software tool that helps support code and peer reviews of
any changes before being committed to the repository[14]. Gerrit is a web-based
tool that integrates with Git.

2.3.2 Jira
Jira is a software platform that provides tools to help software development teams
to plan, track and manage their work [4]. It can be used for bug and issue tracking,
task management and helps support agile software development projects[4].

2.4 Metrics
The term metrics in this thesis refers to the features of the ML models. It is a
commonly used term in the field of defect prediction. The terms feature and metric
are used interchangeably. Three main type of metrics are considered when dealing
with defect prediction problems. These are Code, Process and Delta. Code metrics
(also called complexity, static or Object-Oriented (OO) metrics) are properties that
measure software or a piece of code. Examples of code metrics can vary from the
Lines of Code (LOC), number of methods or classes in the source code, to a value to
measure the maintainability (Maintainability Index) or how tightly coupled the code
is (Class Coupling Index). Process metrics define how developers log information

4

2. Theory

about their work. Number of developers, developer experience and commit count are
all process metrics. Lastly, delta metrics are attributes that evaluates code churn.

2.5 Supervised Learning
Supervised Learning is a technique in ML where, given input (X) and an output
variable (Y), an algorithm is applied to map the function from the input to the
output Y = f(X) [17]. The goal of supervised learning is to build a model of the
distribution of class labels, in terms of the predictor features, so that prediction of
class labels can be done on the output variables (Y) for new data given in (X) [22].
The type of supervised learning used and discussed in this thesis is classification as
the aim is to predict if a source code file is defective or clean. Logistic Regression,
Multi-Layer Perception, Gaussian Naive Bayes and Random Forrest Classifier are
the four classification algorithms that are used in this thesis.

2.5.1 Logistic Regression
Logistic Regression predicts the probability of an outcome, that can have one of
two values. The nominal variable is the dependent variable (outcome), and the
measurement variable is the independent variable [1]. A goal of LR is to find if
the probability of attaining a particular value of the nominal variable is associated
with the measurement variable [1] . The second goal is to predict the probability of
getting a particular value of the nominal variable, given the measurement variable
[1].

Figure 2.1: Logistic Sigmoid Function [36]

Logistic Regression produces a S -shaped curve seen in figure 2.1, which is limited
to values between 0 and 1.

p(X) = e(b0+b1x)

1 + e(b0+b1x)

In the formula for logistic regression, P(X) will give values of 0 or 1 for all values
of X. The coefficients b0b1 represent the intercept and the slope of the model and
are estimated using the training data. This estimation is done using the maximum
likelihood. Hyper-parameters available for tuning are the solver (type of optimization
algorithm used), penalty (L1 or L2) and the class weights [9].

5

2. Theory

2.5.2 Multi-Layer Perceptron
The MLP algorithm is an implementation of a Neural Network (NN), that predicts
a set of outputs from a set of inputs [34]. MLP’s "train on a set of input-output
pairs and learns to model the correlation (or dependencies) between those inputs
and outputs" [31]. They also may have many layers in-between the input and output
layer which perform the computations of the MLP.

Figure 2.2: Multi-layer Neural Network [10]

A MLP can be seen as a LR classifier, where the input is first transformed using a
trained non-linear transformation [35]. This transformation projects the input data
into a space where it becomes linearly separable [35]. This in-between layer is called
a hidden layer as seen in figure 2.2.

f(x) = G(b(2) +W (2)(s(b(1) +W (1)x)))

The above matrix notation represents a one-hidden-layer MLP, with bias vectors b(1),
b(2); weight matrices W (1),W (2) and activation functions G and s. A popular choice
of activation function for s is the sigmoid activation function. Some of the hyper-
parameters for this ML model that can be optimized are the activation function,
numbers of hidden layer units, regularization parameters, the learning rate, the
weight initialization and the solver used [9].

2.5.3 Gaussian Naive Bayes
NB is a probabilistic classification algorithm for binary (two-class) and multi-class
classification problems. As mentioned, in the context of this thesis binary classifica-
tion will be used. NB uses conditional probability to calculate the probability of each
feature. It assumes that each feature is independent of one another. Gaussian NB
uses a Gaussian (normal) distribution, where the mean and the standard deviation
are estimated from the training data [17]. Predictions are from a continuous value
and are not discreet. The formula for this classifier is based on Bayes theorem. Here
we assume the features are independent of each other and then find the probability

6

2. Theory

of xi given that y has occurred.

P (xi|y) = 1√
2πσ2

y

exp(−(xi − µy)2

2σ2
y

)

2.5.4 Random Forest Classifier
The RF algorithm is part of the ensemble Decision Tree ML models. Bagging is
a technique to help reduce the variance in statistical learning model [16], and used
on decision trees to help improve predictions. In bagging, successive trees do not
depend on earlier trees, each tree is independently built using a bootstrap sample
of the dataset [21]. Majority vote is then used for prediction. This improves the
accuracy on decision trees but also means the bagged trees could look similar to
each other and the predictions could be highly correlated [16]. RF overcomes this
problem by introducing a layer of randomness to the construction of the trees. RF
builds each tree using a different sample of the data and each node is split using
the best solution from the set of predictors (features) randomly chosen at that node
[16]. This means other features will have more of a chance and the averaging of
the resulting trees will be more accurate and reliable and there is a less chance of
over-fitting.

Hyper-parameters from [9] that can be optimized for the RF algorithm are:
Criterion: The function to measure the quality of a split.
Number of estimators/trees: number of uncorrelated trees to create the random
forest.
Number of features: the number of features to sample and pass onto each tree, this
is where feature bagging happens.
Maximum depth: The maximum depth of the tree.
Minimum samples split: The minimum number of samples required to split an
internal node.
Minimum samples leaf: The minimum number of samples required to be at a leaf
node.
Maximum features: The number of features to consider when looking for the best
split.

2.6 Evaluation

2.6.1 Confusion Matrix Measures
Confusion matrices are commonly used when evaluating binary class predictions.
Measures taken from this type of evaluation are: Accuracy, Precision, Recall and
F-measure scores. We cite the definitions of the measures from [28] as follows.
Accuracy of the model is the proportion of correct predictions.
Precision measures the percentage of model declared defective entities that are
actually defective.

7

2. Theory

Recall is the proportion of actually defective entities that the model can success-
fully identify.
F-Measure is the harmonic mean of the Precision and Recall.
ROC is a curve that maps the benefits (true positives) against the cost (false posi-
tives) of the model against thresholds from 0 to 1, [28, 3]. Using ROC allows model
comparison to be done against different thresholds.
AUC is a measure that is derived from ROC analysis to calculate the accuracy of
the model [24]. The idea is that the higher the AUC, the better the model is. We
transfer this concept to the context of CE (section 2.6.2), so that a model with a
higher area under the CE curve indicates that it has a better performance.

2.6.2 Cost Effectiveness
The aforementioned confusion matrix measures are adequate for most machine learn-
ing models, where only the quality of the prediction matters. Nonetheless, none of
them help in identifying the most probable defective files with the minimum effort.
This is the problem that we are trying to solve through our thesis work; helping
developers to focus their testing and debugging efforts on a subset of files that are
most likely to be faulty. Thus, Cost Effectiveness, inspired from [3] is used. To illus-
trate, if we try to find defective files randomly (represented by the baseline model in
the figure 2.3) we get a linear curve, meaning that the time to find defects increases
linearly with the number of files sampled.
This can be improved; the idea of this CE method is to rank the files from highest
to lowest probability of being defective and then plotting the percentage of sampled
files versus the percentage of defects found. Notice that the optimal model finds
almost all defective files by sampling only a small subset of the files, meaning its
classifications results had very high quality. A good model should have a curve and
an AUC value between the optimal and baseline models. The higher this value, the
higher the performance of the model.

8

2. Theory

Figure 2.3: Model CE Curve [3]

9

2. Theory

10

3
Methodology

In this section we outline our approach and steps taken to conduct a literature survey,
gather and clean the data, build the ML models and the evaluation techniques
chosen.

3.1 Literature Survey
In our research towards designing models for predicting software defects and fault-
prone files, we will compare and analyze the methodologies, results and conclusions
of previous related work through a literature survey. The aspects of interest will
revolve around four main topics: data collection, the choice of explanatory variables
(code metrics, process metrics or delta measures [3]), learning models (SVM, LR,
NN) and the evaluation criteria used.

In order to find related work a qualitative investigation method is used to search
for the relevant sources for analysis. Articles such as [39, 28, 27] were provided
by our supervisor as a starting point. We use a "snowballing" technique from the
bibliography and citations in the papers, to find other relevant literature sources.
This study also uses the internet to collect the data and resources needed. The
phrases such as "machine learning detecting faults in code" and "Machine Learning in
software defect prediction" were used in searching for research papers and academic
journals. Each article was briefly examined using techniques from [18], on "How
to Read a Paper" . If the abstract, key headings and conclusion had mentions
of machine learning, fault prediction, software defects or known machine learning
techniques such as SVM or NB, these articles were recorded as a potential data
source. These selected papers are then read and analyzed in regards to the context
of the text and appropriateness to the questions posed in this literature survey.

3.2 Data Gathering

3.2.1 Application Programming Interface
We use two different APIs to automatically perform repository mining and extract
data from the Issue Tracking system, Jira. To retrieve Git data from the reposito-
ries we use the Pydriller API [32]. Commit-related data such as committer, author,
files and other metrics are extracted on request. After extraction, all the desired
metrics are loaded into a pandas dataframe where each record is uniquely defined

11

3. Methodology

by the commit hash and the file name to indicate that version of the file and its
associated attributes. We use this dataframe as a staging table in order to calculate
more metrics and perform aggregations.

The second API used is the Jira-Python [26] library. This connects directly to the
Jira Atlassian web application and accesses the issues of the specified projects. As
there is a limit of the number issues that can be extracted via the API, a pagination
technique was used to extract and iterate the issues. A subset of the columns that
matched our defined metrics were selected via the API methods and stored in a
pandas data-frame as well.

3.2.2 Metric Collection

The data used to collect metric information was held in Aptiv’s infotainment sys-
tem’s Git repositories (using Gerrit), in the form of the Git stat logs and in their
Jira projects. We used Git to pull the repositories from Gerrit’s web platform into
local environments as the Infotainment system code was spread over several repos-
itories. Some repositories held the original code base, while others were branches
of the original that were modified or new code to create new functionality of the
infotainment system. Each repository contained a commit history ranging from 10
commits to 200 commits each. The challenge was to find and link the repositories
with most commits that stemmed from the same code base.

The Jira data was spread across four large projects which was stored in Jira Issues
containing a combination of predefined and project customized columns. Each Jira
issue had over 300 columns when extracted from the Jira web application. Manual
extraction was not feasible as the Jira web application only allows a maximum of
1000 issues to be extracted to a csv file at a time. We used the Jira API in python
to extract the relevant columns to aid in generating our metrics; as many of those
300 columns were used differently by different projects and development teams.

As Aptiv uses a general 2 week sprint cycle, the data set is grouped accordingly.
As there is no recorded release dates to indicate where the releases start and end, a
grouping of 2 week cycles is done from the first recorded commit date. By splitting
the data into releases, we achieve a level of granularity that is required by the defined
metrics.
Both of theses data sources require dynamic extraction methods. This thesis uses
open source python libraries to achieve this.

3.2.3 Data Cleaning

The gathered data needed to be cleaned and stored in accessible formats. Empty
string values were replaced with zeros.

12

3. Methodology

3.2.4 Data Labelling
Due to the nature of the Git and Jira systems, the data was unlabeled. The chal-
lenge is to identify a defective instance of a file or a commit. Manual labeling of our
data was not feasible due to the number of data points. Two approaches are used to
label the data. The first approach takes inspiration from Daniel Alencar da Costa
et al. [11], where the SZZ framework is used to identify corrective commits based on
previous commits, to indicate defective files. The method used to do this, is from
the Pydriller API. A getModifiedLines function implements the SZZ algorithm [11]
to retrieve the set of commits that last influenced the lines of the current commits
file. For every file in the commit, we apply the SZZ algorithm to obtain the diff,
blame the file and obtain the previous commits were those lines were added and
label them with the underlying file as defective. This approach labels a version of
the file as "clean" and traces back to previous versions of that file to label them as
defective. Although all previous instances of the corrected file should not be labelled
as defective, but only the files that have the changes that are likely to introduce the
associated bug.

The second approach takes inspiration from the literature survey [27], where key-
word matching is used to identify corrective commits that indicate fixed versions of
files. After some investigation and analysis of the data, the full keyword list: fix ;
bug; fixing ; Buggy. The keyword list search was applied on the Git comments data
and Jira issues data. Both data sources (Git and Jira), were combined to provide
adequate information about whether the file was fixed or not, although not all com-
mits had accompanying Jira issues. We used regular expressions to detect keywords,
as this will capture more words without the need for exact matching or stemming
the words. The matching was not case sensitive.

An example of data labelling is illustrated in figure 3.1 [8], where we have three
versions of the same file, due to three changes (commits). The first change intro-
duced a bug into the file that was not caught until the third change (right-most code
snippet). We know that the third commit is a corrective one since it has keywords
"Bug" and "Fixing". Therefore, we apply the SZZ algorithm to detect which file
introduced that bug. Since this bug-fixing commit edits line "21" in the code, then
this is assumed to be the line causing the defect. SZZ can trace back and detect
which commit introduced or last "touched" that line, which is in this case, the first
commit (change), associated with the first version of the file, so we label that ver-
sion as defective and the following two versions are clean by default. This process
is repeated to label all file instances.

3.2.5 Data Loading and Staging
As mentioned before, the raw data resides in the Git repositories. In order to make
our solution and flow of data more robust, we load data into Comma Separated
Value (CSV) files. Each CSV file holds data for one repository. These files serve as
a staging phase, so if the raw data is needed, we can track back to the CSV files

13

3. Methodology

Figure 3.1: Data Labeling through SZZ and Keyword Matching [8]

since they have more data than we need. It is also efficient to save the data onto
the disk as reading directly from the repositories takes a very long time (up to 28
hours), which is expected to increase as the repositories grow in size.

3.3 Building the models

After data preparation we pre-processed the data to make it compatible with the
learning model. The aim is to normalize all numerical metrics and encode string
metrics as numbers.

3.3.1 Pre-processing Data

As most of our metrics were numeric, we scaled them using the MinMax1 normalizer
from the SKlearn2 library [9]. We chose this scalar because it was the most robust.
Scaling was done to make all metrics (features) equally important so that features
with higher numbers do not dominate other features while training the learning
model. All numbers after this step were scaled down to a range between "0" and "1".
Next, we encoded the string metrics like "Authors", as categorical variables. Ma-
chine learning model accept only numbers to train the data, hence we apply this
transformation. To do that we used one-hot vector encoding which means that each
value in a string-type metric is pivoted so it has its own metric column. This pro-
cess is the reason our metrics have increased to 208 metrics instead of 14. The same
technique is applied to "Committers" and "FileType" metrics.
Boolean metrics like "Refactor", "Merge" and "Modify" did not need to be encoded
as categorical variables since their values of "True/False" are implicitly transformed
to "1/0" in while fitting the learning model.

1An function from the SKlearn library which transforms features by scaling each feature to a
given range

2The scikit-learn library for machine learning in python.

14

3. Methodology

3.3.2 Types of Models Used
After preparing the data, we split it into training and testing data (20%) and run
RandomGridSearch3 function introduced by [7], which is also implementated in the
Sklearn library [9] to tune the hyper-parameters of our models. We use 10-fold
cross-validation for training. As aforementioned, we use the CE AUC here as the
function to optimize the model on. We then get the best estimator from the Ran-
domGridSearch and use it as the output model. We used the default number of
iterations for RandomGridSearch, that is 10 iterations. This process was repeated
for the four classifiers that we used:

• Logistic Regression
• Naive Bayes
• Random Forest
• Multi-Layer Perceptron

It is worth mentioning that RandomGridSearch is not deterministic; it yields dif-
ferent results every time, though not far apart from each other. This is due to
RandomGridSearch’s innate algorithm to find a local optimum in a timely manner.
We decided to use it instead of using the other alternative, GridSearch, because
it gives better results while the latter takes longer to converge to the global opti-
mum. In applying the NB model, RandomGridSearch could not be used as it has no
hyper-parameters and can not be optimized. Here the default parameters are used.

3.4 Evaluation

3.4.1 Model of Choice
We chose the model with the highest AUC since this is our evaluation criterion that
defines the best model as it serves well the objective of our thesis work at Aptiv.AUC
is also the best evaluation measure when dealing with a unbalanced data set[24].
We configured our program to re-train the four models we selected periodically.
Each time the models are trained, they will be measured against each other and the
model with the highest AUC is selected and stored for that period to be the model
of choice, until the next re-training phase. For instance if for this Quarter of the
year, the best performing model was the MLP, that doesn’t not mean that it will
use it the next time we perform a re-training process.
We chose this evaluation criterion because it fits the purpose of the thesis towards
helping Aptiv in flagging commits (files) that are likely to be error prone in a time
efficient manner. When we optimized the hyper-parameters of the model to achieve,
for instance, the highest precision, the accuracy of the model would drop, and vice
versa. It was hard to develop a model that kept all scoring criteria balanced and
high at the same time. Finally, we apply Correlation-based Feature Selection (CFS)
to each final model in order to check if the model can be reduced to avoid overfitting.

3A function that automatically tunes the hyper-parameters of a machine learning model and
returns the best estimator that yields the best scoring function.

15

3. Methodology

3.4.2 Limitations
Data labeling, an important step in our methodology, depends on the quality of doc-
umentation and commit messages that developers make in their daily development
activities. Due to the large mismatch of linked Jira issue to Git commits, there
are only 8,921 Git commits matched to Jira issues out a possible 23,926; therefore
we could not be fully reliant on labelling on keywords and used a SZZ approach as
well to compensate. Acquiring of metrics was a challenge since the Git tool can not
provide all possible metrics that we intended to use. Metric collection steps were
continuously revised and applied due to their availability.

3.5 Integration into Production
We deployed our working model to the production environment at Aptiv, this helps
them to preemptively focus their testing efforts on files that are likely to be "defec-
tive", based on our model predictions. The best performing model was serialized
to an external file. When source code is committed and thereafter build files and
unit tests are executed, a customized script is triggered to run the prediction model.
We use this model to predict both the class of the file (defective or clean) as well
as the confidence of our prediction (probability estimate). For example, each file
in a commit will have its name and timestamp as a unique identifier; and the class
and confidence as the output values. Finally, these results are projected in a web
interfaces (Gerrit), which alerts the developers of the flagged files to revise.

16

4
Literature Survey

4.1 Data Gathering and Preparation

Most studies in literature implemented data collection tasks through extracting file-
level change data from SCM repositories using the appropriate scripts. The aim of
this metadata is to provide all historical versions of all files in order to track the
changes and the propagation of defects with time and detect events that fixed pre-
vious bugs and the relevant files associated with those events. The complementary
tool used in most studies are issue trackers to log all the bugs associated with the
file-changes in SCMs.

Rahman et al. [28], conducted defect prediction studies at the file-level as they ex-
tracted process metrics from a sample of 12 Java-based projects by using the commit
history from their Git repositories. The average number of releases per project was
7 and the total number of files across all projects amounted to 27,912 files. The
command git blame was used on every file at each release to get the detailed infor-
mation. More data was extracted from the issue tracking system, Jira, to find more
details about defects and fixes commited. Where features like changed lines and
author were extracted from those commits in the Git repository, in an attempt to
find interesting patterns and correlations between features, fixes and bugs. Rahman
et al. stated that "Any files modified in these defect-fixing commits are considered
as defective". Code metrics were divided between the file-level and class level. Since
all projects are Java-based, most files contain a single class; so class level metrics
were aggregated to file level. Similarly some metrics were available only at method
level, (such as fan-in, fan-out), which were also aggregated at file level.

Arisholm et al. [3] stated that OO (or code) metrics can be collected from code
snapshots. Delta metrics need various versions of the system to be available (in
order to calculate the differences); while Process metrics are for instance, changes
developers did, the descriptions of commit messages , and fault corrections, devel-
oper information and time of changes. In this study Arisholm et al. used a tool
called JHawk to extract OO and Delta metrics, while process metrics were extracted
from the MKS (Configuration Management System). The dataset had a size of 22
releases and over 2,600 Java classes but only the most recent 13 releases were used
in their study.

Zimmermann et al. [39] used Concurrent Versions System (CVS) as their SCM sys-

17

4. Literature Survey

tem along with the bug tracking system Bugzilla to identify corrective commits by
searching for keywords in commit messages such as "Fixed" or "Bug #<number>",
where each bug number is linked to a bug report in the bug tracking system. The
idea is that bug reports have a version field which holds the release in which the
bug was first reported. Defects were predicted on both file and package levels. This
study included 3 releases, with a total of of 25,210 files.

Inspired from the Eclipse project in [39], Moser et al. [25] used a public dataset to
predict defects on a file-level. This dataset included a large number of static code
metrics (198 attributes) and pre- and post-release defects for the Eclipse releases 2.0,
2.1, and 3.0 extracted from the PROMISE1 repository. These releases contained a
total of 14,539 files.

Berger et al. [27], performed a case study on a project named BusyBox. They
extracted the code history and change data from a Git repository having over 13
releases. The dataset attributes included a total of 3,860 commits, performed by
244 different authors, contributing to the development of 821 unique features across
all releases. The analysis was performed on a feature level instead of files, as in the
aforementioned studies. The dataset was in the form of vectors, meaning that for
each feature in a specific release, it was associated with its feature name, the release
number, values of five process metrics aggregated over all commits associated to the
release, and the classification as defective or clean. Each commit contained details of
the file changes which were extracted including attributes like: lines of code, author,
and commit message. Commit messages were then linked to the corresponding fea-
tures to construct the data model. While implementing this, they also mention that
"If a commit contained code changes within conditional compilation directives that
belong to one or more features, then they attributed the commit to each feature.
This contributes to establishing relations between the authors of the commits and
the feature, and to prepare for the labeling process." [27]

The study in [24] was made on seven features (applications) on six Android releases.
The total number of classes in this study was 9,190 (an average of 250 classes per
feature per release). Open-source repositories were used to extract the source code
with OO metrics using Chidamber and Kemerer Java Metrics (CKJM) tool. Defect
Collection and Reporting System (DCRS) tool was used for collection of the defects.
Defects were made on the class-level in this study.

Based on the study in [13], Aversano et al. [5] used the time-window heuristic to
extract data from two open-source systems; JHotDraw (489 files) and DNS-Java
(179 files) while ignoring changes that involved more than 30 source code files in
order to exclude large CVS maintenance activities. This CVS system allowed for
extracting detailed changes on the file level and even on lower levels such as detect-
ing where each line of any file to was introduced for the first time (release number).
Accordingly, this system has the ability to log administrative data for each line in
any file such as: date, time , the author (developer) and the release number. Thus,

1http://promise.site.uottawa.ca/SERepository/

18

4. Literature Survey

time sequence analysis is possible since time attributes are present, which can be
combined with other attributes.

Karim et al. in [12] used different levels of granularity, that is, they performed their
study on the basis of modules across four projects; two were written in procedural
languages and the other two in object oriented languages. The total number of
modules was 4,168.

4.2 Metrics

Paper References Code Metrics Process Metrics
[24] 18
[12] 21
[39] 14
[28] 14
[3] 18 26
[27] 5
[25] 31 19

Table 4.1: Types and Number of Features used in Previous Studies

Previous studies in [28, 25, 27] concluded that process metrics are more effective for
predicting defects on the file-level, although the latest paper argues that it may not
be known how superior they are when it comes to predicting defective features.

Rahman et al. [28] evaluated four combinations to compare process and code metrics
for building the learning models. One: using only process metrics, two: using code
metrics, three: combining process metrics and size; since size alone is an important
metric for defect prediction and to also separate the impact of size from the whole
combination of process and code metrics, four: building the model with the entire
collection of metrics. The log transformation of metrics significantly improved pre-
diction performance. They used 14 process metrics across a large number of releases
of diverse projects on different types of models. The conclusion stated that process
metrics were superior to code metrics when evaluated using CE AUC in terms of
stability, portability and performance. Moreover, they stated that code metrics may
not evolve with the changing distribution of defects which leads to stagnation which
causes the model to focus on files which are recurringly defective.

In the Android project studied in [24], only code metrics (18 metrics) were ex-
tracted and filtered based on the method in [15], that is, CFS which selects relevant
attributes (features) to the dependent variable and removes variables that are highly
correlated with each other (redundant). The LOC, CAM, WMC, Ce and LCOM3
metrics were found to be significant predictors over the various releases of seven
application packages of the Android software using the CFS method.

19

4. Literature Survey

To compute their 14 code metrics, Zimmermann et al. [39] used the Java parser for
Eclipse. They developed algorithms to compute standard code metrics for meth-
ods, classes and files. The metrics were aggregated into single values (for files and
packages) as maximum, total and average. They concluded that code complexity
is proportional to defects found and stated that the results were far from perfect
and raised questions like are there any metrics that are better than complexity met-
rics and whether these other methods can be carried out to predict defects across
projects.

The work in Arisholm [3], made a comprehensive study on different kinds of metrics
including 18 OO metrics, 25 process metrics and one delta metric (which evaluates
code churn between files in successive releases). To assess the significance of these
variables they made seven combinations, grouping 2 types of variables at a time and
finally using all variables to build their learning models. They also used the full set
of metrics and a reduced set using CFS for building models. Surprisingly, models
built using the reduced set of metrics were marginally poorer than the complete
metric set across most evaluation criteria. Similar to the conclusion of [28], there is
little benefit by including code metrics to a model that is using process metrics. In
some evaluation methods like CE, the values are almost zero and some are negative,
meaning that some models using code metrics perform worse than the baseline mod-
els. Arisholm et al. also noted that adding the OO metrics consistently degrades the
CE of a model. Further, although the deltas have the smallest average ROC area,
these metrics are consistently more cost-effective than the OO metrics. The low CE
of the OO metrics may be due to their correlation with size measures, which has
been reported previous studies. On the other hand there is so much gain when using
a model based on process metrics, the best model is approximately 50% of the opti-
mal model in terms of CE. When it comes to ROC area OO metrics are great to use.

In Karim’s paper of Predicting Software models using SVMs, [12], each dataset used
began with 21 static metrics of independent variables and a dependant boolean vari-
able that indicated whether or not the module is defective or not. As it is likely
that the 21 variables may be correlated, [12], CFS as also done in [3] and [15], was
also applied to narrow down the best combination of metrics. Each dataset was left
with the best subset of independent variable metrics, suggesting that the reduced
metric subset performed better than the complete set of metrics.

Moser et al. [25] studied the impact of adding 18 process metrics both alone and
in combination with the 31 code metrics used in [39]. Again process metrics out-
performed code metrics. The findings in [39] agree with studies, like [28], in that
change data, and more in general process-related metrics, are better at describing
and capturing more meaningful information about the defect distribution than the
source code itself (code metrics). They provide an explanation that while complexity
metrics are related with the cognitive effort for understanding the source code they
are not necessarily sound indicators for software defects. They state the following
example that summarizes why process metrics are preferable: "A source file may
be very complex and still defect free, because the developer who coded it was very

20

4. Literature Survey

skilled and did a prudent job. However, a prediction model based on complexity
metrics would classify it as defective. On the other hand, if a file is involved in many
changes throughout its life cycle there is a high probability that at least one of those
changes introduces a defect, regardless of its complexity" [25]. That does not mean
however that there is no correlation between code complexity and defects.
Berger et al. [27] agreed with Rahman et al. [28] and used 5 process metrics as they
performed better than code metrics at the file-level, yet they stated that it is not
clear whether that holds for the feature level.

4.3 Learning Models
A variety of machine learning models are used in fault-detection. In combination
with the environment, problem, metrics used and evaluation criteria, the perfor-
mance of the same learning models differ in each case. This section aims to evaluate
each paper and the machine learning models used in respect to their context. Below
is a list of learning models evaluated in the literature.

Study Statistical
classi-
fiers

Neural
Network

SVM-
based

Decision
Tree
Meth-
ods

Ensemble
Learning

Rule-
based
Learn-
ing

Other

[24] LR, NB,
BN

MLP,
RBF

SVM,
VP

CART,
J48,
ADT

Bag, RF,
LMT,
LB, Ad-
aBoost

NNge,
DTNB

VFI

[12] LR, NB,
BBN

MLP,
RBF

SVM DT RF KNN

[39] LR
[28] LR, NB SVM J48
[3] LR NN SVM C4.5 AdaBoost,

Decorate
PART

[27] NB J48 RF
[25] LR, NB J48

Table 4.2: ML Models from Previous Studies

In [39], LR was selected to classify the Eclipse bug dataset. The purpose of the
study was to predict which file or package contained the post-release defects. Here
the choice of LR, which predicts the likelihood estimate between 0 and 1, is a good
fit. If the likelihood estimate was above 0.5, the file or package was classified as
defect prone, as the estimate was close to the value of 1 [39]. Any estimate below
0.5 and close to the value 0, resulted in the file being flagged as defect free [39]. Six
models were built to be used on both a file and package level. Models were tested
across all the releases, and on the related file or package level they were built on [39].
As only a LR model was used, there is no comparison to be made in regards to it’s
performance. For this we look at the work of [25] who builds on [39], who contrasts

21

4. Literature Survey

the existing LR model used with Naive Bayes NB and a Decision Tree (DT) (J48).
The results show that the DT outperforms the two other models for each release
tested. Another finding is that NB is a strong performer in terms of code metrics, [25]

Karim’s [12], objective is to analyze the efficiency of the SVM model in defect-prone
software over four datasets, therefore SVM is compared to statistical classifiers (K-
Nearest Neighbour (KNN) & LR), NN (MLP & Radial Basis Function (RBF)),
Bayesian techniques (Bayesian Belief Networks & Naive Bayes) and tree-structure
models (Random Forests & Decision Trees).
In terms of the evaluation criteria used (accuracy, recall, precision, F-measure) the
overall results from the four datasets and the eight different models, show that SVM
had a higher accuracy than most although, MLP achieves a significantly higher ac-
curacy when used in a dataset (KC1) [12] that is object oriented and in C++.
Top performing learning models in terms of accuracy mean values across all data
sets are: SVM, LR, MLP, RBF, Decision Tree (DT) and RF. In precision mean
values, models such as Bayesian Belief Network (BBN), NB, KNN and RF are over-
all top achievers. SVM only does marginally better than 3 models over 2 datasets.
Making SVM a weak choice in precision-driven results. When comparing recall,
SVM all models tested against all the datasets, and shows a significant difference
against 4 other models [12]. SVM clearly is a strong learning model where recall
is important. Lastly F-measure scores were contrasted and it was found that they
were not largely outperformed by any model in all datasets used [12]. SVM results
in a higher F-measure score than at least 5 other models across all datasets [12]. We
can conclude that in terms of recall, the SVM model is an excellent choice as it has
scores within 99.4–100%. It also ranks third in terms of F-measure scores overall.
Although it does not have such high accuracy and precision scores, it is still a good
practical choice given its performance over the datasets in comparison to the other
8 models. Other noteworthy models are that gave an overall high performance in
all the evaluation metrics are LR, MLP and RBF.

Three different classifiers are explored in [27], these are DTs, RFs and NB. The
DT chosen was J48, which is an implementation of the C4.5 algorithm used in [3].
The accuracy of all three classifiers were similar in score and it was discovered that
imbalanced data has a impact on the accuracy score [27]. After analyzing the con-
fusion matrix, NB was the top performer in regards to overall accuracy while the
decision tress classifier proved the best for predicting defective features in terms of
the F-measure and ROC [27].

Arisholm et al. [3] contrasted and compared 5 different machine learning tech-
niques to understand which one was the best performing in their given context.
Their approach in choosing the classifiers varied. A DT classifier (C4.5), was picked
as it is one of the most popular in this context [3]. Other classifiers chosen were a
coverage rule algorithm (PART) due to its performance at the time of writing, back-
propogation NN classification, SVM and LR, which is used as a statistical standard
for comparison [3]. The DT classifier (C4.5) is improved by applying Adaboost [37]
and Decorate to help improve its performance on the training sets [3]. Another

22

4. Literature Survey

decision made to help evaluate the classifiers was to use the rule or leaf with the
lowest entropy for the fault probability distribution for C4.5 and PART as rules and
leaves can be compared on the same level [3]. The overall top performing machine
learning technique was C4.5 combined with Adaboost.

In [24], the study uses 18 machine learning techniques which cover NN, SVM, en-
semble learners and DTs [24]. The full list is LR, NB, Bayesian Networks, MLP,
RBF, SVM, Voting Perceptron (VP) , CART, Alternate Decision Trees and J48
DTs, Bagging, RF, AdaBoost, LoGit Boost, Logistic Model Trees (Ensemble Learn-
ing), Nearest neighbour with generalized examples, Decision table Naive Bayes (Rule
based learning), Voting Feature Intervals (VFI). After testing each learning model
it was the NN, MLP that performed best, followed by NB and LR. The worst per-
formers were SVM, VP, CART and J48. MLP and LR being the top performers
echoes the results of [12]

NB and LR were also top performers in Rahman’s paper [28]. They use LR, J48,
SVM, and NB, on different combinations of process and code metrics. The result
was that while NB was better performing on code metrics, also seen in [25], it is LR
that is best performing on all metric combinations and produces the same p-values
as NB in regards to its results in code metrics [28].

We find that LR is used in all the papers and can be a good statistical standard to
compare machine learning models. It is also frequently a top performer from the
reviewed literature. NB is also a model worth considering based on this analysis. It
is used 70% of the time as a selected model from the reviewed papers and also has
a good performance rate in [24, 28, 27]. The last two machine learning models note
mentioning are: DT and MLP. Both have shown good performances in [27, 25, 3]
and [12, 24] respectively.

4.4 Evaluation Criteria
Choosing the appropriate evaluation criteria plays a vital role in determining the
best model [3]. The evaluation criteria chosen depends on the type of problem being
solved, [3].

Confusion matrix measures for instance, help quantify the comparison of predica-
tion models, [12], but do little in terms of analyzing the CE of the models in the
context of validation and verification [3]. Karim, Zimmermann, Moser and Arisholm
[12, 39, 3, 25] use these metrics in predicting the performance measures of the models
used. It is noted that a shortfall in using the measures from confusion matrices, is
that all of them require a predefined cut-off value for the predicated probabilities, [3].

In [3], the accuracy measure comparison showed that SVM and LR yield the highest
values, although the accuracy alters depending on the metrics chosen [3]. It is also
noted in the paper that accuracy may not be the best way to evaluate how efficient
fault type prediction models are [3]. Recall and Precision measures showed that the

23

4. Literature Survey

Boost C4.5 modeling technique was the best performer in paper [3]. The findings
also show that some methods (tree and rule based models) give lower precision and
higher recall than others (SVM, NN and LR) [3]. Type I and II misclassification
rates are used in [3], it was found that both types were inversely correlated and
decision trees or rule-based techniques (C4.5 with or without boosting) give better
prediction models in terms of the type II misclassification rates [3]. Another evalu-
ation measure used by Arisholm, [3] is the ROC curve.

AUC serves as a good measure when handling unbalanced and noisy datasets as it
is insensitive to changes in the distribution class and therefore was suitable to use
in the study by Malhotra [24].

CE of a model can not be measured using the above methods. CE can measure how
well different parts of the model rank and perform, as seen in [3]. Arisholm et al.
[3], calculate CE by calculating a normalizing it over a baseline, optimal and model
CE values. Cost effectiveness can be defined differently depending on what needs
to be evaluated. In [25], a unique cost effective function is defined to measure the
costs associated with different prediction errors made by a model [25].

In the paper [28], the metrics of accuracy, precision, recall, F-measure at 0.5 thresh-
old, ROC and CE were examined [28]. Rahman et al. mentions the use of Source
Lines of Code (SLOC) to measure the CE by "plotting the proportion of defects
against proportion of SLOC coming from the ordered (using predicted defect prone-
ness) set of files" [28]. Although SLOC and ROC are seen as similar measures, SLOC
uses a smaller area under the CE curve (AUCEC), fit for the resource limits [28].
Raham uses AUC, CE AUC at 10% (CE AUC 10) and 20% (CE AUC 20) SLOC
for his evaluation criteria for each model’s performance [28].

The quality of ranking of defects can be measured using the Spearman Correleation,
as used in the papers by Rahman and Zimmermann [28, 39]. In the paper by
Zimmermann, the Spearman Correlation was calculated between the pre- and post-
release defects and their metrics used. It was found that a directly proportional
relationship exists between the number of defects in the pre- and post-release files
[39]. The Spearman correlation coefficient is also able to indicate which group
of metrics has the most influence on defective files on both the file and package
level [39]. The Pearson correlation coefficient is also calculated in the paper by
Zimmerman [39]. This measure assumes a linear relationship between the metrics
and is calculated to ensure completeness when comparing against Spearman [39].

4.5 Validity
Validation is performed across the results from the evaluation criteria by some of the
papers. The main validity checks and tests used were cross validation, inter-release
validation and significant tests.

Kairm, [12] , uses cross validation on each dataset used by the models. A 10-fold

24

4. Literature Survey

cross validation is used to split the data in 10 equal bins. 9 bins are used to train
the model and the last bin is used as a test bin. This is done for a total of 10
times, rotating the test bin in each round [12]. To ensure a low bias and validity
of the test trials,the trials are run 100 times and shuffled as well as a randomized
seed value is used [12]. The mean and standard deviation are then calculated for
each evaluation criteria measure used over the 100 test runs [12]. In the papers
by [24, 25],10- fold cross validation is also applied in order to validate their results
from several machine learning techniques. This seems a popular tool in performing
validation on unbalanced data.

Malholtra also performed an inter-release validation [24]. This is when defined re-
leases are used to train the model and it is then validated against its latest release
[24]. Statistical tests such as Friedman test and a post-hoc Nemenyi test was also
carried out in this study [24], to analyze how different the results from the different
models are from one another. The Friedman test calculates and ranks the mean per-
formance values based on the AUC values [24]. The lowest ranking value indicates
the best performing model that was used. If the Friedman test showed significant
results, a post-hoc Nemenyi test was done to compare the pairwise differences from
the different models, based on AUC values [24].

Another way in which a Significance test was carried out, is illustrated by Karim
[12], to establish if there was a meaningful difference between the results of the SVM
model used and other predication models [12]. A corrected re-sampled t-test was
used as it is better suited when used with a x-fold cross validation as used by Karim
[12]. The t-test was run at a significance level 0.05 (95% confidence level). By
performing these tests, Karim was easily able to display which model outperformed
SVM and vice versa.

Rahman used Wilcoxon tests and the corrected the p-values using BH correction
in their study to determine if there was a significant difference of code vs process
metrics [28]. Arisholm analysed the p-values from Wilcoxon tests to compare the
different models [3] and set the significant level for this test to 0.001.

25

4. Literature Survey

26

5
Results

By following the processes outlined in chapter 3, we obtained the metrics we aimed
to use as our machine learning features (predictors). The models trained had sim-
ilar results in terms of CE AUC with varying statistics for the f1-score, accuracy,
precision and recall.

5.1 Data Set
Three main repositories were identified to have the most commits and its codebase
to be similar to each other. The three main repositories each hold 908, 231, 720
commits respectively (at the time of collection). As the metrics are based on a file
level, the commits were extracted per file for each commit.
As the metrics are based on a file level, the commits were extracted per file for each
commit.

Repositories Total Commits Commits on a File level
Repository 1 908 15,653
Repository 2 231 5,176
Repository 3 720 3,097

Table 5.1: Data points per Repository

These commits from the different repositories were merged to form a complete
dataset.

5.2 Metric Results
The metrics chosen are process metrics, which proved superior to other metrics
based on previous studies as in [28]. We also created our own metrics that we
thought were best for prediction. We also included a few code metrics. Defining
our metrics became a iterative process in the beginning due to the availability of
data. We established in the beginning that our metrics will be on the file level and
per release. Table 1 shows the resulting metrics we selected and calculated from
our raw data. We created initially 14 metrics, which later expanded to 209 metrics.
This large number is due using one hot vectors for encoding string metrics such as
"Author" or "FileType" as categorical dummy variables.

27

5. Results

The following metrics are per file instance aggregated per release. A release is
launched every two weeks. The value Calculated in the Source column indicates
new metrics introduced by this thesis.

Metric Description Source
Distinct
Developers
Count

Number of distinct developers that worked on the file per
release [28]

Active Devel-
opers Count Number of developers in current release (not distinct) [28]

Commit
Count Number of times a file was committed within a release. [28]

Added Lines Number of total lines added to the file. [3]
Deleted Lines Number of total lines deleted from the file. [3]

Cyclomatic
Complexity

The complexity of the code in the file; a measure of the num-
ber of linearly independent paths through a program’s source
code.

[3](from API)

Merge
A boolean value indicating whether the code was merged with
another file or not due to conflicts when committing codes by
different Authors.

Calculated

Refactor Whether the change was a refactoring change for the code. Calculated

Modify

A boolean value to indicate whether the lines of code where
modified instead of merely adding or deleting. Modifications
can be just extending one line of code or renaming variables
for example.

Calculated

Author Expe-
rience

The number of files the Author has changed (across all
projects). [3]

Committer
Experience

The number of commits done by the committer (across all
projects) Calculated

Committer * The name of the Committer Calculated
Author ** The name of the Author Calculated
File Type The file extension of the file (or its type e.g. .java or .html). Calculated
* The committer is assumed to be the person who committed the code on behalf of
the original author.
** The author is the person who originally wrote the code.

Table 5.2: Metric Collection

After aggregation we have around 10K data points from 3 repositories. The Jira
data had to be refined further as some of the selected data that matched our metrics
had missing and incomplete data. This data included fields such as priority, votes
and time to complete task. These metrics will later be reduced when using feature
selection in some of the machine learning models.

5.3 Models
We developed the models and optimized them as outlined in chapter 3, using the
metrics we collected in section 5.2. Following are the results and evaluations of each
model based on our main criteria, CE, and the other conventional confusion matrix

28

5. Results

Hyper-Parameter Value
C 1000
class_weight None
dual False
fit_intercept False
intercept_scaling 1
max_iter 100
multi_class ovr
n_jobs None
penalty l1
random_state None
solver liblinear
tol 0.001
verbose 0
warm_start False

Table 5.3: Hyper-parameters for Optimized LR Model

measures. Tables 5.3, 5.4 and 5.5 show the resulting hyper-parameters for each of
the optimized models.

Hyper-Parameter Value
activation relu
alpha 0.0001
batch_size auto
beta_1 0.9
beta_2 0.999
early_stopping False
epsilon 1.00E-08
hidden_layer_sizes (50 50 50)
learning_rate adaptive
learning_rate_init 0.001
max_iter 300
momentum 0.9
nesterovs_momentum True
power_t 0.5
random_state None
shuffle True
solver adam
tol 0.1
validation_fraction 0.1
verbose False
warm_start False

Table 5.4: Hyper-parameters for Optimized MLP Model

29

5. Results

Hyper-Parameter Value
bootstrap False
class_weight None
criterion gini
max_depth 100
max_features log2
max_leaf_nodes None
min_impurity_decrease 0
min_impurity_split None
min_samples_leaf 2
min_samples_split 5
min_weight_fraction_leaf 0
n_estimators 400
n_jobs None
oob_score False
random_state None
verbose 0
warm_start False

Table 5.5: Hyper-parameters for Optimized RF Model

5.3.1 Cost Effectiveness
Figures 5.1 to 5.4 show the evaluation method used for each of the four models, that
is, the CE curve which expresses the performance of our models. It depicts how fast
a model can find defective files by looking at the most likely ones to be defective
first. See section 2.6.2.
It can be seen that the NB classifier has the worst performance of the four learning
models; with an AUC close to that of the baseline model. On the other hand
LR performs fairly well, but is outperformed by the Neural Network MLP model.
Finally is the RF model which had the best performance of them all, with an AUC
closest to the optimal model. The statistics of each model are shown in table 5.6.
We refer to the baseline and optimal models in the table by their AUCs as baseline
AUC or Baseline Area Under the Curve (BAUC) and optimal AUC Optimal Area
Under the Curve (OAUC).
For all classifiers, the full model was the best performing; when we tried to use less
features for each model, the CE AUC degraded.

AUC Diff from BAUC Gain over BAUC Ratio over OAUC
NB 5,778 1,090 23% 61%
LR 7,590 2,901 62% 80%
MLP 8,090 3,401 73% 85%
RF 8,250 3,562 76% 87%

Table 5.6: AUC values for all four models compared to baseline and optimal
models’ AUCs which respectively are 4,688 and 9500.

30

5. Results

Figure 5.1: CE Curve for LR Figure 5.2: CE Curve for NB

Figure 5.3: CE Curve for MLP Figure 5.4: CE Curve for RF

31

5. Results

5.3.2 Confusion Matrix Measures

The reason for optimizing the model using CE was based on the project needs,
nonetheless we also attempted to take the other confusion matrix statistics such
as accuracy, precision, recall and f1-score into account. The main problem when
optimizing the model’s hyper-parameters; optimizing the accuracy would sacrifice
another measure such as recall. It was almost impossible to obtain a model of
balanced performances on all these aspects. This made our choice for CE seem even
more sensible.

Precision Recall F1-score Support
False 1.00 0.25 0.40 1776
True 0.19 1.00 0.33 324

micro avg 0.36 0.36 0.36 2100
macro avg 0.60 0.62 0.36 2100

weighted avg 0.87 0.36 0.38 2100
Accuracy: 36%

Table 5.7: Statistical measures for NB

Precision Recall F1-score Support
False 0.89 0.97 0.92 1776
True 0.64 0.32 0.42 324

micro avg 0.87 0.87 0.87 2100
macro avg 0.76 0.64 0.67 2100

weighted avg 0.85 0.87 0.85 2100
Accuracy: 87%

Table 5.8: Statistical measures for LR

Precision Recall F1-score Support
False 0.90 0.97 0.93 1776
True 0.69 0.38 0.49 324

micro avg 0.88 0.88 0.88 2100
macro avg 0.79 0.67 0.71 2100

weighted avg 0.86 0.88 0.86 2100
Accuracy: 88%

Table 5.9: Statistical measures for MLP

32

5. Results

Precision Recall F1-score Support
False 0.87 1.00 0.93 1776
True 0.98 0.15 0.27 324

micro avg 0.87 0.87 0.87 2100
macro avg 0.92 0.58 0.60 2100

weighted avg 0.88 0.87 0.83 2100
Accuracy: 87%

Table 5.10: Statistical measures for RF

As shown throughout tables 4.2 to 4.5, although the RF model has the highest AUC,
it has the lowest recall and f1-score values of the four models. It can also be noticed
that it has the highest precision value. The NB model is poor in all aspects, while
the other 3 are comparable in terms of CE and accuracy measures.

33

5. Results

34

6
Discussion

All four models used in this thesis were also used in [12, 24]. It is interesting to see
that in Malhotra [24], MLP was the best performing ML model, followed by NB and
LR. Comparing this to our results we find both MLP and LR at the top, but not
NB. NB performs well when its attributes are independent and unrelated, as shown
in [24]. Although when we built the models with feature selection, the reduced set of
metrics were marginally poorer than the complete metric set across most evaluation
criteria, this result correlates with that of Arisholm [3], who used a smaller set of fea-
tures than us. Perhaps if we had more features, the feature selection process would
have been more impactful and reduced set of features would have had a low corre-
lation with each other and perhaps lead to a better performance of the NB model.
Another factor that possibly influenced the NB performance is the choice in metrics.
Choosing code metrics as in [24, 25, 28] lead to the NB model being a top performer.

We also observed that the evaluation technique can compliment the type of metric
chosen. In Rahman [28] a finding was that process metrics were superior to code
metrics when evaluated using CE AUC in terms of stability, portability and perfor-
mance, which can correlate to the low CE scores in the NB model. A contrasting
result to our NB model was in the study [27]. Here NB was the top performer with
process metrics being selected. The methodology in [27] is similar to the one used
in this thesis. It is interesting to try see why NB is a top performer here. One
main difference is that the data used in [27] is slightly more balanced than our own
dataset. Another reason could be that we are using different evaluation criteria to
measure the models.

Using a LR model was a calculated decision on our part as we observed it was a
standard ML model used in almost all studies and previous work we examined. From
the findings through our literature survey in [24, 12, 39] we found the LR as a good
performer but generally does not outperform other models in terms of accuracy and
AUC scores. Similarly in our own results we see a correlation of the performance
of LR. The respectable results of the LR could hint that the type of ML model
selected may not be of too much importance and the results could largely depend
of the metrics selected.

MLP was the second best performer. We expected MLP to be a top performer from
the the findings in [24, 12, 20]. There is a very small marginal difference between
the performance of the RF model and MLP. Another observation of our results
to that of [24], show RF as a good choice for defect prediction on various types of

35

6. Discussion

RF LR
Feature Name Coefficient Feature Name Coefficient
0 Added Lines 0.18 Added Lines 42.8
1 Cyclomatic Complexity 0.11 Author_3979a0e268d70f98d642b20 8.32
2 Deleted Lines 0.06 Author_f4ba57e3501b0f2fa9bb945 5.32
3 Commiter Experience 0.04 Active Developers Count 4.23
4 Author Experience 0.04 AddedLines_count 3.79
5 FileType_java 0.04 Commiter_472e6c8e1b90776044192 3.35
6 Refactor 0.03 Author_f3dea260bc67ed18adf64b0 2.53
7 Modify 0.02 Commiter_c2329d6acdff7139f97eb 2.53
8 Author_968f949c41383aa08d8cadd 0.02 Author_e6e18d41a6e318fd1024ca6 2.46
9 Commmit Count 0.02 Commiter_8f36e4c3b1d8a36fb0f09 2.29
10 AddedLines_count 0.02 Commiter_ad94204efa89fe869b22b 2.27
11 Active Developers Count 0.01 Author_279399fcb100d1abcfe6f29 2.00
12 Commiter_490674fe6e6708ccdbae3 0.01 Author_ae71f5f8cfb2c961ab7e68d 1.97
13 Author_baf95f7ee8bd67e30e6c2b7 0.01 Author_f34cc4b6d61fec27c9d819b 1.85
14 FileType_json 0.01 Author_e3757d1be3d2341e734d99a 1.76
15 Commiter_8f36e4c3b1d8a36fb0f09 0.01 Author_b0277f3a1b52a0d5da7fdbc 1.62
16 Author_84020f066432a8181486e6a 0.01 FileType_crc 1.36
17 Author_4a9cdb0293a6da6c2dee9d4 0.01 Author_079690db340d72406cf61ba 1.33
18 Commiter_1622bcdb0f25f23bafaa0 0.01 Commiter_096d524d5c1caef4fd85e 1.33
19 Merge 0.01 Commiter_75a4d5b3179961faff45b 1.25
20 Distinct Developers Count 0.01 Author_8a3501c8caaeb8b77e4d78a 1.16

Table 6.1: Top 20 Predictive Features of Defective Classes for RF and LR

data sets used. This is due to it being an ensemble learner algorithm, where many
learning techniques are used together to achieve better predictive performance than
constituent learning [24]. As our data set is a merge of different software applications
in the Infotainment system, this could explain why RF is the top model of choice in
our results. Our RF model gives us a CE score of 87%. This is a significantly good
score as Arisholm [3], mentions that the good model is approximately 50% of the
optimal model in terms of CE.

6.1 Feature Importance
We analyzed the features by extracting them from the classifiers along with their
associated weights (coefficients) as shown in table 6.1. The higher the weight, the
more important the feature in contributing to a decision of the defectiveness of a
file.
We noticed in table 6.1 that some features had the same importance in both clas-
sifiers, such as Added Lines, which was the strongest predictor. It seems also that
RF is the most “objective” classifier as most of its top features are non-related to
the developers while LR seems to rely heavily on which developer authored or com-
mitted a file to make a prediction on whether it was defective.

Interestingly, the cyclomatic complexity was a top feature in RF. Therefore code
metrics are sometimes superior predictors to process metrics.
We also observed that the 20 bottom features in both classifiers, represented in table
6.2, are interpreted differently. RF seems to assign zeros to all features, indicating
that they are meaningless and do not contribute in the classification decision. On

36

6. Discussion

RF LR
Feature Name Coefficient Feature Name Coefficient
188 FileType_flowconfig 0 FileType_aidl -9.6
189 FileType_frag 0 FileType_apk -9.6
190 FileType_gitattributes 0 Commiter_84194d6d42f27cc38b619 -9.7
191 FileType_lib 0 FileType_ttf -9.8
192 FileType_lib_boost 0 FileType_pump -9.9
193 FileType_lib_openssl 0 FileType_md -10.
194 FileType_ogv 0 FileType_mp3 -10.
195 FileType_package-list 0 FileType_gradlew -10.
196 FileType_rar 0 FileType_bat -10.
197 FileType_ser 0 FileType_mtl -10.
198 FileType_sln 0 FileType_docx -10.
199 FileType_store 0 FileType_pro -10.
200 FileType_suo 0 FileType_obj -10.
201 FileType_vert 0 FileType_mp4 -10.
202 FileType_wktree 0 FileType_css -10.
203 FileType_xcf 0 FileType_rawproto -11.
204 FileType_zip 0 FileType_jar -11.
205 Commiter_a875100b57d5e24e18ff3 0 FileType_jpg -12.
206 Commiter_d93dfa0a6fd63f8a931a0 0 FileType_class -12.
207 Commiter_0e891b8eace486a2fa4f2 0 FileType_png -13.
20 Distinct Developers Count 0 Author_8a3501c8caaeb8b77e4d78a 1.16

Table 6.2: Uninformative Features in RF and Predictive Features of Negative
Class in LR

Figure 6.1: Feature Coefficient Ranges for RF vs. LR

37

6. Discussion

the other hand, LR appears to associate its bottom features with the negative class,
that is, they tend to predict the file as clean.
By inspecting the boxplot in figure 6.1, we notice that LR has a larger inter-quartile
range and an outlier (Added Lines), regarding the weights assigned to the features.
RF, in contrast, has a much smaller range. By comparing these findings with the CE
results for model evaluation, we think that the smaller the range the more robust
and the higher performing the classifier. RF has all of its weights ranging from 0 to
0.18. We also notice that the Added Lines metric, a top feature in both classifiers,
LR assigned a very high weight to it, 43, while RF only assigned a value of 0.18.
To illustrate what this means, think about a scenario of a file having many Added
Lines then the LR would most likely label it as defective even though it might not
be. Since RF assigns much lower weights to that same feature, it is still comparable
in terms of weight to other features and hence Added Lines will not dominate and
the features will equally contribute to the prediction result, so the result will not
necessarily be defective for a file with many Added Lines. Perhaps this was one
of the reasons RF outperformed LR. Other reasons may be due to the fact that
RF is inherently robust and minimizes internal bias; this is because it implements
multiple decision trees and implements bagging of features and instances, then uses
a majority vote for its final result.
It was not feasible to extract the feature coefficients for NB and it was irrelevant to
use features from MLP since it creates it’s own features internally within the hidden
layers. One common characteristic between MLP and RF is that they are nonlinear
classifiers while LR is linear. This could also be a factor in why the former two were
superior to LR. It is generally easier for nonlinear classifiers to separate classes if
data points have many features that are hard to separate through more basic linear
classifiers.

6.2 Machine Learning vs Traditional Algorithms

In this thesis work we decided to use machine learning instead of algorithms based
on predefined rules and logic; because we are interested in a prediction problem
of many dimensions for predicting defective files. Of course traditional algorithms
would have worked, had we had clear, predefined rules to define which files were
defective, that would have been a valid option. Another reason is that we have
over 200 features (metrics), we cannot input the logic manually into an algorithm
to determine whether files are defective or not. On the other hand, machine learn-
ing algorithms develop the logic and rules implicitly, merely by getting exposed to
enough examples of the data. Another reason is that we have enough data for ma-
chine learning, which is usually one of the main hindrances when using such models.
Looking back at our results, it would have been virtually impossible to define rules
that would be accurately correct. We have false positives and false negatives in our
classifiers; an expected outcome in machine learning. This indicates that even if a
metric was an excellent predictor of the output class, it won’t necessarily mean it is
always correct. This is something that usually holds true in solutions that rely on
traditional algorithms.

38

6. Discussion

6.3 Threats to Validity

This section describes the various threats to validity of the study.

6.3.1 Conclusion Validity

We based this thesis on the finding that ML models that use process metrics out-
perform code metrics from the literature survey findings. If this finding changes,
the collection of metrics will need to be revised and the outcome of the models will
potentially be different.

6.3.2 Internal Validity

The quality of the data is measured in terms of the amount of data available and
the missing values linked to each commit. The life span of the projects and commit
history dictates the amount of data that can be collected. Too small a data set will
lead to insignificant results. To overcome this challenge, similar source repositories
were identified and combined to make a larger, more complete data set. This was
possible as many of the source code repositories stemmed from the same original
code base. These branches were modified to become separate modules in the info-
tainment system.

Even with a larger dataset, missing values will affect the data quality. Missing values
include Jira comments, priority level, type of change (bug/fix/feature), Jira ID’s in
the Git message and change size. This issue can be attributed to team and work
culture. If standards are set by the team, such as writing descriptive commit mes-
sages, linking Jira issue reports to Git commits and making some Jira issue fields
mandatory, then missing data would be less irregular. By analyzing the data, we
found that many Jira issues are not connected to Git commits. The Git integration
was not set up properly in the Jira tool, this was a missed opportunity for the linking
of Git commits to their respective Jira issues.

Another issue was the availability of metrics. Extracting and gathering metric infor-
mation could not be attained from the open source APIs. Therefore these metrics
needed to be excluded. A list of excluded metrics are found in the Appendix. New
metrics were also added that were not originally included due to their availability
from the API and data available. As these data quality issues lead to a imbalanced
data set, 10-fold cross validation is performed to help overcome these threats.

6.3.3 Construct Validity

Through conducting a literature survey and comparing our results to that of similar
studies, we can reduce the threat of construct validity. We also apply the same
evaluation technique across all the ML models.

39

6. Discussion

6.3.4 External Validity
The metrics and features used to train the model were generic in regards to the
dataset and can be extracted from most projects that are integrated with both Git
and Jira. The model works on many different file types and extensions. The best
selected model may have features that are good predictors for certain projects and
domains and therefore may possess internal biases and will need to be retrained for
other Android projects.

6.3.5 Granularity
Datasets from similar studies are split into chunks or releases, as releases are gener-
ally considered to be a better logical unit instead of using a time shifting window.
The rationale is that each release represents its own logical iteration which is a well-
defined granularity. Our data set is organized and divided to match the sprint cycle
of Aptiv.

6.3.6 Ethical Considerations
Throughout this thesis, the privacy of Aptiv’s developers, testers and reviewers was
preserved. Their names were encrypted, so that features related to those employees
would by anonymous.

40

7
Conclusion

7.1 Summary
Our thesis set out to: discover and extract features, find existing work that sup-
ports our approach, create and realize a defect prediction technique and evaluation
methods, and apply it to an industry case study. We were able to achieve this
and developed models that achieved up to 88 % accuracy score and a CE score of
87% of compared to the OAUC, on predicting if a file is clean or defective, which
surpassed similar attempts in the supporting literature studies. Our findings show
that developing a model to perform defect prediction is more reliant on the features
chosen than the type of model. We also discovered that choosing process metrics is
a difficult and iterative process and is dependent on the industry data availability.
The process metrics we created can be generalized and specialized to the industry
case study it is applied to. We also confirmed that features such as code metrics,
utilize ML models such as NB more effectively in terms of accuracy [24, 25, 28].
From our results we can see that models such as RF and DT [27] perform better on
predicting defective features in terms of the F-measure and ROC. The full models
were better performing than the reduced ones, indicating that all the features we
used were important for the classifying the testing data. This is not something that
happens often in ML as overfitting is a common problem; though the same results
were obtained by Arisholm et al. [3]. Another point worth mentioning is that non-
linear models are perhaps a better choice in these types of problems as our top two
classifiers were nonlinear and their difference in performance was not statistically
significant. With a more balanced dataset and more features, maybe the models’
performance could be improved. The work outlined in this thesis can provide a
repeatable and pragmatic approach in developing and building a defect prediction
model in an industry setting. The main contributions are: (i) how to collect process
metrics, (ii) pre-processing and labelling the data using word token matching and
SZZ, (iii) create a defect prediction model using various ML models, (iv) provided
a evaluation method to analyze and validate the results and, (v) deployment of
the best model in a production environment in the software industry each time it
automatically re-trains.

7.2 Future Work
Improving the F-scores of the models would be part of the future work of this
thesis, as well as apply the model to other software repositories within this same

41

7. Conclusion

domain and industry. It would also be interesting to perform the prediction on the
changeset (diff) data using a Neural network. This can be done on projects that
have a longer commit history. The changeset (diff) data could also be added as a
metric to the existing metrics. At the time of the thesis investigation there was
difficulty in attaining all the diff data from Pydriller API. This was a reported bug
and will be fixed in a later patch. Another area that will be interesting is to perform
defective prediction with process metrics on features instead of files. We know that
studies in [28], [25] and [27] concluded that process metrics are more effective for
predicting defects on the file-level, but it is not known how superior they will be
when it comes to predicting defective features.

42

Bibliography

[1] John H. McDonald. Handbook of biological statistics (3rd ed.). Sparky House
Publishing, Baltimore, Maryland. pg 238-246. http://www.biostathandbook.
com/simplelogistic.html, 2014.

[2] Amazon. What is source control? Amazon Web Services. https://aws.
amazon.com/devops/source-control/, 2019. [Online; accessed 19-May-2019].

[3] Erik Arisholm, Lionel C Briand, and Eivind B Johannessen. A systematic and
comprehensive investigation of methods to build and evaluate fault prediction
models. Journal of Systems and Software, 83(1):2–17, 2010.

[4] Atlassian. Jira overview | products, projects and hosting. https://www.
atlassian.com/software/jira/guides/getting-started/overview, 2019.
[Online; accessed 19-May-2019].

[5] Lerina Aversano, Luigi Cerulo, and Concettina Del Grosso. Learning from
bug-introducing changes to prevent fault prone code. In Ninth international
workshop on Principles of software evolution: in conjunction with the 6th
ESEC/FSE joint meeting, pages 19–26. ACM, 2007.

[6] Vangie Beal. mining software repositories - msr.
[7] James S. Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algo-

rithms for hyper-parameter optimization. In J. Shawe-Taylor, R. S. Zemel,
P. L. Bartlett, F. Pereira, and K. Q. Weinberger, editors, Advances in Neural
Information Processing Systems 24, pages 2546–2554. Curran Associates, Inc.,
2011.

[8] Markus Borg, Oscar Svensson, Kristian Berg, and Daniel Hansson. SZZ un-
leashed: An open implementation of the SZZ algorithm - featuring example
usage in a study of just-in-time bug prediction for the jenkins project. CoRR,
abs/1903.01742, 2019.

[9] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas
Mueller, Olivier Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort,
Jaques Grobler, Robert Layton, Jake VanderPlas, Arnaud Joly, Brian Holt,
and Gaël Varoquaux. API design for machine learning software: experiences
from the scikit-learn project, pages 108–122. 2013.

[10] Chatbots Life. How neural networks work. https://chatbotslife.com/
how-neural-networks-work-ff4c7ad371f7, 2019. [Online; accessed 19-May-
2019].

[11] Daniel A. da Costa, Shane McIntosh, Kulesza Uirá Shang, Weiyi, , Roberta
Coelho, and Ahmed E. Hassan. A framework for evaluating the results of the
szz approach for identifying bug-introducing changes. Transactions on Software
Engineering (TSE), 2016.

43

http://www.biostathandbook.com/simplelogistic.html
http://www.biostathandbook.com/simplelogistic.html
https://aws.amazon.com/devops/source-control/
https://aws.amazon.com/devops/source-control/
https://www.atlassian.com/software/jira/guides/getting-started/overview
https://www.atlassian.com/software/jira/guides/getting-started/overview
https://chatbotslife.com/how-neural-networks-work-ff4c7ad371f7
https://chatbotslife.com/how-neural-networks-work-ff4c7ad371f7

Bibliography

[12] Karim O. Elish and Mahmoud O. Elish. Predicting defect-prone software mod-
ules using support vector machines. Journal of Systems and Software, 81(5):649
– 660, 2008. Software Process and Product Measurement.

[13] Harald Gall, Mehdi Jazayeri, and Jacek Krajewski. Cvs release history data
for detecting logical couplings. In Sixth International Workshop on Principles
of Software Evolution, 2003. Proceedings., pages 13–23. IEEE, 2003.

[14] Gerrit. Gerrit’s history. https://www.gerritcodereview.com/about.html,
2019. [Online; accessed 19-May-2019].

[15] Mark A Hall. Correlation-based feature selection of discrete and numeric class
machine learning. 2000.

[16] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An
Introduction to Statistical Learning – with Applications in R, volume 103 of
Springer Texts in Statistics. Springer, New York, 2013.

[17] Jason Brownlee. Supervised and unsupervised machine learning algorithms in
understand machine learning algorithms. https://machinelearningmastery.
com/supervised-and-unsupervised-machine-learning-algorithms/,
2016. [Online; accessed 19-May-2019].

[18] S. Keshav. How to read a paper. SIGCOMM Comput. Commun. Rev., 37(3):83–
84, July 2007.

[19] F. Khomh, S. Vaucher, Y. Guéhéneuc, and H. Sahraoui. A bayesian approach
for the detection of code and design smells. In 2009 Ninth International Con-
ference on Quality Software, pages 305–314, Aug 2009.

[20] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch. Benchmarking classification
models for software defect prediction: A proposed framework and novel findings.
IEEE Transactions on Software Engineering, 34(4):485–496, July 2008.

[21] Andy Liaw and Matthew Wiener. Classification and Regression by randomFor-
est. R News, 2(3):18–22, 2002.

[22] Ilias G. Maglogiannis. Emerging artificial intelligence applications in computer
engineering: real word AI systems with applications in eHealth, HCI, informa-
tion retrieval and pervasive technologies. IOS Press, 2007.

[23] Ruchika Malhotra. A systematic review of machine learning techniques for
software fault prediction. Appl. Soft Comput., 27(C):504–518, February 2015.

[24] Ruchika Malhotra. An empirical framework for defect prediction using machine
learning techniques with android software. Applied Soft Computing, 49:1034–
1050, 2016.

[25] Raimund Moser, Witold Pedrycz, and Giancarlo Succi. A comparative anal-
ysis of the efficiency of change metrics and static code attributes for defect
prediction. In Proceedings of the 30th international conference on Software
engineering, pages 181–190. ACM, 2008.

[26] Python JIRA. Python jira api documentation. https://jira.readthedocs.
io/en/master/api.html, 2019. [Online; accessed 19-May-2019].

[27] Rodrigo Queiroz, Thorsten Berger, and Krzysztof Czarnecki. Towards predict-
ing feature defects in software product lines. In Proceedings of the 7th Inter-
national Workshop on Feature-Oriented Software Development, pages 58–62.
ACM, 2016.

44

https://www.gerritcodereview.com/about.html
https://machinelearningmastery.com/supervised-and-unsupervised-machine-learning-algorithms/
https://machinelearningmastery.com/supervised-and-unsupervised-machine-learning-algorithms/
https://jira.readthedocs.io/en/master/api.html
https://jira.readthedocs.io/en/master/api.html

Bibliography

[28] Foyzur Rahman and Premkumar Devanbu. How, and why, process metrics are
better. In Software Engineering (ICSE), 2013 35th International Conference
on, pages 432–441. IEEE, 2013.

[29] Scott Chacon. Git documentation. https://git-scm.com/, 2019. [Online;
accessed 19-May-2019].

[30] M. Shepperd, D. Bowes, and T. Hall. Researcher bias: The use of machine
learning in software defect prediction. IEEE Transactions on Software Engi-
neering, 40(6):603–616, June 2014.

[31] Skymind. A beginner’s guide to multilayer perceptrons (mlp). https://
skymind.ai/wiki/multilayer-perceptron, 2019. [Online; accessed 19-May-
2019].

[32] Davide Spadini, Maurício Aniche, and Alberto Bacchelli. PyDriller: Python
Framework for Mining Software Repositories. 2018.

[33] Steven Symes. What is a car infotainment system? we explain that big touch-
screen in your car, Apr 2019.

[34] Techopedia. What is a multilayer perceptron (mlp)? - defini-
tion from techopedia. https://www.techopedia.com/definition/20879/
multilayer-perceptron-mlp, 2019. [Online; accessed 19-May-2019].

[35] Theano Development Team. Multilayer perceptron. http://deeplearning.
net/tutorial/mlp.html, 2015. [Online; accessed 8-June-2019].

[36] Wikipedia contributors. Adaboost — Wikipedia, the free encyclopedia. https:
//en.wikipedia.org/wiki/Logistic_regression, 2019. [Online; accessed
19-May-2019].

[37] Wikipedia contributors. Adaboost — Wikipedia, the free encyclo-
pedia. https://en.wikipedia.org/w/index.php?title=AdaBoost&oldid=
889372345, 2019. [Online; accessed 19-May-2019].

[38] C. C. Williams and J. K. Hollingsworth. Automatic mining of source code
repositories to improve bug finding techniques. IEEE Transactions on Software
Engineering, 31(6):466–480, June 2005.

[39] Thomas Zimmermann, Rahul Premraj, and Andreas Zeller. Predicting defects
for eclipse. In Predictor Models in Software Engineering, 2007. PROMISE’07:
ICSE Workshops 2007. International Workshop on, pages 9–9. IEEE, 2007.

45

https://git-scm.com/
https://skymind.ai/wiki/multilayer-perceptron
https://skymind.ai/wiki/multilayer-perceptron
https://www.techopedia.com/definition/20879/multilayer-perceptron-mlp
https://www.techopedia.com/definition/20879/multilayer-perceptron-mlp
http://deeplearning.net/tutorial/mlp.html
http://deeplearning.net/tutorial/mlp.html
https://en.wikipedia.org/wiki/Logistic_regression
https://en.wikipedia.org/wiki/Logistic_regression
https://en.wikipedia.org/w/index.php?title=AdaBoost&oldid=889372345
https://en.wikipedia.org/w/index.php?title=AdaBoost&oldid=889372345

Bibliography

46

A
Appendix 1

Metric Description
LOC Lines of code
Distinct Developer
Count Cumulative

Cumulative number of distinct developers that worked on the file
from 1st release to current

Major Contributor to
file Highest contributor (percentage of lines per file)

Minor Contributor
Count Lowest contributor (percentage of lines per file)

Changed Code Scatter-
ing

Number of related files that changed with this one (logically cou-
pled)

Neighbor’s Active De-
veloper Count

Number of developers that co-committed the file at the same time
in the current release (not distinct)

Neighbor’s Distinct
Developer Count

Number of distinct developers that worked on the file per release
that co-committed at the same time.

Neighbor’s Commit
Count

Number of times a file was committed within a release by a co-
committer.

Neighbor’s Change
Scattering

Number of related files that changed with this one by the co-
committer

High priority level
commits The number commits grouped by high priority level.

Medium priority level
commits The number commits grouped by medium priority level.

Low priority level com-
mits The number commits grouped by low priority level.

Number of Change Re-
quests The number of change requests in this release.

Total number of tests Number of system tests/unit tests/ failures for each change request
in the release

Table A.1: Excluded Metrics

I

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Problem
	Goal
	Outline

	Theory
	Related work
	Repository Mining
	Source Control Management
	Git and Gerrit
	Jira

	Metrics
	Supervised Learning
	Logistic Regression
	Multi-Layer Perceptron
	Gaussian Naive Bayes
	Random Forest Classifier

	Evaluation
	Confusion Matrix Measures
	Cost Effectiveness

	Methodology
	Literature Survey
	Data Gathering
	Application Programming Interface
	Metric Collection
	Data Cleaning
	Data Labelling
	Data Loading and Staging

	Building the models
	Pre-processing Data
	Types of Models Used

	Evaluation
	Model of Choice
	Limitations

	Integration into Production

	Literature Survey
	Data Gathering and Preparation
	Metrics
	Learning Models
	Evaluation Criteria
	Validity

	Results
	Data Set
	Metric Results
	Models
	Cost Effectiveness
	Confusion Matrix Measures

	Discussion
	Feature Importance
	Machine Learning vs Traditional Algorithms
	Threats to Validity
	Conclusion Validity
	Internal Validity
	Construct Validity
	External Validity
	Granularity
	Ethical Considerations

	Conclusion
	Summary
	Future Work

	Bibliography
	Appendix 1

