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Al Safe Exploration: Reinforced learning with a
blocker in unsafe environments

Philip Crockett
Department of
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Abstract—Atrtificial intelligence can be trained with a trial and
error based approach. In an environment where a catastrophe
can not be accepted a human overseer can be used, but this
might lower the efficiency of the learning. The study includes
implementation of an artifact meant to replace the human
overseer when training an Al in simulated unsafe environments.
The results of testing the implemented blocker shows that it can
be used for avoiding catastrophes and finding a path to reach
the goal in 17 out of 18 runs. The single failed execution shows
that the implemented blocker is in need of improvement in terms
of data efficiency. Shaping rewards solely to reduce number of
steps and catastrophes for a reinforcement learning agent has
been done successfully to some degree, but further steps can be
taken to lower the number of catastrophes and steps.

Keywords-Artificial intelligence; Reinforcement learning; Safe
exploration; Blocker; Machine learning; Baby AI Game; Gym
Mini Grid;

ABBREVIATIONS

Al Artificial Intelligence
RL  Reinforcement Learning

I. INTRODUCTION

Artificial Intelligence lets a computer perform certain tasks
without the help of a human, in some cases Al is used for tasks
which humans are not able to solve. But there are also tasks
where Al is used to optimize tasks performed by humans.
Building an Al today can be done using neural network
data structures, consisting of actions and rewards given to a
Reinforcement Learning agent, with the purpose of teaching a
RL agent in terms of actions and rewards for taking a certain
action [1].

A. Motivation

An increasing number of industries are using Al, examples
includes the car and vacuum cleaner industries. To train an
Al to perform according to specification, RL is used. RL is
a learning process for Al where it acts on trial and error and
learns from mistakes or successful actions that are made. RL is
not suitable for environments where a trial and error approach
is unsafe for either the environment or the agent [2]. A scenario
with a robot vacuum cleaner where it during its training phase
breaks a vase, it learns from the performed action, but the
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vase is already broken. Similar scenarios can be seen within
the car industry, but with more catastrophic consequences. As
motivated by W. Saunders, G. Sastry, A. Stuhlmiiller and O.
Evans these kinds of systems can potentially be dangerous,
since an Al has not learned to avoid catastrophic actions from
the beginning [2].

The authors solve the problem of training an Al with
reinforcement learning in a safety critical environment by
adding a human overseer [2]. Meaning that a human would
monitor the behavior of the agent at all times. Before the agent
is about to act in a way which does not meet the requirements
or cause a catastrophe, it is stopped by the human and is
given a negative reward. In that way the agent learns what bad
behavior is, without ever finishing the action. W. Saunders, G.
Sastry, A. Stuhlmiiller and O. Evans compares this learning
process to when a licensed driver oversees and teaches an
unlicensed driver [2].

One problem with human intervention is that it lowers the
efficiency of the learning process. Since it means that a human
needs to monitor the behaviour of the AI during training
[2]. Computers can analyze whether proposed actions by an
agent are correct or not, faster than humans. However human
intuition can currently not be replicated on a computer. Where
can a balance between the advantages of using a human or a
computer be found in terms of training time for a RL agent,
in order to optimize the learning while not risking the safety
of a RL agent or an environment?

B. Background

The study was inspired by research previously done by W.
Saunders, G. Sastry, A. Stuhlmiiller. The authors of the paper
evaluates reinforcement learning in unsafe environments using
human intervention during the RL agents training process [2].

C. Contributions

This study includes an implementation of a “’blocker” inside
an Al simulated environment which has not been done earlier.
The blocker works by specifying unsafe actions in an environ-
ment, to protect the safety of the agent and the environment.
Using the vacuum cleaner example, a requirement specifying
not to break vases could be added. In a perfect software



environment where the results of checking whether the next
action is to break a vase always will be correct, compared to
a real world environment. The requirement based blocker is
implemented with the purpose of letting an RL agent learn
without acting in a way that breaches the requirements which
are known. The blocker lets an RL agent learn in an unsafe
environment without using a human overseer during training,
unlike the research done by W. Saunders, G. Sastry, A.
Stuhlmiiller. This study will evaluate different configurations
of the blocker, by giving the RL agent different rewards, to
measure steps taken and number of blocked actions which
prevent catastrophic actions in relation to rewards given.

II. RESEARCH METHODOLOGY

This study was executed using design science. The research
method was chosen since as explained by the authors A.
Hevner, S. March, J. Park and S. Ram it should be used when
the research includes creation of a new artifact which can solve
a practical problem [3].

A. Problem identification and motivation

The practical problem which was addressed in this research
is related to reinforcement learning for AI. Human intervention
is one approach when training an agent with reinforcement
learning in a safety critical environment, in order to not cause
harm to itself or the environment [2]. The solution in this
research offers an alternate approach to human intervention
when training an RL agent in an unsafe environment.

B. Research Questions

1) To what extent could reinforcement learning in a safety
critical environment be performed with a blocker”
extension?

2) To what extent could rewards be shaped for the rein-
forcement learning in order to minimize the number of
blocked catastrophes?

The first research question was selected since the human
intervention approach by itself can be too ineffective [4]. The
study will investigate whether reinforcement learning in an
unsafe environment can be performed with a blocker. The
second research question was chosen in order to evaluate and
optimizing the blocker by researching if different rewards can
be used to minimize the number of prevented catastrophes.

C. Objective for solution

The study includes implementation of a blocker inside the
Al simulation environment "Baby Al Game” [5]. The purpose
of the blocker is to let an Al learn in a safe manner, meaning
not entering unsafe states. Unsafe states in this study is defined
as water which destroys the agent.

The environment can have states which are unsafe, but with
the use of the implemented blocker it should still be able
to learn with trial and error. The blocker gives an option to
add the known states which are unsafe for the agent. When
the agent is training, the blocker checks whether the next
suggested action is breaching the specified rules of the blocker.

If the proposed action is considered unsafe based upon the
rules, the agent will receive a negative reward and get a new
action which is safe, which is preventing a catastrophe from
occurring. In this implementation the agent is given a “wait”
command as a safe action when the agent is blocked from
entering an unsafe state.

D. Description of Artifact

The blocker artifact is developed as an extension to the
open source project "Baby Al Game” [5] and the training
of the agent is performed in the open source environment
“Minimalistic grid world environment” [6]. The artifact also
includes an unsafe environment for testing purposes. A water
tile has been constructed in the “gym-minigrid” [6] project,
the water is defined as unsafe in the blocker. The artifact
also includes a tool that pseudo randomly generates an unsafe
environment, meaning that the water tiles are positioned at
a random location inside the environment. Using a specific
random seed, so all environments can be recreated again. An
evaluator has also been implemented which is used to save
the results from training, in relation to the evaluation variables
discussed later in this section.

The work uses a fork created by Piergiuseppe Mallozzi [6],
[5]. The original repository is created by Maxime Chevalier-
Boisvert [7] and [8]. Below are links to Piergiuseppe Mallozzi
repositories and the created implementations of this study is
located at the branch “random_envs”.

1) Extensions to "Baby AI Game”
2) Extensions to "Minimalistic grid world environment”

E. Presentation of Artifact

The figure 1 describes an abstract explanation of how the
blocker acts. The reinforcement learning agent suggests an
action to perform, the blocker then checks whether the action
suggested is safe based upon the rules specified in the blocker.
When the action is evaluated as safe, the action and reward is
not altered, but if the action is evaluated as unsafe a “wait”
action is given by the blocker and a negative reward is given
to the agent for proposing the unsafe action.

a _’| Environment M }_ s, r

(1)  Blocker (2)

a* — RL Agent < s*r

Fig. 1: Process of the blocker

See figure 1 the RL agent proposes an action a*. If the
action violates the blocker rules, the blocker alters the action to
be a safe action a in the environment. At (2) the environment
returns the result of the step s and a reward r, the blocker
then alters the reward the RL agent is given, if it violates the
blocker rules the reward rx is the altered reward of r. The
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environment gives a reward r if the agent reaches the goal
and the reward is unaltered by the blocker.

FE. Implementation of Artifact

The implementation of the artifact is located in both the
[6] and [5] repositories. The relevant files are envelopes.py
[6], absence.py [6], env_generator.py [5], evaluator.py [5] and
extendedminigrid.py [6].

envelopes.py
Contains the environment wrapper that captures each
step which the agent performs in the environment.
This effectively acts as our blocker implementation,
each step suggested is investigated to decide if the
action is unsafe or if the action is safe and changes
the rewards given to the agent if a catastrophe
occurred, or if it died.

extendedminigrid.py
Is an extension of the environment class “MiniGri-
dEnv” found in [6]. It also contains the environment
observation code that is used to decide the type of
tile in a direction from the agent, e.g. left, right or
in front.

absence.py
This class sets up a state space for the blocker,
preventing the agent from entering states that are of
type “violation” in the configuration. For example,
in this artifact, water was defined as a violation.

evaluator.py
Saves the results gathered during training of the RL
agent. The results are saved in form of .csv files.

env_generator.py
Creates pseudo random environments and their re-
spective configuration files. This is used to evaluate
if the blocker implementation differentiate from runs
without a blocker. The pseudo random environments
can be recreated using the same seed id. Thus all
pseudo random environments can be recreated, in
case a certain environments presents “interesting”’
data. It provides a solution for recreating the same
environment for further investigation.

The dependent variables needed for evaluation is defined
in a JSON configuration file. The reward can be altered from
a separate configuration file, which enables easy change of
configuration for training the agent. What rewards that work
best in terms of how quick the RL agent learns the path to the
goal, can have a correlation to different rewards. This makes
the reward parameter important to easily be changed.

G. Description of rewards

Fig. 2: Unsafe environment in a size of 5x5 tiles - The blue
tiles in the picture represents water.

Fig. 3: Unsafe environment in a size of 6x6 tiles - The blue
tiles in the picture represents water.

Examples of unsafe environments used in this study can
be seen in figure 2 and figure 3. The example environments
shown contains two water tiles each, which in the evaluation
is randomly placed. The goal of the agent is to navigate to
the green square without ending up on a water tile. When the
agent reaches the goal, it is rewarded with 1000 points and
for each step it takes (including turns) it is given —1 point.
Meaning that the final reward when it reached the goal is
goal_reward — steps. In figure 3 the maximum reward or the
most efficient way to the goal is when the RL agent enters the
goal with a final reward of 993 points. Since the least number
of steps taken to reach the goal is 7 steps. In the evaluation the
learning stops when the agent enters the goal with a total mean
reward greater than 985. The final reward has been chosen
since it gives room for extra steps needed dependent on how
the water tiles are placed. Thus the same final reward is used
for the different configurations which are compared to each
other and are evaluated with the same conditions.

The reward shaping means that the minus reward is altered
when the agent proposes to perform an unsafe action which is
blocked. The three different minus rewards used in this study
is —1, —100 and —1000. Negative rewards between —1 and
—1000 enables to investigate if higher negative rewards cause
fewer catastrophes and how the different rewards affect the
number of catastrophes. This is done in order to answer the
second research question.

Since the blocker changes the reward the agent receives
when blocking catastrophes and when it dies, it affects the
cumulative reward the agent receives when reaching the goal.
Meaning that the total reward of one iteration where the
goal was reached, results in the reward for reaching the goal



minus the number of negative rewards given by proposing
catastrophic actions. The goal_rewards variable in this study
is set to 1000. Where each proposed catastrophic action
has a = minus reward. The used variables is: “violation”,
“death”, ”step” and “goal”. The rest of the variables inside
the configuration file is set to zero.

In the artifact the maximum number of steps the agent is al-
lowed to take is defined as following 4 grid_size*grid_size
where grid_size is the width of the grid, e.g. if the grid is
6x6 the grid_size = 6. Meaning that in a 5x5 environment
the maximum number of steps is 100 = 4 % 5 * 5 and in 6x6
it is 144 = 4 x 6 x 6. When more steps than the limit is taken
the agent starts over from the beginning. The agent is always
positioned in the top left corner upon death and when it runs
out of steps. The agent only receives a negative reward for
each step it has taken when it reaches the goal, this is what
keeps the agent searching for a shorter or better path to its
goal. The goal is always positioned in the bottom right corner
of the environment.

H. A2C Algorithm

The reinforcement learning algorithm used in this experi-
ment is an Actor-Critic-Advantage algorithm (A2C) which is
a synchronous version of the (A3C) algorithm. A2C is a deep
learning algorithm which creates a state map, where each state
is mapped with a given reward. “The goal of the agent is to
maximize the expected return from each state” [9]. Thus the
agent learns to avoid negative rewards and seek out the positive
ones, it can perform a negative action if the final reward is still
greater. Which makes a blocker more important, if some states
should not be entered. The algorithm learns during its different
periods which action had the highest reward, but the algorithm
also takes in consideration that the learned and safe actions
may not be the most optimal route in terms of rewards. The
algorithm uses the variable “entropy” to discover new possible
paths were the goal is to eliminate the possibility that the
agent learned a sub-optimal path. The agent sometimes finds
itself in a scenario were all the actions the agent attempt will
lead to a negative reward, the algorithm then uses the variable
“policy” to decide which actions and paths gives the lowest
minus reward thus making the agent always look for the most
beneficial path.

1. Evaluation Method

Evaluation of the blocker is done by self defined key metrics
which are related to the results of learning by the agent. Each
configuration is executed using 48 processes to reduce the time
to train the agent. The configurations are executed on different
docker containers with similar hardware specifications, so runs
can be executed in parallel.

The 3 different reward configurations of the agent will each
be executed in the two different environment sizes seen in
figure 2 and figure 3. Each execution of the rewards will be
executed 3 times in each environment size where the water has
randomly been placed. The mean of the 3 executions will then
be used for comparison between the different configurations.

The described executions will be done both with the use of
the blocker and without the blocker. Which gives results of
3 different rewards in 2 different environment sizes, with and
without the blocker. These results with and without the blocker
will then be compared to each other to answer RQ1 and RQ2.
Each of the evaluations is stopped when the same total reward
mean has been achieved to ensure that the results can be
compared to each other. This is done by as earlier described,
stopping the training when a final reward of greater than 985
is achieved. The run is then exited and the results are saved to
a comma separated value (csv) file. The file contains the data
of the evaluation variables discussed below.

J. Evaluation variables

The evaluation variables are results of when the agent has
been trained until the goal has been found with a final mean
reward greater than 985.

1) Number of steps: The number of steps the agent takes.
Every step the agent performs including, left turn, right turn,
wait or stepping forward is counted as a single step.

2) Number of deaths: The number of deaths is a count of
when the agent steps into water.

3) Number of blocks: The number of blocked catastrophes.
This variable is used to measure how many blocked actions
the agent gets.

K. Evaluation of research questions

1) RQI: Is answered by comparing the executions in the
different environments with the implemented blocker to the
executions without the blocker. This done to show that the
sub-shortest path can be found with the use of the blocker.

2) RQ?2: Is answered by comparing the different executions
with the different rewards towards each other and then see if
any patterns can be found in the evaluation variables, number
of catastrophes and number of steps.

L. Validity Threats

The validity threats presented below has been identified by
the use of the template that C. Wohlin, P. Runeson, M. Host,
M. Ohlsson, B. Regnell and A. Wesslén discusses [10].

1) Conclusion validity: The actions of the agent are ran-
domly taken until the agent starts learning from the rewards.
The random steps in the start can have an impact on the results.
This risk was reduced by running 3 executions with the same
reward, each in the same size of the environment but where
the water tiles are randomly placed. The mean of the results
will then be used to compare the different configurations.

2) Construct validity: The collection of results from train-
ing the reinforcement learning agent using different blocking
methods needs to be reliable and validated. Thus the collecting
of data takes a long time. This threat is avoided by pretesting
the evaluation of the agent in smaller time periods before the
concluding tests are executed.



3) Generalizability: The developed blocker artifact is based
upon previous work done by M. Chevalier-Boisvert and P.
Mallozzi, the artifact implemented will only work generically
in the environments used in this report. Meaning the different
blocker methods used only can be replicated inside of the
Baby-Al-Game and the environment inherited from Gym-
minigrid. The risk is accepted since a more general blocker
implementation which works in other simulation environments
is not feasible because of time constraints.

III. RESULTS

The collected data has been compiled into tables and
diagrams. All plots have been created using “matplotlib” in
python. The tables show data from each of the individual
executions in terms of reward configuration and environment
setup. The full set of data can be found in form of comma-
separated value (csv) files here. Each figure represents an ex-
ecution using 48 processes. The “Blocks” in the tables shows
the total number of blocked catastrophes during training, a
block is counted when the agent proposes to step into water.
The ”Deaths” is the number of times the agent gets destroyed
during the training and ”Steps” is the number of steps until
the agent learned a path to the goal with a final reward of 985
or above. The mean values are rounded to the closest whole
number. The seed id in the tables can be used for looking at the
environment which the training was executed in. Visualizations
of the environments is found here.

In the presented figures 4 and 6 the N_updates in the x-
axis is the number of updates, 1 update is roughly 240 steps,
e.g. the number of updates times 240 yield an estimate of
the total amount of steps taken in a run. In the figures 4
and 6 the presented lines are N_deaths or N_blocked_actions,
N_step_per_episode and N_goal_reached. The figures high-
light the convergence of finding the goal for the agent. The
number of steps per episode shows the average steps taken
by the 48 processes as it gets lower, it starts finding the goal
more reliably. The convergence between N_step_per_episode
and N_goal_reached highlights that the agent is done with
the training. When they converge the training is over. Graphs
representing every execution can be found here.

TABLE I: Environment 5x5 -1 reward
With blocker

Seed id Blocks  Deaths Steps
29f901e5 1801 0 3 629 040
9fecled5 536 0 326 640
740af178 93 0 1 615 440
Mean 810 0 1 857 040
Without blocker

Seed id Deaths  Steps

29f901e5 995 10 226 640

9fecled5 3965 96 240

740af178 603 5 469 840

Mean 1854 5264 240

TABLE II: Environment 6x6 -1 reward
With blocker

Seed id Blocks  Deaths Steps
2a6bbd7a3 884 0 177 840
2122c6¢6 108 0 127 440
£3c8304e 2939 0 353 040
Mean 1310 0 219 440
Without blocker

Seed id Deaths  Steps

2a6bd7a3 147 84 240

2122c6¢6 113 115 440

£3c8304e 699 336 240

Mean 320 178 640

In table I all the runs and their respective seeds that were
used to create their environment is gathered. The table shows
the different runs in the respective environments. Note that a
seed id is used for both the blocker and the execution without
a blocker, so the results which are compared have been tested
inside the same generated environment.

TABLE III: Environment 5x5 -100 reward
With blocker

Seed id Blocks  Deaths Steps
3030dae8 64 0 343 440
c5484d3c 581 0 984 240
ceaf9555 738 0 3 893 040
Mean 461 0 1 740 240
Without blocker

Seed id Deaths  Steps

3030dae8 44 741 840

c5484d3c 181 24 240

ceaf9555 279 14 997 840

Mean 168 5254 640

TABLE IV: Environment 6x6 -100 reward
With blocker

Seed id Blocks  Deaths Steps
0ff854c7 8408 0 2 193 840
6c473d49 22 0 305 040
bc1952¢7 727 0 1 680 240
Mean 3053 0 1 393 040
Without blocker

Seed id Deaths  Steps

0ff854c7 20115 1 382 640

6c473d49 33 540 240

bc1952¢7 89 804 240

Mean 6746 909 040


https://drive.google.com/drive/folders/1hdn0r6I1Lr10F7ZbCYxXWCTdwAQMpSBq?usp=sharing
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TABLE V: Environment 5x5 -1000 reward
With blocker

Seed id Blocks  Deaths Steps
0Oa3fed73 680 0 2 647 440
52b1968b 327 0 785 040
62d6a9a4 78 0 547 440
Mean 361 0 1 326 640

Without blocker

Seed id Deaths  Steps
0a3fed73 202 3350 640
52b1968b 29 1 097 040
62d6a9a4 79 482 640
Mean 103 1 643 440

TABLE VI: Environment 6x6 -1000 reward
With blocker

Seed id Blocks  Deaths Steps
005¢£200 483 0 941 040
9b03d45f 131 0 300 240
fcc075¢ch 56 0 69 840
Mean 223 0 437 040

Without blocker

Seed id Deaths ~ Steps
005¢£200 127 458 640
9b03d45f 10 96 240
fcc075¢cb 39 374 640
Mean 59 309 840

Tables III, V, IV and VI presents the data where higher
negative rewards were given to the agent when it died or was
blocking catastrophes.

A. Uncompleted configurations

The runs in figures 4 and 6 never finished to successfully
learn the path to the goal with a final reward of 985 or
above during the training. They did not complete because their
processes died, the blocker configuration ran for 3 hours of
training and without blocker died after 10 hours of training.
In the runs with a blocker, we noticed that memory usage was
high which caused the processing speed to slow down as the
training continued. The configuration without a blocker never
grew noticeably in memory usage, instead we cannot pinpoint
as to why the execution terminated. It should be noted that it
took the most steps of all runs without reaching the goal, whilst
the blocker configuration in the same environment reached the
goal as seen in figure 7. However the graph for figure 6 shows
that it was close to converging, but afterwards started diverging
again.

IV. DISCUSSION

A. RQI - To what extent could reinforcement learning in a
safety critical environment be performed with a “blocker”
extension

As presented in the results all the executions using blockers
except one has been completed successfully, meaning that they
have learned the path to the goal with a reward of 985 or above
without dying. The single execution with seed id 740af178
in table I and figure 4 had 1 615 440 steps, the execution was
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terminated since the process used all available RAM memory
on the computer. This could be due to the state space used
to monitor the agents actions and ensure it does not enter
the water, grows in terms of memory usage. After 1 hour of
running it was using nearly 2GB of memory, compared to an
execution without a blocker where the memory usage never
went above 310MB. Meaning that with a more data efficient
blocker implementation more time-consuming training might
have been able to finish. The second execution which was not
able to finish was seed id cea f9555 in table III and figure 6.
This execution stopped with an amount of 14 997 840 steps,
meaning that the data efficiency of the blocker implementation
might not have been the only problem.

B. RQ2 - To what extent could rewards be shaped for the
reinforcement learning in order to minimize the number of
blocked catastrophes?

Our hypothesis for the blocker runs was that a higher
negative reward would result in fewer catastrophes at the cost
of more steps needed to find the path to the goal with a final
reward of 985. This can be seen in table III and table V where
in the —1000 reward the mean value for number of steps and
blocks is lower for higher negative rewards.

Our findings agree with W. Saunders, G. Sastry, A.
Stuhlmueller, and O. Evan, thus they discuss using a high
negative reward where causing catastrophes to reach the goal
is infeasible, learning the agent to avoid catastrophes [2].
Whilst they were interested in investigating about learning an
agent when it causes a catastrophe our focus was to research
avoiding catastrophes all together, with usage of a blocker. As
mentioned by them, reinforcement learning is insufficient to
achieve safety because it learns by trial and error [2]. Meaning
the agent using a blocker will avoid causing catastrophic events
but still receives the negative reward as if it had caused the
event. An example of this is presented in figure 8 and figure 9.

Different configurations do perform differently, but we
cannot say that the configurations alone are the reason for the
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different results. The initial thought was that the environment
should not matter in terms of how many catastrophes the agent
performed, that only the negative reward would teach it to not
do the same action again, no matter where the catastrophe
was located. As discussed in W. Saunders, G. Sastry, A.
Stuhlmueller, and O. Evan the catastrophes negative reward
should be much lower than the reward for reaching the goal,
where the agent learns to cause a catastrophe to reach the
goal should never be worth it [2]. However, the findings shows
that it is not simple enough to tune the rewards to a higher
negative reward and expect fewer catastrophes. This can be
seen in figure 10 where the agent died roughly 20000 times,
which is higher than all the other runs. The same environment
seed in a configuration with a blocker also blocked the most
actions at roughly 8000 times, the run is shown in figure 11
This environment is seen as an outlier in the collected data,
since it differs wildly from the rest of the data. This shows that
there are environments where there can be many catastrophes



even with a higher negative reward, in relation to how “easy”
it is to cause a catastrophe, the environment where this data
was seen is shown in figure 12. We cannot say with accuracy
that the environment is the sole cause of these catastrophes.
Further investigation is needed to surely conclude this.

6x6-Water-2-violated-100-without-monitor-0ff854c7.csv
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Fig. 12: Environment with outlier data

Running without a blocker with a higher negative reward
lowers the number of deaths in some runs. Generally for the
data it can be seen that running without a blocker converges
faster to the goal as seen in for example the table V. The mean
value for number of total steps it takes is lower, but this is
likely because it restarts from the beginning when dying whilst
the blocker continues running after being blocked. Meaning
that it allows the agent with the blocker to always perform the
max number of steps in the environment.

Early in training the agent causes some deaths or blocked
actions and learns from the mistakes. As the agent starts to
converge the number of deaths or blocked actions starts to
increase, this may be because the A2C agent tries to find
a path where it can cause a catastrophe and still receive a
higher final reward. Meaning that it is verifying that the path
to the goal which has been found is the most reward intensive
one. Potentially, in figure 6 we see that it starts causing an
increasing number of deaths at as it nears its convergence, but
it however starts to diverge before it reaches a total reward
mean of 985 or above. If it had continued running it is possible
that the converging would have started again.

C. Related work

As explained by D. Amodei, C. Olah, J. Steinhardt, P. F.
Christiano, J. Schulman and D. Mané using different polices
for exploration in reinforcement learning could improve the
agents ability to avoid catastrophes [4]. But choosing a more
sophisticated policy can also cause more harm. Since the
policy can be worse than random actions. In the results
the agent has been using a random exploration policy, no
modifications have been done to the policy of the agent. As
such, the results shows that a random exploration policy works
for learning.

According to D. Amodei, C. Olah, J. Steinhardt, P. F. Chris-
tiano, J. Schulman and D. Mané using hard coded catastrophe
avoidance by the use of an blocker works best in an understood
domain with few tasks where catastrophes have been identified
in beforehand [4]. However, in real life situations it becomes
increasingly complex to classify a blocker with catastrophe
prevention. Because unknown catastrophes will still happen,
if the blocker does not know that it should block it from
happening.

In ”Concrete problems in Al safety” [4] and “Trial without
Error: Towards Safe Reinforcement Learning via Human Inter-
vention” [2] they both reach the same conclusion about human
intervention in reinforcement learning reaches the problem
of scalable oversight, where the agent requires too much
exploration in order for the human oversight to be practical.
In our case, there is no human intervention required for
the catastrophes to be blocked, instead we assume that the
different catastrophes are known before the training.

The challenge with a blocker is ensuring that the model
is not miss-specified [4]. We agree with this, as a problem
of doing simulated training with requirements, is that the
trained agent only operates within the bounds of the specified
requirements. If another kind of catastrophe can occur, the



agent would not have an idea about that it was a catastro-
phe and possibly cause harm. Modeling perfect requirements
before having any real world data is near impossible to do,
no matter how advanced a simulation is, a real world setting
will have new kinds of interactions and unknown catastrophes
will emerge. We think that a blocker is only the beginning,
further research is required to reach a good sentiment. It works
best in well-defined domains, with a little real life interaction,
meaning for example a robot in a factory without humans
and predefined working areas. But in a setting with “floating”
variables, such as humans walking around the robot, which
was not present during training, is an ill-suited area for using
a blocker to prevent catastrophic events. [4].

V. CONCLUSION

A. RQI: To what extent could reinforcement learning in a
safety critical environment be performed with a “blocker”
extension?

The results show that a reinforcement learning agent can
successfully learn the path to the goal with a blocker, also
meaning without causing any catastrophes, in the same setting
as the none blocker executions in 17 of 18 executions. The
single execution which was not able to finish can have a
relation to the blocker being too data inefficient, since all
memory was used and the training stopped. This can not be
fully concluded since all resources in terms of memory was
used by the blocker, the blocker would need to be more data
efficient to gather more accurate results for longer training
periods. The results show an indication on the blocker being
a working alternative for human intervention but more tests
with statistical analysis is needed to conclude this.

B. RQ2: To what extent could rewards be shaped for the
reinforcement learning in order to minimize the number of
blocked catastrophes?

The results show that to some extent using different re-
wards decreases the number of steps and catastrophes in
our executions. However, there are cases where this is not
true, see figure 11 and figure 10 where a run in a certain
environment caused more deaths, blocked more actions and
took more steps than any other environment. However the
different configurations in the environments shows a trend
that higher negative rewards causes fewer blocked actions
and deaths. Further analysis of higher negative rewards could
potentially highlight the validity of higher negative rewards
for reinforcement learning trained agents.

It should be noted that shaping rewards is only one of the
possible aspects of decreasing the number of blocked actions
and deaths. In this study the A2C agent caused more deaths
and blocked actions at the end of the executions. When the
agent starts converging the goal, the agent verifies that the
path is the most effective one in terms of reward. This is done
by causing death and blocked actions to confirm there is no
path which results in a higher reward, even though it includes
negative rewards. Thus changing policy levels and exploration
rate for the reinforcement learning algorithm could potentially

decrease the number of deaths and blocked actions. But as the
agent learns by trial and error, deaths and blocked actions are
necessary in order for the agent to learn.

VI. FURTHER RESEARCH
A. Further development

The development of the artifact and the findings in this paper
can be used in further research of a blocker extension with an
RL agent.

1) Data efficiency: By increasing the data efficiency of the
blocker implementation, longer runs would be able to run
faster and not use all available memory on the computer it
is running. By for example using more space efficient data
types.

2) Foresee future moves: By checking more than one step
in front of the agent, the blocker could see if it is heading
towards a catastrophe in an earlier stage (e.g. in our case
for example 2 tiles away). It could then give a lesser minus
reward when the reinforcement learning agent is taking steps
towards the catastrophe and a greater minus reward when the
reinforcement learning agent tries to enter a water tile.

3) Propose a new safe action: Steering the agent away
from the catastrophe. Instead of sending wait commands to
the agent, the blocker could actively suggest a new route for
the agent. With the purpose of reducing the number of steps
it takes to find the goal.

4) Experiments with exploration policy’s: Further experi-
ments could include altering of the policy and entropy levels
to alter the rewards and exploration in a more efficient manner.
This can also be done by favoring reaching the goal instead
of finding the most effective way. If the end goal is to learn
safely, how important is it to use the most optimal route?

B. Combination of human intervention and blocker in a real
world setting

When training in a real world environment looking for
catastrophic events could be done with the use of sensors.
When using sensors it cannot be assured that the retrieved
results are never faulty. This creates a scenario where the
blocker can not be fully trusted to decide whether the coming
action is catastrophic or not. Further research of using a
blocker when learning an agent could therefore instead of
instantly stopping the agent from an action, notify a human
to check whether the upcoming state is unsafe or not. In
practice this could optimize the learning process where human
intervention is used. Since the human would not have to
monitor the robot at all times but only to give input when
the robot is going towards a state which might be unsafe. As
mentioned earlier the problem with human oversight is that
the agent may need too many exploratory steps for a human
to oversight. Only using a human when there is a possible
catastrophe happening, could optimize this problem [4].
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