i CHALMERS |

UNIVERSITY OF TECHNOLOGY

Searching For Relevant Features To
Classify Crew Pairing Problems

Challenges of Applying Machine Learning Methods

Master’s thesis in Applied Data Science

Jin GUO

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG

Gothenburg, Sweden 2019

MASTER’S THESIS 2019

Searching For Relevant Features To
Classify Crew Pairing Problems

Challenges of Applying Machine Learning Methods

Jin GUO

UNIVERSITY OF
GOTHENBURG

CHALMERS

UNIVERSITY OF TECHNOLOGY

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2019

Searching For Relevant Features To Classify Crew Pairing Problems
Challenges of Applying Machine Learning Methods
Jin GUO

© Jin GUO, 2019.

Supervisor: Dag Wedelin, Department of Computer Science and Engineering
Advisor: Bjorn Thalén, Jeppesen, a Boeing Company
Examiner: Richard Johansson, Department of Computer Science and Engineering

Master’s Thesis 2019

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg

Telephone +46 31 772 1000

Typeset in BTEX
Gothenburg, Sweden 2019

iv

Abstract

Machine learning (ML) is an emerging technology. Jeppesen, a leader of com-
mercial optimization products in the airline industry, has started exploring ML
methods to facilitate optimization algorithm development. This thesis investigates
one of the company’s products, the crew pairing optimizer. The optimizer can use
different algorithms to solve crew pairing problems, and the thesis looks into what
features of a pairing problem influence algorithm selection, i.e. the best choice of
algorithm for a problem, based on the performance of different algorithms. With
little prior knowledge about features of pairing problems and their relation with al-
gorithm performance, using ML, the thesis first generates over twenty features, and
then uses different feature selection methods to find the most informative feature
subsets. Each feature subset is then fed into multiple classifiers to test its robust-
ness. Besides ML, the thesis also includes statistical analysis as a comparison. The
thesis has some interesting findings, including a subset of features that might influ-
ence algorithm performance. However, none of the methods used can find a feature
subset to accurately classify the pairing problems by the best performing algorithm.
The thesis discusses possible reasons for the results. It also lists what to consider
before applying ML to real-world problems.

Keywords: Machine learning, airline crew pairing, feature selection, algorithm
selection, classification.

Acknowledgements

I would first like to thank my thesis supervisor, Prof. Dag Wedelin of the
Department of Computer Science and Engineering at Chalmers University of Tech-
nology. Dag is the most brilliant teacher I have ever met, and his instructions have
always inspired me to enter the next level.

I am thankful to the experts at Jeppesen. My advisor Bjorn Thalén collected
the data, shared his domain knowledge with me, offered me great help at the feature
extraction stage, and answered countless questions from me. Special thanks to Erik
Berglund for his valuable suggestions on the project. I would also like to thank
Fredrik Altenstedt, Mattias Gronkvist and Joakim Karlsson for their kind help.

I must express my gratitude to all the teachers and classmates on my mas-
ter program, who have continuously helped and inspired me along the way. I am
forever thankful to our program director, PhD Richard Johansson. Without his
encouragement and help, I would not have embarked upon a career in Data Science.

Finally, T would like to thank my family and friends. Special thanks to my
best friend of ten years, PhD Tianyu, Jiang, for being a ray of sunshine during my
undergraduate and graduate studies. My deep gratitude to my partner, Fan Gao,
for his faith in me. His support has given me courage to overcome any difficulty.

Jin Guo, Gothenburg, October 2019

vii

Contents

List of Figures
List of Tables

1 Introduction
1.1 Scope of the project
1.2 Challenges

2 Background and Related Work
2.1 The Pairing Problem
2.2 Performance Based Algorithm Selection

3 Theory: Classification and Feature Selection
3.1 Classification Modeling,
3.1.1 Logistic regression L.
3.1.2 Classification tree
3.1.3 K nearest neighbors
3.14 Treeensembles
3.2 Feature Selection
321 Filter.
3.22 Wrapper
323 Embedded
3.3 Low-Dimensional Representation of Data
3.4 Evaluation of Selected Feature Subsets

4 Data: Collection and Exploration
4.1 Input Features.
4.1.1 Features extracted from graphs
4.1.2 Static features from meta data
4.2 The Response
4.2.1 The classes: three algorithms
4.2.2 Labeling method
4.3 Data Collection Process,
4.4 Data Exploration

5 Methods: Machine Learning and Statistical Analysis
5.1 Statistical Analysis

xi

xiii

19
19
20
22
23
23
23
25
26

31
35

ix

Contents

6 Results
6.1 Machine Learning Analysis
6.1.1 Feature selection
6.1.2 Performance of classifiers
6.1.3 The best feature subset
6.2 Statistical Analysis oo
7 Conclusion and Discussion
7.1 Result Analysis
7.2 Findings

7.3 Future work
Bibliography

A Appendix 1

37
37
37
40
41
43

49
49
50
ol

53

3.1
3.2

4.1
4.2
4.3
4.4
4.5

5.1

6.1

6.2
6.3

6.4
6.5
6.6

6.7
6.8

6.9

Al
A2

A3

A4

List of Figures

Binary logistic regressiono oo 7
A possible classification tree for the toy data of ice cream sales 10
The DAG representation of a connection table example 20
Pairwise correlations of data collected from OAG 26
Histogram of features 27
Boxplot of features 28
Scatter plots of the first two and three PCA components, computed

from all features of all observations 28
Visualization of the split and use of data 34
CV accuracies for all methods with varying number of features to be

selected L 38
Confusion matrices of CV predictions 39
Visualization of the number of times the features are selected by the

ten folds 39
Confusion matrices of the test set predictions 41
Feature importance ranked by the RF model 42
Scatter plots of the first two and three PCA components, computed

from selected features of all observations 43
CV accuracies for Logistic Lasso regression with varying o 44
Visualization of the number of times the features are selected by the

ten folds using LLR 45
Lars path of Logistic Lasso Regression 47
Pair plots of features I
Accumulative variance explained by the PCA components using all

observations and all features IT
Accumulative variance explained by the PCA components using all

observations and selected subset of features II
Visualization of the single decision tree model I

xi

List of Figures

xii

3.1
3.2

4.1

5.1
5.2

6.1
6.2

6.3

6.4
6.5

List of Tables

Toy data of daily ice cream sales of a supermarket
Toy data of ice cream sales

Class distribution

Analysis pipeline using machine learning methods
Feature selection methods used in ML analysis

Model accuracies on the test set
Comparing feature importance indicated by RF feature importance

and CV feature selection
Numbers of features selected by Logistic Lasso Regression with vary-

ing alpha e
Sum of the numbers of times a feature is selected with varying alpha
Logistic Lasso Regression Results

xiii

List of Tables

Xiv

1

Introduction

The crew pairing optimizer is one of Jeppesen’s main products. It is an ad-
vanced and complicated system aiming to solve the pairing problem: optimizing
schedules of flight duties for crew members. The optimizer can use different op-
timization algorithms to solve a pairing problem. Depending on the features of a
pairing problem, such as characteristics of the considered fleet, work-time rules of
crew members etc., the performance of different optimization algorithms might dif-
fer, influencing what is the best choice of algorithm, i.e. which algorithm should
be selected for the problem. Knowledge about what features of a pairing problem
impact on algorithm selection can therefore help with understandings of the pairing
problem, as well as the future development of the pairing optimizer. However, the
procedures of the pairing optimizer are computationally heavy. Due to the complex-
ity of the optimizer, we cannot easily observe what features of a pairing problem
influence the performance of different algorithms. On top of this, the relation be-
tween problem features and algorithm performance is usually quite complex. As an
initial trial to model such a relation, this thesis project attempts to find the relevant
features.

Three different algorithms are considered in this project. Therefore, the thesis
attempts to extract features and relates them to the three algorithms. The goal of
this thesis is thus to find the features that can predict which of the three algorithms
will perform the best for a pairing problem. In other words, the project searches for
relevant features to classify crew pairing problems by the best performing algorithm.

The project mainly uses Machine Learning (ML) to find such features. ML is
an emerging technology, and people from the field of mathematical optimization,
including experts at Jeppesen, are experimenting with ML methods to facilitate the
development of optimization algorithms.

1.1 Scope of the project

This project collects data of pairing problems, extracts candidate features from
the data, labels the problems by the best performing algorithms, visualizes the data
from different aspects, selects the best subsets of features with different feature se-

1. Introduction

lection methods, builds different models using the selected feature subsets to classify
the data, and finally evaluates model performance. This thesis does not aim to build
a system to suggest which algorithm is the best to use for a pairing problem. As a
first step toward that direction, and more importantly, for the purpose of improved
understanding, the thesis purely attempts to find the relevant features that can
classify the pairing problems.

1.2 Challenges

The first challenge is to collect a sufficient data set. The pairing problems are
complex and large, and it will take a significant amount of time to run multiple
optimization algorithms over hundreds of cases. Besides execution time of the al-
gorithms, data accessibility also restricts the scope of our data set. Historical flight
schedules are not freely accessible.

The second challenge is that the definition of ’best performing algorithm’ is
open to discussion. The evaluation of algorithm performance involves both execution
time and the quality of the algorithm’s final solution. Moreover, the performance
difference of different algorithms on a case may be negligible.

The third challenge is to find the relevant features, as well as where to find these
features. The pairing problem is a complex problem, and the pairing optimizer is a
complicated system. Algorithm performance might be influenced by subtle details of
a pairing problem and vary in unpredictable ways. Therefore, there is no guarantee
that the considered features can differentiate the cases.

The last and fundamental challenge is that it is not certain whether there
exists a relation between any measurable features of pairing problems and algorithm
performance differences. Combined with the above challenges, it is an open question
whether we can achieve our goal by approaching it as a classification task.

Although the project has the above mentioned challenges, it is still worth an
attempt. If we manage to find some relevant features that relate to algorithm per-
formance difference, it will provide the company with some potential directions for
future optimization algorithm development. Even if we cannot find any significantly
relevant feature with our approach, we test the feasibility of the idea. As Jeppesen
is at an early stage of integrating ML into algorithm development, the collected data
and findings from the data can serve as a start point for future experiments.

2

Background and Related Work

2.1 The Pairing Problem

Each airline company has a set of flights to be operated during a time period
[6], and has one or several bases where its crews are located. The term pairing refers
to a sequence of flights, arranged ’for an unspecified crew member starting and
ending at the same crew base’ [1]. The pairing problem is the problem of finding the
optimal set of pairings, so that every flight is covered by a group of crew members
required by the assigned fleet of the flight, and that all legal and labor union rules
are followed, while minimizing the total costs. These factors are mathematically
modeled into a cost function, and the optimizer works to minimize the total cost of
the cost function. Each individual flight in a pairing is called a leg. Ideally, crew
members should be working on all the legs. When a leg transports a crew member
as a passenger, it is called a ’"deadhead’. We hope to avoid deadheads, but sometimes
they are necessary.

The crew pairing problem is a hard optimization problem. To name some
of the difficulties, firstly, pairing problems often have very complex constraints,
covering both legal rules and collective bargaining agreements. Secondly, solving
the pairing problem usually means finding the best set of pairings from a large
number of possible pairings, i.e. a large solution space that is heavily constrained.

2.2 Performance Based Algorithm Selection

For optimization algorithms, performance testing is ‘notoriously difficult’ [28].
There is still a strong lack of understanding of the relation between instance char-
acteristics and algorithm performance, as well as a lack of objective measurement
of algorithm performance [34].

The common approach for algorithm performance testing has been to test and
compare different algorithms on a few well-studied test instances in the benchmark
libraries. Benchmark cases for performance testing are collected in a convenient way,

3

2. Background and Related Work

which often do not well represent the set of real problems solved by the algorithm
[15]. As aresult, algorithms are tuned to perform well on these few test cases, and the
quality of algorithm assessment purely depends on how diverse and representative
the test cases are. Researchers and readers are left with limited understanding of
how the algorithms will perform outside the benchmark libraries [28].

In contrast with the likely biased performance analysis of the common ap-
proach, researchers have proposed different approaches to select the best performing
algorithm for an optimization problem. Hooker (1995) suggests matching problem
characteristics, i.e. problem features, to algorithm performance by controlled ex-
periments with the characteristics. The method generates problem instances by
tuning only one characteristic while fixing all others each time. For instance, one
may generate a series of instances of sizes nq, no, ..., n,, while fixing all other prob-
lem characteristics, and then repeat the process with another characteristic. After
generating data in this controlled way, one compares algorithm performance on the
instances. Similarly, Gomes and Selman (1997) also generated instances in a con-
trolled manner by varying the problem characteristics, including inherent problem
structure and computational difficulty. However, these methods require researchers
to know what features to control with prior to data generation, which is not feasible
for problems where one only has limited knowledge.

Rice (1976) proposed a different procedure for algorithm selection, which has
four main components. They include collecting a set of instances of an optimization
problem, a set of algorithms that can be used to solve the problem, measurable char-
acteristics of the instances, and algorithm performance over the different instances.
Following Rice’s idea, Smith-Miles et al. (2014) developed a methodology to objec-
tively assess and compare the performance of different optimization algorithms. The
methodology involves creating a broad instance space, extracting features, predict-
ing algorithm performance and analyzing algorithmic power. They approached the
task as a classification problem, where features of an instance are matched to the
best-performing algorithm on that case. Using this methodology, [29] successfully
predicts the best performing algorithm for job shop scheduling problems, [27] for
quadratic assignment, [30] for timetabling, and [33] [32] for traveling salesman.

Together with other authors, Rice acknowledged in his later work that 'the way
problem features affect methods is complex and algorithm selection might depend in
an unstable way on the features actually used’ [25]. Moreover, very little literature
focuses on the topic of how to devise a set of potentially interesting features [31].
Nevertheless, machine learning has helped with finding measurable features that
can indicate algorithm performance for many optimization problems ([11, 12, 18,
27, 29, 30, 33, 32]). All of these projects analyze well-known academic optimization
problems. This thesis intends to apply and adapt the methodology of Smith-Miles
et al. (2014) to the real life optimization problem of crew pairing.

3

Theory: Classification and Feature
Selection

This chapter covers theory about classification, feature selection, and evaluation
of selected feature subsets. For classification, we discuss both the concept in general
and the considered classifiers. For feature selection, we define and explain three kinds
of feature selection methods used in the project. A short discussion of Principal
Component Analysis (PCA) is also included, as the method is used to visualize our
data. We do not include theory about pairing optimization algorithms, as the thesis
does not look inside the pairing optimizer. Readers do not need details of crew
pairing or the pairing optimization algorithms to understand the contents of this
thesis.

3.1 Classification Modeling

The technical term for classifying observations using labeled inputs is called
classification. Classification models are also called classifiers. Some possible ex-
amples of classification problems include using labeled car and non-car pictures to
predict whether a new picture contains a car, or using historical payment records to
predict whether a customer will pay back a debt.

Classification is a kind of supervised learning problem, as all inputs in the
data have known outputs, and outputs are used to supervise the learning process
of models. Supervised learning learns to model the relation between the input and
the output. Inputs are also called features, independent variables or predictors
interchangeably, while outputs are often called responses or the dependent variable.

Besides classification, the other kind of supervised learning is regression. The
difference between the two lies in the type of response. A regression problem has a
quantitative, usually a continuous variable as response. For example, if we predict
how many boxes of ice cream will be sold in a supermarket tomorrow using historical
sales data, or to predict tomorrow’s stock price using historical stock market data,
it is a regression problem. In contrast, a classification problem has a categorical

3. Theory: Classification and Feature Selection

response. In other words, the possible values of the response are discrete and can
be completely enumerated.

The type of a classifier determines the kind of input and output relation that
can be learned. As we do not have prior knowledge about our data, it is hard
to choose a proper classifier directly. Therefore, we implement multiple classifiers.
The remaining part of section 3.1 discusses classification models of Logistic Regres-
sion, classification tree, K Nearest Neighbors (KNN), and tree ensembles including
Random Forest (RF), Extra Random Trees (ERT) and Boosted Trees. Logistic re-
gression and classification tree are discussed in more detail. Logistic regression is a
basic classification model. Classification tree is a popular model as it is intuitive. It
is also the basis for tree ensembles.

3.1.1 Logistic regression

We use the two-class (binary) scenario to explain logistic regression. Binary
classification means there are only two possible categories in the responses. The
multinomial logistic regression for multiple-class logistic regression is a straightfor-
ward extension of the binary one. See [16] for information about multinomial logistic
regression.

The logistic regression model adapts the linear regression model to classification
problems. Therefore, as a preparation to understand logistic regression, we explain
linear regression first. The linear regression model is one of the most basic and
classic model for supervised learning problems. In a linear regression model, you
assign weights w to the features of inputs X, and predict the responses y using the
sums of the weighted features:

y=Xw (3.1)

Normally, we also include a constant term (intercept) in a linear regression model.
We include a constant by adding a constant feature to X, taking the value one for
all observations X; in X. An example of a linear regression model can be built
based on the toy data in Table 3.1 (ignoring the last row of Table 3.1 for now).
We use temperature to predict how many boxes of ice cream are sold in a day
in a supermarket. A constant is also included in the model. A possible relation
between X; and y; can be y; = X,w = 20 x constant + 10 x temperature =
20 + 10 x temperature. Therefore, if tomorrow’s temperature forecast is 25 °C', our
prediction for the number of boxes of ice cream that will be sold tomorrow in the
supermarket is 20 + 10 x 25 = 270.

Sometimes we do not want an exact sales prediction, but rather the answer
to whether we should worry about not having enough stock for today’s sales. For
instance, the supermarket has a normal daily stock level of 250 boxes of ice cream,
and is interested in knowing how likely that the normal stock is not enough for the
potential sales in a day, which can be measured by the probability of (y > 250) =
True, i.e. by p(y > 250). For such cases, logistic regression is a suitable choice.

6

3. Theory: Classification and Feature Selection

observation: i 1 2 3

Featurey: constant 1 1 1 1 1 1
Feature;: temperature (°C') | 0 10 20 23 30 40
y: boxes of ice cream 20 120 220 250 320 420
y > 250 False False False False True True

Table 3.1: Toy data of daily ice cream sales of a supermarket

Similar to linear regression, logistic regression uses linear combinations of the input
features to predict the responses. However, logistic regression does not directly
return the predicted X;w. Instead, it maps X;w to p(X;w > threshold), i.e. the
probability of X;w larger than a threshold using a link function f:

p(X;w > threshold) = f(X,;w) (3.2)

With regard to our ice cream example, a logistic regression model maps X;w to
p(X;w > threshold), and uses p(X,w > threshold) as the estimation for p(y; >
250), the probability of not having enough stock of ice cream for day i. With
increasing daily sales prediction, the probability of not having enough stock should
also increase.

Logistic Regression

TPy =11x) = 2o

yi=1

Yo

5
Xiw

Figure 3.1: Binary logistic regression

So what kind of link function f should be chosen? Probabilities can only range
from zero to one, while linear combination of input features can have a much wider
range, as shown in our ice cream example. We need a one-to one mapping of
all points on the straight line X;w to a curve that lies within the (0,1) range,
something like the mapping of the blue line to the green curve shown in Figure 3.1,
where increasing X;w corresponds to increasing p(X;w > threshold). The z-axis in
Figure 3.1 represents X;w. There are two y-axis. yy corresponds to the blue straight
line, while y; corresponds to the green curve. The blue line shows the changes of X;w

7

3. Theory: Classification and Feature Selection

against the z-axis. The green curve represents the change of p(X;w > threshold)
against the z-axis. The larger the X;w, the closer p(X;w > threshold) is to one.

Now that we have the probabilities, how do we classify observations? How to
answer the question of whether we should or should not worry about not having
enough stock? For binary classification, logistic regression assigns the i*" obser-
vation to the class with higher probability. As the stock is either enough or not,
we have two possible classes. Therefore, if p(X;w > threshold) is higher than
1/2 = 0.5, p(X;w > threshold) will be larger than p(X;w < threshold), meaning
p(y > 250) > p(y < 250). In this case we think the stock is not enough for the
day. Otherwise our prediction is the stock is enough. Due to the nature of logistic
regression’s link function, the threshold of X;w = 0 corresponds to the p = 0.5
division point of an observation being either of the classes. If the 250 daily stock
level is changed to 270, we can easily mitigate it by adjusting the constant term in
w without changing the threshold of X;w = 0. As shown in Figure 3.1, divided by
the orange line in the middle (the X;w = 0 line), all observations with X;w > 0
has a larger than 0.5 probability of going over the stock level, and can be classified
as the 'not enough stock’ class.

We now explain logistic regression in more technical terms. It uses the logit
as its link function. The logit (log odds) of the response taking the value one is
modeled by the following function:

log (py: = 1|1 X;)
1 —p(y: = 11X5)

) = wo + w1 T + -+ + wpxs, = Xjw (3.3)

where X; = (1,21 -+ ,x,) denotes the p+ 1 features, including the constant, of the
ih input in the data. y; denotes the i output. w = (wp---,w,) are the p + 1
feature weights. p(y; = 1|X;) represents the probability of the i’ observation being
a ’class one’ object given X, while 1 — p(y; = 1|X;) represents the probability of
the ¥ observation being a non-class-one object given X;. As we are interested in
p(y; = 1|1X;), we transform equation (3.3) by using X;w to represent p(y; = 1|X;),
and we get function (3.4). Function (3.4) is equivalent to the sigmoid function:

eWotwiZiit+wpZip 1

p(yi = 1|Xl) = 1 + ewotwizii++wptip - 1 4 e Xiw (34)

It is clear that the value range of function (3.4) is (0,1), which is the expected range
of a probability. Using the y; € {—1, 1} notation as class labels, and making use of
the relation that p(y = 1|X) +p(y = —1|X) = 1, , we can see it always holds that:

1

p (il Xi) = (=) (3.5)

Now we can use X;w to calculate the probability of seeing y; being either of the
two classes given Xj;.

8

3. Theory: Classification and Feature Selection

We refer to the ice cream sales example again to show you how logistic re-
gression uses feature weights w to classify a case. The 'not enough stock of ice
cream’ is 'class one’. Looking at the data in Table 3.1, we can see that when
temperature > 23 °C, the boxes of ice cream sold in a day exceed the normal stock
level of 250 boxes. When temperature < 23 °C, the normal stock is enough to cover
the daily sales. Therefore, X;w = —230 4 10 x temperature can help us with the
classification. When temperature > 23 °C, X;w = —230 + 10 x temperature > 0,
and p (y; = 1]X;) > 0.5. It means when the temperature is higher than 23 °C, the
probability of not having enough stock is higher than 0.5, and the logistic regression
model will predict the observation as a ’class one’ object.

So how do we train a logistic regression model to get the weights? Assuming
the independence of observations, the model formulates the maximum likelihood es-
timation by multiplying all the p (v;|X;)’s. The set of wg, wy, ..., w, that maximizes
the likelihood of observing such sequence of y;’s given X;’s is the set of parameters
we are looking for. Finding the w that maximizes the likelihood is equivalent to
finding the w that minimizes the negative of the likelihood. Therefore, the loss
function of logistic regression, i.e. the negative log likelihood is formulated as:

N
loss(y, w, X) =) _log (1 + e_yi(X"“’)> (3.6)

We train an LR model by finding the set of weights w that minimizes the loss
function (3.4).

3.1.2 Classification tree

The Classification Tree is a simple and easy to interpret model. To show you
the basic idea of a tree model, we revisit the ice cream sales example. It is likely
that the sales of ice cream is also influenced by whether the day is a holiday. On a
holiday, the supermarket probably can sell as much ice cream as on a non-holiday
at lower temperature. The updated toy data is shown in Table 3.2. Unlike logistic
regression, we normally do not include a constant term in a tree model. A possible
classification tree for this data is shown in Figure 3.2. The tree keeps asking relevant
yes or no questions, so that it becomes more and more certain how we should label
an object. By firstly asking the question of whether the day is a holiday, we can
divide the whole data set into two subsets. The two subsets’ division temperature
of having enough or not enough stock of ice cream differs. If the day is a holiday, we
ask another question of whether the temperature is higher than certain 20°C'". If the
answer is Yes, the normal daily stock of 250 boxes is not enough for the potential
sales of the day. Otherwise, our prediction is enough. For the other subset, where
the day is not a holiday, we ask the follow-up question of whether the temperature
is higher than 23 °C'. Again, if the answer is yes, we think the stock is not enough,
otherwise enough. As we can observe from this example, a classification tree works
well when the features interact with each other.

3. Theory: Classification and Feature Selection

observation: 1 1 2 3 4 B! 6 7
Featureg: holiday True True True False False False False
Feature;y: temperature (°C') | 7 21 24 21 22 225 24
y: boxes of ice cream 120 260 290 230 240 245 260
y > 250 False True True False False False True

Table 3.2: Toy data of ice cream sales

Holiday?
Yi7 de
Temperature > 207 Temperature > 237
Yus/ \No ch/ \No
Not enough Enough Not enough Enough

Figure 3.2: A possible classification tree for the toy data of ice cream sales

In general, a classification tree is built by asking a sequence of yes or no (binary)
questions. More theoretically speaking, a tree segments the original data set into
a number of small distinct non-overlapping subsets by recursively asking a series
of binary questions. In the end, all observations are grouped into one of the sub-
sets. Often, we have observations from more than one classes in the non-overlapping
subsets. A tree classifies an observation by the majority class of the training ob-
servations in the subset the observation belongs, so every observation in the same
subset gets the same prediction.

What questions should we ask? For a question like 'If temperature > 20°, how
do we come up with the number 207 It is not hard to see that ideally we want to
end up with pure subsets, where each subset only contains one class. Therefore, we
can rely on a method that measures purity of data to decide where to split the data.
Gini index is one of such methods, and is defined as:

G =2 Dok (1= Druk) (3.7)

k=1

where p,,, represents the proportion of class k training observations in subset m.
The Gini index evaluates to zero when p,,, is zero or one. It means subset m
either only contains class k object, or contains no class k£ object, indicating purity
of the subset. We choose the feature and cutpoint that lead to the greatest possible
reduction on Gini score.

Let us revisit the example in Table 3.2 to see how Gini index actually works.

10

3. Theory: Classification and Feature Selection

Originally, the data has two classes, and there is only one set, so m = 1 and k €
[—1,1]. The probability of an observation being class -1, i.e. sales not exceeding
stock, is P11 = %. The probability of an observation being class 1, i.e. sales
exceeding stock, is p11 = % So the Gini score of the original data set is Gy =
% x (1— %) + % X (1 — %) = i—g. At the root, if we split by "holiday’, the holiday

subset has 3 observations, and its Gini is % x (1— %) + % X (1 — %) = g. The 'non-
holiday” subset has four observations, and its Gini is 2 x (1 —2) + } x (1 - i) =&,
The Gini score of the whole data set after the 'holiday’ split, i.e. the weighted Gini

score of the two subsets, is G; = 2 x % + 8 x4 = 17 Ty contrast, if we split by

9 16 7 = 12
‘temperature > 20’ at the root, the ’hot’ subset has six observations, and its Gini
score is % x (1— %) +% X (1 — %) = 1. The 'not hot’ subset has only one observation,
so its Gini score is 0. The Gini score of the whole data set after the 'temperature>20’

split, i.e. the weighted Gini score of the two subsets, is G; = 2 x 8 +0x 1 =18

g < %, so we achieve a larger reduction on the Gini of the Wh021€ d7ata by S;)httiifg
with ’holiday’. Therefore, "holiday’ is chosen as the first feature to split on by the
tree. After the splits by temperature in both the ’holiday’ and 'non-holiday’ subsets,
we end up with pure leaves. The final Gini score of the whole data is 0. Observe

that the Gini decreases along the way.

From the explanations above, we can see that a classification tree can directly
handle both binary and multiple-class problems, and take in both continuous and
categorical features. It works well with interactions between features. However, a
single tree is notoriously unstable: small changes in data can lead to a very different
model [37]. In other words, a single tree tends to over-fit to the training data easily.
If we keep asking questions, it is sometimes possible that we end up with a large
tree with all final subsets containing only one observation. In this case we will have
zero error rate on the training set, but its prediction power would be quite low, as
the model is too adapted to the training set and cannot generate well to new data.
One can prune this big tree, for example, to restrict the maximum depth of a tree,
or the minimum number of samples in a subset. Although the pruned simple tree
can lead to better prediction performance on future data than the big tree , it is
at the cost of less precise modeling. In general, a single tree’s predictive accuracy
is lower than other classic approaches [16]. We still include the tree model as it is
an easy and interpretable model. To overcome the non-robustness of a single tree,
models that include a collection of trees are built, and will be discussed in section
3.1.4.

3.1.3 K nearest neighbors

The K nearest neighbors (KNN) is a non-parametric method. Unlike parametric
methods, such as the previously discussed models, non-parametric methods do not
make any explicit assumptions about the underlying model f in Y = f(X). This
method assumes that observations close to each other belong to the same class. The
model classifies an unclassified test case X, by looking at its K nearest neighbors,

11

3. Theory: Classification and Feature Selection

and the number K needs to be defined before training the model. In other words,
KNN assigns X,,ey to the majority class of the K labeled training observations
nearest to X ¢ Which training observations are the K nearest neighbors of X,,eq,
is determined by their distances to X,,.,. The distance between X,,¢,, and a training
observation Xj; is defined using the Euclidean distance as

dnew,i = \/(xnew,l - Xi,1)2 + (Inew,Z - Xi,2)2 + ot (xnew,p - Xi,p)2 (38)

where Zpey 1 Tnewp denotes the p features of Xy, and X, 1 - - - X, p denotes the
p features of the " training observation X;. Clearly, if the magnitude of some
features are much larger than others, they will dominate dye, ;. Therefore, to let
each feature carry equal importance in the classifier, it is important to standardize
data before training a KNN.

One challenge of using KNN is to find the best K, as the number of K directly
influences the size of 'neighborhood’ and predictions of the model. Setting K to
be 1, one can build a super flexible classifier with 100% accuracy on the training
data, but it over-fits to the training data and is unlikely to perform well on the test
set. However, with a very large K, the KNN loses its advantage of flexibility and is
unlikely to perform well.

A method to lesser the importance of setting the best K is to weight the neigh-
bors. The closer a neighbor is to the unclassified case X,,¢, the more important it
is to the classification prediction of X, thus the higher weight it gets. One of the
possible weighting functions is:

w; = —, dj 7é 0 (39)

where w; is the weight given to the j™ nearest neighbor of X, and d; is the
distance between X e, and its j* nearest neighbor. The weighted KNN has similar
performance compared to the simple majority KNN when sample size is large. When
sample size is small, however, weighted KNN might perform better than the other
one. For more details bout KNN and weighted KNN, see [3] and [5]

Another challenge of using KNN is its sensitivity to the dimensionality of data.
As it is a distance-based method, with the increase of the dimensions, the sum of
squared distances of all dimensions becomes similar. As a result, the difference of
the distances of a query observation to its nearest and farthest data points becomes
negligible. It is not recommended to use the method when the number of obser-
vations is not comparable to the exponential of the number of dimensions, or the
dimensionality is bigger than about a dozen [2]. Nonetheless, the sensitivity of KNN
to dimensionality actually helps us to check if the selected subset of features is infor-
mative, as the ‘nearest neighbors’ are still useful and meaningful when the implicit
underlying dimensionality of the data is low.

12

3. Theory: Classification and Feature Selection

3.1.4 Tree ensembles

Instead of modeling by a single tree, tree ensembles use multiple trees, and
each tree is called a base learner. These base learners’ structures are usually very
simple and shallow, but together they can form a robust model. These base learners
form a committee of predictors, whose weighted prediction becomes the output of
the ensemble model. As for the case of classification, the weighted prediction is the
majority vote of the base learners. Tree ensembles output feature importance scores
as an indicator of how useful each feature is in building all the base learners. For
each feature, its importance is calculated as the average of every base learner’s Gini
index (3.7) decrease through split(s) over this feature.

Various tree ensembles differ in how they build the base learners.
Random Forest

When building a base learner for a Random Forest (RF), we randomly sample
with replacement n;.q;, observations from the training set, where n;.q;, stands for
the number of observations in the training set. The difference of an RF base learner
and the classification tree we introduced in section 3.1.2 is that when choosing the
best feature to split on, RF base learner is only allowed to consider a random subset
of all features. A subset of m features is randomly sampled at each split from the
full set of p features, and typically we set m =~ /p [16]. The randomness added in
RF helps to reduce estimation variances of the model. RF is parallel ensembles, as
the learning of any base learner is independent from others.

Extra Random Trees

Compared to RF, Extra Random Trees (ERT) adds extra randomness to the
tree ensembles. At each split, not only the candidate feature subset to be considered,
but also the cut-point of the chosen feature is randomly picked [7]. The design is
motivated by the observations that both the chosen feature at a particular node, and
the chosen cut-point of the feature depend strongly on the specific learning sample
[8]. Same as RF, ERT is parallel ensembles, and uses added randomness to prevent
overfitting to the training samples.

Boosted Trees

In contrast with RF and ERT, boosted tress are sequential ensembles. The
idea is to let a new base learner find information not yet learned by its predecessors.
There are different implementations of boosted trees, and gradient boosting is used
in the thesis. Gradient boosting builds a new base learner upon residuals from the
previously grown trees. As base learners of Boosted Trees takes into account the
previously grown trees, it is usually sufficient to build smaller trees compared to
RF or ERT. In fact, using bigger base trees may easily result in overfitting to the
training data, as Boosted Trees continuously add new base learners to correct for
previous prediction mistakes made on the training set. Base trees with depth = 1

13

3. Theory: Classification and Feature Selection

often work well [16].

3.2 Feature Selection

As said in the introduction, the goal of the project is to find the relevant features
that influence the performance of different pairing optimization algorithms. If our
goal were to come up with best classifier, we may well use all features available.
However, our intention is to improve understandings of the pairing problem and the
relation between problem features and algorithm performance. Therefore, we want
to exclude as many irrelevant and redundant features as possible. We have both
limited prior knowledge about what features would be useful and limited data of
the pairing problems. Moreover, it is unlikely that all collected features are relevant.

Feature selection is defined as ‘a process of choosing a subset of original features
so that the feature space is optimally reduced according to a certain evaluation
criterion’ [40]. For a classification problem, the evaluation criterion is the ability to
discriminate samples of different classes [35]. It is a data preprocessing step that
aims to eliminate as many irrelevant and redundant features as possible before the
training of classification models [21]. Ideally, modeling algorithms should only take
in the subset of features to build as simple a model as possible but performs the best
on the available data [17]. Therefore, selecting the relevant features is a necessary,
and also commonly deployed method to improve the prediction performance of a
model [23].

In general, there are three kinds of feature selection methods: filter (univariate),
wrapper and embedded [35].

3.2.1 Filter

Filter methods work like a filter, as features are ‘filtered’ by measurements of the
general characteristics of the training data. Features that pass the picked standards
are selected. One example of general characteristics of data is variability. Most
filter methods score the features one by one, and you can either set a criterion where
features with scores higher than the criterion get selected, or you can define a number
k, where the top k features ranked by scores are selected. Feature selection with filter
methods is independent from the training of modeling algorithms. Selected features
are then fed into the learning algorithm. The filter method that is implemented
in this thesis is ANOVA F score, and it is formulated as shown in equation (3.10)
below:

) /(K = 1)

_ between-group variability >, ni(X; — -1
- within-group variability K YL (X — X, 2 SN -)

(3.10)

14

3. Theory: Classification and Feature Selection

where K is the number of classes of the response variable, n; is the number of
observations in the i‘h class, X; is the mean of the i‘h group of the feature being
evaluated, X denotes the overall mean of this feature, X;; denotes the j*h observation
in the 7' class, and N denotes the total data size. The higher the ANOVA F score,
the less likely that the group means are the same, and thus the more distinguish the
corresponding feature.

As filter methods evaluate features individually, they cannot see which features
do not add information on other features, which means they cannot eliminate re-
dundant features. Moreover, feature selection with filter methods do not involve the
training of classifiers, thus the bias of the filter cannot interact with the bias inher-
ent in a classifier. Feature selection process must consider the impacts of selected
features on the performance of a specific classifier to achieve the best classification
accuracy [17]. Nevertheless, filter methods are fast to implement, and thus it is still
a common practice.

3.2.2 Wrapper

Feature selection with filter methods is independent from the training of clas-
sifiers. In contrast with the filter, the wrapper methods 'wraps’ feature selections
around a classifier. One needs to specify a classifier prior to the wrapper’s search
of feature subsets. After the classifier is defined, the wrapper algorithm searches
for a series of different candidate feature subsets following a search strategy, each
of which is then fed into the classifier and evaluated by the classifier’s performance.
The feature subset that leads to the best classifier performance is the chosen subset
by the wrapper.

With p features, there are 2P possible candidate feature subsets. To make the
search computationally feasible, we can use greedy search strategies. The greedy
search can work in two directions: forward selection or backward elimination. With
forward selection, one starts with no feature and keep adding one feature from the
remaining features at each step. With backward elimination, one starts with the
full set and keep removing one feature at every step. The process stops when it
reaches the desired size of features. The predefined classifier’s performance is used
to decide which feature to add or remove. With forward selection, we try to add
one feature to the current classifier, and the feature that leads to most significant
model performance improvement is added to the set of selected features. As for
backward elimination, we try to remove one feature from the current model, and
the one feature that has the least impact on model performance gets removed. Both
are greedy search algorithms as they only look at current situation. The advantage
of going backward from the full feature set is that it is easier to capture interacting
features [19], although it is computationally more expensive as models are always
trained with larger sets than going forward.

There are both advantages and disadvantages of using a wrapper. As features

15

3. Theory: Classification and Feature Selection

are evaluated by the learning algorithm itself, in general better feature subsets are
selected than the filter approach [13]. The downside is inevitable: the features
selected are favorably biased to the predefined classifier [35]. In addition, even with
the help of greedy algorithms, the wrapper method is still computationally expensive
[37], for one has to train several models to decide which feature to add or remove at
each step until the desired feature size is reached.

3.2.3 Embedded

The wrapper methods have to come up with a series of candidate feature sub-
sets prior to feeding the subsets to a predefined classifier and evaluating them. For
the wrapper, the search of feature subsets and the training of classifiers are still
independent processes. In contrast, in an integrated way, embedded methods simul-
taneously select features and model the relation between features and the response.
The integration of a classifier and feature selection requires a specialized integrated
implementation. For the embedded, feature selection is a byproduct of the embed-
ded models. Feature importance is directly computed and updated while building
the embedded models. The embedded methods need specialized implementation,
but are more efficient than the wrapper as feature selection and modeling are done
simultaneously.

We implement two kinds of embedded methods in the thesis. One of them
is tree-based classifiers, including Random Forest and Extra Random Trees. A
byproduct of these classifiers is ranked feature importance. One can directly select
the top k important features after the classifier is built. The other is to use the
magnitude of parameters of a regularized linear classifier as the measurement of
feature importance [26]. Features with very small parameter have marginal impact
on the calculation of the linear function, and thus can be removed.

For the regularized linear classifier, we implement the Logistic Lasso regression
(LLR) model. The LLR adds a penalty term to logistic regression’s loss function
to regularize estimated parameters. LLR uses l; norm, defined as penalty(w) =
S Jw;] [35], where p is the dimension of the feature vector w, i.e. the number of
features. Adding the penalty term to the negative log likelihood of logistic regression,
the loss function of LLR is:

N p
loss(y, w, X) = Z log (1 + e—yi(X@-w)) + O‘Z |w;] (3.11)

i=1

where « controls the impact of the Lasso penalty. If a = 0, we are back to logistic
regression. If alpha is large, coefficients of the features will be zero. The LLR both
shrinks parameters of features and encourages sparse solution to achieve feature
selection[39].

Embedded models are efficient, as feature selection and model fitting are done
simultaneously. Moreover, as the model fitting process moves forward by the crite-

16

3. Theory: Classification and Feature Selection

rion of improving classification accuracy, it usually is comparable to the prediction
performance of the wrapper [35].

3.3 Low-Dimensional Representation of Data

As our data has over twenty features, a low-dimensional representation of the
data is required to visualize the data in a low-dimensional space. Principal Com-
ponent Analysis (PCA) is a method to represent data in lower dimensions. PCA
summarizes information in a data set by computing a series of linear combinations
of the original features, and each of such linear combinations is called a component.
The first PCA component lies in the direction where the data vary the most in the
feature space. The succeeding PCA component is always the linear combination of
all features that has the maximal variance but uncorrelated to all previous com-
ponents [16]. Using the first two or three PCA components, one can visualize the
data in the two and three dimensional spaces. One can also compute the ratio of
the sum of variance of the first k components to total variance of data to judge how
well the components represent variances in data. Feature selection may improve the
representation of PCA, as noises and redundancy in data negatively affects their
performance.

3.4 Evaluation of Selected Feature Subsets

As the goal of feature selection is to either improve prediction accuracy, or to
maintain the prediction accuracy of using all features with only a subset of features
[4], prediction accuracy will be our main evaluation criteria of each set of selected
features. Prediction accuracy is the proportion of correct predictions that are made
by a classifier on a set of observations:

Z[(vi = 0:) (3.12)

where n is the number of observations, y; is the true label, §; is the predicted label,
and I(y; = 7;) takes the value 1 when the predicted label is the same as the true
label and zero otherwise.

Another important requirement of feature selection method is that the distri-
bution of predicted classes given the selected features should be as close as possible
to the conditional distribution given the ‘true’ features [20]. As the relevant fea-
tures should have high predictive power of class labels, the conditional distribution
of predicted classes given these features should be similar to the distribution of the
true class labels. Therefore, we will also plot the confusion matrices. Confusion
matrices visualizes the agreements and disagreements between the predicted labels

17

3. Theory: Classification and Feature Selection

and true labels. An example of a confusion matrix is shown as in the example be-
low. C; stands for the different classes. Row sums of the confusion matrix give us
class distribution of the true labels, while column sums shows class distribution of
the predicted labels. Moreover, the top left to bottom right diagonal entries give
us agreements between the true and predicted labels, while the off-diagonal entries

counts disagreements.)
Predicted Labels

C, Cy Cs
= Cyl 7T 8109
[<b]

e}
<
= Oy 4| 5 | 6
b}
£
B ool 1] 2|3

Using both evaluations, we can check whether a feature subset is able to both
maintain the class distribution in its predictions and keep prediction accuracy high,
or it only favors the majority class.

18

4

Data: Collection and Exploration

As stated in the introduction, the goal of the project is to find a group of fea-
tures that are able to discriminate the performance of different pairing optimization
algorithms. To pursue such a goal, we collect input features that we believe may
represent characteristics of a pairing task. The output is based on the performance
of different optimization algorithms on a pairing task, i.e. the best performing al-
gorithm on a case.

This chapter first explains two kinds of input features. It then explains the
output variable. The next section introduces how the data was collected. The
chapter ends with findings from data exploration.

4.1 Input Features

There are two kinds of features used for this classification task. One kind is fea-
tures extracted from the connection tables, which are directed acyclic graphs (DAG).
A connection table contains the primary computations of all possible followers and
predecessors of every flight that an airline is operating over a period of time. It is
the input of the optimizer. As shown in Figure 4.1, one can consider each flight as
a vertex, and the connections from the flight to all its possible follower flights as
edges. In a directed graph, the edges have directions. A flight to its follower flight
can be seen as a directed edge, and thus the connection table is a directed graph.
Moreover, the graph of a connection table is acyclic, meaning there are no cycles in
the graph. We refer to Figure 4.1 to explain what is a directed acyclic graph. In the
example graph, there is a directed edge from vertex '0’ to vertex '2’, which means 2
is reachable from ’0". All vertices that are reachable from node 2’ are also reachable
from vertex '0’, as we can go to '2” from ’0’. In contrast, vertex ’0’ is not reachable
from ’2’, as no vertex that 2’ directs to can reach 0. A DAG is a directed graph
without cycles, meaning no vertex can reach itself. As one cannot go back in time,
a flight cannot reach itself in the graph.

The other kind is the static input features when we run the optimizer to solve
a pairing problem. This kind of features include constraints such as the number of
active bases an airline has, whether ground transportation can be used to transfer

19

4. Data: Collection and Exploration

Figure 4.1: The DAG representation of a connection table example

the crew, or how deadheads can be handled.

4.1.1 Features extracted from graphs

A pairing consists of several consecutive flights that start and end at the same
base. Not all flights can be the start or end of a pairing, as airlines also operate
flights that do not take off or land at their own base(s). We add an artificial ‘start
of all’ and an ‘end of all’ vertices in the DAGs that we built from the connection
tables to keep records of how many of the flights can be the start and end nodes
of a pairing. For example, the vertices '0’ and "1’ in Figure 4.1 denote the ’start of
all’ and ’end of all’ vertices respectively. If a flight can be a start of a pairing, the
‘start of all’ node is connected to it. Similarly, if a flight can be an end of a pairing,
it connects to the ‘end of all’ node.

Inspired by the article of Smith-Miles et al. (2014), we extract the following
features from connection tables:

1. The sizes of the files of the connection tables, as the size of it can represent
the complexity and magnitude of a pairing problem. It varies a lot among
cases, and its distribution is right-skewed. The smallest case file is only 34
KB, while the biggest is over 1.7 GB.

2. The total number of vertices in the DAG of a connection table: v. The two
nodes ‘start of all’ and ‘end of all’ are also included in the count.

3. The total number of edges: e. It includes all the edges from the ‘start of all’
node to the ‘end of all’ node.

4. Valid start proportion: the number of nodes that can be the start of a pairing
divided by the total number of edges.

5. Valid end proportion: the number of nodes that can be the end of a pairing
divided by the total number of edges. Together with the valid start propor-
tion, the two features potentially tell us the level of flexibility when setting

20

4. Data: Collection and Exploration

10.

11.

12.

13.

14.

15.

up a pairing, as if there are more valid start or end flights, there are more
options to group flights into a pairing.

. Density: the ratio of the number of edges e to the number of possible edges

U(UT_I), which equals to v(fin' As the graphs are DAGs, between any pair of

vertices there are at most one edge, otherwise there is a cycle between the

two nodes. Therefore the number of possible edges in our graph is (;)

Mean degree: the ratio of number of edges e and number of vertices v, cal-
culated by .

. Standard deviation of vertex degrees: the degree of a vertex is the sum of

its in- and out-degree, where in-degree counts how many edges come into the
vertex, and out-degrees counts how many edges come out of the vertex.

. Standard deviations of the vertex out-degrees. The Pearson correlation be-

tween the vertex in- and out-degrees is 1, so I only include the standard
deviation of the vertex out-degrees.

Real mean shortest path lengths: the sum of all shortest paths in steps be-
tween any pair of vertices, divided by the number of pairs of vertices where
there actually exist a path between them, i.e. the number of pairs of reach-
able nodes in a graph. It computes the average length of all existing shortest
paths in a graph.

Theoretical mean shortest path lengths: the sum of all shortest paths in
steps between any pair of vertices, divided by the number of possible pairs of
vertices @ This measurement also counts in the pairs of nodes that do
not have a path between them.

Wiener index: the sum of the shortest path in steps between each pair of
reachable nodes.

Diameter: the maximum of the shortest path lengths in steps between any
pair of vertices.

Mean betweenness centrality: average fraction of all shortest paths that pass
through a given vertex, calculated by mean (ZS## U:S(ZJ))’ where s, t, and v
stands for any 3 vertices in the graph that fulfills the requirement that there
is a shortest path between s and t. o, stands for the number of shortest
paths between s and ¢, while o4 (v) stands for the number of shortest paths
between s and t that pass through v. We compute the mean betweenness
centrality both with and without normalization. Without normalization, we
compute the mean by dividing the sum by the number of vertices v. With

normalization, we multiply the mean by a factor of WZ(u—z)

The standard deviation of betweenness centrality: the standard deviation of

21

4. Data: Collection and Exploration

the betweenness centrality of all vertices. We also compute both the non-
normalized and normalized version, and we again normalize them by multi-
plying the values with a factor of Wlfﬁ
16. Global clustering: measures the extend to which vertices in a graph tend
to cluster together, calculated by ——— i“; ;“nrﬂzftregftﬁrlztgiesf —— The concept
comes from undirected graphs so we remove the directions of our DAGs to
compute this parameter. For an undirected graph, there is either one edge
or no edge between any pair of nodes, labeling whether there is a connection
between the two nodes. For 3 vertices in an undirected graph, there are at
most 3 edges among them. If all three edges exist, we get a triangle. In
contrast, a triplet only requires 2 of the 3 edges. Therefore, a triangle with
vertices (x,y, z) corresponds to 3 triplets {zy,yz}, {zz, zy} and {yz,zz}.

17. Local clustering: another measurement of the tendency of the vertices to
cluster together, computed by meanmean (%). Ly stands for the
number of links between neighbors of vertex V', and the neighbors of V' refer
to the vertices that are one step from V and directly connected to V. Dy
stands for the degree of vertex V', which is the sum of the in- and out-degree
of V. w is thus the maximum possible number of links among the
neighbors of V. As this method looks at the connectivity of the neighbors of

each vertex, it is a ‘local’ clustering measurement.

In total, we extracted 19 features from the DAG of connection tables. Except for
feature 1, all of these features were extracted with the help of the python package
NetworkX.

4.1.2 Static features from meta data

The second kind of features, i.e. the static input features can be directly used.
These features are mainly categorical features, and there are in total 57 of them.
Taking into account that these features are not carefully set case by case (they do
not necessarily vary (objectively) over different cases), the less interest from the
company in these features, and the rather small size of the data set we currently
have, we only include the ones that are deemed potentially interesting by experts at
the company. Originally, there were five static features that were interesting to the
company. However, only two of these five features actually vary among the cases.
As a result, we only include these two features. They are:

1. num_ active_bases: the number of active bases owned by the airline company.
A pairing must start and end at the same base.

2. num__col_gen_objective components: The number of components in the
cost function.

Together with features collected from the connection tables, we have 21 features.

22

4. Data: Collection and Exploration

4.2 The Response

The response variable of this project is categorical, meaning it is a classification
task. As the goal is to find features that relate to the best choice of algorithms
for different pairing problems, and both the running time and the quality of the
solution of a pairing problem must be considered when one decides on the best
choice of algorithm for a problem, we do not approach the project as a regression
problem.

4.2.1 The classes: three algorithms

As we label a case by the best performing algorithm on the case, the possible
classes are the three optimization algorithms run on each case. Details about the
algorithms are sensitive business information. Moreover, they are not the focus of
this thesis. Therefore we only describe them in general terms. The three algorithms
are:

1. The standard (ST, reference) algorithm: the commercial optimizer used by
the company.

2. Algorithm AF: compared to the standard algorithm, this algorithm randomly
fixes (locks) some of the pairings of a case much earlier. In other words, it
stops optimizing some of the pairings in the early stage of the whole opti-
mization process. The purpose of this is to reduce the search space, so that
the algorithm can potentially find the final set of all pairings faster. In the
cases where the fixed pairings actually do not need any further optimization,
the reduced search space would make it easier for the algorithm to find better
pairings from the not fixed flights.

3. Algorithm R: adds randomness to the standard algorithm. When the extra
randomness is required to find the best solution, or when it helps to save
execution time, algorithm R can perform better than the standard algorithm.

4.2.2 Labeling method

To label a case by the best performing algorithm on the case, we need to define
what is "best performance’. Two measurements are collected to evaluate algorithm
performance: total cost and execution time.

The total cost measures how well an algorithm solves a pairing problem, for the
goal is to minimize the total cost of the cost function. Each pairing problem has its
distinct cost function. The cost function contains both real objective costs, such as
salary and hotel expenditures, as well as subjective penalties of undesired parings.

23

4. Data: Collection and Exploration

One example of the subjective components in the cost is working preference of crew
members. Because of the existence of subjective modeling in the cost function, the
penalties are different among cases, and costs are not comparable across cases, as
different customers prioritize all kinds of requirements differently. However, on the
same case (i.e. for the same task from a customer) the formula of cost calculation
is the same. Therefore, for each case the total costs of different algorithms are still
comparable.

The execution time measures how fast an algorithm solves a pairing problem.
All algorithms were ran for all cases under the same conditions (computing resources)
using the same stopping criteria. Any run that took over 24 hours on a case was
stopped after 24 hours, and its execution time was recorded as 24 hours. In these
cases, the minimal total cost achieved within 24 hours is taken as the total cost of
the algorithm.

The question is then how to combine these two measurements to decide which
algorithm is the best one on a case. The way the company’s optimizer outputs
the two measurements makes it impossible to fix one and look at the other. The
optimizer does not output one optimal solution to a problem, but solves a pairing
problem step by step. Each log file keeps track of the step-wise statistics of an
algorithm’s performance on a case. Therefore, there are the currently achieved cost
and the accumulated computation time at each step in the log. As a result, one can
find the minimum total cost of the cost function achieved by the algorithm, and the
total execution time from the start till the end of a run.

The method that we can use is to find the one that achieves a cost ‘equally’ low
to the lowest cost of any algorithm on the case in the shortest time. As the penalties
are subjective, we do not require ‘equally low’ cost to be exactly the same. Any cost
within the 0.5% range of difference of the lowest cost is deemed equally low. The
time measurement is total execution time, as this is the time cost for a customer.
For each case, we find the lowest cost of all algorithms. If the fastest algorithm,
i.e. the algorithm with smallest total execution time, has ‘equally low’ total cost,
then the fastest algorithm is the best algorithm for this case. If the fastest algorithm
does not have ‘equally low’ cost, meaning its solution is more expensive, we compare
the second fastest algorithm’s cost with the lowest cost. We continue until we can
reach the conclusion that no faster algorithm can achieve a cost equally low to the
algorithm with lowest cost, and then the algorithm with lowest cost is taken as the
best algorithm for this case. If none of the three algorithms could finish within 24
hours for a case, the case is discarded, because we cannot know the execution times
and thus cannot compare them. But if some of them took shorter than 24 hour to
finish on a case, we can still label the case, as the algorithm that could not finish
within 24 hours is simply not the best algorithm on the case. We label all cases
using this method.

As you can see, this is a rather complicated way of labeling the cases, making
it challenging to classify the cases.

24

4. Data: Collection and Exploration

4.3 Data Collection Process

Two kinds of data were collected for the project. The first kind is (historical)
customer data of Jeppesen. This data is carefully maintained and used as test suites
for the development of the company’s optimizer. Among all of Jeppesen’s test suites,
118 cases (observations) were provided as data for this project. The other kind was
collected from the Official Aviation Guide (OAG) website. The website provides
flight data in the world. Four steps were taken to collect useful data from OAG,
which are shown as the following:

1. Flight schedules of the first week of May 2014 were collected, as this data was
accessible to the company. This data contains flights of 478 airlines. Since
the pairing problems of different fleets are solved separately for an airline,
the original 478 airlines gave us 1061 cases (observations).

2. Seven different rule sets are applied to each case to turn every single case into
seven different cases. The seven rule sets include aviation rules of Civil Avia-
tion Administration of China (CAAC), Civil Aviation Publication (CAP, U.K.
Civil Aviation Authority), Directorate General of Civil Aviation (DGCA, In-
dia), the European Union (EU), Federal Aviation Regulations (FAR, U.S.),
Notices of Proposed Amendment (NPA, European Union Aviation Safety
Agency), Notices of Proposed Rule Making (NPRM, U.S.). As the rules
decide whether a pairing is valid or not, the expert at Jeppesen believed
applying different rule sets to the same case would result in quite different
problems for the optimizer.

3. An algorithm was applied to all 1,061 cases to find the bases of all airlines,
as a pairing must start and end at a base of the airline.

4. After passing all cases into the company’s optimizer, only 62 of the original
1,061 cases were kept. Two factors led to the exclusion of a case. If the
optimizer raised any error while solving a case, the case got discarded. The
second factor is the size of a case. If a case took too short a time (less than a
minute) to be solved by the standard optimizer, i.e. the size of the case too
small, the case also got discarded. We end up with 434 cases from the OAG
data, as 62 x 7 = 434. However, four of the cases could not be solved by any
of the three algorithms within 24 hours, resulting in 430 cases in total.

Combining the two kinds of data collected, we got 548 cases in total. For all of
the 548 cases, the optimizer is required to come up with a set of pairings that cover
all flights of a case.

25

4. Data: Collection and Exploration

4.4 Data Exploration

Before the main analysis, one usually explores the data with some simple meth-
ods to get basic understandings of the data. As explained in section 4.1 Data Col-
lection Process, seven different rule sets were applied to cases collected from OAG,
turning every original case into seven distinct observations. To analyze feasibility
of this way of generating data, we compute pairwise correlations of the observations
originated from the same case. More specifically, for each original data point X;,

there are seven observations X yue,, Xiruless ---» Xirule; after applying the different
rules. Every Xj,u.; has 21 dimensions. The correlations we compute are between
each distinct pair of observations of X uie,, Xiruiess ---» Xirules, calculated by the
formula

E [(Xi,rulej - lLLX'L,'rulej) (Xi,rulek - /’LXi,rulek)}

pXi,rulej7Xi,'rulek - (41)
O-X'L,'r'u,lej 0-)(1',7‘11.1(»31€
where px, .. and oy, . are the mean and standard deviation of the 21 features
’ J ’ J
of the observation Xj;ye;, and px,,,. and ox,,,, are the mean and standard

deviation of the 21 features of the observation X ,.,, and £ stands for expecta-
tion. When the features almost always take the same values for Xy, and X ruie, ,
DX rute; Xirute will be almost 1. The data is standardized to mean zero and variance
one before we calculate the pairwise correlations.

0975
0950
0925
0900
0875

01234656 78 9101112131415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

CAAC_DGCA
CAAC_EU
CAP_CAAC
CAP_DGCA
CAP_EU
CAP_FAR
CAP_NPA
CAP_NPRM
DGCA_EU
FAR_CAAC
FAR_DGCA
FAR_EU
NPA_CAAC
NPA_DGCA
NPA_EU
NPA_FAR
NPA_NPRM
NPRM_CAAC
NPRM_DGCA
NPRM_EU
NPRM_FAR

Figure 4.2: Pairwise correlations of data collected from OAG

The values of the pairwise correlations are visualized in Figure 4.2. As we
explained in the previous section ’Labeling method’, some of the 434 observations
cannot be labeled and were discarded. 60 of the original 62 OAG cases have descen-
dents of all seven rule sets, therefore only 60 cases are included here. The vertical
dimension denotes the distinct pairs from the seven rule sets, while the horizontal
dimension denotes the original case number. All of the correlation values are above
0.875, and the majority of them above 0.975, indicating observations originated from
the same case are actually highly correlated. As a result, we cannot treat them as

26

4. Data: Collection and Exploration

distinct observations, and can only use data from one of the rule set. We pick data
from rule set NPA, as all 62 observations of this rule set can be labeled by our la-
beling method. We end up with 118 4+ 62 = 180 observations in total. Such a small
data size makes feature selection necessary from the practical perspective.

There is no missing value in our data. The class distribution is shown in Table
4.1. The classes are relatively balanced.

Classes Standard AF R
Numberofobs 52 77 51

Table 4.1: Class distribution

All visualizations in this section is generated from all 180 observations. Figure
4.3 visualizes the distributions of all 21 features. Every individual plot is the his-
togram of one feature. For each feature, its entire range of values are first divided
into a series of intervals. Then we count how many observations are in each interval.
The bars in a histogram visualizes the counts. Most of our features are not symmet-
rically distributed, either skewed to the left or right. The histograms also show us
that value range differs a lot among the features. Therefore, for better performance
of classifiers such as KNN and weighted KNN; it is necessary to standardize the
data. We standardize the data to mean zero and variance one prior to our analysis.

& M G
o B g ousafl o ow s 8
& s - -
s & B
& 58 :
" s g o ¥ i
2 g8 8 H
e 5 & B H

5 &

s 58

Figure 4.3: Histogram of features

Figure 4.4 includes the box plots of all features against the output classes, visu-
alizing how each feature is distributed within every class. Each box in a individual
plot represents all observations from one of the three classes. The vertical direction
of the plots denotes values of a feature. A highly informative feature should have
non-overlapping value ranges of the different classes. In this case, the boxes would
not overlap vertically. Looking at the box plots of our features, we can see that for
most of the features, the value spreads of the three classes overlap significantly. Only
the features of real mean shortest path lengths, number of edges, number of vertices,
size, normalized standard deviation of betweeness centrality, standard deviation of
vertex degrees, and standard deviation of the vertex out-degrees seem to have some
variations on how the feature values are distributed among different classes.

27

4. Data: Collection and Exploration

LY
il Lom i

AL

L i

kS

8

Figure 4.4: Boxplot of features

In the Appendix, we also plotted all distinct pairs of features in Figure A.l.
In all of the off-diagonal plots of Figure A.1, two different features A and B are
plotted against each other. All of the points are colored by the class labels. In the
ideal case where a pair of features are able to classify the observations, we will see
three non-overlapping clusters in the plot, with each cluster dominated by one color
(class). However, in all of our pair plots, the classes overlap with each other, with
no clear division of class clusters.

The plots on the diagonal of Figure A.1 are histograms of the 21 features,
which are essentially the same plots as in Figure 4.3. Nevertheless, each bar in the
histograms is colored by class labels to visualize class distribution of the observations
within the value range of the bar. The colored histograms are consistent with our
observations from the box plots in Figure 4.4. For all features, all of the colored
bars in the colored histograms are quite ’colorful’; with about the same number of
observations from every class in each bar. If a feature is highly informative, the bars
would be dominated by a single color. In such a case, intervals of the feature values
can be matched to the classes, providing valuable information on how to classify
observations.

L |
L VR

Figure 4.5: Scatter plots of the first two and three PCA components, computed
from all features of all observations

We also use PCA to compute low-dimension representation of the 180 obser-
vations. The data is standardized prior to the PCA computation, and we compute
seven components from the original 21 features. Figure 4.5 includes both the two

28

4. Data: Collection and Exploration

and three dimensional PCA representations of our data. The two dimensional repre-
sentation uses the first two components, while the three dimensional representation
uses the first three. All points are colored by class labels. The accumulative variance
explained of the data is plotted in Figure A.2 in the Appendix. From Figure A.2,
we can see that the first two components can already represent 50% of the total
variance in the data, while the first three can represent over 60%. The first two or
three components represent the variability in data quite well, however, they are not
able to discriminate the cases. Observations from different classes are all clustered
together in Figure 4.5. We cannot see any clear division of classes in the figure.

Findings from the above data explorations all emphasize the challenge of our
classification task. We do not have any single or pair of features that seem to be
informative in classifying the cases. Even the first three PCA components cannot
classify the cases at all. Nevertheless, as we mentioned in section 3.3 Feature Selec-
tion, irrelevant and correlated features negatively affect the performance of PCA.
The next chapter describes the methods we take to try to find an informative subset
of features.

29

4. Data: Collection and Exploration

30

D

Methods: Machine Learning and
Statistical Analysis

After the data preprocessing steps, including collecting data, extracting fea-
tures, and labeling cases, we use two ways to analyze the data. The first way is
Machine Learning (ML) analysis, and it is the focus of the thesis, as this is the main
interest of the company. With ML, we do not pay attention to the interpretation
and the statistical significance of the parameters of different models, but rather only
apply different algorithms and compare model performance scores. The second way
is ’traditional’ statistical analysis, and will be discussed in section 5.1. With sta-
tistical analysis, we use a basic classification model (logistic regression), and focus
on the interpretation of the model and its parameters, as well as model statistics.
We include statistical analysis for two reasons. One reason is the data size is quite
small. The other is to compare with the performance of ML. All analysis is done in
Python, using packages of pandas, numpy, scikit-learn, scipy and statsmodels.

We describe the design of the analysis first, and reasoning of the design comes
afterwards. Using machine learning, the analysis processes are designed as shown
in Table 5.1. Around 17% of the observations are randomly selected to be the test
set. All of the remaining 83% data is used as the training set. We split the data in
the way that the class ratios are as similar as possible in the training and test sets.

Steps Training: 149 obs Test: 31 obs
ST :AF : R=43:64:42 ST:AF:R=9:13:9
1 Roughly tune hyper-parameters of
the feature selection models
2 Select features
3 Build classification models using the
selected features
4 Evaluate performance of mod-
els on the test set

Table 5.1: Analysis pipeline using machine learning methods

As mentioned in section 3.2 Feature Selection, we use three kinds of feature
selection methods: filter, wrapper and embedded. For the filter method, we use the

31

5. Methods: Machine Learning and Statistical Analysis

F score from the ANOVA test, as it tests whether class differences of a feature is
statistically significant. The filter method is totally independent from classification
modeling, so we do not need to choose a model and tune hyper-parameters for
the filter. For the other two, we use Logistic Regression for the wrapper, and
Random Forest (RF) and Extra Random Trees (ERT) for the embedded. The
wrapper method uses backward feature selection. For the logistic regression model
here, we set the hyperparameter that controls the strength of regularization (the
hyperparameter C in sklearn) to be 100, and all the rest is kept as the default
settings. For RF and ERT, we tune four hyper-parameters, including the number of
trees to include in the classifier, maximum depth of a single tree, maximum number
of features to be considered when splitting a node of a tree, and the minimum
number of observations required to split a node. The five feature selection methods
included in this part are summarized in Table 5.2. Logistic Lasso Regression (LLR)
is included in the part of statistical analysis.

As the data size is quite small, we use ten-fold cross validation in the feature
selection step, in order to estimate the performance of different feature selection
methods. Cross-validation (CV) is a model validation method where each fold of
the sample becomes the test set for once. When fold ¢ is the test set, the rest of
the sample is the training set. After all folds have served as the test set, model
performance is summarized across all folds. For our case, we record the predicted
labels of every test fold, combining the predictions of all ten folds, and compute the
proportion of right predictions, i.e. the accuracy in the end.

Method, | Filter using ANOVA test
Methody | Wrapper using LR
Methods | Wrapper using RF
Method, | Embedded using RF
Methods | Embedded using ERT

Table 5.2: Feature selection methods used in ML analysis

More specifically, we take the following procedures within our ML analysis:

1. Randomly split the data into training and test sets. Standardize the test
data to mean zero and variance one. Randomly split the training data into
ten cross-validation folds.

2. For each feature selection method ¢« = 1,2, 3,4, 5:
For number of features m = 5, 8,11, 14, 17, 20 to be selected:
(a) For each fold £ =1,2,...,10:

i. Standardize data in fold k to mean zero and variance one. Stan-
dardize all data outside fold k to mean zero and variance one.

ii. If7 # 1 or 2, we tune the hyper-parameters of the model. We create

32

5. Methods: Machine Learning and Statistical Analysis

a grid of hyper-parameters, and for each setting in the grid, we train
a classifier using all features and all training observations except the
ones from fold k. The hyper-parameter setting that gives the highest
classification accuracy on fold & is used as the hyper-parameters for
that model.

iii. Use all folds except fold k to select m most important features. For
both the filter and the two embedded methods included, the higher
the score, the more important a feature is. For the wrapper, we use
backward elimination and stops when the feature size is reduced to
m.

iv. Use only the selected features to build a classifier, using data from
all folds except fold k. As the filter method does not come with
a model, we pass the features filtered by this method to a logistic
regression.

v. Use the classifier to predict the labels of samples in fold k.
(b) Calculate the overall prediction accuracy of the ten folds.

(c) Compute the number of times a feature is selected by the ten folds.
As we have ten folds, and each time the data used to select features is
slightly different, we might get different selections from each fold. Fea-
tures that are repeatedly selected over different fold-splits are considered
more important. For the chosen number of features m, all repeatedly
selected features by a method are considered the final feature selection
result of that method corresponding to m.

We end up with 5 x 6 = 30 selected feature subsets, one for each distinct
combination of the five feature selection methods and the six numbers of
features to be selected. For Method;, we have six selected feature subsets for
the six m’s . We choose the m that gives the highest CV prediction accuracy,
and the corresponding feature subset, as described in step (c) above, is taken
as the final selected feature subset by Method;. Note that the size of this
final chosen subset for Method; might differ with the ’best’ m, for we take
all the repeatedly selected features by the ten folds.

. Use only the selected features but all training observations to build seven
distinct classifiers for each of the five selected feature subsets. The models
include KNN, weighted KNN, logistic regression, single classification tree,
RF, ERT and Boosted Trees. Default model settings are used in the KNN,
weighted KNN, non-regularized LR. For single decision tree, we set maximum
depth of the tree to be five, as we neither want the tree to be too shallow or
too complicated. RF and ERT use the settings selected from hyper-parameter
tuning prior to feature selection. As for Boosted Trees, we set the max depth
of a single tree to be one, and the rest settings are the same as default settings.
We end up with 35 distinct models.

33

5. Methods: Machine Learning and Statistical Analysis

4. Evaluate performance of the 35 models on the reserved test set. For each
of the five feature subset, we compute the mean and standard deviation
of the prediction accuracy of the seven models trained on the subset. We
also compute the sum of confusion matrices of the seven models for each
feature subset. These measurements will show us the predicting power and
robustness of each feature subset.

How the data is utilized is visualized in Figure 5.1. For the CV part, the figure
shows the case where fold 1 is used as the validation set.

Cross-Validation

1 2 3 4 5 6 7 8 9 10

* Grid search of hyper-parameters
+ Feature selection * Accuracy
¢ Confusion Matrix
5 selected feature subsets x 7 classifiers = 35 models

Training Test

Figure 5.1: Visualization of the split and use of data

As you can see from the above, for each feature selection method, we ultimately
keep features repeatedly selected over the ten folds, instead of features selected at
once by applying the method to the whole training set. We select features in this way
because our data size is really small considering the complexity of our classification
problem. The ten CV sets give us ten different samples. By applying a feature
selection method ten times to ten different sets, we can get the features that are
always selected by a method over different samples. These features are therefore
considered more robust and are included in selected feature subset.

Building a set of different classifiers using the same feature subset, and then
testing the classifiers’ performance on the test set can show us the robustness of a
feature subset. Is a feature subset tuned to a specific classifier or always informative
across different classifiers? The true important informative features should stay
informative regardless of the learning algorithm used.

So why do we choose these seven classifiers? Our classifiers differ from each
other, covering parametric and non-parametric models, linear and non-linear models,
single and ensemble classifiers, as well as parallel and sequential ensembles. The
complexity also varies among our models. LR is the simplest one, as it simplifies
reality to a linear combination of input features and only has a fixed number of
parameters. In contrast, KNN and the single classification tree can be quite complex
models, easily over-fitting to the training data. Simpler models tend to have higher
bias, where bias is the difference between the estimated model and the true model.
However, there is a bias-variance trade-off in modeling reality with different models.
Variance measures how much the estimated model varies across different random
sampling, indicating model robustness against the randomness of a sample. Complex
models might be able to more accurately capture the real relationship between
features and response, but small changes in the training data can result in large
changes in estimations. With increasing model complexity or flexibility, usually

34

5. Methods: Machine Learning and Statistical Analysis

model bias decreases faster than the increase of variance at the beginning, but there
is a turning point, after which the increased variance cannot be compensated by the
decreased bias. We want a model that has both low bias and variance. Implementing
a group of models with different levels of complexity will help us to find such a model
for our data.

If we were not short of data, it would be better to have a validation set to
tune hyper-parameters of the classification models we get from step 3. However, we
cannot afford to reserve a separate validation set. Nevertheless, our goal is not to
fine-tuning the hyper-parameters to get the most accurate classifier.

5.1 Statistical Analysis

To complete our analysis, we also include statistical analysis after the machine
learning analysis mentioned before. As a minor effort of the project, we only im-
plement one model, which is the Logistic Lasso Regression (LLR) discussed in the
Theory chapter. There is one parameter to be tuned for the model, i.e. the scaler
of the penalty term «. For our ML analysis, we use ten-fold CV to choose the
number of features m to be selected for each method. Here, we use ten-fold CV on
the training data to choose an optimal a. We experiment with 20 values of alpha,
and for each o we compute a ten-fold CV. We choose the smallest a that gives the
maximum CV accuracy. Larger a means stronger penalty and a smaller model. We
do not want a too small model with only a few features, as we want to observe
all possibly interesting features. Once again, for each ten-fold CV, we have ten
LLR corresponding to the ten folds, and we can plot the number of times a feature
is selected by the ten folds. This would show us the repeatedly selected features.
After CV, we implement an LLR with the « chosen by CV using all 149 training
observations. We interpret the model statistics and some model parameters, and
evaluate the training and test accuracies of this LLR. Lastly, we visualize the Lars
path of our LLR. Lars path shows the sequence of features entering the model while
decreasing «, from the first to the last single feature included in the LLR.

35

5. Methods: Machine Learning and Statistical Analysis

36

§

Results

6.1 Machine Learning Analysis

6.1.1 Feature selection

This section summarizes the results from applying machine learning methods
to our data. As described in section 5.1, we first use ten-fold cross-validation (CV)
to select features using all 149 training observations. For each distinct combination
of Method; and number of features to be selected m, we calculate a CV accuracy.
For a distinct ten-fold CV, when fold k is used as the validation fold, the remaining
nine folds are the training data. Every fold gets to be the validation fold for once.
At each step, features are chosen using the nine training folds and are tested on
the validation fold. In the end, we get predictions of the 10 distinct validation sets,
corresponding to all 149 training observations. The ratio of the number of correct
predictions to 149 is the CV accuracy. We adopt five feature selection methods
and experiment with six number of features to be selected, and the 5 x 6 = 30 CV
accuracies are plotted in Figure 6.1.

The solid yellow line in Figure 6.1 shows the prediction accuracy of the dummy
classifier, i.e. the ratio of the number of majority class (class AF) observations
to 149. In general, all methods fail to exceed the accuracy of the dummy classi-
fier. Only the embedded method using Extra Random Trees (ERT) with m=>5, and
the wrapper method using Random Forest (RF) with m=11 surpass the dummy
classifier’s prediction accuracy (0.4295). However, both accuracies are 0.4362 and
thus only slightly bigger than the dummy accuracy. The performance of these two
settings are not statistically significantly different from the performance of simply
classifying all observations to the majority class.

The blue line in Figure 6.1 denotes CV accuracies from applying the Filter
method and feeding the selected features to a Logistic Regression classifier. When
selecting features, a filter method does not interact with the classifier. As expected,
the filter method does give the worst performance, with accuracies below all other
methods for most of the time. Generally speaking, the tree-based methods perform
better than others, either used in a wrapper or embedded way. The results in

37

6. Results

Figure 6.1 also confirm that including more features do not necessarily lead to better
performance of models.

Figure 6.1: CV accuracies for all methods with varying number of features to be
selected

Figure 6.2 visualizes the confusion matrices of the CV predictions. For each of
the five feature selection method and among the six different m’s, we visualize the
confusion matrix corresponding to the m that gives the highest CV accuracy. For
instance, for the wrapper using LR method, the number of features m that leads
to the highest CV prediction accuracy is eight, therefore we visualize the confusion
matrix of the CV predictions made by this method when it is required to select eight
features. For the filter, the wrapper using logistic regression, the wrapper using RF,
the embedded using RF and the embedded using ERT, the numbers of features
selected that give the best CV score are 17, 8, 11, 14 and 5 respectively. We also
plots all of the nine entries in each of the five confusion matrix. The five subplots
share the same color scale, so that the same number is colored by the same darkness.
Ideally, our predictions should lie on the top left to bottom right diagonal and
have the darkest color here. Figure 6.2 shows that the tree-based methods predict
more observations as the majority class (AF), and they perform better compared to
other methods only because they tend to classify more observations to the majority
class. They are not better at distinguishing the classes. In contrast, the wrapper
using logistic regression method actually finds the most R and ST observations.
Compared to the wrapper using RF and embedded using RF methods, the wrapper
using logistic regression method uses fewer features to achieve this.

As we explained before, for all folds in a ten-fold CV, the splits of training and
validation are slightly different. The features are selected based on the training folds.
Differences in the training data might lead to differences in selected features. As a
result, each fold of the ten folds might select different feature subsets. For a method,
we can count how many times a feature is selected by the ten folds. We visualize
which features are selected and the number of times every feature is selected by ten-

38

6. Results

5 8 8 & 8 8

¢ < § ° & <« 4
" e

Figure 6.2: Confusion matrices of CV predictions

fold CV in Figure 6.3. For each of the five feature selection method, we visualize the
selection counts of the ten-fold CV that has the highest prediction accuracy among
the six different m’s. For instance, m = 17 leads to the highest CV accuracy for
the filter method. Selecting 17 features at each fold, the selection counts of the ten
folds are visualized in Figure 6.3. The ten folds select 19 of the 21 features more
than once, and thus the 19 features become the feature subset selected by the filter
method. 12 of the 21 features are selected more than once for the wrapper using
logistic regression, 16 for the wrapper using RF, 18 for the embedded using RF and
12 for the embedded using ERT. These repeatedly selected features become the final
feature subsets selected by the five feature selection methods.

Variable Selection Heatmap

Filter
Wrapper-LR
Wrapper-RF -

Embedded-RF -
Embedded-ERT -

0 10 0 10

=
=
=
=

HI- it

2 9.0
75
60

-45
-30
-15

o

P
w
=

o

-

10
10

=
-
-

density - o &~

diameter H

global_clustering -

sum_sp_len -REREEY b B

num_edges -
num_vertices - w o e 1S
std_bc_norm -

std_bc_not_norm - & e 150

local_clustering -R=-RETR=
mean_bc_norm - — [ERE
mean_degree -
mean_sp_real - o Je
std_de
std_degree_out -
valid_end_prop - &
valid_start_prop -

mean_bc_not_norm - w f58

mean_sp_theoretical -
num_active_bases -

mnum_col_gen_objective_components -

Figure 6.3: Visualization of the number of times the features are selected by the
ten folds

The closer a count in Figure 6.3 is to ten, the more certain the corresponding
feature selection method is to include this feature in a size m subset of most impor-
tant features. Compared to other feature selection methods, the embedded method
using ERT selects quite different feature subsets over the ten folds. No feature is
always selected by the ten folds. In contrast, all other four methods select several
features for all ten times. This is consistent with the characteristics of the models.
ERT contains more randomness compared to other implemented models. For our
data, where the number of observations is small but the classification problem quite
complex, the extra randomness in ERT cannot reduce modeling variance, but only
adds up to bias and sensitivity to changes in data.

All methods seem to agree that real mean shortest path lengths, number of

39

6. Results

vertices, size of the connection table files, non-normalized standard deviation of
betweeness centrality, standard deviation of the vertex degrees, and the Wiener index
(sum of the shortest paths) are important features, as they all select these features
for more than once over the ten CV folds. Four of these six features were detected
from the box plot in Figure 4.4 in Chapter 4, they are real mean shortest path
lengths, number of vertices, size of connection table files, and standard deviation of
vertex degrees.

6.1.2 Performance of classifiers

After getting one selected feature subset for each method, we feed each subset
to seven distinct classifiers and end up with 5 x 7 = 35 classifiers. The classifiers
are all trained on the whole training set of 149 observations, and are tested on the
test set of 31 observations. The training and test accuracies of the 35 classifiers
are summarized in Table 6.1. For each feature subsets, we calculate the mean
and standard deviation of the test accuracies of the seven classifiers, and they are
the entries in the two rightmost columns in Table 6.1. These values indicate the
robustness of a feature subset. In addition, for each kind of classifier, we compute
the mean and standard deviation of the training and test accuracies over the five
selected feature subsets, and they are the entries in the two rows at the bottom.
This group of values tell us which model fit the data better.

Model KNN Weighted KNN LR Tree RF ERT Boosting Test
Train ~ Test Train Test Train Test Train Test Train Test Train Test Train Test Mean Std
Filter 0.55 0.39 099 0.42 0.50 026 070 045 0.74 035 0.50 042 0.75 048 040 0.068
Wrapper — LR 0.53 0.48 0.99 042 034 019 072 032 073 035 048 035 0.69 042 036 0.085
Wrapper — RF 0.54 042 099 045 048 023 075 048 0.72 048 0.50 035 0.74 048 041 0.089
Embedded — RF 0.55 032 099 035 042 039 075 048 0.77 0.35 0.48 035 0.76 052 0.39 0.068
Embedded — ERT 0.55 026 099 023 045 032 067 042 075 035 048 035 0.74 039 033 0.064
Mean 0.54 037 099 037 044 028 072 043 074 0.38 049 036 0.74 0.46
Std 0.0080 0.077 0.00 0.079 0.056 0.070 0.031 0.059 0.017 0.052 0.0098 0.028 0.024 0.047

Table 6.1: Model accuracies on the test set

The highest test accuracy achieved by the 35 models is 0.52. The accuracy of
the dummy classifier on the test set is 0.42. As we only have 31 observations in the
test set, an accuracy of 0.52 is not enough to confirm this classifier is better than
the dummy classifier. In fact, the p value of this classifier being no different from
the dummy is 0.18. Therefore, there is a relatively high chance that this classifier is
not statistically different from the dummy classifier. In addition, we test 35 models
at the same time. If we choose 0.05 as the threshold for statistical significance, we
need to divide 0.05 by 35 to adjust for multiple testing (Bonferroni correction, see
[9] for more details), for we are testing 35 hypothesis of a model being the same as
the dummy classifier at the same time.

Consistent with our findings from the ten-fold cross validation, the feature
subset selected by the embedded method using ERT gives the worst mean test
accuracy. The wrapper method using RF has the highest mean test accuracy. All
the mean test accuracies are below the test accuracy of the dummy classifier.

40

6. Results

With regard to the performance of the different kinds of classifiers, the boosted
tree modeling has the highest mean test accuracy and thus might be the best kind
of classifier for this data. It makes sense as the relation between the features and
the classes might be quite complex. Boosted trees base estimators are serial and
keep correcting errors from previous estimators, and might be able to catch more
information to model the relation between the input and output. Logistic regression
model has the lowest mean test prediction accuracy. The simplicity of logistic re-
gression probably is not enough to pick up the complex input-output relation in our
data and is not robust against new test data. The weighted KNN models seriously
overfit to the training data, as their training accuracies are all 99% and are much
higher than their test accuracies. Among the four tree based methods, ERT is least
likely to overfit to the training data. ERT has equivalent test accuracies to RF but
much lower training accuracies than RF. As a classifier, ERT is not a bad choice,
but its extra randomness is not good for selecting features.

Filter

Embedded-RF

Embedded-ERT

70 Wrapper-LR 70 Wrapper-RF 70 70 70

18 2 60 20 60 2 2 60 23 21 60 60

i 50 _ 50 _ 50 _ 50 _ 50
E E H] F] 5

Z 18 10 40 = R 9 40 = R 19 10 0 = R pras n a0 - 40
]] E] E] E]

= I n 2 n 2 2 30

o 13 19 0 o 1 1 0 g u] 0 g bE] 18 0 0

0 10 10 10 10

L ® & 0 ® & 0 L = s 0 L3 * s 0 o

Predicted label Predicted label Predicted label Predicted label

Predicted label

Figure 6.4: Confusion matrices of the test set predictions

Figure 6.4 visualizes the confusion matrices of the predictions on the test set.
For each of the five feature subset, we calculate the sum of the seven confusion
matrices from the seven different classifiers and plot it in Figure 6.4. Similar to the
confusion matrices of the CV predictions, many observations are misclassified to the
majority class AF. Distinguishing between the R and ST classes seem to be slightly
easier than other pairs of classes, as there are fewer off-diagonal observations in the
R/ST blocks.

6.1.3 The best feature subset

This section looks into the feature subset selected by the wrapper method using
RF from different aspects, as this subset has the highest mean prediction accuracy
over the seven different kinds of classifiers.

Figure 6.5 visualizes the feature importance ranked by an RF classifier. The RF
classifier uses the final set of features selected by the wrapper method using RF, and
is trained on the whole training set. The features are ranked from the most to least
important from left to right. First of all, the feature importance scores do not differ
much among the features. We do not have any feature that is significantly more
important than others. Secondly, we can see that the top four important features
are not commonly agreed important features by the five feature selection methods.
In other words, these four features are not repeatedly selected by all five methods.

41

6. Results

015 4

i

Figure 6.5: Feature importance ranked by the RF model

size -

std degree -

sum_sp len -

std_be_norm -
mean_sp_real 4
mean_degree -
num_edges -
nurm_vertices 4

local_clustering <

valid end prop -
mean_bc_norm 4
std degree out
global_clustering
std bc_not_norm -
valid_start prop 4

mean_sp_theoretical

In contrast, the feature ranks are quite consistent with the feature selection results
by the wrapper RF method visualized in Figure 6.3. Table 6.2 compares the feature
importance ranked by the RF model, and the number of times a feature is selected
by the ten CV folds using the Wrapper RF method. The smaller the rank, the more
important a feature is to the RF model. The top half features are all selected more
than seven times by the ten CV folds. The top rank feature valid end proportion is
selected all ten times by the ten CV folds. Thirdly, the feature importance varies a
lot for all features among the base learners of the RF model, as the black line over
each red bar denotes the range of [mean(scores) £ std(scores)].

Features valid end prop mean sp theoretical std bc norm local clustering mean sp real mean degree std degree num edges
RF importance rank 1 2 3 4 5 6 7 8
Number of times selected | 10 7 10 8 9 10 7 7

Table 6.2: Comparing feature importance indicated by RF feature importance
and CV feature selection

In the Appendix, we also visualize a single tree classifier in Figure A.5. The
classifier is trained on all 149 training observations using final set of features selected
by the wrapper method using RF. The same as the RF model above, the tree
classifier also takes the variable valid end proportion as the most important feature,
as it is structured at the root of the tree. This variable seems to be able to tell if a
case is highly unlikely to be an AF case. After the split at the root, one of the two
subsets only contains 4 of the all 64 AF cases in the training set. The other subset
still basically maintains the original class distribution. Therefore, according to the
tree, if the valid end proportion is smaller than certain value, the case is unlikely to
be an AF case. As the data has been standardized, the split point of -1.198 does
not give us a sensible threshold directly.

42

6. Results

It is not hard to see from Figure A.5 that a single tree can overfit to the training
set. After the split at the root, the left branch only has 28 of the 149 observations,
but its structure is almost as complex as the right branch. In addition, features,
such as the valid end proportion in our case, can occur more than once in a tree’s
hierarchy, introducing complicated interactions among features. Looking into the
changes of class distributions (the value variable in each node) at each depth of the
tree, we can see the tree has a hard time distinguishing the classes. All pure end
leaves contain less than ten observations, with majority of them containing only one
or two observations. Several leaves still have comparable presence of two or even all
three classes.

0 25 50 75 100
Companent 1

Figure 6.6: Scatter plots of the first two and three PCA components, computed
from selected features of all observations

Lastly, in Figure 6.6 we once again visualize the PCA representation of the
data. This time we compute five PCA components using only selected features by
the wrapper method using RF. As a comparison to the PCA representation prior
to feature selection, we also use all 180 observations to derive the components.
The accumulative variance explained is visualized in Figure A.3 in the Appendix.
Compared to the time when we used all features to compute seven PCA components,
we manage to cover as much total variability (over 80%) in the data with fewer
components. However, as shown in Figure 6.6, there is still no clear cluster division
in the two or three dimensional scatter plots of the data using the first two and
three PCA components. Observations from the three classes are still mixed up.

6.2 Statistical Analysis

To complete our analysis and compare with the results from ML, we also ana-
lyze the data using statistical methods. The remaining paragraphs of this chapter
summarizes results from statistical analysis.

As discussed before, for statistical analysis we use Logistic Lasso Regression
(LLR) to select features and model the input and output relationship at the same
time, i.e. we use an embedded method. Previously, we used ten-fold CV to choose

43

6. Results

ss0
Dummy Train

0005 001 0015 002 0025 003 0035 004 0045 005 0055 006 0065 007 0075 008 0085 009 0095 01

Figure 6.7: CV accuracies for Logistic Lasso regression with varying o

an optimal number of features that should be selected for each method. Here, we
use ten-fold CV again, but to choose a satisfactory «, the scalar of the penalty
term. The bigger the «, the larger the impact of the Lasso penalty term on the loss
function. Figure 6.7 visualizes the change of ten-fold CV accuracies of the Lasso
model with varying « using the training set. None of the accurcies is bigger than the
accuracy of the dummy classifier, which is denoted by the yellow line in the figure.
a = 0.04 is the smallest « that leads to the highest CV accuracy. As we do not
want to select an alpha that makes an LLR too restrictive, we choose a = 0.04.

«a 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07 0.075 0.08 0.085 0.09 0.095 0.1
Features | 21 16 14 13 8 6 6 6 4 4 2 2 1 1 1 0 0 0 0 0

Table 6.3: Numbers of features selected by Logistic Lasso Regression with
varying alpha

To have an idea of how many features are actually selected with varying « for our
data, we train a separate LLR for each « using all training data, and summarizes the
feature subset size of each LLR in Table 6.3. As expected, bigger o means stronger
penalty and leads to smaller model. When « is bigger than 0.06, LLR only keeps
one or even zero feature in the model. The model’s classification accuracy becomes
on par with the dummy classifier after excluding all features simply because it turns
into a dummy classifier.

Same as before, we visualize the CV feature selection counts. For each of the
20 «, we compute a ten-fold CV. The ten folds create ten LLR models, and we
count the number of times a feature is selected by the ten models. All counts are
visualized in Figure 6.8. It is not trivial to tell which features are most important
directly from Figure 6.8, so we calculate the column sums of the table in Figure 6.8.
The sums are shown in Table 6.4. The seven features with a sum of counts equal
to or bigger than 80 include number of vertices, non-normalized standard deviation
of betweeness centrality, global clustering, the Wiener index (sum of shortest path),

44

6. Results

Variable Selection Heatmap

0.005
0.01
0015
0.02
0.025
0.03
0035
0.04 -
0.045 -
0.05 -
D055 -
0.06 -
0.065 -
0.07 -
0075 -
0.08 -
0.085 -
009 -
0.095 -

01- -15

=

NN o o~ o o 5
=

RS - o o 5

[T Y o

b R SET)

-45

RIS ., . o o o

(SRR G o o o @ @~ @

[N RS~ ~ @ oW

-30

L e e i B S R RS
(LSRR S RIS —) ~ 0 W o
R o o~~~ o w0 e e @
ERCECECNNENEMES & . o o 5 5 5 5 B
RSN o o o 5 5 w5

density -
diameter -
size -
 prop -

std_degres -

num_edges -
std_bc_norm -
sum_sp_len -

num_vertices -

local_clustering -
mean_bc_norm -
mean_degres -
mean_sp_real -
std_degree_out -
valid_end_prop -
valid_start

std_bc_not_norm -

global_clustering -
mean_bc_not_norm -
mean_sp_theoretical -
num_active_bases -

num_col gen_objective_components —

Figure 6.8: Visualization of the number of times the features are selected by the
ten folds using LLR

normalized and non-normalized mean betweeness centrality and local clustering.
They are ranked by the sum of counts, from 110 to 80. The six commonly agreed
important features of the previous five feature selection methods are real mean
shortest path lengths, number of vertices, size of the file of the connection table,
non-normalized standard deviation of betweeness centrality, standard deviation of
the vertex degrees, and the Wiener index. Therefore, the three overlapping features
are number of vertices, non-normalized standard deviation of betweeness centrality,
and the Wiener index.

Feature density diameter global clustering local clustering mean bc norm mean be not norm mean degree
Total counts | 59 59 94 80 81 81 36

Feature mean sp real mean sp theoretical active bases objective components edges vertices size

Total counts | 72 36 39 45 18 110 16

Feature std be norm std be not norm std degree std degree out sum sp len valid end prop valid start prop
Total Counts | 78 95 71 26 84 45 23

Table 6.4: Sum of the numbers of times a feature is selected with varying alpha

Table 6.5 summarizes LLR model parameters and statistics. The LLR model
is trained on all training data, and a = 0.04. The test accuracy is 0.48, which is the
second best accuracy of all 35 classifiers trained previously. Log-likelihood is the
value of the log-likelihood of our model. LL-null is the value of the log-likelihood of
the model that only include constants, meaning a null model with no features but
the constants. As Log-likelihood is bigger than LL-Null, our LLR model is more
likely than a null model given the data. The LLR p-value tests the hypothesis of

45

6. Results

whether our model is no different from the null model. At a 0.05 significance level,
we can reject the hypothesis that our model is no better than the null model.

No.Obs: 149 Log-Likelihood: -148.89 LL-Null: -160.71 LLR p-value: 0.023
Df Residuals: 135 Converged: True

label=AF coef std err z P>|z| [0.025 0.975]
o constant 03727 0216 1.725 0.085 -0.051 0.796

density 0.2050 0.259 0.791 0.429 -0.303 0.713

global clustering 0.5638 0.374 1.506 0.132 -0.170 1.298

num vertices -0.0806 0.288 -0.280 0.780 -0.645 0.484

std bc norm -0.7178 0.396 -1.813 0.070 -1.494 0.058

std bc not norm 0.3868 0.309 1.251 0.211 -0.219 0.993

std degree 0.0393 0.252 0.156 0.876 -0.455 0.533
_____ label=R~ coef stderr z P>z [0.025 0975
o constant -0.3263 0.341 -0.957 0339 -0995 0.342

density 0.0744 0.282 0.264 0.792 -0.479 0.627

global clustering 0.1574 0.391 0.403 0.687 -0.609 0.924

num vertices -0.1850 0.480 -0.386 0.700 -1.125 0.755

std bc norm -0.1723 0.213 -0.807 0.419 -0.591 0.246

std bc not norm -1.6035 1.280 -1.244 0214 -4.131 0.924

std degree -0.1911 0.298 -0.641 0.521 -0.775 0.393

Training accuracy 0.45 Test accuracy 0.48

Table 6.5: Logistic Lasso Regression Results

Besides the constant term, three features of the LLR are not among the seven
features with top total counts from ten-fold CV. They are density, normalized stan-
dard deviation of betweeness centrality and standard deviation of vertex degrees.
The last one of the three is one of the six commonly agreed important features of the
previous five feature selection methods, though. In addition, normalized standard
deviation of betweeness centrality was detected from the box plots of features in
Figure 4.4.

The reference group of our LLR model is ST (standard algorithm), meaning
the model compute parameters to differentiate other classes from ST. We use ST as
the reference group because ST is the commercial optimizer used by the company.
As an example, we explain the two constants to show readers how to interpret the
parameters. The constant of AF relative to ST is the log-odds (logit) estimate for
comparing AF to ST when the values of all features are zero. When odds is bigger
than 1, meaning a class is more likely than the reference class, log odds is positive.
As all features of our training data are standardized to mean zero, the constant
can be interpreted as the log odds of a case with average values of the six input
features being an AF compared to being an ST. This constant is positive, meaning
an average case is more likely to be an AF than ST. It makes sense as the majority
class is AF. In contrast, the constant of R relative to ST is negative. As we have
more ST cases than R, it is natural that an average case is more likely to be an ST
than R.

In general, all of the p-values of P > |z| are bigger than 0.05. It means we

46

6. Results

cannot reject the hypothesis that all model parameters are zero at 0.05 significance
level. If a parameter of a feature is zero, it means the feature has no impact in
the model. Besides a constant, only the feature normalized standard deviation of
betweeness centrality has a smaller than 0.1 p-value for AF relative to ST. The
magnitude of this parameter (absolute value) is also quite big compared to other
parameters. Once again, we are conducting multi-testing: testing the statistical
significance of 14 model parameters. We should adjust the standard 0.05 through
dividing it by 14.

LASSO Path

Coefficien

[coef| / maxjcoef]

Figure 6.9: Lars path of Logistic Lasso Regression

Lastly, we visualize the Lars path of our LLR in Figure 6.9. As we go from
left to right, more and more features are allowed to enter the model. Each dashed
vertical line corresponds to a new feature entering the model. A large gap between
the dashed lines indicates a region of stability in terms of feature selection, meaning
one needs to decrease « a lot to let in a new variable. After normalized standard
deviation of betweeness centrality, global clustering, standard deviation of vertex
degree and non-normalized standard deviation of betweeness centrality have entered
the model, there is a quite large gap. It indicates the model’s reluctance to include
a new variable after having the four variables.

47

6. Results

48

[

Conclusion and Discussion

This project started with collecting data, extracting features from data and
labeling data. Three kinds of feature selection methods were applied, and each se-
lected feature subset was passed to multiple classifiers to test its robustness. The
original class distribution and classification results of the data were visualized and
compared using PCA. We also compared the results of machine learning with sta-
tistical analysis.

7.1 Result Analysis

We knew from the beginning that this project would be challenging, and the
results were consistent with our expectations. We applied several feature selection
and classification methods, but none of the features seemed to have a high discrim-
inating power, and none of our classifiers significantly outperformed the dummy
classifier. The classifiers’ test set prediction accuracies were not statistically signif-
icantly different from the dummy classifier’s accuracy. We were not able to find a
solid relation between the considered features and the performance of our pairing
algorithms. The low dimensional representation of the data from PCA only showed
one cluster of mixed classes, rather than three separate clusters with one for each
class.

There are several possible reasons for these results. Firstly, our data may be
insufficient. The data is a mixture of carefully maintained (historical) customer
data and online data of the flight schedules of the first week of May 2014. On the
one hand, we are not sure whether it makes sense to mix these two kinds of data.
Having access to this online data does not naturally make it a good complement to
the customer data. On the other, the quality of the online data is questionable, as
many of them encountered errors while passing through the company’s optimizer.
Moreover, these error-raising cases were simply discarded. Normally, sub-sampling
of data requires random sampling. Sub-sampling by the standard of whether it can
be solved by the pairing optimizer without any error is not random. In addition, we
only have 180 observations, which is a quite small data set considering the complexity
of the task at hand. If there exists a relation between the considered features and

49

7. Conclusion and Discussion

algorithm performance difference, more data might send stronger signals of input
and output relations, making the job easier for the feature selection methods and
making it possible for these methods to select from more candidate features. More
data would also make it possible to use more complicated ML models. More data
will also provide us with a larger test set.

Secondly, we used a rather complicated way to classify the cases, i.e. a com-
plicated labeling method. How we classify the cases is what needs to be learned by
classifiers. If cases cannot be easily classified, they become challenging to a classifier.
However, to decide which is the best algorithm on a case in a meaningful way, we
do need to consider both the quality of the solution and the execution time.

Thirdly, the considered features might not be the main factors influencing al-
gorithm performance. We mainly extracted features from the connection tables,
consisting of both intuitive and complex features. As we do not have prior knowl-
edge about the connection tables, we only covered relatively common features of
directed acyclic graphs (DAG). It might be the case that some special DAG feature
is informative for our pairing problem.

Lastly and most importantly, there might not exist a relation between any mea-
surable features of pairing problems and the performance difference of optimization
algorithms. Deeper features of a pairing problem may be much more influential, but
cannot be measured directly as a feature before solving the problem. However, if
we extract features after the problems are partially solved, it will take much time
and cannot serve the goal of selecting the best algorithm before actually solving the
problem.

7.2 Findings

We did get some interesting findings from our project. Firstly, the seven aviation
rule sets are not as different as expected, or at least they do not influence the
connection tables as much as expected. Applying the seven rule sets to a case only
gave us seven highly correlated observations.

Secondly, according to our labeling method, the default (standard) algorithm
currently used by the pairing optimizer did not always perform the best. Most of the
times AF (the algorithm with early random locking of some pairings) was the best
one on a case. R (the algorithm with extra randomness) seemed to be on par with
the standard optimizer, as it was the best algorithm for almost the same number
of cases as the standard one. Nevertheless, we used a complex method to rank the
performance of different algorithms. The standard algorithm was not always the
best because it was not always the fastest, but it might still give the lowest cost of
all.

Thirdly, some features are repeatedly selected by different feature selection

20

7. Conclusion and Discussion

methods, and might be interesting to look into. They are number of vertices, stan-
dard deviation of betweeness centrality, and the Wiener index (sum of shortest
paths). A vertex denotes a flight to be covered, and thus the number of vertices
might indicate the scale of the search space of the pairing algorithm. Betweeness
centrality measures the centrality of a node in a graph, and thus the standard de-
viation of them measures the differences of centrality of all nodes. If the standard
deviation of betweeness centrality is large, we have both some nodes that many
other nodes need to pass through to go further along the shortest path, and some
nodes that lie on the periphery. The Wiener index measures the sum of shortest
paths, and might be an indicator of the total length of possible pairings.

Besides findings specific to the project, we have also learned some valuable
lessons on a more general level. Data is the core of a data analysis project. Collecting
data can take a long time. How the data should be collected requires careful design.
Before starting a data science project, it is crucial to consider whether and when
the data will be available, whether and how well the accessible data is suitable to
answer the research question of the project, and to evaluate whether enough data
can be collected given the complexity of the project.

With regard to machine learning (ML), clearly it has limitations as with all
methods. ML learns from examples in data, and thus data quality is crucial to
the success of an ML project. If there are too many noises in the data, ML will
learn the noises. If there is not much to be learned in the data, we cannot expect
ML to magically find a solid relation between input and output. As with traditional
statistical analysis, we need to carefully design analysis procedures and validation of
findings. Moreover, ML is not necessarily more favorable than traditional statistical
methods, especially when the data size is small. When we have abundant data and
a large feature set, ML can save us from manual explorations. However, as shown in
our results, when the data size is small, a simple statistical model is comparable to
ML models with regard to performance. More importantly, it is easier to interpret.
We can directly interpret each feature’s impact on the output variable from the
parameters of our LLR. This is not possible with KNN and non-trivial with the
tree ensembles. ML algorithms should not be treated as black boxes and findings
should always be interpreted and reasoned. After all, for this project, we want to
understand a relation, not simply to find any relation. Without reasoning, a finding
might be worthless, because if we look long enough we will always find some random
features that happen to correlate with the output.

7.3 Future work

Before any further attempt, one should consider whether the desired classifi-
cation can be achieved only using measurable features of pairing problems. If the
answer is yes, an obvious next step for this project is to collect more data with
quality. One can also explore with how to classify the cases in a more straightfor-

51

7. Conclusion and Discussion

ward way. In addition, one might look into the different rule sets and check if they
really are quite similar, as they did not influence the connection tables as much as
expected. If the rule sets actually differ, it means they cannot be reflected in the
connection tables. In such a case the rule sets can be the new source for interesting
features, for the rules should impact on the difficulty of a pairing problem. They
were excluded from the project, as the company believed these rules were reflected
in the structures of the connection tables. After going through all these considera-
tions, and after more data is collected, one may consider more complex ML models,
such as a deep neural network (DNN). Using a DNN can be helpful when the input
and output relation is complex, but it requires much more data.

52

[1]

[10]

[11]

Bibliography

Andersson, E., Housos, E., Kohl, N.; and Wedelin, D. (1998) ‘Crew pairing
optimization’; in Yu, G. (eds) Operations research in the airline industry. New
York: Springer Science + Business Media, pp 228 - 258

Beyer, K., Goldsten, J., Ramakrishnan, R., Shaft, U. (1999) ‘When Is “Nearest
Neighbor” Meaningful?’, Database Theory — ICDT’99, pp 217 - 235

Cover, T. and Hart, P. (1967) ‘Nearest neighbor pattern classification’,
IEEE Transactions on Information Theory, 13(1), pp 21 - 27, doi:
10.1109/T1T.1967.1053964

Dash, M. and Liu, H. (1997) ‘Feature selection for classification’, Intelligent
data analysis, 1 (1-4), pp 131 - 156

Dudani, S. A. (1976) ‘The Distance-Weighted k-Nearest-Neighbors Rule’, IEEE
Transactions on Systems, Man, and Cybernetics, 6(4), pp 325 - 327, doi:
10.1109/TSMC.1976. 5408784

Erdogan, G., Haouari M., Matoglu M. O., and Ozener, O. O. (2015) ‘Solving a
large-scale crew pairing problem’, Journal of the Operational Research Society,
66(10), pp 1742 - 1754. doi:10.1057 /jors.2015.2

Geurts, P., Ernst, D., Wehenkel, L. (2006) 'Extremely Randomized Trees’,
Machine Learning, 63(1), pp 3 - 42. doi: 10.1007/s10994-006-6226-1

Geurts, P. and Wehenkel, L. (2000) 'Investigation and Reduction of Discretiza-
tion Variance in Decision Tree Induction’, Furopean Conference on Machine
Learning, 1810, pp 162 - 170, doi: 10.1007/3-540-45164-1_ 17

Goldman, M (2008) Statistics for Bioinformatics. Available at:
https://www.stat.berkeley.edu/ mgoldman/Section0402.pdf (Accessed: 05
June 2019)

Gomes CP, Selman B. (1997) ’'Algorithm portfolio design: theory vs. practice’.
In: Proceedings of UAI-97, pp. 190-7

Guo, H. (2003) Algorithm Selection for Sorting and Probabilistic Inference: A

53

Bibliography

[22]

[23]

[24]

o4

Machine-Learning Approach. PhD thesis, Kansas State University

Guo, H. and Hsu, W. H. (2007) ’A machine learning approach to algorithm se-
lection for NP-hard optimization problems: a case study on the MPE problem’,
Annals of Operations Research, 156, pp 61-82

Hall, M.A. and Smith, L.A. (1999) ‘Feature selection for machine learning:
comparing a correlation-based filter approach to the wrapper’, Proceedings of
the Twelfth International Florida Artificial Intelligence Research Society Con-
ference, 235, pp 239 - 243

Hastie, T., Tibshirani, R., and Friedman, J. (2009) The Elements of Statistical
Learning. 2"d edn. Springer

Hooker, J.N. (1995) 'Testing Heuristics: We Have It All Wrong’, Journal of
Heuristics, 1, pp 33 - 42

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013) An Introduction
to Statistical Learning. New York: Springer Science+Business Media

John, G.H., Kohavi R. and Pfledger K. (1994) ‘Irrelevant Feature and the Subset
Selection Problem’; in Cohen, W.W. and Hirsh H. (eds) Machine Learning:
Proceedings of the Eleventh International Conference. Morgan Kaufmann, San
Francisco, CA, pp 121 - 129

Kanda, J., Carvalho, A., Hruschka, E., and Soares, C. (2011) ’Selection of
algorithms to solve traveling salesman problems using meta-learning’. Neural
Networks, 8(3), pp 117 - 128

Kohavi, R. and John, G.H. (1997) ‘Wrappers for feature subset selection’, Ar-
tificial Intelligence, 97(1-2), pp 273 - 324

Koller, D. and Sahami, M. (1996) ‘Toward optimal feature selection’, In: Pro-
ceedings of the Thirteenth International Conference on Machine Learning. Mor-
gan Kaufman, San Francisco, CA, pp 284 - 292

Liu, Z., Jiang, F., Tian, G., Wang, S., Sato, F., Meltzer, S., and Tan M.
(2007) ‘Sparse logistic regression with lp penalty for biomarker identification’,
Statistical Applications in Genetics and Molecular Biology, 6(1), Article 6

Liu, H. and Yu, L. (2005) ‘Toward integrating feature selection algorithms
for classification and clustering’, IEEFE Transactions on Knowledge and Data
Engineering, 17(4), pp 491 - 502

Ma, S. and Huang J. (2008) ‘Penalized feature selection and classification in
bioinformatics’, Briefings in bioinformatics, 9(5), pp 392 - 403

Rice JR (1976). 'The algorithm selection problem’, Advances in Computers, pp
65-118.

Bibliography

[25]

[36]

[37]

Ramakrishnan N, Rice JR, Houstis EN (2002) ‘GAUSS: an online algorithm
selection system for numerical quadrature’, Advances in Engineering Software,
33(1), pp 27-36

Saeys, Y., Inza, I. and Larranaga, P. (2007) ‘A review of feature selection
techniques in bioinformatics’, Bioinformatics, 23(19), pp 2507 - 2517

Smith-Miles, K. (2008) "Towards insightful algorithm selection for optimisa-
tion using meta-learning concepts’, textitIEEE international joint conference
on neural networks, pp 4118-4124

Smith-Miles, K., Baatar, D., Wreford, B., and Lewis, R. (2014) ‘Towards ob-
jective measures of algorithm performance across instance space’, Computers
¢ Operations Research, 45, pp 12 - 24. doi: 10.1016/j.cor.2013.11.015

Smith-Miles K., James R., Giffin J., Tu Y. (2009) 'Understanding the relation-
ship between scheduling problem structure and heuristic performance using
knowledge discovery’, Lecture notes in computer science, 5851, pp 89-103

Smith-Miles K. and Lopes L. (2011) ’Generalising algorithm performance in
instance space: a timetabling case study’, Lecture notes in computer science,
6683, pp 524-39

Smith-Miles, K. and Lopes, L. (2012) "Measuring instance difficulty for combi-
natorial optimization problems’, textitComputers & Operations Research, 39,
pp 875 - 889

Smith-Miles K. and van Hemert J. (2010) 'Understanding TSP difficulty by
learning from evolved instances’, Lecture notes in computer science, 6073, pp
266-80

Smith-Miles K. and van Hemert J. ’Discovering the suitability of optimisation
algorithms by learning from evolved instances’, Annals of Mathematics and
Artificial Intelligence, doi: 10.1007/s10472-011-9230-5; published online 19th
April 2011.

Stutzle T, Fernandes S. (2004) 'New benchmark instances for the QAP and the
experimental analysis of algorithms’, Lecture notes in computer science, 3004,
pp 199-209

Tang, J., Alelyani, S., and Liu, H. (2014) ‘Feature Selection for Classification:
A Review’, in Aggarwal, C (eds) Data Classification: Algorithms and Applica-
tions. CRC Press, pp 37- 64

Tibshirani, R. (1996) ‘Regression shrinkage and selection via the lasso’, Journal
of the Royal Statistical Society. Series B (Methodological), pp 267 - 288

Tuv, E., Borisov, A., Runger, G., and Torkkola, K. (2009) ‘Feature selection

55

Bibliography

26

with ensembles, artificial variables, and redundancy elimination’, The Journal
of Machine Learning Research, 10, pp 1341 - 1366

Webb, A.R. (2002) ‘Feature selection and extraction’, in Webb, A.R. Statistical
Pattern Recognition. John Wiley & Sons, LTD, pp 305 - 344

Xu, Z., Huang, G., Weinberger, K. Q. and Zheng, A. X., (2014) ‘Gradient
boosted feature selection’, in KDD. ACM, pp 522 - 531

Yu, L. and Liu, H. (2003) ‘Feature selection for high-dimensional data: A fast
correlation-based filter solution’, in Proceedings of the Twentieth International
Conference on Machine Learning, Washington DC, pp 856 - 863

Zou, H. and Hastie, T. (2005) ‘Regularization and variable selection via the elas-
tic net’, Journal of the Royal Statistics Society: Series B (Statistical Methodol-
ogy), 67(2), pp 301 - 320

A

Append

ix 1

o IO T R R I N
b i 1 Sag

[A+ i 56
L | 280 g 35
1 al g e ;

T ™ I N A R 7 IS T
i oy BE: | IR | IR - Rt I A N am_ .

3

v

ki
4

ﬁ
|
[
| :
|
|

43

: s 5 ' 2
i b
5] ,L g \Li JF) QR B 5 Nl B

Figure A.1: Pair plots of features

A. Appendix 1

Accumulative variance explained ratio

Figure A.2:

Accumulative variance explained ratio

Figure A.3:

II

10 Total variance explained

0.8

06

0.4

0.2 q

0.0 T T T T T T T
0 1 2 3 4 5 & 7 B

Rank of componant

Accumulative variance explained by the PCA components using all
observations and all features

Total variance explained

10

0.8

0.6

0.4

0.2 4

00

0 i 2 3 3 5 &
Rank of component

Accumulative variance explained by the PCA components using all
observations and selected subset of features

A. Appendix 1

Figure A.4: Visualization of the single decision tree model

II1

