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ABSTRACT	
	

Hepatitis	 B	 virus	 (HBV)	 infection	 is	 a	 global	 health	 issue	 that	 is	 responsible	 for	

approximately	900,000	deaths	each	year,	by	inducing	liver	cirrhosis	and	hepatocellular	

carcinoma	(HCC).	A	few	markers	are	used	to	classify	HBV	infection	and	monitor	treatment	

efficacy,	including	HBV	DNA,	surface	antigen	(HBsAg)	and	e	antigen	(HBeAg)	in	serum	as	

well	 as	HBV	DNA	 and	RNA	 in	 liver	 tissue.	 The	 recent	 discovery	 of	 the	 receptor	NTCP	

facilitates	in	vitro	studies	of	HBV.		

	

The	aims	of	this	thesis	were	(I)	to	characterize	a	new	marker	of	HBV	infection,	HBV	RNA	

in	 serum	 (II)	 to	 investigate	 in	 vitro	 the	 neutralizing	 effect	 of	 HBV	 encoded	 subviral	

(HBsAg)	 particles	 (III)	 to	 develop	 and	 apply	 a	 new	method	 to	 discriminate	 viral	 and	

integrated	DNA	in	liver	tissue	(IV)	to	analyze	focal	differences	within	the	liver	of	HBV	and	

hepatitis	D	virus	(HDV)	and	(V)	 to	explore	HBV	RNA	profile	 in	 liver	biopsies	by	digital	

PCR.	

	

High	levels	of	serum	HBV	RNA	was	found	in	the	majority	of	95	patient	samples	utilized	in	

this	study.	This	RNA	was	of	full	genome	length,	appeared	in	fractionation	together	with	

HBV	 DNA.	 Sequencing	 data	 supported	 that	 HBV	 RNA	 in	 serum	 represents	 virus-like	

particles	with	failing	reverse	transcription	of	the	pregenomic	RNA	(pgRNA).	

	



		
	

	

The	role	of	subviral	particles	(SVP)	during	HBV	infection	was	explored	in	HepG2-NTCP	

cell	 line.	 The	 results	 support	 that	 SVP	 functions	 as	 a	 decoy	 to	 neutralize	 antibodies	

synthesized	by	the	host.		

	

A	 novel	 droplet	 digital	 PCR	 (ddPCR)	 method	was	 developed	 and	 applied	 on	 70	 liver	

biopsies	 to	 quantify	 circular	 and	 linear	HBV	DNA,	 in	 order	 to	 estimate	 the	 amount	 of	

integrated	HBV	DNA	in	the	human	genome.	A	complimentary	study	on	the	same	material	

was	 performed	 to	 obtain	 an	 RNA	 profile	 using	 ddPCR	 to	 amplify	 six	 target	 regions.	

Together,	 these	 results	 indicate	 that	 integrated	 DNA	 represents	 the	 majority	 of	

intrahepatic	HBV	DNA	in	late	stages	of	infection	and	is	responsible	for	maintaining	high	

HBsAg	levels	in	serum.	The	results	also	suggest	that	reduced	transcription	of	pgRNA	via	

a	novel	mechanism	may	contribute	to	low	HBV	replication	in	HBeAg-negative	phase.		

	

ddPCR	analysis	of	a	range	of	HBV	markers	was	used	to	study	focal	differences	in	infection	

in	 15-30	 pieces	 of	 liver	 explant	 tissue	 from	 six	 patients	 with	 HBV	 or	 HDV	 induced	

cirrhosis.	Large	differences	in	focality	was	observed	especially	in	patients	with	low	degree	

of	viral	replication	or	with	HDV	coinfection	and	the	results	also	support	expression	of	S	

RNA	from	integrated	HBV	DNA.	HDV	infection	was	less	focal	with	presence	of	high	HDV	

RNA	levels	in	the	absence	of	HBV.		

	

In	summary,	this	thesis	compilation	contributes	to	better	understanding	of	HBV	serum	

and	tissue	markers	and	their	relationship	to	replication	and	integration.	

	

Keywords	:	hepatitis	B	virus,	NTCP,	HBV	DNA,	HBV	RNA,	subviral	particles,	integrations,	

droplet	digital	PCR	
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SAMMANFATTNING	PÅ	SVENSKA	
	

	

Infektion	med	hepatit	B	 virus	 (HBV)	 är	 ett	 globalt	 hälsoproblem	som	 står	 för	 ungefär	

900	000	dödsfall	årligen	genom	att	orsaka	skrumplever	och	levercancer.	De	biomarkörer	

som	 idag	används	 för	att	klassificera	HBV-infektionen	och	övervaka	behandlingseffekt	

inkluderar	HBV-DNA,	ytantigenet	HBsAg,	e-antigenet	HBeAg	i	serum	samt	HBV-DNA	och	

HBV-RNA	i	levervävnad.	Nyligen	upptäcktes	HBV-receptorn,	NTCP,	vilket	underlättar	in	

vitro-studier	av	HBV.	

	

Syftet	med	denna	avhandling	var	att:	(I)	karakterisera	en	ny	biomarkör	för	HBV-infektion	

(HBV-RNA	 i	 serum);	 (II)	 undersöka	 den	 neutraliserande	 effekten	 av	 HBV-kodade	

subvirala	partiklar	(HBsAg)	in	vitro;	(III)	utveckla	och	applicera	en	ny	metod	för	att	skilja	

på	 viralt	 och	 integrerat	 HBV-DNA	 i	 levervävnad;	 (IV)	 analysera	 fokala	 skillnader	 i	

förekomst	 av	 HBV	 och	 hepatit	 D-virus	 (HDV)	 i	 levervävnad;	 (V)	 utforska	 HBV-RNA-

profiler	i	leverbiopsier	med	digital	PCR.	

	

I	 en	majoritet	 av	 serumprover	 från	95	 patienter	 uppmättes	höga	 nivåer	 av	HBV-RNA.	

Detta	 RNA	 motsvarade	 hela	 HBV-genomets	 längd	 och	 förekom	 vid	 fraktionering	 i	

partiklar	med	samma	densitet	som	de	med	HBV-DNA.	Sekvensering	indikerade	att	HBV-

RNA	 i	 serum	motsvarar	viruslika	partiklar	där	omvänd	 transkription	av	pregenomiskt	

RNA	(pgRNA)	ej	fungerat.	

	

Funktionen	av	HBsAg-bärande	 subvirala	partiklar	 (SVP)	 i	HBV-infektion	undersöktes	 i	

cellinjen	 HepG2-NTCP.	 Resultaten	 stöder	 hypotesen	 att	 HBsAg/SVP	 minskar	 den	

virusneutraliserade	effekten	av	antikroppar	riktade	mot	virusets	ytprotein.	

	

En	 ny	 metod,	 baserad	 på	 droplet	 digital	 PCR	 (ddPCR),	 utvecklades	 och	 användes	 för	

analys	av	70	leverbiopsier.	Metoden	kvantifierade	cirkulärt	och	linjärt	HBV-DNA	för	att	

kunna	 uppskatta	 mängden	 integrerat	 HBV-DNA	 i	 det	 humana	 genomet.	 En	

kompletterande	 studie	 på	 samma	material	 utfördes	 för	 att	 ta	 fram	 virus-RNA-profiler	

genom	 att	 med	 ddPCR	 amplifiera	 sex	 olika	 målregioner.	 Sammantaget	 pekar	 dessa	

resultat	på	att	integrerat	HBV-DNA	utgör	den	största	andelen	av	intrahepatiskt	HBV-DNA	



		
	

	

i	senare	stadier	av	infektionen,	och	att	detta	integrerade	DNA	uttrycks	så	att	höga	nivåer	

av	HBsAg	i	serum	bibehålls.	Resultaten	tyder	också	på	att	nedreglering	av	pgRNA	via	en	

ny	mekanism	skulle	kunna	bidra	till	lägre	replikation	av	HBV	i	HBeAg-negativa	patienter.	

	

ddPCR-analys	av	 flera	olika	HBV-markörer	användes	 för	att	studera	 fokala	skillnader	 i	

HBV-infektionen	i	15-30	bitar	av	leverexplantat	från	sex	patienter	med	HBV-	eller	HDV-

orsakad	skrumplever.	Stora	skillnader	 i	 fokalitet	observerades	särskilt	 i	patienter	med	

låggradig	 virusreplikation	 och	 resultaten	 stöder	 hypotesen	 att	 S-RNA	 uttrycks	 från	

integrerat	 HBV-DNA.	 HDV-infektion	 (hos	 två	 av	 patienerna)	 var	 jämntare	 utspridd	 i	

levervävnaden	med	höga	nivåer	av	HDV-RNA	oberoende	av	HBV.	

	

Sammanfattningsvis	 bidrar	 denna	 avhandling	 till	 bättre	 förståelse	 av	 serum-	 och	

levermarkörer	vid	HBV-infektion	och	deras	koppling	till	replikation	och	integration.	
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ABBREVIATIONS 
 
 

 
AuAg	 Australian	Antigen	

HBV	 Hepatitis	B	virus	

HCC	 Hepatocellular	carcinoma	

NA	 Nucleoside	/	nucleotide	analogues	
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HBcAg	 Hepatitis	B	core	antigen	

HBsAg	 Hepatitis	B	surface	antigen	

HBeAg	 Hepatitis	B	“e”	antigen	

VP	 Viral	Particles	

SVP	 Subviral	particles	

NTCP	 Sodium-taurocholate	cotransporting	polypeptide	

cccDNA	 Covalently	closed	circular	DNA	

PreC	RNA	/	PC	 Precore	RNA	/	precore	

PgRNA	 Pregenomic	RNA	

dslDNA	 Double	stranded	linear	DNA	

ssDNA	 Single	stranded	DNA	

ALT	 Alanine	aminotransferase	

ORF	 Open	reading	frame	

BCP	 Basal	core	promoter	

RT	 Reverse	transcriptase	/	reverse	transcription	

HDV	 Hepatitis	delta	virus	
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RT-PCR	 Reverse	transcriptase	PCR	

ddPCR	 Droplet	digital	PCR	
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1 INTRODUCTION	TO	HEPATITIS	B	VIRUS		

	

In	1967,	Dr	Blumberg	and	his	associate	discovered	a	new	protein	in	serum	of	patients	that	

underwent	blood	transfusions,	specifically	in	Australian	aboriginals.	This	protein	named	

“Australian	 Antigen”	 (AuAg)	 became	 the	 first	 of	 many	 discoveries	 confirming	 the	

presence	 of	 viral	 hepatitis	 [1].	 In	 1970,	 Dr	 Davis	 S	 Dane	 described	 42nm	 virus-like	

particles	in	patients	with	AuAg	and	named	them	“Dane	Particles”	[2]	which	is	now	known	

as	Hepatitis	B	Virus	(HBV).	

	

The	viral	 infection	 caused	by	HBV	still	 remains	a	global	public	health	 issue	 in-spite	of	

decades	of	research	and	availability	of	a	preventive	vaccine	since	1982.	HBV	belongs	to	

the	family	of	hepatotropic	DNA	viruses	that	can	cause	both	acute	(infection	cleared	within	

6	months	of	exposure)	and	chronic	(infection	that	persists	>6	months)	 infection	of	 the	

liver.	The	World	Health	Organization	as	of	2017	estimates	that	2	billion	individuals	are	or	

have	 been	 infected	 with	 HBV	 of	 which	 257	 million	 have	 a	 chronic	 infection	 [3].	

Approximately	900,000	deaths	each	year	is	caused	by	HBV	related	complications	such	as	

liver	cirrhosis	and	hepatocellular	carcinoma	(HCC)	[4].		

	

HBV	can	be	 transmitted	percutaneously	via	 sharing	of	blood	products,	 through	sexual	

transmission	or	by	means	of	vertical	 transmission,	 i.e.,	 to	a	newborn	 from	an	 infected	

mother.	According	to	the	World	Health	Organization’s	(WHO)	statistics,	about	80-90%	of	

infants	and	30-40%	of	children	under	the	age	of	6	who	are	infected	with	HBV	will	develop	

a	 chronic	 disease,	 but	 when	 acquired	 as	 adults	 95%	 will	 clear	 the	 infection.	 The	

pathogenesis	of	complications	involves	immune	mediated	killing	of	hepatocytes	causing	

liver	injury	with	subsequent	regeneration	by	clonal	expansion	of	hepatocytes	eventually	

leading	 to	 scarification	 of	 the	 liver	 (fibrosis)	 and	 later	 on	 cirrhosis	 and	 HCC.	 Other	

contributing	factors	for	pathogenesis	are	integration	of	viral	DNA	into	the	host	genome	

and	 oncogenic	 effects	 of	 viral	 protein	 [5].	 Patients	 showing	 signs	 of	 progressive	 liver	

damage	are	given	 long-term	treatment	with	nucleoside	/	nucleotide	analogues	(NA)	 in	

order	to	prevent	these	complications,	but	with	it	arises	the	possibility	for	resistant	strains	

to	emerge	via	mutation	[6-8].	
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During	the	course	of	this	PhD,	various	aspects	of	HBV	infection	was	investigated	in	order	

to	 answer	 some	 pressing	 questions.	 Interesting	 associations	 were	 explored,	 and	

intriguing	hypotheses	are	presented	as	a	compilation	with	the	hope	that	these	studies	will	

aid	 better	 understanding	 of	 disease	 progression	 and	 assist	 the	 clinical	 community	 in	

development	of	new	treatments	for	patients	with	HBV.			

	

 Molecular	structure	

	

HBV	is	classified	as	one	of	the	smallest	known	DNA	viruses	measuring	approximately	42	

nm	in	diameter	belonging	to	the	family	of	Hepadnaviridae	viruses.	It	has	a	3.2	kb	sized	

relaxed	circular	(rcDNA)	genome	that	is	partially	double	stranded	(ds)	with	a	complete	

minus	 (-)	strand	and	an	 incomplete	plus	 (+)	 strand	 that	 is	 covalently	bound	to	a	viral	

polymerase	at	its	5’	end.	This	genome	is	enclosed	within	an	icosahedral	nucleocapsid	core	

protein	 (core	 antigen,	HBcAg)	 that	 is	 surrounded	 by	 viral	 surface	 protein	 (hepatitis	B	

surface	antigen,	HBsAg).	

	

	Figure	1:	HBV	particle	containing	the	partially	double	stranded	genome	with	complete	–	strand	and	
an	incomplete	+	strand	covalently	bound	to	the	viral	polymerase	

	

HBV	genome	has	four	overlapping	reading	frames	(ORF)	that	codes	for	viral	proteins	(i)	

precore	/	core	gene	for	nucleocapsid	core	and	secretory	“e”	protein	(HBeAg)	(ii)	PreS	/	S	

gene	for	small	(S	HBsAg),	middle	(M	HBsAg)	and	large	(L	HBsAg)	envelope	proteins	(iii)	

X	gene	for	regulatory	X	protein	and	(iv)	polymerase	gene	for	viral	polymerase.	
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Figure	2:	HBV	genome	that	is	partially	double	stranded.	Represented	here	are	4	overlapping	reading	

frames	responsible	for	translation	of	viral	proteins.		

	

Along	with	HBV	DNA	containing	viral	particles	(VP),	an	excess	production	of	22	nm	sized	

rod	and	circular	empty	subviral	particles	(SVP)	comprised	of	only	HBsAg	can	be	detected	

in	the	patient’s	serum.		

	

	

Figure	 3:	 Sphere	 and	 rod	 forms	 of	 HBV	 subviral	 particles	 with	 large,	 middle	 and	 small	 surface	

proteins	that	lack	a	viral	genome.	
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 Viral	entry	and	replication	

	

Although	 presence	 of	 hepadnaviruses	 in	 extrahepatic	 tissues	 such	 as	 lymph	 nodes,	

kidneys,	 skin	 and	 colon	 have	 been	 detected,	 the	 only	 target	 for	 these	 viruses	 are	

hepatocytes	 [9]	 because	 of	 the	 presence	 of	 cell	 specific	 receptors	 expressed	 by	 the	

hepatocytes.		

	

The	 first	 step	 in	 viral	 entry	 involves	 interaction	 of	 the	 pre	 S1	 domain	 of	 viral	 surface	

antigen	 with	 hepatocyte	 specific	 heparin	 sulphate	 proteoglycan	 [10]	 followed	 by	

attachment	 to	 the	 sodium	 taurocholate	 co-transporting	 polypeptide	 (NTCP)	 receptor	

[11].		The	uptake	of	the	virus	into	the	hepatocyte	is	hypothesized	to	take	place	via	clathrin	

or	 caveolin-1	mediated	 endocytosis	 	 through	which	 the	 encapsidated	 viral	 genome	 is	

transported	into	the	host	cell	[12,	13].	The	microtubules	in	the	cytoplasm	then	transport	

the	nucleocapsid	containing	the	viral	genome	and	the	polymerase	into	the	cell's	nucleus	

where	 the	 capsid	 disassociates	 and	 the	 rcDNA	 is	 released	 [14].	 A	 sequence	 of	 highly	

precise	 steps	 to	 convert	 rcDNA	 into	 the	highly	 stable	mini	 chromosome	cccDNA	 takes	

place.	The	incomplete	+	strand	is	elongated	to	the	5’	end	of	the	–	strand.	After	this	step,	

the	 polymerase	 is	 removed	 followed	 by	 the	 elimination	of	 eight	 terminally	 redundant	

nucleotides	from	the	–	strand.	At	this	juncture	the	5’	and	the	3’	ends	of	the	+	and	the	–	

strand	can	be	ligated	and	supercoiled	to	form	cccDNA	[15].	

	

It	has	been	estimated	that	around	1-50	copies	of	the	cccDNA	remain	within	each	infected	

hepatocyte	 as	 mini	 chromosomes	 that	 serves	 as	 a	 transcriptional	 template	 for	 viral	

replication.	Transcription	of	cccDNA	results	in	the	formation	of	four	mRNAs	of	sizes	3.5kb,	

2.4kb,	2.1kb	and	0.7kb	that	are	translated	into	seven	viral	proteins	(Figure	4).	The	3.5kb	

genomic	 mRNA	 includes	 precore	 (preC)	 mRNA	 that	 is	 translated	 into	 secretory	 “e	

antigen”	HBeAg	protein	and	pregenomic	RNA	(pgRNA)	that	 is	 translated	 into	core	and	

polymerase	 proteins	 needed	 for	 viral	 replication.	 They	 are	 larger	 that	 genome	 length	

because	 of	 the	 presence	 of	 terminal	 redundancies	 on	 both	 3’	 and	 5’	 ends.	 The	 other	

transcripts	 termed	 subgenomic	 RNAs	 are	 represented	 by	 PreS1	 mRNA	 (2.4	 kb)	 that	

translates	into	L	HBsAg,	the	PreS2/S	mRNA	(2.1	kb)	for	M	and	S	HBsAg,	and	X	mRNA	(0.7	

kb)	for	regulatory	HBx	protein.		
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Figure	 4	 :	 Genomic	 placements	 of	 different	 ORFs	 and	 genome	with	 polyadenylation	 at	 3’	 and	 5’	

regions	are	both	represented	in	a	linear	form.	All	RNAs	transcripts	of	different	length	with	a	5’	cap	

and	a	3’	polyadenylation	(An)	is	represented.			

	

The	 pgRNA	 and	 precore	 RNA	 encompasses	 two	 highly	 conserved	 sequence	 regions	

termed	as	epsilon	(e)	that	forms	a	secondary	stem	loop	structure	at	the	5’	and	3’	regions.	

The	 5’	 e	 structure	 directs	 encapsidation	 of	 RNA	 along	 with	 viral	 polymerase	 that	

undergoes	reverse	transcription	to	form	functionally	infectious	DNA	containing	virions	

[16-18].	However,	only	pgRNA	is	encapsidated	to	form	infectious	DNA	[19]	while	precore	

RNA	is	cleaved	in	the	endoplasmic	reticulum	and	is	secreted	as	HBeAg.	Figure	5	describes	

highly	 precise	 steps	 required	 to	 convert	 pgRNA	 into	 infectious	 viral	 genome.	 These	

replication	 steps	 generate	 encapsidated	 relaxed	 circular	 HBV	 DNA	 (rcDNA),	 that	 can	

either	(i)	acquire	HBsAg	and	be	secreted	as	viral	particles	or	(ii)	be	recycled	within	the	

hepatocyte	to	increase	or	maintain	cccDNA	pool	[20].		

	

Along	with	 the	mature	 virion,	 secretion	of	 empty	 nucleocapsids,	 RNA	 containing	 viral	

particles	 and	 to	 some	 extent	 double	 stranded	 linear	 forms	 (dslDNA)	 has	 also	 been	

observed	[21,	22].	During	plus	strand	synthesis,	primer	translocation	failure	may	cause	

viral	 genome	 to	 remain	 linear	 instead	 of	 circularizing	 to	 form	 rcDNA.	 This	 double	
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stranded	linear	(dslDNA)	can	recirculate	into	the	hepatocyte	nucleus	and	be	integrated	

into	the	host	chromosome	[23].		

	

Figure	5	:	Sequence	of	steps	following	pgRNA	encapsidation	is	represented.	(A)	shows	linear	pgRNA	

within	 capsid.	 (B)	Binding	of	 polymerase	 to	 the	e	 loop	at	 the	5’	 end.	 (C)	 Synthesis	 of	 short	 oligo	

followed	by	translocation	of	the	polymerase	and	the	oligo	to	the	direct	repeat	1	(DR1)	region	where	

minus	strand	synthesis	is	initiated.	(D)	Minus	strand	synthesis	is	accompanied	by	degradation	of	the	

pgRNA	template	where	only	DR1	sequence	and	the	short	oligo	from	the	5’	end	remains.	This	acts	as	

precursor	for	the	plus	strand	synthesis	and	after	a	template	switch	(represented	in	E)	plus	strand	

synthesis	begins	and	subsequently	circularized	(represented	in	F).		
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Figure	6:	HBV	replication	cycle	

	

 Serological and intrahepatic markers 

	

Clinical	 staging	 of	 HBV	 infection	 is	 primarily	 done	 using	 quantifiable	 serological	 and	

intrahepatic	markers.	HBV	is	what	is	known	as	a	stealth	virus,	that	depending	on	the	age	

at	which	infection	is	acquired,	can	replicate	for	decades	before	immune	flare	is	initiated.	

Replication	of	HBV	starts	 immediately	post	 infection	and	mature	viral	DNA	along	with	

HBsAg	becomes	detectable	in	the	blood.	Presence	of	HBsAg	for	longer	than	6	months	is	

defined	clinically	as	“chronic	infection”	and	its	clearance	is	usually	accompanied	by	the	

appearance	 of	 anti-HBs	 antibodies.	 Therefore,	 anti-HBs	 is	 an	 accepted	 marker	 to	

determine	 end-point	 for	 treatment	 [24].	HBeAg	 secreted	 into	 the	 blood	 from	 infected	

hepatocytes	is	a	marker	to	determine	viral	replication	[25,	26].	High	HBV	DNA	levels	may	

however	be	present	also	in	patients	seronegative	for	HBeAg,	because	mutations	especially	

in	the	precore	region,	may	emerge	and	preclude	synthesis	of	HBeAg,	particularly	in	HBV	

genotypes	B,	D	or	E	[27-29].	Presence	of	HBV	RNA	in	serum	first	reported	in	2001	has	

been	suggested	as	a	diagnostic	marker	since	then,	in	particular	for	monitoring	the	effect	
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on	cccDNA	during	antiviral	treatment	[30-33].	During	treatment	of	HBV	infection	using	

NA,	HBV	DNA	is	reduced	to	levels	below	the	quantification	limit,	after	which	the	effect	of	

treatment	 cannot	 be	 assessed.	 Quantification	 of	 HBsAg	 in	 serum	 was	 proposed	 to	

represent	 cccDNA,	but	 it	was	 later	 found	 that	 this	was	 found	 to	not	be	 true,	 since	 the	

decline	of	HBsAg	levels	was	minimal.	Since	HBV	RNA	is	not	directly	reduced	by	drugs	that	

inhibit	reverse	transcription,	it	should	be	useful	as	serum	marker	representing	cccDNA	

levels	in	the	liver	[34].	

	

Intrahepatic	 cccDNA	 a	 highly	 stable	 mini-chromosome	 is	 the	 template	 needed	 to	

synthesize	HBV	RNA	transcripts	necessary	for	virus	production.	Reduction	of	viral	load	

by	 two	 log10	 units	 during	 HBeAg	 negative	 stage	 is	 caused	 by	 the	 loss	 of	 intrahepatic	

cccDNA	 copies	 [35,	 36].	 In	duck	model,	 it	 has	been	 found	 that	 the	 number	 of	 cccDNA	

molecules	may	 vary	 over	 time,	with	mean	number	 of	 cccDNA	per	 infected	 hepatocyte	

ranging	between	3	and	9	[36,	37].	Because	of	its	role	in	maintaining	chronic	infection	and	

ability	to	avoid	drug	induced	clearance	[38,	39],	quantifying	cccDNA	and	understanding	

its	 relationship	 to	 other	 viral	 markers	 are	 important.	 Many	 approaches	 have	 been	

designed	to	quantify	cccDNA	in	the	liver	[36,	40,	41]	but	because	of	its	presence	in	low	

concentrations,	 conventional	 approaches	 such	 as	 southern	 blot	 are	 not	 adequately	

sensitive	[42].	A	challenge	for	these	assays	is	to	be	able	to	differentiate	between	cccDNA	

from	rcDNA,	therefore	a	polymerase	chain	based	assay	was	designed	to	target	the	gap	in	

plus	 strand	 region	 that	 would	 be	 present	 only	 in	 cccDNA	 [36,	 43].	 In	 addition	 to	

intrahepatic	molecular	markers	 such	as	 cccDNA	and	HBV	DNA	 immunohistochemistry	

can	be	performed	to	visualize	HBsAg,	HBcAg,	HBxAg	and	pre-S	peptides	on	liver	tissue.	

	

Although	liver	biopsies	provide	valuable	data,	this	invasive	sample	collection	method	has	

to	 a	 large	 extent	 been	 replaced	 by	 non-invasive	 techniques	 such	 as	 elastography	

assessment	of	liver	fibrosis,	a	trend	that	will	hamper	future	research.	A	drawback	to	using	

biopsy	 tissues	 is	 the	 risk	of	 sampling	error,	where	 the	material	 analyzed	 is	not	a	 true	

representation	of	the	disease	or	infection	state.		
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 Natural history of infection 

	

Diverse	nomenclatures	have	been	defined	to	describe	the	clinical	phases	of	HBV	infection.	

Discussed	 here	 are	 phases	 according	 to	 European	 Association	 for	 the	 Study	 of	 Liver	

(EASL)	guidelines	on	HBV	infection	management	(i)	HBeAg	positive	chronic	HBV	infection	

(ii)	HBeAg	positive	 chronic	hepatitis	B	 (iii)	HBeAg	negative	 chronic	HBV	infection	 (iv)	

HBeAg	negative	chronic	hepatitis	B	(v)	HBsAg	negative	phase	[24].	

	

1.4.1 HBeAg positive chronic HBV infection / Immune tolerance  

HBV	infection	that	is	acquired	during	early	childhood	(<2	years),	usually	through	vertical	

transmission	 at	 birth	 or	 later	 horizontal	 transmission,	 usually	 induces	weak	 immune	

responses	 for	 several	 decades.	 During	 this	 phase	 of	 HBV	 infection	 (often	 termed	 the	

immune	tolerance	phase),	HBV	infects	almost	all	 liver	cells	and	replicates	actively	with	

typically	 >	 107	 IU/mL	 HBV	 DNA	 detected	 in	 patient	 serum.	 The	 individual	 remains	

asymptomatic	 at	 this	 stage	 and	 shows	 normal	 to	 mild	 elevation	 of	 alanine	

aminotransferase	(ALT)	levels	with	normal	liver	histology	and	detectable	HBeAg	detected	

in	 serum.	 So	 far,	 treatment	 interventions	 during	 immune	 tolerant	 phase	 has	 not	 been	

recommended	[44-48].	

	

1.4.2 HBeAg positive chronic hepatitis B 

Typically	seen	to	last	from	the	3rd	to	4th	decade	post	infection.	This	phase	is	characterized	

by	active	immune	mediated	clearance	of	HBV	infection,	during	which,	infected	liver	cells	

are	eradicated,	causing	elevation	in	ALT	levels.	The	duration	and	level	of	cellular	damage	

to	the	liver	determines	if	the	patient	gets	HBV	mediated	fibrosis	or	cirrhosis.	Eventually	

most	 patients	 seroconvert	 to	 anti-HBe	with	 suppression	of	HBV	DNA.	However,	 some	

patients	 fail	 to	 control	 viral	 HBV	 replication	 thereby	 progressing	 to	 HBeAg	 negative	

hepatitis.		

	

1.4.3 HBeAg negative CHB / inactive carrier  

The	detection	of	anti-HBe	along	with	undetectable	or	significant	reduction	of	viral	DNA	

and	substantial	reduction	or	normalization	of	ALT	levels	in	serum	of	CHB	patient	indicates	
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clinical	remission.	HBV	DNA	levels	vary	between	<	2000	–	20,000	IU/mL	at	this	point	and	

in	some	patients	this	can	lead	to	HBsAg	seroconversion	[49].		

	

1.4.4 HBeAg negative chronic hepatitis 

Progression	from	being	an	inactive	carrier	to	an	individual	with	chronic	infection	is	highly	

variable	and	 is	associated	with	 factors	 like	age	at	which	 infection	was	acquired,	age	of	

HBeAg	seroconversion,	duration	of	infection	and	genotype.	Increase	in	serum	HBV	DNA	

and	ALT	levels	have	been	observed	in	long	term	follow	up	studies	in	the	absence	of	HBeAg	

[49-53].	This	 is	mainly	due	to	the	presence	of	mutations	 in	precore	region	of	 the	viral	

genome	 that	 survive	 as	 an	 escape	 mutant	 and	 causes	 relapse	 of	 chronic	 infection	

(discussed	in	detail	under	the	topic	genomic	variations)[54,	55].	

	

1.4.5 HBsAg negative phase 

During	this	phase	patients	undergo	loss	of	HBsAg	with	or	without	development	of	anti-

HBs	along	with	anti-HBc	antibodies	and	show	normal	ALT	levels	along	with	undetectable	

HBV	DNA	and	presence	of	cccDNA	in	liver	tissue.	In	some	cases	development	of	“Occult	

HBV”	takes	place,	where	patient	remains	negative	 for	HBsAg	 in	the	presence	of	low	or	

undetectable	circulating	viral	 load.	Loss	HBsAg	that	occurs	either	spontaneously	or	by	

treatment	interference	although	considered	as	“functional	cure”	does	not	eliminate	the	

probability	 of	 HCC.	 Development	 of	 cirrhosis	 before	 HBsAg	 seroclearance	 has	 been	

associated	with	HCC	incidence	thereby	increasing	the	need	for	surveillance	after	reaching	

treatment	endpoint	[56-58].					
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Figure	 7	 :	 History	 of	 HBV	 infection	 as	 defined	 by	 EASL	 guidelines.	 There	 is	 no	 clear	 distinction	

between	these	phases	and	only	a	rough	estimate	is	defined	here.		

	

 Integrations 

	

Similarities	between	HBV	and	retroviruses	have	been	discussed	including	the	potential	

for	successfully	integrate	into	the	host	chromosomes	[59].	But	unlike	retroviruses	that	

need	 integration	 for	replication,	HBV	integrations	are	defined	as	replicative	dead	ends	
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with	the	potential	to	produce	viral	proteins	even	in	the	absence	of	active	replication	[60,	

61].	Primer	translocation	failure	during	plus	strand	synthesis	results	in	the	formation	of	

double	 stranded	 liner	 DNA	 (dslDNA)	which	 separates	 the	 precore/core	 gene	 from	 its	

promoter.	 Therefore,	 this	 form	 can	 neither	 synthesize	 pregenomic	 RNA	 nor	 generate	

capsids.	Since	dslDNA	is	the	precursor	for	integration	[62],	only	S	gene	that	remains	intact	

is	suspected	to	be	active	and	be	capable	of	producing	HBsAg	even	in	the	absence	of	HBV	

replication	 as	 indicated	 by	 low	 HBV	 DNA.	 This	 phenomenon	 was	 first	 observed	 in	

hepatocellular	carcinoma	cell	 line	PLC/PRF/5	[63]	and	has	been	described	 in	a	recent	

study	conducted	on	chimpanzees	[61].	Integrations	have	been	observed	at	early	stages	of	

infection	and	has	been	associated	with	incidence	of		HCC	and	affect	survival	of	infected	

individuals	[64].	Double	stranded	breaks	in	host	chromosomes	have	been	established	as	

the	preferential	site	for	integrations	[65],	where	the	host’s	cellular	mechanisms	integrates	

viral	 into	 chromosomal	 DNA	 damage	 response	 (DDR).	 It	 has	 been	 accepted	 that	 DDR	

pathways	 lead	 to	 HBV	 integrations,	 however	 the	 exact	 methodology	 by	 which	 this	 is	

achieved	is	debated.	Some	studies	suggest	non-homologous	end	joining	(NHEJ)	[65]	for	

double	stranded	break	repair	are	responsible	for	viral	integrations	whereas	others	argue	

that	it	occurs	via	microhomology-mediated	end	joining	(MMEJ)	method	[66].		

	

 Genomic	variations	

	

1.6.1 Genotypes and Sub-genotypes 

The	 polymerase	 present	 in	 mature	 HBV	 lacks	 proof	 reading	 ability	 causing	 the	 virus	

within	the	capsid	to	contain	genomic	sequences	with	variations	and	has	resulted	in	an	

array	 of	 viral	 strains.	 When	 the	 genomic	 sequences	 have	 a	 variation	 >8%	 they	 are	

classified	 as	 genotypes	 and	with	 variation	within	 a	 genotype	 between	 4-8%	 they	 are	

defined	 as	 sub-genotypes.	 Ten	 different	 genotypes	 and	 30	 sub-genotypes	 have	 been	

identified	 so	 far	 with	 a	 distinct	 geographical	 distribution	 pattern.	 Variations	 in	 these	

genotypes	also	extend	to	their	clinical	and	virological	features.	Largely	discussed	are	the	

observations	with	regards	to	disease	progression	[67],	treatment	response,	development	

of	 cirrhosis	 and	 capability	 to	 advance	 toward	 HCC	 [68,	 69].	 Two	 studies	 comparing	

genotypes	B	and	C	showed	that	the	latter	has	the	potential	in	association	with	HBeAg	to	

cause	 severe	 liver	 disease	 [27,	 70].	 Results	 from	 a	 Taiwanese	 study	 observed	 higher	
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frequencies	of	cirrhosis	and	HCC	in	genotype	C	when	compared	to	genotype	D	[69].	The	

same	study	also	discussed	larger	incidents	of	HCC	in	non-cirrhotic	patients	compared	to	

genotype	B.	In	a	European	study	comparing	genotype	A	and	D,	the	former	was	seen	to	

cause	more	chronic	infections	[71]	and	showed	larger	incidents	of	remission	post	HBeAg	

seroconversion	than	the	latter	[72].	Frequencies	of	HBV	related	deaths	are	reported	to	be	

higher	in	patients	with	genotype	F	when	compared	to	genotype	A	[72].		

	

These	studies	 further	press	on	the	 importance	of	understanding	differences	caused	by	

genotypes	on	viral	load,	clinical	manifestations	and	response	to	treatment;	support	better	

comprehension	and	aid	in	advancement	of	clinical	practices.	

	

Figure	8:	Geographical	distribution	of	HBV	genotypes	

	

In	addition	to	the	lack	of	polymerase’s	proof-reading	ability,	genetic	variability	because	of	

mutations	 are	 a	 product	 of	 immune	 selective	 pressure	 and	 drug	 resistance.	 A	 study	

conducted	on	woodchucks	in	1989	approximated	1	error	occurring	every	107	bases	[73,	

74].	Selection	pressure	from	immune	responses	that	target	wild	type	viruses	may	lead	to	

emergence	of	genomes	with	mutations.	Mutations	have	been	observed	in	all	4	ORFs	with	
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their	contribution	to	clinical	outcomes	and	attribution	to	disease	progression	extensively	

researched	[75].		

	

1.6.2 S ORF mutation  

A	highly	conserved	amino	acid	(aa)	region	termed	as	“a”	determinant	in	HBsAg	is	selected	

as	 a	 target	 for	 vaccine	 against	 HBV	 as	well	 as	 for	 clinical	 diagnosis	 of	 disease	 status.	

Mutations	in	this	region	was	first	documented	in	a	patient	that	had	vertically	transmitted	

HBV	even	after	vaccination	with	both	HBV	DNA	and	anti-HBs	presence	in	serum	[76].	Lack	

of	epitope	recognition	can	thus	lead	to	vaccine	failure	[76]	and	unreliable	results	from	

diagnostic	assays	[77].		

	

1.6.3 Precore / core ORF mutation 

The	 precore	 and	 core	 regions	 are	 responsible	 for	 the	 production	 of	 two	proteins,	 the	

structural	core	and	the	secretory	‘e’	protein.	HBeAg	is	not	required	for	viral	production	

but	has	been	suspected	to	serve	as	a	decoy	to	curb	immune	response	against	core	[78],	

but	immune	tolerance	is	eventually	lost	and	anti-HBe	is	produced	along	with	reduction	

and	 in	many	 patients,	 clearance	 of	 HBV	 DNA.	 Failure	 to	 clear	 HBV	 DNA	 is	 seen	with	

emergence	 of	 several	 mutations	 in	 the	 basal	 core	 promoter	 (BCP)	 and	 precore	 (PC)	

regions	 suggesting	 selection	 due	 to	 immune	 pressure	 [79].	 The	 most	 common	 PC	

mutation	occurs	at	position	1896	where	guanine	(G)	is	replaced	by	adenine	(A)	(G1896A)	

which	 induces	 a	 stop	 codon	 in	 HBeAg	 sequence	 and	 abrogates	 HBeAg	 synthesis	 [80].	

Another	 common	mutation	 is	 seen	at	1899	where	guanine	 (G)	 is	 replaced	 by	 adenine	

G1899A	and	this	mutation	was	found	both	by	itself	and	along	with	A1896T	mutation	[80].	

Mutations	 in	 the	 BCP	 region,	 1762	 (A1762T)	 and	 1764	 (G1764A)	 have	 also	 been	

associated	with	contributing	to	the	reduction	in	HBeAg	expression	and	is	correlated	with	

higher	HCC	incidents	[81].	Low	HBV	DNA	quantifications	are	observed	in	patients	with	PC	

mutations	 along	with	 lower	 ALT	 levels	 that	 suggest	 lesser	 liver	 damage	 compared	 to	

infection	with	wild	type	virus.	However	BCP	mutations	such	as	thymine	replacement	with	

cytosine	 (C)	 at	 1753	 (T1753C)	 and	 also	 at	 C1766T	 reduce	 HBe	 secretion	 via	

transcriptional	 mechanisms	 and	 have	 shown	 increase	 in	 HBV	 DNA	 and	 ALT	 levels	

therefore	suggesting	higher	prevalence	of	progression	towards	cirrhosis	[82,	83].	
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1.6.4 X ORF mutation 

The	 X	 gene	 is	 only	 found	 in	 mammalian	 hepadnavirus	 and	 has	 important	 functions	

including	ability	to	establish	an	infection	[84],	promote	viral	replication	[85],	and	support	

development	of	HCC	[86].	The	mutations	in	the	X	ORF	have	been	correlated	to	enhanced	

progression	towards	liver	cirrhosis	(LC)	and	HCC	[83,	87-89].				

	

1.6.5 Polymerase ORF mutation 

Polymerase	 ORF	 encodes	 for	 the	 polymerase	 protein	 that	 is	 encapsidated	 along	 with	

pgRNA	and	is	responsible	for	many	steps	that	are	necessary	for	successful	completion	of	

HBV	replication	cycle	[90-92].	A	mutation	 in	the	RT	region	of	 the	polymerase	ORF	can	

dictate	 and	 alter	 replication	 events.	 Investigations	 regarding	 naturally	 occurring	

mutations	have	been	undertaken	in	the	past	few	years	because	it	could	give	information	

about	 possible	 drug	 resistance	 [93,	 94].	 This	 may	 alter	 a	 clinician’s	 decision	 about	

treatment	of	a	patient	with	these	mutations.	Associations	between	different	mutations	in	

the	RT	 region	 and	 viral	 load,	degree	 of	 liver	 disease	 have	 been	 published	 [94-96].	 RT	

inhibitors	 are	 commonly	 used	 for	 the	 treatment	 of	 HBV	 but	 can	 induce	 a	 selection	

pressure	 that	 leads	 to	 proliferation	 of	 drug-resistant	 HBV	 strains.	 One	 of	 the	 most	

common	mutations	 induced	 by	 the	 antiviral	 drug	 Lamivudine	 is	 seen	 in	 the	 tyrosine-

methionine-aspartate	(YMDD)	motif	of	HBV	polymerase	around	nucleotide	552	[97].	This	

mutation	 however	 is	 associated	 with	 low	 serum	 titers	 of	 the	 virus	 and	 shows	 low	

probability	to	cause	adverse	liver	disease	[8].	

	

 Treatment 	

	

Two	classes	of	drugs	have	been	approved	for	the	treatment	of	CHB,	immunomodulating	

agents	 and	 nucleoside	 /	 nucleotide	 analogues	 in	 order	 to	 reduce	 viral	 load	 during	

infection	 to	 achieve	 seroconversion	 of	 HBeAg	 and	 within	 short	 duration	 to	minimize	

immune	mediated	liver	damage	and	prevention	of	adverse	events	such	as	LC	and	HCC.	

The	 drugs	 used	 for	 management	 of	 HBV	 that	 exists	 now	 only	 manage	 to	 keep	 viral	

replication	under	 control,	 and	 does	 not	 eliminate	 the	 highly	 stable	mini	 chromosome,	

cccDNA	[38,	98-100].		
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1.7.1 Immunomodulators 

Interferons	are	naturally	produced	proteins	that	are	synthesized	by	cells	in	response	to	

viral	 infections	 to	 induce	 immune	 response	 in	 retaliation.	 Immunomodulators	 such	as	

interferon	alpha	(IFN-a)	and	Pegylated	interferon	(PEG-IFN)	are	used	in	CHB	treatment	

because	of	its	potential	to	bind	to	cellular	receptors	and	activate	protein	synthesis	needed	

for	 cellular	 defense	 against	 invading	 virus	 [101].	 These	 drugs	 cannot	 however	 be	

prescribed	to	patients	who	are	affected	by	decompensation	of	the	liver	such	as	cirrhosis	

[102].	

	

1.7.2 Nucleoside / Nucleotide analogues 

Drugs	 under	 these	 classifications	 were	 initially	 developed	 for	 treatment	 against	

herpesvirus	 and	 human	 immunodeficiency	 virus	 (HIV)	 because	 of	 their	 potential	 to	

impair	polymerase	function	and	can	be	adapted	to	HBV	treatment.	There	are	currently	six	

drugs	 that	 are	 approved	 for	 the	 treatment	 of	 CHB,	 (i)	 lamivudine	 (ii)	 entecavir	 (iii)	

adefovir	(iv)	tenofovir	(v)	tenofovir	alafenamide	(vi)	telbivudine.	These	medications	are	

taken	orally	and	are	safe	to	use	however,	since	they	only	block	RT,	long	term	treatment	is	

required.	The	formation	of	drug	induced	resistant	mutations	was	a	main	problem	earlier,	

since	lamivudine	resistance	developed	in	15-32%	of	patients	within	one	year	of	treatment	

[8].	The	currently	used	drugs	tenofovir	and	entecavir	however,	have	high	barriers	against	

development	of	resistance	mutations	[103-105].	

	

 Cell culture & animal models 

	

Cell	culture	and	animal	models	facilitate	better	understanding	of	a	disease	and	aids	with	

treatment	development.	Due	to	specific	host	requirements	for	HBV,	there	are	limitations	

on	animal	models	that	can	be	used	for	research	[106].	Some	animals	such	as	chimpanzees,	

tupaias,	ducks	and	human	chimeric	mice	have	been	used	to	study	HBV	[107].	Of	these,	the	

immune	 response	of	 chimpanzees	 are	 the	 closest	 to	humans	 and	 it	was	 precisely	 this	

reason	that	led	to	the	use	of	this	model	to	test	efficacy	of	preventive	HBV	vaccine	[108].	

	

Cell	culture	systems	such	as	hepatoma	cell	lines	HepG2	and	Huh7	have	been	available	for	

a	long	time	now	and	have	supported	research	regarding	transcription	and	synthesis	of	
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new	 virion	 particles	 [109-111].	 Even	 though	 they	 are	 hepatoma	 cell	 lines	 and	 are	

available	in	plenty,	they	do	not	support	infection	due	to	the	lack	of	the	receptor	NTCP.	

HepRG	 cells	 can	 support	 infection,	 however	 they	 require	 complicated	 differentiation	

steps	in	a	fashion	similar	to	the	induced	hepatocytes	(iHep)	[112].	Comparing	these	two	

cell	lines,	HepRG	has	lower	efficiency	of	infection	than	iHep	and	can	support	the	entire	life	

cycle	of	the	virus.	Primary	human	hepatocytes	(PHH)	is	another	system	that	is	used	to	

study	 HBV	 infection	 and	 although	 this	 is	 the	 closest	 condition	 possible	 to	mimicking	

natural	state	of	infection,	it	is	less	efficient,	more	expensive	and	is	hugely	dependent	on	

donor	availability	[113].	NTCP	was	recently	discovered	as	the	cellular	receptor	for	HBV	/	

HDV	viral	entry	[11,	114].	The	receptor	was	then	expressed	in	the	HepG2	hepatoma	cell	

line	to	make	it	susceptible	to	HBV	/	HDV	infection.	This	discovery	opened	up	new	avenues	

to	explore	different	facets	of	infection	and	replication.	Although	these	cells	can	be	infected	

there	 are	 certain	 limitations	 that	 needs	 to	 be	 addressed.	 This	 system	 requires	 large	

quantities	of	input	and	does	not	promote	long	term	infection;	since	this	is	cancerous	cell	

line,	 it	 lacks	many	 of	 the	 pathways	 needed	 to	 study	 host-virus	 interactions;	 and	 post	

infection	only	a	small	amount	of	cccDNA	is	expressed;	although	the	cell	system	can	be	

infected,	it	needs	in	addition	polyethylene	glycol	(PEG)	to	enhance	infection	by	promoting	

glycosaminoglycan	binding	and	dimethyl	sulphoxide	(DMSO)	to	aid	infection.	
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2 INTRODUCTION	TO	HEPATITIS	DELTA	VIRUS	

	

In	1977	a	new	antigen	associated	with	HBV	was	discovered	in	patients	who	were	HBsAg	

positive	 [115].	 It	 was	 later	 in	 1980	 using	 chimpanzees	 as	 a	 model	 system	 that	 delta	

antigen	 was	 determined	 to	 be	 a	 defective	 infectious	 agent	 that	 interferes	 with	 HBV	

replication	[116].	Since	then	many	studies	have	shown	hepatitis	delta	virus	(HDV)	to	be	a	

satellite	virus	to	HBV	that	requires	surface	antigen	production	from	HBV	to	envelope	its	

genome	to	gain	access	into	hepatocytes	for	successful	infection	[116].		

	

HDV	is	the	smallest	known	RNA	virus	that	infects	mammals	[117]	and	is	the	only	member	

of	 the	 deltavirus	 genus.	 Transmission	 of	 HDV	 happens	 in	 the	 same	 routes	 as	 HBV,	

percutaneously	via	sharing	of	blood	products	or	through	sexual	transmission	or	in	rare	

cases	 via	 vertical	 transmission.	 A	 study	 in	 2003	 estimated	 that	 5%	 of	 the	 world’s	

population	with	HBV	also	has	HDV	[118],	but	according	to	WHO	many	countries	do	not	

test	 for	 HDV	 co-infection	 in	 HBV	 positive	 patients	 and	 in	 countries	 such	 as	Mongolia	

where	60%	of	the	population	tested	positive	for	HBV	may	also	be	infected	with	HDV	[3].		

	

HDV	may	be	acquired	as	a	simultaneous	infection	with	HBV	causing	mild	to	severe	acute	

hepatitis,	where	development	into	chronic	HDV	infection	is	rare	occurring	in	less	that	5%	

of	 the	 cases	 [119].	 If	 an	 individual	 with	 chronic	 HBV	 is	 superinfected	 with	 HDV,	

development	of	chronic	HDV	infection	is	almost	inevitable,	leading	to	LC	more	often	and	

faster	than	in	a	patient	with	HBV	monoinfection	[116,	120].	

	

 HDV genome and replication 

	

HDV	 is	 a	 small	 single	 stranded	 RNA	 virus	 with	 a	 circular	 genome	 containing	 1679	

nucleotides.	With	74%	intramolecular	base	pairing	[121],	 the	genome	forms	a	rod	like	

structure	that	can	be	found	along	with	delta	antigen	(small,	S-dAg	and	large,	L-dAg).	

	

For	viral	replication,	HDV	engages	in	a	mechanism	termed	as	“the	double	rolling-circle	

amplification”	where	it	uses	the	host’s	cellular	polymerase	to	synthesize	a	complimentary	

RNA	strand	called	the	antigenomic	d	RNA	and	an	mRNA	with	5’	cap	and	a	polyadenylated	
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3’	end	that	codes	for	the	delta	antigen	protein	[122].	With	the	production	of	antigenome,	

viral	replication	continues	and	the	virus	is	secreted	with	an	envelope	containing	HBsAg	.	

	

Figure	 9:	 (A)	 Single	 stranded	 HDV	 with	 large	 and	 small	 forms	 of	 d-antigen.	 (B)	 HDV	 genome	

surrounded	by	S,	M	and	L	surface	proteins	from	HBV.		

	

Figure	10	:	HDV	replication	cycle	aided	by	HBsAg	synthesis	by	HBV.	Highlighted	in	pink	is	the	“Rolling	

circle	mechanism”	of	HDV	replication.	
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Two	variants	of	delta	antigen	are	synthesized	from	the	mRNA	and	they	have	two	distinct	

functions.	 The	 S-dAg	 is	 responsible	 for	 viral	 replication	 where-as	 the	 L-dAg	 inhibits	

replication	and	promotes	virion	assembly.	Therefore,	 the	balance	 in	 the	production	of	

these	proteins	is	very	important	to	establish	a	successful	infection.		

	

 HBV suppression by HDV 

	

It	has	been	recorded	in	cell	culture	and	animal	model	systems	that	the	presence	of	HDV	

reduces	 the	 expression	 of	HBV	 [123].	 The	mechanism	 through	which	 this	 is	 achieved	

remains	unknown,	but	in	cell	culture	model	systems	the	L-dAg	and	S-dAg	have	shown	the	

ability	to	activate	MxA	gene	to	increase	IFN-a	response	towards	HBV	and	activate	cellular	

immune	protein	synthesis	to	control	infection	[124-126].	

	

 Treatment 

	

Since	HBsAg	 is	necessary	 for	 successful	HDV	 infection	and	subsequent	 replication,	 the	

current	preventive	vaccine	for	HBV	that	targets	and	neutralizes	the	surface	antigen	works	

very	effectively	against	HDV	[127].	But	once	infection	is	actived	the	treatment	options	are	

quite	bleak.	Since	HDV	only	requires	surface	antigen	from	HBV,	blocking	HBV	replication	

is	not	effective	[128],	and	the	only	treatment	for	HDV	currently	available	is	INF-a	[129].	

Treatment	with	INF-a	has	shown	significant	improvements	in	histological	response	and	

loss	of	HDV	RNA	and	HBsAg	in	some	patients	[130],	but	long	term	studies	have	also	shown	

relapse	in	most	patients	with	failure	to	clear	HDV	[131].	A	few	new	treatment	options	for	

chronic	HDV	infections	are	underway,	including	Myrcludex	B	that	blocks	HBV/HDV	viral	

entry	into	hepatocytes	[132],	but	in-vivo	it	has	been	shown	that	HDV	can	propagate	via	

cell	division	even	in	the	presence	of	this	drug	[133].		
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3 AIMS	

	

The	overall	aim	of	this	project	was	to	explore	and	understand	different	facets	of	chronic	

hepatitis	 B	 virus	 infection	 by	 means	 of	 studying	 patient	 serum	 and	 liver	 tissue	 from	

biopsies	and	explanted	liver.		Specific	aims	were	as	follows:				

	

Paper	I	

To	quantify	and	characterize	HBV	RNA	 in	 serum	 in	 terms	of	 sequence	 length,	particle	

association,	concentration	and	correlations	with	HBV	RNA	in	liver	tissue	and	HBV	DNA	in	

serum		

	

Paper	II	

To	investigate	in	vitro	the	influence	of	subviral	particle	on	infection	and	explore	its	effects	

on	anti-HBs.	

	

Paper	III	

To	develop	a	new	method	to	analyze	HBV	DNA	in	liver	tissue	in	order	to	discriminate	viral	

and	integrated	DNA.	

	

Paper	IV	

To	analyze	intrahepatic	focal	differences	in	the	patients	undergoing	transplantation	due	

to	HBV	or	HBV/HDV	related	liver	disease.	

	

Paper	IV	

To	explore	HBV	RNA	profiles	in	liver	biopsies	of	patients	representing	different	stages	of	

chronic	infection	by	using	droplet	digital	PCR	method.	
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4 MATERIALS	AND	METHODS	

	

 Materials 

	

Paper	I	:	95	patient	serum	from	a	previous	study	that	included	160	samples	was	stored	

and	available	 for	 further	analysis	 [134].	These	samples	represent	both	HBeAg	positive	

and	negative	groups	belonging	to	genotypes	A,	B,	C	and	D.	One	anonymous	patient	sample	

with	HBV	DNA	concentration	of	108	IU/mL	that	also	tested	positive	for	HBeAg	and	HBsAg	

was	included	in	this	study.	

	

Paper	II	:	Two	anonymous	serum	samples	one	with	positive	HBeAg	and	HBsAg	with	HBV	

DNA	concentration	with	108	IU/mL	and	the	other	negative	for	HBsAg	and	anti-HBc	from	

a	vaccinated	 individual	were	selected.	Both	these	samples	were	also	negative	 for	anti-

HCV,	anti-HIV,	anti-HAV	IgM	and	positive	for	anti-HAV	IgG.	

	

Paper	 III	 :	 76	 stored	 liver	 biopsies	 out	 of	 160	 that	were	 included	 in	 a	 previous	 cross	

sectional	study	were	available	for	further	analysis	[134]	of	which	70	were	positive	with	

digital	PCR	method.	The	samples	chosen	represented	genotypes	A,	B,	C	and	D,	with	liver	

damage	 ranging	 from	mild	 to	 severe,	 either	 with	 or	 without	 HBeAg.	 They	 were	 also	

negative	 for	 HIV,	 hepatitis	 C	 or	 D	 and	 were	 untreated	 for	 HBV	 when	 biopsy	 was	

performed.		

	

Paper	IV	:	This	study	included	tissue	material	obtained	from	6	patients	undergoing	liver	

transplant	because	of	HBV	related	chronic	liver	disease	where	all	patients	presented	liver	

cirrhosis.	 Two	 patients	 had	 HCC;	 one	 patient	 with	 cirrhosis	 developed	 acute	 liver	

decompensation	brought	on	by	acute-on-chronic	hepatitis	and	presented	with	very	high	

serum	HBV	DNA;	two	patients	were	also	co-infected	with	HDV.	Samples	were	collected	

during	surgery	and	subsequently	stored	at	-80°C	until	it	was	prepared	for	analysis.	

	

Paper	V	:	76	of	the	77	liver	biopsies	that	were	used	in	paper	III	were	also	used	for	analysis	

in	this	work.	
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Figure	11	:	Schematic	representation	of	patient	samples	used	in	different	papers	compile	din	this	

thesis.	

	

 Methods 

	

4.2.1 Nucleic acid extraction from serum & tissues  

Total	 nucleic	 acid	 extraction	was	 carried	out	on	 both	 tissue	 and	 serum	samples	 in	 an	

automated	MagNA	Pure	LC	system	(Roche	Applied	Science)	according	to	manufacturer’s	

protocol.	 For	 serum	 extraction	MagNA	 Pure	 LC	 total	 nucleic	 acid	 isolation	 kit	 (Roche	

Applied	Science)	was	used	and	for	 tissue	material	MagNA	Pure	LC	DNA	isolation	kit	 II	

(Roche)	was	used.		

 

4.2.2 DNase and RNAse treatment 

A	 portion	 of	 the	 total	 nucleic	 acid	 extracted	 was	 treated	 with	 TURBO	 DNA-free	 kit	

(Thermo	Fisher	Scientific)	in	a	rigorous	two-step	protocol	according	to	manufacturer’s	

instruction	to	remove	contaminating	DNA,	for	RNA	analysis.		
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A	Serum	sample	was	 treated	with	RNAse	 (Thermo	Fisher	Scientific)	prior	 to	and	post	

MagNA	Pure	LC	(Roche	Applied	Science)	extraction	to	quantify	free	HBV	RNA	content	in	

serum.	

	

4.2.3 Polymerase chain reaction 

Molecular	biology	techniques	have	come	a	long	way	since	establishing	the	Watson-Crick	

model	in	1953.	The	polymerase	chain	reaction	(PCR)	method	was	invented	in	1983	and	

allows	amplification	of	specific	DNA	segment	of	interest.	It	was	based	on	the	identification	

of	the	species	Thermus	aquaticus		in	1969	that	requires	a	temperature	of	70	–	79°C		for	its	

growth	[135],	and	the	isolation	of	its	polymerase	termed	as	the	“Taq	Polymerase”	in	1976	

[136],	an	enzyme	that	could	withstand	high	temperatures.	This	enzyme	is	used	to	copy	a	

specific	DNA	 sequence	 in	 a	 PCR	 reaction	 that	 is	 supplemented	with	 (i)	 a	 target	 to	 be	

amplified	(ii)	oligonucleotide	sequences	called	primer	that	are	specific	to	the	target	(iii)	

nucleotides	needed	for	creating	new	target	sequences	(iv)	Taq	polymerase	to	place	each	

nucleotide	in	the	right	order	for	sequence	extension.		

	

4.2.3.1 Reverse Transcriptase PCR 

The	only	difference	between	a	standard	PCR	and	a	reverse	transcriptase	PCR	(RT-PCR)	is	

the	 template	 used	 for	 amplification.	 The	 former	 uses	 double	 stranded	 DNA	 (dsDNA)	

whereas	the	latter	uses	RNA	as	starting	material.	During	an	RT-PCR,	an	enzyme	termed	

as	reverse	transcriptase	is	used	to	create	a	complimentary	DNA	(cDNA)	strand	to	the	RNA.	

This	enzyme	also	contains	the	RNAse	H	activity	where	the	RNA	template	is	degraded	after	

copying.	Now,	using	the	new	cDNA	as	template	a	second	strand	is	synthesized	to	have	a	

complete	dsDNA.	Amplification	of	 this	newly	synthesized	DNA	is	carried	out	using	the	

principles	of	standard	PCR.		

	

4.2.3.2 Quantitative PCR and quantitative RT PCR 

A	quantitative	 PCR	 (qPCR)	 is	 a	method	 that	 is	widely	 used	 in	 clinical	 diagnostics	 and	

research	 alike.	 There	 are	 typically	 two	methods	 available	 to	 quantify	 the	 sequence	 of	

interest,	(i)	dye-based	method	and	(ii)	probe-based	method.	In	the	first	method,	a	green	

fluorescent	 dye	 that	 intercalates	 with	 all	 double	 stranded	 products	 is	 used	 and	 the	

increase	in	fluorescence	is	measured	at	each	cycle	[137].	The	technique	that	is	extensively	

used	 in	this	study	 is	probe	based	PCR	method	that	 just	like	the	dye-based	method	can	
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measure	in	“real	time”	the	amplification	of	target	sequence.	This	procedure	makes	use	of	

a	strand	specific	probe	that	is	tagged	with	a	fluorophore	on	one	end	and	a	quencher	on	

the	other.	When	kept	in	close	proximity,	the	quencher	quenches	that	fluorescence	emitted	

by	the	fluorophore.	The	polymerase	in	addition	to	adding	specific	nucleotides	for	strand	

extension	has	a	 second	 responsibility	 to	 remove	any	double	 stranded	sequences	 in	 its	

path	and	 replace	 it	with	available	nucleotides	this	 is	 termed	as	 “exonuclease	activity”.	

Therefore,	 when	 it	 encounters	 the	 probe,	 it	 cleaves	 the	 probe	 thereby	 separating	 the	

fluorophore	from	the	quencher	and	the	fluorescence	now	emitted	can	be	captured	and	

measured.	An	advantage	to	using	this	technique	is	the	ability	to	measure	multiple	targets	

in	the	same	reaction	which	was	pursued	on	paper	IV	and		V	using	the	digital	PCR	method.	

For	an	RNA	 target,	 reverse	 transcriptase	 (RT)	enzyme	was	 included	 to	 create	 the	 first	

cDNA	strand	and	the	standard	PCR	protocol	was	followed.		

	

4.2.3.3 Digital PCR 

The	term	Digital	PCR	(ddPCR)	was	coined	in	1999	when	two	researchers	Bert	Vogelstein	

and	Kenneth	Kinzler	studying	rare	mutations	in	colorectal	cancer	developed	a	PCR	system	

where	multiple	reactions	were	used	to	study	a	single	target	from	the	same	patient	sample	

[138].	 The	 disadvantage	 with	 a	 qPCR	 system	 is	 that	 it	 requires	 a	 standard	 curve	 to	

determine	 the	 initial	 quantity	 that	 was	 present	 in	 the	 reaction	 which	 means	 small	

variations	in	the	samples	go	unnoticed.	To	avoid	this,	Vogelstein	and	Kinzler	hybridized	

two	fluorescent	probes	to	the	amplified	product	one	that	binds	to	the	specific	target	and	

the	second	that	binds	to	all	sequences	as	a	control	and	measured	the	 fluorescence.	By	

doing	 this	 they	 obtained	 an	 absolute	 quantification	 of	 the	 mutation.	 This	 came	 with	

certain	disadvantages	like	time	required	for	the	analysis	and	the	need	for	large	quantity	

of	 starting	 material.	 The	 simplified	 commercialized	 procedure	 now	 enables	 the	

separation	of	each	reaction	into	20,000	nano	droplets	using	water-emulsion	technology.	

Following	a	standard	PCR,	targets	amplified	is	assessed	by	an	automated	system	where	

the	 fluorescence	 is	measured	within	each	droplet.	Using	Poisson	 statistics	an	absolute	

quantification	of	the	target	can	be	obtained.	

	

4.2.4 Nycodenz fractionation 

Fractionation	of	serum	sample	in	paper	I	to	show	the	presence	of	viral	RNA	within	capsids	

and	in	paper	II	to	separate	viral	and	subviral	particles	was	carried	out	using	Nycodenz	–	
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a	substance	used	commonly	for	isolation	of	many	cell	types.	This	substance	is	widely	used	

because	of	its	non-cytotoxic	nature,	ability	to	be	autoclaved	without	compromise	and	non-

interference	with	downstream	analysis	 [139-141].	This	method	was	utilized	 in	paper	 I	

and	 II	 where	 different	 products	 synthesized	 by	 HBV	 infection	 present	 in	 serum	 was	

separated	 in	 different	 Nycodenz	 fractions	 depending	 on	 their	 density.	 The	 separated	

fractions	 were	 then	 subjected	 to	 analysis	 such	 as	 TaqMan	 PCR,	 RT	 PCR	 and	 in-vitro	

infection	of	Hep	G2	NTCP	cells.	

	

4.2.5 Sanger sequencing  

Extracted	HBV	RNA	sequence	from	patient	serum	was	in	the	presence	of	RT	enzyme	and	

a	reverse	primer	that	targets	the	poly-A	tail	at	the	3’	end,	used	to	create	a	complimentary	

cDNA	strand.	The	cDNA	was	then	subjected	to	two	PCRs	that	target	the	5’	and	3’	regions	

of	the	cDNA	and	the	amplicons	obtained	were	sequenced	using	Sanger	method	to	identify	

mutations	 that	 may	 contribute	 to	 the	 presence	 of	 RNA	 in	 serum	 where	 reverse	

transcription	has	not	occurred.				

	

4.2.6 In-vitro infection 

In	vitro	cell	culture	techniques	are	being	developed	rigorously	to	efficiently	replicate	an	

infection	outside	the	host	in	order	to	improve	understanding	of	the	causative	agent	and	

develop	appropriate	treatment.	HepG2	NTCP	cell	line	was	recently	established	after	the	

discovery	of	the	receptor	NTCP	needed	for	HBV	to	gain	entry	into	the	cells	[114].	Hep	G2	

cells	stably	transfected	with	HBV	specific	receptor	NTCP	was	maintained	at	37°C	under	

5%	 CO2	 in	 Dulbecco’s	 modified	 Eagles	 medium	 (DMEM)	 containing	 high	 glucose	

(Invitrogen).	In	accordance	with	the	protocol	defined	by	Ni	et	al.,	in	2014,	the	media	used	

for	 culture	 maintenance	 and	 subsequent	 infection	 was	 substituted	 with	 10%	 FBS,	

100U/mL	 penicillin,	 0.1	 mg/mL	 streptomycin	 and	 2mM	 L-glutamine	 [11].	 Using	 a	

hemocytometer	cells	were	counted	and	seeded	to	give	approximately	1.25*105	cells	per	

well.	24	hours	later	when	cells	reached	optimum	confluency,	HBV	serum	sample	with	or	

without	prior	incubation	with	anti-HBs	antibodies	was	added	to	the	cells	along	with	2.5%	

dimethyl	sulfoxide	(DMSO)	(Sigma)	and	4%	polyethylene	glycol	800	(PEG800)	(Sigma)	

and	incubated	to	start	infection	experiment.	The	cells	were	then	washed	three	times	with	

DMEM	after	24	hours	and	replaced	with	fresh	culture	media	(CM).	Every	second	day	the	
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CM	from	each	well	was	collected	and	stored	for	downstream	analysis	and	replaced	with	

fresh	CM	spiked	with	2.5%	DMSO	until	the	end	of	the	experiment.	

	

4.2.7 Architect Assay 

This	technique	was	used	to	quantify	HBeAg	secreted	by	infected	HepG2	NTCP	cells.	In	this	

two-step	immunoassay,	the	sample	is	first	flooded	with	anti-HBe	coated	microparticles	

followed	by	 introduction	to	acridinium	labeled	conjugated	anti-HBe.	A	washing	step	 is	

included	after	both	stages	to	remove	any	unbound	products.	The	chemiluminescence	that	

is	produced	by	the	bound,	labelled	target	is	captured	and	compared	to	signal	cut	off	ratio	

measured	during	calibration	of	the	instrument	to	obtain	a	quantification	of	HBeAg	in	CM	

from	infected	cells.		
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5 RESULTS	AND	DISCUSSION	

 Paper I 

	

NAs	used	for	CHB	treatment,	block	polymerase	activity	that	leads	to	rapid	reduction	of	

HBV	DNA,	a	serological	marker	quantified	to	monitor	disease	progression	[24]	as	well	as	

a	 predictor	 for	 liver	 cirrhosis	 and	HCC	development	 [142].	HBV	RNA	however,	 is	 not	

affected	by	the	treatment	and	therefore	can	be	used	as	a	marker	of	the	infection	in	the	

liver	[31-33]	in	addition	to	serum	HBsAg	[143-145].		

	

In	order	 to	 characterize	HBV	RNA	detected	 in	 serum,	density-based	 fractionation	was	

performed	using	six	concentrations	of	Nycodenz	gradients	(8,	16,	25,	33,	42,	and	50	wt%)	

followed	by	quantification	using	real	time	PCR.	HBV	RNA	and	DNA	particles	were	detected	

in	the	same	fractions	suggesting	similar	densities	(figure	12	A).	An	earlier	study	using	

sucrose	gradient	to	fractionate	HBV	DNA	and	RNA	post	entecavir	treatment	has	shown	

similar	 results	 [146].	 Since	 mature	 HBV	 virions	 are	 present	 within	 nucleocapsids,	

treatment	with	detergent	Tween-80	disrupted	 these	 capsids	 causing	 the	peak	 fraction	

containing	HBV	DNA	 to	move	 toward	 higher	Nycodenz	 concentration	 (figure	 12	B).	 A	

similar	pattern	in	RNA	suggested	presence	of	RNA	within	enveloped	capsids	(figure	12	

B).		

	

Figure	12	:	(A)	Nycodenz	gradient	centrifugation	of	serum	sample	showing	separation	of	HBV	DNA	

and	RNA	(B)	Nycodenz	fractionation	of	HBV	positive	serum	after	Tween-80	treatment.	

	

HBV	DNA	and	RNA	were	quantified	in	serum	collect	from	95	patients	chronically	infected	

with	HBV.	The	levels	of	HBV	RNA	present	were	similar	to	HBV	DNA	in	both	HBeAg	positive	

and	negative	patient	groups	(figure	13	A).		
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Figure	13	:	(A)	correlation	between	HBV	DNA	and	RNA	present	in	serum	(B)	Genotype	D	showing	

significantly	higher	ratio	between	HBV	DNA	and	RNA	in	comparison	with	non-genotype	D	samples	

(p	=	0.0001).			

	

Sequencing	was	used	to	characterize	the	3’	part	of	HBV	RNA	from	serum.	First	cDNA	from	

was	synthesized	by	using	a	primer	with	tag	sequence	targeting	the	polyadenylated	3’	end.	

This	was	followed	up	with	a	forward	primer	at	nt	1550	and	a	reverse	primer	targeting	tag	

sequence	 inserted	 during	 cDNA	 synthesis.	 Agarose	 gel	 electrophoresis	 of	 the	 PCR	

products	(figure	14	A)	 indicated	that	only	a	small	proportion	of	RNA	was	prematurely	

polyadenylated.	 In	 order	 to	 assess	 if	 the	 HBV	 RNA	 was	 of	 full	 length,	 real	 time	 PCR	

targeting	core	at	5’	region	and	X	at	3’	region	was	performed	on	the	cDNA	generated	by	the	

poly-T	reverse	primer	(figure	14	B).	The	results	showing	similar	quantities	suggest	that	

the	HBV	RNA	present	in	serum	was	of	full	(genome)	length.	

	

From	these	results	we	concluded	that	HBV	RNA	in	serum	was	pgRNA	inside	capsids	that	

probably	were	 enveloped,	 likely	 because	 the	 reverse	 transcription	 step	 had	 failed.	 To	

study	 if	 this	 might	 be	 due	 to	 mutations	 in	 the	 e	 sequence,	 Sanger	 sequencing	 was	

performed	on	3	samples	after	synthesizing	cDNA	using	a	reverse	primer	targeting	the	3’	

polyadenylation	region.	A	correct	e	sequence	is	necessary	for	encapsidation	[17,	147]	and	

to	initiate	reverse	transcription	[18].	No	mutations	that	would	influence	the	function	of	

the	 e	 sequence	was	 detected.	 Yet,	 sequence	 variation	might	 be	 of	 importance	 for	 the	

failure	of	reverse	transcription,	because	the	ratio	between	HBV	DNA	and	HBV	RNA	was	

higher	in	genotype	D	in	comparison	to	genotype	A,	B	or	C	(figure	13	B).		
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Figure	14	:	(A)	Agarose	gel	electrophoresis	showing	PCR	products	obtained	from	serum	sample	(B)	

Real	 time	 PCR	 targeting	 5’	 and	 3’	 genomic	 sequences	 (core	 and	 X)	 after	 cDNA	 targeting	

polyadenylated	tail	at	3’	region.		

	

Figure	15	:	Low	correlation	between	pgRNA	in	liver	to	HBV	RNA	present	in	serum	for	HBeAg	positive	

and	negative	patients.	

	

The	levels	of	HBV	RNA	in	liver	tissue	and	serum	correlated	significantly,	although	less	in	

the	HBeAg-negative	group	(Figure	15).		Comparing	results	in	figure	13	A	to	data	in	figure	

15,	shows	that	the	correlation	between	levels	of	HBV	DNA	and	HBV	RNA	in	serum	was	

stronger	than	between	pgRNA	in	liver	and	HBV	RNA	in	serum.	This	shows	that	secretion	

of	 virus-like	 particles	 with	 HBV	 RNA	 is	 linked	 to	 secretion	 of	 mature	 viral	 particles	

(containing	HBV	DNA),	rather	than	representing	intrahepatic	RNA	levels.	
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In	 conclusion,	 the	 results	 presented	 in	 this	 article	 represent	 high	 concentrations	 of	

encapsidated,	 full	 genomic	 length	 RNA	 in	 serum	 and	 encourages	 further	 research	 to	

explain	failure	of	reverse	transcription.		
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 Paper II 

	

Excess	production	of	SVP	during	HBV	infection	in	comparison	to	genome	containing	VP	

has	been	observed	previously	at	the	rate	of	2000	SVP	for	every	VP	[141,	148].	Both	VP	

and	SVP	contain	 the	envelope	protein	HBsAg,	however	 the	 ratio	of	preS1	domain	that	

recognizes	the	cell	specific	receptor	NTCP	is	higher	in	VP	in	comparison	to	SVP.	Excess	

SVP	production	has	been	proposed	to	act	as	a	decoy	to	reduce	effect	of	anti-HBs	antibody,	

but	no	experimental	proof	to	support	this	hypothesis	is	available.		

	

In	order	 to	 study	 the	effects	of	 SVP,	Nycodenz	 fractionation	of	patient	 serum	showing	

signs	of	high	viral	replication	was	carried	out	to	separate	SVP	from	VP,	 to	be	used	for	

subsequent	infection	on	HepG2-NTCP	cells.	Serum	from	an	individual	with	high	anti-HBs	

levels	after	being	vaccinated	for	HBV	was	also	used	in	this	study	to	assess	effects	of	SVP	

on	host	 antibodies.	HBeAg	produced	and	secreted	by	 infected	HepG2-NTCP	cells	were	

measured	to	quantify	infectivity.	

	

Anti-HBs	was	serially	diluted	and	preincubated	with	(i)	unfractionated	serum	(containing	

both	VP	and	SVP),	(ii)	VP	and	(iii)	mixture	of	VP	+	SVP	in	1:1	ratio.	Incubation	of	VP	with	

anti-HBs	showed	a	marked	reduction	in	the	infection	of	HepG2-NTCP	cells	(lower	HBeAg	

levels	for	the	straight	as	compared	with	the	dotted	lines	in	figure	16).	In	the	presence	of	

subviral	particles	(VP+SVP),	 this	neutralizing	effect	of	anti-HBs	was	reduced,	 ie	higher	

concentration	 of	 anti-HBs	 was	 required	 to	 reduce	 infection.	 This	 effect	 was	 more	

pronounced	 in	 unfractionated	 serum	 (which	 likely	 contained	 SVP	 in	 much	 higher	

concentrations	than	VP	(figure	16	A	and	B).		

	

To	study	if	SVP	can	also	block	VP	entry,	different	concentrations	of	SVP	were	mixed	with	

fixed	VP	concentrations	in	the	presence	or	absence	of	anti-HBs	antibodies	(table	1	A	and	

B).	SVP	neutralized	activity	of	anti-HBs	by	55%	at	a	concentration	of	200	IU/mL,	whereas	

SVP	 alone,	 in	 the	 absence	 of	 anti-HBs,	 showed	 minimum	 reduction	 in	 infectivity,	

suggesting	that	competition	between	SVP	and	VP	for	binding	and	cellular	entry	is	not	of	

significant	 importance.	 This	 result	 is	 comparable	 to	 previously	 published	 data	where	

artificially	synthesized	SVP	did	not	block	VP	entry	[149],	but	a	few	studies	conducted	on	
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Duck	HBV	have	exhibited	SVPs	potential	to	both	neutralize	anti-HBs	and	compete	for	viral	

entry	[150,	151].	

	

	

Figure	16	:	Serial	dilution	of	anti-HBs	concentration	starting	from	(A)	10,000	IU/L	or	 	(B)	30,000	

IU/L.	 Straight	 and	 dotted	 lines	 represent	 presence	 or	 absence	 of	 anti-HBs	 antibodies.	 Infection	

potential	was	quantified	using	HBeAg	secreted	by	cells.	

	

	

Table	1	:	Experimental	design	and	tabulated	result	showing	higher	capacity	of		SVP	to	adsorb	anti-

HBs	(A)	than	block	entry	of	VP	(B).		

	

In	 conclusion,	 observations	 from	 this	 study	 suggest	 that	 the	main	 role	 of	 SVP	 during	

infection	is	to	act	as	a	decoy	and	neutralize	antibodies	produced	by	the	host.	
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 Paper III 

	

In	this	article	a	method	was	first	developed	to	quantify	the	circular	and	linear	forms	of	

intrahepatic	DNA	 from	CHB	patient	 biopsies.	 	Nucleotide	 (nt)	 position	 1830	has	 been	

recognized	as	a	preferential	site	for	HBV	integrations	and	therefore	a	PCR	spanning	this	

region	 would	 differentiate	 between	 integrated	 and	 non-integrated	 transcripts.	 	 A	

discriminating	PCR	assay	was	set	up	using	two	sets	of	primers,	one	spanning	nt	1830	(for	

circular	DNA)	and	another	placed	in	the	X	region	that	would	amplify	all	forms	of	HBV	DNA	

(circular	and	linear).		

	

Figure	17	 :	Discriminating	PCR	using	 forward	primer	at	 nt	 1550	 in	 combination	with	a	 reverse	

primer	at	nt	1627	to	amplify	all	HBV	DNA	forms,	and	forward	primer	at	nt	1776	in	combination	with	

reverse	primer	at	nt	1924	to	amplify	only	circular	forms	of	HBV	DNA.	

	

This	discriminating	PCR	was	applied	on	70	liver	biopsies	from	patients	in	different	stages	

of	chronic	infection.	The	results	revealed	that	linear	DNA	constituted	a	large	fraction	of	

the	total	intrahepatic	HBV	DNA	in	both	HBeAg	positive	(54%)	and	negative	group	(89%).	

The	 variation	 between	 these	 two	 groups	 were	 statistically	 significant	 (P<0.0001)	

indicating	higher	quantity	of	linear	DNA	in	e-negative	patients	(figure	18).		

	

Control	experiments	on	serum	and	 liver	samples	showed	that	 linear	HBV	DNA	in	 liver	

tissue	 (but	 much	 less	 in	 serum)	 was	 sensitive	 to	 degradation	 by	 endonuclease	
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(benzonase),	 indicating	 that	 it	 was	 not	 encapsidated	 but	 rather	 represents	 HBV	 DNA	

integrated	in	the	chromosomal	DNA.		

	

	

Figure	18	:	Percentage	of	linear	DNA	in	HBeAg	positive	and	negative	HBV	patients		

	

Figure	19	:	Percentage	of	integrated	HBV	DNA	out	of	total	intrahepatic	DNA.			

	

To	 calculate	 the	 fraction	 of	 integrated	 HBV	 DNA	 out	 of	 total	 intrahepatic	 DNA,	 two	

assumption	were	made:	(i)	dslDNA	(not	integrated)	is	approximately	20%	of	rcDNA	and	

(ii)	all	circular	DNA	is	rcDNA	(cccDNA	is	much	lower	than	rcDNA).	These	assumptions	are	

supported	by	published	data,	 including	studies	estimating	cccDNA	to	be	<10%	of	 total	

circular	DNA	in	liver	[36,	39,	142].	By	using	the	formula	Integrated	DNA	=	total	linear	DNA	

–	dslDNA	(assumed	to	constitute	20%	of	total	rcDNA),	integration	in	HBeAg	positive	and	

negative	patients	were	calculated	to	constitute	46%	and	87%	of	total	intrahepatic	linear	
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DNA	 respectively	 (figure	 19).	 	 Together,	 these	 experiments	 indicate	 presence	 of	

integrations	in	large	proportions	occurring	very	early	during	HBV	infection.					

	

Previously	 published	 large	 scale	 study	 using	 inverse	 PCR	 technique	 has	 estimated	

presence	of	 integrations	 in	approximately	about	1%	of	 total	 liver	cells	[152].	However	

due	 to	 technical	 challenges,	 inverse	 PCR	 is	 said	 to	 detect	 only	 about	 10%	 of	 total	

integration	 events	 [153]	 which	 suggests	 approximately	 10%	 of	 liver	 cells	 carry	

integration.	This	is	lower	than	our	estimates,	but	almost	at	a	similar	level.		

	

The	high	degree	of	 integration,	 in	particular	 in	HBeAg-negative	patients,	supports	 that	

expression	of	integrated	HBV	DNA	might	contribute	to	maintaining	high	levels	of	serum	

HBsAg	in	patients	with	low	rate	of	replication.	Such	high	HBsAg	levels	have	been	noticed	

in	 clinical	 diagnostics	 for	 a	 long	 time	 [60],	 and	 illustrates	 the	 striking	 difference	 in	

immune	mediated	reduction	of	HBV	DNA	and	HBsAg.	In	our	samples	this	was	observed	

as	a	large	(thousand-fold)	difference	in	the	HBsAg/HBV	DNA	ratio	in	HBeAg-positive	as	

compared	with	HBeAg-negative	patients.	As	shown	in	Figure	20	this	HBsAg	to	HBV	DNA	

ratio	in	serum	significantly	correlated	with	the	fraction	of	total	HBV	DNA	in	liver	tissue	

that	was	linear	HBV	DNA,	likely	integrated	in	chromosomal	DNA.	This	finding	supports	

that	 integrated	 DNA	 significantly	 contributes	 to	 HBsAg	 production	 in	 HBeAg-negative	

patients.	

	

Figure	 20	 :	 Significant	 correlation	 (p<0.0001)	 between	 ratio	 of	 HBsAg	 and	HBV	DNA	 in	 HBeAg	

positive	and	negative	patient	serum	and	proportion	of	integration	indicative	of	linear	DNA	in	biopsy.		
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In	conclusion,	this	study	describes	a	novel	and	reliable	technique	to	quantify	integrations.	

In	addition,	this	study	also	contributes	experimental	proof	using	natural	HBV	infection	in	

patients,	to	support	the	hypothesis	that	integrations	contribute	to	maintenance	of	HBsAg	

even	during	low	replication	rates.	
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 Paper IV 
	

Liver	biopsies	were	widely	used	in	the	past	to	estimate	intrahepatic	injury	and	analyze	

HBV	markers	by	immunohistochemistry	staining	or	molecular	methods.	In	this	study,	15-

30	liver	tissue	from	6	patients	undergoing	transplantation	for	HBV	related	liver	disease	

was	analyzed.	The	aim	of	the	study	was	to	investigate	the	relation	between	different	HBV	

markers,	 in	 particular	 those	 representing	 integration	 in	 the	 host	 genome,	 that	 was	

previously	 hypothesized	 to	 be	 variable	 by	 Lindh	 et	 al.	 [154].	 This	 strategy	 was	 also	

employed	to	estimate	the	risk	of	sampling	error,	that	is,	the	risk	that	an	analyzed	piece	of	

liver	tissue	is	not	representative	of	the	infection	status	in	the	whole	liver	

	

All	patients	were	on	antiviral	 therapy	of	short	or	long	duration.	Patients	1-4	had	HBV-

induced	 liver	cirrhosis,	but	 the	 infection	activity	differed	greatly.	Patients	1	and	3	had	

recently	experienced	reactivation	of	hepatitis	with	serum	levels	of	HBV	DNA	at	≈	8	log	

IU/mL	 prior	 to	 initiation	 of	 entecavir	 or	 tenofovir	 treatment	 three	 weeks	 and	 four	

months,	 respectively,	 before	 transplantation.	 Patient	 2	 had	 an	 infection	 that	had	 been	

highly	active	for	a	long	time	and	had	relatively	high	levels	of	HBV	DNA	in	serum	as	a	result	

of	antiviral	resistance.	Patient	4	had	low-active	infection	and	had	been	on	tenofovir	for	>	

two	years.	Patients	5	and	6	had	HBV/HDV	co-infection	with	low	HBV	DNA	and	relatively	

high	HDV-RNA	levels	in	serum.	

	

As	 shown	 in	 Figure	 21,	 the	 degree	 of	 infection	 focality	 differed	 markedly	 between	

patients;	between	viruses;	and	between	different	HBV	viral	markers.	For	HBV	infection,	

the	most	abundant	marker	was	S	RNA,	followed	by	core	RNA,	total	HBV	DNA	and	cccDNA.	

Patient	 1	 expressed	 the	 highest	 levels	 of	 all	 HBV	 markers,	 and	 had	 relatively	 small	

variation	 in	 the	 distribution	 of	 infection	 (all	 markers	 detected	 in	 all	 pieces,	 with	 CV	

ranging	between	4.4%	and	8.6%).		Patients	2	and	3	(P3)	had	lower	levels	and	higher	CV	

values	 for	both	HBV	DNA	and	RNA,	but	 these	markers	were	still	detected	 in	all	pieces.	

Patient	4	(P4)	(on	tenofovir	 for	>2	years	before	transplantation)	had	 low	HBV	DNA	in	

most	pieces	and	much	higher	CV	values	(Table	2).		
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Figure	21	:	Quantification	of	(A)	total	HBV	RNA	measured	by	S	transcript	PCR	and	(B)	core	RNA	(C)	Delta	RNA	in	patient	5	(in	blue)	and	patient	6	(in	

brown).				
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		 Patient	1	 Patient	2	 Patient	3	 Patient	4	
Indication	for	transplantation	 Acute	liver	failure,	

cirrhosis	
Cirrhosis	 HCC	and	cirrhosis	 Cirrhosis	

Age	at	transplantation		 43.6	 50.5	 54.8	 34	
Geographic	origin	 East	Africa	 Balkan	 Middle	East	 East	Africa	
Antiviral	treatment	 Entecavir,	 Lamivudine,	 Tenofovir	 Tenofovir	

3	weeks	 resistancea	 4	months	 >2	years	
HBsAg	serum	(log	IU/mL)	 4.16	 3.79	 3.61	 1.00	
HBV	DNA	serum	(log	IU/mL)	 6.64b	 5.55	 2.09c	 Neg	
Liver	tissue	data	 	 	 	 	

Pieces	analyzed	 20	 30	 25	 20	

Cells	per	piece,	median	(IQR)	 2735	 1962	 2900	 5940	

HBV	DNA,	log	copies/1000	cells	 	 	 	 	
Total	(S	target)	 3.69	(3.07-4.24)	 2.41	(1.66-2.83)	 1.32	(0.59-1.72)	 0.14	(-0.32-1.72)	
Coefficient	of	variation	 8.6%	 11%	 22%	 135%	
Pieces	PCR	positive	 20	(100%)	 30	(100%)	 25	(100%)	 16	(80%)		 	 	 	 	

cccDNA,	log	copies/1000	cells	 3.27	(2.78-3.66)	 1.04	(0.31-1.91)	 0.84	(-0.02-1.45)	 <	-1	

Coefficient	of	variation	 7.3	%	 33%	 48%	 	

Pieces	PCR	positive	 20	(100%)	 30	(100%)	 24	(96%)	 0	
	 	 	 	 	

HBV	RNA,	log	copies/1000	cells	 	 	 	 	
S	target	 5.40	(4.96-5.89)	 4.24	(2.75-4.83)	 2.65	(0.69-3.82)	 0.15	(<-1-2.54)	
Coefficient	of	variation	 4.4%	 12%	 30%	 187%	
Pieces	PCR	positive	 20	(100%)	 30	(100%)	 25	(100%)	 12	(60%)	
Core	target	 5.29	(5.11-5.45)	 2.78	(2.55-2.97)	 2.24	(1.12-2.81)	 <	-1	
Coefficient	of	variation	 4.7%	 10%	 40%	 110%	
Pieces	PCR	positive	 20	(100%)	 30	(100%)	 25	(100%)	 9	(45%)	

a	M204V	mutation	in	the	reverse	transcriptase	region	of	HBV.	 	b	The	HBV	DNA	level	was	8.19	log	IU/mL	when	entecavir	treatment	was	initiated	3	weeks	before	
transplantation.	c	The	HBV	DNA	level	was	7.90	log	IU/mL	when	tenofovir	treatment	was	initiated	4	months	before	transplantation.	
Median	and	(range)	values.	CV,	Coefficient	of	variation=standard	deviation/mean.	

	

Table	2	:	Characteristics	of	four	liver	transplanted	patients	with	HBV	infection	and	results	from	ddPCR	analyses	of	liver	explant	tissue	piec
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	 Patient	5	 Patient	6	

Indication	for	transplantation	 Cirrhosis	 HCC	and	cirrhosis	

Age	at	transplantation	 53.3	 47.2	

Sex	 Male	 Male	

Geographic	origin	 Middle	East	 Middle	East	

Antiviral	treatment	 Tenofovir	2	years	 Entecavir	2	months	

HBsAg	serum	(log	IU/mL)	 3.27	 2.86	

HBV	DNA	serum	(log	IU/mL)	 Neg	 Neg	

HDV	RNA	serum	(log	copies/mL)	 4.99	 3.94	
	 	 	

Liver	tissue	data	 	 	

Pieces	analyzed	 20	 15	

Cells	per	piece,	median	(IQR)	 2130	 4721	
   

HBV	DNA,	log	copies/1000	cells	 	 	

Total	(S	target)	 1.03	(0.43-2.29)	 <1	(-0.08-1.87)	

Coefficient	of	variation	 45%	 86%	

Pieces	PCR	positive	 19	(95%)	 7	(47%)	

cccDNA,	log	copies/1000	cells	 <	-1	 <-	1	

Coefficient	of	variation	 	 	

Pieces	PCR	positive	 0	 0	

HBV	RNA,	log	copies/1000	cells	 	 	

S	target	 2.85	(1.31-4.10)	 1.91	(1.12-3.74)	

Coefficient	of	variation	 29%	 42%	

Pieces	PCR	positive	 20	(100%)	 14	(93%)	

Core	target	 0.75	(0.13-1.38)	 <	-1	

Coefficient	of	variation	 68%	 18%	

Pieces	PCR	positive	 4	(20%)	 2	(13%)	

HDV	RNA,	log	copies/1000	cells	 6.70	(5.26-7.28)	 4.28	(3.82-4.99)	

Coefficient	of	variation	 11%	 8%	

Pieces	PCR	positive	 19	(95%)	 15	(100%)	
Median	and	(range)	values.	Coefficient	of	variation,	CV=standard	deviation/mean,	calculated	for	levels	in	
samples	with	detected	target.	

	

Table	3:	Characteristics	of	two	liver	transplanted	patients	with	HBV/HDV	infection	and	and	results	

from	ddPCR	analyses	of	liver	explant	tissue	pieces	

	

Patients	5	and	6	(P5	and	P6)	had	co-infection	with	HDV	low	HBV	DNA	and	relatively	high	

HDV	RNA	in	serum.	In	liver	tissue,	cccDNA	was	undetected	in	all	pieces,	HBV	DNA	and	

core	RNA	was	low	or	undetected.	Yet,	S	RNA	ranged	from	moderate	to	high	levels	in	all	

pieces.	HDV	RNA	was	detected	at	high	levels	in	all	pieces	(figure	21	and	table	3).		
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The	 findings	 in	 the	 HDV	 cases	 agrees	 relatively	 well	 with	 those	 in	 a	 previous	 study	

comparing	intrahepatic	markers	in	21	HBV/HDV	co-infected	and	22	HBV	monoinfected	

patients	[155].	In	that	study,	liver	tissue	from	HDV-infected	patients	had	lower	levels	of	

cccDNA,	 lower	 pgRNA/cccDNA	 and	 higher	 S	 RNA/cccDNA	 than	 patients	 with	 HBV	

monoinfection.	

	

The	results	show	significant	focal	differences	in	the	distribution	and	activity	of	both	HBV	

and	 HDV	 and	 demonstrates	 the	 risk	 involved	when	 analyzing	 a	 single	 tissue	 piece	 to	

quantitatively	represent	intrahepatic	levels	especially	in	patients	with	low	viral	load.	The	

risk	of	obtaining	false	negative	results	was	relatively	low	except	for	HBV	markers	in	tissue	

with	low	HBV	load	(such	as	often	seen	when	there	is	HDV	co-infection)		

	

In	 the	 following	 figures,	markers	are	presented	pairwise	 in	order	to	show	correlations	

and	to	display	differences	in	more	detail	by	showing	values	for	individual	pieces.	Figure	

22	shows	that	HBV	core	RNA	and	S	RNA	values	correlated	strongly	in	pieces	from	Patients	

1	 and	 3.	 This	 probably	 reflects	 that	 in	 these	 patients,	 core	 and	 S	 RNA	 were	 mainly	

transcribed	from	cccDNA,	and	at	similar	rates	in	different	pieces.	By	contrast,	the	levels	

did	not	correlate	in	pieces	from	Patients	2,	4,	5	and	6.	In	Patient	2,	core	and	S	RNA	were	

both	present	in	relatively	high	amounts,	but	without	correlation.	In	Patient	4	the	lack	of	

correlation	might	to	some	extent	be	due	to	the	poorer	analytical	precision	for	low	target	

levels.	In	Patients	5	and	6	(with	HDV	co-infection)	core	RNA	was	undetectable	or	much	

lower	than	S	RNA.		

	

Figure	23	shows	reflection	of	cccDNA	on	HBV	RNA	levels	(in	 the	three	patients	where	

cccDNA	was	detected,	P1-3).	Overall,	core	RNA	correlated	strongly	with	cccDNA,	whereas	

for	S	RNA	a	correlation	was	only	observed	in	P1	and	P3	but	not	in	P2.	

	

In	figure	24	the	same	data	is	presented	as	RNA	copies	per	cccDNA.	In	Patient	1	who	had	a	

highly	active	infection	the	core	and	S	RNA	levels	per	cccDNA	were	similar	and	at	levels	

around	100	RNA	copies	per	cccDNA	with	little	variation	between	the	pieces.	In	Patient	2	

the	core	RNA	levels	were	slightly	 lower	with	relatively	 little	variation,	whereas	S	RNA	

levels	were	much	 higher	 and	with	 large	 variation,	 from	60	 to	8000	 S	RNA	 copies	 per	

cccDNA.	
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Figure	22.	HBV	core	RNA	and	S	RNA	in	15-30	pieces	of	from	four	patients	(P1-P4)	with	HBV	(A),	and	

two	patients	(P5-P6)	with	HDV/HBV	coinfection	(B).	The	values	are	in	log10	copies/1000	cells.	

	

	

Figure	23	:	Correlations	between	(A)	cccDNA	and	core	RNA	and	(B)	cccDNA	and	S	RNA	in	pieces	of	

explanted	liver	from	P1-3.	The	values	are	in	log10	copies/1000	cells.	

	

Since	cccDNA	is	the	only	template	for	core	RNA	whereas	S	RNA	can	be	transcribed	from	

cccDNA	 or	 from	 integrated	 sequences	 [63,	 156],	 the	 results	 suggest	 that	 a	 large	

proportion	of	 the	S	RNA	 in	Patient	2	 (and	to	some	extent	 in	Patient	3)	may	be	due	 to	

transcription	from	integrated	HBV	DNA.	This	observation	fits	both	with	our	findings	in	

Paper	 3	 and	 with	 data	 from	 a	 recent	 publication	 on	 experimental	 HBV	 infection	 in	

chimpanzees	[61].		
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Figure	24	:	Levels	represented	in	P1	-3	as	copies/cccDNA.	

	

In	 the	two	patients	with	HDV	co-infection,	 there	was	no	correlation	observed	between	

HDV	RNA	and	HBV	S	RNA.	Presence	of	high	levels	of	HDV	RNA	was	observed	even	when	S	

RNA	levels	were	low,	as	shown	in	 figure	25A.	Accordingly,	as	shown	in	 figure	25B,	the	

HDV	 RNA:S	 RNA	 ratio	 was	 highly	 different,	 spanning	 from	 10:1	 to	 >100,000:1.	 This	

finding	suggests	that	production	of	HDV	RNA	is	independent	of	HBsAg	and	that	HDV	RNA	

might	 be	 produced	 also	 in	 cells	 that	 do	 not	 produce	HBsAg.	 Thus,	 it	 seems	 as	 if	HDV	

infection	may	be	present	in	hepatocytes	in	different	forms:	(i)	a	true	co-infection	together	

with	replicating	HBV	which	provides	HBsAg	from	cccDNA;	(ii)	in	cells	without	replicating	

HBV	but	with	integrated	HBV	DNA	that	provides	HBsAg	so	that	HDV	virus	particles	can	

be	formed	and	secreted;	(iii)	HDV	RNA	in	cells	without	HBsAg	production,	replicating	and	

translated	to	delta	antigen	but	not	secreted	since	HBsAg	is	not	provided.		This	model	is	

supported	by	data	from	previous	publications.	In	one	study,	HBsAg	from	integrations	was	

shown	to	support	HDV	replication	in	vitro	[157],	and	a	recent	study	reported	persistence	

of	 HDV	 during	 hepatocyte	 replication	 and	 its	 presence	 in	 daughter	 cells	 that	 did	 not	

contain	HBV	[133].		

Patient 1    Patient 2       Patient 3



	
45	

	
	

	

	

Figure	25	:	(A)	Lack	of	correlation	between	HDV	RNA	and	HBV	S	RNA	in	P5	and	P6	(B)	Varied	ratio	

between	HDV	RNA	and	HBV	S	RNA	inP5	and	P6.	

	

The	 model	 proposes	 that	 only	 a	 minority	 of	 cells	 capable	 of	 producing	 HBsAg	 (from	

cccDNA	 or	 transcripts	 integration)	 are	 required	 for	 production	 of	 high	 quantities	 of	

intrahepatic	HDV	RNA	(as	seen	by	the	lack	of	correlation	between	HBV	S	RNA	and	HDV	

RNA).	This	may	have	clinical	implications.	It	would	mean	that	production	of	HDV	virus	

particles	may	 occur	 in	 a	 small	 proportion	 of	 hepatocytes	 that	 produces	 HBsAg	 (from	

cccDNA	or	integrations),	but	that	HDV	RNA	from	these	particles	might	enter	a	much	larger	

number	 of	 hepatocytes	 and	 drastically	 increase	 the	 production	 of	 HDV	 antigens	 and	

expression	of	their	epitopes	on	the	cell	surface	to	provoke	harmful	immune	responses.	

This	model	would	not	contradict	the	association	between	HDV	RNA	in	serum	and	liver	

damage,	but	rather	propose	a	mechanism	by	which	the	pathogenic	effects	of	secreted	HDV	

could	be	amplified.	If	true,	this	model	may	help	to	understand	mechanism	involved	in	the	

development	 of	 severe	 necroinflammation	 that	 is	 often	 seen	 during	 HDV	 infection.	

Further	research	is	required	to	clarify	these	hypotheses.	

	

In	conclusion,	the	analysis	of	multiple	pieces	of	liver	tissue	shows	wide	range	of	focality	

within	 the	 same	 infected	 liver	 especially	 in	 individuals	 with	 low	 viremia;	 shows	

integrations	to	be	a	source	of	HBV	S	RNA	especially	in	HDV	coinfected	patients	with	low	

HBV	viremia;	and	also	proposes	novel	mechanisms	to	pave	way	for	 future	research	to	

understand	aggravated	liver	injury	during	HBV	/	HDV	co-infection.								
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 Paper V 
	
	
In	 this	 article,	 biopsy	material	 representing	 both	HBeAg	 positive	 and	HBeAg	negative	

infection	in	76	patients	were	used	to	describe	RNA	profile	of	the	different	transcripts	seen	

during	 HBV	 infection.	 Levels	 of	 the	 transcripts	were	 quantified	 to	 also	 distinguish	 its	

source	(cccDNA	or	integrated	HV	DNA).	

	

The	PCR	targets	are	shown	in	figure	26.	These	PCRs	involve	amplification	of	overlapping	

targets,	 and	droplet	digital	PCR	 technique	gives	a	methodological	 advantage	over	 real	

time	PCR	since	absolute	quantification	can	be	obtained	without	amplification	efficiency	

bias.	

	

	
Figure	26	:	PCR	strategy	to	quantify	different	RNA	species.	

	

Figure	27	shows	levels	of	all	RNA	species	measured	in	the	76	biopsies,	demonstrating	that	

the	RNA	profile	differed	significantly	between	HBeAg	positive	and	negative	patients.	In	

particular,	HBeAg-negative	patients	had	lower	levels	of	pgRNA,	core	RNA	and	3’	precore	

regions,	 a	 finding	 that	 agrees	well	with	 recent	 transcriptome	data	 from	 liver	 biopsies	

taken	from	experimentally	infected	chimpanzees	[61].	
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Figure	26	:	Intrahepatic	HBV	RNA	profiles	in	patients	positive	or	negative	for	HBeAg.	The	box	plots	

show	median	levels	and	interquartile	ranges	by	digital	PCR	assays	targeting	different	segments	of	

the	genome.	The	levels	of	HBsAg	and	HBV	DNA	in	serum	are	shown	for	comparison.	The	whiskers	

show	10th	and	90th	percentile.	PC,	precore;	pg,	pregenomic.	.	***,	p<0.0001;	**,	p<0.001.	

	

Figure	27	shows	levels	of	core	and	S	RNA	from	76	patients.	The	HBeAg-positive	patients	

had	similar	levels	of	core	and	S	RNA.	By	contrast,	HBeAg	negative	patients	had	10-100	

times	lower	core	than	S	RNA,	illustrated	in	the	figure	by	the	distance	from	the	dotted	line.	

The	 difference	 could	 be	 due	 to	 specific	 transcriptional	 down-	 regulation	 of	 core	 RNA	

synthesis.	Evidence	of	epigenetic	regulation	in	HBV	has	been	presented	[158],	but	so	far	

no	data	suggests	specific	control	of	core	RNA.			

	

Quantification	of	core	RNA	was	performed	using	two	additional	primers,	targeting	its	5’	

part	(“pgRNA”)	or	a	target	region	downstream	of	the	core	gene.	Figure	28	A	shows	lower	

levels	of	pgRNA	(5’	core	RNA)	than	core	RNA,	in	particular	in	HBeAg	negative	patients.	

Figure	 29	 presents	 the	 levels	 from	 28A	 as	 box	 plots,	 and	 with	 the	 core	 RNA	 values	

obtained	 after	 subtraction	 of	 pgRNA	 (performed	 because	 the	 values	 by	 the	 core	 PCR	

detects	also	the	pgRNA	molecules).	This	plot	clearly	demonstrates	lower	pgRNA	levels	in	

HBeAg-negative	patients.	
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Figure	27	:	Correlation	between	core	and	S	RNA	in	HBeAg	positive	and	negative	patients.	

	

Since	the	transcripts	lack	the	5’	part	containing	the	e	region	essential	for	encapsidation	

and	initiation	of	reverse	transcription,	these	cannot	serve	as	pregenomic	RNA	and	may	

contribute	 to	 explain	 lower	 level	 of	 HBV	 replication	 observed	 in	 HBeAg	 negative	 in	

comparison	with	HBeAg	positive	patients	[24].	

	

	Primers	 targeting	 the	 3’	 precore	 region	 (the	 3’	 redundancy)	 should	 amplifies	 the	 3’	

terminal	part	of	core	RNA.	The	finding	that	the	levels	by	3’	precore	PCR	were	lower	as	

compared	to	core	(figure	28	B)	suggest	that	part	of	the	core	RNA	is	shorter	because	an	

upstream	polyadenylation	signal	at	nt	1930	was	used	[159,	160].	Degradation	of	the	3´	

part	might	be	an	alternative	explanation	to	this	observed	reduction.	

	

All	 RNA	 that	 are	 transcribed	 from	 cccDNA	 should	 contain	 the	 terminal	 3’	 redundancy	

representing	nt	1830-1927.	Therefore,	if	cccDNA	was	the	source	of	S	RNA,	amplification	

by	the	S	RNA	and	3’	PC	assays	should	give	similar	results.	As	shown	in	Figure	30	there	

was	 a	 striking	 discrepancy,	with	much	 lower	3’	 RNA	 than	 and	 S	RNA	 levels	 in	HBeAg	

negative	 than	 in	 HBeAg	 positive	 patients.	 The	 lower	 3’	 levels	 might	 be	 due	 to	 RNA	

degradation,	but	the	finding	that	3’	RNA	levels	were	almost	as	high	as	S	RNA	in	HBeAg-

positive	patients	argue	against	 this	possibility.	The	discrepancy	between	S	and	3’	RNA	

was	greatest	in	HBeAg-negative	patients	with	lower	levels	of	replication.		In	these	cases,	
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3’	RNA	was	3	log10	units	lower	than	S,	indicating	that>99%	of	the	S	RNA	was	derived	from	

integrated	HBV	DNA.	

	

	

Figure	28	:	RNA	levels	detected	by	(A)	core	and	5’	core	(pgRNA)	assays	and	(B)core	and	3’	PC		RNA.			

	

	

Figure	29	:	Box	plot	showing	the	same	markers	as	in	figure	27A,	but	with	core	RNA	values	obtained	

after	subtraction	of	pgRNA	values.			
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Figure	30	:	Correlation	between	3’	and	S	RNA	transcripts	in	HBeAg	positive	and	negative	patients.	

	

To	explore	the	putative	importance	of	cccDNA	and	integrated	HBV	DNA	as	sources	of	HBV	

DNA	and	HBsAg	 in	blood	we	compared	 the	 ratios	of	 these	markers	 in	 liver	 tissue	and	

serum.	Figure	31	A	shows	ratio	between	cccDNA	and	total	intrahepatic	DNA	correlating	

with	ratio	between	pgRNA	(that	comes	from	cccDNA)	and	X	RNA	(which	can	come	from	

both	cccDNA	and	integrated	DNA).	The	significant	correlation	fits	with	the	explanation	of	

cccDNA	being	the	source	for	pgRNA	synthesis.	Figure	30	B	shows	that	in	the	next	step,	the	

ratio	 between	 serum	HBV	DNA	 and	HBsAg	 correlate	with	 intrahepatic	 proportions	 of	

between	pgRNA	and	X	RNA.	These	results	agree	well	with	the	idea	that	a	large	proportion	

of	 HBsAg	 synthesized	 in	 HBeAg	 negative	 patients	 are	 a	 product	 of	 integrations,	 in	

accordance	with	a	recent	publication	where	transcriptome	analysis	in	chimpanzee	model	

system	was	used	to	study	integrations	[61].	
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Figure	 30.	 Correlations	 between	 (A)	 the	 core	 RNA/total	 HBV	 RNA	 ratio	 and	 the	 ratio	 between	

cccDNA	and	total	intrahepatic	HBV	DNA,	and	(B)	the	core	RNA/total	HBV	RNA	ratio	and	the	serum	

HBV	DNA/serum	HBsAg	ratio.	

	
Analyses	of	multiple	biopsies	and	exploration	of	RNA	transcript	ratio	by	means	of	digital	

PCR	 has	 provided	 valuable	 support	 to	 the	 theory	 that	 most	 of	 the	 HBsAg	 in	 HBeAg	

negative	 patients	 have	 integrated	 transcripts	 as	 their	 source.	 The	 results	 also	 show	

presence	of	intrahepatic	HBV	core	RNA	that	lacks	the	5’	or	both	5’	and	3’	end,	eliminating	

the	possibility	to	function	as	pgRNA.	This	is	hypothesized	to	be	contribute	to	the	reduction	

of	HBV	replication	in	patients	with	HBeAg	negative	infection.	
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6 CONCLUSIONS		

	

Hepatitis	B	virus	(HBV)	infection	has	the	potential	to	cause	severe	liver	damage	including	

cirrhosis	 and	 hepatocellular	 carcinoma	 (HCC)	 which	 is	 predicted	 using	 diagnostic	

markers	such	as	HBV	DNA,	HBsAg	and	HBeAg	in	serum	and	HBV	DNA	and	RNA	in	liver	

tissue.	Nucleoside	/	nucleotide	analogue	treatments	currently	available	effectively	blocks	

viral	 replication	 but	 fails	 to	 clear	 reminiscent	 cccDNA	 in	 liver	 which	 can	 reactivate	

replication	when	treatment	is	terminated.		

	

Due	to	rapid	reduction	in	viral	replication,	HBV	DNA	in	serum	cannot	be	used	to	evaluate	

the	long-term	effect	of	treatment	on	intrahepatic	cccDNA.	HBV	RNA	in	serum	has	been	

proposed	 as	 a	 potential	marker	 for	 this	 purpose	 since	 it	 is	 not	 directly	 influenced	 by	

treatment.	In	paper	1,	this	marker	was	characterized.	Analysis	of	serum	from	95	patients	

indicate	 that	 HBV	 RNA	 in	 serum	 is	 encapsidated	 and	 of	 full	 genomic	 length	 RNA	 and	

possibly	less	abundant	in	genotype	D.		

	

Subviral	 particles	 (SVP)	 in	 the	 ratio	 of	 >10,000:1	 to	 viral	 particles	 (VP)	 during	 active	

replication	 has	 been	 proposed	 to	 act	 as	 a	 decoy	 to	 host	 antibodies	 (anti-HBs)	 against	

HBsAg.	The	first	experimental	support	for	this	hypothesis	was	described	in	paper	2,	in	

results	obtained	using	a	recently	developed	cell	line	HepG2-NTCP.	It	was	shown	that	SVP	

significantly	 reduced	 the	neutralizing	effect	of	 anti-HBs	 in	 in	 vitro	 infection,	but	had	 a	

rather	small	competing	impact	on	binding	to	the	viral	specific	receptor.	

	

During	HBV	replication,	a	double	stranded	 linear	 form	of	 the	genome	(dslDNA)	rather	

than	the	 functional	circular	 form,	 is	produced	in	minority,	and	may	become	integrated	

into	the	host	genome.	A	novel	strategy	to	estimate	 integration	by	means	of	measuring	

circular	and	linear	forms	of	HBV	DNA	in	liver	using	digital	PCR	was	developed	and	applied	

on	 liver	 biopsies.	 A	 panel	 of	 digital	 PCR	 assays	 were	 also	 developed	 to	 obtain	 a	

quantitative	profile	of	HBV	RNA	in	these	biopsies.	The	results	from	these	analyses	suggest	

that	a	majority	of	HBV	DNA	found	in	liver	during	late	infection	stage	is	in	integrated	forms	

that	contributes	to	maintaining	high	levels	of	HBsAg	in	the	serum	even	during	low	HBV	

replication.	 In	 addition,	 results	 suggesting	 a	 novel	mechanism	 associating	 low	 pgRNA	

transcription	to	reduced	replication	during	HBeAg	negative	state	were	obtained.			
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In	a	separate	study,	focal	differences	in	the	distribution	of	HBV	infection	in	the	liver	were	

studied	using	liver	explant	material	from	patients	undergoing	transplantation	due	to	HBV	

or	HDV	induced	liver	disease.	By	analyzing	multiple	tissue	pieces	extensive	differences	in	

HBV	 viral	 load	 and	 transcription	 (a	 hundred-fold	 or	 more	 between	 some	 pieces),	

especially	in	patients	with	low	viremia	or	with	HDV	coinfection	were	found.	High	levels	

of	S	RNA	in	the	absence	of	cccDNA	or	core	RNA	support	the	expression	of	HBsAg	from	

integrated	HBV	DNA.		The	levels	of	HDV	RNA	were	generally	high	with	lower	degree	of	

focal	differences,	and	without	correlation	to	S	RNA	levels.	We	propose	that	partial	HDV	

replication	and	expression	of	delta	antigens	may	occur	also	in	hepatocytes	that	are	not	

co-infected	 by	 HBV	 or	 even	 express	 HBsAg	 from	 integrations,	 and	 that	 this	 might	

contribute	 to	 the	 severe	 necroinflammation	 that	 is	 observed	 in	 many	 HDV	 infected	

patients.	

	

The	compiled	works	presented	in	this	thesis	address	important	questions	and	proposes	

novel	 mechanisms	 that	 hopefully	 will	 aid	 further	 research	 and	 contribute	 to	 the	

understanding	of	infections	caused	by	HBV	and	HDV.	
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especially	 to	 Silviu	 Nitescu	 and	 Cvetla	 Spirovska	 taking	 the	 time	 to	 help	me	with	my	

projects	and	for	MAKING	ME	SPEAK	SWEDISH!	Tusen	Tack	för	all	hjälp	och	uppmuntran!	

	
To	my	dearest	Maaruthy	Kumar	Yelleswarapu	Venkata	Sathya	(Yes,	I	did	write	your	full	

name!),	I	owe	all	my	success	to	you	my	beloved	friend!	I	will	forever	cherish	our	good	old	

undergrad	 days!	 Phew	what	 fun	 it	was!	 I	 don’t	 think	 I	 would	 have	 ever	made	 it	 past	

“Chemical	Engineering”	if	not	for	you,	I’d	probably	still	be	trying.	Thank	you	for	being	a	

part	of	my	life	and	for	everything	else!			

	
To	Keerthana,	Arjun,	Sunith,	Neethi	and	Siddharth	you	are	all	much	more	than	friends	to	

me,	my	family	far	away	from	home.	For	all	the	crazy	days	and	wonderful	memories,	thank	

you	for	being	there	for	me	through	everything!		

	
To	my	dear	family,	Sushila	Amma,	Prakash	Appa,	Gayu,	sweet	little	Yug,	dearest	Aro,	my	

grandmother	Sulo,	my	second	parents	Bala	Amma	and	Suresh	Appa	and	the	rest	of	my	

hugeeeeee	family	back	in	India,	thank	you	is	not	enough	to	express	my	gratitude	to	you.	

The	strength	that	all	of	you	give	me	is	unmatched	and	is	what	made	this	possible.			

	
One	of	my	favorite	quotes	from	Harry	Potter	reads	“One	who	we	love	never	truly	leaves	

us”.	I	have	no	words	to	express	the	love	and	adoration	I	have	for	my	dearest	grandparents	

Nanapa	and	Chemmi.	They	are	the	true	inspiration	behind	everything	I	have	achieved	and	

will	achieve	in	the	future.	If	I	grow	up	to	be	half	the	person	you	were,	I	would	consider	

myself	lucky!	Thank	you	for	teaching	me	the	value	of	education.	

	
Last	but	not	the	least,	my	dear	loving	husband	Ashwin	who	has	been	waiting	four	years	

to	 read	 this	 part!	 How	 can	 I	 ever	 begin	 to	 thank	 you	 for	 all	 that	 you	 have	 done?	

Nevertheless,	I	am	going	to	try.	Thank	you	for	being	with	me	through	all	the	good	times	

and	the	bad,	for	all	the	encouragement	and	love	for	giving	me	a	shoulder	to	lean	on,	for	

sharing	my	happiness	and	sadness	alike!	Thank	you	for	being	you.	
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