
	
	
	

	
	
	

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2019

	
	
	

	
	
	
	

The impact of gamification in unit testing
A controlled experiment
Bachelor of Science Thesis in Software Engineering and Management	
	

Shafiq Saloum
Fredrik Rissanen

	
	
	

	
	
	

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2019

	
The	Author	grants	to	University	of	Gothenburg	and	Chalmers	University	of	Technology	the	
non-exclusive	right	to	publish	the	Work	electronically	and	in	a	non-commercial	purpose	make	
it	accessible	on	the	Internet.		
The	Author	warrants	that	he/she	is	the	author	to	the	Work,	and	warrants	that	the	Work	does	
not	contain	text,	pictures	or	other	material	that	violates	copyright	law.		
	
The	Author	shall,	when	transferring	the	rights	of	the	Work	to	a	third	party	(for	example	a	
publisher	or	a	company),	acknowledge	the	third	party	about	this	agreement.	If	the	Author	has	
signed	a	copyright	agreement	with	a	third	party	regarding	the	Work,	the	Author	warrants	
hereby	that	he/she	has	obtained	any	necessary	permission	from	this	third	party	to	let	
University	of	Gothenburg	and	Chalmers	University	of	Technology	store	the	Work	
electronically	and	make	it	accessible	on	the	Internet.	
	
	
	
	
	
	
	
	
The impact of gamification on unit testing
A controlled experiment to determine whether the introduction of gamification in unit testing affects the
motivation and interest on developers.

SHAFIQ SALOUM
FREDRIK RISSANEN

© SHAFIQ SALOUM, January	2019.
© FREDRIK RISSANEN, January	2019.

Supervisor: JAN-PHILIPP STEGHÖFER
Examiner: RICHARD SVENSSON BERNTSSON

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

[Cover:
A preview of the unit testing gamification tools. Image and explanation can be found in the result section on
page 6.]

The impact of gamification in unit testing
A controlled experiment

Fredrik Rissanen
Computer Science and Engineering

Gothenburg University
Gothenburg, Sweden

Email: gusrisfr@student.gu.se

Mohamad Shafiq Saloum
Computer Science and Engineering

Gothenburg University
Gothenburg, Sweden

Email: gussalomo@student.gu.se

Abstract—[Context] Unit testing is one of the most widely used
tools to find bugs in software projects. The task of writing unit
test is by some considered to be a tedious task. When finding
a task tedious there may be a lack in motivation which can
reduce the quality of the tests resulting in less bugs found.
[Objective] In this research, we examine gamification and its
effect on developer motivation and quality of unit tests. [Method]
We have conducted a controlled experiment with 14 subjects that
wrote unit tests to find bugs where we measured the motivation
levels, the number of bugs found and the percentage of path
coverage. [Results] The results did show a statistically significant
difference between the control group and the experiment group
where the experiment group was more motivated and found more
bugs. However, the results did not show a statistically significant
difference for path coverage. [Conclusion] Our research showed
statistically significant difference when using gamification for
motivation and number of bugs found, not when looking a path
coverage. However, further research is required with a larger
number of subjects and over a longer period of time to find
more conclusive results.

Keywords-gamification; unit testing; path coverage; motiva-
tion; bugs;

I. INTRODUCTION

Unit testing is a verification method to reveal program
deficiencies. Unit testing is either performed by a developer
or by a dedicated tester. The developers and or testers are
responsible for ensuring that the functionality of the code is
correct [1]. Testing is one of the most widely used software
validation techniques [2] due to its capability to find many
bugs in software [3], however, the task of writing unit tests can
be a repetitive and time-consuming task that many developers
feel is tedious [4].

The quality of unit tests varies and the quality is highly
dependent on the skill of the engineer who wrote the test [5].
If the developer is under the pressure of strict deadlines the
developer might not be motivated [5] to follow best practice
guidelines [6] leading to increased maintenance cost [5].

Unit testing is mainly approached by providing the devel-
opers with guidelines on how to perform the tasks [5]. The
guidelines often contain information such as recommended
amount of testing and what format the tests should follow. The
issue in treating unit testing like any other development task
is that there might be a lack in motivation when performing a
repetitive task such as unit testing [4].

When attempting to motivate and engage users, the concept
of gamification has shown beneficial effects [7] [8]. Also,
gamification has shown to assist in learning and to reduce the
number of failures, in particular in cases where a new skill is
used [9].

Research approach: This research follows an established
framework called The Kaleidoscope of effective gamification
[10] to identify suitable gamification elements , and integrate
the prototype in to an environment where developers com-
monly work.

The field of gamification in software engineering has gotten
some attention and research over the last decade [8] [7] [11].
Gamification is also research to some extent when it comes
to software testing [12] [13] and we only found one paper
that has a strict focus on gamification in unit testing [14].
These papers cover similar topics as this paper will. However,
these papers are researched by multi-vocal literature ,case
studies or design science where the participants subjectively
state the difference before and after they were exposed to
gamification. Our research is needed because there is still too
little research in gamification for unit testing and this research
will compare subjects that are exposed to gamification and
subjects who are not. Another motivation for this study is
that it follows an established framework as mentioned above.
The benefit of using an established framework together with
a controlled experiment is that it will be easy for other
researchers to replicate this research to either confirm or
disprove our findings. With the importance of unit testing and
the risk that the developer feel that the task is tedious we
believe that gamification is important to further research in
relation to unit testing. To research this field the paper will
aim to answer the following research question:

RQ1: Does gamification increase the motivation of
developers and improve the quality of unit tests?

A controlled experiment was performed to answer the stated
research question. The experiment was conducted with 14
participants. Seven of the participants wrote and executed unit
tests in a gamified environment, the remaining seven wrote
and executed unit tests in a regular testing environment. This
research aims to test if gamification can increase developers’
motivation and the quality of unit tests.

The remainder of the paper is structured as follows: Section
II discusses the background of gamification and unit testing
in software engineering. Section III explains the research
methodology for this paper giving an understanding on how
to replicate the research. Section IV contains the results from
the experiment. In Section V the authors discuss the results
and what implications they have. Section VI concludes the
research.

II. BACKGROUND AND RELATED WORK

This section covers the background of this research as well
as previous, related studies. Unit testing is discussed and the
use of gamification elements in software engineering.

A. Unit Testing in Software Engineering

The definition of unit testing is according to Whittaker: “unit
testing tests individual software components or a collection
of components. Testers define the input domain for the units
in question and ignore the rest of the system.” [15]. Unit
testing is an attractive quality management tool where software
components are tested in isolation [16].

The IEEE standard for software unit testing [6] explains
how a unit test should be planned, executed, and evaluated.
The standard is quite extensive, and it was used in this research
to assist in what features of testing should be gamified.
Even though the standard is a well-crafted document, it is
not especially pedagogic. This research aims to implement
the standard in to software with the help of gamification to
deccrease the learning curve.

In the research by Yao et al. [1] the importance of unit
testing is discussed. The authors stress the importance of unit
testing as a verification method to find program deficiencies,
and it is often the developers’ responsibility that the code
functions correctly. It is then important that the developers
know how to write good unit tests, since the quality of the
tests is highly dependent on the expertise of the developer
[17]. The expertise of developers may vary though, as stated
in the research by Bavota et al. [5] the authors state that not
all developers follow best practice guidelines [6], mostly due
to inexperience. The authors also state that not following these
guidelines will eventually lead to increased maintenance cost,
especially for unit tests, and as Clark et al. [2] stated, bugs
found late are vastly expensive for companies.

Testing usually accounts for half of the research and de-
velopment budget in software development organizations [3].
There is reaserch that tries to automate the creation of tests
by different software solutions and decrease the cost, however,
the automated software can still only find obvious faults [3]
and there is still a need for a human to perform testing.

While these existing studies investigate the importance of
testing and the cost of bugs, there is to our knowledge no
studies from the perspective of unit testing that is dedicated to
improve the unit testing process by making it more engaging.

B. Gamification in Software Engineering

The definition of gamification is according to Deterding et
al. “the application of game design elements in non-game
contexts.” [18] where non-game context for this research
will be unit testing. The impact of gamification in software
development is analyzed by Platonova and Berzisa [7] and
their research indicates that gamification could improve the
quality of development, and also assists in learning new skills.
The authors define relevant phases of development where
gamification is appropriate such as definition of requirements,
coding and testing.

In software development gamification is often designed ad-
hoc [4] [8] leading to solutions that are hard to replicate and
evaluate. This research aims to create replicateable gramifi-
cation research and bases its design on previously studied
frameworks from Garcia et al. [4] and Kappen & Nacke
[10]. Gamification aims to foster engagement in tasks that
developers may find tedious and boring such as unit testing
[4] by rewarding them and making the work fun. However,
it is important to not only focus on rewards and extrinsic
motivation [8] [10], there must also intrinsic motivation in
terms of clear goals and the clear connection to personal
development for the developer.

The research by Pereira et al. [8] systematically maps and
analyzes previous research in the field of gamification. The
paper states that there are many benefits shown in gamification,
mainly in motivation and in engagement. However, the paper
concludes that previous research is only preliminary or even
immature. The previous research is mainly considered to
be immature in the terms of poor methodology description
making the research hard to replicate. The lack of research
methodology in previous research motivated this research
to create a unit testing gamification method with a sound,
replicable methodology to further extend to the scientific
knowledge in gamification.

Gamification have been applied in several software areas
such as educational, development and testing. In education
research have shown promising results where the students
became a lot more motivated and engaged in class than
before [9] [11]. Gamification for development have also shown
beneficial effects, not only for facilitating the work but also in
learning [7]. In the research by Pedreira et al. [8] they argue
that gamification is a trend that might not always be suitable,
however, they do believe that gamification is suitable for unit
testing. In the reseach by arnarsson and jóhannesson [14] they
perform a case study with a company where gamification is
used to achieve path coverage and detect unit test smells.
In study the developers were awarded badges or points and
placed in a leaderboard based on the number of unit test
cases written, path coverage and unit test smell detected.
Their results indicated that for almost all subject’s gamification
increased motivation and more test cases written. Their results
indicate that leaderboards were the most appreciated tool,
however they believe this might have been a result of an
unproportionate badge system. In the reseach by G. Fraser

[13] on the other hand he believes that points is the most
suitable tool.

III. RESEARCH METHODOLOGY

A controlled experiment [19] was chosen as the research
method for this paper.

A. Experiment Design

The experiment is designed as a one-factor experiment
with two treatments. The factor is the inspection process
Unit Testing. The first treatment is the use of software with
gamification and the second is the use of software without
gamification. The subjects using the gamified software are
referred to as the experiment group and the group using
regular software is called the control group. The experiment
was run on the experimental unit which was a Java project
with planted bugs for the subjects to discover with JUnit tests.
The subjects applied the different testing techniques (testing
with and without gamification) on the experimental unit. The
research aims to answer the research question stated in section
I:

RQ: Does gamification increase the motivation of devel-
opers and improve the quality of unit tests?

In this research, the quality of unit tests is determined
by the number of bugs found and the path coverage in the
project. Quality of unit tests can be determined in many
ways. To find bugs is the main goal when writing unit tests
making it an obvious aspect to measure. Bugs were distributed
across the system and the subjects did not know where. For
more information about the system please refer to section
III.C. In order for them to make sure that they have tested
all outcomes path coverage was also found as a suitable
aspect to measure. Based on the aspects of test quality and
motivation the following dependent variables were formulated:
the number of bugs found (numBugs), percentage of paths
covered (pathCoverage), and the motivation to complete the
task (motivation). This leads to the following hypotheses:

– H0numBugs: There is no significant difference in num-
Bugs between the control group and the experiment
group.

– H1numBugs: There is a significant difference in numBugs
between the control group and the experiment group.

– H0pathCoverage: There is no significant difference in
pathCoverage between the control group and the experi-
ment group.

– H1pathCoverage: There is a significant difference in
pathCoverage between the control group and the experi-
ment group.

– H0motivation: There is no significant difference in mo-
tivation between the control group and the experiment
group.

– H1motivation: There is a significant difference in motiva-
tion between the control group and the experiment group.

The experiment investigates whether there is a causal re-
lationship between the use of gamification elements and the

motivation of the developers. Also, if there is a correlation
relationship between the variable motivation and the variables
numBugs and pathCoverage.

B. Gamification Design
The design of the gamification elements was decided to

follow kaleidoscope [10] a model for effective gamification.
The kaleidoscope model consists of a core and four layers
as seen in Fig 1. The core establishes the focal point of
player experience [10] and represents the core objectives of
the gamification design. For this experiment the core objectives
are to increase the developer motivation and to improve the
quality of unit tests. The Motivated behavior level focuses
on the different intrinsic and extrinsic motivations, for this
experiment it means to find what is an engaging gameplay
experience for the intended end user.

Intrinsic motivations are the motivations that drives the
developer without continuous external influence. This is fa-
cilitated by setting up goals for the individual developers for
them to see how their competence level increases. Intrinsic
motivation is hard to design for an experiment since it focuses
on long-term effect. However, the experiment aims to facilitate
the intrinsic motivation by setting up a reachable goal (finding
all the 10 bugs and reaching 90% path coverage). 90% test
coverage was decided instead of 100% to implicate that it is
more important to find all the bugs than to get 100% coverage,
coverage is after all not very useful if it does not find the bugs.
The number of bugs planted was decided by the motivation of
having a task that was not too easily achieved but still possible
to achieve. It is important that it is possible to win in terms
of extrinsic motivation [10].

The extrinsic motivations are external motivators such as
badges, points and leaderboards. The Motivated behaviour
level drives the Game experience level being rules and struc-
ture for the design. The experiments rules are conveyed in text
form at the start of the experiment where the subjects will have
time to read the goals and the challenges that they are facing.
The game design process layer is the actual design that the
subjects will see.

The features that were implemented are points and badges.
Points were selected since it assists in adding up to a sum
which is easily measurable and easy for the developer to
understand. One point was given per bug found. Badges were
selected since it works as a milestone for the developers to
see where they are and to see that the points sum up to
something. Two types of badges were implemented. The first
type was given based on the sum of points received for finding
bugs. The second type was given based on achieved path
coverage. Leaderboards were considered but excluded, having
a third element might be too much to grasp for 60 minutes of
testing, and leaderboards bring a competitive element which
was not sought after in this experiment. How a subject reacts to
competition is very individual and possibly harder to measure,
therefore the authors decided to only make the experiment
with points and badges. When a test is executed a file will
open displaying the current points and badges achieved. For

Fig. 1. Kaleidoscope of effective gamification.

implementation details please refer to section C. The badges
implemented are called:

* Bug explorer (1 points)
* Bug finder (3 points)
* Bug slayer (6 points)
* Bug master (10 points)
* Path explorer (50% path coverage)
* Path finder (75% path coverage)
* Path master (90% path coverage)

C. Technical implementation

To avoid bias from the author’s a project that matched
the criterion was downloaded from Github. The project is a
Java project in a typical object-oriented modular way. The
project was examined by the developers and then bugs were
introduced. The bugs that we introduced are logical errors.
An example of a bug that is introduced is in a statement to
check if a is less than b instead of a is less than or equal to b
making the statement provide a faulty output. The downloaded
project contains the functionality of a food ordering system. It
has a command line interface where the subjects can test the
system and see how it works. The system works in the way
that you can add either drinks or lunch. Drinks and lunch has
in its’ own categories with items. You can at any time add,
remove, cancel or complete the order. When an order is placed
the total is displayed. The structure of the project is split up
in to models, views and controllers. The models contains all
the different type of items available for ordering. The view
contains the text output for the command line interface in
which the subjects can test the system. The controller controls
the logic in which the view is controlled. We added a skeleton

test class with an example of a test that finds a bug and a
structure that the subjects can use when writing tests. The
project is approximately 600 lines of code and there are 10
planted bugs. Due to the limited time the developers have to
perform the experiment the complexity of the placed bugs is
decided to be kept low.

Integration of gamification into Eclipse is done by using
the Java library ANT [20] to generate JUnit reports program-
matically. The generated reports in HTML format includes the
points and the badges achieved based on the test result.

D. Experiment operation
The experiment was run on two different occasions, once

with the experiment group and once with the control group.
The groups were decided to be kept apart so that they
could not influence each other. Both groups had the same
experimental environment: Windows and running the same
version of eclipse. At the beginning of the experiment the
subjects received an introduction to the experiment. The in-
troduction covered background information about the project
and an example of what it should do. The subjects received
information on the location of the test skeleton files and we
walked through a very basic example with a projector where
we wrote a test case for a part of the code and found a bug.
The introduction took 12 minutes for the control group and 15
minutes for the experiment group. In the extra three minutes
for the experiment group we explained where to press to
activate the gamification features and where the report landed
after it was generated. After the introduction both groups had
one hour of testing.

When questions arose, the question was repeated to all
subjects to make sure that everyone received the same infor-
mation. During the testing phase the subjects wrote unit tests
in their skeleton test file to discover bugs and then they were
supposed to resolve the bugs. For the experiment group they
first received a point when they resolved a bug. Every time the
experiment ran a test case to see if they had resolved a bug
a new report was generated for the subject to look at and see
their current points and badges. The subjects were distributed
across a computer lab so that there would be no risk of looking
at other participants’ screens and compromising the results.

When the testing was done all subjects answered a survey
for 15 minutes. The purpose of the survey was to gather
qualitative data about the experiment. Mostly about how
motivated the subjects were to complete the task. Quantitative
data was gathered from the computers that the subjects used
directly after the experiment was completed. The data we
gathered came from source files and the generated reports for
the experiment group. From the data we derived the number
of bugs found and the path coverage.

E. Data collection and analysis
The sample consisted of 14 developers with an academic

background in software engineering. The subjects chosen had
been students within the past year and all had experience with
both Java and Eclipse. Since all subjects just recently left

TABLE I
THE DISTRIBUTION OF SUBJECTS’ EXPERIENCE FROM THE INDUSTRY

Experience in industry Control group Experiment group
One year 4 4
Two years 2 2
Three years 1 1
Total 7 7

school the homogenity is very high. Also, the high homo-
geneity of student knowledge yields higher internal validity
[21].

We sent a pre-experiment survey to 30 people that had
achieved a bachelor’s degree in software engineering within
the latest six months. Out of the 17 respondents we received
3 were filtered out. One was filtered out because of total lack
of industry experience whereas all the other subjects had. One
was filtered out because having a lot more experience than
the rest of the subjects. And one was filtered out because of
too much experience of unit testing, the potential subject was
working as a tester. After the filtering we had an even amount
for all the years of experience as can be seen in table I. So,
for each group we had 4 participants with 1-year experience
in industry, 4 participants with 2 years of experience and 2
participants with 3 years of experience. All of these subjects
were working at the side of school. All subjects were working
as junior software developers, 8 of them were working as java
developers and 6 of them were working as c# developers. To
divide up the control group and the experiment group we first
divided the subjects in to years of experience, we then looked
at their current role and programming language and made sure
that they would be distributed equally. We then distributed
the sub-groups in to the experiment group and control group
through random sampling to even out difference in knowledge
and skill of testing from the subjects.

To analyse that collected data we performed statistical
analysis. The analysis was performed on the quantitative data
but also on the answers from the questionnaire. To determine
the most fitting statistical method in order to compare the
two sample groups data was gathered in the experiment
and presented in diagrams. The number of subjects was a
determining factor to which method to be used. This study
contained a relatively small sample group which in turn made
the data non-normally distributed. The small sample made is
disregard a T-test and instead focus on a fitting method for
data which is not normally distributed. The Mann-Whitney-
Wilcoxon U test [22]. test was used to produce a p-value in
order to determine whether there is a statistical significance
between the two data sets.

F. Validity threats

There are several threats to validity in this study to be
considered. The following sections will present and discuss
the validity threats for our study and how we have tried to
mitigate them. The validity threats discussed are a selection
from the threats from [23]. The biggest validity threat for this
study is the number of subjects. The number of subjects makes

it hard for us to trust the reliability of the statistical analysis.
This threat makes this study to be considered as an indication
to where the study of gamification in unit testing might lead
and calls for more research to either confirm or reject our
findings.

Conclusion validity: The experiment included humans as
subjects. When working with humans there is always a pos-
sibility that the amount of knowledge, experience and skill
in the area varies from individual to individual. These factors
can affect the result of the conducted experiment by making
one group looking better than the other. We believe that we
minimized the risk of these factors affecting the conclusion
validity through random sampling.

Construct validity: To make sure that the treatment corre-
sponded to the cause we were interested in [23] we made
sure that all participants had experience with unit testing and
we explained clearly how the experiment would be conducted
with examples. We believe that this mitigated the largest threat
to construct validity. Also, to made sure that there were no
misinterpretations on the instructions we walked around in the
room monitoring screens and were available for questions.

Internal Validity: A threat to internal validity is when a
factor other than the treatment affects the outcome of the
experiment [23]. To mitigate this threat, we controlled all
variables we could. The participants used computers that we
provided with software that we had tested. The subjects re-
ceived that same time to test, the same introduction except for
the gamification features and the same questionnaires except
for the gamification features. To make sure that the experiment
was understandable we conducted it in two iterations with
two different developer. One developer for each iteration. In
the first iteration we improved the introduction and after the
second iteration we were assured that there was no ambiguity.

Before the subjects were selected they had to answer a
questionnaire about their experience level as a developer and
their knowledge of Java and unit testing. We believe that by
the similar knowledge in unit testing presented by the answers
in the survey and by random sampling the experiment group
and the control group that we have mitigated most of the
internal validity threats. Also, since all the subjects volunteered
to join with no external reward we believe that the risk was
low of having subjects with very high respectively very low
motivation levels.

External Validity:
Even though the subjects we chose came from the same

education all of them now have jobs, most at different compa-
nies with different roles. However, we cannot generalize that
we elicited all possible context information since some of the
subjects had more experience than others in unit testing. Also,
since the number of subjects we tested on was low, we cannot
generalize the results.

A threat to the external validity is that all subjects recently
finished the same education. The same education that the
authors studied. This makes it hard to generalize the results
since our education might have affected how the experiment
was created. To mitigate this threat the project was download

Fig. 2. Result from the post-experiment questionnaire where the experiment
group is asked if badges and points motivated them to write better unit tests.
The scale on the x-axis is the number of participants

from Github and not created by the developers. Also, we made
sure that all subjects now had jobs at different companies and
the subjects had different years of experience since some of
them had been working while studying. We believe that this
selection partly mitigated the threat to external validity.

IV. RESULTS

The result section provides the results gathered from the
experiments. There are quantitative data gathered from the
project we designed using Eclipse and qualitative data from
the questionnaires.

A. Gamification features
This section provides the opinions gathered about the im-

plemented gamification features. The implemented features are
badges and points where the points summed up in to badges
as stated in the methodology section. As can be seen in Fig 2
the badges motivated most of the subjects to write better unit
tests while on the other hand there was a majority that felt
that the points did not motivate them to write better unit tests.
At this point the developers did not know if badges or points
actually made them write better unit tests, but they stated that
they were motivated to try to write better unit tests. There were
indications from the free text comments in the questionnaire
that the badges were more appreciated due to clearer and more
playful graphical representation. The gamification features can
be seen in Fig 3 where one point is awarded for every resolved
bug. In the figure shown all bugs are resolved yielding all bug
badges and a path coverage of 92% is achieved yielding all
path coverage badges. When asking the subjects how hard it
was to use the tool most answered that it was neither hard nor
easy as seen in Fig 4.

B. Motivation to write unit tests
There are two charts displayed in Fig 5 the left one showing

how motivated the experiment group was in general when
writing unit tests and the right one showing how motivated
they were in completing this task. The results incline that
subjects were more motivated to complete the task with
gamification features compared to when writing normal unit

Fig. 3. The gamification features as displayed to the subjects

Fig. 4. Result from the post-experiment questionnaire from the experiment
group showing the responses of how difficult the subjects believed the
gamification system was. 1 is very easy and 5 is very hard

tests. If we compare the control group to the experiment group
in motivation to complete the task as seen in Fig 6 it is visible
that the experiment group who used the gamification were
generally more motivated to complete the task.

When analysing the data from Fig 5 in table II the mean
value of pre and post experimental results of the surveys
together with a difference between them is displayed. A Mann-
Whitney-Wilcoxon U test was used to find the p-value in
order to determine the statistical significance. The result of
the p-value is 0.11 which means that there is no statistical
significance between the two sample groups. This analysis
compared the experiment groups usual motivation to write unit

Fig. 5. The experiment group results from the pre-experiment questionnaire
on the left and post-experiment on the right. 1 is ”Very unmotivated” and 5
is ”Very motivated”

Fig. 6. Results from the post-experiment survey where the control group is
on the left and the experiment group is on the right. 1 is ”Very unmotivated”
and 5 is ”Very motivated”

TABLE II
DATA SHOWING THE MOTIVATION LEVEL FOR THE EXPERIMENT GROUP

BEFORE AND AFTER THE EXPERIMENT

Experiment group Value
Pre-experiment motivation 2.71
Post-experiment motivation 3.57
Difference 0.86
P-value 0.11

test compared to how motivated they were to complete this
task.

When analysing the data from Fig 6 in table III it is visible
that the difference between the mean values is 1.43. A Mann-
Whitney-Wilcoxon U test was performed to find the p-value
in order to determine if there was a statistical significance
between the two sample groups. Results of the test shows
that the p-value is 0.017 which means that there is a 98.3%
chance that we are not rejecting a true null hypothesis. This
data conflicts with the data from the paragraph above which
stated that there was no statistical difference when comparing
the experiment group before and after the experiment. How-
ever, since the hypothesis we wanted to test H0motivation is
whether there is a statistically significant difference between
the control group and the experiment group we can reject the
null hypothesis.

By looking at the number of unit tests written and path-
Coverage it is visible in Fig 7 that the gamification features
motivated the subjects to write more tests and achieving high
pathCoverage. By comments in the free text field we gained
insights that some focused more on just covering all the code
to get badges for pathCoverage instead of actually finding the
bugs.

TABLE III
DATA SHOWING THE MOTIVATION LEVEL FOR THE CONTROL GROUP AND

EXPERIMENT GROUP AFTER THE EXPERIMENT

Experience in industry Control group Experiment group
Mean (x bar) 2.14 3.57
Difference 1.43
P-value 0.017

Fig. 7. Result from the post-experiment survey from the experiment group
where 1 is ”Made me a lot less motivated” and 5 is ”Made me a lot more
motivated”

TABLE IV
U-TEST ON QUANTITATIVE RESULTS GATHERED FROM ECLIPSE FOR BOTH

THE CONTROL GROUP AND EXPERIMENT GROUP FOR NUMBER OF BUGS
FOUND

Statistical values Control group Experiment group
Mean (x bar) 3.0 6.2
Standard deviation (�) 1.63 2.87
p-value 0.045

C. Quantitative data

It is observable in the Table IV that the experiment groups’
mean was 6.2 for numBugs found while the control groups’
mean was 3.0 for numBugs found. Table IV describes the
statistical significance difference between the two data sets.
The different number of detected bugs for both group was
statistically significant under a Mann-Whitney-Wilcoxon test.
The p value for the U-test came out to be 0.045, shown in
table IV, which indicates that there is a statistical significance
as stated before. A p value lower that 0.05 equates to a
statistical significance in the given data sets when compared in
a Mann-Whitney-Wilcoxon test. A boxplot further illustrates
the bugs found in figure 8. Since we have been able to show
a statistically significant difference between the control group
and the experiment group we can reject the null hypothesis
H0numBugs.

Table V showcases the mean, standard deviation and the p-
value for both the control group and the experimental group.
The mean was 40.6% for the control group and 63.9% for the
experiment group. The Mann-Whitney-Wilcoxon test provided
a p-value of 0.141 which is significantly higher than 0.05
which in turn mean that there is no statistical significance
between the two samples. The boxplot in Fig 9 further helps
illustrate the standard deviation for each set of samples.
Since we have shown that there is no statistically significant
difference between the control group and the experiment group
we cannot reject the null hypothesis H0pathCoverage.

V. DISCUSSION

In this section we discuss the meaning of our results and
how they relate to our research question:

Fig. 8. Boxplot of both the sample groups compared to each other. Where
the y-axis is in %, 1 is the control group and 2 is the experimental group.

TABLE V
U-TEST ON QUANTITATIVE RESULTS GATHERED FROM ECLIPSE FOR BOTH

THE CONTROL GROUP AND EXPERIMENT GROUP FOR PATH COVERAGE

Statistical values Control group Experiment group
Mean (x bar) 40.6% 63.9%
Standard deviation (�) 23.5% 29.5%
p-value 0.141

RQ: Does gamification increase the motivation of devel-
opers and improve the quality of unit tests?

In the following sections the research question will be an-
swered separately for motivation and quality of unit tests.

A. Statistical analysis
For the statistical analysis for motivation and quality of unit

test we have the same issue as described in section III.F, there
are few subjects for this study affecting the reliability of the
results. Because of the small sample size our results may not
be the most valid ones. By having a small sample our research
is more vulnerable to individuals being very good or being
very bad and individuals having strong opinions. However,
when looking at the questionnaire there are no outliers that
filled in the questionnaire different from the rest. When we

Fig. 9. Boxplot of both the sample groups compared to each other. Where
the y-axis is in %, 1 is the control group and 2 is the experimental group.

look at the Quantitative data on the other hand we could see
that there were some subjects who were a lot better than the
rest and some who were worse. This is a serious threat to
validity, but since we distributed the subjects based on their
previous experience and skill and in the end random sampled
them we believe that we got as reliable results as was possible
for the sample size.

B. Motivation

Our results show that there is an inclination towards the ex-
periment group feeling more motivated to finish the task than
the control group. The results also shows that the experiment
group had more motivation to complete the experiment with
the gamification features than their usual level of motivation
they had when writing unit tests. The motivation was measured
for writing good unit tests, writing many unit tests and
achieving high path coverage. The results show inclinations
that the gamification features worked better for writing better
unit test for actually finding the bugs than writing many unit
tests. This could mean that the subjects believed that the
number of bugs found was a better measurement than path
coverage. The results also shows that the badges provided
higher motivation levels than the points. This could mean that
the developers were more motivated by the extrinsic rather
than the intrinsic motivators, where the intrinsic motivators
are what motivates you to do something because you like it
and extrinsic motivation is when something external rewards
the developer. To test this further research is necessary where
a more robust introduction and goals are set for the individual
where the intrinsic motivation could be more satisfied. Badges
being preferred is conclusive with the work in [7] [8] but
conflicts with the work in [14]. However, in the work by they
state that they believe that they made the badges too hard to
achieve which could explain the difference. Since this research
did not include leaderboards i would encourage researchers
that would replicate this study to add a leaderboard element as
a gamification feature since points by it self was not considered
to be especially good by its own according to the subjects.

Some of the subjects who found few bugs but achieved
high path coverage stated that they felt that they could just
use the gamification features to be rewarded even though they
did not actually provide any value. We consider that for future
research modifying the gamification features for path coverage
so that you had to find some bugs to achieve the path coverage
badges, that could be hard to implement in a real project since
you would not know how many bugs there are of if any bugs
even exist. With this in mind, path coverage should ether be
improved or be considered to be omitted in future research.
Our null hypothesis for motivation is H0motivation stating
that there is no significant difference between the experiment
group and the control group in motivation. As stated in the
result section we found a statistically significant difference and
rejected the null hypothesis H0motivation. There is data that
could contradict this in table II. The fact that the experiment
group was more motivated than the control group aligns with
the work of [7] [8] [14] that shows that gamificaiton has

beneficial effects when i comes to motivation. However, that
the experiment group was not statistically significant more mo-
tivated after performing the experiment than before conflicts
with the work in [14]. The conflict could have its grounds in
that their research was conducted over time. The implications
for academia at this point is still unclear and further research
would be required where replications of studies are performed
and conducted over time. It would be safe to use gamification
features in industry since many studies have shown statistically
significant benefits and our research have shown significance
to some extent and also inclinations to the benefits.

We can also show inclinations that most of the experiment
group felt motivated to write more unit tests. To understand
the motivation of developers in relation to unit tests and
gamification features more research is needed with more
subjects and potentially other types of features and reward
systems.

Since our research only took place during a limited time
period the findings are inconclusive with regards to long
term exposure to gamification. We can see tendencies towards
higher motivation for short time exposure to gamification,
however, we do not know the effect gamification have over
time. Further research is needed to see how gamification would
affect developers in a project over an extended period of time.

C. Quality of unit tests
Our results on the quality of unit tests are based on the

quantitative data received from Eclipse. We determined quality
by whether the test found a bug or not. For future research this
definition could be iterated since a good unit test could be a
test that protects against future bugs. This could be examined
by research with gamification during an extended period of
time where the developers would receive points for when a
precautional test finds a bug. These findings are inconclusive
with [14] since they state that they did not improve the quality
of unit test but rather the number of tests. This could be
a result of us giving points based on bugs resolved. This
could be a recommended direction for further research or
for implementations in companies. Solving bugs should be
a higher priority than just findings bugs so it is a natural
prioritization. However, this would not work in companies
where there are dedicated testers who only find bugs and then
send issues.

There was a statistically significant difference for the hy-
pothesis H0numBugs there is no significant difference in
numBugs between the control group and the experiment group
so we could reject the null hypothesis. Since the subjects came
from the same education and had approximately the same
level of experience in development we believe that the mo-
tivation provided by the gamification features is what caused
the tendencies towards higher number of numBugs found.
However, we cannot exclude the possibility that the experiment
group had their own interest in gamification and wanted to
perform better to prove the usefulness of gamification, if that
was the case then motivation would still be the cause of
tendencies towards better results. That would still mean that

the motivation would improve the results, just not from the
intended gamification features.

There was no statistical difference for the null hypothesis
H0pathCoverage there is not significant difference between the
control group and the experiment group. So we could not reject
the null hypothesis. This is opposite of the results from the
research in [14] where they found the quality of unit tests to be
pretty much the same but path coverage and number of tests
written increasing. This might differ since our research also
showed inclinations towards higher path coverage, but when
running statistics we could not see a significant difference.
Statistic analysis was not performed [14] which might be a
reason for the difference. The data we received was very
compatible for statistics and we would recommended future
researchers to perform statistical analysis, especially from the
quantitative data.

From the discussed results and the answered hypotheses we
can answer the research question: RQ1: Does gamification
increase the motivation of developers and improve the quality
of unit tests?. Based on our results gamification does increase
the motivation of developers and it did improve the quality of
unit tests in terms of number of bugs found, but not in terms
of path coverage.

VI. CONCLUSION

In this paper, we researched the effect gamification has on
motivation to write unit tests and if the quality of the unit
tests could be increased by gamification. We used an existing
Java project downloaded from Github as a base in which we
introduced bugs. The gamification features were integrated
into Eclipse through ANT which generated a report with the
subjects’ score based on their test results. To test the impact
of the gamification features we conducted an experiment
with 14 participants comparing the writing of unit tests with
and without the gamification features. The results did show
a statistically significant difference between the control and
the experiment for group higher levels of motivation and
number of bugs found. However, there was no statistically
significant difference shown for percentage path coverage in
the group using the gamification features. The results also
showed that the subjects preferred badges rather than points as
a gamification feature and number of bugs found rather than
path coverage for measurement.

For future research, we see a number of possible areas
to dive in deeper into. The most prominent area is to see
how gamification affects the motivation of developers over
time. It is still unclear after our experiment whether the
positive motivation effects gamification had would linger over
time. The experiment should only serve as an initial step in
the area to give a general indication of the potential effect
gamification could have, it is necessary to commit to further
research to fully understand the potential of gamification over
time. Finally, our research was taken out of context from
the developers, it would be necessary to test the effect of
gamification inside a real project in the industry where the

developers act with the gamification features added to their
every-day tools.

REFERENCES

[1] Z. Yao, Y. Jia, D. Wang, C. Steed, and S. Atchley, “In situ data
infrastructure for scientific unit testing platform,” Procedia Computer
Science, vol. 80, pp. 587–598, 2016.

[2] P. J. Clarke, D. Davis, T. M. King, J. Pava, and E. L. Jones, “Integrating
testing into software engineering courses supported by a collaborative
learning environment,” ACM Transactions on Computing Education
(TOCE), vol. 14, no. 3, pp. 1–33, 2014.

[3] P. Godefroid, P. de Halleux, A. Nori, S. Rajamani, W. Schulte,
N. Tillmann, and M. Levin, “Automating software testing using
program analysis,” IEEE Software, vol. 25, no. 5, pp. 30–37, 2008.
[Online]. Available: http://search.proquest.com/docview/215838022/

[4] F. Garcı́a, O. Pedreira, M. Piattini, A. Cerdeira-Pena, and M. Penabad,
“A framework for gamification in software engineering,” The Journal of
Systems & Software, vol. 132, pp. 21–23, 2017.

[5] G. Bavota, A. Qusef, R. Oliveto, A. De Lucia, and D. Binkley, “An
empirical analysis of the distribution of unit test smells and their impact
on software maintenance.” IEEE, 2012, pp. 56–65.

[6] IEEE Standard for Software Unit Testing (1008-1987). USA: IEEE,
1986.

[7] V. Platonova and S. Bērziša, “Gamification in software development
projects,” Information Technology and Management Science, vol. 20,
no. 1.

[8] O. Pedreira, F. Garcı́a, N. Brisaboa, and M. Piattini, “Gamification in
software engineering – a systematic mapping,” Information and Software
Technology, vol. 57, no. 1, pp. 157–168, 2015.

[9] D. Charles, T. Charles, M. McNeill, D. Bustard, and M. Black, “Game-
based feedback for educational multi-user virtual environments.(report),”
British Journal of Educational Technology, vol. 42, no. 4, 2011.

[10] D. Kappen and L. Nacke, “The kaleidoscope of effective gamification:
Deconstructing gamification in business applications,” in ACM Inter-
national Conference Proceeding Series. Association for Computing
Machinery, 2013, pp. 119–122.

[11] M. R. d. A. Souza, K. F. Constantino, L. F. Veado, and E. M. L.
Figueiredo, “Gamification in software engineering education: An em-
pirical study,” vol. 2017-. IEEE, 2017, pp. 276–284.

[12] K. Mäntylä, Mika V. Smolander, “Gamification of software testing - an
mlr.” Springer International Publishing, 2016, pp. 611–614.

[13] G. Fraser, “Gamification of software testing.” IEEE, 2017.
[14] D. Arnarsson and i. H. Johannesson, “Improving unit testing practices

with the use of gamification.” Institutionen för data- och information-
steknik (Chalmers), Chalmers tekniska högskola, 2015, 94.

[15] J. Whittaker, “What is software testing? and why is it so hard?” Software,
IEEE, vol. 17, no. 1, pp. 70–79, 2000.

[16] L. Bulej, T. Bureš, V. Horký, J. Kotrč, L. Marek, T. Trojánek, and
P. Tůma, “Unit testing performance with stochastic performance logic,”
Automated Software Engineering, vol. 24, no. 1, pp. 139–187, 2017.

[17] A. Qusef, G. Bavota, R. Oliveto, A. De Lucia, and D. Binkley, “Scotch:
Test-to-code traceability using slicing and conceptual coupling.” IEEE
Publishing, 2011, pp. 63–72.

[18] S. Deterding, K. O’Hara, M. Sicart, D. Dixon, and L. Nacke, “Gam-
ification: Using game design elements in non-gaming contexts,” in
Conference on Human Factors in Computing Systems - Proceedings,
2011, pp. 2425–2428.

[19] N. Juristo and A. M. Moreno, Basics of software engineering experi-
mentation. Springer Science & Business Media, 2013.

[20] “Apache ANT apache ant documentation,” https://ant.apache.org/, ac-
cessed: 2018-11-05.

[21] D. Falessi, N. Juristo, C. Wohlin, B. Turhan, J. Münch, A. Jedlitschka,
and M. Oivo, “Empirical software engineering experts on the use of
students and professionals in experiments,” Empirical Software Engi-
neering, vol. 23, no. 1, pp. 452–489, 2018.

[22] “Mann Whitney U Test wilcoxon rank sum test,” https:
//ant.apache.org/http://sphweb.bumc.bu.edu/otlt/mph-modules/bs/
bs704 nonparametric/BS704 Nonparametric4.html, accessed: 2019-01-
20.

[23] A. M. Robert Feldt, “Validity threats in empirical software engineering
researchan initial survey,” pp. 374–379, 2001.

