%) CHALMERS |

UNIVERSITY OF TECHNOLOGY

5§ UNIVERSITY OF GOTHENBURG

™
s

LS SR 76 Y gl PR

Accelerating geospatial database services
with Graphical Processing Units

Bachelor of Science Thesis in Software Engineering and Management

Andreas Fransson
Johan Johansson

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2019

CHALMERS |

UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

The Author grants to University of Gothenburg and Chalmers University of Technology the
non-exclusive right to publish the Work electronically and in a non-commercial purpose make
it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work does
not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author has
signed a copyright agreement with a third party regarding the Work, the Author warrants
hereby that he/she has obtained any necessary permission from this third party to let
University of Gothenburg and Chalmers University of Technology store the Work
electronically and make it accessible on the Internet.

A design science study on database performance
Using modern scenarios to evaluate technology advancements

Andreas. Fransson,
Johan. Johansson.

© Andreas. Fransson, February 2019.
© Johan. Johansson, February 2019.

Supervisor: Michal. Palka
Examiner: Christian. Berger

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering
SE-412 96 Goteborg

Sweden

Telephone + 46 (0)31-772 1000

Cover:
A visualisation of geospatial data generated from a database.
Information provided in the Introduction section on page 1.

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2019

Accelerating geospatial database services with
Graphical Processing Units

Andreas Fransson
Computer Science and Engineering
Gothenburg University
Gothenburg, Sweden
Email: andreas.j.fransson@ gmail.com

Abstract—|[Introduction] With the growing need of instant or
almost instant processing and retrieval when working on large
data-sets we ask ourselves the following question ‘“What impact
would switching from a conventional CPU database to a GPU
accelerated database have on emergency systems using large
geospatial data-sets”. [Methodology] We chose to use Design
Science and more specifically the method called optimization.
[Motivation for the study] We observed a knowledge gap in the
field of geospatial analysis regarding use cases associated with
emergency systems and with new technological advances both
in software and hardware there is a need to reevaluate current
systems. [Test results] The result displays that GPU accelerated
databases and SPARK databases do not increase the efficiency of
processing and retrieving of large geospatial data. [Discussion]
Even if we expected the GPU accelerated database to perform
better than the standard CPU database we could not see any
benefit from switching to a GPU accelerated database or SPARK
database. [Conclusion] Our tool we created did enable us to
take more informed decisions when making decisions on what
database is best for our use case, we did, however, conclude
that there is no benefit for us to switch to a SPARK or GPU
accelerated database. [Future work] We found several things that
would benefit further research in our area, Both in technology
and scale.

Keywords-GPU-accelerated database, SPARK database, Win-
dows SQL Server, Geospatial Data, Emergency Systems.

I. INTRODUCTION

Legacy or old database technology struggles to meet the
needs of today’s new emerging standards concerning data
processing, especially concerning large geospatial data-sets.
With the growing market consisting of Al, assisted driving
and autonomous driving, instant or almost instant response
time is demanded from logistics services such as routing and
map services. When retrieving or processing large geograph-
ical data with today’s standard database technology the time
consumption forces companies to limit their queries and forces
pre and post-process data outside of the database to be able
to deliver in time. The advances done in hardware are heavily
impacting the design of database systems. Since CPU (Central
Processing Unit) cores have a flat speed many-core processors
such as GPU’s (Graphical Processing Unit) has become a vital
alternative for processing the constantly increasing amount of
data [1].

Traditional database systems utilize the machines CPU to

Johan Johansson
Computer Science and Engineering
Gothenburg University
Gothenburg, Sweden
Email: Johan.Johansson.swe@gmail.com

sequentially execute queries on data stored on conventional
hard drives.

The GPU is commonly known as the PC’s video card and
is commonly used to render graphical images on displays.
Using these to accelerate database systems promises up to
one hundred times the speed of a conventional CPU-powered
database solution in the regards of operations such as analytics.
Although this is not the case for basic database operations
where input and output speed is the common bottleneck and
not processing power [2], [3]. GPU-Accelerated databases,
utilizing modern graphics cards to accelerate data retrieval, of-
floading and analyzing comes with a vast amount of processing
power created by working in parallel instead of in sequence
as a normal CPU database does. And memory bandwidth
provided by in-memory management storing information in
both RAM (Random Access Memory) and VRAM (Video
RAM). [4].

Emergency systems are for example a “Command and
control” software for SOS Alarm letting operators have full
awareness of ambulance vehicles and their routes while also
updating the information available for the ambulance drivers.
These systems classed as “Live Systems” come with a vast
requirement list attached including performance, scalability,
cost, and reliability [5]. Many companies in the emergency
system field are working with large geospatial data-sets in their
systems, in this thesis, we will relate to the road network of
the entirety of Sweden that results in 2.8 million rows in a
database. Each of these 2.8 million rows is a road segment
consisting of several geographical points along with other vital
information about the road segments see Fig. 1.

There is an issue with the legacy database technology
limiting the processing of the large geospatial data-sets in
a way that there is no feasible way to make queries that
would include most or all of the geographical data needed.
Many of the applications that are computing intensive and is
processing huge amount of data is often regarded to have an
unacceptable lengthy execution time. The only way to give
these applications the computing increase it needs is by using
parallelism when processing large-scale data [6]. Databases
are commonly used and are present in almost every user-based
system. With the rise of several commercial and open-source
GPU accelerated database solutions and other solutions that

Fig. 1. Spacial Data Visualization Sweden and Gothenburg, Sweden

are made to accelerate the speed of queries on large data-sets,
it is of interest to investigate what these solutions are actually
capable of in terms of large or huge geospatial data-sets.
Main Research Question:
RQ1: “What impact would switching from a conventional CPU
database to a GPU accelerated database have on emer-
gency systems using large geospatial data-sets”
Sub-Questions:

RQI1.1: “What is the impact on efficiency?”
RQI1.2: “What is the impact on scalability?”

The main research question aims to reveal what type of
database technology is most applicable for emergency service
systems. As previously stated there are a number of technical
solutions each with its own benefits, the question is if those
benefits are applicable to our use case. For this specific use
case, there are some requirements reflected as sub-questions
to extend the credibility of the main research question and to
evaluate the different solutions in more ways than just one.

Using software design we aim to contribute scientifically by
exploring the viability of GPU-accelerated databases in emer-
gency service systems that are working with large geospatial
data-sets. Using a reference system provided by a company
working with geospatial analytics system we will be creating
a generalized testing system. This system will be designed
with the same technology in mind that is in place today at the
company we are cooperating with, we will ingest and output
similar data as the reference system is ingesting and outputting
today but trimmed down to be objective and generalized.
The system will be able to switch the database part of the
system giving us the ability to use GPU-Accelerated database
technology or SPARK (A in-memory CPU database system
for analytics that uses parallelism across multiple machines)
instead of the currently used CPU database technology. [7]. We
also aim to contribute with a detailed description of how our
benchmarking is planned, prepared, conducted, and evaluated.
The technical contribution would consist of the development
of a testing pipeline with interchangeable databases that will
be part of an Azure cloud architecture.

In the methodology section, we discuss and present the
methodology we have chosen for our paper. In the Motivation

section, we briefly explain the reasoning behind this paper and
why this research is needed. In the Related work section, we
go through the related work that has been done concerning
CPU-acceleration, related work concerning GPU databases
and work that has been done using the NVIDIA CUDA.

II. METHODOLOGY

For this paper we will be using Design Science as our
methodology, we decided to use Design Science as our re-
search aims to solve a real problem and Design Science
entails applied research. Design Science contains an Analytic
Design Evaluation method called Optimization, this directly
correlates to our goal of researching possible improvements
on the reference system seen in Fig. 6. We will follow the
steps from DSRM (Design Science Research Methodology)
[8] since it should contribute with a clear structure of our
methodology. From the start, we already have a predefined
system that we during this thesis aim to optimize in terms of
efficiency. We will conduct tests on the system with the same
data and queries but with the different database solutions, the
data we will extract from these tests is the time it takes to
execute the queries. With this data we will use these custom
metrics to evaluate the current system:

o Speed increase (time in seconds comparing new technolo-

gies with the baseline system)

o Scalability of technology (time in seconds comparing
different hardware setups but the same technology and
data-set size)

o Scalability of data (time in seconds comparing the same
technology but with different sizes of data-sets)

III. MOTIVATION FOR THE STUDY

There is a knowledge gap present in the field of geospatial
analytics for the use cases concerning command and control
systems in the emergency system setting. Can we rely on
generic theoretical research of technology such as the GPU-
accelerated technologies to apply in every use case?

The continuous advancements in technology open up for
the creation of more powerful software and hardware but
also increasing the data usage exponentially while retaining at
least the same requirements as earlier when it comes to data
throughput, accessibility, and speed. This creates the demand
for reevaluation of the current status of systems, how they are
built up and what technologies should be used.

In addition to the two former motivations, we also got
presented the possibility to do research on real data, real
systems and having access to scenarios, requirements and a
baseline system. The data that we have been given access to
is real-world data on a large scale without using replication or
any other synthetic fabrication of data-sets.

IV. RELATED WORK

Our main topic surrounds the GPU-Acceleration of
databases and what impact this has on a database in com-
parison with other techniques to do data storage and process-
ing. This section will reflect on related work in the GPU-
Accelerated data analytic field and how our research relates

Geological Data Analytics Service

Fig. 2. System Overview

and extends into another what we can assume new field of
study. The most similar and also most recent research that has
been done in our area is the paper written by Evangelia Sitaridi
[1], this Ph.D. thesis goes into depth about comparing CPU
processing and GPU processing. It also covers large data-set
processing in GPU accelerated databases. Much of the recent
work is based on the NVIDIA CUDA API (What NVIDIA
themselves call a ”’parallel computing platform” which enables
use of NVIDIA GPU’s for general computing) and most of
the work that has been done in our field is concerning GPU-
accelerating geospatial analysis using this new technology
[11, [2], [6], [9], [10]. These papers also compare how GPU
implementations compare to CPU implementations, they are
similar to what we are doing but in other fields and with
the exception that we are working with databases while all
similar work we have found focuses on standalone software
running on GPU’s and how this is beneficial. On the database
side, there is also a few implementations of GPU accelerated
databases replacing old CPU systems [3], [11].

V. ARTIFACT

Our use case consists of 3 major parts depicted as A, B
and C components in Fig. 2, The artifact in question will
consist of steps A and B while C is present in a black box
format to fulfill the use case. A starts the procedure by doing
automatic data retrieval from a server (Open street maps,
using their open API) or by manually submitting a request
to Lastkajen (Vigverket’s open street database), the data is
in a raw geospatial format and supplies those to a custom
conversion tool. This step prepares the data to be compatible
with common database systems and sends the converted data to
component B. Component B requires CSV (Comma Separated
Values) format to be read in, in addition to being geospatially

formatted with WKT data it also requires a header being
present identifying each value for each row with support for
geospatial data types. For our artifact, we will need to support
most common geospatial data types for connecting geospatial
coordinates in the form of LINESTRING and POINT types.
A point is a O-dimensional object representing a single loca-
tion, there are multiple versions but the geographical version
used by us is a traditional longitude latitude spacial point.
The LINESTRING type is a one-dimensional sequence of
POINTS in a geographical space that creates line segments
connecting the POINTS. Component B is the database and
is located in the cloud and consists of at least one node
(Server, Virtual Machine, Container or another medium in a
cloud environment). Although it is not restricted to a single
node, as it is a dynamic database cluster that could consist
of multiple nodes sharing data or individually responsible for
data-sets. Sharing in this context referring to the replication
of data-sets on multiple hosts (shards) for redundancy and the
individual responsibility being using hosts and tables in single
responsibility pattern storing either geographical regions on
specified hosts or specific data points separately to maximize
distribution in load. This is the main concern for our artifact
performance and we have multiple configurations available.
In Fig. 2 part B we can see both a CPU and GPU solutions
connected as both will be independently tested. This is where
we tackle the core of the problem. After the database layer,
this use case connects outwards to C which is the various
services using geospatial data-sets such as map services. These
services are not tested by our artifact as they are not included
in the investigation regarding the database optimization for
geospatial types but represented as black box realization of a
use case.

The test system will allow us to conduct our tests inside a

GPU System
®

Road Network|Digestion |

OpenStreetMaps

Download
osm.pbf:latest

Check GeoData Date
Download if newer

DownloadServie

GeoConvert er\

[!)) CSV File o)
GeoConvertionService DatabaseDigestionSenice

|Database

GPU Database

i

IResponce 'lRequeﬂ (S0L)

Adapt;r \ }I

DashBoard Adaptar
iy
1
\

|

.:D\splay state Ihsel' Interaction

0OSM2SHP

COrﬁ{nand 7hd Control Dashboard
4

Dashboard '

Fig. 3. GPU System Flow

Deployment Diagram

Cpu system Deployment Diagram
— Gpu system
User Node |1
Comand and User Node 11
Caontral Dashboard Comand and
Contral Dashboard

Azure

Cpu Node

Cpu Node

B

i
1

T

1

s

DashBoard B &
Adapter Pre Processor

DashBoard & Data
Adapter Pre Processor

7 S

Kinetica GPU
configured database

configured database

Fig. 5. Reference architecture
Fig. 4. Reference architecture

Deployment Diagram
Refrence

Azure

Cpu Node

service #1 [B

Road
Databse

DashBoard
Adapter

service #2 [B

Map
Databse

Cold Storage Public Data Service

User Node

Comand and

Control Dashboard

Data stored as files B

Public availeble Data

Fig. 6. Reference architecture

pipeline and without affecting any other part of the pipeline
switch out the database part (GPU, CPU or SPARK) The
system was developed inside an Azure virtual machine so all
of the hardware variables could be controlled more efficiently.

A. CPU system

The flow of the two CPU systems (Windows SQL Server
and SPARK) is the following:

1) Data is located online.

2) Data is downloaded to cloud host drive.

3) Data is converted and filtered from OSM to SHP format.

4) Data is converted from SHP to CSV format.

5) Data is digested into the database.

6) Data is extracted from the database with SQL.

7) Software executes and processes the data extracted from
the database.

8) Data is sent to the front-end of the system to be
displayed.

This system is a stripped down version of a real system we
have observed within the company we work together with and
is minimized to only contain what we need to conduct our
tests and also to be more generalized.

B. CPU system Architecture

Using our reference architecture seen in Fig. 4. This is a
stripped down from all non-essentials version of a deployed
system. Created for testing and made into a simplified test
architecture for both CPU and GPU. They do differ in detail
but are essentially made to be equal and to be modeled after
their respective technologies benefits or restrictions. The CPU
system is bound to do post-processing on data retrieval after
SQL queries.

C. GPU system flow
The flow of the GPU baseline system is the following:

1) Data is located online.

2) Data is downloaded to cloud host drive.

3) Data is converted and filtered from OSM to SHP format.

4) Data is converted from SHP to CSV format.

5) Data is digested into the database.

6) We instruct the database to execute a series of queries
on the data in the database.

7) The response is sent to the dashboard adapter.

8) Data is sent to the front-end of the system to be
displayed.

CPU System

Road Network|Digestion |

QOpenStreetMaps

Download) Check GeoData Date
\osm.pbf latest Download if newer

DownloadServie

OSM2SHP

GeoConvert EI’_

SHP2CsSY

(] CSV File ’ i
GeoConverionService DatabaseDigestionService

Ssd

~D\atabase

CPU Database

Responce

\
Post Processor\ \

PostProcessor ' I|Request (SaL)

Fig. 7.

Since both the starting point and the ending point of this
system is identical to the baseline system replacing the old
system becomes possible.

D. GPU system architecture

The GPU architecture allows communication between the
dashboard adapter and the database without post-processing.
There is a requirement for a middleman component to translate
user input to queries but no processing of data outside the
database domain.

The databases implemented in the artifact and researched
are Windows SQL Server, SPARK and Kinetica. Both Win-
dows SQL Server and SPARK are referred to as CPU
databases as they do not use GPU acceleration and rely on the
CPU to perform all operations including but not restricted to
data management in form of data-set updates, inserts, retrieval
and also compute tasks like aggregate functions and UDF’s
(User Defined Function). SPARK, on the other hand, does
not support the same amount of data types as Windows SQL
Server and Kinetica, who both support the geospatial data
types used in this research. The approach is to store the data

Adaptei__\ ‘
DashBoard Adapter '
LY

)
ésplay stake User imeracton
| |

Command and Control Dashboard

Dashboard

CPU System Flow

as basic data types and in the database do conversions and
computations when needed. Kinetica uses both CPU’s and
GPU’s to perform its different operations. Kinetica uses the
GPU to be able to hot-swap commonly accessed data points
and even operations to be able to perform the most usual
requests in an optimized manner. This while also supplying
full support for extending the core database.

VI. TEST RESULTS

Both of our tests were constructed to be general in a
sense of basic operations like retrieval, updates, inserts and
to be specific for the geospatial data types in question like
aggregation statistics on the different geometrical data types.
These tests are included in the tool as a reference example on
how to measure differences between the databases but on the
same level. The tests were run concurrently four instances
at a time over exactly a hundred times. All the individual
data stored separately in files and then gathered and averaged
out to form a more accurate test result. To demonstrate
this we used the road network databases gathered from the
Swedish road authorities (See a visual representation in Fig.

Kinetica
= Sample Size x1 = Sample Size x5 = Sample Size x10

50000 ms
40000 ms
30000 ms
20000 ms
10000 ms

Oms

ASA AST RRA RRT AMWA AMWT FBRGA FBRGT RARA RART

Fig. 8. Kinetica Test Results

1) and sliced it up in full size ”Sample size x10” half-size
”Sample size x5” and one-tenth size of Sweden’s total road
data ”Sample Size x1” see column labels in Fig. 10, Fig. 8,
Fig. 9. All the test were run with our test strategy previously
mentioned using concurrency and multiplicity to average out
to a simulation of a use case. In this case for digesting and
retrieving data either by size or by a geospatial function.
The result in question is showing a type of query and size
in accordance to the amount of time taken for the query to
complete. Showing clearly in the sample test runs is a pattern
where SPARK mostly is held back by slow access time to
data making a trend of much slower performance than its
counterparts no matter sample size. Also what you can see
in Fig. 9 on column groups AMWA, AMWT, FBRGA, and
FBRGT is that the SPARK database has no data for the
geospatial tests, as mentioned in the artifact section this is
because of the lack of implementation and would require us
to rely on third-party plugins. Moving over to Kinetica we
can see a trend that after the initial data multiplication causing
a hit to the performance by more than tripling the time to
query completion. But the gap between the five and ten times
sample size is significantly reduced, pointing towards better
management of bigger data-sets. As for Windows SQL server,
the performance impact between the sample sizes is more
linear.

Mapping of terminology used in Fig. 10, Fig. 8, Fig. 9.

1) Column Representations:

o Sample Size x1:

One-Tenth Of Sweden’s Full Road Network.
o Sample Size x5:

One-Fifth Of Sweden’s Full Road Network.
o Sample Size x10:

Sweden’s Full Road Network.

2) Test name conversion:

o ASA: aggregationStatsAverage

SPARK

= Sample Size x1 = Sample Size x5 = Sample Size x10
50000 ms

40000 ms
30000 ms
20000 ms

10000 ms

OmsJI

ASA AST

ol

RRA

RRT AMWA AMWT FBRGA FBRGT RARA RART

Fig. 9. SPARK Test Results

Windows SQL Server

= Sample Size x1 = Sample Size x5 = Sample Size x10
50000 ms

40000 ms
30000 ms
20000 ms

10000 ms

Omsg-_gllg_Igllgg-;g-g_lglli

ASA AST RRA RRT AMWA AMWT FBRGA FBRGT RARA RART

Fig. 10. Windows SQL Server Test Results

o AST: aggregationStatsTotal

« RRA: retrieveRecordsAverage

« RRT: retrieveRecordsTotal

o AMWA: aggregateMinWKTAverage

o AMWT: aggregateMinWKTTotal

« FBRGA: filterByRadiusGeometry Average
« FBRGT: filterByRadiusGeometryTotal

« RARA: retrieveAllRecordsAverage

¢ RART: retrieveAllRecordsTotal

VII. DISCUSSION

What impact would switching from a conventional CPU
database to a GPU accelerated database have on emergency
systems using large geospatial data-sets?

When switching from the current standard of using con-
ventional CPU databases with geospatial data-sets to GPU
accelerated or SPARK solutions you might expect that there
would be a big improvement working with big data-sets.
However, our results indicate that with the amount of data
we used in our tests (2.8 million entry’s or road segments)
the conventional CPU database was more efficient than both
our GPU accelerated database and our SPARK database. This
could indicate that the size of our data-set is not substan-
tial enough to benefit from GPU accelerated or in-memory
databases like SPARK thus implying that for our use it would

be more efficient to use conventional CPU databases that
do not use any in-memory or GPU acceleration. Regarding
SPARK the only indication that we can see is that it is worse
than both the CPU database and the GPU accelerated database
in the regards of our use case.

Regarding scalability, we notice in our results that when
running the tests on bigger data-sets GPU experiences a more
linear and expected difference in time comparing different
data-sets, while GPU accelerated database displays more of
a flattening our curve indicating that given a big enough data-
set the GPU accelerated database becomes more efficient than
the conventional CPU database. When observing SPARK we
can also identify this curve indicating that even though it is
much slower than both other technologies, given big enough
data-sets it could be more efficient than the conventional CPU-
bound database.

To be able to conclude where the line is drawn where the
data-set is large enough so that we would benefit from a
GPU database instead of a CPU database new research could
be conducted using the system that we have developed but
ingesting bigger data-sets into the pipeline.

Other research that has been done concerning geospatial
data processing and Analysis [12] [6] shows that using GPU’s
does improve performance, our results indicate that given a
larger data-set the GPU accelerated database would have better
efficiency would corroborate these results.

VIII. THREATS TO VALIDITY

Most of the issues we ran into that we deem to be either
hindering our research or affecting the results of our thesis
are external factors. One problem we ran into was finding
database solutions using either GPU or SPARK databases that
also supported the data types we were working with, this
limited us and in the end, we only had the possibility to
use Kinetica as GPU database and SPARK as cluster CPU
database, this was an issue that made our results harder to
generalize. Another problem we noticed is several external
factors could possibly affect our test results, factors such as
the Azure virtual machine hardware not being fully consistent,
network connections interacting with the virtual machine,
heavy traffic to and from Azure might lead to inconsistencies
in test results and the location of the hardware geographically
also caused some delay. We have put in the following effort
to mitigate these external factors:

o We conducted our tests during hours that the servers were

not heavily utilized.

o All of the tests with the different databases were run on

the same geographical Azure server park location.

e We chose the same or equal hardware on all of the

database solutions.

During the creation of our artifact we came across the pos-
sibility of integrating all of the functionality of the reference
system directly into the different databases we ran tests on,
using different methods such as UDF’s and Python scripts.
Taking this route indicated it would result in a more efficient
system than what we ended up with in the end. The reason

why we did not take this route is that every system would have
to have its own unique implementation and would require a
complete factorization for each database. In addition, it would
also be almost impossible to generalize and almost impossible
to compare the different technology solutions with each other.
Since we wanted to end up with a testing pipeline with
interchangeable databases so we could compare the results
with as few changed factors as possible we chose to disregard
this option.

Data-sets used in the research are proprietary, as mentioned
earlier the original state of this data is open source and free
access from Vigverket or Open Street Maps. The unique
features inherent to the proprietary data-sets are not used in
any of the tests so does not affect measurement other than in
size. This creates a situation were the test results presented in
this paper are not reproducible to full extent.

IX. CONCLUSION

The use of tools like this enables us to perform better
assumptions when making decisions. This tool is directed
towards software entities whether it is private or public to
be able to prototype simple use cases mirrored in multiple
databases to later be able to make that now informed decision
on what platform to bind into their needs. Because databases
while sharing a common term and function are in fact very
specialized and affected by circumstances it is vital to make
that decision on what fits your needs with that in mind. The
conclusion we met when testing our use case and parameters
were that there were no benefits to change database from
the reference CPU Windows SQL Server database to an
in-memory database (SPARK) or GPU accelerated and in-
memory database (Kinetica).

X. FUTURE WORK

Throughout the research period we encountered multiple
obstacles in different forms, and we made a habit of docu-
menting our findings to support further studies in the future
were circumstances might have changed. Included in this is
the following:

1) Dockerization utilizing cross-platform containers.

2) The current state of GPU analytic databases for analyt-
ics.

3) UDF “User Defined Functions” usage.

A. Dockerization utilizing cross-platform containers

While developing the artifact we wanted to stick to an
easy to deploy anywhere solution, we started adopting Docker.
Because the reference system had just been ported to Docker
this seemed like an appropriate time to follow that path and
gain some simplicity in managing the test system architectures.
These components are however bound to Windows containers
and all our GPU database solutions were Linux only systems.
But as Windows now comes with a minimum Linux image
and LCOW Docker can now run both Linux and Windows
containers, simultaneously. We set up the foundation, and it
proved to be compatible with Docker-compose. An issue first

f-"‘ 76 PO Akt
/ 75
A Tan
. Goteborg 5
— iz
7

70
3

37 Delsjgomrdder
i
G,

Anggdrdshergen

Fig. 11. UDF A* Resulting Path

arose when we tried to deploy in the cloud. Azure and AWS
also both have nested vitalization switched off and because
every user instance in Azure is a virtual one we cannot start our
Linux Docker containers. Although this is and will not always
be the case. Azure has just started allowing this by activating
necessary components in their vitalization software for some
of its heavy CPU bound hardware but not for the instances
needed for our research. This might change in the future as less
overhead is supplied when you can containerize components in
a system and newer hardware might allow newer technologies.

B. The current state of GPU analytic databases for analytics

There are two highly recommended native GPU-accelerated
databases (that is not an add-on plugin for an older already
existing database but actually created with GPU in mind)
when it comes to real-time analytics in the cloud, MapD, and
Kinetica. We have been in contact with both these database
providers extensively and each offer different strengths and
weaknesses. Unfortunately, at the end of the implementation of
this project, MapD does not support the geospatial data types
needed for our data-sets. When talking with their development
team a patch to allow this is en route for beta-deployment after
summer 2018.

C. UDF "User Defined Function” usage.

As an investigation into geospatial data analytics, we ex-
plored the usage of UDF’s and “offloading” complex com-
puting functionality to the database. We tested this by imple-
menting multiple samples into our artifact. The samples in
question are compatible with the sample data also included in
the artifact in the form of a geospatial road network. The com-
putation is in form of an A* [13] and a Dijkstra’s path-finding
algorithm [14] written in Python. Because Kinetica supports
on the fly UDF’s which functionality was also implemented to
be able to via our test system update or create new UDF’s and
upload to a host. The samples work by taking two parameters
in form of two geospatial points present in the road network.
The UDF will then calculate the shortest path between these
two points in the database. The result will create a new table in
the database consisting of one LINESTRING representing the
optimal path and is visualizable in the database itself, see Fig.
11. UDF’s Are supported in all three databases, but in different
varieties. SQL Server has its own TRANSACT-SQL language

to write UDF’s in, SPARK has booth Java and Python but
in this case, does not support the geospatial data types to be
able to run the path-finding UDF provided. There could be a
case for using third-party plugins or manual data conversion
and libraries to be able to implement a similar UDF to the
one we provided along with our artifact. Kinetica supports
both Python and Java with the addition of access to CUDA
functionality when running in GPU mode(Required to access
GPU functionality).

D. Working with bigger data-sets

As previously mentioned in the discussion continuously
ingesting bigger and bigger data-sets into our system should
provide us an answer to the question “at what amount of data
does the GPU or SPARK database become more efficient than
the CPU database”. This could also give us an indication of
what technology scales best working with huge data-sets.

REFERENCES

[1] E. Sitaridi. (2018) Gpu-acceleration of in-memory data
analytics. [Online]. Available: http://www.cs.columbia.edu/~eva/gpu_
thesis.pdf[Accessed1Mar.2018]

[2] S. BreB, F. Beier, H. Rauhe, K. Sattler, E. Schallehn, and G. Saake,

“Efficient co-processor utilization in database query processing,” Infor-

mation Systems, vol. 38, no. 8, pp. 1084-1096, 2013.

(2018) Go.mapd.com. [Online]. Available: http://go.mapd.

com/rs/116-GLR-105/images/MapD%20Technical %20Whitepaper%

20Summer%202016.pdf[Accessed29Mar.2018]

[4] P. Bakkum and K. Skadron. Accelerating sql database operations
on a gpu with cuda. [Online]. Available: https://www.cs.virginia.edu/
~skadron/Papers/bakkum_sqlite_gpgpul0.pdf[Accessed29Mar.2018]

[5] M. Shukla and J. Asundi, “Considering emergency and disaster manage-

ment systems from a software architecture perspective,” International

Journal of System of Systems Engineering, vol. 3, no. 2, 2012.

N. Stojanovic, “High performance processing and analysis of geospatial

data using cuda on gpu,” Advances in Electrical and Computer Engi-

neering, vol. 14, no. 4, pp. 109-114, 2014.

[71 M. Zaharia, M. Chowdhury, M. Franklin, S. Shenker, and
I. Stoica. Spark: Cluster computing with working sets.
[Online]. Available: https://www.usenix.org/legacy/event/hotcloud10/
tech/full_papers/[Accessed26Mar.2018]

[8] A. Nilsson. (2018) Design research. [Online].

Available: https://gul.gu.se/courseld/82758/node.do?1d=40469641&ts=

1518448734215&u=1940967794[Accessed1Mar.2018]

Y. Xia and L. Kuang, “Accelerating geospatial analysis on gpus using

cuda,” Journal of Zhejiang University, vol. 12, no. 12, pp. 990-999,

2011.

[10] J. Li, M. Finn, and M. Blanco Castano, “A lightweight cuda-based

parallel map reprojection method for raster datasets of continental to

global extent,” ISPRS International Journal of Geo-Information, vol. 6,

no. 4, p. 92, 2017.

(2018) How gpu-powered analytics improves mail delivery for

usps. [Online]. Available: https://www.datanami.com/2016/07/25/

gpu-powered-analytics-improves-mail-delivery-usps/[Accessed 1 Apr.

2018]

[12] J. Zhang and D. Wang. (2014) High-performance zonal

histogramming on large-scale geospatial rasters using gpus and

gpu-accelerated clusters. [Online]. Available: https://ieeexplore.ieee.org/
abstract/document/6969489

R. Belwariar. A* search algorithm. [Online].

/fbrilliant.org/wiki/dijkstras-short-path-finder/

[14] T. Abiy, H. Pang, W. Williams, J. Khim, and E. Ross. Dijkstra’s

shortest path algorithm. [Online]. Available: https://www.geeksforgeeks.
org/a-search-algorithm/

3

[l

[6

—

[9

—

(11]

[13] Available: https:

