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ABSTRACT 

Idiopathic normal pressure hydrocephalus (iNPH) is a treatable, neurological 
disorder affecting the elderly population causing gait, balance, cognitive and 

micturition impairments. Treatment results in a clinical improvement in up to 

80% of patients. Unfortunately, the pathophysiology is still incompletely 

understood, the clinical picture needs to be clarified, and no reliable, predictive 
biomarkers exist. The overall aim of this thesis was to elucidate on the 

development and pathophysiology of iNPH by describing the clinical and 

radiological phenotype as well as the involvement of known vascular risk 
factors in the disease, and by investigating the specific role of the brainstem in 

iNPH. A further aim was to explore the predictive potential of several clinical 

and radiological biomarkers. 

In Study I, radiological and clinical signs of iNPH were associated with 

vascular risk factors and white matter lesions in a large, population-based 

sample. Study II showed that a majority of patients have symptoms from at 

least three of four symptom groups at the time of diagnosis, but the severity is 
greatly varied.  In addition, paratonia, a less well-recognized symptom is seen 

in most patients and should be considered a core finding of iNPH. Further, the 

postoperative improvement seen in the majority of patients involve all 
symptom groups. Study III showed that while all patients have 

ventriculomegaly, several other morphological MRI findings are seen only in 

a subgroup of patients and should not be required for the diagnosis. In addition, 

no morphological MRI marker had any predictive value, and, as such, they 
should not be used to exclude patients from shunt surgery. In Study IV, 

diffusion changes in the mesencephalon and pons were evident pre- and 

postoperatively in all patients, and responders showed a significant relative 
cerebral blood flow increase postoperatively, correlating to the degree of 

clinical improvement. 

In conclusion, vascular changes are probably involved in the development of 

iNPH. While several clinical and radiological findings are characteristic of the 
disease, the severity is profoundly varied among patients and cannot be used 

for prediction. The brainstem seems to be involved in the core symptom 

generation in iNPH and further studies focusing on this area are warranted. 

Keywords: idiopathic normal pressure hydrocephalus, MRI, biomarkers, 

prediction 
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SAMMANFATTNING PÅ SVENSKA 

Idiopatisk normaltryckshydrocephalus (iNPH) är en behandlingsbar, 

neurologisk sjukdom som drabbar äldre individer och ger upphov till gång- 
och balansstörningar, kognitiv svikt samt urininkontinens. Behandling leder 

till en varaktig förbättring hos upp till 80 % av patienterna. De patofysiologiska 

förändringar som orsakar iNPH är ofullständigt klarlagda, den kliniska bilden 
behöver kartläggas och det saknas markörer som kan förutsäga vilka patienter 

som förbättras efter behandling. Det övergripande målet med denna 

avhandling var att öka kunskapen om utvecklingen av iNPH och 
bakomliggande patofysiologiska mekanismer genom att detaljerat beskriva 

radiologiska och kliniska fynd hos patientgruppen. Vidare att undersöka 

förekomsen av vaskulära riskfaktorer, till exempel högt blodtryck, samt att 

kartlägga hjärnstammens roll i utvecklingen av iNPH med hjälp av magnetisk 
resonanstomografi (MRI). Målet var också att finna kliniska och/eller 

radiologiska markörer som kan användas för att selektera vilka patienter som 

skall erbjudas behandling. 

Delstudie I visade signifikanta associationer mellan vaskulära riskfaktorer, 

vitsubstansförändringar vid avbildning av hjärnan med datortomografi och 

radiologiska samt kliniska tecken till iNPH i en stor, populationsbaserad grupp 
av individer. I Delstudie II noterades att majoriteten av patienterna uppvisade 

symptom från minst tre av fyra symptomgrupper vid diagnos, dock med 

mycket varierande svårighetsgrad. Dessutom sågs paratoni hos majoriteten av 

patienterna vilket bör ses som ett typiskt symptom vid iNPH. Efter behandling 
förbätrades majoriteten av patienterna inom alla symtomområden. I Delstudie 

III hittades förstorade ventriklar hos alla patienter medan övriga markörer, som 

tidigare har rapporterats som typiska vid iNPH, endast sågs hos en mindre del 
av patienterna och bör således ej krävas för diagnos. Inga MRI-markörer hade 

något prediktivt värde och de bör därför inte användas för att exkludera 

patienter från behandling. I delstudie IV sågs diffusionsförändringar i 

hjärnstammen både före och efter behandling. Dessutom uppvisade förbättrade 
patienter en blodflödesökning efter behandling vilken korrelerade till grad av 

klinisk förbättring.  

Sammanfattningsvis tyder resultaten på att vaskulära förändringar är 

involverade i utvecklingen av iNPH. Flera kliniska och radiologiska fynd är 
karakteristiska för sjukdomen men svårighetgraden varierar påtagligt och 

fynden verkar inte ha något prediktivt värde. Slutligen talar resultaten för att 

hjärnstammen verkar vara involverad vid iNPH och fortsatta studier av detta 

område är av intresse. 
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1 INTRODUCTION 

Idiopathic normal pressure hydrocephalus (iNPH) is a treatable, neurological 

disorder affecting the elderly population. Treatment results in a clinical 

improvement in up to 80% of patients. Unfortunately, the pathophysiology of 

iNPH is still incompletely understood, and no reliable, predictive biomarkers 

exist. 

In 1957, the Colombian neurosurgeon Solomon Hakim published a case report 

where a 16-year old boy was found to develop enlarged ventricles in 

combination with the inability to speak and a progressing gait disturbance, 

secondary to severe head trauma.1,2 Surprisingly, the intrathecal pressure was 

normal, and the patients’ clinical symptoms improved greatly after draining 

15ml of cerebrospinal fluid (CSF) via lumbar puncture. A ventriculoatrial 

shunt was inserted, and the patient was further improved and able to return to 

school. Soon, Hakim found other, similar cases in older individuals, and 

labelled the syndrome normal pressure hydrocephalus (NPH) in 1965.1,2 

Subsequently the disorder has been subdivided into secondary NPH (sNPH) 

where the ventriculomegaly is caused by e.g. an earlier trauma, infection or 

subarachnoid bleed, and iNPH where no antecedent cause can be found.3 As 

of today, iNPH constitutes about 50% of all NPH cases.  

iNPH primarily affects the elderly population,4 and treatment by installation of 

a shunt system to drain excess CSF from the ventricles results in a significant 

clinical improvement in up to 80% of patients.3,5-18 Studies have shown the 

estimated prevalence of iNPH to be in the range of 0.1 to 3.7%, increasing with 

age up to 5.9% in individuals over 80 years of age.4,19-21 The yearly incidence 

has been estimated to 5.5/100000/year, however, the annual incidence of shunt 

surgery in the same age group is much lower, 1-3.4/100000/year, thus only 

about 1/3 to 1/5 of patients with possible iNPH get the correct treatment 

making the disease both underdiagnosed and undertreated.5,22-26 In addition, the 

pathophysiology of iNPH is incompletely understood, despite a large research 

effort, aggravating the diagnostic process as well as selection of patients for 

shunt surgery. Thus, further studies are warranted. The general aim of this 

thesis was to characterize clinical and radiological changes in iNPH and how 
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these can aid in increasing the clinical and pathophysiological understanding 

of the disease as well as in selecting patients that will benefit from treatment. 
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2 PHYSIOLOGY OF CEREBROSPINAL 
FLUID CIRCULATION AND ANATOMY 
OF THE VENTRICLES  

2.1 THE TRADITIONAL MODEL OF CSF 
CIRCULATION 

Cerebrospinal fluid surrounds the central nervous system and has several 

important physiological functions, such as protective cushioning, regulation of 

intracranial pressure and transport of metabolites and waste products.27 The 

total CSF-volume is around 200 ml in adults while around 500 ml is produced 

daily, resulting in a high turnover rate. The basic anatomy of the ventricular 

system is shown in Figure 1. 

 

Figure 1. Schematic illustration of the cerebral ventricles and outflow tracts. 

Aqueduct of Sylvius = cerebral aqueduct. 

Reprinted with permission from Dr Daniel Jaraj. 
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Traditionally, CSF-flow is described as pulsatile and driven by the cardiac 

cycle.28,29 CSF is produced in the choroid plexus, located mainly in the lateral 

ventricles but also, to a lesser extent in the 3rd and 4th ventricles. Due to the 

pulsatile flow, a caudal net flow occurs from the lateral ventricles to the third 

ventricle, via the foramina of Monroe and then via the cerebral aqueduct down 

to the fourth ventricle. From the fourth ventricle, CSF enters the subarachnoid 

space (SAS) of the cisterna magna via the foramina of Magendie and 

Luschkae. It then moves down along the spinal SAS as well as up in the 

intracranial SAS where resorption of CSF to the venous circulation is mediated 

by the arachnoid villi. 

However, the traditional model outlined above has been questioned and proven 

to be over-simplified. The brain parenchyma, interstitial spaces and capillaries 

(including perivascular spaces) have been shown to be of great importance in 

the production of CSF, potentially more so than the choroid plexus.27,30,31 In 

addition, studies on upright individuals have shown that up to two thirds of the 

resorption of CSF occurs in the spinal SAS with perineural spaces along cranial 

and spinal nerves aiding in the resorption via the lymphatic system.32-34 

2.2 THE GLYMPHATIC SYSTEM 

In recent years, another system facilitating the resorption of CSF and 

metabolite clearance in the brain has gained a lot of attention. This glymphatic 

(glia-lymphatic) system is presumed to consist of a complex glial network that 

mediates the clearance of waste metabolites from the extracellular space, 

primarily during sleep.35,36 In animal studies, CSF flows back and forth into the 

extracellular space of the brain via a para-arterial influx from the SAS through 

the perivascular spaces of large leptomeningeal arteries, and then, a subsequent 

transfer into the extracellular space of the brain parenchyma occurs via the 

perivascular spaces of the penetrating arterioles (so called Virchow-Robin 

spaces). This transfer is thought to be mediated by Aquaporin-4 water channels 

(AQP4) which are densely expressed along astrocytic endfeet.37-40 After 

transferring to the extracellular space, CSF mixes with the extracellular fluid 

of the brain, and a net flow towards venous perivascular and perineural spaces 

occurs with a proposed drainage along perineural sheaths, meningeal 

lymphatic vessels, and arachnoid granulations (Figure 2).35,36 Although the 

exact transfer process is still unknown and to date mainly studied in animals 
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or experimental settings,35 alterations in AQP-4 expression has been shown in 

several neurological disorders, strengthening the hypothesis of a glymphatic 

system with a similar mechanism of action in humans.35,41 

 

 

Figure 2. A theoretical model of the glymphatic system. 

CSF = cerebrospinal fluid, ISF = interstitial fluid. 

Reprinted from Lancet Neurology, 17(11), M. Kaag Rasmussen, H. Mestre and M. 

Nedergaard, The glymphatic pathway in neurological disorders, 1016-1024., 

Copyright (2018), with permission from Elsevier. 
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3 CLINICAL SYMPTOMS IN iNPH 

Since the original description of iNPH, many studies have greatly increased 

the knowledge of the symptoms seen in the different cardinal domains in the 

disease. However, most studies have been performed using small samples, 

and the overall symptom distribution and severity in larger patient groups is 

much less studied.  

3.1 GAIT 

The gait disturbance in iNPH presents as hypokinetic gait with a general 

shortening of the stride length and reduction in inter-step variation combined 

with an increased distance between the feet, outwardly rotated feet, and a 

tendency to strike the floor at a flat angle when walking.10,42-46 In addition, 

patients usually have difficulties lifting their feet off the floor when walking, 

so called magnetic or shuffling gait. Freezing of gait, similar to the 

phenomenon seen in Parkinson’s disease (PD), is seen in some cases.43 

Electrophysiological studies have also shown a discontinuous phasing of 

antagonistic muscles and an almost continuous activation of antigravity 

muscles in the lower extremities.47 

3.2 BALANCE 

The balance and postural disturbance is characterized by retropulsion, i.e. 

patients exhibit a tendency towards a backward-leaning posture and falling 

backwards.48,49 Increased postural sway is commonly seen, postulated to arise 

secondary to the reduced inter-step variation, diminishing the ability to 

compensate for body sway while standing up and walking.48,50 Patients also 

tend to lose balance whilst turning. The impaired postural control has also been 

attributed, at least in part, to defects in vertical visual perception.51,52 

Interestingly, symptoms are usually much less pronounced when patients are 

sitting or lying down.53 

The gait and balance difficulties are commonly seen in conjunction and 

differentiating between them can be difficult.48 However, symptoms from both 

groups affect the total ambulatory performance, and as a result, a majority of 
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iNPH patients need to use walking aids and have an increased risk of 

falling.10,54 

3.3 COGNITION 

The cognitive dysfunction is characterized by a frontal subcortical pattern with 

slowing of thought, inattentiveness, apathy, and recall as well as encoding 

problems.55,56
 With time, as the disease progresses, a more profound memory 

impairment is also seen in some patients, but usually not to the same extent as 

in Alzheimer’s disease (AD).56,57 

Using the organic psychiatry classification introduced by Lindqvist and 

Malmgren,58 iNPH-patients are found to suffer mainly from somnolence-

sopor-coma disorder (SSCD), characterized by impaired wakefulness and a 

general slowing of cognitive, emotional and motor processes, and emotional-

motivational blunting disorder (EMD), characterized by apathy, indifference 

and lack of drive.58 The impaired wakefulness seen as part of the SSCD 

commonly manifests as an increased need of sleep, and daytime naps are 

common. In some cases, astheno-emotional disorder (AED), characterized by 

emotional lability, fatigue, irritability and concentration difficulties is seen in 

the early stages of the disease, although, this is more commonly seen in sNPH. 

SSCD is the most likely syndrome to improve postoperatively and has been 

proposed as the most characteristic organic psychiatric syndrome in iNPH.58,59 

3.4 URINARY CONTINENCE 

Urinary symptoms in iNPH present as neurogenic bladder disturbances.60-63 

Initial symptoms are mainly urinary urgency and frequent voiding, secondary 

to a loss of the normal inhibitory effect of bladder contraction, causing an 

overactive bladder. As the disease progresses, symptoms develop to also 

include urinary incontinence, and in advanced cases, fecal incontinence. 

Interestingly, urinary symptoms are the least recognized symptom group in 

iNPH, potentially due to the difficulty in observing the symptoms in 

conjunction with the coexisting cognitive dysfunction.3  
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3.5 OTHER CLINICAL SIGNS 

In addition to the cardinal symptom groups outlined above, paratonia, that is, 

a general tonus increase, evident when attempting passive limb movement in 

any direction, combined with an inability to relax the muscle tonus during 

assessment, is sometimes seen in iNPH.42,43,64 The findings are usually most 

pronounced in the lower extremities and increase with the velocity of the 

attempted limb movement. As opposed to spasticity, clasp-knife phenomenon 

(passive movement is initially met with high resistance, but continued 

movement results in a sudden decrease of resistance) is rare, and repeated 

movement does not decrease the resistance. Disinhibition of primitive reflexes 

is also common.42 

3.6 GRADING CLINICAL SYMPTOM SEVERITY 
IN iNPH 

A number of scoring systems exists to grade the severity of clinical symptoms 

in iNPH. Unfortunately, the included tests and scoring systems differ which 

makes comparisons between them difficult.65-68 The modified Rankin scale 

(mRS), initially developed for scoring general morbidity in stroke victims, has 

been used in a number of studies of iNPH to give a general disability 

assessment.5,18,69,70 It is, however, important to note that this scale does not 

factor in the presence or severity of symptoms specific for iNPH. 

In 2012, Hellström et al. published a normalized outcome scale for grading 

symptom severity in iNPH.66 The scale incorporates symptoms from all four 

cardinal symptom domains (gait, balance, cognition, and continence) by 

evaluation of each domain with specific tests, observations or by self-report. A 

brief description of the included tests and grading scales in each domain is 

presented in Table 1, for a detailed description, please see the publication by 

Hellström et al.66 Each test score is converted to a continuous score of 0-100 

where a score of 100 equals the performance of healthy, individuals in the age 

of 70-74 years. The scores from each domain are combined and averaged to 

form a composite iNPH scale score. In calculating the composite score, the gait 

domain is weighted twice compared to the other domains. 
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3.7 PREDICTIVE VALUE OF CLINICAL 
SYMPTOMS AND SIGNS 

No definite support of any single or combination of clinical symptoms and 

signs as predictors of postoperative improvement exist to date. Black et al. 

found that patients who displayed all cardinal symptoms experienced a greater 

rate of postoperative improvement.71 These findings have, however, not been 

reproducible.11 
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Table 1. Domain scoring in the iNPH scale score by Hellström et al.66 
included tests and/or grading scales in each domain. 

Domain Included 

tests/grading 

scales 

Description 

Gait Ordinal rating 

(1-8) 

1 = Normal gait, 2= Slight disturbance of 

tandem walk and turning, 3 = Wide based gait 

with sway, without foot corrections, 4 = 

Tendency to fall, with foot corrections, 5 = 

Walking with cane, 6 = Bi-manual support 

needed, 7 = Aided, 8 = Wheelchair bound 

 10 m walking test Free pace, number of steps taken to complete 

recorded 

 10 m walking test Free pace, number of seconds taken to complete 

recorded 

Balance Ordinal rating 

(1-7) 

1 = Able to stand independently  >30 s on either 

lower extremity alone, 2 = Able to stand 

independently <30 s on either lower extremity 

alone, 3 = Able to stand independently with the 

feet together at the heels >30 s, 4 = Able to 

stand independently with the feet together at the 

heels <30 s, 5 = Able to stand independently 

with the feet apart (1 foot length) >30 s, 6 = 

Able to stand with the feet apart <30s, 7 = 

Unable to stand without assistance. All balance 

testing is performed with eyes open. 

Neuropsychology Grooved 

pegboard test 

Fastest trial, recorded in seconds 

 RAVLT Total sum of nouns recalled over 5 trials 

 Swedish Stroop 

test, color naming 

Time taken to complete, recorded in seconds 

 Swedish Stroop 

test, interference 

Time taken to complete, recorded in seconds 

Continence Ordinal rating 

(1-6) 

1 = Normal, 2 = Urgency without incontinence, 

3 = Infrequent incontinence without napkin, 4 = 

Frequent incontinence with napkin, 5 = Bladder 

incontinence, 6 = Bladder and bowel 

incontinence 

RAVLT = Rey auditory verbal learning test. 
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4 DIAGNOSIS AND TREATMENT 

4.1 DIAGNOSING iNPH 

To correctly make the diagnosis of iNPH the clinical history of the patient 

needs to be carefully evaluated for characteristic symptoms. Additionally, the 

symptoms should have an insidious onset, and no antecedent cause that could 

explain the symptomatology should be present. If such a factor, e.g. previous 

meningitis, intra-cerebral hemorrhage or head trauma exists, the disease should 

be classified as sNPH.3 In addition to the detailed patient history, a thorough 

physical examination is required. The examination should focus on testing gait 

and balance, and in addition, cognitive testing needs to be performed, 

preferably by a neuropsychologist.55 It is also important to determine the 

presence of incontinence, and if present, to what degree. To complement the 

clinical examination, a lumbar puncture needs to be performed to rule out an 

increase in intrathecal pressure (only applicable to the American-European 

guidelines3). At the same time, CSF should be collected, primarily for 

differential diagnostic purposes.72,73 Finally, a magnetic resonance imaging 

(MRI) scan of the brain should be performed to document imaging changes 

supportive of iNPH. 

4.1.1 DIAGNOSTIC GUIDELINES 

Two sets of diagnostic criteria for iNPH exist, the American-European 

guidelines and the Japanese guidelines.3,74 For this thesis, the American-

European guidelines are used and a description is presented in Table 2. The 

Japanese guidelines differ from the American-European guidelines in several 

areas. Notably, the lower age limit for inclusion is higher in the Japanese 

guidelines and gait is considered less important as a clinical symptom.74 The 

Japanese guidelines also places a heavier emphasis on the finding of 

disproportionately enlarged subarachnoid space hydrocephalus (DESH, see 

Section 6.3), which is required as one of three investigational findings in order 

to fulfil the criteria for probable iNPH. 
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4.1.2 CEREBROSPINAL FLUID 

Cerebrospinal fluid (CSF) biomarkers play an important part in differentiating 

iNPH from other neurological diseases that can have similar clinical 

characteristics.72,73,75,76 As opposed to AD, where an isolated reduction of 

amyloid beta (Ab)-42 is commonly seen,77 iNPH patients have a general 

reduction in all amyloid precursor protein (APP)-derived proteins including 

Ab-38, 40 and 42.78 At the same time, tau protein levels (indicating cortical 

neuronal damage)  are normal or slightly reduced, while neurofilament light 

protein (NFL, a marker of axonal damage) and possibly monocyte 

chemoattractant protein-1 (MCP-1, a marker of astroglial activation) are 

slightly elevated.72,73,79-81 A combination of low Ab-40, low total tau, and 

MCP-1 has been found to separate iNPH from other cognitive and movement 

disorders with high sensitivity and specificity.73 

While CSF-biomarkers may play a vital role in diagnosing iNPH as well as 

differentiating it from other diseases, there are no biomarkers that can be used 

to predict postoperative improvement to date.72,73  

4.1.3 SUPPLEMENTARY TESTS  

In cases where the diagnosis of iNPH is uncertain, several supplementary tests 

can be used to aid the decision making. Of the supplementary tests that can aid 

in diagnosing iNPH, the CSF tap test (CSF-TT) and extended lumbar drainage 

(ELD) have both been investigated as predictors of favorable outcome after 

shunt surgery.82-85 Both the CSF TT and ELD have a high specificity (75-92% 

and 80-100% respectively), whereas the sensitivity is rather low for both tests 

(26-61% for the CSF TT and 50-100% for ELD).86,87 As such, a positive 

response in either test can be used to include patients for shunt surgery, but 

negative test results cannot be used as an exclusion criterion.  

4.1.4 IMAGING 

Radiological changes seen in iNPH are described in Chapter 6. To aid in the 

standardized evaluation of computed tomography (CT) and MRI scans in 

patients with suspected iNPH, a radiological evaluation scale (the iNPH 

Radscale) was recently published by Kockum et al.88 The scale provides a 

standardized measurement encompassing seven imaging findings commonly 
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seen in iNPH and summarizes them in a composite score. Agreement estimates 

between modalities as well as between raters are fair to excellent and the iNPH 

Radscale is promising as an additional tool in the diagnostic workup for 

suspected iNPH.89 
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Table 2. The American-European iNPH-guidelines,3 required findings for the 
diagnosis of probable or possible iNPH. 

 Probable iNPH 

History Progressive symptoms with onset after 40 years of age. Minimum duration of 

3 months. No evidence of sNPH. No other conditions that sufficiently explain 

the symptoms. 

Symptoms Gait/balance disturbance + cognitive disturbance and/or disturbed continence 

must be present. 

Gait At least 2 of the following must be present: a. Decreased step height, b. 

Decreased step length. c. Decreased cadence, d. Increased trunk sway during 

walking, e. Widened standing base, f. Toes turned outward when walking, g. 

Retropulsion, h. ≥3 steps required to turn 180°, i. impaired walking balance, 

evident as ≥2 corrections out of 8 steps on tandem gait testing.    

Cognition The cognitive disturbance should be documented by a screening instrument 

(e.g. the MMSE), or by evidence by ≥2 of the following: a. Psychomotor 

slowing, b. Decreased fine motor speed, c. Decreased fine motor accuracy, d. 

Difficulty dividing or maintaining attention, e. Impaired recall, f. Executive 

dysfunction (such as impairment in multistep procedures, working memory, 

formulations of abstractions/similarities or insight). 

Urinary 

continence 

Present episodic or persistent urinary and/or fecal incontinence not 

attributable to urological disorders or ≥2 of the following: a. Urinary urgency, 

b. Frequent voiding (≥6 episodes during a 12-hour period) or c. Nocturia. 

Imaging Ventricular enlargement not entirely attributable to atrophy or congenital 

enlargement with an Evans’ Index >0.3. No obstruction of CSF flow. At least 

one of the following supportive features: 1. Enlargement of the temporal 

horns, 2. A corpus callosal angle ≥40°, 3. Present WMLs 4. A present flow 

void sign.  

Physiology CSF opening pressure between 5-18 mm Hg (70-245 cm H2O). 

 Possible iNPH 

History No other conditions that sufficiently explain the symptoms. Otherwise no 

formal requirements. 

Symptoms Symptoms from at least one group as outlined above must be present. 

Imaging Ventricular enlargement must be present but atrophy and/or focal lesions are 

allowed. 

iNPH = idiopathic normal pressure hydrocephalus, MMSE = mini mental state examination, 

CSF = cerebrospinal fluid, WMLs = white matter lesions.  
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4.2 TREATMENT AND OUTCOME 

The treatment of choice for iNPH is the insertion of a shunt system to drain 

excess CSF from the ventricles to the peritoneal cavity or the right atrium.3,90 

The proximal catheter can be inserted either in the frontal or occipital horn of 

the lateral ventricle, most commonly on the right side 

(ventriculoperitoneal/ventriculoatrial shunt), or placed in the lumbar CSF-

space (lumboperitoneal shunt).6,90 Shunt complications are reported in 13-26% 

of cases and consist primarily of subdural hematomas, shunt catheter 

obstructions, and infection.8,70 Most complications tend to occur within the first 

year after surgery, and reoperations due to complications do not affect the 

overall clinical outcome.70 Using modern operating techniques and shunt 

systems, up to 80% of patients improve significantly after shunting, and the 

improvement rates have steadily increased in later years, although 

improvement rates vary depending on the outcome measures used.5-8,10,12,15,91-

94 Shunt surgery for iNPH has been shown to be cost effective.95 

In the European multicenter study on iNPH, a total of 142 patients from 13 

centers in nine countries were included.10 All patients were treated with 

ventriculoperitoneal shunts, and outcome was measured using the mRS and the 

iNPH-scale developed by Hellström et al.65,66 At the postoperative 

examinations one year after surgery, 69% improved at least one step on the 

mRS, and about 30% improved 2 or 3 steps. Eighty-four percent were 

classified as improved using the iNPH-scale. In addition, the number of 

patients able to live independently increased by 29% (from 53 to 82%). 

Two large Japanese studies, SINPHONI and SINPHONI 2 have found similar 

results. In the SINPHONI study, 100 patients from 26 centers in Japan were 

included and treated with ventriculoperitoneal shunts.18,96 Outcome was 

measured using the mRS as well as the Japanese iNPH grading scale,67 the 

timed up and go test (TUG),54 and the mini mental state examination 

(MMSE).97 Postoperatively, 69% of patients improved at least one level on the 

mRS, and significant improvements were also seen in all other outcome 

measurements, including gait improvement in 77%. The number of patients 

with no functional impairment (mRS ≤1) increased by 37% (from 7 to 44%). 



Radiological and Clinical Changes in idiopathic Normal Pressure Hydrocephalus 

16 

The SINPHONI 2-study included 93 patients from 20 centers in Japan and 

randomly assigned the included patients to either receive treatment by 

installation of a lumboperitoneal shunt or conservative management over a 

three-month period in a 1:1 fashion.98 Outcome was measured using the mRS, 

the Japanese iNPH scale as well as the TUG and MMSE. At the follow up 

examination, 65% in the treatment group improved at least one step on the 

mRS compared to 5% in the control group.  

Regarding long-term outcome, a systematic review conducted in 2013 by 

Toma et al. concluded that 73% of patients benefit from surgery after 3 years 

or more, with improvement rates increasing in later years.8 Andrén et al. found 

that around 40% of iNPH patients who underwent shunt surgery improved at 

least 1 point on the mRS-scale, and 60% reported an improvement in general 

health up to 6 years after surgery.70 In addition, the same authors found iNPH 

patients who improved postoperatively to have a similar rate of survival as the 

general population.99 

The studies mentioned above as well as several earlier conducted studies,8 

show that shunting is of great benefit to the majority of iNPH patients and 

probably reduces mortality. However, at least 20% of patients undergoing 

surgery do not improve. This subgroup is subjected to unnecessary surgery 

with no benefit to the individual, and the procedure also incurs an unnecessary 

cost to the society. The degree of improvement also varies within the group of 

improved patients. Further, patients are elderly and often suffer from other 

chronic disorders and it is important to carefully weigh potential benefits 

against risks of surgery. Thus, in addition to accurately diagnosing iNPH, it is 

of great importance to find biomarkers for prediction of outcome after shunt 

surgery. 
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5 NEUROIMAGING IN iNPH 

5.1 A BRIEF INTRODUCTION TO 
NEUROIMAGING 

5.1.1 COMPUTED TOMOGRAPHY 

In many medical areas today CT imaging is a workhorse due to its fast 

application, relatively low cost and the good diagnostic information that it 

provides. In neuroimaging, CT remains very valuable in the emergency setting 

where the fast examination times and good availability outweigh the improved 

image contrast provided by MRI. Fundamentally, CT examinations generate 

image contrast just like traditional x-rays, where a combination of an x-ray 

generator and detector is used to generate images by using ionizing 

radiation.100 By fast rotation of the generator and detector (mounted inside the 

CT gantry) around the patient while moving the examination table through the 

gantry, fast scanning of large volumes of interest are possible. Due to each 

voxel in a volume being scanned from multiple angles, the three-dimensional 

positioning of each voxel can be determined. In addition, the high spatial 

resolution and the possibility to acquire isotropic data with voxel sizes <0.5 

mm in most modern scanners allow for reconstruction of scans in any desired 

plane to further enhance the diagnostic capability. 

5.1.2 MAGNETIC RESONANCE IMAGING 

The concept of MRI was first introduced in 1946, and initially used in 

biochemical studies.101 In 1973, Lauterbur introduced MRI in the medical field 

by publishing an image of a heterogenous object and since the 1980s, MRI has 

seen widespread use in the medical field.102 

In its simplest form, MRI contrast in human subjects is achieved by 

manipulation of the spin of hydrogen nuclei (protons). In a normal 

environment, each hydrogen nucleus has a net charge and spins around its own 

axis. Thus, it has a magnetic movement and generates a small surrounding 

magnetic field.100 When no external magnetic field is applied, the direction of 

each proton’s magnetic movement is random. By applying a strong, static, 

external magnetic field (B0), the magnetic movements are forced to align with 
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the external field, either parallel or anti-parallel to it.103 The alignment of 

protons along B0 generates a net magnetic vector (NMV) that has a longitudinal 

and a transverse component. In the initial setting, full longitudinal 

magnetisation occurs (i.e. the transverse component equals 0, Figure 3a). The 

proportion of parallel to anti-parallel protons is determined by several factors, 

e.g. the strength of the external magnetic field and the thermal energy level of 

the protons and affects the strength of the NMV. In addition to generating an 

NMV, a secondary spin around B0 occurs when the spinning protons are placed 

in the field. This precession spin occurs with a specific frequency for each type 

of MR active atom, and is determined by the Larmor equation.104 By exposing 

hydrogen protons aligned along B0 to an external radiofrequency (RF) pulse of 

the same precessional frequency (i.e. 63.86 MHz at 1.5 T), the NMV will move 

out of alignment with the B0 and flip over to the transverse plane. In its simplest 

form, the RF pulse has a strength and duration that causes full transverse 

magnetisation (Figure 3b), but this varies depending on the type of sequence 

used. 

 

Figure 3. Longitudinal and transverse magnetisation before (a) and after (b) 

application of a radiofrequency (RF) pulse. 

The protons will continue to precess at their Larmor frequency in the transverse 

plane, and in addition, all movements will be in phase. The moving NMV in 
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the transverse plane can be used to generate voltage in an induction coil, 

constituting the base of signal generation in MRI. With time, due to the 

influence of the B0 field, the hydrogen protons will start to lose the energy 

gained from the initial RF pulse and realign with the B0, returning towards full 

longitudinal magnetisation (T1-relaxation).103 In addition, the transverse 

magnetisation is gradually reduced due to interactions between the magnetic 

fields of adjacent hydrogen nuclei and dephasing effects (T2-relaxation). The 

time taken for these processes to occur differ between tissues and are integral 

in the contrast generation of MR images. Each tissue has its unique T1, and T2 

time. Both are time constants and are determined as the time it takes for 63% 

of the longitudinal relaxation to recover and 63% of the transverse 

magnetisation to be lost. By changing the repetition time (TR, the time between 

the RF pulses) as well as the echo time (TE, time between the RF pulse and the 

signal readout in the coil) different image weightings can be achieved.100 Also, 

the addition of extra RF pulses can be used to nullify the signal from specific 

substances, e.g. water (so called Fluid Attenuated Inversion Recovery, 

FLAIR), and contrast agents can be used to further enhance imaging.103 

It is important to note that while the technique outlined above constitutes the 

absolute basics of generating contrast in MRI, the field of image generation, 

encoding, and its possibilities is very complex and well beyond the scope of 

this thesis.  

5.1.3 WHITE MATTER DISEASE ON CT AND MRI 

In the elderly population, white matter lesions (WMLs) are seen in up to 90%, 

increasing with age.105-108 While a vast spectrum of diseases, including 

autoimmune disorders and infections can cause WMLs detectable on CT and 

MRI, one of the most common causes in the elderly population is small vessel 

disease related to arteriolosclerosis.109 The exact pathophysiology remains 

incompletely understood, but WMLs are associated with several vascular risk 

factors such as hypertension, diabetes mellitus (DM), high blood cholesterol 

and smoking,107,108,110 and have been proposed to arise due to chronic 

hypoperfusion and incomplete ischemia of the affected areas with secondary 

myelin degeneration.111,112 This is supported by neuropathological findings of 

hyaline fibrosis of smaller vessels, but also a general loss of axons, and mild 

gliosis.113 On the other hand, dysfunction in the blood-brain barrier (BBB) with 
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secondary, local inflammation have been reported as possible driving forces of 

WMLs, especially in the periventricular white matter.111,114,115 WMLs have 

been linked to impairments in cognitive function, gait, and urinary 

incontinence as well as risk of having a stroke.116 Several grading systems exist 

to aid in detection and classification of WMLs, however, the differences 

between them makes comparisons between studies somewhat difficult. WMLs 

are detectable on both CT and MRI, but MRI has been proven to have a higher 

sensitivity.117-119 

On MRI, WMLs appear as hyperintense, focal or confluent lesions in the 

periventricular and deep white matter on T2- and FLAIR weighted sequences 

(Figure 4a). The lesions appear hypointense on T1-weighted sequences and are 

seen as hypoattenuating areas on CT (Figure 4b).111 The distribution is usually 

symmetrical and WMLs are more common in supratentorial areas. 

 

Figure 4. An example of white matter lesions (WMLs) on FLAIR-MRI (a) and CT (b). 
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5.1.4 MEASURING WATER DIFFUSION 

The measurement of water molecule movements within tissues is a very 

valuable tool for diagnostic and prognostic purposes in many medical areas.120 

In the general sense, the term diffusion is used to describe the Brownian motion 

of water molecules driven by thermal energy. In a completely homogenous 

medium, diffusion is isotropic, i.e. uniform in all directions, while 

inhomogeneous media result in anisotropic diffusion, i.e. directional 

restrictions on the diffusion probabilities based on the content of the medium. 

In the clinical setting, data acquisition is usually performed using fast scan 

techniques that limit motion artefacts, such as echo planar imaging (EPI).120 

Diffusion measurements are obtained by initial collection of an image without 

diffusion attenuation. Thereafter, the amount of diffusion in various directions 

is assessed. At least three directions have to be investigated, which is done by 

combining an RF pulse with paired magnetic field gradients.121 These diffusion 

gradients act to de- and rephase the protons spinning in the transverse plane 

and can be tailored with a specific amplitude, duration and time separation 

resulting in a so-called gradient factor (b-factor).120 The higher the b-factor, the 

higher the diffusion-related signal attenuation. Moving water molecules are not 

completely rephased by the second gradient and their signal is therefore 

reduced with higher movement resulting in a more pronounced signal 

reduction. In contrast, protons in areas where free water movement cannot 

occur will fully rephase after application of the second gradient and result in 

an increased signal, indicating a diffusion restriction. 

Series of diffusion-weighted images (DWI) with different b-factors, in at least 

3 directions are used to calculate the apparent diffusion coefficient (ADC, 

mm2/s), an absolute value of mean diffusion for a specific voxel or region of 

interest (ROI).  

  



Radiological and Clinical Changes in idiopathic Normal Pressure Hydrocephalus 

22 

The signal intensity (S) on DWI and ADC are related: 

𝑆(𝑏) = 𝑆0exp(−𝑏𝐴𝐷𝐶) 

And 

𝐴𝐷𝐶 = −ln(
𝑆(𝑏)

𝑆0
)/𝑏 

 

S(b) =Average signal intensity at a given b-value, S0= Signal intensity with no magnetic field 

gradients applied, b = the chosen b-factor, ADC = apparent diffusion coefficient. 

As such, a decrease in water diffusion causes an increased S at high b-values 

which results in a lower ADC-value. 

While standard DWI only measures the magnitude of water movement 

regardless of its preferred direction, measurements can be added to also 

measure the preferential directionality of movement.122 This so-called 

diffusion tensor imaging (DTI) requires at least 6 DWI measurements in 

different encoding directions and can be used to calculate the mean diffusivity 

(MD) and the fractional anisotropy (FA).120 Mean diffusivity is similar to the 

ADC in that it measures the magnitude of water movement (mm2/s) while the 

FA represents the anisotropy of the diffusion process and ranges between 0 

(completely isotropic diffusion) and 1 (completely anisotropic diffusion). 

As DWI is based on T2-weighted images, T2 signal characteristics will 

influence the DWI independent of the tissue diffusability.120 This is most 

commonly seen as “T2-shine through” where a prolonged T2-relaxation results 

in a high signal in the DWI even if no actual diffusion restriction is present.123-

126 DWI is also prone to artefacts, most notably Eddy current artefacts, 

susceptibility artefacts, and motion artefacts have to be taken into account 

and/or corrected for.120   
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5.1.5 MEASURING PERFUSION 

The study of brain perfusion is of great interest in many neurological disorders, 

and can aid in the diagnosis, lesion characterization, and evaluation of 

treatment results. While several MRI-based perfusion techniques exist today, 

the focus in this thesis will be on dynamic susceptibility contrast (DSC) MRI-

perfusion. 

To quantify perfusion, several theoretical models exist, but for the purpose of 

this thesis, the central volume principle is used.127-130 This model is based on 

the assumption that regional vascular structures constitute separate volumes 

through which the full volume of an indicator (contrast bolus) will eventually 

pass. Theoretically, the injection time of the indicator bolus is infinitely short, 

and the total amount of indicator arrives at the tissue level instantaneously (C0). 

The residue function, R(t) describes the fraction of indicator present in the 

vascular network at time t after injection and is a decreasing function of time. 

The tissue concentration at a given time, Ct(t) is proportional to cerebral blood 

flow (CBF): 

𝐶𝑡(𝑡) = 𝐶𝐵𝐹 ∗ 𝐶0 ∗ 𝑅(𝑡) 

Ct(t) = tissue concentration at time t, CBF = cerebral blood flow, C0 = concentration at 

time = 0, R(t) = residue function. 

CBF*R(t) is called the tissue impulse response function.  

To account for the non-optimal contrast bolus delivery in vivo, the 

concentration-to-time curve (CTTC) in a supplying cerebral artery can be 

monitored to measure the actual distribution of the contrast medium over time, 

the so-called arterial input function (AIF).127 By determining the CTTC of the 

target tissue and then de-convoluting it with the AIF, the tissue impulse 

response function is calculated. At time point 0, the residue function, R(0)=1, 

and therefore, the height of the tissue impulse function (CBF*R(t)) equals the 

CBF. The cerebral blood volume (CBV) can be calculated by integrating the 

area under the tissue impulse response function.131 Mean transit time (MTT), 

i.e. the mean value for a distribution of transit times of all blood components 
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through a given brain volume , can be calculated as CBV/CBF in accordance 

with the central volume principle.127 

CBF is expressed as the total blood flow in the capillaries per unit tissue mass 

(ml/min*100 g). CBV is expressed as the volume of blood per unit tissue mass 

(ml/100 g). As both CBF and CBV are measured voxel wise, i.e. per volume 

element, the measurements are converted to perfusion rates using an estimate 

for the tissue density (typically 1.05g/ml for brain tissue).132 MTT is expressed 

in seconds. As the contrast agent is only distributed in the blood plasma and 

not the full blood volume, the CBF and CBV values need to be corrected for 

differences in hematocrit between large vessels (as the AIF) and the capillaries 

(CTTC of the target tissue). 

DSC MRI-perfusion is a widely used MRI-perfusion technique and like the 

other MRI-based techniques it does not expose the patient to ionizing radiation, 

as opposed to CT- or nuclear medicine-based approaches. DSC-MRI follows 

the first pass of  an exogenous contrast agent with T2-weighted image 

sequences.133 The contrast agent, a paramagnetic gadolinium chelate is 

administered intravenously at high speed and will remain intravascular as long 

as the BBB is intact.134 The contrast agent causes microscopic susceptibility 

gradients that affect the local tissue around the vessels causing local protons to 

diphase resulting in an increased transverse (T2 or T2*) relaxation rate and a 

signal drop. An approximate linear relationship exists between the rate of 

change in the transverse relaxation rate and the tissue contrast agent 

concentration.135 This, combined with the assumption that there is an 

exponential relationship between signal change and the change in T2* 

relaxation rate is used to calculate the CTTC.136 A prerequisite of DSC-MRI 

are rapid imaging sequences with a temporal resolution ≤1.5 s.  In the clinical 

setting, this is usually accomplished using EPI T2* weighted sequences with a 

TE optimized to maximize the signal-to-noise ratio while also optimizing the 

AIF.137-139 

A major drawback of this perfusion technique is the tendency to overestimate 

CBF- and CBV-values compared to the reference standard of positron 

emission tomography (PET) measurements, and the only moderate 

reproducibility of the method.140,141 The overestimation is caused mainly by 

inaccuracy of the AIF due to partial volume effects, arterial signal saturation, 
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and local geometric distortion with partial volume effects being the major 

factor.138,142-144 In addition, DSC-MRI suffers from the fact that intra- and 

extravascular transverse relaxitivity differ during bolus passage, violating the 

assumption of proportionality between the contrast agent concentration and 

change in T2/T2* relaxation rate, potentially contributing to the overestimation 

of perfusion.145-147 If the BBB is not intact, extravascular retention of 

gadolinium also occurs, affecting the T2/T2* relaxation rate and the calculated 

perfusion estimates. While several methods to optimize the absolute perfusion 

estimates using DSC-MRI have been proposed with promising results,148-150 it 

is still common to report relative CBF and CBV values (rCBF and rCBV) 

where the perfusion estimate is divided by the perfusion estimate of an internal 

reference.151,152 
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5.2 HISTORY OF IMAGING OF 
HYDROCEPHALUS 

Different imaging techniques have been integral in diagnosing iNPH since its 

first description.2 Initially, the imaging methods of choice for detecting 

hydrocephalus as well as to try to differentiate NPH from obstructive 

hydrocephalus and ventricular enlargement secondary to brain atrophy (also 

named hydrocephalus ex vacuo) were pneumoencephalography and, 

introduced some years later, isotope cisternography.153,154 Both methods 

suffered from a low resolution and a number of technical difficulties and were 

associated with significant discomfort for the patient. This was especially true 

for pneumoencephalography where headaches, emesis and nausea were 

common complications.154 Isotope cisternography has been widely used for 

studies of CSF dynamics, being a sensitive method for detection of obstructive 

hydrocephalus. 

Imaging of the brain and ventricular systems improved greatly when CT and 

MRI became readily available. Today, CT remains important due to the large 

number of scans performed worldwide and many reveal incidental findings 

suspicious of NPH, enabling patients to get referred for a full workup. Many 

of the morphological findings seen on MRI (outlined below) can be seen on 

CT as well.89 Thus, CT remains an important diagnostic tool for diagnosing 

NPH in cases where an MRI cannot be performed, and is useful to exclude the 

presence of ventricular dilatation.3  

MR-imaging is considered the reference standard for imaging in iNPH 

today.155 Compared to CT, MRI offer significantly higher tissue contrast 

enabling detailed evaluation of the morphology, allowing detection of 

processes that obstruct CSF-flow as well as WMLs.118,156-158 In addition, 

additional sequences, e.g. DWI and perfusion imaging sequences can be 

performed to further increase the amount of information received from the 

scan. While many imaging markers of iNPH have been studied extensively, 

several potentially important markers have only been sparsely investigated or 

need confirmation in larger patient samples. 
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5.3 MORPHOLOGICAL IMAGING CHANGES IN 
iNPH 

5.3.1 VENTRICULAR VOLUME 

iNPH and sNPH are both characterized by a general widening of the ventricular 

system. The increased width is commonly measured using the Evans’ index 

(EI) where the maximum width of the anterior horn of the lateral ventricles is 

divided by the maximum inner skull diameter in the same slice (Figure 

5a).159,160 An EI >0.3 is considered pathological, a marker of ventriculomegaly, 

and is used as a radiological criterion in both the American-European and 

Japanese guidelines.3,74 However, this finding is not specific for iNPH and is 

seen in numerous other conditions with brain atrophy, including AD and other 

dementias.161-163 The EI has been shown to remain unchanged or decrease 

minimally postoperatively.164-166 As the widening of the ventricular system is 

general, patients with NPH commonly present with dilatation of the third 

ventricle as well as bilateral dilatation of the temporal horns.3,69,167 As with the 

EI, these findings can be indicative of iNPH but are not specific for the 

disease.162,168 Still, bilateral dilatation of the temporal horns not attributed to 

hippocampal atrophy, is included as a supportive radiological criterion for 

iNPH in the American-European guidelines.3 

In recent years, semi- or fully-automated volumetric measurements have been 

used in NPH with promising results, and the accuracy and reproducibility is 

higher compared to the conventional measurements outlined above.169 

Ventricular volume has also been shown to decrease postoperatively.166,170 

However, even with the rapid technological advances, automated routine 

volumetric measurements are not yet readily available, in part due to 

difficulties of accurately measuring the ventricles when enlarged or when 

metallic artefacts from the shunt device are present.171 On the other hand, semi-

automated or manual volumetry is too time-consuming, thus, conventional 

morphological markers of iNPH are still essential in the diagnosis of the 

disease. 
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5.3.2 CORPUS CALLOSUM ANGLE 

Relating to the dilatation of the lateral ventricles, a narrowing of the corpus 

callosum (or callosal) angle (CC-angle), measured along the inner walls of the 

lateral ventricles at the level of the posterior commissure in the coronal plane 

is another important finding in iNPH (Figure 5b).163,172-174  Several studies have 

found the CC-angle useful for differential diagnostic purposes. Most notably, 

Ishii et al. found a cut off of 90° to discriminate iNPH from AD with a 

sensitivity of 97% and a specificity of 88%.163 While 90° is the most commonly 

used cut off today, no consensus exists on the optimal cut off value.3 It is 

important to note that while the CC-angle is a useful tool for diagnosing iNPH, 

great care should be taken to measure it in the correct plane perpendicular to a 

plane intersecting the anterior and posterior commissure (Figure 6).163,172 

Failure to define the measurement plane correctly has significant impact on the 

resulting measurement and might, as such, influence the results.88,172 In the 

American-European guidelines, a CC-angle >40 degrees is, somewhat 

confusingly, most probably by mistake, included as a supportive radiological 

criterion of iNPH.3 Postoperatively, the CC-angle has been reported to 

increase.69,166,172 
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Figure 5. Example of morphological measurements and signs in iNPH. The Evans’ index 

(a), and corpus callosal angle (b) on T1-weighted images. A combination of dilated 

Sylvian fissures and compressed sulci at the high convexity – DESH (c), and focally 

dilated sulci (d) on T1-weighted images. A present flow void sign in the cerebral aqueduct 

on a T2-weighted image (e), and periventricular as well as deep white matter 

hyperintensities on a T2-FLAIR image (f). 
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Figure 6. Line intersecting the anterior and posterior commissures on a midsagittal 

image used to align transaxial and coronal image series. 

5.3.3 DESH AND FOCALLY WIDENED SULCI 

As first described by Kitagi et al. in 1998, many patients with iNPH present 

with a discrepancy in the width of the cortical CSF-spaces where high 

convexity sulci and medial subarachnoid spaces are compressed while the 

sylvian fissures are dilated (Figure 5c).18,74,156 This discrepancy, in combination 

with a general widening of the ventricular system constitute DESH and is 

considered an important diagnostic finding in the Japanese iNPH guidelines.74 

Focal dilatation of cortical sulci (a.k.a. entrapped sulci or transport sulci) have 

also been shown in patients with iNPH (Figure 5d).88,167,175 Although probably 

less common than DESH, the focal widening is thought to arise from the same 

underlying disturbance of CSF circulation.74,88,175 

5.3.4 WHITE MATTER LESIONS 

WMLs, seen as both periventricular (PVH) and deep white matter 

hyperintensities (DWMH) are a common finding in iNPH,3,74,176,177 and are 
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more common in the patient group compared to healthy control subjects 

(Figure 5f).157,178 Both PVH and DWMH are associated with vascular risk 

factors and can, at least in part be caused by microischemic events.107,108,110 

However, measurements of T1 and T2-relaxation as well as ADC in PVHs in 

iNPH have also shown some support of an increased water content, speculated 

to be caused by a periventricular edema,179,180 which is in line with reports on 

neuropathological findings in iNPH.181,182 On the other hand, the extent of 

edema has been questioned, and pure periventricular edema is rarely seen in 

iNPH.176,183 Thus, a combination of pathophysiological alterations causing 

WMLs in iNPH is likely.157,176,178  The extent of PVHs has been shown to be 

reduced after surgery, and the reduction has been found to correlate to the 

degree of clinical improvement.176 The presence of WMLs is included as a 

supportive diagnostic criterion in the American-European guidelines.3 

5.3.5 MORPHOLOGICAL IMAGING CHANGES IN 

INFRATENTORIAL STRUCTURES 

Only a few studies investigating morphological changes in infratentorial 

structures in iNPH have been conducted. Midbrain diameter at the level of the 

mesencephalopontine junction has been found to be reduced preoperatively, 

correlate to the severity of gait disturbances and increase after surgery.165,184 

However, the original studies suffer from methodological issues regarding the 

definition of measurement planes and these findings were not reproducible in 

a more recent study.185 

5.3.6 PREDICTION 

The predictive value of morphological imaging markers in iNPH has been 

investigated with conflicting results.  The CC-angle, dilated temporal horns 

and DESH have been reported as predictors of good outcome in a number of 

studies.69,172,186-190 However, these markers have also been found to be of no 

predictive value.167,191-193 As such, no definite support for outcome prediction 

exists and the markers that have shown promise in this area need further 

evaluation. Regarding WMLs, it is important to note that the presence of even 

severe WMLs do not affect the potential rate of postoperative 

improvement.176,177  
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5.4 MARKERS OF CSF FLOW 

To help exclude obstruction or stenosis of the cerebral aqueduct as well as 

other parts of the ventricular system, the flow void phenomenon is commonly 

assessed in the diagnostic workup of iNPH. Flow voids arise due to a loss of 

signal on T2 or proton density weighted spin echo MRI caused by the fast 

movement of hydrogen atoms.103 This is commonly seen in blood vessels in 

healthy individuals. In iNPH, a flow void sign is often seen in the cerebral 

aqueduct and in the fourth ventricle, and can be used to rule out complete 

blockage of CSF-flow in this area (Figure 5e).158 Objective grading of flow 

voids are difficult and depend on several MRI parameters e.g. slice thickness 

and TE which makes comparisons between different scanners difficult.194,195 

Despite these drawbacks, the aqueductal flow void sign is included as a 

supportive radiological criterion for the diagnosis of iNPH.3 However, it is 

important to note that flow voids are seen in this area in other diseases such as 

AD, but also in healthy individuals, thus the specificity for iNPH is low, and 

the flow void sign has been shown to be of no predictive value.163,196 
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5.5 DIFFUSION WEIGHTED IMAGING AND 
DIFFUSION TENSOR IMAGING 

Changes on DWI in iNPH patients have been explored in several studies. 

Increased ADC in periventricular white matter has been repeatedly reported, a 

change attributed to an increase in extracellular water content and/or ischemic 

injury.180,197-200 However, another study reported similar ADC in iNPH patients 

and healthy control subjects.201 Postoperatively, ADC in periventricular white 

matter has been reported to decrease, hypothetically due to increased water 

movement from the interstitium to the ventricles,201-203 but has also been found 

to remain unchanged in the corpus callosum and centrum semiovale in one 

study.204 

DTI studies have found increased FA and, to a lesser extent MD along the 

corticospinal tract (CST) in iNPH patients, hypothesized to be caused by 

compression of white matter tracts, with trends towards normalization after 

shunt surgery.155,198,205-208 The FA increase in the CST has also been shown to 

aid in the differential diagnosis of iNPH, AD and PD.207 Further, a decreased 

FA in combination with increased MD/ADC has been shown in periventricular 

frontal white matter202 and in the commissural fibers of the corpus callosum, 

findings that correlated to the severity of gait disturbance.198,208-210 

Diffusion changes in infratentorial structures are scarcely investigated. 

Tullberg et al. found no difference in ADC between patients and controls in 

the mesencephalon, nor any differences between iNPH patients and patients 

diagnosed with Binswangers disease.201 Postoperatively, there was a 

numerical, but non-significant decrease of ADC in the iNPH group and the 

reported postoperative values did not differ from the control subjects. 

Measuring changes in the CST with DTI, Reiss-Zimmermann et al. found an 

increased MD, mainly caused by an increased principal diffusion in the fibers 

of the CST passing through the cerebral peduncles and the mesencephalon.198  

5.5.1 PREDICTION 

The degree of change in ADC in responders has been shown to correlate with 

the extent of clinical improvement.199,201 Corkill et al. found a significant 

preoperative ADC increase in normal appearing white matter in non-
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responders and postulated that this might reflect irreversible neuronal injury, 

and could be used to exclude patients from shunt surgery.197  In addition, 

Jurcoane et al. and Demura et al. investigated DTI changes after CSF drainage 

and found that responders showed significant reductions in ADC and axial 

diffusivity.155,203 One study also found that the reduction in axial diffusivity 

after TT could predict outcome after surgery.155 However, contradicting these 

findings, Lenfeldt et al. found no changes in DTI variables after ELD.204 In 

summary, while diffusion changes are evident in iNPH, their cause as well as 

their predictive value is debated and requires further investigation. 
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5.6 PERFUSION IMAGING 

Many studies have investigated perfusion changes in iNPH, mainly in 

supratentorial structures. Early studies, conducted between 1969 and 2000, 

suffered from methodological and technical issues with inconsistent results, 

but still provided evidence of a global pre-treatment CBF reduction in iNPH.211 

Using single positron emission computed tomography (SPECT) and PET, 

combined with CT or MRI, iNPH patients have been found to have a reduced 

CBF in the frontal/prefrontal and parieto-temporal lobes compared to controls. 

In addition, CBF was lower in the corpus callosum, cortex bordering the 

sylvian fissures, and in the dorsal striatum compared to controls and AD-

patients.59,212-219 A global CBF reduction has also been reported,215,220 and 

Momijan et al. found a gradual CBF reduction in periventricular white matter, 

correlating with the distance to the ventricular wall. The reduction was more 

pronounced after administering a CSF infusion test, and speculated to arise due 

to defective autoregulation.221 CBF has been found to be lower in patients with 

symptoms from all domains compared to patients with fewer symptoms and to 

correlate with the severity of clinical symptoms.215,218,220 Focal reductions in 

the right frontal and left inferior temporal gyrus have been found to correlate 

with severe urinary dysfunction.222 Postoperatively, CBF increases,59,218,223,224 

or remain unchanged in improved patients.225-227 

Using MRI-based perfusion methods, global arterial and venous CBF 

reductions with an altered venous compliance have been reported using phase-

contrast MRI.228,229 Similar global reductions were found using DSC-MRI 

based rCBF measurements.230 In addition, local rCBF reductions have been 

reported in the periventricular white matter,197,230 as well as in the medial 

frontal cortex, cingulate gyrus, lentiform nucleus, and hippocampus, 

correlating to clinical performance.230 Using pseudo-continuous arterial spin-

labelling (pCASL), Virhammar et al. found that patients who had an increased 

CBF after undergoing a CSF-TT improved more in gait tests compared with 

patients who had a reduction in CBF, although, at group level, no correlation 

between CBF and gait performance existed.231 Corroborating results from 

SPECT and PET studies, DSC MRI-perfusion based rCBF has been reported 

to increase in improved patients.232 
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Similar to morphological and diffusion changes, perfusion alterations in 

infratentorial structures in iNPH has only been investigated in a few studies. 

Tullberg et al. reported a significantly decreased rCBF in the mesencephalon 

preoperatively with a numerical, although not statistically significant increase 

after shunt surgery using SPECT.59 Reporting similar results using PET-MRI, 

one study by Owler et al. found a preoperative CBF reduction in the cerebellum 

in the disease.220 Only one study using CT-perfusion imaging has been 

performed in iNPH with results largely corroborating the DSC-MRI results 

published by the same authors.233 

5.6.1 PREDICTION 

As with the diffusion studies, studies of perfusion in iNPH have found 

correlations between the degree of postoperative CBF increase and overall 

clinical performance in responders,223,224,232 as well as a negative correlation 

between rCBF increase in the frontal association cortex, and impaired 

wakefulness.59  Ziegelitz et al. found that the change in rCBF in responders in 

the head of the caudate nucleus correlated with the change in iNPH score as 

well as gait and balance subscores. The rCBF increase in the cingulate gyrus 

and thalamus correlated with the increase in the neuropsychology subscore.232  

Comparing responders and non-responders preoperatively, the same authors 

found that the rCBF in the medial frontal cortex was significantly higher in 

responders, and could possibly be used for outcome prediction, although this 

result was not reproducible in subsequent studies by the same authors.230,232,233 

No other between group differences were found, corroborating earlier 

results.197,216,218,228 Mori et al. evaluated CBF changes after CSF-TT and while 

no pre-test differences between groups were found, TT-responders showed a 

significant post-test CBF increase. An increase <20% was suggested as a cut 

off value for non-responders that could potentially be used for predictive 

purposes.234 

In summary, perfusion changes in supratentorial structures are a well-

established finding in iNPH, although the predictive value of these changes is 

disputed. Similar to studies of morphology or diffusion, changes in the 

brainstem in iNPH have only been scarcely investigated and further studies are 

warranted. 
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6 PATHOPHYSIOLOGICAL CONCEPTS IN 
iNPH 

Despite the large research effort to elucidate the pathophysiological changes 

causing iNPH, the disease is still incompletely understood. Several theories 

have been proposed. 

Traditionally, iNPH is seen as a disease arising primarily due to a disturbed 

resorption of CSF.235 This is supported by studies of CSF-dynamics showing a 

reduced intracranial compliance and an increased CSF pulsatility in the patient 

group.236 Morphological changes in the CSF outflow tract have been reported 

in some iNPH patients in one study, also supporting this theory,237 however, 

the results have not been reproducible.238 While iNPH is associated with an 

increased resistance to CSF outflow (Rout),
239 it is known that both production 

and absorption of CSF decreases with age, and Rout values considered 

pathological in iNPH can be found in up to 25% of healthy elderly, and patients 

with a low Rout still benefit from shunt surgery.87,240-242 As such, while dynamic 

CSF changes play a role in the development of iNPH, other disease 

mechanisms must also be considered. iNPH has also been suggested to develop 

as a “two hit” disease caused by a combination of external childhood 

hydrocephalus followed by WMLs in later years, although this theory has been 

questioned and would seem applicable only in a minority of patients.68 

Another common pathophysiological theory regarding the development of 

iNPH revolves around an increase in interstitial water content, predominantly 

in periventricular areas, secondary to water reflux from the ventricles, as a 

driving force behind neuronal damage. Supporting this, an increased ADC in 

these areas and signs of white matter tract compression have been reported in 

iNPH.155,180,197-200,205-208 However, ADC has also been found to be similar to 

findings in healthy controls.201 Furthermore, the reported preoperative ADC-

increase in iNPH has not been shown to discriminate between responders and 

non-responders, and it is important to note that ADC can increase due to 

several other factors as well.120,199,201,203 As such, while an increased interstitial 

water content can be present in iNPH, its role as a driving factor in disease 

development and progression needs further consideration, and other factors 

causing the ADC increase should potentially be included in the theory. It also 
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seems unlikely that a mechanical compression due to ventricular enlargement 

and increased interstitial water content would solely explain the symptom 

development and progress, as no correlation between preoperative ventricular 

size, nor postoperative size reduction and symptoms exist.68 

Interestingly, recent studies by Eide et al. have found a decreased uptake of 

intrathecally administered gadobutrol in iNPH.243 This, together with an 

altered expression of AQP-4 in the disease hints at a dysfunction of the 

glymphatic system.41  While a dysfunction in this system has been implicated 

in other neurologic diseases as well, a dysfunction in iNPH with secondary 

metabolic changes due to a disturbed clearance of metabolically active, 

potentially toxic factors is interesting and further investigations are warranted.  

6.1.1 THE ROLE OF VASCULAR DISEASE 

Since the 1980s, vascular disease has been considered a possible factor driving 

the development of iNPH. Multiple studies have found iNPH patients to have 

a high occurrence of vascular risk factors, especially hypertension, DM, and 

heart disease compared to controls. However, most studies were performed 

using small, hospital based samples.110,244-248 In 2013, the International Society 

for Hydrocephalus and Cerebrospinal Fluid Disorders (ISHCSF) task force 

concluded that while support for a relationship between vascular risk factors 

and iNPH does exist, no causal relationship can be determined, and further, 

epidemiological studies are warranted.244 Still, the involvement of vascular 

disease processes in iNPH is strengthened by several studies from different 

research areas. 

Several animal studies have found associations between systolic hypertension, 

pulse pressure, and ventricular enlargement.249,250 Similar results were also 

found in humans by Graff-Radford et al, reported that present systolic 

hypertension and elevated pulse pressure at baseline were significantly 

associated to ventricular enlargement at a 10-year follow up.251 The increased 

pulse pressure has been suggested to directly lead to ventricular enlargement 

via the so called waterhammer theory, that is, the pressure in the arteries during 

systole is transmitted to the cells of the ventricular walls and nearby structures 

via the CSF, causing neuronal damage. Although, the exact mechanism of 

action needs further investigation. 
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Further support for the involvement of vascular risk factors in iNPH is 

provided by imaging studies. The patient group is known to have a high 

prevalence of WMLs preoperatively. WMLs are in themselves associated with 

vascular risk factors,107,108,110 and have a high reported prevalence in patients 

with ischemic brain injuries and subcortical small vessel disease (SSVD).252,253 

These changes are also associated with gait disturbances, cognitive impairment 

and urinary incontinence.116 Also supporting the involvement of small vessel 

disease, one study found iNPH-patients to have a high occurrence of cerebral 

microbleeds,254 and neuropathological examinations have revealed signs of 

cerebrovascular disease in the patient group.255 

However, while the association between WMLs, ischemic injury and vascular 

disease is strong, it is important to note that the extent of WMLs in iNPH can 

decrease postoperatively, correlating to clinical improvement, indicating the 

involvement of at least partially reversible microcirculatory and/or metabolic 

changes.176,177 Further support for the, at least partial, reversibility is provided 

by several studies of perfusion in iNPH reporting partly reversible blood-flow 

reductions, especially in periventricular and frontosubcortical areas.59,202,232,256 

In addition, both the decrease of WMLs and blood flow improvements have 

been shown to correlate with the degree of postoperative clinical improvement. 

Interestingly, further supporting partly reversible changes causing WMLs, a 

small study on Acetazolamide (a carbonic anhydrase inhibitor that has a 

vasodilating effect, increasing CBF and also decreasing CSF-production) in 

iNPH found that 5/8 treated patients improved in gait function.257,258 Two 

studies also found acetazolamide treatment in iNPH to decrease the extent of 

WMLs.257,259  

While the potentially reversible mechanisms are still unknown, there might 

exist a link between vascular disease and the glymphatic dysfunction seen in 

iNPH.243 This theory is to some extent supported by the para-arterial inflow of 

CSF to the ECS, and by animal studies showing that hypertension is associated 

to a decreased glymphatic clearance in rats, however this needs further 

elucidation.35,36,260  

In summary, although evidence from several research areas support the 

involvement of vascular disease mechanisms in iNPH, the mechanism of 
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action regarding these vascular changes remains incompletely understood but 

seems to involve not only ischemic injury.  

6.1.2 THE ROLE OF THE MESENCEPHALON AND PONS IN 

THE SYMPTOM GENERATION IN iNPH 

The symptom generation in iNPH is thought to arise predominantly due to 

changes in supratentorial, periventricular structures. However, symptoms from 

all four cardinal groups as well as other symptoms, such as paratonia and 

impaired wakefulness, could also potentially be caused by changes in 

structures in the brainstem.  

The gait and balance disturbances in iNPH are, to a certain extent, similar to 

the disturbances seen in other movement disorders. In patients with PD, motor 

symptoms including postural stability and freezing of gait are alleviated after 

deep brain stimulation of the pedunculopontine nucleus (PPN), in the 

mesencephalic tegmentum.261 Stimulation of the same area also reduced the 

risk of falls.262 The similarity of these symptoms to the gait and balance 

symptoms seen in iNPH could indicate the potential involvement of this area 

in the disease. Interestingly, the PPN is also involved in non-motor activity and 

Deep brain stimulation has also been shown to improve working memory and 

affect sleep patterns.263,264 Changes here, or in the reticular activation system 

could hypothetically explain the impaired wakefulness in iNPH. Furthermore, 

the altered visual vertical seen in iNPH,52 could also be caused by changes in 

the midbrain,265,266 and centers in the mesencephalon and pons are well known 

as important regulators of micturition.267-270 Lastly, studies using auditory 

brainstem responses have shown prolonged central transmission times in NPH, 

with postoperative reductions in improved patients.271,272 Although the studies 

included patients with sNPH, they still support the notion of the involvement 

of these areas in iNPH. 

Imaging studies of infratentorial structures in iNPH are scarce, both regarding 

morphological and functional changes. While attempts at measuring midbrain 

diameter have been attempted, results are conflicting.165,184,185 In the few 

studies investigating functional changes, two studies found similar 

preoperative rCBF/CBF reductions as has been shown in supratentorial 

structures,59,220  while diffusion changes are sparsely investigated with 
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conflicting results.198,201 In summary, further studies are needed to elucidate 

the involvement of the brainstem in iNPH. 
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7 AIM 

The overall aim of this thesis was to elucidate on the development and 

pathophysiology of iNPH by describing the clinical and radiological 

phenotype, including the specific role of the brainstem and the involvement of 

vascular risk factors in the disease, and to identify biomarkers that can be used 

to predict outcome after shunt surgery. 

7.1 STUDY I 

To examine vascular risk factors, WMLs and their association to hydrocephalic 

ventriculomegaly as well as clinical signs of iNPH in a large, population-based 

sample using a nested case-control analysis. 

7.2 STUDY II 

To characterize the clinical phenotype of iNPH using a large, single center 

patient cohort to elucidate the clinical presentation of the disease and to find 

possible clinical biomarkers that could predict outcome after shunt surgery. 

7.3 STUDY III 

To investigate the prevalence of several previously described morphological 

MRI markers of iNPH and to evaluate their role as potential predictive markers 

of postoperative outcome. 

7.4 STUDY IV 

To explore diffusion and DSC-MRI-perfusion changes in the mesencephalon 

and pons, areas of potential pathophysiological importance in iNPH, and to 

investigate the potential relationship between these functional MRI markers 

and clinical symptoms pre- and postoperatively. 
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8 PATIENTS AND METHODS 

8.1 PATIENT COHORTS AND DIAGNOSIS OF 
iNPH 

8.1.1 STUDY I 

The cohort in Study I consisted of merged data from the Gothenburg 

population studies. The studies systematically recruited participants from the 

Swedish birth registry, starting in 1968 resulting in a maximum follow up time 

of almost fifty years. Data from the following studies were included: The 

Population Studies of Women (PPSW), The Longitudinal Gerontological and 

Geriatric Population Studies (H70 and H85) in Gothenburg, and The Nordic 

Research on Ageing Studies (NORA).4 In all the included population studies, 

the participants underwent clinical examinations, and a subset also had one or 

more CT scans of the brain.  

Data from the different studies were merged and a total of 3246 individuals 

were invited to participate of which 2179 accepted (response rate 67% with no 

significant difference between men and women). Out of the 2179 who accepted 

to participate, 1235 individuals underwent one or more CT scans and were 

included in the study. A flow-chart of the inclusion process and the included 

population cohorts are shown in Figure 4. The diagnosis of possible/probable 

iNPH was made based on the CT examinations in conjunction with clinical 

examinations and interview data. Fifty-five individuals had CT-findings of 

hydrocephalic ventricular enlargement (HVe, described below). Twenty-six of 

the 55 individuals also had clinical symptoms that fulfilled the criteria for 

iNPH, i.e. a gait disturbance combined with either a cognitive disturbance or 

urinary incontinence. The remaining 1180 individuals were used for case-

control matching. A nested case-control design was applied where 5 control 

subjects (from the 1180 individuals without clinical or radiological signs of 

iNPH) were randomly selected and matched to each case based on age, sex and 

original study cohort. Demographic data for the final study sample are shown 

in Table 3. 
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Figure 7. Included population cohorts, participant selection and final study sample 

in Study I. Original figure modified with permission from Dr Daniel Jaraj. 

8.1.2 STUDY II 

Study II included patients examined and diagnosed with iNPH in Gothenburg 

between 1982 and 2016. All patients underwent detailed pre- and postoperative 

clinical examinations using a standardized protocol. The protocol was changed 

four times during the inclusion period with addition of new items. The 

diagnosis of iNPH was made in accordance with the American-European 

guidelines after their publication in 2005.3 Before, the diagnosis was made 

using similar criteria with the main exception that gait disturbance was not 

mandatory. As part of the diagnostic workup, all patients underwent CT or 

MRI-scans of the brain pre- and postoperatively. All patients received 

ventriculoperitoneal shunt systems. A total of 429 patients were included in 

Study II. Due to the varying disease severity at the time of examination, not all 

patients were able to perform all tests. All shunts were working at the 

postoperative clinical examination. 
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8.1.3 STUDY III 

The patient group constitutes a subpopulation of the patient group used in 

Study II and underwent the same detailed clinical examination pre- and 

postoperatively. In addition, all patients had a both pre- and postoperative 

MRI-scan of sufficient quality for morphological analyses (patients lacking 

this were excluded). A total of 168 patients were included in Study III. 

8.1.4 STUDY IV 

Study IV included 20 patients from Study III, who were examined with a DSC-

perfusion sequence and a DWI sequence in addition to the standardized MRI 

protocol pre- and postoperatively. In addition, 15 healthy, age-matched 

subjects who underwent an identical MRI examination were included as a 

control group. The patient group had more WMLs compared to controls 

(Wahlund score 6.2 vs 5.0, p<0.05). Responders and non-responders did not 

differ significantly in any demographic variable. Due to technical artefacts, 4 

postoperative scans were excluded from the analyses.  

Demographic data for all patients and controls included in Study II-IV are 

shown in Table 4. 
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Table 3. Demographic data of cases with suspected iNPH and HVe with their 
matched controls included in Study I. 

 Suspected iNPH HVe 

 Cases (n=26) Controls (n=130) Cases (n=55) Controls (n=275) 

Age, mean 

(SD) 
85 (4.0) 85 (4.0) 80 (7.0) 80 (7.0) 

Male/female 

(% male) 
10/16 (38.5) 50/80 (38.5) 25/30 (45.5) 125/130(45.5) 

HVe = hydrocephalic ventricular enlargement, SD = standard deviation. 

 

Table 4. Demographic data for patients and controls included in Studies II-
IV. 

 Study II Study III Study IV 

 iNPH 

(n=429) 

iNPH 

(n=168) 

iNPH 

(n=20) 

Controls 

(n=15) 

Age, mean (SD) 71 (9.5) 71 (9.3) 71 (7.1) 71 (4.9) 

Male/female, (% 

male) 
266/163 (62) 103/65 (61) 12/8 (60) 9/6 (60) 

Symptom 

duration in 

months, mean 

(SD) 

43 (44) 47 (59) 33 (34) n.a. 

Vascular risk 

factor, yes/no 

(%) 

    

Hypertension 206/223 (48) (49) 7/13 (35)* 1/14 (7) 

Diabetes mellitus 86/343 (20) (15) 3/17 (15) n.a. 

Cardiovascular 

disease 
112/317 (26) (26) 2/18 (10) n.a. 

* p<0.05 compared to controls. Cardiovascular disease = history of angina pectoris or coronary 

artery disease, SD = standard deviation, n.a. = not applicable. 
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8.2 GRADING OF CLINICAL SYMPTOMS, 
VASCULAR RISK FACTORS AND 
OUTCOME 

8.2.1 STUDY I 

In study I, data on clinical symptoms were retrieved from the clinical 

examinations that each individual underwent as part of the original studies. A 

general assessment of gait was made by physicians specializing in geriatrics. 

Walking difficulties were graded using a 3 point ordinal scale (non-existent, 

slight, extensive). Participants also answered questions regarding gait and 

perceived walking difficulties during the examinations. A gait disturbance was 

considered present if any walking difficulty was reported during the 

examination or if any self-reported walking difficulty was present. Cognitive 

function was evaluated using the MMSE.97 A score of ≤25 was used as the cut 

off for cognitive impairment. Urinary incontinence was assessed by self-report 

and defined as the presence of leakage of urine ≥1 time per week. 

A history of, or present hypertension, DM, previous stroke/transient ischemic 

attack (TIA), and coronary artery disease (CAD) were assessed using data from 

the Swedish hospital discharge register and/or self-reported diagnosis as told 

by a physician at the time of the original physical exam. A history of 

hypertension was defined as having a diagnosis of hypertension or the use of 

antihypertensive medication. DM was defined as having a diagnosis of DM 

type 1 or 2 or by having pharmacologic treatment. The presence of 

pharmacologic treatment for both hypertension and DM was assessed by self-

report. Stroke/TIA was defined as having a diagnosis of ischemic/hemorrhagic 

stroke or TIA. CAD was defined as having a diagnosis of myocardial infarction 

or angina pectoris. The ICD-codes that were used for each vascular risk factor 

are shown in Appendix 1. 

In addition to the abovementioned vascular risk factors, the presence of 

smoking and obesity were assessed using interview data and results from 

clinical examinations. Smoking was defined as past or present cigarette 

smoking and obesity was defined as having a body mass index (BMI) >25 

kg/m2. 
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8.2.2 STUDY II-III 

In studies II and III, gait performance was evaluated by a 6-step ordinal scale 

ranging from: 1 = normal gait, to 6 = wheelchair bound (Table 5). Impaired 

gait was defined as a gait score of ≥2. The number of steps needed to execute 

a 180° turn was also recorded with >2 steps required considered as having 

difficulties turning. In addition, the presence of broad-based gait, shuffling gait 

and freezing of gait were recorded (yes/no). A physiotherapist also performed 

the 10m walking test and the TUG test with time in seconds as well as number 

of steps required to complete.273  

Balance performance was evaluated using the Romberg test (time in seconds 

recorded up to a maximum of 60 s),274 and the presence of a tendency to lean 

backwards (retropulsion) was recorded (yes/no). Impaired balance was defined 

as a Romberg test performance of ≤30 s. 

Cognitive function was evaluated using the MMSE-test with a score of ≤25 

used as the cut off for cognitive impairment.97 The MMSE-scores were also 

converted to a 5 step ordinal scale ranging from 1 = no dementia to 5 = severe 

dementia (Table 5). The daily need of sleep (hours/day) was also recorded. In 

addition, the identical forms test (measuring perceptual speed and accuracy) 

and Bingley’s visual memory test were administered.275 

Urinary continence was graded using a 6-step ordinal scale ranging from: 1 = 

no urgency/incontinence to 6 = bladder and bowel incontinence (Table 5). 

Impaired continence was defined as a continence score of ≥2. 

In addition to the abovementioned symptom domains, the presence of a 

number of other neurological symptoms (paratonic rigidity, cerebellar 

dystaxia, polyneuropathy and other focal neurological signs) were recorded 

(yes/no). The presence of hypertension, DM and cardiovascular disease were 

assessed from previous medical records (yes/no). 

To grade clinical outcome after shunt surgery, a composite grading scale was 

constructed. The scale included four continuous measures that were recorded 

pre- and postoperatively: the 10m walking- and TUG test (time in seconds to 

complete) as well as the identical forms and Bingley tests (test scores). Each 
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test performance was normalized on a 0-100 scale where 0 equals the worst 

possible performance and 100 equals the performance of a healthy 70-year old 

individual. The mean score of the four included tests formed the composite 

pre- and postoperative score. Clinical improvement was considered present if 

the post-preoperative difference was ≥5points, unchanged if <5 but ≥-5 points 

and deteriorated if <-5 points. Three-hundred and eleven patients had data from 

at least one test in each domain (gait and cognition) and were included in the 

outcome calculations. 

Table 5. Ordinal measures of gait, cognition and continence used in Studies 
II and III. 

Gait Cognition Continence 

Ordinal 

score 

Observed gait 

abnormalities 

Ordinal 

score 

MMSE-

score 

Ordinal 

score 

Observed/reported 

continence function 

1 Normal gait 1 30 1 Normal 

2 Unsteady gait, 

no walking aids 

2 ≤29 2 Urgency, no 

leakage 

3 Walking with a 

cane 

3 ≤25 3 Leakage <1 

time/week 

4 Walking with a 

roller 

4 ≤20 4 Leakage ≥1 

time/week or 

occasional use of 

diapers 

5 Walking only if 

supported by 

another person 

5 ≤10 5 Continuous use of 

diapers 

6 Wheelchair 

bound 

  6 Bladder and bowel 

incontinence 

 

8.2.3 Study IV 

In study IV, clinical symptom severity was graded pre- and postoperatively 

using the iNPH scale score developed by Hellström et al.66 A postoperative 

increase by ≥5 points was used as a cut off for clinical improvement.   
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8.3 RADIOLOGICAL EVALUATION 

8.3.1 STUDY I 

All participants in study I underwent a CT-scan of the brain between 1986 and 

2000 with 10 mm slices obtained between 1986 and 1995 (n=381) and 8 mm 

slices obtained between 1996 and 2000 (n=854). All scans were in the 

transverse plane without iv. contrast. Three observers blinded to clinical data 

performed the image evaluation. All scans were screened for HVe, defined as 

a general ventricular enlargement (assessed by visual inspection aided by 

measuring the EI) without concomitant widening of the cortical sulci, presence 

of structural lesions or morphologic signs of obstruction of CSF-outflow.3 All 

images that were screened positive for HVe, or where the findings were 

uncertain were re-evaluated by a senior neuroradiologist who made the final 

decision on whether HVe was present. After the initial screening, 19% 

(235/1235) of scans were classified as having HVe or uncertain findings. After 

re-evaluation, the final prevalence of HVe was 4.4% (55/1235). 

WMLs were defined as areas of low attenuation in the periventricular and deep 

white matter and graded using a 4-step ordinal scale (none, mild, moderate and 

severe).276 The assessments were performed by experienced radiologists 

blinded to clinical data, as part of previous studies.119,277 Due to the low 

sensitivity of CT in accurately classifying WMLs, comparisons were made 

only between none/mild vs moderate/severe WMLs in the present study. 

8.3.2 STUDIES II-III 

As part of the original assessment, all patients’ scans were evaluated for 

features of iNPH as part of the routine examination performed by the 

neuroradiology department at the Sahlgrenska University hospital. 

In study III, all preoperative MRI-scans were evaluated for the presence of 13 

morphological features of iNPH. The preoperative MRI-scans were performed 

on a 1.5 T Gyroscan Intera 9.1 system (Philips Healthcare, Best, the 

Netherlands) or a 1.5 T Achieva dStream (Philips Healthcare, Best, the 

Netherlands) system. All imaging sequences were reformatted and analysed 

using Advantage Workstation 2.0 (GE Healthcare, Milwaukee, Wisconsin). 

The imaging protocol included: 
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1. A sagittal T1-weighted 3D sequence: TE 4.6 ms, TR 25 ms, 

flip-angle 30°, slice thickness 1 mm, no slice gap, field of 

view (FOV) 260×260×190 mm, 260×259 acquisition matrix. 

2. A transverse FLAIR sequence: TE 100 ms, TR 9000 ms, TI 

delay 2500 ms, slice thickness 3 mm, no slice gap, FOV 230 

mm, 192×192 acquisition matrix reconstructed to 256×256. 

3. A flow-sensitive T2-weighted sequence: TE 300 ms, TR 

10238 ms, slice thickness 2 mm, 1 mm slice gap, FOV 

230×230×38 mm, 384×284 acquisition matrix. 

The T1-weighted sequence was reformatted to the anterior/posterior 

commissural plane by realigning the transverse and coronal imaging planes to 

a line transecting this plane on sagittal images (see Figure 5).69,163,172 The 

reformatted images were used in all subsequent analyses. 

MORPHOLOGIC MRI MARKERS 

The image-analysis protocol was tested by two independent authors, at the time 

blinded to clinical data. Each imaging marker was evaluated on 10 randomly 

selected examinations and inter-rater reliability coefficients were calculated. 

In cases were the inter-rater reliability was insufficient (<0.7), the variables 

were redefined and re-evaluated until sufficient agreement was achieved. The 

development of the image-analysis protocol was supervised by an experienced 

neuroradiologist. 

The EI was measured on transaxial T1-weighted images and defined, in 

agreement with the original publication, as the ratio between the maximum 

diameter of the frontal horns of the lateral ventricles above the foramen of 

Monroe, divided by the maximum inner skull diameter in the same slice 

(Figure 8a).159,160 In the same series, the maximum diameter (mm) of the 

temporal horns was recorded (Figure 8b). The maximum diameter of the 3rd 

ventricle between the anterior and posterior commissure (mm) was measured 

on T1-weighted coronal images (Figure 8c). The same images were used to 

measure the CC-angle at the level of the posterior commissure (Figure 8d). The 

maximum anterior-posterior diameter of the 4th ventricle (mm) was measured 

in the midline on sagittal T1-weighted images along a line perpendicular to the 

posterior border of the brainstem (Figure 8e). Widening of the anterior 
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interhemispheric fissure was graded using a 3-step ordinal scale (0=normal, 

1=slight widening, 2=marked widening) on transaxial, T1-weighted images 

(Figure 9a). Flow voids in the cerebral aqueduct and fourth ventricle (flow void 

sign) were assessed on T2-weighted, flow-sensitive images and graded using 

the ordinal scale developed by Algin et a.194 and later modified by Virhammar 

et al. (Figure 9b).69 
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Figure 8. Evans’ index measured as the ratio between the maximum width of the 

frontal horns of the ventricles divided by the maximum inner skull diameter (a), and 

maximum width of the temporal horns (b) on transaxial images. Maximum width of 

the 3rd ventricle (c) and CC-angle (d) measured on coronal images. Maximum 

anteroposterior diameter of the 4th ventricle measured on a sagittal image (e). All 

images are T1-weighted. 
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Figure 9. Anterior interhemispheric fissure graded 0 (normal), 1 (slight widening), 2 

(marked widening) on T1-weighted axial images (a). Flow void sign in the cerebral 

aqueduct graded 1, 2, 3 according to the modified Algin scale on T2-weighted 

sagittal images (b). 

The presence of focally dilated sulci (transport sulci) was assessed on T1-

weighted, transaxial images (no. of widened sulci recorded). Sulci were 

determined as focally widened only if no signs of general atrophy were present, 

the sulcal widening was asymmetric, the sulcus lacked connection with the 

Sylvian fissure, and was surrounded by normal or narrowed sulci (Figure 10a-

b). Obliteration of sulci at the high convexity was graded as present (yes/no) if 

no sulci were distinguishable on the 10 uppermost slices on transaxial, T1-

weighted images (Figure 10c). Dilatation of the Sylvian fissures was graded 

on coronal, T1-weighted images using a 3-step ordinal scale (0=normal, 

1=slight widening, 2=marked widening)69 (Figure 10d). DESH was considered 

present (yes/no) in patients who had dilated Sylvian fissures (ordinal rating 1 

or 2) in conjunction with obliterated sulci at the high convexity. WMLs (PVH 

and DWMH) were graded using the ordinal scale developed by Fazekas et al, 

and assessed on transaxial, FLAIR images (Figure 11).118 
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Figure 10. Focally dilated sulci on a transaxial (a), and coronal image (b). 

Obliterated sulci at the high convexity (c) on transaxial images. Sylvian fissures 

graded as 0 (normal), 1 (slight widening), 2 (marked widening) on coronal images 

(d). All images are T1-weighted. 

 

Figure 11. Periventricular and deep white matter hyperintensities graded as 1, 2, 3 

according to the Fazekas scale on transaxial, T2-FLAIR images. 
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8.3.3 STUDY IV 

In addition to the MRI-examination that all patients underwent as part of Study 

III, patients and control subjects included in Study IV were examined with 

additional sequences including: 

1. A DSC perfusion sequence with images obtained every 1000 ms 

using a segmented k-space EPI technique: TE 30 ms, TR 500 ms, flip 

angle 40°, 12 slices, slice thickness 5 mm, no slice gap, covering the 
posterior fossa and upper brainstem area, in-plane resolution 1.8 × 

1.8 mm, FOV 230 mm, 128 × 128 matrix. At the tenth acquisition a 5 

ml/s bolus of 0.1 mmol/kg Gd-DTPA (0.5 mmol/ml, Magnevist, 
Schering, Berlin, Germany) immediately followed by a 10 ml saline 

flush administered in the right antecubital vein. The sequence was 

optimized for a high bandwidth in the phase encoding direction and 

scanning at a field strength of 1.5 T rather than 3 T to limit the 
postoperative, shunt-induced susceptibility effects. 

2. A transverse DWI sequence: TR 3793 ms, TE 90 ms, 25 slices, slice 

thickness 5 mm, no slice gap, in-plane resolution 1.2 × 2 mm, FOV 
230 mm, acquisition matrix 192 × 113, b = 0 s/mm2 (1 acquisition) 

and b = 1000 s/mm2 (average of 3 signal acquisitions) in 3 

orthogonal encoding directions. ADC maps with a 256 × 256 matrix 

and a pixel size of 0.9 × 0.9 mm were calculated. 

All patients and controls in Study IV were examined using the Gyroscan Intera 

1.5 T system (Philips Healthcare, Best, the Netherlands). 

REGIONS OF INTEREST 

Regions of interest were drawn in two locations on the FLAIR images, one 

located in the upper part of the mesencephalon (Figure 12a) and one located 

two slices (approximately 6 mm) caudally in the pons (Figure 12b). Three 

ROIs were drawn in each location: a posterior, a middle and an anterior ROI, 

the middle and anterior ROI radially expanding from the posterior ROI (Figure 

12 c and d). Each ROI was drawn in two consecutive slices in the FLAIR 

images in order to sufficiently cover one slice in the lower resolution, 

functional datasets. The posterior ROI was centered at the anterior and lateral 

aspect of the aqueduct in the mesencephalon and aligned with the anterior wall 

of the 4th ventricle in the pons. Each ROI had an in plane maximum depth of 6 

voxels (approximately 5 mm), restricted by anatomical limitations, with no 

overlap to any other ROI. In addition, a composite ROI was created by 
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combining the three individual ROIs in each location. All analyses were 

performed both for the composite and the three separate ROIs in each location. 

In addition to the ROIs in the mesencephalon and pons, ROIs delineating grey 

matter in the occipital cortex were used as an internal reference in the 

calculation of perfusion estimates, as previously described.230 All ROIs were 

created using ITK-Snap software.278 Co-registration was performed using 

NiftyReg (School of Biomedical Engineering and Imaging Sciences, King’s 

College London, The United Kingdom). All ROIs were drawn by a resident in 

radiology, with support from a senior neuroradiologist. 

TRANSFER OF ROIS TO DIFFUSION AND PERFUSION 

DATA 

In the transfer process, a mask was applied over areas containing CSF in order 

to limit the ROI to brain parenchyma. In addition, a vessel mask was applied 

to the perfusion data to avoid contamination from vessels. To ensure correct 

positioning off all ROIs, a manual evaluation was performed and if necessary, 

small adjustments were made. Due to different alignment and resolution of the 

FLAIR compared to the ADC and perfusion data, voxels were lost in the 

transfer process. The number of voxels in the final, individual ROIs are shown 

in Appendix 2. An example of the final ROIs after transfer and masking to the 

ADC-map (e, f) and perfusion data (g, h) is shown in Figure 12. 

EXTRACTION OF DIFFUSION AND PERFUSION DATA 

ADC maps were generated by fitting of a mono-exponential model to the DWI 

data, using the standard scanner software.279 After transferring of the ROIs, 

ADC estimates were generated via a pixel-wise averaging of ADC values 

within each ROI. 

For the perfusion estimates, an AIF was manually selected using in house 

developed software. The selection criteria for the AIF voxels have been 

described previously and were: 1. An early time of bolus arrival, 2. A steep 

initial signal decrease and 3. A deep signal dip.230,280 To improve the SNR of 

the AIF, 1-4 voxels that fulfilled these criteria were averaged together. 

Deconvolution of the AIF with the CTTC of the target ROIs were performed 

using in house developed software, implementing the vascular model-based 
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single compartment de-convolution technique.281 Model fitting was done via a 

Bayesian cost function and a Maximum Likelihood Expectation Maximization 

optimization scheme, in accordance with the original publication. CTTCs for 

each ROI were averaged before deconvolution and rCBF and rCBV measures 

were extracted by normalizing each CBF- or CBV-estimate with that of grey 

matter in the occipital lobe, using the reference ROIs.230 Due to the potential 

overestimation of absolute perfusion values caused by inaccuracy of the AIF 

and factors affecting the transverse T2* relaxivity, relative CBF- and CBV-

estimates were used.138,142-147 
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Figure 12. Example of the FLAIR images used for drawing ROIs (a, b), with the 

three individual ROIs applied (c, d). The same ROIs after masking and transfer to the 

ADC-map (e, f), and perfusion data with applied masks (g, h). Red = posterior ROI, 

green = middle ROI, yellow = anterior ROI. 
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8.4 STATISTICAL ANALYSIS 

In study I, tests of frequencies and unadjusted odds were performed using the 

Pearson Chi2 test. Due to the matched case-control design, the Cochran-

Mantel-Haenszel was also performed to select variables for the regression 

analyses. As predetermined, all variables with an initial p-value of <0.1 were 

included for further analysis. The regression models were calculated using 

conditional logistic setup with separate models for the suspected iNPH- and 

HVe-group.  

In Studies II-IV, all statistical tests were performed using nonparametric 

methods. Differences in distribution between binary variables were tested 

using the Pearson chi2-test or Fisher’s exact test, and differences in distribution 

between ordinal and continuous variables were tested using the Wilcoxon rank 

sum test. Distributions over time in binary variables were tested using the 

paired samples McNemar test while ordinal and continuous variables were 

tested using the Wilcoxon signed rank test. Correlation coefficients were 

computed using Spearman’s rho. Regression models for prediction in studies 

II and III were calculated using a logistic setup adjusted for age and gender. 

For the reliability analyses in Study III, inter-rater and test-retest reliability 

were calculated using intraclass correlation coefficients (ICC 2,1) for 

continuous variables and weighted/unweighted Cohen’s kappa for ordinal and 

nominal variables respectively. 

In all studies, significance tests were 2-sided, and alpha was set to p<0.05. No 

corrections for mass significance were made. The statistical analyses were 

made using IBM SPSS Statistics version 22 (Study I), 23 (Study II) and 24 

(Studies III-IV) (SPSS, Chicago, IL, USA). 

8.5 ETHICAL CONSIDERATIONS AND 
APPROVAL 

For Study I, informed consent was obtained from all participants and/or close 

relatives as part of the original population studies (see Figure 7): 

- For the H70 cohort born in 1901-1902, ethical approval was 

available for the examinations performed in 1976 (DNR: §8, 
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ans nr. 52). Unfortunately, no approval was available for the 

follow-up examinations in 1988 and 1990, nor for the initial 

examinations performed in 1971. However, the cohort was 

followed regularly until 101 years of age, using the same 

methodology, with ethical permissions granted (e.g.: s102-97, 

r175-98, and ö424-00). We therefore consider the follow-up 

examinations performed according to good ethical order an in 

agreement with the Helsinki declaration. 

- For the H70 cohort born in 1930, ethical approval was 

available for the examination performed in 2000 (377-99, 

402-99, ad402-99). 

- For the KVUS cohort born between 1908 and 1922, ethical 

permission was available for the initial examination 

performed in 1980 (65-80) and the follow-up examinations in 

1992 (179-92, ad65-80) and 2000 (377-99, 402-99, ad402-

99). 

- For the NORA cohort born in 1915-1916, ethical approval 

was available for the initial exam performed in 1990-1991 

(263-90) and for the follow-up examination in 1995 (s79-95). 

For Studies II-IV, ethical approval was available from 1994 (387-94, s499-00, 

596-03, 456-04, ad456-04, 154-05, 545-04, 020-07, 009-13, 328-14, 492-14), 

and written informed consent was obtained from all participants at the time of 

the original clinical exams. Prior to 1994, data was collected as part of the 

clinical quality control of treatment. The Ethics Committee for Medical 

Research at Gothenburg University approved all study applications. 
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9 RESULTS 

9.1 STUDY I 

Individuals with suspected iNPH had a higher frequency of hypertension, 

previous stroke/TIA, and moderate to severe WMLs compared to the matched 

controls (Table 6). The same vascular risk factors were more common in 

individuals with HVe who also had a higher prevalence of DM and obesity, 

although, this was only significant at trend level (p<0.1). In individuals with 

suspected iNPH, 92% (24/26) had a history of hypertension, DM, WMLs on 

CT or a combination thereof. In the group with HVe, 93% (51/55) had at least 

one of these risk factors. 

A history of hypertension, stroke/TIA, and moderate to severe WMLs were 

significantly associated with suspected iNPH as well as HVe compared to 

matched controls in the univariate analyses (Table 7). In the multivariate, 

conditional logistic regression models, there was a significant association 

between moderate/severe WMLs and suspected iNPH while HVe was 

significantly associated with a history of hypertension, DM, and 

moderate/severe WMLs (Table 7). 
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Table 6. Frequency of vascular risk factors in individuals with suspected 
iNPH, HVe and matched controls. 

 Suspected iNPH HVe 

 Cases (n=26) 

% (n/N) 

Controls (n=130) 

% (n/N) 

Cases (n=55) 

% (n/N) 

Controls (n=275) 

% (n/N) 

Hypertension 42.9 (9/21)* 21.2 (25/118) 45.5 (20/44)* 26.9 (64/238) 

Diabetes 13.0 (3/23) 7.6 (9/118) 17.0 (8/47) 8.9 (21/237) 

Smoking 19 (4/21) 30.8 (36/117) 40.9 (18/44) 45.7 (107/234) 

Stroke/TIA 56.5 (13/23)** 24.4 (29/119) 38.3 (18/47)* 21.1 (50/237) 

CAD 18.2 (4/22) 11.0 (13/118) 25.5 (12/47) 24.1 (58/241) 

Obesity 60 (3/5) 44.8 (43/96) 70.4 (19/27) 50.8 (99/195) 

Moderate-

severe WMLs 

66.7 (16/24)*** 17.5 (21/120) 52.1 (25/48)*** 13.9 (33/237) 

n = number of individuals with corresponding risk factors, N = number of persons examined for 

corresponding risk factor, N differs due to missing data. WMLs are graded using the Gothenburg 

scale 0-3,276 0-1 (none/mild) vs 2-3 (moderate/severe). * p<0.05 ** p<0.01, *** p<0.001. iNPH 

= idiopathic normal pressure hydrocephalus, HVe = hydrocephalic ventricular enlargement, TIA 

= transient ischemic attack, CAD = coronary artery disease, WMLs = white matter lesions. 
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9.2 STUDY II 

9.2.1 THE CLINICAL PHENOTYPE OF iNPH 

At the preoperative examination, 41% of the patients showed impairment in all 

domains to some degree, decreasing to 24% postoperatively (p<0.0001) (Table 

8). Impaired gait was the most common initial symptom by patient report 

(41%), followed by balance (18%), cognition (12%) and continence (6%). 

Three percent reported other single neurological symptoms as appearing first, 

while more than one symptom appeared simultaneously in 18%. Two percent 

failed to report any initial symptoms. 

Table 8. Number of affected symptom domains pre- and postoperatively in 
273 iNPH-patients. 

  Postoperative  

  4 3 2 1 0 Total 

Preoperative 

1   2 5 2 9 

2 1 4 7 6 1 19 

3 5 10 11 4 1 31 

4 18 9 9 4 1 41 

 Total 24 23 29 19 5  

Numbers represent %. Shaded cells represent patients in whom no change occurred. P <0.0001 

for change in distributions. 
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9.2.2 GAIT 

Preoperatively, 90% had some degree of impaired gait, decreasing to 67% after 

shunt surgery (Figure 14a). Sixty-three percent of patients could walk 

independently without walking aids preoperatively (ordinal gait rating 1 or 2), 

increasing to 75% postoperatively (p<0.0001). Forty-four percent improved 

one or more steps on the ordinal gait scale (p<0.0001). In the quantitative gait 

tests, performance improved by 3 s (4 steps) in the 10m walking test and by 5 

s (3 steps) in the TUG (p<0.0001 for all comparisons) (Table 10). Difficulties 

turning (n=313) were seen in 84% preoperatively, decreasing to 61% 

postoperatively and the median number of steps needed to execute a 180° turn 

decreased from 4 (IQR 3-6) to 3 (IQR 2-4) (p<0.0001). 

Broad-based gait was the most common preoperative gait abnormality, 

followed by shuffling gait and freezing of gait. Postoperatively, the prevalence 

of all gait abnormalities decreased (p<0.001 for all comparisons) (Figure 13). 

The gait abnormalities were frequently seen together with shuffling of gait 

predominantly seen together with broad-based gait, and freezing of gait usually 

seen in conjunction with both other abnormalities. Postoperatively, patients 

were more likely to display only one type of gait abnormality (Table 9). 
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Figure 13. Pre- and postoperative prevalence of gait abnormalities, impaired 

balance, and retropulsion pre- and postoperatively in iNPH patients. p<0.0001 for 

all pre-post comparisons. N=number of included patients. The number of included 

patients differ due to missing data. 
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9.2.3 BALANCE 

Fifty-three percent of the patients had impaired balance at the preoperative 

examination, decreasing to 34% postoperatively (Figure 13), with the median 

test performance increasing from 20 (IQR 2-60) to 60 (IQR 20-60) seconds 

(p<0.0001). The prevalence of retropulsion was also significantly decreased at 

the postoperative examination (Figure 13). There were significant negative 

correlations between the Romberg test performance and the gait scale score 

pre- and postoperatively (Rs = -0.55 and -0.62, p<0.001 for both).  

9.2.4 COGNITION 

Preoperatively, 52% of the iNPH patients presented with impaired cognition, 

decreasing to 38% postoperatively (p<0.0001) (Figure 14b). The median 

MMSE-score increased from 25 (IQR 22-28) to 27 (IQR 24-29) (p<0.0001) 

and the daily need of sleep (n=305) decreased from 9 (IQR 8-11) to 8 (IQR 7-

10) hours (p<0.0001). In the quantitative tests, performance improved by 1 

point in the Bingley test and by 2 points in the identical forms test (p<0.0001 

for both) (Table 10). 

9.2.5 CONTINENCE 

Eighty-six percent of the iNPH patients presented with impaired continence 

preoperatively, decreasing to 65% after surgery (p<0.0001) (Figure 14c). 

Forty-four percent needed to use continence aids at least temporarily or 

suffered from persistent incontinence (ordinal continence rating ≥4). 

Postoperatively this decreased to 31% (p<0.0001). 

9.2.6 OTHER NEUROLOGICAL SIGNS 

Paratonic rigidity (n=375) was seen in 73% preoperatively, decreasing to 59% 

after surgery (p<0.0001). In addition, cerebellar dystaxia (n=389) was present 

in 12% preoperatively, decreasing to 7% postoperatively (p<0.001). Focal 

neurological signs (n=313) and polyneuropathy (n=353) were seen in 25% and 

34% respectively at the preoperative examination, with no significant changes 

after surgery. 
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9.2.7 OUTCOME 

An overall postoperative improvement was seen in 68% (n=211), 23% (n=72) 

were unchanged and 9% (n=28) deteriorated. The composite symptom score 

increased by 18 points and the gait and cognition subscores increased by 23 

and 10 points respectively (p<0.001 for all comparisons) (Table 10). Having 

symptoms from all domains and shuffling gait were significantly associated 

with clinical improvement in the multivariable regression analyses (OR=3.8, 

95% CI 1.23-10.94, p=0.013 and OR=3.02, 95% CI 1.62-5.69, p<0.001). 
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Figure 14. Ordinal rating scales of gait, cognition and continence pre- and 

postoperatively in iNPH patients. Numbers within bars are %. *** p<0.001. 
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Table 10. Quantitative tests of gait and cognition as well as gait, cognitive 
and composite scores pre- and postoperatively in iNPH patients 

  Preoperative Postoperative  

  Median (IQR) Median (IQR) p 

Composite Composite score 

(n=311) 

38 (23-61) 56 (37-74) <0.001 

Gait Gait score 

(n=311) 

40 (17-63) 63 (37-83) <0.001 

 10 m, time (s) 

(n=322) 

15 (12-20) 12 (9-15) <0.0001 

 10 m, steps 

(n=322) 

23 (18-29) 19 (16-24) <0.0001 

 TUG, time (s) 

(n=247) 

17 (12-24) 12 (10-17) <0.0001 

 TUG, steps 

(n=258) 

20 (16-25) 17 (14-20) <0.0001 

Cognition Cognition score 

(n=311) 

40 (20-60) 50 (25-75) <0.001 

 Bingley’s test 

(n=367) 

4 (3-5) 5 (3-6) <0.0001 

 Identical forms 

test 

(n=337) 

12 (15-19) 14 (19-21) <0.0001 

n = number of included patients. The number of included patients differ due to missing data. 

TUG = timed up and go. 
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9.3 STUDY III 

9.3.1 THE PREOPERATIVE RADIOLOGICAL PHENOTYPE OF 

iNPH 

At the preoperative examination, apart from an EI>0.3, all patients had a CC-

angle <90° as well as a present flow void sign (Table 11). The CC-angle was 

<63° (suggested as an optimal cut-off value by Virhammar et al.) degrees in 

39%, with no difference between responders and non-responders. A widening 

of the Sylvian fissures was present in 72% while 36% had obliterated sulci at 

the high convexity. All patients who had obliterated high convexity sulci also 

had widened Sylvian fissures, thus the presence of DESH was 36%. Focally 

widened sulci (transport sulci) were found in 28% and there was no difference 

in the prevalence between patients who had DESH and those who did not (data 

not shown).  

Table 11. Preoperative morphological MRI findings in 168 patients with 
iNPH.  

MRI marker, 

median (IQR) 

All iNPH 

patients (n=168) 

Responders 

(n=115) 

Non-responders 

(n=53) 

p 

Evans’ index 0.41 (0.37-0.44) 0.40 (0.38-0.44) 0.39 (0.37-0.43) ns 

Temporal horns 

(mm, mean) 

9.1 (7.5-11.0) 9.0 (7.3-9.1) 9.1 (7.3-11.8) ns 

Third ventricle (mm) 15.5 (13.3-18.0) 15.4 (13.7-18) 16.5 (13.2-17.6) ns 

Fourth ventricle (mm) 14.7 (13.2-16.3) 14.7 (13.2-16) 14.6 (12.9-16.2) ns 

Callosal angle (°) 68 (56-81) 68 (55-80) 69 (58-82) ns 

 

 

Table continues on the next page. 
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Table 11. Continued from previous page. 

MRI marker, % (yes/no) All iNPH patients 

(n=168) 

Responders 

(n=115) 

Non-

responders 

(n=53) 

p 

Flow void sign 0 0 (0/168) 0/115 (0) 0/53 (0) ns 

 1 30 (50/118) 30 (35/80) 26 (14/39)  

 2 42 (71/97) 37 (43/72) 47 (25/28)  

 3 28 (47/121) 35 (40/75) 27 (14/39)  

Dilated interhemispheric 

fissure 

0 42 (71/97) 45 (52/63) 38 (20/33) ns 

 1 49 (82/86) 45 (52/63) 54 (29/24)  

 2 9 (15/153) 10 (12/103) 8 (4/49)  

Dilated sylvian fissures 

(mean) 

0 28 (47/121) 31 (36/79) 22 (12/41) ns 

 1 45 (76/92) 45 (52/63) 46 (24/29)  

 2 27 (45/123) 24 (28/87) 32 (17/36)  

Obliterated sulci 

at vertex 

 36 (60/108) 36 (41/74) 35 (19/34) ns 

DESH  36 (60/108) 36 (41/74) 34 (18/35) ns 

Transport sulci 0 72 (121/47) 75 (86/29) 68 (36/17) ns 

 1 17 (29/139) 19 (22/93) 11 (6/47)  

 2 8 (13/155) 6 (7/108) 14 (7/46)  

 >2 3 (5/163) 0 (0/115) 7 (4/49)  

PVH 0 0 (0/168) 0 (0/115) 0 (0/53) ns 

 1 57 (96/72) 58 (67/48) 49 (26/27)  

 2 26 (44/124) 25 (29/86) 29 (15/38)  

 3 17 (29/139) 17 (20/95) 22 (12/41)  

DWMH 0 0 (0/168) 0 (0/115) 0 (0/53) ns 

 1 46 (77/91) 47 (54/71) 45 (24/29)  

 2 37 (62/106) 42 (48/67) 29 (15/38)  

 3 17 (29/139) 11 (13/102) 26 (14/39)  

ns = not significant, iNPH = idiopathic normal pressure hydrocephalus, IQR = interquartile 

range, PVH = periventricular hyperintensities, DWMH = deep white matter hyperintensities. 
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White matter lesions were found to some extent in all patients in both the 

periventricular and deep white matter (Table 11). While a majority of patients 

had mild (Fazekas grade 1) PVHs, mild to moderate (Fazekas grade 1 and 2) 

DWMHs were about equally as common, while extensive lesions (Fazekas 
grade 3) were seen less frequently. There were a few significant correlations 

between MRI findings and clinical symptoms, however all were weak (i.e. 

<0.3, Table 12). 

Table 12. Correlations between preoperative MRI markers and clinical 
symptoms in patients with iNPH. 

MRI marker Total symptom 

score 

Gait score Cognition score 

Evans’ index -0.09 -0-04 -0.12 

Temporal horns -0.30 0.1 -0.15* 

Third ventricle -0.19 -0.25* 0.07 

Fourth ventricle -0.20* -0.20* 0.16 

Callosal angle 0.17 0.13 0.16 

Flow void sign 0.03 0.09 -0.03 

Dilated 

interhemispheric 

fissure 

-0.20 -0.04 -0.15* 

Dilated sylvian 

fissures 

-0.1 -0.15 0.08 

Obliterated sulci at 

vertex 

0.19 0.18 0.13 

DESH 0.11 0.06 0.11 

Transport sulci 0.07 0.18 0.08 

PVH -0.26* -0.22* -0.23* 

DWMH -0.22 -0.21 -0.17 

* p<0.05. PVH = periventricular hyperintensities, DWMH = deep white matter hyperintensities. 
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9.3.2 OUTCOME 

At the postoperative examination, 68% (n=115) of the patients were improved 

while 24% (n=39) were unchanged and 8% (n=14) deteriorated. There were no 

differences in demographic data, nor in the distribution of pre- or postoperative 

clinical scale scores between the patients with MRI examinations analysed in 

Study III and the remaining patients without complete MRI examinations 

included in Study II (data not shown). 

There were no significant differences in the distribution of any of the 

preoperative MRI findings between responders and non-responders (Table 11). 

While responders had a numerically higher prevalence of moderate (Fazekas 

grade 2) DWMHs (42 vs 29%), the difference was not significant. No 

preoperative MRI finding could be used to predict clinical outcome after shunt 

surgery. 
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9.4 STUDY IV 

9.4.1 CLINICAL OUTCOME 

Seventy-five percent of the patients improved ≥5 points postoperatively on the 

iNPH scale and were categorized as responders. At the postoperative 

examination, one patient had developed a small chronic subdural hematoma. 

This patient was considered asymptomatic and the postoperative MRI-

examination was included in the subsequent analyses. 

9.4.2 DIFFUSION CHANGES 

Patients with iNPH had lower ADC values in the composite ROIs in the 

mesencephalon and pons compared to controls preoperatively (Table 13). At 

the postoperative examination, ADC was further reduced in both ROIs. In the 

analysis of the smaller, individual ROIs ADC was reduced in the middle and 

anterior mesencephalic and pontine ROIs. Postoperatively, ADC was 

significantly reduced in all individual ROIs with further reductions compared 

to the preoperative examination except in the posterior ROIs in the 

mesencephalon and pons. In the comparison of responders and non-responders, 

pre- and postoperative ADC-values were similar. Responders, like the whole 

patient group, had a reduced preoperative ADC in all but the posterior ROIs in 

the mesencephalon and pons with further postoperative reductions. 

Numerically similar, albeit non-significant ADC changes were seen in the non-

responders. 

9.4.3 PERFUSION CHANGES 

There were no differences in preoperative rCBF, rCBV or MTT between iNPH 

patients and control subjects in any ROI, nor any differences when comparing 

all patients’ postoperative perfusion estimates to controls (Table 14). While no 

significant preoperative differences were found between responders and non-

responders, responders had a significant postoperative rCBF increase with a 

higher postoperative rCBF in the composite mesencephalon and pons ROIs 

compared to non-responders, and controls. In addition, non-responders had a 

significant, postoperative reduction of rCBF in the mesencephalon. In the 

smaller individual ROIs, no significant pre- or postoperative differences 
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between groups were found. However, responders had a significant rCBF 

increase in the middle mesencephalic and pontine ROIs. 

9.4.4 CORRELATIONS TO CLINICAL SYMPTOMS 

There were no correlations between the ADC values in any ROI and clinical 

symptoms pre- or postoperatively, nor any correlations between the change in 

ADC and change in clinical symptoms in the whole patient group or either 

subgroup. 

Likewise, no correlations between the pre- or postoperative perfusion 

estimates and clinical symptoms were found. However, the rCBF increase seen 

in the responder subgroup correlated significantly to the magnitude of clinical 

improvement in the mesencephalon (rs=0.80, p=0.031) and pons (rs=0.66, 

p=0.021 (Figure 15). 
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Table 13. Apparent diffusion coefficient (ADC) in controls and iNPH patients 
given for the composite as well as the individual ROIs in the mesencephalon 
and pons. 

  ADC mm2/s, % of control value, median (IQR) 

  Brain region 

Group  Mesencephalon Pons 

  Composite ROI 

Controls  n.a. 786 (762-823) n.a. 766 (738-830) 

All patients Preoperative (n=20) 94, 737 (657-754)* 92, 706 (663-743)** 

 Postoperative (n=16) 78, 617 (524-687)* 78, 597 (533-643)** 

 Change (n=16) -18, -140 (-208- -7)a -12, -94 (-205 - -19)a 

Responders Preoperative (n=15) 93, 728 (621-752)* 91, 702 (619-738)** 

 Postoperative (n=12) 79, 621 (525-721)* 78, 597 (538-642)** 

 Change (n=12) -16, -122 (-208-40)a -13, -93 (-203- -9)a 

Non-responders Preoperative (n=5) 96, 754 (710-783) 96, 731 (693-776) 

 Postoperative (n=4) 78, 611 (419-635) 76, 583 (402-670) 

 Change (n=4) -19, -154 (-351- -69) -16, -120 (-374- -32) 

  Posterior ROI 

Controls  n.a. 791 (775-846) n.a. 773 (731-885) 

All patients Preoperative (n=20) 96, 762 (735-812) 97, 757 (713-775) 

 Postoperative (n=16) 88, 697 (624-775)* 85, 660 (587-668)** 

 Change (n=16) -8, -68 (-130- -3) -14, -109 (-174- -7) 

Responders Preoperative (n=15) 94, 744 (716-834) 99, 766 (666-776) 

 Postoperative (n=12) 89, 706 (624-780)* 85, 660 (596-688)* 

 Change (n=12) -6, -45 (-117- -38) -14, -109 (-174- -7) 

Non-responders Preoperative (n=5) 96, 766 (762-797) 96, 747 (742-807) 

 Postoperative (n=4) 86, 685 (457-732) 80, 624 (427-705) 

 Change (n=4) -10, -112 (-314- -41) -16, -133 (-386- -47) 

 

Table continues on the next page.  
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Table 13. Continued from previous page. 

* p<0.05 compared to controls, ** p<0.01 compared to controls, a p<0.05 for change between 

pre- and postoperative ADC. IQR = interquartile range, n.a. not applicable.  

  ADC mm2/s, % of control value, median (IQR) 

  Brain region 

Group  Mesencephalon Pons 

  Middle ROI 

Controls  n.a. 795 (757-828) n.a. 777 (728-815) 

All patients Preoperative (n=20) 92, 736 (664-759)* 89, 694 (620-740)** 

 Postoperative (n=16) 78, 619 (514-694)* 76, 590 (515-634)** 

 Change (n=16) -15, -119 (-181- -4)a -13, -105 (-222- -6)a 

Responders Preoperative (n=15) 90, 722 (620-762)* 88, 691 (611-723)** 

 Postoperative (n=12) 77, 615 (514-742)* 75, 590 (528-629)** 

 Change (n=12) -13, -116 (-181- -44)a -15, -105 (-188- -2)a 

Non-responders Preoperative (n=5) 92, 737 (697-760) 95, 745 (677-773) 

 Postoperative (n=4) 78, 624 (419-639) 72, 554 (389-663) 

 Change (n=4) -14, -128 (-331- -43) -18, -149 (-380- -20) 

  Anterior ROI 

Controls  n.a. 766 (735-819) n.a. 761 (739-802) 

All patients Preoperative (n=20) 89, 681 (546-767)* 89, 683 (602-730)** 

 Postoperative (n=16) 70, 536 (436-592)* 70, 540 (462-612)** 

 Change (n=16) -25, -187 (-229- -12)a -22, -155 (-257- -35)a 

Responders Preoperative (n=15) 78, 600 (518-763)** 85, 649 (599-722)** 

 Postoperative (n=12) 71, 545 (436-622)** 70, 540 (466-611)** 

 Change (n=12) -19, -136 (-225- -11)a -19, -197 (-256- -35)a 

Non-responders Preoperative (n=5) 99, 759 (652-805) 93, 710 (642-760) 

 Postoperative (n=4) 66, 503 (374-558) 72, 554 (389-642) 

 Change (n=4) -33, -221 (-413-11) -21, -128 (-356- -6) 
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Table 14. Relative cerebral blood flow (rCBF) values in controls and iNPH 
patients given for the composite as well as the individual ROIs in the 
mesencephalon and pons. 

  rCBF, % of control value, median (IQR) 

  Brain region 

Group  Mesencephalon Pons 

  Composite ROI 

Controls  n.a. 0.84 (0.79-0.91) n.a. 0.72 (0.67-0.81) 

All patients Preoperative (n=20) 101, 0.86 (0.77-0.97) 95, 0.69 (0.64-0.81) 

 Postoperative (n=16) 106, 0.91 (0.81-0.98) 111, 0.82 (0.71-0.86) 

 Change (n=16) 2, 0.02 (-0.01-0.11) 7, 0.06 (-0.02-0.16) 

Responders Preoperative (n=15) 101, 0.86 (0.77-0.93) 95, 0.69 (0.61-0.77) 

 Postoperative (n=12) 109, 0.93 (0.88-1.01)* 113, 0.83 (0.73-0.86)* 

 Change (n=12) 6, 0.05 (0.01-0.16)a,b 11, 0.07 (0.04-0.21)a,b 

Non-responders Preoperative (n=5) 106, 0.90 (0.74-1.02) 104, 0.77 (0.68-0.94) 

 Postoperative (n=4) 92, 0.78 (0.67-0.87) 100, 0.73 (0.61-0.85) 

 Change (n=4) -14, -0.12 (-0.17- -0.02) -7, -0.05 (-0.2- -0.02) 

  Posterior ROI 

Controls  n.a. 0.74 (0.68-0.83) n.a. 0.56 (0.53-0.63) 

All patients Preoperative (n=20) 108, 0.80 (0.71-0.91) 98, 0.55 (0.43-0.60) 

 Postoperative (n=16) 112, 0.83 (0.73-1.01) 109, 0.61 (0.52-0.79) 

 Change (n=16) 4, 0.03 (-0.12-0.22) 11, 0.06 (-0.01-0.19) 

Responders Preoperative (n=15) 109, 0.81 (0.70-0.91) 95, 0.53 (0.43-0.57) 

 Postoperative (n=12) 112, 0.83 (0.74-1.01) 109, 0.61 (0.52-0.73) 

 Change (n=12) 3, 0.02 (-0.10-0.25) 14, 0.08 (0.04-0.21) 

Non-responders Preoperative (n=5) 104, 0.77 (0.67-0.91) 117, 0.66 (0.57-0.72) 

 Postoperative (n=4) 104, 0.77 (0.61-0.95) 125, 0.70 (0.50-0.88) 

 Change (n=4) 0, 0.00 (-0.15-0.17) 8, 0.04 (-0.07-0.11) 

 

Table continues on the next page.  
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Table 14. Continued from previous page. 

* p<0.05 compared to controls, a p<0.05 for change between pre- and postoperative rCBF, b 

p<0.05 compared to the rCBF change in non-responders. IQR = interquartile range, n.a. not 

applicable. 

 

  rCBF, % of control value, median (IQR) 

  Brain region 

Group  Mesencephalon Pons 

  Middle ROI 

Controls  n.a. 0.84 (0.77-0.91) n.a. 0.78 (0.72-0.89) 

All patients Preoperative (n=20) 99, 0.83 (0.76-0.95) 94, 0.73 (0.67-0.88) 

 Postoperative (n=16) 100, 0.84 (0.73-0.94) 109, 0.85 (0.71-0.94) 

 Change (n=16) 1, 0.01 (-0.06-0.12) 15, 0.12 (0.05-0.21) 

Responders Preoperative (n=15) 98, 0.82 (0.75-0.88) 90, 0.70 (0.63-0.86) 

 Postoperative (n=12) 105, 0.88 (0.81-0.98) 112, 0.87 (0.79-0.96) 

 Change (n=12) 7, 0.06 (0.01-0.17)a,b 22, 0.17 (0.03-0.25)a,b 

Non-responders Preoperative (n=5) 102, 0.85 (0.73-1.03) 106, 0.83 (0.72-1.01) 

 Postoperative (n=4) 80, 0.67 (0.59-0.76) 86, 0.67 (0.62-0.77) 

 Change (n=4) -22, -0.17 (-0.29- -0.08) -20, -0.16 (-0.26-0.02) 

  Anterior ROI 

Controls  n.a. 0.89 (0.81-1.1) n.a. 0.83 (0.78-0.92) 

All patients Preoperative (n=20) 100, 0.89 (0.82-1.02) 97, 0.81 (0.74-0.92) 

 Postoperative (n=16) 106, 0.94 (0.89-1.04) 106, 0.88 (0.77-0.94) 

 Change (n=16) 6, 0.05 (-0.13-0.10) 9, 0.07 (-0.05-0.13) 

Responders Preoperative (n=15) 100, 0.89 (0.85-0.99) 98, 0.81 (0.75-0.91) 

 Postoperative (n=12) 107, 0.94 (0.91-1.07) 106, 0.88 (0.81-0.94) 

 Change (n=12) 7, 0.05 (0.01-0.15) 8, 0.07 (0.01-0.22) 

Non-responders Preoperative (n=5) 108, 0.97 (0.74-1.21) 95, 0.79 (0.73-1.15) 

 Postoperative (n=4) 94, 0.84 (0.74-1.02) 96, 0.80 (0.67-0.95) 

 Change (n=4) -14, -0.13 (-0.22- -0.01) 1, 0.01 (-0.26-0.04) 
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Figure 15. Correlations between change in relative cerebral blood flow (rCBF) in 

the mesencephalon (a) and pons (b) and the change in the iNPH scale score in 

responders. * p<0.05. 
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10 DISCUSSION 

10.1 THE ROLE OF VASCULAR FACTORS IN 
THE PATHOPHYSIOLOGY OF iNPH 

While the support for an involvement of vascular changes and risk factors in 

the development of iNPH has been growing steadily over the years, there has 

been a lack of epidemiological studies to confirm the findings of previous 

hospital-based studies.110,244-247 Study I investigated the prevalence of vascular 

risk factors and WMLs on CT, and their association to clinical and radiological 

signs of iNPH in a large, population-based cohort. In accordance with previous 

studies,110,244-247 hypertension, DM, and moderate to severe WMLs were 

associated with radiological findings of iNPH (HVe). In addition, the 

significant association with moderate to severe WMLs was retained in the 

smaller group with suspected iNPH, indicating the involvement of these 

vascular risk factors in the disease development. A similar prevalence of 

hypertension, DM and WMLs on MRI was found in the hospital-based patient 

sample used in Studies II-III which also corroborate earlier findings.157,176,178  

However, while the presence of vascular risk factors is a well-established cause 

of WMLs and ischemic injury, the changes seen in iNPH are likely caused by 

a combination of several factors indicating other possible mechanisms of 

action of these risk factors as well.157,176,178 Supporting this notion to some 

extent, hypertension and DM were associated to HVe, independently of WMLs 

in Study I. Even though this association did not remain in the analysis of the 

smaller group with suspected iNPH, this could be explained by type II 

statistical errors, caused by the small number of cases included in the analysis. 

The association between hypertension, DM and HVe supports results 

presented by Graff-Radford et al., where the authors assessed the prevalence 

of increased systolic- and pulse pressure in a population-based cohort and 

found associations between both and ventricular size.251 Similar findings have 

also been reported in animal studies,249,250 and it has been suggested that the 

ventricular enlargement in iNPH could be caused partly by increased pulse-

pressure transmitting to the ventricular system secondary to an increased 

stiffness and reduced elasticity of large blood vessels.282 Additionally, vascular 

risk factors might be involved in the development of iNPH by affecting the 

glymphatic system.243 In several recent studies, CSF-inflow to the ECS has 
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been shown to occur via the para-arterial spaces of the penetrating 

arterioles,35,37,39 and hypertensive rats show an impaired glymphatic 

transport.260  

While the potential mechanisms of action of these risk factors are beyond the 

scope of this thesis, and causal relationships are impossible to determine due 

to the cross-sectional study designs, study I still adds further support for the 

involvement of vascular risk factors in iNPH by confirming the previously 

reported associations in a population-based cohort. Recognizing the presence 

of these vascular risk factors in the clinical setting is important as they are 

treatable.  

10.2 THE CLINICAL AND RADIOLOGICAL 
PHENOTYPE OF INPH 

10.2.1  CLINICAL PHENOTYPE 

While individual symptoms in iNPH have been studied in detail both pre and 

postoperatively, symptom combinations and their changes after surgery are 

less studied and need further elucidation.2,4,10,42,43,49,51,55,61,63 In Study II, the 

clinical phenotype in iNPH and the change in individual symptoms as well as 

symptom groups after shunt surgery were investigated. Even though most 

patients report initial symptoms from a single symptom group, a majority are 

found to have symptoms in at least three out of four cardinal domains at the 

clinical examination. This corroborates earlier results,3,10 and emphasizes the 

importance of a thorough clinical examination as part of the diagnostic 

workup. Shunt surgery results in a general symptom improvement in most 

observed symptoms, indicating the effectiveness of the treatment 

method.5,8,10,96,99 However, it is important to note that despite the general 

improvement, as shown in Study II, most patients do not experience a full 

reversal of symptoms, potentially due to the natural course of the disease 

causing irreversible neurological damage.10,70,283 Thus, an early diagnosis and 

treatment are vital. 

In agreement with previously published results,3,10,42,66,71,74 gait impairment is 

the most common symptom in iNPH, found to some extent in at least 90% of 

the patients in Study II. Typically, the gait is broad-based and shuffling while 
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a smaller group of patients also experience sudden freezing of gait. 

Interestingly, the abnormalities seem to appear in sequence. Broad based gait 

was seen as the only abnormality in about 20% but shuffling and freezing of 

gait was rarely seen in isolation and freezing of gait appeared almost 

exclusively together with both other abnormalities. After surgery, all 

abnormalities were more likely to appear in isolation, and their prevalence 

decreased significantly. Even if no significant associations between the 

presence of any gait abnormality or combination thereof and the severity of the 

gait disturbance were found, the sequence in which the abnormalities appear 

could mirror the progression of the disease. 

Impaired balance was found in a majority of patients in Study II, corroborating 

previously published results.50,51  The frequent coexistence of gait and balance 

impairments can make differentiating between them difficult, as has been 

shown previously.48 However, even if the areas of origin might be different, 

both lead to the same clinical result, i.e. a functional impairment that 

significantly affects ambulatory performance, as seen in the quantitative 10m-

walking and TUG tests. It is also important to note that the level of dysfunction 

in the TUG test preoperatively is severe enough to result in an increased risk 

of falling.54 Of the recorded gait abnormalities, broad-based and shuffling gait 

might also, at least in part be the result of a primary postural disturbance, 

arising as compensatory mechanisms for the backward leaning posture and 

axial instability in order to enable continued walking.48 

Unfortunately, cognitive and urinary function could not be evaluated in detail, 

but the results of Study II is in line with previous studies and highlights the 

profound variability of symptom severity at the preoperative examination, 

ranging from minor disabilities to severe impairment in all domains. Patients 

also exhibit an increased need of sleep, indicative of a general impairment of 

wakefulness, a finding that has been reported earlier and correlated to a 

reduced rCBF in the anterior cingulate gyrus.59 Although, as suggested by the 

results from Study IV, impaired wakefulness could also hypothetically arise 

from disturbances affecting the brainstem.  In addition to disturbances in the 

four cardinal domains, paratonia was present in most patients preoperatively 

and responded well to shunt surgery. This neurological sign has been reported 

previously in iNPH, although, interestingly, the reported prevalence in the 

present study is higher.42,43 This might be due to different methods of 
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assessment, but could also imply that paratonia is more common in iNPH than 

previously thought. Regardless, these findings combined with previous 

evidence suggests that paratonia should be considered a core symptom in 

iNPH. 

10.2.2 RADIOLOGICAL PHENOTYPE 

Ever since the first description of iNPH in the 1960s,2 enlarged ventricles is 

considered a hallmark sign of the disease and a requirement for the diagnosis. 

As expected, all patients in Study III had an EI >0.3 but also an enlargement 

of the 3rd and 4th ventricles, in agreement with a previous study by Wikkelsö et 

al, indicating the potential involvement of infratentorial structures in iNPH.167 

The temporal horns were also widened in agreement with the American-

European guidelines as well as previously published results.3,69,167 Also similar 

to previous studies,69,88,172 a CC-angle <90 degrees was present in all patients. 
88,163,172 As previously stated, the CC-angle cutoff of >40 degrees mentioned in 

the American-European guidelines3 is confusing and should be questioned. All 

patients had some degree of WMLs, both in the PVH and DWMH reinforcing 

the diagnostic, albeit unspecific value of this finding in the disease.3,74,176,177 

The combination of a dilatation of the Sylvian fissures and compression of 

sulci at the high convexity (DESH), has been reported as a very common, 

hallmark finding of iNPH with a prevalence of more than 70% in some 

studies.18,74,156 The Japanese guidelines also suggest dividing iNPH into DESH 

and non-DESH subtypes.74 In Study III, the prevalence of DESH was just over 

35%, a drastically lower number than previously reported. Some of this 

difference might be explained by the grading of sulcal compression at the high 

convexity where a complete obliteration was required in Study III. Still, similar 

prevalence numbers have been reported by Craven et al.,191 and recently, by 

Ahmed et al.,192 and it seems that while a subset of patients with iNPH have 

findings of DESH, this should, by no means be required for the diagnosis. 

Focally dilated (transport) sulci were found in about 25% of patients, similar 

to the prevalence reported by Wikkelsö et al.167 While the transport sulci might 

develop due to the same disturbances causing DESH, no difference in the 

prevalence of transport sulci was found between DESH and non-DESH 

patients, thus the two findings might not be as closely related as previously 

proposed.74,167 
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10.2.3 CORRELATIONS BETWEEN CLINICAL SYMPTOMS 

AND RADIOLOGICAL FINDINGS 

Although significant correlations between the presence of WMLs and 

symptom severity as well as between the size of the 3rd and 4th ventricles and 

the severity of gait existed, all were weak (i.e. rs<0.3). This differs from results 

reported by Kockum et al. comparing the total iNPH Radscale score to clinical 

severity using the Hellström iNPH scale.66,88 However, differences in statistical 

methodology, study population and measurements used makes a direct 

comparison difficult.88 The low and mostly insignificant correlations found in 

Study III indicate that there is no clear association between the preoperative 

radiological phenotype and the severity of clinical symptoms, probably due to 

the large symptom variability seen in the patient group. While morphological 

MRI markers are important in determining the presence of ventriculomegaly 

and can support the diagnosis of iNPH by demonstrating other features found 

in some patients, these other features should not be required for the diagnosis 

of the disease.  

10.3 SURGICAL OUTCOME AND PREDICTION 

While the number of improved patients in Study II and III in this thesis is lower 

compared to some other studies,7,8,10,12,91,93,94 the lower percentage of improved 

patients can probably be explained by the large inclusion interval and use of 

different outcome measurements. It is also important to note that despite the 

lower number of patients classified as improved, symptom severity was 

reduced across all domains in most patients. In addition, only 9% showed a 

progression of symptoms at the postoperative follow-up, indicating that shunt 

surgery can be beneficial not only in patients who improve, but also in the 

patient group where a continued progress of symptoms can be prevented, as 

has been suggested earlier.99,283 

10.3.1  CLINICAL MARKERS 

In the evaluation of clinical markers as outcome predictors, having symptoms 

from all four cardinal domains and the presence of shuffling gait at the 

preoperative examination were significantly associated to postoperative 

improvement in Study II. Black et al. found similar results regarding the 

number of affected domains,71 but this has also been questioned in a more 
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recent study by Pujari et al.11 This finding can be viewed as somewhat expected 

given the improvement across all domains seen postoperatively, but further 

reinforces the need for careful clinical evaluation of patients with suspected 

iNPH. The connection between shuffling gait and postoperative improvement 

is interesting and could indicate that this gait abnormality has the most specific 

association to iNPH, although the high coexistence between the different 

baseline features means that covariance potentially masking significant results 

cannot be ruled out. As such, the results have to be interpreted carefully. This 

is especially true regarding the high coexistence of broad-based and shuffling 

gait.  

Shunt surgery results in a reduction of symptom severity across all domains 

and preoperative disease severity does not negatively impact the postoperative 

improvement rate. Importantly, while more pronounced preoperative 

symptoms have been found to increase mortality, the patients who improved 

postoperatively had a significantly lower mortality comparable to control 

subjects.99 As such, care should be taken not to exclude patients with severe 

clinical symptoms from surgery. 

10.3.2  MORPHOLOGICAL MRI-MARKERS 

We found no between-group differences in the prevalence or severity of 

preoperative morphological MRI-markers in Study III. This is in agreement 

with previous work regarding the EI and flow void sign.69 Interestingly, 

contrary to the findings by Virhammar et al. and Grankhe et al.,69,172,190 the CC-

angle had no predictive utility in Study III, and the prevalence of an angle 

below 63° (suggested as an optimal cutoff by Virhammar et al.) was similar in 

responders and non-responders. While differences in the outcome 

measurements and inclusion criteria might explain this discrepancy, 

Kojoukhova et al. and Narita et al. also found the CC-angle to be of no 

predictive value, supporting the results presented here.189,193  

There was also no difference in the prevalence of DESH between responders 

and non-responders in Study III, resulting in no predictive utility. Of the 

studies supporting the predictive value of DESH, it is important to note the 

different clinical outcome measurements used as well as different inclusion 

criteria. Notably, three studies in support of DESH as a predictor of outcome 
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required markedly different or non-standard findings for inclusion of patients. 

Garcia-Armengol et al. only included patients >60 years of age who had 

present B-waves in >10% of intracranial pressure monitoring readouts,188 

Hong et al. applied the American-European guidelines but excluded patients 

with severe WMLs,187 and Narita et al., while using compression of sulci at the 

high convexity as the chosen predictive marker required the presence of DESH 

for inclusion in the study.189 Using inclusion criteria similar to the criteria in 

Study III, Virhammar et al. did find DESH and dilated temporal horns to be 

significant predictors of outcome, although the outcome measurement used 

was somewhat different to the outcome measurement in the present study.69 

Contradicting these results and in support of the findings in Study III, several 

studies found DESH to be of no predictive utility.191-193 Outcome measures 

differ between these studies as well, but the use of inclusion criteria based on 

the American-European guidelines makes them more comparable to the results 

in the present study. Dilatation of the temporal horns as a predictive marker is 

sparsely studied, with conflicting results.69,167 Combined with the results from 

the present study, the role of these morphological biomarkers for predictive 

purposes remain unclear.  

Regarding WMLs, the results of Study III corroborate previously published 

results showing no predictive value of these markers. Notably, in agreement 

with Tullberg et al. and Tisell et al., even the presence of severe WMLs does 

not affect the rate of postoperative improvement.176,177 While the cause of 

WMLs in iNPH is still incompletely understood, as outlined above, multiple 

mechanisms are probably involved, and the severity of WMLs should not be 

used to exclude patients from shunt surgery. 
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10.4 THE ROLE OF THE MESENCEPHALON 
AND PONS IN iNPH 

In the analysis of the clinical phenotype of iNPH in Study II, 15% of patients 

presented with cerebellar dystaxia at the preoperative examination. 

Postoperatively, the prevalence was significantly lower. Interestingly, 

cerebellar dystaxia, together with several other symptoms that have been 

previously described in iNPH and that were seen in Study II could potentially 

arise due to changes in the mesencephalon, pons and cerebellum. In 

experimental and clinical studies of PD, freezing of gait, parkinsonian rigidity 

and disturbances in postural control have all been linked to the PPN in the 

mesencephalic tegmentum.262,284,285 In Study II, clinical symptoms of paratonia 

and retropulsion were seen in most patients, and freezing of gait was found in 

about 1/3 preoperatively. In addition, the increased need of sleep seen in Study 

II as well as in previous studies could hypothetically be linked to changes in 

the same areas.59,264 Further, detailed studies on urinary tract dysfunction in 

iNPH have suggested the possible involvement of the pontine micturition 

centers in the disease.63,222 Although the crude measurement of urinary 

function in Study II does not allow for any precision characterization of this 

symptom area, the widespread disturbance of urinary function in the patient 

group combined with the other clinical signs potentially arising from the 

brainstem is very interesting. 

Similar to the results found by Wikkelsö et al.,167 patients in Study III had a 

general widening of the ventricular system, not restricted to the lateral 

ventricles, strengthening the hypothesis of the potential involvement of 

periventricular structures not only adjacent to the lateral ventricles but also the 

3rd and 4th ventricles. Also supporting the involvement of these areas, two 

earlier studies found reductions of midbrain diameters in iNPH with increasing 

size postoperatively correlating to gait improvement.165,184 However, the 

studies had some methodological issues, and the results have been 

questioned.185 

Study IV investigated ADC and perfusion changes in the midbrain and pons in 

iNPH. Contrary to most previous studies on supraventricular structures, ADC 

was significantly lower in the patient group preoperatively. Preoperative ADC 

in the brainstem has only been sparsely investigated previously. Tullberg et al. 
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found no differences between iNPH patients and controls using ROIs 

approximately situated in the periaqueductal gray matter,201 and Reiss-

Zimmermann et al. found an increased MD in the CST in the mesencephalon, 

caused mainly by an increase in principal diffusion.198 While the results 

reported by Reiss-Zimmermann are more in line with changes reported in 

supratentorial white matter,180,197,199,200 the ROIs in Study IV include both gray 

and white matter which, combined with technical differences could explain the 

different results seen in Study IV. Hypothetically, the pathophysiological 

changes in iNPH might have different effects on gray and white matter with a 

water increase in the ECS, even if general, being more prevalent in the later. 

Also, WMLs are more common supratentorially.111 As WMLs in iNPH are 

most likely caused by a combination of factors, among them ischemic injury, 

this could, in part explain the reported ADC-increase in white matter and the 

only partial, postoperative reversibility. Instead, relating to the theories on 

glymphatic dysfunction in iNPH,243 and the altered metabolite clearance 

proposed by biochemical studies,72,78 factors that would act to reduce ADC, 

such as a lowered protein clearance and metabolic changes could be more 

prevalent in the gray matter and in the mesencephalon and pons, as has been 

suggested earlier.201 

The postoperative ADC reduction seen in study IV corroborates most previous 

studies on supratentorial structures, although the postoperative ADC values 

reported here are lower. Again, the numerical differences might be due to 

different tissue properties of white and gray matter, although this needs further 

investigation. As shunt surgery is thought to reduce the amount of extracellular 

water and water along axons, as well as potentially improving the clearance of 

proteins from the ECS, it seems reasonable that this could happen in the 

mesencephalon and pons as well. While a few studies have found significant 

correlations between the rate of postoperative ADC reduction and clinical 

improvement in supratentorial white matter,199,201 no between-group 

differences or correlations between ADC and clinical symptoms were found in 

Study IV. This might indicate that the ADC change is predominantly mirroring 

the mechanistic effect of shunting, not symptom reversibility, at least in 

infratentorial structures. 

No preoperative perfusion differences between iNPH patients and controls 

were found in Study IV. This might be due to the small study sample and use 
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of relative perfusion measurements. As a general perfusion impairment has 

been shown in iNPH,59,230 this might affect the chosen internal reference ROI 

resulting in falsely high relative measurements. While estimation of absolute 

perfusion measures could alleviate this potential confounder, DSC-MRI still 

suffers from problems of overestimation and large inter-subject variability 

making the application and interpretation difficult, despite recent advances.148-

150 Support of a microcirculatory/metabolic disturbance in supratentorial areas 

in iNPH is evident in multiple previous studies on perfusion in supratentorial 

structures.59,218,223,224,232,233 While perfusion alterations in infratentorial 

structures has only been sparsely investigated, the findings of a preoperative 

rCBF reduction in the mesencephalon by Tullberg et al. and a CBF reduction 

in the cerebellum by Owler et al. support the involvement of these areas as 

well.59,220 

Further supporting the involvement of perfusion alterations in iNPH and 

indicating that these measurements might reflect the degree of clinical 

reversibility, the rate of postoperative CBF/rCBF improvement has been 

associated to the degree of clinical improvement in several studies.59,223,224,232 

Similar to this, responders in Study IV showed a significant correlation 

between the magnitude of rCBF increase and the rate of clinical improvement 

in both the mesencephalon and pons, indicating the involvement of these areas 

in the symptom generation and symptom reversibility in iNPH. In addition, 

postoperative rCBF values in responders were significantly higher compared 

to the control values, a finding that could indicate the importance of these areas 

in re-establishing normal physiological function. While so far, only Ziegelitz 

et al. have found preoperative perfusion differences between responders and 

non-responders with a predictive value,230 further investigations focusing on 

perfusion changes in general as well as the mesencephalon and pons are 

needed. 

In summary, both the presence of specific clinical symptoms as well as 

diffusion and perfusion alterations measured with MRI can be seen to indicate 

the involvement of the mesencephalon and pons in iNPH. Further studies of 

these areas could provide additional insight in the development of the disease 

as well as in the continued search for predictive imaging biomarkers. 
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10.5 METHODOLOGICAL CONSIDERATIONS 

10.5.1 STUDY I 

The main strength of Study I is the large, population-based study sample where 

cases and controls were recruited from the same population and subjected to a 

nested case-control study. This reduces the risk of selection bias compared to 

several previous studies using hospital-based samples. In addition, data on 

vascular risk factors was prospectively collected from the National Swedish 

Inpatient Register as well as from comprehensive clinical data. 

However, several limitations also need to be considered. The diagnostic 

accuracy was diminished due to the fact that the diagnosis of suspected iNPH 

was, to some extent based on self-report and made retrospectively. In addition, 

the criteria used for diagnosis likely resulted in patients with mild symptoms 

of iNPH not being included. The same is true for the CT-assessments, although 

a recent publication found good agreement between CT and MRI regarding 

morphological markers of iNPH,89 and the difference between CT and MRI in 

detecting clinically relevant WMLs has been questioned.286 Nevertheless, in 

spite of potential diagnostic bluntness, several strong associations between 

vascular risk factors and HVe were found. It is also important to recognize that 

the small sample of cases, both in the suspected iNPH group and the group 

with HVe probably affects the outcome estimates, and larger case samples 

would have been preferable in order to provide more precise estimates. Lastly, 

the cross-sectional design does not allow for causal interference regarding the 

relationship between vascular risk factors, WMLs and iNPH. However, when 

seen in conjunction with earlier studies, the results reinforce the theory of an 

involvement of vascular pathology in the disease.  

10.5.2 STUDIES II-III 

The main strengths of Studies II and III are the large, prospectively included 

patient group and detailed clinical evaluation performed pre- and 

postoperatively. In addition, the diagnosis of iNPH was made in accordance 

with the American-European guidelines and was therefore not based on the 

presence of most evaluated clinical and radiological markers, and outcome was 

measured using continuous measurements normalized to the performance of 

healthy 70-year old individuals. While this meant that only disturbances 
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affecting gait, balance and cognition could be included in the outcome measure 

it adds robustness to the ability of the measurement to detect significant clinical 

improvement. Lastly, all preoperative MRI-examinations in Study III were 

realigned to the callosal plane before the analyses in order to minimize the 

effects of possible misalignment.  

Several limitations also need to be addressed. The retrospective designs and 

large inclusion time interval meant that missing data was present in almost all 

clinical variables, something that especially reduced the patient sample that 

could be used in the outcome analyses. Similar to this, a group of patients had 

to be excluded from Study III as they lacked preoperative MRIs of sufficient 

quality. However, no significant differences in demographic data existed 

between included and excluded patients in any analyses in Study II, and the 

patients excluded from Study III did not differ in outcome score compare to 

the included patients. Several clinical and radiological measurements are 

subjective with a lack of standardized assessment methods. This could 

influence the results and explain the prevalence differences compared to other 

studies, at least to some extent. 

It is also important to note that due to the diagnosis of iNPH being based on 

the American-European guidelines, results from these studies might not be 

directly comparable to patient cohorts diagnosed using the Japanese 

guidelines, as the different clinical and radiological diagnostic criteria are 

likely to affect the resulting patient populations. Lastly, while the influence of 

other, coexisting disorders that could potentially influence the results cannot 

be ruled out. However, the diagnosis of iNPH was made only in the absence of 

other factors more likely to explain the clinical and radiological findings. 

10.5.3 STUDY IV 

Like in Studies  II and III, the included patients were subjected to a detailed 

clinical evaluation pre and postoperatively using a standardized protocol, 

which, for this subgroup also included the iNPH scale by Hellström et al.66 

Another strength is the use of a single MRI scanner for all scans, including the 

controls. Lastly, the DSC-MRI pulse sequence was specifically designed to 

minimize postoperative shunt artefacts in order to obtain perfusion estimates 

postoperatively. 
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The main limitation is the small study sample, reducing power and increasing 

the risk of type II statistical errors. In addition, the low SNR at 1.5T combined 

with the low amount of diffusion vectors could potentially further mask 

between-group differences in the analyses of ADC. It is also impossible to rule 

out artefacts affecting the postoperative evaluations, especially regarding the 

analysis of ADC, although patients with visible artefacts were excluded from 

the postoperative examinations and the anatomical distance between the shunt 

and areas of interest are similar to previously published studies.201,230 
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11 CONCLUSIONS AND FURTHER 
PERSPECTIVES 

Vascular risk factors, especially hypertension and DM as well as WMLs are 

likely important in the development of iNPH. However, while small vessel 

ischemic injury, seen as part of the WMLs seems to be involved to some 

degree, other mechanisms that cause, at least initially reversible changes 

related to the CSF dynamic disturbance, ventricular enlargement and 

hypothetically, metabolic and microvascular dysfunction are most probably 

involved as well. Regardless, the strong association between hypertension, DM 

and radiological as well as clinical signs of iNPH, in conjunction with 

previously published data from clinical, epidemiological and radiological 

studies support a causal relationship between vascular dysfunction and the 

development of iNPH. Management of these risk factors could prove important 

from a preventive perspective. There remains a need for prospective studies on 

vascular risk factors, vascular changes in the brain and the development of 

iNPH, preferably using large study groups and several points of prospective 

data acquisition. Functional MRI-analyses of diffusion and perfusion would be 

useful if integrated in these types of studies. 

iNPH patients present with a collection of clinical symptoms that are present 

in most and identifiable by detailed clinical examination. In addition to the 

previously defined four cardinal symptom groups, other neurological 

symptoms are common, i.e. paratonia and impaired wakefulness, and should 

be considered core parts of the iNPH symptomatology. Notably, the symptom 

severity at the time of diagnosis differs substantially between patients, but 

more pronounced symptoms do not reduce the chance of postoperative clinical 

improvement and should not be used as a criterion when selecting patients for 

shunt surgery. Shunt surgery leads to broad symptom improvements in most 

patients and constitutes an effective treatment option, although it is important 

to recognize that only a minority of patients experience a full reversal of 

symptoms, probably due to a combination of reversible and irreversible 

pathophysiological changes. While the phenotype of iNPH is well described, 

further studies are needed to elaborate on it further as well as to provide a 

structured, and preferably standardized method of assessment of expected and 

observed symptoms in order to facilitate the comparison of different patient 
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populations. In addition, a continued effort is needed to reach consensus on the 

optimal method for assessing postoperative clinical improvement. 

In iNPH, the enlargement of the ventricular system is generalized and not 

confined to the lateral ventricles, although changes might be most obvious in 

these areas. Other described morphological imaging findings such as DESH 

and focally entrapped (transport) sulci are present in a subgroup of patients, 

but even though they can support the diagnosis of iNPH, their presence should 

not be required.  

While a few clinical markers, notably the presence of symptoms in all four 

cardinal symptom groups were associated to postoperative clinical 

improvement, no morphological MRI-markers could be used for this purpose. 

As such, selecting patients for shunt surgery based on the morphological 

appearance on CT or MRI results in a potential exclusion of patients that would 

improve after shunt surgery, and this practice should be avoided. As with the 

clinical phenotype, developing a standardized assessment of morphological 

changes on CT and MRI should be prioritized in order to facilitate further 

research in the field, including the potential predictive potential of 

morphological imaging biomarkers.  

Lastly, the mesencephalon and pons probably play an important role in the 

symptom generation in iNPH. A pre- and postoperative ADC reduction in the 

areas suggests the potential involvement of additional pathophysiological 

mechanisms than has been described previously in supratentorial structures. In 

addition, perfusion changes, evident as an increase in rCBF, mirror the rate of 

clinical improvement in responders, strengthening the role of MRI-based 

perfusion measurements as potential predictive biomarkers, although this 

claim needs further investigation. Future studies should focus on reproduction 

of earlier functional disturbances in large patient samples, preferably using a 

combination of diffusion and perfusion measurements. The use of higher order 

diffusion and perfusion estimates, e.g. capillary transit time heterogeneity 

could provide additional insights in the pathophysiological changes seen in the 

disease. 
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 APPENDIX 

Appendix 1. ICD-codes used for classifications of vascular risk factors in 
Study I. 

 ICD 9 ICD 10 

Hypertension 401, 4019, 40199, 401A, 

401B, 401X, 4029, 40299, 

402A, 402B, 402X, 4039, 

40399, 403X, 40499, 404X, 

405B, 405X 

I10, I10.0, I10.9, I11.0, 

I11.9, I12.0, I12.9, I13.0, 

I13.2, I13.9, I13-P, I15.0, 

I15.1, I15.9 

Diabetes mellitus 250-25009, 250A-250H, 

250X, 278A 

E100-E105, E107-E120, 

E140, E143, E148, E149, 

E14-P 

Stroke/transient ischemic 

attack 

430, 430X, 431, 431X, 432, 

432A-B, 432X, 433A-D, 

433X, 434, 434A-B, 434X, 

435, 435X, 436, 436X, 437, 

437A-B, 437D-G, 437W, 

437X, 438, 438X 

I601-I615, I616, I618-I621, 

I629, I630-I639, I640, I649, 

I650-I653, I658, I659, I660-

I664, I668, I669, I670-I672, 

I674-I679, I67-P, I680-I682, 

I688, I690-I694, I698, 

G453, G459 

Coronary artery disease 4130, 41307, 4139, 41397, 

41399, 413X, 4100, 41007, 

4109, 41097, 41099, 410A-

B, 410X, 41201, 41209, 

4129, 41291, 41299, 412X, 

428, 4289, 42899, 412A-B, 

412X 

I200, I201, I208, I209, 

I209P, I210-I214, I214A-B, 

I214W, I214X, I219, I21-P, 

I500, I501, I509 
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Appendix 2. Range of voxels in the final ROIs after transfer and masking in 
Study IV. 

 

  

Range of voxels after 

alignment and masking 

 

ADC   Brain region 

Group  ROI Mesencephalon Pons 

Controls (n=15)  Posterior 142-343 124-387 

  Middle 254-560 212-539 

  Anterior 214-632 152-491 

All iNPH patients Preoperative (n=20) Posterior 109-343 96-387 

  Middle 213-560 197-539 

  Anterior 239-632 160-491 

 Postoperative (n=16) Posterior 88-426 111-407 

  Middle 199-544 231-599 

  Anterior 207-570 155-631 

Perfusion data   Brain region 

Group  ROI Mesencephalon Pons 

Controls (n=15)  Posterior 47-111 41-99 

  Middle 64-168 55-157 

  Anterior 83-205 65-143 

All iNPH patients Preoperative (n=20) Posterior 54-111 40-89 

  Middle 66-168 56-145 

  Anterior 84-184 71-143 

 Postoperative (n=16) Posterior 50-113 41-105 

  Middle 69-163 54-150 

  Anterior 95-185 54-146 
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