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Abstract		
 
Background: In the past decade, the phenomenon of spatial heterogeneity has started to gain 
traction in studies of cycling and weather. Cycling is usually the mode of transportation that is 
most affected by inclement weather and the scientific consensus about how weather impacts 
cycling behaviour on a general scale is for the most part well-established. On a regional scale, 
weather effects have been found to be more adverse in low-density rural communities, whilst 
the impact is less severe in more compact cities. However, to this date, little is known about 
how, and even if weather produces heterogonous cycling patterns on a local city scale.  
 Method: Given the lack of precedent to studies of spatial heterogeneity on a local scale, 
this study developed and applied a framework to investigate the presence of the phenomenon. 
The framework consists of two parts. First, a cartographic exploration of correlation 
coefficients linked to cycle-measurement stations around the city of Gothenburg. Second, a 
weather sensitivity analysis was conducted to identify if urban areas with similar characteristics 
was associated with spatial heterogeneity. Properties of the urban environment were quantified 
with a modified Local Climate Zone system to capture the dominant urban characteristics that 
surrounds every cycle-measurement station and their corresponding cycleway segment.  
  Results: Findings made in this showed that the impact of the weather indices 
temperature, sunshine, precipitation and gustiness varies across the city of Gothenburg. The 
pattern of spatial heterogeneity was especially pronounced in relation to gustiness. Coastal 
environments characterized by openness were consistently more sensitive to higher wind 
speeds. The duration of sunshine was also more important to urban areas with a low density. 
Two precipitation indices were considered, along with the binary occurrence of a precipitation 
event. The duration of precipitation had the most negative impact on cycle frequencies and the 
effect was stronger than even the binary occurrence of a precipitation event. Surprisingly, in 
the densest built environments, cycling appears to be more sensitive to precipitation than areas 
characterized by openness.  
 Discussion: These results have some important implications for planning authorities. 
First, weather is not an entirely uncontrollable phenomenon in relation to cycling. It is possible 
to identify areas that are more affected by certain weather conditions and thus take appropriate 
action. Second, this study found evidence that spatial heterogeneity exists, but the robustness 
of the proposed framework needs refining before the results can be regarded as conducive. 
 Conclusions: This study could be used as a way forward for professionals who struggle 
to find out where they should intervene to empower cycling. The framework proposed in this 
study can also be used to identify urban environments that are more adversely affected by 
certain weather conditions without actual measurements of the cycle volume in these areas. 
Further developments are recommended, but the framework in this study could be a cost-
effective way of identifying especially weather sensitive areas of the urban environment. 
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1. Introduction 
 
Cycling as a mode of transportation offers a 
range of benefits, not only for the individual 
that uses a bicycle regularly, but also for 
society at large. For the individual traveller, 
cycling is low-cost vehicle that improves the 
health of the rider. In tandem, society are 
exposed to less pollution – both with regards 
to emissions and noise. Moreover, active 
transportation like cycling is often the fastest 
travel mode in cities (Handy, 2014) and a 
greater number of cyclists on the road may 
also alleviate congestion (Bernardo & Bhat, 
2014). However, the built environment may 
only be favourable for cycling if the urban 
structure is dense, the topography is relatively 
flat and the distance between locations are 
short  (Handy, 2014; Heinen, van Wee, & 
Maat, 2010; Saelens, Sallis, & Frank, 2003). 
But even under optimal conditions, the choice 
to cycle may be held back by societal attitudes 
against cycling (Fernández-Heredia, Monzón, 
& Jara-Díaz, 2014; Gatersleben & Appleton, 
2007; Heinen et al., 2010). Beyond all these 
perspectives on cycling, there is also an aspect 
that’s often glossed over – if it’s taken into 
consideration at all. Cyclists are at the mercy 
of the prevailing weather conditions more 
than any other traveller (Böcker, Dijst, & 
Prillwitz, 2013a; Liu, Susilo, & Karlström, 
2017). It’s not that the relationship between 
cycling and weather hasn’t been studied, in 
fact, scientific inquiries into the relationship 
goes back several decades. Back then, 
temperature and cloud cover were found to 
have an impact on cyclists, whereof 
commuters were less affected by inclement 
weather (Hanson & Hanson, 1977). Recently, 
in a comprehensive literature review, Böcker, 
Dijst, & Prillwitz (2013) found that weather 
has profound effects on open-air travel 
behaviour. They also identified that the 
association may not be entirely linear in all 
cases. Furthermore, the effect of weather on a 
regional scale has been found to vary 
according to location (Helbich, Böcker, & 
Dijst, 2014; Liu, Susilo, & Karlström, 2014, 
2015). Other studies, have on an intra-city 
scale also indicated that a spatial component 

could be affecting cyclists, but these studies 
often aggregate data and compare utilitarian 
paths with recreational (Miranda-Moreno & 
Nosal, 2011; Thomas, Jaarsma, & Tutert, 
2013). Moreover, how cyclists are affect also 
varies across seasons (Liu et al., 2015; Tin 
Tin, Woodward, Robinson, & Ameratunga, 
2012).  
 The city of Gothenburg is undergoing 
densification at the  intermediate city scale to 
achieve, amongst other things, shortened 
travel distances between residences and 
workplaces (Gothenburg City, 2014). In the 
city’s Cycle Programme, density is also 
among the motivating factors but so are also 
the previously mentioned health benefits, 
reductions in noise and air pollution that 
increased cycle volumes could entail 
(Månsson & Junemo, 2015). The most 
important target is however, to reframe the 
public’s perception of cycling – as to view the 
city of Gothenburg as a bike-friendly city. 
This is an especially important aspect 
according to Bernardo & Bhat (2014).  
 Much less attention is however 
devoted to how inclement weather conditions 
affects cycling behaviour in the city. At 
present, the Cycle Programme only mentions 
weather indirectly with regards to weather-
protected parking, whilst the City’s travel 
survey in 2017 briefly mentions that cycling 
volumes decrease at the cities permanent 
cycle-measurement stations when it’s cold 
and rainy (Urban Transport Administration, 
2017). The only explicit effort to avert 
negative weather impacts is road maintenance 
during the winter months. Indeed, this is a 
good measure because snow covered ground 
has been shown to substantially reduce the 
number of cyclists on the road (Liu et al., 
2015). Another winter-related initiative is the 
campaign ‘winter-cyclists’, launched by the 
County Administrative Boards (2018). The 
campaign provided winter tires and reflective 
vests to 250 cyclists to encourage riders to 
extend their cycling across all seasons. The 
gains that stands to be made with measures 
aimed at winter-cycling are enormous, given 
that cycling during winter is very low 
compared to rest of the year. However, snow 
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is usually only a problem during winter and 
it’s a rare event compared to all other weather 
parameters.  
 Cycling is the mode of transportation 
that is most negatively affected by weather in 
Sweden (Liu et al., 2017). But how the Urban 
Transport Administration describes weather 
impacts above, suggests that weather is 
mostly being treated as an uncontrollable 
natural phenomenon (see Spencer, Watts, 
Vivanco, & Flynn, 2013). Yet, the neglect of 
weather impacts is perhaps not so surprising, 
even though the scientific consensus mostly 
has established how weather affects cyclists. 
A plausible reason for the lacking focus on 
cycling and weather by city planners could be 
the general character of the association. Most 
studies of cycling and weather find 
connections on a global scale, i.e. they do not 
disaggregate their analysis to smaller spatial 
units. A study also speculates that  differences 
in response to weather could be related to 
local microclimates within a city (Helbich et 
al., 2014). Hence, it is possible that the built 
environment could be connected to how 
cyclist responds to weather, depending on the 
spatial setting. This phenomenon is called 
spatial heterogeneity and refers to how the 
same variables can produce a variety of results 
in spatially separate places. 
  Most inquiries into the relationship 
between cycling mobility and weather usually 
develop a logit- or logistic model (see Liu, 
Susilo, & Karlström, 2017), but Pearson’s r 
has also been used to find associations (e.g. 
Nankervis, 1999; Pang, Zablotskaia, & 
Zhang, 2016; Tin Tin, Woodward, Robinson, 
& Ameratunga, 2012). Due to the novelty of 
spatial heterogeneity research on a local scale, 
the simplest tool is more than appropriate and 
therefore, this study will utilize the correlation 
coefficient. If weather systematically 
produces heterogeneous cycling flows in 
different areas, it is important to identify 
generic markers of the built environment 
where it occurs. Currently, no one has tried to 
link weather and cycling to the built 
environment through a research methodology 
proposed by Stewart & Oke in 2012, called the 
Local Climate Zone system, but this study will 

evaluate if it’s possible. Knowledge about 
weathers effect on cycling flows in different 
LCZs could be important to e.g. city planners 
and transportation authorities, and thoughtful 
consideration of the spatial impact could be 
imperative to the prosperity of cycling in cities 
like Gothenburg. 
	
1.1 Aim 
 
This study seek to identify whether spatial 
heterogeneity exists in the relationship 
between weather and cycling on a local scale. 
A city contains a multitude of varying 
microclimates. Therefore, it is expected that 
cycle-measurement stations in similar urban 
settings will experience weather impacts 
approximately the same, due to the 
characteristics of their surrounding 
environment. Spatial variations are also 
expected within and between seasons- i.e. 
periods of homologues cycle behaviour. 
 To achieve this ambition, this study 
will lay the foundation of an explorative 
framework. This proposed framework should 
allow spatially heterogeneous cycling 
responses in relation to different weather 
conditions to be encapsulated. Guiding this 
research are the following questions: 
 

§ Do spatially separated cycle-
measurement stations produce a 
variety of responses to weather? 

§ If so, how is this variability related to 
the urban environment? 

§ Also, how alike are the response of 
stations to weather when their 
surrounding environments are similar?	

	

2. Background 
 
This section covers a description of 
Gothenburg’s weather. It then goes on to a 
literature review of the current scientific 
theory of different weather parameters 
association to cycling. The limitations and 
gaps in the current research is also 
highlighted. It ends with an overview 
regarding what we know about the spatial 
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heterogenic relationship between cycling and 
weather.  
 
2.1 Study Area – The city of Gothenburg 
 
There is a total of 31 cycle-measurement 
stations within the study area of Gothenburg. 
However, not every station is permanent. 
Some stations were temporary, some have 
been removed due to construction whilst other 
station have been added with time. Therefore, 
only 15 stations were included in this study. 
These stations are permanent and have 
consistent data records. Most stations are 
found in or near the city centre but no stations 

are located on the island of Hisingen (Fig. 1). 
For more detail on the cycle data, see section 
3.1.1. 
 
2.1.1	Weather	and	Climate	of	Gothenburg	
 
The city of Gothenburg, Sweden, is a coastal 
city with a mild, temperate climate. The city 
has distinct seasonal patterns due to its 
latitude. During the normal period 1961-1990, 
mean temperatures reached a minimum of -
1.2°C in winter and a maximum of 17°C in 
summer. Annual mean temperature was 7.7°C 
(SMHI, 2014). Regarding precipitation, the 
annual amount in Gothenburg is about 

Figure 1. Location of the cycle-measurement stations within the study area of Gothenburg (see forthcoming section 3.1.1). 
Data source: Lantmäteriet (GSD-Fastighetskartan, 2017), Urban Transport Administration (Cykelmätstationer, 2017; 
Cykelbana, n.d.), OpenStreetMap contributors (Municipal boarders). Projection: SWEREF 99 12 00. 
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757.8mm, which is almost 219mm above the 
normal national average. Most rainfall 
occurred in fall (82.7mm) and the driest 
month was the winter month February, with 
39.6mm (SMHI, 2014). Average wind speeds 
barely vary over a year. During the normal 
period, the annual mean wind speed was about 
5.2m/s, whereof early spring and fall were 
slightly windier.  
 Related to the seasons are also cyclical 
variations in the amount of daylight. At the 
lowest point in winter, there's just an average 
of 5 daylight hours, which jumps to roughly 
20 at summer solstice. This also affects 
sunshine hours on an average year. The mean 
duration, according to the normal period, had 
a minimum of 1.3h in winter and an average 
max of 8.9h in June. The annual average for 
Gothenburg was 1722h of sunshine 
(Josefsson, 1993).  
 Compared to the normal period, the 
time series considered in this study is 
approximately normal regarding annual 
temperature (0.58 degrees above) and annual 
precipitation (30mm higher). However, the 
summers were unusually warm with roughly 
1.97 degrees Celsius above normal, average 
wind speeds were almost half as strong and 
there were about 160 fewer annual hours of 
sunshine. 
 
 
2.2 The relationship between Cycling and 
different types of Weather 
	
2.2.1	Temperature	
 
By far, the most common weather parameter 
to analyse in relation to cycling is air 
temperature. Most often, maximum air 
temperature is considered, because it is often 
found to have a better fitted association to 
cycling than mean or minimum air 
temperature. Many studies identify a 
parabolic effect of temperature onto the 
volume of cyclists (Böcker et al., 2013a; 
Miranda-Moreno & Nosal, 2011). This is 
indicative of a range where temperature is 
favourable for cycling, down to – and up to a 
certain threshold. In the range between these 

perceived thresholds, cycling frequencies can 
increase as a linear function of temperature 
(Flynn, Dana, Sears, & Aultman-Hall, 2012; 
Tin Tin et al., 2012). However, these 
thresholds tend to vary across space. For 
example, in Auckland, New Zeeland, no 
parabolic relationship were identified (Tin Tin 
et al., 2012). Which according to the authors 
may be due to a lack of extreme temperatures 
at the investigated location. In Washington 
DC, Gebhart & Noland (2014) found that 
average trip distance significantly decrease 
below 9.4°C and above 31.7°C, and yet, the 
warmer it is, the longer distances cyclists tend 
to cycle (Gebhart & Noland, 2014) . Other 
studies have reported an upper threshold of 
30.4°C in Singapore (Meng, Zhang, Wong, & 
Au, 2016), 25°C in London (Wadud, 2014) 
and in Montreal, Canada, 28°C in 
combination with relative humidity levels 
above 60% (Miranda-Moreno & Nosal, 
2011). This indicates that the decline in 
cycling frequencies during elevated 
temperature events may be a universal 
phenomenon even though the threshold 
varies.  
 On the other end of the spectrum, a 
lower cut-off point has not been found. 
Although the number of cyclists decrease as it 
gets colder, the decline always seems to level 
out and become stable at some point. Most 
likely, this is due to the resilience of the 
cyclists who are still roaming the roads as 
temperatures are below freezing. This is 
confirmed in Calgary, Canada by Amiri & 
Sadeghpour (2015). They found that 90% of 
commuting cyclists who self-identify as 
frequent winter cyclists feel comfortable 
cycling below -20°C or even colder. In 
Sweden, a cultural difference can also be 
discerned whereas cyclists who live in colder 
regions are more aware of fluctuation in air 
temperature (Liu et al., 2015). 
 In cities, the temperature can vary in 
accordance with the built environment. 
Morning and evening temperatures can be 
much higher in dense urban environments 
where large buildings and paved surfaces 
traps heat inside the urban canyon (Coutts, 
Beringer, & Tapper, 2007). At noon, 
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differences often dissipate. The same process 
can also work to produce daytime cold islands 
in narrow canyons due to shading and high 
thermal admittance of building materials 
(Erell & Williamson, 2007). 
 
2.2.2	Precipitation	
 
Regarding precipitation and cycling, 
researchers often find a relatively large 
reduction of cyclists when it rains (Liu et al., 
2017; Tin Tin et al., 2012) and cyclists often 
state in surveys that precipitation is the most 
deterring factor (Heinen et al., 2010; 
Nankervis, 1999). According to the findings 
of Flynn et al. (2012), the likelihood to cycle 
are twice as high on mornings without rain.  
Even though the relationship is negative on 
the surface, there are several nuances of how 
precipitation affects cycling. For example, in 
the Netherlands, Thomas, Jaarsma, & Tutert 
(2013) considered both the amount and 
duration of precipitation and found, much to 
their surprise, that the negative effect of 
precipitation was small. Another study  also 
found that annual precipitation appears to play 
a significant role (Winters, Friesen, 
Koehoorn, & Teschke, 2007). Henceforth, 
cities with more days of precipitation 
experience a larger reduction in cycling 
volumes. In a comparison of different seasons 
and regions of Sweden, a study found that 
cycling indeed is the transport mode that has 
the largest negative influence from 
precipitation, which seems to encourage a 
shift to public transportation (Liu et al., 2015). 
 In more detail, Phung & Rose (2007) 
constructed a logistic model and used 2 binary 
categories for the amount of precipitation and 
found that heavier rains (>10mm) affects 
cycling more negatively than light rains 
(<10mm). They also found that precipitation 
had the most negative effect of all the 
considered weather parameters (Phung & 
Rose, 2007).  Using 5 discrete categories for 
the amount of rain, Wadud (2014) found that 
the greatest reduction in cycling volumes 
occurred at 1-2mm. A lagged effect was also 
identified. It was found that precipitation in 
the previous hour had almost the same 

strength of deterrence as did 1-2mm of rain 
(Wadud, 2014). This relationship was also 
identified for precipitation in the previous 
three hours by Nosal & Miranda-Moreno 
(2014). They also found that a rain event that 
only occurred in the afternoon did not reduce 
cycling volumes. Likely because the cyclists 
got caught in unexpected rain showers (Nosal 
& Miranda-Moreno, 2014). A support for this 
proposition can be found in a study by Meng 
et al. (2016), who showed that 66.5 percent of 
cyclists would modal shift if the weather 
forecast predicted rain later that day. Weather 
forecasts have also in general been shown to 
increase the likelihood of changes in travel 
behaviour, regardless of how the information 
was obtained (Cools & Creemers, 2013). 
Moreover, travel decisions under rainy 
conditions are typically made by qualitative 
assessment based on the available information 
(Chen & Mahmassani, 2015). Recently, 
individual characteristics have also been 
linked to how weather information influence 
travel behaviour (Li, Chen, Li, & Godding, 
2018). For example, Böcker, Dijst, Faber, & 
Helbich (2015) found that women and older 
people experience thermal conditions as 
colder than other demographics.  
 Furthermore, with a novel analytical 
approach to the relationship between cyclists 
and weather, Corcoran et al. (2014) found that 
in Brisbane, Australia, rental bicycle trips are 
reduced during rain, but that a noteworthy 
number of short trips persist under rainy 
conditions in the city centre. In a literature 
review by Böcker et al. (2013), it’s also 
highlighted that precipitation in some places 
only affect clothing behaviour for light rains 
and an adjustment of the departure time. The 
degree to which bicycle trips are postponed or 
cancelled due to precipitation was not 
identified by any study considered here, 
rather, studies tend to focus on modal shift. 
	
2.2.3	Wind	
 
The effect of winds onto cycling has been 
studied by a lesser extent, but the consensus is 
nonetheless that wind has a negative impact 
on cycling and even more so for higher wind 
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speeds. Nankervis (1999) find empirical 
support for the negative relationship, but he 
argues that these findings are inconclusive 
because the decision to cycle aren’t swayed as 
much by wind in comparison to other weather 
parameters. Other authors found that wind 
speeds are significantly correlated with a 
reduction in the number of cyclists, but the 
marginal effect is lower than for other weather 
parameters (Gebhart & Noland, 2014; Tin Tin 
et al., 2012). A nearly linear relationship has 
also been found by both Wadud (2014) and 
Flynn et al. (2012). The latter saw that an 
increase of 0.4m/s decreased the likelihood of 
cycling by 5%. Tin Tin et al. (2012) studied 
cycling volumes at a permeant cycle-
measuring station near the coast in New 
Zeeland and found that, in an open and 
exposed environment, gustiness had a highly 
significant impact on cycle frequencies. This 
is interesting regarding spatial heterogeneity, 
which we will return to in an upcoming 
section. 
 It is possible that the mixed results 
reported by different studies are related to the 
built environment. So, to get a better grip on 
what effect wind might have on cycling, we 
can turn to other sources. Wind speeds are 
affected by the frictional forces imposed by 
roughness elements like buildings and 
vegetation (Hong, Lin, Wang, & Li, 2012; 
Oke, Mills, & Voogt, 2017). This in turn 
generates wind turbulence which is affected 
by the height of buildings in relation to the 
width of the street (H/W ratio) and/or the 
density of the roughness elements which can 
be measured by how much of the sky is visible 
from the ground, i.e. sky view factor 
(Nakamura & Oke, 1988). For example, in a 
narrow street canyon, winds may skim across 
the top of high buildings if the direction of the 
flow is perpendicular, but if the wind enters 
the canyon at an angle, the wind will funnel 
through the canyon and effectively increase 
the original wind speed. Wind that flows from 
an open area straight onto a tall building, for 
example at the quay, will also produce intense 
wind speeds due to the negative pressure near 
the facets, which creates a suction force (Oke 
et al., 2017). The varying degree of roughness 

elements in different cities was proposed by 
Helbich et al. (2014) as an explanation to why 
the impact of wind is more negative in low-
density areas, especially near the coast line. 
 Furthermore, since the urban 
environment also affects the direction of the 
wind, this could be important knowledge but 
no study was found to consider this 
perspective in a real-world setting. However, 
a lab study found that crosswinds striking a 
cyclist at an angle of 30 degrees at speeds of 
8-10 m/s will make the bicycle unstable and 
force the rider to a considerable effort just to 
keep the bicycle in balanced (Schwab, 
Dialynas, & Happee, 2018). Thus, it could be 
important to know how, not only wind speeds, 
but the direction of the wind affects cyclist. 
 It is also possible that wind also have 
an interaction effect with other weather 
parameters. Studies also suggests (Böcker et 
al., 2013a; Liu et al., 2014; Phung & Rose, 
2007) that wind chill could be experienced as 
pleasant during hot summer days, whilst the 
opposite could be the case on colder days or 
days with precipitation. 
 
2.2.4	Sunshine	
 
Duration of sunshine has been studied in 
relation to cycling, but the variable often gets 
too little attention. Although two literature 
reviews found that sunshine has been studied 
to some extent, almost nothing is said about 
its association to cycling (Böcker et al., 2013a; 
Liu et al., 2017). A reason for the lack of 
attention regarding sunshine could be data 
availability, as mentioned by Mathisen, 
Annema, & Kroesen (2015).  
 In London, a small but positive 
influence was found between cycling and 
duration of sunshine (Wadud, 2014). Thomas 
et al. (2013) found that the duration of 
sunshine is more important to some cyclists, 
depending on the type of cycleway, i.e. 
utilitarian and reactional, whereof sunshine 
was more important for the latter. 
Furthermore, they also found that sunshine is 
the second most important weather parameter 
in regards to its positive influence on cycling 
frequencies (Thomas et al., 2013). In 
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Auckland, a city with a oceanic/subtropical 
climate, Tin Tin et al. (2012) found that 
sunshine also had a positive effect on cycling, 
the effect was particularly pronounced in 
winter and spring. Note however that, 
compared to Gothenburg, an average winter in 
Auckland is comparable to mid-spring and 
mid-fall in Gothenburg’s temperate climate. 
 Moreover, sunshine can have other 
effects on cycling behaviour that are worth 
consideration. Sunshine affects the visual 
perception of the urban environment, making 
it more aesthetically pleasing for the rider and 
thus influences how the current weather is 
perceived, even though the air temperature 
may remain constant (Böcker, Dijst, & Faber, 
2016; Böcker & Thorsson, 2014). However, a 
study of cyclists in three Swedish cities, made 
the interesting discovery that sunshine 
appeared to produce less positive emotions 
directly after a commute (Ettema, Friman, 
Olsson, & Gärling, 2017). 
 Sunshine is also indirectly linked to 
the cyclist through the built environment. For 
example, vegetation can protected a cyclist 
from intense sunshine during summer, and in 
winter, when trees defoliate, they allow more 
sunshine to reach the rider (Böcker & 
Thorsson, 2014). Tall structures and dense 
urban environments will also block sunlight 
from reaching the ground (Erell & 
Williamson, 2007). 
 
2.2.5	Other	weather	parameters	
 
Given how prevalent relative humidity is in 
the weather-cycling literature, it's important to 
explain why its excluded from analysis in this 
study. Relative humidity is a function of 
temperature and moisture in the atmosphere 
(Lawrence, 2005). For example, if the 
temperature increases whilst the amount of 
moisture in the atmosphere remains the same, 
relative humidity will decrease. During the 
night, the opposite occurs as temperature 
decreases, which inflates relative humidity. 
This is also related to the built environment, 
since areas with more pervious surfaces and 
vegetation have a stronger evaporation 
compared to paved areas of a city (Kuttler, 

Weber, Schonnefeld, & Hesselschwerdt, 
2007). Therefore, the line was drawn at 
temperature and precipitation, since its 
possible that relative humidity wouldn’t 
conduce to other findings than those yielded 
by its parental variables.  
 That said, specific cases of relative 
humidity could be interesting, for example 
dew-point could’ve been used as an estimate 
of frost risk, and by extension slipperiness, 
during colder seasons. But this falls beyond 
the scope of this study since this risk is not an 
issue during warmer seasons. The same goes 
for snow covered ground. Other variables that 
have been included in previous research are; 
daylight i.e. elapsed time between sunrise and 
sunset, atmospheric pressure, visibility, fog, 
darkness and cloud cover. Very little is 
however known about the association 
between these parameters and cycling. But 
this is not necessarily an issue, given that 
many of these variables have multicollinearity 
relations to other weather effects, i.e. for 
example cloud cover and sunshine. Something 
noteworthy regarding darkness, a study in 
Gothenburg investigated cycling safety and 
found that darkness amongst other factors 
significantly heightens the risk of accidents 
(Dozza, 2017). This was likely also connected 
to the drinking behaviour of the cyclists. 
 
2.3 Seasonal effects on Cycling behaviour 
 
Even though cycling has been studied 
extensively in relation to weather, studies 
seldom evaluate the impact in detail across all 
seasons of a year. That said, most studies 
identify a substantial increase of cyclist during 
warmer months compared to colder months, 
but the increase levels off in summer (see 
Böcker, Dijst, & Prillwitz, 2013; Liu, Susilo, 
& Karlström, 2015). Moreover, seasonality 
has a greater effect in regions with a climate 
similar to that of North America and the 
Scandinavian countries, but consequently, the 
impact of day-to-day weather tends to be 
smaller in these regions (Böcker et al., 2013a). 
Other findings suggest that recreational 
cyclist are more affected by both seasonal 
variations and weather (Tin Tin et al., 2012). 
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Proximity may also be important from a 
seasonal perspective. When studying 
commuters to a University in Toronto, 
Canada, Nahal & Mitra (2018) found that a 
higher density of bicycle infrastructure within 
500 m of the shortest route to the University 
positively affected the decision to cycle 
during all seasons. 
 Studies of the Randstad region, 
Holland and Bodø in northern Norway have 
also used a predictive model to show how 
climate change could affect cycling in the 
future. With regards to seasonality, it was 
predicted that more people will choose to 
cycle in winter but less will opt for the bicycle 
in summer because of the expected 
temperature increase along with more 
precipitation (Böcker, Prillwitz, & Dijst, 
2013b; Mathisen, Annema, & Kroesen, 2015). 
In a comparison of different regions during 
different seasons, Liu, Susilo, & Karlström 
(2015) made the interesting discovery that the 
impact of precipitation onto cyclists becomes 
positive during winter in the central region of 
Sweden. No theory was disclosed to why this 
occurred, nor was any information available to 
determine whether Gothenburg fell into this 
category.  
 Some studies also focus on the 
demographic and psychological side of 
cycling. In a comparison of different trans-
portation modes in three Swedish cities, 
Ettema, Friman, Olsson, & Gärling (2017) 
found no difference regarding the travel 
satisfaction between seasons, but in regards to 
cyclist, a negative impact on the mood was 
found during sunshine, which they speculate 
could be related to uncomfortable feelings of 
warmth. This could possibly also be 
connected to higher air temperatures 
according to the authors (Ettema et al., 2017). 
On the same topic, a study found that weather 
preferences may play a role in how people are 
affected by the seasons. Thermal conditions 
were more likely to be perceived as colder by 
people who held summer as their favourite 
season, compared to people with other 
favourite seasons (Böcker et al., 2016). 
Moreover, a study by Shirgaokar & Nurul 
Habib (2018) found that men are twice as 

likely to be year-around cyclists than women. 
Plausibly related to this is that women overall 
tend to experience thermal conditions as 
colder during travel (Böcker et al., 2016). 
 Furthermore, experienced cyclists, as 
suggested by the riders age also increase the 
likelihood to cycle across all-seasons. 
Meanwhile, income appears to have no effect 
on the inclination to cycle whilst a small 
signal implies that people with a lower 
education less often are found to choose the 
bicycle as their mode of transportation 
(Shirgaokar & Nurul Habib, 2018). 
	
2.4 Spatial heterogeneity and Cycling 
 
Although the general weather impacts on 
cycling are well understood, much less is 
known about the spatial impact of weather. 
Only two studies have been identified with a 
focus on cycling, weather and spatial hetero-
geneity, but these studies were conducted on a 
regional scale (Helbich et al., 2014; Liu et al., 
2015). However, they did find evidence of 
spatial variation in relation to location. These 
two studies will be described in more detail 
shortly. Vandenbulcke et al. (2011) analysed 
cycling from a perspective of spatial hetero-
geneity at a regional scale but didn’t consider 
weather. At a city scale, both Feuillet et al. 
(2015) and Yang, Lu, Cherry, Liu, & Li 
(2017) studied cycling with spatial 
heterogeneity in mind but weather was yet 
again disregarded. Other studies of cycling 
and weather have made partial findings of 
spatial heterogeneity with regards to weather 
and cycling (Corcoran et al., 2014; Miranda-
Moreno & Nosal, 2011; Nosal & Miranda-
Moreno, 2014; Thomas et al., 2013; Tin Tin et 
al., 2012), but the focus of these studies was 
primarily on other relationships on a variety of 
scales. 
 Helbich, Böcker, & Dijst (2014) 
studied the Randstad region, the Netherlands, 
with a geographically weighted logit model 
and found that location highly matters in 
relation to weather. All weather parameters 
appeared to be more important in open and 
weather-exposed peripheral areas, whilst the 
effect in dense city centres were weaker 
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(Helbich et al., 2014). Liu, Susilo, & 
Karlström (2015) divided Sweden into 
southern, central and northern regions to find 
that weather affects cyclists in different 
regions differently during different seasons. 
Cyclists in central and southern Sweden were 
less aware of changes in temperature. Both 
precipitation and snow covered ground 
strongly discouraged cycling, which corres-
ponds with increases in public transportation 
and walking (Liu et al., 2015). Also in the 
Netherlands, Thomas, Jaarsma, & Tutert 
(2013) used long-term time series data to 
study the influence of weather onto cycling in 
the rural surroundings of two medium sized 
cities. With a prime focus on temporal 
fluctuations, they separated utilitarian and 
recreation cycle paths to find that these classes 
seem to experience weather conditions in a 
similar fashion, but the demand for 
recreational cycle facilities in response to 
weather revealed a downward trend compared 
to utilitarian routes (Thomas et al., 2013).  
 Only two articles that studied weather 
and cycling spatially were explicitly 
conducted within city limits. Both made 
partial findings that possibly can be attributed 
to spatial heterogeneity. With a novel flow-
co-map analysis, based on data from 
Brisbane’s Bicycle Sharing stations, Corcoran 
et al. (2014) found that, with regards to 
precipitation, relatively short trips continue to 
occur in certain parts of Brisbane, whilst a 
considerable system-wide reduction of longer 
trips are found during strong wind events in 
excess of 15,3 m/s. Considering five cycle 
counting stations in  Montreal, Canada, 
Miranda-Moreno & Nosal (2011) observed 
vastly different magnitudes of regression 
coefficients between stations in response to 
rain in the previous 3 hours. They found that 
the station near the central business district 
had much more demarked reductions in cycle 
frequencies compared to a station at the verge 
of a residential area. The change was -21.8% 
and -10.5% respectively. Miranda-Moreno 
and Nosal speculate that demographic 
differences between the two areas could 
explain the variation, and suggests that 
professionals may be less willing to cycle in 

the rain. Socio-economic characteristics have 
been showed to produce spatial heterogeneity 
(Feuillet et al. 2015). Nonetheless, the authors 
do also emphasize that built environment 
characteristics must be studied in more depth 
to make concrete findings of its effect on 
cycling under different weather conditions 
(Miranda-Moreno & Nosal, 2011). 
 How spatial variations in cycling 
relates to weather in different built 
environments have also been brought up by 
another study. Helbich et al. (2014) suggests, 
based on the regional cycling-weather 
patterns they found in Randstad, that spatially 
heterogenic cycling patterns in response 
weather could be linked to local micro-
climates within a city. A review (Böcker et al., 
2013a) also highlight the lack of knowledge 
concerning the role of microclimates in 
relation to weather and cycling. To get an idea 
of the different microclimates within a city, 
Local Climate Zones can be used as a logical 
division of the quantifiable urban structure. 
The LCZ classification scheme was 
developed by Stewart & Oke (2012) as a 
standardized technique to identify uniform 
areas where certain urban properties cluster 
spatially. Since weather does produce 
spatially heterogenic cycling flows at regional 
scales, it’s interesting to see whether these 
variations can be described with LCZs to 
replicate the results at a local city scale.  

3. Method 
 
The flow chart in figure 2, contains a summary 
of all taken steps. Basically, the methodology 
in this study relies on two paths.  First, the 
production of the station dataset which 
contains all cycling and weather variables. 
These variables have been processed, 
standardized and validated. Second, to capture 
the variety of urban characteristics found at 
different stations, an adaption of the Local 
Climate Zone (LCZ) classification scheme 
was used (Stewart & Oke, 2012). Stations 
with similar characteristics, i.e. those stations 
that fulfil the same LCZ criteria are then 
collapsed into a LCZ dataset. Both individual 
stations and stations aggregated by LCZ class 
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are correlated with the weather parameters. 
This study used the Pearson r product-
moment correlation coefficient, or for short, 
Pearson r, to measures the association 
between a pair of two random variables 
(Asuero, Sayago, & González, 2006).  
 Finally, the respective Pearson r 
values were mapped for each station and every 
weather parameter. The combined LCZ 
stations aren’t mapped, but instead their 
Pearson r values are standardized in a matrix 
table according to class. Taken together, the 
resulting maps and the matrix were used to 
analyse the spatial heterogenic effects of 
weather on cycling. 
 
 3.1 Dataset description 
 
3.1.1	Cycling	flow	data	
 
Data for cycling volumes were provided by 
Gothenburg’s Urban Transport Admin-

istration on a daily aggregate level for 
weekdays during the period 2016-01-01 to 
2018-09-07, i.e. the most recent extent at the 
onset of this study. Delimitation to weekdays 
was deemed appropriate since most commutes 
are undertaken during weekday. The cycle-
measurement stations in Gothenburg show 
distinct intraday and intraweek patterns of 
being primarily used by utilitarian commuters 
(Dozza, 2017). Commuters are also been 
regarded as less affected by weather (Thomas 
et al., 2013). Calendar events that occurred on 
weekdays were also excluded, resulting in 
what can be regarded as a dataset with a 
homogenous population. Furthermore, a daily 
level of analysis is enough to explore whether 
spatial heterogeneity exists at all.  
  The dataset consists of 24 094 866 
observations distributed over a total of 31 
counting stations. Some stations were 
temporary and others were affected by 
construction and hence lacked data records. 

Figure 2. Flow chart providing an overview of the methodology in this study. Light green boxes are associated with 
data processing whilst dark green boxes highlight analytical steps. 
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Other than that, no systematic data errors were 
found in the dataset. Out of the 31 counting 
stations, only 14 stations retain at least 90 
percent of the data for the period, but there are 
also a few stations have a counter in each 
direction. These twin-stations were 
aggregated and the original stations was 
discarded, yielding a total of 15 stations with 
17 172 663 observations. Finally, every 
station was coded and denoted by S followed 
by four numbers.  
 
3.1.2	Weather	Data	
 
To allow for normalizations of some 
variables, weather data was collected from the 
Swedish Meteorological and Hydrological 
Institute (SMHI) on an hourly basis for each 
weather parameter since 2008-01-01. The 
following weather parameters were collected 
from station 71420: precipitation, relative 
humidity, average wind speed, gust, and air 
temperature. Sunshine records were not 
available at this station and were therefore 
sampled from the nearby station 71415. In 
addition to this, as a measure of available 
daylight, sunrise and sunset times were 
generated for Gothenburg. This was done with 
a spreadsheet from NOAA 
(https://www.esrl.noaa.gov/gmd/grad/solcalc/
NOAA_Solar_Calculations_year.xls). This 
data was then used to calculate the fraction of 
sunshine on a given day, depending on the 
hours of available daylight, which normalized 
the sunshine variable and removed seasonal 
differences caused by daylight hours. 
 The weather parameters were 
aggregated to a daily level and processed to 
construct a total of 11 variables that coincide 
with the cycle data. However, many of these 
variables are only versions of the same 
weather parameter, wind has for example 4 
different constructs; wind speed, average 
maximum wind speed, average gust and 
maximum gustiness. Relative humidity will 
not be used either, as explained earlier. Hence, 
not all the 11 constructed variables will enter 
analysis.  
 

3.1.3	Local	Climate	Zone	&	Slope	data	
 
From the Urban Climate Research Group at 
the University of Gothenburg, a raster dataset 
with a 1-meter resolution per pixel was 
collected. The dataset spans the entire 
municipality of Gothenburg and contains 
seven classes of land cover fraction, and the 
heights of ground, buildings and vegetation. 
In addition to this and because the elevation of 
the City’s two major bridges wasn’t present in 
the dataset; a LIDAR dataset were therefore 
utilized to create rasters with a 1-meter 
resolution to cover the bridges geographical 
extent. This data was the finest available to 
this study but other sources have been used to 
successfully make an LCZ classification of an 
entire city, see for example Geletič & Lehnert 
(2016) or Unger, Lelovics, & Gál, (2014). 
 Furthermore, the dedicated cycle 
network as well as the coordinates for the 
cycle stations were provided by Gothenburg’s 
Urban Transport Administration. The 
locational data is necessary to quantify the 
urban properties in the Local Climate Zone 
scheme, applied in this study. 
 
3.2 Data normalization & processing 
 
3.2.1	Weather	&	transformations	
 
Most studies exclude variables either based on 
high correlations between independent 
variables or because of their insignificant 
contribution to their models (eg. the wind 
variable in Miranda-Moreno & Nosal, 2011). 
However, this study is interested in comparing 
the strength of correlations, and as Böcker et 
al.  (2013) points out, all weather factors are 
always co-varying with one another.  
 To determine which of the different 
versions of the 11 variable constructs were to 
be included in the forthcoming analysis, the 
underlying assumptions of the statistical test 
i.e. Pearson r, were used for guidance. These 
assumptions are: (1) a linear relationship 
exists; (2) joint distribution of a variable pair 
have a normal distribution; (3) variables are 
measured at a continuous scale; (4) each pair 
of variables are sampled independently 
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(Havlicek & Peterson, 1977). Regarding the 
latter, there are four weather categories that 
easily can be distinguished as being 
independent observations. These are 
temperature, precipitation, sunshine and wind 
speed. Next, we turn to look at normality. 
 Researchers has for a long time battled 
with the distributions of weather parameters. 
Depending on the foci of a given study, the 
natural variability that’s inherent to different 
weather phenomenon should be reproduced 
accurately (Ailliot, Allard, Monbet, & 
Naveau, 2015). How a variable is defined 
depends ultimately on the chosen analytical 
tool. With regards to joint distribution of 
normality, precipitation is an especially 
complex variable to define. Since most 
previous studies of weather and cycling have 
relied on a logistic model, they often opt for a 
simple binary o binominal coding of 
precipitation. This does however transform 
the variable into a discrete distribution, which 
makes the statistical significance suspicious in 
a Pearson r model. It is also important to point 
out that precipitation usually has a zero-
inflated exponential distribution, i.e. it’s 
extremely positively skewed to the right. By 
excluding days without a precipitation event, 
the distribution immediately starts to change 
towards an exponential transform of a 
Gaussian distribution. However, this means 
that we are only concerned with the 
association between cycling and when it’s 
raining. To work around this issue, a binary 
rain test were applied (section: 3.5.2).  
 So, a lot of power transformations 
were evaluated for every variable. None of the 
transformations were however, regarding 
precipitation, powerful enough to 
approximate normality. So, a rank-based 
inverse normal (RIN) transformation was 
applied. Given that we are interested in 
bivariate correlation, RIN transformations are 
appropriate since it manages the risk of 
making type I errors whilst  it maintains power 
and the level of measurement (Bishara & 
Hittner, 2012). The equation for the RIN 
transformation are, 

 
 

(1) 

! " = Φ%&
"' − 1/2

,
 

 
where "' is the ascending rank of x, the 
inverse normal cumulative distribution 
function is described by Φ%& and n is the 
sample size. Still, depending on the original 
kurtosis of the underlying distribution, a RIN 
transformation might not suffice (Bishara & 
Hittner, 2012). However, because all zero-
inflation records were excluded, the excess 
original kurtosis was significantly reduced, 
which produced a satisfying distribution after 
the application of the RIN transformation. It is 
however still important to keep in mind that 
the p-values can be suspect, but this is 
necessarily not an issue if they are highly 
significant. A table of all p-values are 
therefore provided in the appendix (table 6). 
 The RIN transformation was 
eventually applied to precipitation (mm), 
precipitation (length) as well as the sunshine  
fraction of daylight, hereon after just referred 
to as sunshine. The latter had a degree of a 
zero-inflation distribution but the excess 
kurtosis was much less than for precipitation, 
even when all events of zero sunshine were 
excluded. But since no other power trans-
formation was strong enough to produce a 
satisfying approximation of normality for 
sunshine, the RIN transformed variables were 
utilized.  
 The temperature variable was 
converted to a standardized normal 
distribution – or a z distribution, for two 
reasons. First, out of all the considered 
weather parameters, temperature is especially 
well-suited for this transformation due to its 
relatively predictable nature. Second, this 
transforming of temperature allows the 
variable to be interpreted as warmer or colder 
than normal on a continuous scale. The 
process used here is similar to Liu et al. 
(2014).  The z-scored temperature variable 
was generated with the following equation 
based on 10-years of data, let d denote a given 
day of the year, 
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(2) 
-./01(3) = 	

"6 − 78
98

 

 
where "6 is the unique observed value of 
temperature, 78 is the aggregate daily mean of 
a given day, and finally 98 is the standard 
deviation of the same aggregate day.  
 Out of all the wind speed variables, 
mean gustiness had the fit best to cycling. Just 
like the other variables, gustiness was tested 
with a series power transformations. Although 
the square root is used more extensively by 
researchers (Ailliot et al., 2015), the 
transformation with the best approximation of 
normality got selected, which was the natural 
logarithm. 
 
3.2.2	Meeting	the	Assumptions	
 
Even though Pearson’s correlation coefficient 
is robust against violations of assumptions 
(Havlicek & Peterson, 1977), for the sake of 
validity, the assumptions should be met. In 
addition to these assumptions, it is important 
to identify extreme outliers, because these can 
cause arbitrary de/inflations of the r values 
(Asuero et al., 2006). Therefore, after the 
transformations were applied, outliers were 
identified and rejected at ±1.5∙IQR. The 
number of valid n per weather parameter after 
all processing is found in table 1.  
 There are several ways to judge 
whether data meet the assumptions of a 
statistical test, depending on sample size, one 

could use a statistical test like the Shapiro-
Wilks test (, < 50) or a Kolmogorov-
Smirnov test (, > 50) to determine normality 
(Henderson, 2006). However, there’s an 
argument to be made that both these tests are 
too conservative at determining normality 
since both test may become unreliable for 
larger sample sizes e.g. n > 300 (Kim, 2013). 
Indeed, this is the case in this study since the 
smallest n = 486. 
 Therefore, this study makes use of a 
few less conservative methods to determine 
the joint normality assumption of Pearson’s r. 
First, the joint normality distribution of a 
covariate pair is influenced by the univariate 
distribution of each independent variable. The 
univariate normality of each independent 
variable can be determined by inspection of 
the median-mean ratio, and the standardized 
skewness and kurtosis statistics. Both the 
mean and the median are measures of central 
tendency. If the distribution is perfectly 
symmetrical, then the mean and median will 
equate to the same value. In table 1, this value 
is 0, which describes the ratio between the two 
statistics. All values fell within ±0.05 of 0, 
which indicates a symmetrical distribution. In 
addition to the mean-median ratio, the 
skewness and kurtosis statistics can be z-
scored to determine normality. Kim (2013) 
suggests that the distribution is non-normal if 
the z-score exceeds an absolute z-score value 
of 3.29 which corresponds to an alpha of 5 
percent. Only the z-scored kurtosis of the 
transformed precipitation length comes close 

Table 1 
Descriptive normality statistics of the transformed weather variables with outliers removed. 
Statistics -.@AB 

(z-scored) 
CDEFGH@@ 

(RIN) 
CDEFGHIJK 

(RIN) 
LMNO 
(LN) 

PM,NℎG,E/RASI6TUV 
(RIN) 

Valid n 981 487 486 972 787 
Mean 0.095 4.405 5.092 1.733 0.428 
Median 0.098 4.356 5.298 1.726 0.429 
Skewness -0.015 0.076 0.254 0.036 -0.044 
Std, Error of Skewness 0.078 0.111 0.111 0.078 0.087 
Kurtosis -0.301 -0.427 -0.673 -0.337 -0.184 
Std, Error of Kurtosis 0.156 0.221 0.221 0.157 0.174 
Mean-median ratio -0.036 0.011 -0.039 0.004 -0.003 
Z-score Skewness -0.192 0.685 2.288 0.462 -0.506 
Z-score Kurtosis -1.929 -1.932 -3.045 -2.146 -1.057 
NOTE: The mean-median ratio and z-scores for skewness and kurtosis are adjusted to show deviations from 0. 
Used transformations are shown in parenthesis. Bold text indicate that normality was met. 
 



 
 

19 

to this threshold, but is fine with a slight 
margin. Finally, we turn to the Q-Q plots to 
decide whether the weather variables have a 
univariate normal distribution (Fig. 3). A Q-Q 
plot represents a normal distribution by a 
straight line running through the data. If the 
data is normally distributed, then it should 
cluster around the centre line. What we are 
trying to avoid are is a clear S-shaped curve 
around the centre line, as well as too large 
departures from the centre line towards the tail 
ends. Judging from the Q-Q plots in figure 3, 
no distinct S-shapes are found. However, 
some variables do deviate from the centre line 
at one end. This indicates that the kurtosis 
deviates from normal. But if we refer to table 
1, we can determine from the kurtosis 
statistics that this deviation isn’t significant 
enough to reject the null hypothesis and 
hence, we can conclude that our data 
approximate univariate normality.  
 Although studies have found parabolic 
relationships between cycling and weather, 
the association can still be linear as shown by 
other studies. The scatter plots in figure 3 
show for the sake of space the aggregate mean 
of all stations together with each weather 
parameter. We can determine from the scatter 
plots that a correlation exists, which justifies 
the fitting of a linear model. The points are 

mostly found within an ellipsoid shape with a 
demarked linear function, which indicate that 
the joint distribution also doesn’t differ 
significantly from normal (Field, 2009). Also, 
note that precipitation length seems to be 
measured at an ordinal level. However, this is 
not the case but rather a result of the variable 
being measured in hours. Thus, the variable 
for duration of precipitation suffers from some 
discretization but it can still be regarded as a 
quantitative variable. 
 
3.2.3	Cycle	data	processing	
 
Since there are 15 stations in the dataset, the 
first part of processing was to get acquainted 
with the data to understand its natural 
variation. But first, cycling counts were 
matched to the corresponding weather 
variables of each day. On average, 651 days 
of the 981 days in the time series contain cycle 
counts due to the exclusion of holiday events 
and weekends. The cycle stations were 
graphically studied together with the different 
weather parameters. The expected covariance 
was confirmed by visual inspection, the cycle 
volume does, for example rise and fall 
together with temperature and cycle counts 
drop during precipitation events (Fig. 4). 
 However, another unrelated variation 

Figure 3. Scatter plots (upper row) with the standardized cycle counts on the y-axis and a weather index on the x-axis, fitted 
with a least square regression line. At the lower row are Q-Q plots for the five transformed weather parameters. 
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was revealed. During periods with no 
significant changes in weather, i.e. mostly 
neutral weather conditions, cycle counts 
seemed to display an intrinsic pattern of 
weekly variation. For example, during the two 
dry weeks in figure 4, the cycle count is higher 
mid-week.  The pattern also appears to vary 
between different months and seasons. This 
variance couldn’t possibly be related to 
weather, but was rather a phenomenon of 
cycle behaviour itself. To isolate these 
intrinsic cycling variations, the raw data was 
processed into ratios. The arithmetical means 
for each unique week were calculated, and 
averaged ratios were calculated for each 
weekday of each month. Let d denote day-of-
week, y = {1…n} is the n years of data and m 
is the month-of-year in equation, 

(3) 
W8,S,@ =

"8,S,@
"S,@

	 

 
where every unique cycle count ("8,S,@) is 
divided by their corresponding week-average 
("S,@), accumulated over the full time-series. 
Only full weeks of observation were permitted 
to avoid errors, hence, "S,@ is the weekly 
average for 5 days of cycle counts. The 
resulting, W8,S,@ is the weekday in the n-th 
week of the n-th month in the n-th year. The 
value of W8,S,@ enters the following equation, 

(4) 

YZ = W8,@ =
1

,
	 W8,S,@ 

 
where the correction factor is abbreviated CF 
whereof YZ = W8,@ is the average weekday 
ratio in n-th month of a standardized year, 
which is given by the W8,S,@ summed over the 
n of weeks in every month. In other words, we 
are left with the average ratio of each weekday 
– i.e. Monday thru Friday, in every 
normalized month of a normalized year. This 
processing removes most of the influence that 
weather may have and unveils cycling’s 
intrinsic variation. The result of this process 
found clear weekly pattern that must be 
addressed (Fig. 5). Most weeks show distinct 
patterns where Wednesdays and Fridays 

usually have lower cycle volumes than other 
weekdays. This is interesting in and of itself, 
since it appears that cyclists seem to have a 
preference to cycle on certain days, regardless 
of the predominant weather conditions in 
every month.  
 The raw cycle data were finally treated 
with the correction factor. This was done by 
dividing the observed cycle count value by the 
correction factor. This treatment reduced the 
cycle count whenever the correction factor 
was ≥1 and increased the volume whenever 
the correction factor was ≤ 1. With the 
correction factor applied, the treated cycle 
data was standardized into z-scores based on 
the following equation, 

(5) 

Y]F^E	3%_`a'J = 	
"6/YZ −	"bc

Nbc
 

 
where the subscript 	bc  denote that both the 
standard deviation and arithmetic sample 
mean encompasses one adjacent week in 
either direction of the centroid week where the 
corrected cycle count "6 is located. This is 
important, since we are concerned with 
weather-related anomalies in the cycle 
frequencies. Thus, a three-week span as the 
basis of standardization is wide enough to 
detect weather responses at the cycle-
measurement stations, but narrow enough to 
avoid most of the seasonal and annual 
anomalies. 
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Figure 4. An excerpt of the raw cycle and precipitation data. The figure exemplifies that an intrinsic weekly pattern of 
variation may exist. Furthermore, the figure shows that cycle counts respond to weather – in this case, a rain event. 

Figure 5. The normalized ratio of the intrinsic weekly pattern per month. 
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Table 2 
 Adapted Local Climate Zone classification scheme used by this study. Disregarded properties have their values dashed. 

   Geometric and land cover properties Radiative properties* 
Local 

Climate 
Zone 

Description Dominant 
feature** 

Sky 
view 
factor 

Aspect  
Ratio* 

Building 
surface 
fraction 

(%) 

Impervious 
surface 
fraction 

(%) 

Pervious 
surface 
fraction 

(%) 

Height of 
roughness 
elements
("#) 

Terrain 
roughness 
("%) 

Surface 
admittance 

Surface 
albedo 

Anthro-
pogenic 

heat 
output 

LCZ 1 Compact 
high-rise 

B
ui

lt 

0.2–0.4 - 40–60 40–60 < 10 > 25 8 - - - 

LCZ 2 Compact 
midrise 

0.3–0.6 - 40–70 30–50 < 20 10–25 6–7 - - - 

LCZ 3 Compact low-
rise 

0.2–0.6 - 40–70 20–50 < 30 3–10 6 - - - 

LCZ 4 Open high-
rise 

0.5–0.7 - 20–40 30–40 30–40 >25 7–8 - - - 

LCZ 5 Open midrise 0.5–0.8 - 20–40 30–50 20–40 10–25 5–6 - - - 
LCZ 6 Open low-rise 0.6–0.9 - 20–40 20–50 30–60 3–10 5–6 - - - 
LCZ 7 Lightweight 

low-rise 
0.2–0.5 - 60–90 < 20 <30 2–4 4–5 - - - 

LCZ 8 Large low-
rise 

>0.7 - 30–50 40–50 <20 3–10 5 - - - 

LCZ 9 Sparsely built > 0.8 - 10–20 < 20 60–80 3–10 5–6 - - - 
LCZ 10 Heavy 

industry 
0.6–0.9 - 20–30 20–40 40–50 5–15 5–6 - - - 

LCZ A Dense trees 

O
pe

nn
es

s 

<0.4 - <10 <10 >90 3–30 8 - - - 
LCZ B Scattered 

trees 
0.5–0.8 - <10 <10 >90 3–15 5–6 - - - 

LCZ C Bush, scrub 0.7–0.9 - <10 <10 >90 <2 4–5 - - - 
LCZ D Low plants >0.9 - <10 <10 >90 <1 3–4 - - - 
LCZ E Bare rock or 

paved 
>0.9 - <10 >90 <10 <0.25 1–2 - - - 

LCZ F Bare soil or 
sand 

>0.9 - <10 <10 >90 < 0.25 1–2 - - - 

LCZ G Water >0.9 - <10 <10 >90 – 1 - - - 
*Excluded properties.  
**Binary simplification of the 17 discrete Local Climate Zones. 
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3.3 Seasonal sub-sampling of Data 
 
With the weather and cycle data prepared, the 
last step was dividing the data into sub-
samples to identify seasonality in our 
correlations. A possibility is to divide the 
dataset into dynamically-defined seasons 
based on meteorological transitions. This 
would accurately represent the seasonality of 
weather but it may not reflect cyclist 
behaviour. Moreover, using meteorological 
seasons would produce a fluid division of the 
data and thus complicate replication studies in 
the future.  Thus, a better division of the 
dataset is instead along some culturally 
perceived seasons. People are habitual 
creatures that are driven, amongst other things 
by norms and attitudes towards cycling. 
People who cycle for more purposes than just 
their commute are more likely to cycle full-
time, regardless of distance (Heinen, Maat, & 
Wee, 2011). Thus, it is possible that people 
who only use their bicycle to commute, often 
make modal shifts over a year. For example, 
people might shift back to their bicycle only 
when they think spring has arrived, even if the 
winter was unusually mild and calm. This 
could partially explain the bimodality of the 
raw cycle volumes in figure 6.  
 Therefore, a good approximation of 
both variations in weather and cycling 
behaviour was to use the conventional 
divisions of seasons with a modification to 
summer. Sweden has a long tradition of what 
may be called the industrial vacation period. 
This usually occurs, starting from around 

week 26 and goes on for eight consecutive 
weeks to, about halfway through august. 
Hence, the industrial vacation period of eight 
weeks replaces summer, and we can refer to 
this season as industrial summer. This 
effectively extends spring season forward to 
make up the gap and the fall season were 
extended backwards for the same reason (Fig. 
6). The distribution of cyclists across all 
seasons were calculated per station, both how 
cyclist distribute within every station and how 
the distribute between stations and across the 
seasons. These distributions are presented in 
the results. 
	
3.4 Adaption of the Local Climate Zone 
system 
 
The original Local Climate Zone (LCZ) 
system is divided into 10 types of built 
environment (denoted 1-10) and 7 land cover 
types (denoted A-G). The system is based on 
the principle that certain characteristics of the 
urban environment tend to cluster in certain 
parts of a city, creating zones of relative 
uniform character (Oke et al., 2017). 
Furthermore, these zones are known to 
influence the microclimate within them, for 
example: temperature, moisture or wind 
speeds. It is also possible to combine different 
LCZs to better describe an urban environment 
(Stewart & Oke, 2012). To classify these 
Local Climate Zones, specific criterion of the 
10 properties in table 2 have to be met, but 
according to the systems’ developers (Stewart 
& Oke, 2012), the classification scheme is 
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Figure 6. The raw cycle data compressed to a year. The correlational seasonality is sub-sampled according to the seasons 
shown in the plot, where summer is replaced by the industrial vacation period and both spring and fall is somewhat extended. 
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inherently generic and therefore seldom 
captures and classifies the LCZs of any given 
city without some adjustments.  
 Given that this study is concerned with 
weather impacts on cyclists, some major 
adaptations are required. First, since cyclists’ 
ride on a cycleway through the built 
environment, it is not meaningful to move too 
far in a perpendicular direction from the road. 
Rather, it’s more important to encompass the 
whole road segment that is connected to the 
point where the station is located. Therefore, 
we can disregard the radiative properties due 
to distance issues, because a minimum radius 
of 200-meters is suggested, and because of 
how the radiate properties flow across a 
continuous urban surface (Stewart & Oke, 
2012). Instead, a perpendicular minimum 
distance of 30m in either direction of the road 
is considered, which for an urban canyon can 
be regarded as microclimatic (Oke et al., 
2017, p. 19). Moreover, the microclimatic 
scale was also believed to have an effect on 
cyclists in Helbich, Böcker, & Dijst (2014). 
So, this effectively means that the road has a 
60m buffer. Other adjustments to the 
classification scheme were to exclude the 
aspect ratio. This is also known as the 
height/width ratio but, due to difficulties of 
quantification, this property had to be 
excluded. Also, the sky view factor (SVF) 
measures approximately the same aspect of 
the built environment. The final adjustment 
was to add an overarching category to the 
LCZ system since the excluded properties 
were expected to cause every station to meet 
the criterion of more LCZ classes than could 
be combined in a meaningful way. The added 
overarching class is called the dominant 
feature. No adjustments were made to the 
generic LCZ system regrading property 
values, henceforth, table 2 contain a 
replication of the original system along with 
the modifications made to the classification 
scheme by this study.  
  
3.4.1	LCZ	Data	processing	
 
The quantification of the geometric properties 
was done with the QGIS toolkit UMEP 

(Universal Multi-Scale Environmental 
Predictor) and vector data analysis. The 
calculation of sky view factor is immensely 
cumbersome to compute as it can take several 
days to complete for larger areas. Therefore, 
the stations were used as points with a 30-
meter radius buffer for the SVF calculation. 
The tool calculates how much of the sky that 
is visible from every pixel. After the removal 
of SVF values at rooftops, the resulting mean 
of the SVF value per station were added to the 
classification scheme. The height of 
roughness elements ("#) and the terrain 
roughness ("%) also had to be calculated from 
the station points. The roughness 
quantification was done with the of rule-of-
thumb approach to determine packing density 
of roughness features within the buffer (Oke 
et al., 2017; Stewart & Oke, 2012). 
 To quantify the geometric land cover 
properties, the corresponding road segment 
connected to each station were cut at major 
intersection of the cycle network where it is 
possible for cyclists to change route. A 30-
meter buffer were cast around the road 
segment (Fig. 7) and the land cover area 
occupied by buildings, impervious- and 
pervious surfaces were calculated within the 
buffered-cycle ways. The fraction covered by 
these properties was then calculated as a 
function of the total area covered by the whole 
buffer.  
 
3.4.2	Classification:	Dominant	Feature	Class	
 
With all properties added to a spreadsheet, 
every station got scored by how many 
property criterion per LCZ they fulfilled in 
table 2. Hence, all LCZ class outputs that a 
station met the criterion for are presented in 
table 3. As expected, a few stations met the 
criteria for two or more Local Climate Zones 
due to the unmodified original values and the 
exclusion of four properties. This was 
however not a problem since we are interested 
in the dominant feature class. This meant that 
every station was weighed by how many LCZ 
classes they obtained. If all or most obtained 
LCZ classes fell into the LCZs 1–10, it was 
classified as Built. If an equal amount of LCZs 
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are obtained by a station, its classified as 
Mixed and finally, if the weight fell on the 
LCZ A–G classes, the stations was classified 
as characterized by Openness (table 3). 
 
3.4.3	Classification:	Slope	Character	
		
In addition to the LCZ system, an important 
property for cycling were added to the 
classification, namely topography. A review 
of cycling identifies that hilliness have a 
negative impact on cycling, but for more 
experienced riders, presence of slopes can be 
an attractive attribute (Heinen et al., 2010). 
 Based on the cycleway segments 
connected to every station, the slope was 
calculated through a topographic profile 
where each line of the cycleway segment is 
placed upon the elevation model. Thereafter, 
the degree of slope is calculated according to 
changes in height between every pixel where 
the cycleway segment intersects the elevation 
model. Due to the high resolution of the 
elevation model, some pixels produced 
extremely high slope values. This was 
probably caused by the two datasets being 

inaccurately overlapped in some areas. 
Therefore, the resulting slope values in the 
topographic profile was purged from outliers 
at ±IQR∙1,5. 
 To determine the slope characteristics 
of each segment, the standard deviation 
(sigma) of slopes was used. This is 
meaningful since it captures whether the 
terrain is relatively homogenous, i.e. flat or 
heterogeneous i.e. hilly or steep based on the 
value of the standard deviation. For example, 
a sigma value of 0 would indicate perfect 
flatness. To the left in figure 7, the 
topographic profile for the flattest station 
(S6010) and the steepest station (S6940) are 
shown. The figure tells us that we expect a 
lower standard deviation at S6010 and a 
higher at S6940, and their respective sigma 
values were in fact 0.507 and 1.773.  
 The stations then had their slope 
character classified based on their relation to 
each other. The stations with the lowest 25 
percent of sigma values got classified as Flat, 
the middle 50 percent was classified as Hilly, 
whilst the highest 25 percent was classified as 
Steep.  Finally, the dominant feature class was  

Figure 7. Left: the topographical profile of the slope character of the flattest and steepest stations in the dataset.  
 Right: the cycleway segments overlaid on top of the elevation model, used to produce the topographical profiles. In 
 addition, the extent of the buffer used to calculate some of the LCZ properties are shown in a transparent red colour. 
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combined with the slope character of the 
cycleway segment. The classified stations 
were mapped and is presented in figure 9 of 
the results. 
 
3.5 Data analysis 
 
3.5.1	Bivariate	Correlation		
 
The bivariate correlation Pearson’s r seeks to 
determine the degree of association between a 
pair of two variables. The degree of 
association is given by r which assumes a 
value between -1 and 1. If either of these 
values are reported, then the association 
between a pair of variables is either perfectly 
negative or perfectly positive as all data 
congregate at a line. The null hypothesis of 
Pearson’s r is a correlation coefficient of 0. In 
other words, if a pair of variables obtains an r 
value of 0, then the variables have no 
association at all. The coefficient is thereafter 

tested for statistical significance, in this study, 
an alpha (() of 5 percent was selected, i.e. 
p=0.05 or less must be obtained for a 
correlation to be significant.  
 In a previous section, we determined 
that the assumptions of Pearson’s r were 
mostly met. Regarding normality, basic 
moments of the variable distributions did not 
differ significantly from normal. This was 
done, amongst other things by transforming 
the variables. Therefore, it is important to 
emphasize that Pearson’s r is an invariant 
estimator (Rodgers & Nicewander, 1988), i.e. 
the association can be interpreted as if the 
variables were untransformed since the 
equation of Pearson’s r in essence is a 
function the mean and standard deviation, 
which acts to equalize the units of 
measurement by adjusting the scale of the 
variables (Rodgers & Nicewander, 1988). 
However, some weather parameters and 
especially temperature is serially correlated, 
i.e. past values of the variable can be used to 

Table 3 
Final classification of the stations according to the modified LCZ classification scheme. 
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NOTE: Every x signals that the station has met the criterion for this Local Climate Zone. 
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predict future temperature values. This indeed 
violates some assumptions of the significance 
test of Pearson r which is important to bear in 
mind.  
 Apart from the importance of meeting 
the assumptions underlying Pearson’s r, there 
are other guidelines to consider. In this study, 
we are using the correlation coefficient to 
perform multiple tests which entails 
justifications of the statistical significance of 
the test. First, an adjustment of the alpha value 
must be considered to avoid type I errors 
(Onwuegbuzie, 1999). The Bonferroni 
correction is commonly used to do this. 
However, making the adjustment will inflate 
the risk of making type II errors. The 
exploratory design of this study does not 
justify the application of an adjustment to the 
alpha value (Armstrong, 2014).  
 Second, since the sample size can 
cause virtually any correlation to become 
significant as ) → ∞, Daniel (1998) suggests 
that the slope of r should be considered 
alongside the p-value. A table of critical r 
values for ( = 5	% is provided in Daniel 
(1998). For example, during the sub-sampled 
season referred to as industrial summer, 
precipitation events average ) ≈ 50 which 
enlists a critical absolute value of 2 ≥ .276. 
By comparison, the average of the full 
samples, i.e. the total effect, is ) ≈ 500 and 
has a critical value of 2 ≥ .088. This slope 
criterion for statistical significance was kept, 
thus, every Pearson coefficient had their 
statistical significance evaluated based on 
both their p-value as well as the critical slope 
value. 
 
3.5.2	Binary	rain	test	
 
Since both precipitation variables were treated 
in a manner that removed zero-inflation, an 
additional test is required to analyse the 
impact of wet days, compared to dry days. 
This was done by converting the fraction of 
variance explained by the binary precipitation 
value to a pseudo equivalent r value. Two 
residuals were calculated for every station. 
One conditional that disregarded precipitation 
events; 

(6) 
9):;)<=>=;)?@ =

A

A
	 

 
and one conditional that accounted for 
precipitation events. 

(7) 

B;)<=>=;)?@ =
ACDE

ACDE
+

AGHI

AGHI
 

 
The variance (JK) of both residuals was 
calculated and inserted into the final equation, 
 

(8) 
LMNO<;	2 = (PK) =

9):;)<=>=;)?@ − B;)<=>=;)?@

9):;)<=>=;)?@
 

 
where the equivalent r was given by the 
square root of the explained variance. This r 
value was also sign corrected to reflect the 
negative impact of days with a precipitation 
event on cycling. 

4. Results 
 
4.1 Orientation 
 
Because no previous studies were found to 
have developed, at a local scale, a robust 
framework for determination of spatial 
heterogeneity in cycling volumes under 
different weather conditions, this study will 
lay the foundation for such an endeavour.  
This framework is dynamic, designed for 
local analyses and makes interpretations 
straightforward. The solution is twofold.  
 First, most statistical tests aren’t 
designed to be geographical and thus, the 
location of the data is usually not relevant to 
the test (Harris & Jarvis, 2014). The statistical 
test Pearson r is indeed not designed with 
geography in mind, yet mapping the 
coefficients given in r per cycle-measurement 
station renders them spatial and allows for 
patterns to be explored. This  approach – i.e. 
explorative GIS analysis, relies on a visual 
model, where spatial patterns are studied 
through an interpretive mode of analysis 
(Aitken & Kwan, 2010). Second, the 
coefficients are quantitatively evaluated in a 
matrix to emphasize where the effects of 
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weather are either the strongest or weakest. 
More detail of how this was done is presented 
in a subsequent section (see 4.4). 
 The results are introduced in three 
parts. First, some descriptive statistics of the 
global station averages are presented, 
followed by an explorative GIS analysis of the 
total weather impact for the whole time-series 
(Fig. 8) Along with these results, the results of 
the modified Local Climate Zone (LCZ) 
classification is presented (Fig. 9) as well as 
how cycle volumes distribute across seasons, 
both within (Fig. 10) and between stations 
(Fig. 11). Second, the results of the sub-
sampled seasonal maps are presented for 
every weather index (Fig. 12-16). These maps 
are also explored for spatial heterogeneity 
with the framework. Lastly, the strength of 
spatial heterogeneity in different urban 
environments is presented in a matrix (table 
5), along with all statistically significant 
coefficients. This is the last part of the 
heterogeneity framework and allows for a 
quantitative assessment of sensitivity to 
spatial heterogeneity occurrences. Inspiration 
to this approach was found in Mathisen, 
Annema, & Kroesen (2015). The results are 
presented in accordance with the research 
questions, reproduced below:  
 

§ Do spatially separated cycle-
measurement stations produce a 
variety of responses to weather? 

§ If so, how is this variability related to 
the urban environment? 

§ Also, how alike are the response of 
stations to weather when their 
surrounding environments are similar?	

  
4.2 Part I: Overall & Total effects 
 
4.2.1	Main	findings	of	Total	Heterogeneity	
 
The descriptive statistics for the global station 
average and the results of the binary rain test 
are presented in table 4. Regarding the total 
effect, the global r of all stations reveal that 
the duration of precipitation had the strongest 
absolute correlation (r = -0.36) and gustiness 
had the weakest (-.24). Furthermore, sunshine 

had marginally more positive impact on 
cycling than temperature. The range statistic, 
i.e. the difference between the minimum and 
maximum coefficients can be regarded as an 
indicator that spatial heterogeneity could be 
present. Looking at the range, temperature had 
the most universal effect on cycling due to its 
relatively narrow range (~0.07) whilst 
sunshine had the widest range (~0.13). 
However, apart from temperature, all weather 
parameters had a range statistic greater than 
~0.10. The global stations averages in regards 
to the season will also be used for context in a 
part II. 
 Turning to the results of the binary rain 
test in table 4, the equivalent r showed that 
Badhusgatan (S6051) had the lowest 
reduction in cycle volumes (-.17) between dry 
and wet days, whereas Säröleden (S6042) had 
the greatest reduction (-.37) whenever a 
precipitation event occurred. However, the 
average equivalent r value of -.28 are lower 
than the obtained global r values of the other 
precipitation indices. Recall that both amount 
and duration of precipitation only considered 
cycling frequencies during days with 
precipitation events. Hence, these findings 
regarding precipitation unveil that the 
character of precipitation, i.e. how much it 
rains or length of rains had more association 
to cycling than the binary occurrence of a 
precipitation event in and of itself. Next, we 
turn to the maps. 
 
4.2.2	Cartographic	exploration:	Total	effect		
 
To aid the explorative GIS analysis, the rose-
styled coefficients were overlaid with a ring 
legend. To find appropriate scaling of these 
rings, the absolute r values of all coefficients 
were used to derive three percentile rings that 
approximate the recommended thresholds for 
small ( 2 ≥ .1), medium ( 2 ≥ .3) and large 
( 2 ≥ .5) effect sizes in behavioural sciences 
(Cohen, 1992), where cycling as a phenom-
enon arguably resides. The size of the whole 
circle corresponds to the obtained maximum 
coefficient value.  
 Overall, apart from for gustiness, most 
coefficients of the total time-series approx-
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imated a moderate correlation onto cycling 
since most coefficients values are found 
around the median ( . 33 ) ring (Fig. 8). 
Concerning spatial patterns, the gust variable 
is the only weather parameter that clearly 
displays a negative association with demarked 
spatial variance. Its coefficients approximate 
a moderate correlation at stations S6002, 
S6005, S6935 and S6940. All stations except 
S6002 are located near the Göta älv and the 
latter two stations are found at the two major 
bridges.  
 Stations S6002 and S6042 experience 
the most positive influence of sunshine, both 
stations experienced a substantial moderate 
correlation (S6002 r = +.39; S6042 r = +.41). 
The nearby station at Långedragsvägen 
(S6027) approximated the same spatial effect 
from sunshine (+.38). The other weather 
parameters had less pronounced spatial 
patterns. Duration of precipitation had the 

most negative correlations on cycling overall, 
except for S6027 and S6940 whose 
coefficients were below the moderate strength 
threshold. Compared to duration, the effect of 
precipitation amount was more constant. A 
slightly more negative association to 
precipitation appeared to be concentrated to 
central, inland stations. No obvious spatial 
pattern was identified in relation to 
temperature. 
 
4.2.2	Dominant	features	&	Slope	
characteristics	
 
The results from the modified Local Climate 
Zone classification (section 3.4) are presented 
in figure 9. The dominant feature and slope 
characteristic is shown per station. Starting 
with the roughness characteristics, the most 
common class are Built/Hilly (n = 4), and in 
total n = 6 stations were classified as Built and 

Table 4 
Left: Descriptive statistics of the aggregated Global r, given by all 15 stations. 
Right: The pseudo equivalent r from the Binary rain test (section 3.5.2). 

Global Station Averages Binary Rain test 

Weather  Mean Std. Min Max Range Station Equivalent 
r 

U?VWX 

To
ta

l 

0.32 0.02 0.29 0.36 0.07 S6002 -0.31 
YO)Mℎ=)N/CWE\]^#I 0.34 0.04 0.27 0.41 0.13 S6003 -0.30 

_2N:=LVV -0.33 0.04 -0.26 -0.38 0.11 S6005 -0.26 
_2N:=L\H` -0.36 0.03 -0.3 -0.42 0.11 S6006 -0.29 
aOM>VHW` -0.24 0.03 -0.17 -0.29 0.12 S6008 -0.29 
U?VWX 

W
in

te
r 

0.11 0.03 0.06 0.18 0.13 S6010 -0.29 
YO)Mℎ=)N/CWE\]^#I 0.04 0.05 -0.05 0.15 0.19 S6025 -0.24 

_2N:=LVV -0.31 0.04 -0.24 -0.39 0.15 S6027 -0.35 
_2N:=L\H` -0.36 0.06 -0.28 -0.52 0.24 S6028 -0.27 
aOM>VHW` -0.13 0.04 -0.05 -0.21 0.16 S6042 -0.37 
U?VWX 

Sp
rin

g 

0.45 0.03 0.41 0.52 0.11 S6046 -0.26 
YO)Mℎ=)N/CWE\]^#I 0.49 0.04 0.42 0.56 0.14 S6049 -0.31 

_2N:=LVV -0.37 0.04 -0.30 -0.43 0.13 S6051 -0.17 
_2N:=L\H` -0.44 0.04 -0.38 -0.50 0.12 S6940 -0.27 
aOM>VHW` -0.26 0.04 -0.19 -0.32 0.14 S6935 -0.28 
U?VWX 

In
du

st
ry

 0.19 0.06 0.09 0.30 0.20 Mean -0.28 
YO)Mℎ=)N/CWE\]^#I 0.38 0.11 0.26 0.60 0.34 Std. 0.05 

_2N:=LVV -0.45 0.06 -0.34 -0.54 0.20 Min -0.37 
_2N:=L\H` -0.40 0.09 -0.16 -0.49 0.34 Max -0.17 
aOM>VHW` -0.29 0.08 -0.16 -0.38 0.23 Range 0.20 
U?VWX 

Fa
ll 

0.37 0.03 0.30 0.41 0.11   
YO)Mℎ=)N/CWE\]^#I 0.30 0.03 0.25 0.35 0.10   

_2N:=LVV -0.29 0.06 -0.18 -0.37 0.20   
_2N:=L\H` -0.37 0.07 -0.21 -0.47 0.27   
aOM>VHW` -0.31 0.03 -0.27 -0.39 0.12   
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n = 7 as Hilly. The spatial distribution of these 
are varied, nonetheless most Built classes 
were found in or near the city centre, apart 
from S6003 and S6049 to the east, north-east. 
Out of the n = 5 Open stations, all – except 
S6042 in the south – run alongside 
waterbodies. Additional attention should be 
steered towards the southward stations. S6002 
runs north into the built city and connects in 
the south to the map insert of S6042. These 
stations had the longest cycleway segments 
and had, from the location of S6002 and 
downwards, a relatively flat and open 
environment. Regarding Dag Hammarskjöld 
(S6002), the urban environment became 
increasingly more built in the direction of the 
city centre, which is reflected by its Mixed 
classification. This characteristic of partial 
built/openness is reflected in every station 
with a Mixed class. 
 The terrain character show that the city 
centre is mostly classified as Hilly. Out of the 
n = 4 Flat stations, two are found near 
Mölndalsån just east of the city centre and the 
remaining two corresponds to stations S6002 
and S6042 in the south. The steepest (n = 4) 
stations are the cities two major bridges, 
Älvsborgsbrons neighbouring station S6027 
and S6025 which, is located outside the 
Department of Earth Science at the University 
of Gothenburg.  
 
4.2.3	Cyclists’	seasonal	distribution	
 
The distribution of cyclists between stations, 
(Fig. 11), reveal the usage of every station in 
this study during the considered time series. 
The height of a column in the histograms 
refers to how large a share of the total cycle 
volume in the city that station had during a 
given season. Station S6006 at Vasagatan had 
the largest usage by cyclists and other 
frequently used stations are found near this 
station. Note also that S6006 and station 
S6008 east of Vasagatan also appears to 
capture a larger share of cyclists during winter 
seasons. Even though the summer season was 
shortened to only encompass the industrial 
vacation period, the results show that an 
inverse pattern can be discerned where 

stations farther away from the city centre 
capture a larger fraction of the total cycle 
volume in the summer. 
 Figure 10 considers the seasonal 
distribution within every station. Overall, a 
clear pattern emerges regardless of where 
stations are located. On average, the volume 
of winter cyclist are around 10 percent of the 
total volume per station. Furthermore, a 
majority of all stations had slightly more 
cyclist in spring and fall, albeit the industrial 
summer volume is quite similar in relation to 
these seasons. However, station S6042 clearly 
deviates from this pattern as the station have a 
pronounced bump during its industrial 
summer. Station S6935 at the northern bridge, 
as well as S6051 just south of it also deviates 
slightly since more cyclists are concentrated 
to spring at these locations. 
 Indeed, if the seasons were kept at the 
conventional length of three months each, it is 
likely that the minor difference between 
summer and its adjacent seasons would 
dissipate. However, the three southwestern 
stations would still retain a larger volume 
during summer since figure 6 show that the 
first modal peak starts to decrease in June and 
the second modal peak occurs sometime near 
the end of August.  Nonetheless, the relative 
length of the seasons used in this study were 
necessary to obtain correlations that reflect 
both relatively homogenous periods of cycle 
volumes as well as climatological conditions. 
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Figure 8. Total weather effects per cycle-measurement station. The coefficients encompass the whole time-series. The ring legend reflects a small correlation at 
|. 13| a moderate correlation at |. 33|and a large correlation at |. 46|. Data source: Lantmäteriet (GSD-Terrängkartan, 2014), Urban Transport Administration 
(Cykelmätstationer, 2017; Cykelbana, n.d.), Urban Climate Group, University of Gothenburg (DEM). Projection: SWEREF 99 12 00. 
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Cycleway segment 

Figure 9. Dominant feature characteristics per station, obtained through the modified Local Climate Zone system (see section 3.4). Data source: Lantmäteriet 
(GSD-Terrängkartan, 2014), Urban Transport Administration (Cykelmätstationer, 2017; Cykelbana, n.d.), Urban Climate Group, University of Gothenburg 
(DEM). Projection: SWEREF 99 12 00. 
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Figure 10. Seasonal distribution of cyclists within every station. Height of a histogram column represents the seasonal share. Data source: Lantmäteriet (GSD-
Terrängkartan, 2014), Urban Transport Administration (Cykelmätstationer, 2017; Cykelbana, n.d.), Urban Climate Group, University of Gothenburg (DEM). 
Projection: SWEREF 99 12 00. 



 
 

34 

 
 

Figure 11. Distribution of the total cycle volume between stations. Height of a histogram column represents the seasonal share. Data source: Lantmäteriet (GSD-
Terrängkartan, 2014), Urban Transport Administration (Cykelmätstationer, 2017; Cykelbana, n.d.), Urban Climate Group, University of Gothenburg (DEM). 
Projection: SWEREF 99 12 00. 
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4.3 Part II: Seasonal Coefficients in detail 
 
In this section, the mapped coefficients are 
presented per weather index over the seasons. 
Focus of these results are on stations with 
spatial variance in contrast to the global r 
averages and other levels of aggregation, e.g. 
dominant Local Climate Zone features or 
slope characteristic (appendix: table 7).  
 
4.3.1	Seasonality	map:	Temperature 
 
The global average r of temperature had the 
least impact on cycling in winter (r = +.11) 
and the greatest impact on cycling in spring 
(+.45), which is indicative of a large effect 
(table 4). In fall, a stable moderate correlation 
is obtained (+.37), whilst the global r for the 
industrial summer average had a small 
correlational strength. However, the range of 
coefficients are about ~.2 for summer, while 
the range for other seasons average ~.12 
between stations. This is useful guidance for 
the exploration heterogeneity in the mapped 
coefficients.  
 A couple of stations revealed 
correlations well above the global r during the 
industrial summer (Fig. 12). The r values for 
stations S6027, S6028 and S6042 had 
correlations that hovers close to the median 
ring, which suggests a moderate (.33) yet 
positive association. Two are western stations 
en-route to the ocean while S6028 connects 
Järntorget with downtown. Moreover, station 
S6002, located near the big park Slottskogen 
with its path running north into the city centre 
and south towards S6042 had a r of +.24, just 
shy of the other protruding stations during 
industrial summer. Regarding temperature 
and the other seasons, no obvious patterns of 
spatial heterogeneity were identified. For 
example, during fall, variation between 
stations is hard to find since most coefficients 
are evenly spread within a narrow range. 
Apart from the few exceptions mentioned 
earlier, the impact of temperature in winter 
and industrial summer barely reach the 
threshold for a small (±.13) correlation 
strength. 
 

4.3.2	Seasonality	map:	Sunshine	
 
Sunshine had some of the strongest 
correlation coefficients (table 4). Overall, 
spring and industrial summer experienced the 
most benefit from sunshine with most values 
of r approximating a large (r = +.46) effect 
from sunshine. The greatest r value in this 
study was obtained at S6027 (+.60) during the 
industrial summer. In stark contrast, the global 
r for winter was +.04 which yield no effect at 
all. Only cyclists at Götaälvbron (S6935) 
appeared to experience a small (+.15) positive 
effect from sunshine during winter (Fig. 13). 
Concerning the range of r for all other 
seasons, spring and fall had range values of 
~.14 and ~.10 respectively, indicating a small 
presence of spatial heterogeneity (table 4). 
Industrial summer had however a coefficient 
range of ~.34. Exploring the mapped 
coefficients confirms demarked patterns of 
spatial heterogeneity in this season (Fig. 13). 
These spatial variations are in summer quite 
similar to those of temperature, apart from 
those west, southwestern stations previously 
mentioned, S6003 in the eastern city also 
stands out. This station is the closest to the 
vast natural environment at the city's outskirts, 
a popular place with trails for exercise and 
lakes for swimming and barbecue.  
 In fall, except for the major bridges 
(average of +.27), there is a weak signal that 
all peripheral stations have a slightly more 
moderate impact from sunshine. For example, 
stations S6006 and S6025 in the dense city 
centre had a substantial yet small effect at 
+.25, whilst most stations further away from 
downtown on average approximate a 
moderate (+.33) benefit. In fact, most 
peripheral stations with a slightly higher 
impact from sunshine during fall are either 
classified as Open or Mixed.  
 
4.3.3	Seasonality	map:	Precipitation	(mm) 
 
Apart from stations S6027 and S6940, the 
negative coefficients for amount of 
precipitation appeared to be quite alike when 
stations are compared per season (Fig. 14). 
Most stations approximate a moderate (r = -
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.33) to large (-.46) impact from the amount of 
precipitation over a year. The most negative 
coefficient was obtained at S6028 with a 
strength of -.54 which corresponds to a large 
effect. According to table 4, the global r 
showed that fall (-.29) is the season with least 
impact from precipitation, closely followed by 
winter (-.31). In spring, a substantial moderate 
correlation was found at global r = -.37 and 
industrial summer approximated a large (-.45) 
negative effect from the amount of 
precipitation. 
 The range of coefficients were wide 
enough across all seasons to indicate some 
spatial heterogeneity (table 4). However, 
obvious spatial deviance was only observed at 
station S6027 and S6940 whose correlation 
was substantial yet small at about -.18 during 
fall (Fig. 14). The former also had a higher 
initial reduction of cyclists according the 
equivalent r (table 4). Upon closer inspection, 
the stations revealed a consistent pattern in 
relation to their dominant feature class. If all 
stations with a Built classification are 
aggregated, regardless of slope character, they 
had a correlational strength that was 
marginally higher in comparison with other 
dominant classes (appendix: table 7). 
 
4.3.4	Seasonality	map:	Precipitation	(length)	
 
For the most part, the duration of precipitation 
revealed a similar pattern as that of amount, 
but with one important difference, i.e. the 
correlation coefficients are more pronounced. 
According to the global r, only the industrial 
summer was exempt from this pattern and 
hence was more affected by the amount rather 
than the duration (table 4). Some noteworthy 
differences are that the steepest bridge 
(S6935) only had a weak (r = -.16) impact of 
rain duration during industrial summer (Fig. 
15 compared to the approximately large 
impact of the global r (table 4). Whereas 
global r obtained a moderate impact during 
winter, station S6051 near the river had a 
substantial large correlation of -.52 in winter. 
 The previously observed pattern for 
dominant LCZ features was present, but for 
duration of precipitation another interesting 

finding was made. If instead the coefficients 
are aggregated based on centre versus 
periphery, an average increase in negative r 
values are revealed for the city centre. During 
the industrial summer and fall, the negative 
increase is about ~.09. Furthermore, during 
the same seasons, aggregation on topography 
revealed, that Flat and Hilly stations are also 
more affected by the duration of precipitation 
(appendix: table 7). With regards to spatial 
heterogeneity, these results suggest that 
packing density of urban facilities are 
important to the decline of cyclists during 
periods of lengthy precipitation events in the 
city centre. 
 
4.3.5	Seasonality	map:	Gusty	winds	
 
The wind speed results had, in comparison to 
the other weather parameters, less powerful 
coefficients. The strongest association 
between cycling frequencies and gustiness 
were found for the industrial summer and fall, 
with a global r of -.29 and -.31 respectively 
(table 4). Spring had a global average of -.26 
whilst winter had the weakest global impact at 
-.13 in strength. Even though gustiness had 
less powerful coefficients in relation to other 
weather parameters, gust is the variable that 
unveil the most distinct pattern of spatial 
heterogeneity across the seasons (Fig. 16).  
 Stations of the Built class are 
compared to Open class stations clearly less 
affected by the gust speed. The Open stations 
S6005, S6935 and S6940 near the river all 
have coefficients that approximate a moderate 
(r = -.33) impact from gusts. Furthermore, 
open and mixed inland stations located farther 
away from downtown also have values of r 
that almost reach a moderate (-.33) impact in 
spring and summer (Fig. 16). Although the 
impact is more pronounced for these 
peripheral stations, those with a Built 
classification like S6003 and S6049 in the east 
had a slightly weaker association. Another 
interesting finding was that gusty winds 
during fall had approximately constant 
correlations across all stations, which indicate 
that strong winds is a city-wide issue in fall.
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Figure 12. Seasonal effects of temperature. All coefficients are positive. Correlations obtained with the sub-sampled time-series data (section 3.3). The ring legend 
reflects a small correlation at |. 13| a moderate correlation at |. 33|and a large correlation at |. 46|. Data source: Lantmäteriet (GSD-Terrängkartan, 2014), 
Urban Transport Administration (Cykelmätstationer, 2017; Cykelbana, n.d.), Urban Climate Group, University of Gothenburg (DEM). Projection: SWEREF 99 
12 00. 
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Figure 13. Seasonal effects of sunshine fraction of daylight. All coefficients are positive. Correlations obtained with the sub-sampled time-series data (section 
3.3). The ring legend reflects a small correlation at |. 13| a moderate correlation at |. 33| and a large correlation at |. 46|. Data source: Lantmäteriet (GSD-
Terrängkartan, 2014), Urban Transport Administration (Cykelmätstationer, 2017; Cykelbana, n.d.), Urban Climate Group, University of Gothenburg (DEM). 
Projection: SWEREF 99 12 00. 
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Figure 14. Seasonal effects amount of precipitation. All coefficients are negative. Correlations obtained with the sub-sampled time-series data (section 3.3). The 
ring legend reflects a small correlation at |. 13| a moderate correlation at |. 33| and a large correlation at |. 46|. Data source: Lantmäteriet (GSD-Terrängkartan, 
2014), Urban Transport Administration (Cykelmätstationer, 2017; Cykelbana, n.d.), Urban Climate Group, University of Gothenburg (DEM). Projection: 
SWEREF 99 12 00. 
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Figure 15. Seasonal effects duration of precipitation. All coefficients are negative. Correlations obtained with the sub-sampled time-series data (section 3.3). The 
ring legend reflects a small correlation at |. 13| a moderate correlation at |. 33| and a large correlation at |. 46|. Data source: Lantmäteriet (GSD-Terrängkartan, 
2014), Urban Transport Administration (Cykelmätstationer, 2017; Cykelbana, n.d.), Urban Climate Group, University of Gothenburg (DEM). Projection: 
SWEREF 99 12 00. 
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Figure 16. Seasonal effects average gust winds. All coefficients are negative. Correlations obtained with the sub-sampled time-series data (section 3.3). The ring 
legend reflects a small correlation at |. 13| a moderate correlation at |. 33| and a large correlation at |. 46|. Data source: Lantmäteriet (GSD-Terrängkartan, 
2014), Urban Transport Administration (Cykelmätstationer, 2017; Cykelbana, n.d.), Urban Climate Group, University of Gothenburg (DEM). Projection: 
SWEREF 99 12 00. 
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Table 5 
Heterogeneity matrix: weather sensitivity in different urban environments. The original coefficient slope is superimposed over the z-scored coefficients. Only statistically 
significant correlations at p=0.05 and their critical slope value are shown in the matrix. For every row, more sensitivity is emphasised in red whenever a class is +1( 
from the row mean, while less sensitivity is emphasised with blue (−1(). Number of stations per class is given in parenthesis next to the class. 

Weather  Open/Flat (1) Open/Hilly (2) Open/Steep (2) Mix/Flat (2)  Mix/Hilly (1) Mix/Steep (1) Built/Flat (1) Built/Hilly (4) Built/Steep (1) 

,-./0 

To
ta

l 

0.36 0.32 0.32 0.32 0.35 0.34 0.29 0.33 0.29 
1234ℎ637/9/:;<=>? 0.41 0.32 0.34 0.37 0.35 0.38 0.31 0.34 0.27 

@A7B6C.. -0.28 -0.34 -0.30 -0.35 -0.35 -0.26 -0.37 -0.35 -0.33 
@A7B6C;DE -0.33 -0.37 -0.31 -0.39 -0.38 -0.30 -0.39 -0.37 -0.38 
F24G.D/E -0.26 -0.27 -0.29 -0.26 -0.21 -0.25 -0.22 -0.23 -0.17 
,-./0 

W
in

te
r 

         
1234ℎ637/9/:;<=>?          

@A7B6C.. -0.29 -0.33 -0.32 -0.33 -0.30 -0.30 -0.33 -0.31  
@A7B6C;DE -0.36 -0.37 -0.37 -0.38 -0.34 -0.34 -0.38 -0.37 -0.31 
F24G.D/E          
,-./0 

Sp
rin

g 

0.52 0.45 0.47 0.45 0.44 0.47 0.41 0.46 0.41 
1234ℎ637/9/:;<=>? 0.56 0.46 0.49 0.50 0.52 0.49 0.50 0.52 0.42 

@A7B6C.. -0.30 -0.39 -0.37 -0.39 -0.38 -0.32 -0.39 -0.38 -0.38 
@A7B6C;DE -0.38 -0.46 -0.44 -0.46 -0.48 -0.42 -0.45 -0.45 -0.50 
F24G.D/E -0.32 -0.30 -0.29 -0.27 -0.23 -0.27 -0.25 -0.26  
,-./0 

In
du

st
ry

 

0.28  0.21 0.23 0.30 0.27  0.21  
1234ℎ637/9/:;<=>? 0.53 0.37 0.39 0.46 0.40 0.60 0.26 0.37 0.34 

@A7B6C..  -0.48 -0.41 -0.48 -0.54 -0.34 -0.54 -0.49 -0.40 
@A7B6C;DE  -0.42 -0.30 -0.43 -0.48 -0.35 -0.49 -0.44 -0.43 
F24G.D/E -0.33 -0.30 -0.40 -0.33  -0.38 -0.22 -0.26  
,-./0 

Fa
ll 

0.34 0.40 0.35 0.37 0.41 0.38 0.36 0.40 0.36 
1234ℎ637/9/:;<=>? 0.35 0.32 0.31 0.35 0.30 0.31 0.28 0.31 0.26 

@A7B6C.. -0.28 -0.29  -0.32 -0.31  -0.34 -0.31 -0.36 
@A7B6C;DE -0.40 -0.39  -0.44 -0.40  -0.38 -0.38 -0.43 
F24G.D/E -0.32 -0.35 -0.35 -0.35 -0.30 -0.30 -0.29 -0.31 -0.29 
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4.4. Part III: Matrix of Spatial 
Heterogeneity 
 
The purpose of the heterogeneity matrix (table 
5) is to support the explorative analysis and 
provide an overview of weather sensitivity, 
dependent on similarities of the urban 
environment. The results are presented for the 
aggregated coefficients according to their 
dominant feature class. The disaggregated 
stations, sorted by dominant features are 
provided in table 8 of the appendix. 
 
4.4.1	Class	Sensitivity	Analysis	
 
The matrix in table 5 contains the obtained r 
values that are statistically significant at 
p=0.05 and the critical r value for 
coefficients, according to their sample size. 
These r values are superimposed over the 
standardized coefficients with sign correction, 
i.e. the impact is always less as ! → 0. For 
example; the first row of total effects had an 
average r of +.32, meanwhile, class Open/Flat 
had a standardized z value of 1.39 at r = +.36 
and Built/Steep had a z value of -1.55 with r 
= +.29. Both classes are ±1& from the row 
mean. But because Open/Flat is farther away 
from ! = 0, and its level of deviation was 
beyond 1 sigma from row mean, this class is 
considered to show evidence of more 
sensitivity to weather. In contrast, Built/Steep 
showed less sensitivity to weather in this 
example. This is summarized by the following 
equation,  

(9) 
()*(+,+-+,. = 	(+0*(!)

(!3 − 56,689)
(&6,689)

 

 
where spatial heterogeneity is determined by 
the level of sensitivity a class reveal in its 
association to the weather indices. More 
sensitive classes are highlighted in the matrix 
by a red color-coding, whilst less sensitive 
classes are coded in blue.  
 Note however that the sensitivity is 
weighted by row, therefore the matrix will 
always detect at least one sensitivity 
occurrence per weather index. But this is not 
an issue since we seek to evaluate whether 

spatial heterogeneity can be associated to the 
urban environment at all. More conservative 
approaches to the identification of weather 
sensitivity is discussed in section 5.4. 
 
4.4.2	Significance	of	the	Coefficients	
 
Missing values in table 5 corresponds to all 
non-significant correlations that were 
excluded from the sensitivity analysis. For the 
total effect, all class coefficients are 
statistically significant across every variable. 
Regarding the seasons, temperature is only 
significant at p=0.05 across all dominant 
feature classes in spring and fall. Only six 
classes had significant correlation in summer. 
Sunshine did not have any statistical 
significance during winter. But for all other 
seasons, statistical significance was found 
across every class. Just like temperature and 
sunshine, gustiness had no statistically 
significant correlations in winter. Only in fall, 
statistical significance was obtained across all 
classes for the wind variable, whilst 
Built/Steep never met significance at p=0.05 
in spring or industrial summer. Both 
precipitation variables were the only variables 
to obtain statistical significance during winter, 
whereof only Built/Steep didn’t obtained 
significance. Not due to the alpha value 
(p=.013), but because the coefficient slope 
didn’t exceed the critical r value. These results 
are corroborating with both the individually 
mapped coefficients and the global r.  
 
4.4.3	Main	findings	of	Weather	Sensitivity	
 
For temperature and sunshine, most 
sensitivity was found in the Open and Mixed 
classes. The effect was stronger in spring and 
the industrial summer. Overall, the Built class 
category were found to be the least sensitive 
to both temperature and sunshine. The most 
contrasting sensitivity were identified 
between Open and Built classes during spring, 
whereof flat terrain and openness appeared to 
favour much more sensitive. Steep terrain in a 
built environment revealed the opposite 
effect. An interesting seasonal finding was 
that Open/Flat appeared to become 
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increasingly less sensitive to temperature as 
the seasons changed through spring, industrial 
summer to fall. Moreover, during fall season, 
all classes characterized by a hilly terrain had 
experienced more impact from an elevated 
temperature. Recall from figure 9 that all Hilly 
classes are located in the city centre and 
towards to eastern periphery. 
 Moving to the two precipitation 
indices, the direction of sensitivity is reversed. 
Classes characterised by more packing 
density of buildings were more sensitive to 
precipitation events. However, the Mix/Steep 
class differ from the rest of the dense classes 
as it consistently showed less sensitivity to 
precipitation across all seasons. Open classes 
were never more sensitive in their association 
to either precipitation index. Moreover, a flat 
terrain was especially less sensitive to both the 
amount and the duration of a precipitation 
event. 
 Findings for gust showed an average 
decrease in sensitivity as roughness increased: 
Open (~ . 27 ), Mix (~ . 24 ) Built (~ . 21 ). 
Yet again, weather sensitivity was 
concentrated to one dominant feature since all 
association to more wind speed sensitivity 
were found in the Open classes, out of which 
the steeper class obtained the most sensitivity. 
Most negative impact was found at 
Open/Steep, which corresponds to 
Gothenburg’s two major bridges. 

5. Discussion 
 
5.1 What was done in this study? 
 
In this study, five weather indices were 
correlated by 15 cycle-measurement stations 
with the Pearson correlation coefficient. 
These coefficients were mapped and 
quantitatively analysed with a proposed 
framework to reveal patterns of spatial 
heterogeneity at a local scale. This was done 
by analysing linear association between 
cycling and weather on the full time-series as 
well as the sub-sampled seasonal data. The 
resulting coefficients were mapped according 
to season and explored to identify local effects 
of the weather indices. Coefficients were also 

aggregated according to urban characteristics 
to analyse how weather sensitivity differs 
across the defined classes. The study is, to the 
author’s knowledge, unique and therefore 
lacks precedent.  
 The discussion is structured to follow 
a similar structure as that of the results. In the 
first part, the global effect is discussed 
alongside the result of the explorative GIS 
analysis. Then in the second part, the 
sensitivity analysis is considered along with 
its limitation. Finally, the broader 
implications for future research and society is 
discussed. 
 
5.2 Part I: Main findings in relation to 
previous research 
 
The first part of the results were conducted at 
the whole dataset and presented the global 
stations averages, followed by an exploration 
of mapped station coefficients. This part of the 
analysis is most comparable to previous 
research of cycling and weather.  
 
5.2.1	Effects	of	Temperature	
 
Regarding temperature, this study 
standardized the variable based on ten years of 
data and thus, the original temperature in 
degrees Celsius was lost. Instead, the 
temperature variable represented each day as 
colder than usual, or warmer than usual on a 
continuous scale. This approach has been 
utilized before to study mobility and weather 
(Liu et al., 2014, 2015). Most studies of 
cycling and weather use logit- or logistic 
models on grouped temperature data and 
therefore can identify parabolic relationships 
(Gebhart & Noland, 2014; Liu et al., 2017; 
Meng et al., 2016; Miranda-Moreno & Nosal, 
2011). However, this study used linear 
correlation (Flynn et al., 2012; Nankervis, 
1999). Therefore, we must consider the global 
r per season to compare findings. By plotting 
the coefficient slopes per season against the 
original mean temperature of each season 
(Fig. 17), it becomes clear that a parabolic 
relationship likely exists between 
unstandardized temperature and cycle 
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volumes in Gothenburg as well. However, this 
study cannot make any conclusive inference 
in this regard.  

 
Figure 17. Post-hoc seasonal plot of the aggregate station 
average (global r) plotted against the untreated maximum 
temperature of the considered time-series. 

 It is nonetheless possible to suggest 
that unusual temperatures have a direct effect 
on cyclists i.e. cyclists are more sensitive to 
increases in temperature than decreases. 
Unusually high temperatures revealed a small 
association to cyclists during summer which 
suggests that a turning point have been 
reached and higher temperatures start to be 
disincentive to cycling. However, temperature 
is only statistically significant in certain 
environments of the city, indicating that the 
turning point may vary across the city during 
summer (table 5). In winter, the association is 
insignificant and the coefficient slope of the 
global r barely approximate a small impact 
(table 4 & 5). With regards to winter, these 
results corroborate with Liu, Susilo, & 
Karlström (2015) who found that cyclists in 
southern and central Sweden are less aware of 
differences in temperature. It is therefore 
likely that frequent winter cyclists in 
Gothenburg feel comfortable cycling, 
regardless if the winter is unusually warm or 
cold. This reasoning is also in line with the 
findings of Amiri & Sadeghpour (2015). 
Moreover, the opposite is likely occurring 
during summer. Judging from the correlation 
coefficient of the global r, it appears that 
higher than usual temperatures had much less 
impact on cycling in this season. The 
industrial summer was also the only season to 
reveal a pattern of spatial heterogeneity 
towards the coastline (Fig. 8), which implies 
that cycling is more resistant to unusual heat 
in these areas during summer. 

 Although the total effect of 
temperature didn’t produce any obvious 
patterns (Fig. 8), it produced some variation 
during the industrial summer (Fig. 12). 
Stations at Långedragsvägen (S6027), Nya 
Allén (S6028) and Säröleden (S6042), almost 
obtained a moderate correlation, while Dag 
Hammarskjöld (S6002) had slightly 
association to temperature. Other stations had 
much lower coefficients during the industrial 
summer season. Of the more affected stations, 
all but Nya Allén (S6028) had their largest 
fraction of Gothenburg’s total cycle volume in 
the summer (Fig. 11). Moreover, the internal 
seasonal distribution of cyclist at stations 
S6002 and S6042 show that they are important 
industrial vacation stations (Fig. 10). 
Therefore, it is likely that all these deviant 
stations are important recreational locations in 
the industrial summer. For example: riders at 
Säröleden (S6042) pass in the south a couple 
of bathing sites, a camping area and a marina.  
Långedragsvägen (S6027) are en-route from 
the central city towards the popular bathing 
site Saltholmen, where also a relatively large 
marina is located. It is thus likely that these 
stations maintain a substantial influence from 
an unusually high temperature, even during 
summer, since cyclist know that they will be 
able to cool down as they reach the coastline. 
The central city cycleway at station Nya Allén 
(S6028) is boarded with trees that block out 
the sun, moreover it connects two popular 
downtown areas with a high concentration of 
shopping, restaurants and pubs. In this area, it 
is possible that more people chose to cycle to 
the city for a drink, even on weekdays during 
the industrial summer, whenever the 
temperature is higher than usual. Dozza 
(2017) found that more cyclist get into 
accidents late at night in Gothenburg and 
suggests that intoxication could be the reason 
behind it. Moreover, the Dag Hammarskjöld 
station (S6002) were also found to have a 
greater influence from temperature in 
summer. This station is located near the city’s 
biggest park Slottskogen, where many people 
go for a variety of recreational purposes 
during good weather conditions. However, the 
stations also lead to Järntorget in the north and 
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could thus also be affected by night-time 
activates in the city.  
 
5.2.2	Effects	of	Sunshine	
 
The sunshine variable was constructed to 
capture how long the sun was shining as a 
fraction of available daylight. This was done 
because a full day of sunshine in early spring 
may only equate to half a day of sunshine 
around summer solstice. In contrast to 
previous findings, the results from the global 
r in this study found that sunshine had the 
most positive impact on cyclists in 
Gothenburg. Previous studies in a European 
setting found sunshine to be the second most 
important variable associated to cycling 
(Thomas et al., 2013) or to have a small yet 
positive influence (Wadud, 2014). However, 
in Auckland, NZ, sunshine was found to have 
the most positive impact (Tin Tin et al., 2012). 
 It was mentioned above that both 
stations S6002, S6027, S6028 and S6042 can 
be regarded as mostly recreational during the 
industrial summer. In that regard, these results 
corroborate with the findings made by 
Thomas et al. (2013) who showed that 
recreational paths had more positive influence 
from sunshine. Moreover, Delsjövägen 
(S6003), a Built/Hilly station in eastern 
Gothenburg had a pronounced moderate total 
correlation to sunshine (Fig. 8). Although its 
classification is Built, the station had a land 
cover of vegetation that is on par with the 
Open dominant feature classes. Referral to 
table 3 also reveal that S6003 only obtained 
LCZ 6, which is described as open low-rise by 
Stewart & Oke (2012). A possible explanation 
to the high influence of sunshine at S6003 
could be that the built environment, with its 
high fraction of vegetation, is perceived by 
cyclists as aesthetically pleasing during 
sunshine (Böcker et al., 2016; Böcker & 
Thorsson, 2014). This reasoning can possibly 
also be extended to other areas farther from 
the city centre. Henceforth, in general, more 
people could be encouraged to cycle during 
sunshine in greener areas. In fact, a study 
found that the share of cyclist in greener areas 

are generally higher compared to other modes 
of transportation (Böcker et al., 2015). 
 Cartographic exploration of the 
seasonal coefficients also showed that 
sunshine had the most powerful impact on 
cycling at stations farther from the city centre 
(Fig. 13), and of the Open dominant feature 
class (Fig. 9). This spatial heterogeneity 
indicates that cyclist may prefer to ride in 
areas where they are more exposed to 
sunshine, rather than in dense urban 
environments where sunlight could be 
blocked by buildings.  Furthermore, since the 
spatial heterogeneity of sunshine closely 
resembles those patterns identified for 
temperature, it is possible that the central city 
is experienced or perceived as colder on sunny 
days if the solar rays doesn’t reach the rider 
(e.g. Böcker et al., 2016; Ettema et al., 2017). 
Stronger coefficients outside the city centre 
could also be related to the fact that sunshine 
is a good indicator of clear and calm weather 
and hence suggest that many cyclists could 
simply be opportunists in these areas.  
 
5.2.3	Effects	of	Precipitation	
 
Because the amount, as well as the duration of 
precipitation are quite alike, they will be 
discussed together. With few exceptions, 
many studies found precipitation to be the 
strongest deterrent of cycling (Heinen et al., 
2010; Liu et al., 2015, 2017; Nankervis, 1999; 
Phung & Rose, 2007). This study can confirm 
those results for the city of Gothenburg, 
whereof the duration of precipitation appears 
to have a stronger negative association to 
cycling than the amount on a given day. 
Moreover, both indices deterred on average 
more cyclists than the binary occurrence of 
precipitation (table 4). There are however a 
few noteworthy discrepancies. Flynn et al. 
(2012) found the likelihood to cycle on a 
morning with dry weather conditions to be 
twice as high. Even though this study did not 
conduct the exact same test, the equivalent r 
for the rain test, found that the global station 
average only was -.28. A simple post-hoc 
check showed that the r equivalent had to be 
at least -.43 or more to reduce the number of 
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cyclist by half on a wet day. Only the station 
at Säröleden (S6042) came close to this value 
(-.37) in the binary rain test (table 4). Recall 
that the precipitation variables were processed 
to only consider cycling days when a rain 
event occurred. Thus, the motivation for the 
binary rain test were to enable a comparison 
of dry and wet days. 
 Furthermore, since this study found 
duration of precipitation to have more 
negative effect than the amount. A possible 
explanation could be the lagged effect on 
cyclists, observed by both Nosal & Miranda-
Moreno (2014) and Wadud (2014). The 
former found that rain in the previous hour 
had the same negative effect as 1-2mm of 
precipitation. On the other hand, Nosal & 
Miranda-Morena (2014) found the negative 
effect of rain to remain up to three hours after 
the event occurred. Hence, it is likely that, the 
longer it rains, potential cycle trips are either 
shifted to other transport modes, postponed or 
simply cancelled all together (Böcker et al., 
2013a; Liu et al., 2015). However, both Nosal 
& Miranda-Moreno and Wadud conducted 
their studies on hourly data, whereof this 
study utilizes daily data. Therefore, the lagged 
effect of precipitation is likely to have a 
greater impact in their studies due to their 
design. Nonetheless, a plausible explanation 
to why the length of precipitation still had a 
more negative association to cycling in this 
study is that drizzling rains can spread over a 
whole day, and will therefore affect cyclists 
for longer durations of time. Meanwhile, 
heavy precipitation events can occur during a 
brief period, whereas the remainder of the day 
can favourable for cycling. That said, most of 
the difference is likely negligible due to the 
multicollinearity between the daily 
precipitation variables.  
	 Compared to the total effect of 
precipitation, the patterns of spatial 
heterogeneity were easier to decipher from the 
exploration of the seasonal maps, since the 
range of coefficient were much greater per 
season than the total effect, apart from spring 
(Fig. 8, 14 & 15). The two bridges showed 
clear patterns of spatial effects. For example, 
Götaälvbron (S6935) had a small association 

to the precipitation length during the industrial 
summer, whilst the average station had a 
substantial moderate correlation (Fig. 15). 
The fraction of the total cycle volumes is 
indeed lower at Götaälvbron during the 
summer season (Fig. 11), but it doesn’t 
explain why this station had a much lesser 
impact. The other Open/Steep station: 
Älvsborgsbron (S6940), which also is the 
steepest bridge in Gothenburg, had a 
consistent usage by cyclist across all seasons 
(Fig. 11). And since Älvsborgsbron often is 
the least affected station by precipitation, 
especially in fall (Fig. 14 & 15), the cyclists 
who chose to ride over the bridge could be 
regarded as experienced and well prepared to 
combat inclement weather conditions as well 
as the steep incline. This also suggests that 
both bridge stations could primarily be 
utilized by utilitarian all-seasons cyclists, 
according to Shirgaokar & Nurul Habib 
(2018) this category of cyclists are more likely 
to cycle in all kinds of weather. 
 Another spatial pattern surfaced 
during the explorative GIS analysis. The 
marginal effect of precipitation on cyclist in 
the city centre was slightly higher, and thus 
indicate that less cycling is conducted within 
the dense urban centre when it rains. This 
pattern could be related to proximity with 
public transportation (Gatersleben & 
Appleton, 2007). If a potential cyclist has 
public transportation as a readily available 
option near their residence, it could be 
possible that they will take the tram or a bus 
instead of their bicycle, whenever a 
precipitation event occurs. However, a study 
found that short trips in the city remains 
during rain (Corcoran et al., 2014). Even 
though this study isn’t equipped to support 
any finding that relates to trip distance, the 
immediate reduction of cyclists is slightly less 
at Built classes on wet days, according to the 
equivalent r (appendix: table 7). Meanwhile, 
cyclists who live farther away may not have 
the same accessibility to public transportation 
and may thus opt to adjust their clothing 
behaviour by a larger extent (Böcker et al., 
2013a).   Furthermore, since the effect of 
precipitation during the industrial summer is 
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approximately moderate at most peripheral 
stations, while the correlation more often is 
large in the city centre, it could be possible 
that cyclist don’t mind the rain as much if they 
ride in areas characterized by more openness 
or greenery.   
	
5.2.4	Effects	of	Gusty	winds	
 
The literature review in this study unravelled 
a contentious relationship between cycling 
and wind speeds in previous research. The 
global r of gustiness in this study are aligned 
with the findings of both Gebhart & Noland, 
(2014) and Tin Tin, Woodward, Robinson, & 
Ameratunga (2012). They found a negative 
association between cycling and wind, but the 
marginal effect was lower than other weather 
parameters, whereof the latter found a highly 
significant impact of wind speeds. Tin Tin et 
al., considered a cycle-measurement station 
located at the quay, directly exposed to the 
ocean beyond the shore.  Compared to this 
study, four stations are located near Göta älv, 
whereas all but one station had a total impact 
that approximated a moderate correlation 
from gust during exploration (S6005, S6935 
& S6940 in Fig. 8). Also, these riverside 
stations were also classified by the modified 
LCZ scheme as Open (Fig. 9). In fact, if the 
critical slope value is disregarded, the 
riverside stations characterized by openness 
were the only ones that obtained statistically 
significant coefficients during winter at 
p=0.05 in relation to gusty winds (appendix: 
table 6). Previous research of spatial 
heterogeneity found that low-density rural 
communities along the coast were more 
negatively affected by wind conditions 
(Helbich et al., 2014). Furthermore, the 
system-wide reduction in cycle volumes 
during strong winds found by Corcoran, Li, 
Rohde, Charles-Edwards, & Mateo-Babiano 
(2014) was only found during fall in 
Gothenburg in this study. However, the 
sensitivity analysis produced conflicting 
results since gustiness were still more 
impactful in fall at most Open classes (table 
5). These result nonetheless give merit to the  
suggested theory (Helbich et al., 2014), that 

roughness of the urban structure protects 
cyclists from the worst wind effects.  
 Compared to the city centre, there 
were stations of the Built class with slightly 
stronger coefficients at the periphery. A 
possible explanation for this spatial variance 
could be that the buildings in these locations 
are either spaced far apart, or often aligned 
with the predominant wind direction in 
Gothenburg, causing winds to channel 
through the urban canyon at high speeds (Oke 
et al., 2017). This plausible explanation is 
better encapsulated by the Mixed classes. For 
example: station S6010 is located near the 
Gamla Ullevi stadium. From the dominant 
feature classification (table 3), it fulfilled the 
criterion for both LCZ 2: compact midrise and 
LCZ B: scattered trees (table 2), which is a 
relatively good description of the area. The 
stadium is a stand-alone tall building which 
can produce strong wind turbulence whilst the 
area for the most part is open with a few trees 
boarding the cycleway. This reasoning was 
also used on a regional scale by Helbich, 
Böcker, & Dijst (2014). They noticed that 
cities with tall buildings spaced far apart were 
more affected by winds, compared to denser 
cities. This study is in accordance with their 
results on a local scale.  
 Regarding seasonal differences of 
gustiness (Fig. 16), the Built class stations in 
the city centre consistently showed lower 
coefficient scores compared to the Open 
classes across all seasons (Fig. 8 & 16). Only 
in fall did the difference decrease. A steep 
terrain combined with openness also seemed 
to exacerbate the negative impact, because the 
steep and less dense classes consistently had 
coefficients that approximated a moderate 
correlation to gust, apart from in winter. 
However, even though Guldhedsgatan 
(S6025) also is a station with steep 
characteristics, also being of the Built 
dominant feature appeared to protect cyclists 
enough to reduce the association dramatically. 
However, the findings made in this study are 
inconclusive regarding route choice, but it is 
possible that commuting cyclists do choose 
different routes based on their local 
knowledge whenever their experience of 
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prevailing weather conditions affects them 
negatively (see Skov-Petersen, Barkow, 
Lundhede, & Jacobsen, 2018). On a general 
note, it is possible that some heterogeneity 
effects could represent a shift in route choice 
rather than modal change or trip cancellation. 
	
5.3 Part II: Weather effects in similar 
Urban Environments 
 
The matrix of spatial heterogeneity was used 
to derive how weather sensitive different 
environments are, according to their urban 
characteristics. Stations were aggregated 
according their dominant feature class from 
the modified LCZ classification scheme 
(section 3.4). The analysis was design so that 
some dominant feature classes would always 
deviate and reveal either more- or less 
sensitivity to a given weather parameter. A 
disaggregated sensitivity matrix is available in 
the appendix (table 8). Comparison of every 
station, sorted by dominant feature will show 
that the sensitivity retained by the aggregated 
classes in table 5. 
 
5.3.1	Differences	in	Weather	Sensitivity	
between	Urban	Environments	
 
Even with classes aggregated based on 
similarities, the results remained consistent 
with the findings made during exploration of 
the mapped coefficients. Regarding 
temperature, no statistical significance was 
find during winter, which suggests that 
changes in temperature indeed makes no 
differences to cyclists in Gothenburg (table 5). 
In spring, all classes became significant and 
openness favoured cycling much more than 
the built environment. Especially more 
sensitive was the Open/Flat class in relation to 
temperature. However, in the subsequent 
seasons, the association to temperature 
became neutral and eventually less sensitive. 
Meanwhile, note that the more sensitive 
association to sunshine remained over the year 
for the Open classes, which suggests that the 
duration of sunshine becomes increasingly 
more important to cyclists as time goes by. 
This cross-over also indicates a degree of 

collinearity between these two weather 
parameters that could be important. For 
example, cyclists that are eager to bring their 
bikes out as temperature starts to increase 
early in the year will possibly only continue to 
ride later in the year if the sun is shining 
during summer and fall. Furthermore, 
Open/Flat is the only more sensitive at 2 
sigmas’ in relation to temperature during 
spring (table 5), whereas no other obvious 
patterns of spatial heterogeneity were 
identified in spring during the cartographic 
exploration (Fig. 12). Therefore, the 
sensitivity analysis indicate that spatial 
heterogeneity may still be present during the 
season (table 5). 
 A surprising explorative finding that 
were confirmed by the heterogeneity matrix 
was that the Built classes were the only ones 
that were more sensitive to precipitation (table 
5). Indeed, the availability of public 
transportation is higher in the central city 
where the bulk of Built classes are located. 
Yet, as implied earlier, one might have 
expected the dense urban structure to protect 
cyclists and thus unveil a pattern where these 
cyclists ride their bike, even when it rains. A 
similar finding was recently made by 
Miranda-Moreno & Nosal (2011) who 
unwittingly found evidence of spatial 
heterogeneity in Montreal, Canada. They 
identified a great variance in the magnitude of 
their coefficients between a station that served 
a residential area and another one that served 
the downtown central business district. They 
went on to speculate that the functionality of 
these two areas could explain the difference, 
since the CBD mostly attract professionals 
whilst the residential area has a more 
heterogeneous population. However, in the 
case of Gothenburg, no such mono-functional 
area met inclusion criteria. Therefore, the 
variance in magnitude is unlikely to be 
explained by population composition alone. 
Based on findings made in this study, the 
reasons for why openness has a lower 
association to precipitation is hard to 
speculate. Apart from proximity to public 
transportation, the difference between centre 
and periphery could also be related to local 
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cultural expressions (e.g. Heinen, Maat, & 
Wee, 2011; Spencer, Watts, Vivanco, & 
Flynn, 2013) or anything else for that matter.  
 Regarding sunshine sensitivity, it is 
perhaps not surprising that Open and Mixed 
classes consistently showed more association 
to sunshine, in part because denser urban 
environments are usually characterized by 
less greenery. Areas characterized by 
openness may also be perceived as less hectic 
environments, and could therefore be better 
suited for a pleasant ride whenever the 
opportunity presents itself.  
 Moreover, sunshine not only had the 
largest global r coefficient, but it was also the 
only statistically significant weather 
parameter across every season, except in 
winter. Therefore, sunshine appears to be an 
especially important factor for cyclists in 
Gothenburg. Yet, the impact of sunshine still 
revealed clear patterns of weather sensitivity. 
During spring, the greatest difference in 
sensitivity were identified between the Open 
and Built classes. The latter had a demarked 
magnitude of less sensitivity to sunshine. And 
the coefficient range between the highest and 
lowest obtained coefficient was ~.14 between 
these two classes. The coefficient range is 
even greater during the industrial summer, as 
the difference between the least sensitive 
(Built/Flat) and the most sensitive 
(Mix/Steep) classes is ~.27 in magnitude. 
Since it is likely that a lot of people are on 
vacation during the industrial summer, the 
vast difference and henceforth spatial 
heterogeneity between these urban 
environments could be related to recreational 
activities. Indeed, Thomas, Jaarsma, & Tutert 
(2013) showed that sunshine is particularly 
important for recreational cyclists in the 
Netherlands. Furthermore, the heterogenic 
variance remains in fall, but judged by the 
strength of the correlations, the difference is 
now smaller as the positive effect of sunshine 
has been reduced. Possibly because of what 
we will delve into next. 
 Gustiness during fall season was the 
only season with statistical significance across 
all dominant feature classes (table 5). 
Moreover, the magnitude of station 

coefficients is on average slightly greater in 
fall compared to other seasons (table 4). Much 
like the effects of sunshine, most sensitivity 
were found in the Open and Mixed classes. By 
contrast, the Built classes was always less 
sensitive and Built/Steep even lost statistical 
significance regarding gustiness during spring 
and the industrial summer. Considering the 
Mixed dominant feature, only Mix/Flat 
(Ullevigatan, S6010 and Dag Hammarskjöld, 
S6002) were more sensitive to the effects of 
gustiness. In addition to what was discussed 
earlier regarding S6010 (section 5.2.4), it’s 
possible that winds doesn’t on top of 
roughness features (Oke et al., 2017). Hence, 
the cycleway will remain exposed to high 
wind speeds. Apart from spring, stations 
classified as Open/Steep were the only class 
that consistently showed more sensitivity in 
relation to gusty winds. Thus, the sensitivity 
analysis supports the findings made by the 
cartographic exploration: steepness combined 
with openness seems to exacerbate the impact 
of wind on cyclists. It should however be 
noted that there is a free-of-charge ferry 
between the two bridges, near stations S6005 
and S6051. This ferry is an option for cyclists 
wanting to cross the river. However, the 
former station often experience the same 
magnitude in its coefficients as the bridges 
(Fig. 16). Moreover, station S6005 is 
characterized as Open/Hilly which is amongst 
the most sensitive classes. Thus, it’s unlikely 
that cyclists who ride in strong winds take the 
detour to the ferry. Rather, other reasons are 
likely the culprit for the negative effect near 
the river. The most probable explanation is 
that the cycle ways along the river is hardly 
protected by any roughness features at all and 
cyclists are also forced to ride close to the 
quay for some cycleway segments, leaving 
them directly exposed to the elements.  
 
5.4 Evaluation of Methodology & 
Limitations 
 
Because no previous research was identified 
to develop a framework for spatial 
heterogenic analysis of cycle flows, this study 
proposed such a model. The framework make 
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use of the correlation coefficient to measure 
the magnitude of association between a 
dataset of weather parameters and a dataset 
with permanent cycle- measuring stations. 
The resulting coefficients are then mapped to 
allow for pattern exploration. Thereafter, the 
station coefficients are aggregated according 
to their dominant feature from a modified 
Local Climate Zone (LCZ) system, 
standardized per row of weather parameter 
and added to a matrix where weather sensitive 
stations are highlighted.  
 The modified LCZ classification of 
every stations is part of the pre-processing. In 
this study, six properties of the urban 
environment were quantized according to the 
original values provided by Stewart & Oke 
(2012). These properties are related to a total 
of 17 Local Climate Zones, where each 
property have a different range criterion that 
must be met. So, each station got scored by 
how many times they fulfilled the criterion for 
a LCZ. To simplify the classification, the first 
10 classes got referred to by their dominant 
feature: Built environment. The last 7 classes 
were characterized by their dominant feature: 
Openness. However, many stations met the 
criteria for several LCZs and sometimes by an 
equal amount of the Built and Open dominant 
feature classes. The pragmatic solution to 
those stations were to classify them as Mixed.  
 There are a few plausible reasons for 
why some stations met the criterion for many 
more than one LCZ. First, the original 
classification values were not adjusted to the 
context of Gothenburg and stations could 
therefore have been misclassified. Second, the 
urban environment surrounding the stations 
were quantified along the cycleway segment 
connected to the stations or based on the point 
location of the station. This goes against how 
Stewart & Oke recommends the scheme 
should be used. Nevertheless, it wasn't 
meaningful to follow the uniformity of the 
urban structure rather than the cycleway, since 
every cyclist moves through a varying 
landscape during their ride. This aspect should 
however be evaluated in future studies to 
identify the best way of quantification. For 
example, what scale should be considered of 

the cycleway network? In this study, only the 
cycleway segment connected to each station 
between major intersections was considered. 
However, it is possible that a larger extent is 
indeed needed to fully capture the average 
cyclist passing a station. Thus, it may be 
possible to utilize every cycleway within a 
given distance as the basis of classification. 
 Moreover, cyclist is also affected by 
topography. Therefore, the slope 
characteristics of each station were added to 
their LCZ type. This was done by calculating 
the topographic slope profile of the cycleway 
segment connected to each station. To capture 
the slope characteristics of that segment, the 
standard deviation – or sigma value – was 
chosen as the best indicator. This statistic was 
chosen because it reveals how much the 
terrain varies. For example, the average-slope 
could yield a low gradient if the cycleway 
were mostly flat but with a steep terrain 
towards one end. Thus, the logic for selecting 
sigma is that it will increase depending on 
how much relief each topographic slope 
profile is characterized by. This study did 
however produce a lot of outliers due to the 
fine resolution of the raster geodata, but these 
were appropriately handled.  
 The slope characteristics of each 
station were eventually classified depending 
on their relative difference to each other. That 
is, the first quartile got classified as flat, the 
50% of values that fell in the middle were 
classified as hilly whilst all values beyond the 
third quartile got classified as steep. This 
however poses a problem since the division of 
classes was based on the sampled 15 stations. 
Hence, it is very likely that a few stations got 
misclassified, for example as hilly or steep 
even though they are relatively flat. To 
overcome this issue, the topographic profile of 
every cycleway segment in the city should’ve 
been quantified. By doing so, the resulting 
classification of the 15 stations would’ve been 
more accurate since their slope characteristics 
would be determined based on the whole 
population of slope profiles. Another 
approach would've been to assign arbitrary 
cut-off values based on the observed 
topography of the flattest and steepest 
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cycleway in the station sample. In the end, the 
result of the combined LCZ and slope 
characteristics were indeed different enough 
to identify classes with association to spatial 
heterogeneity in the r matrix.  
 The basic functionality of the matrix 
used to identify heterogenic sensitivity 
between the classes was simple. Statistically 
significant coefficients were standardized per 
row in a matrix. Whenever a class deviated by 
more than one standard deviation, it was 
color-coded as either red or blue. Depending 
on the sign (+/-) of the correlation, the 
sensitive classes had their spatial 
heterogeneity determined by 1 sigma from the 
row mean, whereof less sensitivity was found 
whenever ! → 0, and more if ! → ±1. This 
method worked well and did confirm that 
some urban environments are statistically 
associated to the heterogeneous patterns that 
were identified during exploration of the 
maps. However, it is possible that the 
approach was too responsive and since it 
always identified weather sensitive classes, 
even when the range of coefficients was 
arguably too narrow. To overcome this, a 
more robust approach to establish the 
presence of spatial heterogeneity would be to 
utilize the critical values of z, for example 
?@ABC% = 1.28 or  ?@AF% = 1.645 for a two-
tailed probability test. Nonetheless, since part 
of the aim of this study was to explore whether 
specific urban forms were associated with 
spatial heterogeneity depending on 
similarities in their urban characteristics, this 
method of detecting sensitivity was 
appropriate.  
 An alternative to the sensitivity 
analysis of the urban environment is to 
explore the impact of weather indices during 
different seasons. By standardizing every 
seasonal weather index on the total effect, the 
analysis would reveal where a weather 
parameter has more impact, meanwhile the 
influence of spatial heterogeneity is reduced. 
  
5.4.1	Recommendations	for	Further	Research		
 
In summary, this study laid the foundation for 
a framework to analyse spatial heterogeneity 

at a local scale. The proposed methodology 
successfully captured and identified 
interesting results of heterogeneous responses 
by different stations in relation to weather. 
The findings made by this study has made it 
clear that when roughness elements of the 
built environment are considered, it is 
possible to unveil areas that are sensitive to 
certain weather conditions. Regarding 
gustiness, it becomes clear that location is 
important for cyclists. The implications of 
these gusty wind findings to other researchers 
are important to emphasize. Previous research 
often reject wind variables in relation to 
cycling, either because they overlook the 
variable or because they make insignificant 
findings. However, researcher could 
wrongfully be rejecting wind variables 
because they sample and aggregate data to a 
city-wide scale from cycle-measurement 
stations surrounding by a high density of 
roughness elements. It is therefore important 
to consider the spatial heterogeneity of 
cycling and winds in the study design. 
 Future research is recommended to 
build upon the proposed framework of spatial 
heterogeneity. Evaluation of the appropriate 
scale for quantifying the urban environment 
surrounding the cycle-measurement station 
should be undertaken. Moreover, the resulting 
association of spatial heterogeneity according 
to class characteristics should be validated 
through replication and additional testing. It is 
also important to find a robust standard for the 
sensitivity matrix. This study proposed that a 
critical value of ?@ABC% = 1.28 or  ?@AF% =
1.645 z should be used. Finally, in this study, 
the correlation coefficient was used to explore 
spatial heterogeneity. It is however possible to 
apply logit- or logistic regression, which is 
commonly used to study cycling and weather 
(see Liu, Susilo, & Karlström, 2017), and 
insert those coefficients into the framework. 
Moreover, it could also possible to use the 
relative percentage of change in cycle 
volumes (Miranda & nodal 2011), instead of 
the z-scored cycle volumes used in this study. 
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5.5 Implications for Society & Planning 
Authorities  
 
With regards to the spatial impact of weather, 
understanding how cyclists are influenced is 
vital for promoting active modes of 
transportation (Liu et al., 2017). Therefore, 
some recommendations are proposed to retain 
cycle volumes. It is important to recognize 
that the urban environment produces a variety 
of microclimates which can be related to local 
weather effects. Planning authorities should 
for instance appreciate that weather is not an 
uncontrollable natural phenomenon that 
affects cyclists, and residents should be made 
aware of how their local environment produce 
local weather patterns that is different from 
other areas of the city. Recognizing the 
limitations of current infrastructure in specific 
urban environments in relation to all weather 
indices should lead to better planning 
strategies that are climate sensitive. 
Moreover, cyclists themselves may come to 
understand that certain weather conditions are 
only less favourable to cycling where they 
reside, and that riding a bicycle could be more 
favourable just around the block.  
 Indeed, Gothenburg has more annual 
precipitation than the Swedish national 
average, which has been linked to lower 
cycling volumes in general (Winters et al., 
2007). Therefore, improved local weather 
forecast may be needed to avoid unnecessary 
reductions in cycle volumes whenever the 
threat of precipitation is looming. For 
instance, detailed hourly maps of weather 
forecasts should be recommended to cyclists 
to allow them to determine whether a 
precipitation event is likely to occur on their 
frequented routes or only in other areas of the 
city. Moreover, the city of Gothenburg could 
launch a campaign like the winter-cyclists’ 
initiative, but instead of providing winter tires 
and reflective vests, a campaign could provide 
raincoats suitable for cycling. 
 Moreover, the infrastructure must be 
prepared to better handle the adverse effects 
of weather. Urban environments where gusty 
winds consistently are problematic for cyclists 
should be protected by low vegetation or 

fences that reduce wind speed rather than 
trying to block it entirely. A solid wall could 
for example cause winds to channel onto 
cyclists and effectively produce the opposite 
than the intended results, whereas vegetation 
has been proved to effectively reduce wind 
speeds in an urban environment (Hong et al., 
2012). Since this study found that sunshine 
has a stronger association to cycling in areas 
characterised by openness, it is also worth 
considering how vegetation can be introduced 
in dense urban areas. More greenery could 
influence more people to cycle in built 
environments whenever sunshine hits the city, 
due to the aesthetic properties of vegetation. 
In addition to this Ettema, Friman, Olsson, & 
Gärling (2017) suggested that intense 
sunshine could lead to uncomfortable feelings 
of warmth for cyclists. Thus, tall vegetation 
could also cast protective shadows on the 
cyclists. During the summer season, it is also 
possible that outdoor bathing opportunities 
near the city centre could encourage more 
people to cycle since it would provide an 
opportunity to cool down whenever the 
temperature is unusually high. 
 It could also be worthwhile to improve 
the guidepost system boarding the cycle ways. 
For example, a guidepost could be a cost-
effective measure to reduce the deterrent 
effect of a steep terrain when a cyclist easily 
can choose an alternative route to their 
destination. Therefore, the density of 
guidepost should increase and the distance to 
certain locations should be included in the 
signage.  
 Whenever infrastructure or the built 
environment cannot be adjusted to combat 
inclement weather, it becomes important to re-
frame the publics’ perception of weather 
effects (Heinen et al., 2010). For example, 
during days with strong winds, better 
guidepost could be used, as mentioned above, 
to redirect cyclists into urban environments 
that are known to be less affected by winds. 
Doing so would send the message that city 
planners acknowledge the problem and are 
actively working to reduce the barriers to 
cycling. So, even when the root cause of 
weather-related issues cannot be affected, the 
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negative impact of weather can still be 
resisted. This argument stems from the 
findings made by Thorsson, Lindqvist, & 
Lindqvist (2004). They saw that people adjust 
their location within a park to improve their 
thermal comfort whenever they become too 
cold or too hot. This behaviour could also be 
catered for by designing the cycle network to 
allow for route-choice decisions based on the 
comfort of the cyclists. 

6. Concluding Remarks 
 
This study is a contribution to the emerging 
field of spatial heterogeneity regarding 
cycling and weather. Since this study lacks 
precedent, the proposed framework should lay 
the foundation for further developments in the 
field. Replication of the results in this study 
should be conducted to validate the robustness 
of the weather sensitivity findings in certain 
urban environments.  
 Citywide, this study could conclude 
that, duration of precipitation is the most 
influential deterrent of cycling in Gothenburg 
during all seasons. Apart from precipitation, 
no other weather condition had a statistically 
significant impact on cycling during the 
winter season. Gustiness also had a negative 
association, but the magnitude of its impact 
was lower. Regarding positive influences, 
sunshine was the most influential benefactor 
of cycling citywide. The effect of temperature 
fell just behind. These weather parameters 
also revealed spatially heterogeneous patterns 
when the respective stations had their 
correlations analysed during cartographic 
exploration.  
 Daily weekday cycling in various 
urban areas were found to respond differently 
to certain weather conditions, depending on 
their urban characteristics. Sunshine always 
had more positive influence in areas 
characterized by openness and unexpectedly, 
open areas appeared to be less sensitive in 
relation to precipitation. Meanwhile, dense 
urban environments in the city centre were 
more sensitive to precipitation. Furthermore, 
gustiness had the most negative impact on 
open areas near Göta älv in Gothenburg. Other 

inland areas that were characterized by some 
openness were also slightly more affected by 
wind speeds. Apart from the industrial 
summer season, temperature revealed no 
obvious patterns of spatial heterogeneity. 
However, in summer, those stations that had 
the strongest correlations to sunshine also 
retained some influence on days with 
unusually high temperatures. To summarize, 
parts of the city that is mostly characterized by 
openness is more sensitive to all weather 
conditions, except for precipitation which had 
a more pronounced impact on the dense urban 
centre.  
 When the stations were aggregated 
based on their environmental similarities, the 
weather sensitivity analysis conducted 
through the heterogeneity matrix confirmed 
the explored spatial patterns. Openness were 
indeed associated to more sensitivity in 
relation to all weather indices, apart from 
precipitation where the sensitivity was low. 
Moreover, a steep topography combined with 
openness was consistently found to be 
associated with more sensitivity to gustiness, 
unless the area had a high roughness from 
buildings.  Apart from winter, sunshine was 
the only weather parameter that obtained more 
sensitive results across all seasons in open 
urban environments. Precipitation was the 
only statistically significant weather index 
during winter, and stations characterized by a 
higher density of buildings were always more 
sensitive to precipitation across all seasons. 
However, apart from precipitation, denser 
areas appeared to have a lower weather 
sensitivity in general. 
 Finally, this study urges planning 
authorities to recognize how weather affects 
different urban environments and that the 
adverse effects of weather can be reduced to 
encourage cycling. The applied framework 
can be adapted by professionals to identify 
areas that most likely are sensitive to certain 
weather effects, even in areas without 
measurement of cycling volumes since the 
sensitivity may be inferred from similar urban 
environments. Moreover, promoting map-
based weather forecasting to cyclists who may 
not be aware that precipitation can be local to 
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other parts of the city would increase the 
spatial awareness in society and thus, possibly 
retain a larger cycle volume during inclement 
weather conditions. Provision of raincoats 
suitable for cycling through directed 
campaigns could also be a means to reduce the 
adverse effect of precipitation events. 
Regarding the impact of gustiness, protective 
features like low density bushes is 
recommended to cushion the impact of wind 
in areas characterized by openness. Measures 
with cushioning effects on wind speeds should 
also be applied where vegetation aren’t 
appropriate, for example at weather exposed 
bridges. Where it is possible, vegetation 
should always be the preferred protective 
measure since the findings in this study 
indicates that greenery could make a bicycle 
trip more aesthetically pleasing during 
sunshine. Since temperature appeared to 
reveal no obvious patterns of spatial 

heterogeneity in relation to cycling, the best 
solution is likely to continue to improve 
infrastructure and to implement more 
campaigns aimed at swaying the public’s 
perception of cycling until more people 
continue to cycle, even as the temperature 
begins to drop. Improved guideposts boarding 
the cycleway could also be an effective 
measure to reduce the negative impact of a 
steep topography. Guidepost could also be a 
cost-effective measure to communicate the 
spatial heterogeneity of certain weather 
conditions in different urban environments. 
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8. Appendix 
 

Table 6 
A full report of the obtained p-values for the correlation coefficient per station. Bold text is statistically significant at ! = 5%. 
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Sp
rin

g 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
'()*ℎ,)-//%012345 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

67-8,9$$ 0 0 0.001 0 0 0 0 0.001 0 0.002 0 0 0.001 0 0 
67-8,91:; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
<(*=$:%; 0 0 0 0 0 0 0.008 0 0.001 0 0 0 0.001 0 0 
"#$%& 

In
du

st
ry

 0.009 0.022 0.108 0.212 0.167 0.052 0.317 0.003 0.004 0.006 0.103 0.016 0.025 0.065 0.117 
'()*ℎ,)-//%012345 0 0 0 0.001 0.004 0.001 0 0 0 0 0.001 0 0.004 0 0.004 

67-8,9$$ 0.002 0.003 0.002 0 0 0 0.003 0.013 0 0.005 0 0.001 0 0.004 0.009 
67-8,91:; 0.005 0.006 0.016 0.001 0 0.001 0.002 0.011 0.001 0.007 0 0.003 0 0.016 0.345 
<(*=$:%; 0 0.005 0.001 0.043 0.015 0.017 0.091 0 0.008 0.001 0.004 0 0.046 0 0 
"#$%& 

Fa
ll 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
'()*ℎ,)-//%012345 0 0.001 0 0.004 0.002 0 0.003 0 0.001 0 0.001 0 0.004 0.002 0.002 

67-8,9$$ 0.007 0.008 0.028 0.002 0.002 0.003 0.001 0.091 0.003 0.009 0.001 0.002 0.001 0.102 0.013 
67-8,91:; 0 0.001 0.001 0 0.001 0 0 0.012 0 0 0 0 0 0.051 0.005 
<(*=$:%; 0 0 0 0 0 0 0 0 0 0 0 0 0.001 0 0 
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Table 7 
Other aggregations of the 15 station coefficients, utilized to guide the explorative analysis. 

   

Weather  Periphery* Centre* Range Open Mixed Built 
Range 

Open vs. 
Built 

Flat Hilly Steep 
Range 
Flat vs. 
Steep 

Pseudo binary r 

"#$%& 

To
ta

l 

0.33 0.31 0.03 0.32 0.26 0.31 0.01 0.32 0.32 0.31 0.01 Open -0.29 
'()*ℎ,)-//%012345 0.36 0.31 0.05 0.34 0.29 0.32 0.03 0.36 0.33 0.33 0.03 Mix -0.30 

67-8,9$$ -0.3 -0.35 0.05 -0.31 -0.26 -0.34 0.03 -0.33 -0.34 -0.3 0.04 Built -0.27 
67-8,91:; -0.32 -0.38 0.06 -0.33 -0.29 -0.37 0.04 -0.37 -0.37 -0.32 0.05   
<(*=$:%; -0.26 -0.22 0.04 -0.27 -0.19 -0.21 0.06 -0.25 -0.23 -0.25 0 Flat -0.31 
"#$%& 

W
in

te
r 

0.12 0.11 0.01 0.11 0.1 0.1 0.01 0.13 0.11 0.1 0.03 Hilly -0.27 
'()*ℎ,)-//%012345 0.07 0.01 0.06 0.06 0.04 0.02 0.04 0.06 0.02 0.06 0 Steep -0.28 

67-8,9$$ -0.29 -0.32 0.03 -0.31 -0.25 -0.3 0.01 -0.32 -0.3 -0.3 0.02   
67-8,91:; -0.34 -0.37 0.04 -0.36 -0.29 -0.36 0 -0.37 -0.36 -0.34 0.03   
<(*=$:%; -0.14 -0.11 0.03 -0.16 -0.09 -0.1 0.06 -0.13 -0.12 -0.13 0   
"#$%& 

Sp
rin

g 

0.47 0.43 0.04 0.46 0.36 0.43 0.03 0.45 0.44 0.45 0   
'()*ℎ,)-//%012345 0.51 0.48 0.03 0.49 0.4 0.48 0.01 0.51 0.49 0.47 0.04   

67-8,9$$ -0.35 -0.38 0.03 -0.36 -0.29 -0.38 0.02 -0.36 -0.38 -0.36 0.01   
67-8,91:; -0.43 -0.46 0.03 -0.43 -0.36 -0.45 0.02 -0.43 -0.45 -0.44 0.01   
<(*=$:%; -0.29 -0.25 0.04 -0.3 -0.21 -0.24 0.06 -0.28 -0.26 -0.26 0.02   
"#$%& 

In
du

st
ry

 

0.22 0.17 0.06 0.18 0.2 0.16 0.02 0.21 0.19 0.17 0.03   
'()*ℎ,)-//%012345 0.46 0.32 0.14 0.39 0.37 0.33 0.06 0.41 0.35 0.41 0   

67-8,9$$ -0.41 -0.49 0.08 -0.44 -0.36 -0.47 0.03 -0.47 -0.48 -0.39 0.08   
67-8,91:; -0.35 -0.45 0.1 -0.35 -0.33 -0.44 0.09 -0.43 -0.43 -0.32 0.12   
<(*=$:%; -0.35 -0.23 0.12 -0.33 -0.25 -0.23 0.11 -0.29 -0.26 -0.32 0.03   
"#$%& 

Fa
ll 

0.37 0.37 0 0.36 0.3 0.37 0.02 0.35 0.38 0.36 0   
'()*ℎ,)-//%012345 0.31 0.29 0.02 0.31 0.26 0.28 0.03 0.33 0.3 0.28 0.05   

67-8,9$$ -0.26 -0.32 0.07 -0.26 -0.22 -0.33 0.07 -0.3 -0.31 -0.25 0.06   
67-8,91:; -0.32 -0.4 0.08 -0.33 -0.3 -0.38 0.05 -0.4 -0.38 -0.3 0.1   
<(*=$:%; -0.32 -0.3 0.02 -0.33 -0.26 -0.29 0.04 -0.32 -0.3 -0.32 0.01   

*The two major bridges (S6935 and S6940) was regarded as peripheral stations even though they could’ve been separated to the centre (S6935) 
and periphery (S6940). 
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Table 8 
Disaggregated station coefficients, sorted by dominant feature class. The original coefficient slope is superimposed over the z-scored coefficients. Only statistically 
significant correlations at p=0.05 and their critical slope value are shown in the matrix. For every row, more sensitivity is emphasised in red whenever a class is +1@ 
from the row mean, while less sensitivity is emphasised with blue (−1@). 
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H
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B
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St
ee
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"#$%& 

To
ta

l 

0.36 0.3 0.31 0.3 0.32 0.34 0.29 0.35 0.34 0.29 0.33 0.3 0.33 0.31 0.29 
'()*ℎ,)- 0.41 0.33 0.31 0.35 0.31 0.39 0.32 0.35 0.38 0.31 0.36 0.31 0.34 0.29 0.27 
67-8,9$$ -0.28 -0.31 -0.37 -0.33 -0.26 -0.31 -0.38 -0.35 -0.26 -0.37 -0.31 -0.35 -0.34 -0.35 -0.33 
67-8,91:; -0.33 -0.34 -0.4 -0.34 -0.28 -0.34 -0.42 -0.38 -0.3 -0.39 -0.33 -0.37 -0.36 -0.4 -0.38 
<(*=$:%; -0.26 -0.28 -0.24 -0.29 -0.27 -0.27 -0.24 -0.21 -0.25 -0.22 -0.23 -0.2 -0.26 -0.2 -0.17 

"#$%& 

W
in

te
r 

                       
'()*ℎ,)-                        
67-8,9$$ -0.29 -0.34 -0.3 -0.39    -0.37 -0.3 -0.3 -0.33  -0.29 -0.31 -0.35  
67-8,91:; -0.36 -0.37 -0.35 -0.41 -0.29 -0.35 -0.4 -0.34 -0.34 -0.38 -0.28 -0.32 -0.34 -0.52 -0.31 

<(*=$:%;                               
"#$%& 

Sp
rin

g 

0.52 0.45 0.43 0.45 0.47 0.47 0.42 0.44 0.47 0.41 0.44 0.44 0.46 0.44 0.41 
'()*ℎ,)- 0.56 0.46 0.47 0.53 0.44 0.51 0.48 0.52 0.49 0.5 0.51 0.5 0.51 0.47 0.42 
67-8,9$$ -0.3 -0.33 -0.43 -0.37 -0.36 -0.34 -0.42 -0.38 -0.32 -0.39 -0.4 -0.39 -0.39 -0.32 -0.38 
67-8,91:; -0.38 -0.42 -0.48 -0.45 -0.42 -0.42 -0.48 -0.48 -0.42 -0.45 -0.46 -0.46 -0.47 -0.38 -0.5 

<(*=$:%; -0.32 -0.32 -0.27 -0.27 -0.31 -0.29 -0.25 -0.23 -0.27 -0.25 -0.26 -0.23 -0.28 -0.23   
"#$%& 

In
du

st
ry

 

0.28       0.24   0.3 0.27   0.21  0.22 0.21  
'()*ℎ,)- 0.53 0.39 0.3  0.4 0.54 0.3   0.6   0.45 0.3 0.37   0.34 

67-8,9$$   -0.42 -0.51  -0.39 -0.42 -0.49 -0.54 -0.34 -0.54 -0.41 -0.51 -0.45 -0.49 -0.4 

67-8,91:; -0.42 -0.33 -0.48  -0.34 -0.38 -0.45 -0.48 -0.35 -0.49 -0.38 -0.44 -0.41 -0.49 -0.43 

<(*=$:%; -0.33 -0.32 -0.27 -0.38 -0.38 -0.38 -0.22 -0.28 -0.38 -0.22 -0.26   -0.34     
"#$%& 

Fa
ll 

0.34 0.35 0.41 0.3 0.38 0.38 0.33 0.41 0.38 0.36 0.41 0.37 0.39 0.34 0.36 

'()*ℎ,)- 0.35 0.34 0.3 0.28   0.33 0.34 0.3 0.31 0.28 0.3  0.32    
67-8,9$$ -0.28  -0.33    -0.29 -0.31 -0.31   -0.34 -0.28 -0.32 -0.32 -0.37 -0.36 

67-8,91:; -0.4 -0.34 -0.43 -0.3   -0.37 -0.47 -0.4 -0.27 -0.38 -0.35 -0.39 -0.37 -0.39 -0.43 

<(*=$:%; -0.32 -0.33 -0.32 -0.39 -0.29 -0.33 -0.35 -0.3 -0.3 -0.29 -0.3 -0.28 -0.32 -0.27 -0.29 
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