
	
	
	

	
	
	

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Metrics for Maintainability of Executable
Models
Bachelor of Science Thesis in Software Engineering and Management	
	
Fisnik Hajredini
Sepehr Afrouzimanesh

	
	
	

	
	
	

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

	
The	Author	grants	to	University	of	Gothenburg	and	Chalmers	University	of	Technology	the	
non-exclusive	right	to	publish	the	Work	electronically	and	in	a	non-commercial	purpose	make	
it	accessible	on	the	Internet.		
The	Author	warrants	that	he/she	is	the	author	to	the	Work,	and	warrants	that	the	Work	does	
not	contain	text,	pictures	or	other	material	that	violates	copyright	law.		
	
The	Author	shall,	when	transferring	the	rights	of	the	Work	to	a	third	party	(for	example	a	
publisher	or	a	company),	acknowledge	the	third	party	about	this	agreement.	If	the	Author	has	
signed	a	copyright	agreement	with	a	third	party	regarding	the	Work,	the	Author	warrants	
hereby	that	he/she	has	obtained	any	necessary	permission	from	this	third	party	to	let	
University	of	Gothenburg	and	Chalmers	University	of	Technology	store	the	Work	
electronically	and	make	it	accessible	on	the	Internet.	
	
	
	
	
	
	
	
	

FISNIK HAJREDINI
SEPEHR AFROUZIMANESH

© FISNIK HAJREDINI, June	2018.
© SEPEHR AFROUZIMANESH, June	2018.

Supervisor: JAN SCHRÖDER
Examiner: PIERGIUSEPPE MALLOZZI

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Metrics for Maintainability of Executable Models
Fisnik Hajredini
IT department

University of Gothenburg
Gothenburg, Sweden

gushajfi@student.gu.se

Sepehr Afrouzimanesh
IT department

University of Gothenburg
Gothenburg, Sweden

gusafrse@student.gu.se

Abstract—Model-based software development plays a key role
in modern day industries and the size and complexity of it is
increasing constantly. However far too little attention has been
paid to maintainability quality characteristics of model-based
software. In this paper we provide the state of art analysis
throughout a systematic literature review and present the existing
maintainability metrics of executable models. In addition, a
survey is conducted to shed light on practitioners perspective
on maintainability metrics in industry. Metrics compositions and
their dependencies are visualized on a diagram. The relation
between the metrics and the quality characteristics they try to
resolve, is also presented as a part of our result. We conclude
that more research is needed on metrics of this field, because
model-based software is usually being practiced in closed-source
communities.

Keywords-Model based software; Executable model; Metric;
Maintainability ; Quality; Complexity; Simulink; Measurement;
Assessment; Mofifiability;

I. INTRODUCTION

Nowadays Model-based software (MBS) is widely used
within many industries, especially those which are conducting
development of large embedded systems such as automotive
and aerospace companies. For example, automotive companies
such as Volvo Car Group, Audi AG, and similar manufactures
primarily use MBS such as MATLAB/Simulink to develop
logic and application for their systems. One significant aspect
of their work is to develop high quality software which is
essential to have high quality product. Each day more and more
complex softwares and electronics are being developed in this
area which makes continuous change and updates inevitable.
This causes maintainability to be an important quality of the
system due to increasing complexity and size of executable
models and therefore maintenance is a necessity. The ability
to observe software qualities like maintainability is a great
importance and can be achieved by using metrics.

Measurement of qualities in software development envi-
ronments impact the cost and development process. Putnam
and Myers [1] highlight in their work, that if metrics are
poorly chosen, inaccurately collected and unwisely applied,
teams solve problems deficiently. They argue that metrics can
provide time and staff allowance within the scope of project.
In software, there are plentiful of well known product and
process metrics that have been designed for object-oriented
programming (OOP) and they are still being developed and
adapted in their respective fields [2]. Many of these metrics

are directly aiming maintainability as an important quality
characteristic of object-oriented programs in order to improve,
compare and evaluate. However there hasn’t been enough
studies on the quality aspects of MBS. After all, maintainability
metrics are rare and insufficient and there is a gap in terms of
metric dedicated to executable models.

Thus our research is aimed to find, gather and analyze
MBS-related researches and the goal is to go through existing
literatures and find metrics that measures maintainability of
executable models. In additions, in this paper we propose
industry perspective on our findings in order to have a broader
view on this matter. To address this issue these question need
to be answered:

• RQ1: What metrics exist to measure maintainability in
executable models?

– RQ1.1: How are existing maintainability metrics
for executable models in line with practitioners
perspective?

This paper presents our finding from a literature review with
the aim to collect the state of art related to quality metrics,
maintainability in particular, regarding executable models. In
addition, by using the literature review findings, a survey is
designed and conducted in automotive companies to find how
maintainability metrics are perceived in industry.

The rest of the paper is structured as follows. In the Section 2
we describe and discuss existing similar literature which relates
to this paper such as UML models metric and open-source
metrics. Section 3 is about the methodology of this research
including the research processes, data collection and analysis.
In section 4 existing metrics on executable models are presented.
In section 5 we visualized survey results. In section 6 Two
figures are presented which the first one shows the relationship
between base measures and measurement functions and the
second one displays the relationship between measurement
functions with quality characteristics and sub characteristics.
Moreover, the relationship between our finding and industry
perspective will be discussed. Section 7 is based on our final
conclusion and possible future works that needs to be done
and finally Section 8 is Acknowledgements.

II. RELATED WORK

Since this papers methodology is literature review, we didn’t
find any other research that was conducted with the same

subject and methodology as our paper. Therefore, we decided
to consider related work the different paradigms of software
engineering (besides model based software). Similar methods
in two other paradigms were proposed that solve relatively
similar problems: (1). UML models metrics and (2). open-
source metrics (OOP).

We found that for UML models, counting the number of
interactions in a class, can influence the coupling degree [3],
this would be similar to the model-based software, where the
number of signals can also be related to coupling. Besides
metrics, Lange et al [4] developed a MetricViewEvolution
which is a tool that collects some metrics from UML models
and visualizes them.

On the other hand, for object oriented programming, there
are already many studies conducted. For the size of a software
or module, the easiest metric of size is the lines of code (LOC)
which we also find on the model based software, as generated
lines of code. Besides the size metric, we find coupling,
cohesion and inheritance metrics that predict maintainability
[5].

III. METHODOLOGY

We answer our main research question of existing metrics
by reviewing existing literature on maintainability metrics
for model-based software. Afterwards, based on the literature
review results, we conduct a survey to answer our sub-research
question regarding practitioners perspective on maintainability.
We used a mixed method approach where we can use quali-
tative and quantitative data from the reviewed literature and
quantitative data from survey.

A. Literature review

The literature review is conducted following the guidelines
of B.Kitchenham [6]. Accordingly, first, a search string was
designed and 4 databases were selected to conduct the search
which resulted in 419 papers. Afterwards a systematic review
was conducted on all the papers. Our systematic review contains
inclusion/exclusion criteria, data extraction and data synthesis,
which are all included on Kitchenham procedures.

• Search string
Our search string is composed of 12 strings, that is because
some databases limited the number of strings that can
be used. The strings were derived based on an approach
from B.Kitchenham [6]. The approach includes Population,
Intervention and Outcomes (cf. Fig. 2). Our population
includes targeted areas, while our intervention is the action
to be taken. Finally our outcome is the goal of the action
on the targeted area. The search is conducted using the
search string on IEEExplore, ACM Digital library, Science
Direct, and Engineering Village which resulted in a total
of 419 studies.
("Model based software" OR "Executable models" OR

Simulink OR Dymola OR Modelica) AND (Metrics OR
Measurements OR Assessment) AND (Maintainability OR
Modifiability OR Complexity OR Quality)

• Inclusion and exclusion

We designed inclusion/exclusion criteria for this process so
that both researchers can refer to it when excluding a paper.
Our inclusion/exclusion criteria aims to select papers
which can answer our main research question regarding
existing metrics. Accordingly, our inclusion/exclusion
criteria defines our study scope. During this process we
excluded papers that were not in English. We also excluded
any papers that have fewer than two pages to ensure quality
of the papers. Papers that were not related to model based
software, but still mention the use of Simulink, were also
excluded. These cases didn’t correspond with our criteria
below and therefore were excluded. Selected final papers
are the result of our inclusion and exclusion criteria.

– Inclusion criteria
∗ The paper must be in English
∗ The paper must be longer than 2 pages
∗ The paper must discuss the maintainability of

model based software
∗ The paper must discuss quality metrics of model

based software
– Exclusion criteria
∗ Papers that mention quality or complexity but don’t

refer directly to model based software
∗ Papers that do not discuss or mention the measure-

ment of quality
∗ Papers that mention only measurements of func-

tionality, like functional testing or reliability, for
example

∗ Papers that are not software related
In order to perform the inclusion/exclusion procedure
efficiently we created a form to list all papers. Once a
paper is reviewed, we would mark it with a Green (pass to
next phase), Yellow (unsure), and Red (not related to our
research). All the papers were reviewed from each author
and when a paper resulted in combination of Yellow and
Red, a third reviewer assisted with a review. Any green
combination passed to the next phase and two yellow votes
passed to the next phase as well. Our inclusion/exclusion
procedure was performed in three iterations (cf. Fig. 1).
First, by reading title and abstract, we excluded most of the
papers. Of the remaining papers, we read the introduction
and conclusion sections where we excluded 22 additional
papers. Finally, a full text review was conducted right
before data extraction which left us with 8 final papers
[2] [7] [8] [9] [10] [11] [12] [13].
This paper defines maintainability quality characteristic
as ISO 25010 standard, with its sub-characteristics, Modi-
fication stability, Changeability, Testability, Analysability,
Modularity, Maintainability compliance, and Re-usability.
Some of the papers have been published before the
ISO 25010 standard, therefore there are qualities that do
not match with our definition. Nevertheless, we include
metrics that measure other quality characteristics such as
understandability, adaptability, modifiability, and scalabil-
ity because they might lead to complexity measurements.

Fig. 1: Roadmap to final papers

Fig. 2: Search string definition

• Data extraction We designed a form were we initially
extracted the following general information:

– Name of Reviewer
– Date of Data extraction
– Title, authors, journal, publication details
– Space for additional notes

Besides the general information, our focus was on data
that answers our research question and data that can
be synthesized for the next procedure. For example,
we collect the metrics mentioned in the studies and
their description to answer our main research question.
Furthermore, we collect the population of the data used
in the studies to investigate the domain where the metrics
are applied. Therefore we extracted the following:

– Number of metrics
– Population description
– Underlying attributes of the metric goal
– List of metrics
– Description of the metrics
– Outcome of the metrics

During our data extraction of a particular paper [8], we
had trouble extracting information about the description
and outcome of the metrics. Therefore we contacted the

authors of the paper and acquired the information. One of
the authors responded and the description of the metric
together with the outcome were added to our form.

• Data synthesis
Based on our findings, we divide the metrics as base
measurements and measurement functions [14]. For our
synthesis, we conduct a qualitative and quantitative
approach. We visualize the relation between base measure-
ments and measurement functions on a diagram together
with the papers references that mention them. Furthermore,
we discuss metrics that were homogeneous with other
papers and the qualities that the metrics were aiming to
measure.

B. Survey

Once the metrics from all our papers were extracted,
we started designing the survey to answer our sub-research
question. Since automotive makers are one of the industries
that experience metrics limitation on maintainability of model
based software, we conducted a survey on their practitioners
of Simulink within the automotive industry.

The survey was sent to engineering staff, team leaders and
some managers. Because of the limited use of models-based
software even within the automotive industry we decided to
base our sampling on convenience. Via email, We asked our
personal contacts, known to work with executable models, to
answer the survey and spread it further. The survey was online
and 7 answers were received, 6 of which were valid. Initially
we gather basic information such as the country of participant,
chosen survey language, time of the survey started, education
and Job position. Besides the standard data, we gather the
modeling domain, modeling languages, and their experience

on the modeling language. Once the basic data is received, we
focus on questions regarding our found metrics.

Survey was designed with 25 questions. Participants were
asked to decide the impact of each base measure(factor) on
how easy a model can be understood or modified. We chose
Likert-type scales for answering survey’s questions (From 1
being much easier to modify, 2-easier to modify, 3-slightly
easier to modify, 4-no influence, 5-slightly more difficult to
modify, 6-more difficult to modify, 7-much more difficult to
modify and additional check box for "I do not know"). This
is because we wanted to see the level of their agreement with
the found metrics.

IV. EXISTING MAINTAINABILITY METRICS

Below we present the metrics that were extracted from 8 of
the papers reviewed.

• Complexity
This metric is based on general complexity model calcu-
lation created by Card and Glass 1990. Because Card and
Glass’s metric aims to measure systems based on modules,
Marta Plaska and Marina Walden [7] adjust it to work
for measuring model based systems complexity. They
define complexity(C) as the sum of Data complexity(D)
and Structural complexity(S). Structural complexity is
defined as following:

S =

∑
f2(i)

n

where f(i) is fan-out of subsystem block i and n is a
number of subsystem blocks in the system.

D =
V (i)

n · ((f(i) + 1))

Where V (i) is the number of Input/Output variables in a
subsystem block i,f(i) and n are as above.
This complexity metric is further mentioned and tested
in other papers such as Schroeder et al [12], Olszewskas’
further work [9], Olszewska et al [10],Hu et al [8]

• Model size(Number of discrete states)
A model size is defined by the number of discrete states
on the model. Its proposed from [7] and they use it to
compare two applications differences.

• Number of blocks
This metric defines the number of blocks in a subsystem
or a system. All the 8 paper from our literature review
relate the number of blocks to maintainability. They either
compose measurement function, or use it as a sole metric
[12] [8] [7]

• The number of Goto/From block pairs
Number of connections between two blocks implemented
with Goto/From blocks instead of lines visually connecting
the blocks.From and Goto blocks allow you to pass
a signal from one block to another without actually
connecting them.This causes issues in readability, since it
is not immediately clear which Blocks are connected.Hu
et al [8] present this on a table as a sample metric

• Lines of code
The number of generated lines of code from the executable
model can indicate the size of the model. This is used as
a metric from Schroder et al [12] and Plaska [7].

• Generated code measurements
Plaska [7] proposes this metric to measure the size of the
model, it includes all the measurements of generated code
and can be further divided into measurements such as:

– Number of lines of code
– number of characters
– number of words
– number of characters without spaces

• Compilation statistics
Plaska [7] uses simulink compilation statistics from to
obtain information about the memory being used during
the compilation and the models’ time of compilation.

• Information flow complexity
For the Simulink information flow complexity, Olszewska
et al [10] defined the following metrics based on the
Henry-Kafura’s metrics.

hkCMX = size · (fanin · fanout)2

where hkCMX is the information flow complexity of
a sub- system, size is the number of contained blocks
(including subsystem blocks), fan-in and fan-out represent
the number of afferent and efferent blocks of a subsystem,
respectively.

• Ratio
Plaska [7] documents the ratio between the number of
generated lines of code and the blocks.She uses the ratio
to measure the size of a system and its complexity.

• Library usage
Plaska [7] documents the use of libraries and its number.
She claims that a library block increases the flexibility
and portability of the system as updating the block
automatically updates the system.

• The ratio between referenced models and subsystems
The number of referenced models inside a block(similar
like linking a library) can affect adaptability of a model.
Hu et al [8] present this on a table as a sample metric .

• Average slice size per input signal
A signal slice represents everything in the model the signal
influences by its behavior or everything that influences
the signals values, depending on the slicing direction. The
average slice size can therefore be a general measure
for the impact single signals can have or the dependency
between different regions of the model. Hu et al [8] present
this on a table as a sample metric and aim to measure
scalability.

• Instability
Instability(I) [9], [10] of a (subsystem) block is defined as
the number of efferent couplings between blocks divided
by the sum of afferent and efferent couplings between

Fig. 3: Base measures relations with measurement functions.

blocks, which is given by the equation:

I =
CeB

CeB + CaB

• Distance
There is a relationship between instability and abstractness
as OOP and it is defined as Distance(D). D is computed as
a normalised sum of these values decreased by 1, which
is given by the formula:

D = |D + I − 1|

• Abstractness
abstractness(A) [9], [10] of a block is defined as a ratio of
the number of contained abstract (i.e. subsystem) blocks
(NaB) to the total number of blocks in a layer the given

block represents (NB), which is given by formula:

A =
NaB

NB

The presented metric has the range <0..1>, where 0
denotes a concrete block and 1 represents a completely
abstract block.

• Number of input/output and output/input bus signals
is the difference between the number of input signals
(NiS) and the number of input ports (NiP).

• Degree of subsystem coupling
Degree of Subsystem Coupling (DSC) [2] is defined to
give additional weight to the output which imply more
complexity.

DSC = WiNis +WoNno

where Wi = 1, is weight of input dependencies and Wo =
2, is weight of output dependencies

• Coupling between subsystems
To measure coupling between subsystems (CBS) [2], [8]
for a given subsystem we count the number of subsystems
coupled to the subsystem, i.e., receiving input signals from
the subsystem or sending output signals to the subsystem

• Depth of a subsystem
(DoS) [2] is the maximum level the subsystem has till its
basic subsystems. It is consider as cohesion metric.

• Documentation rate of module change
The rate of documentation update, per module change [8].

• Improper configured logical blocks and all logical
blocks
Operational blocks in Simulink can be split into those that
perform numerical operations (such as a Sum-block or a
Product-block) and those that perform Logical operations,
i.e. those that perform boolean operations (e.g. AND, OR,
etc.). The Logical Operator block performs the specified
logical operation on its inputs. An input value is TRUE
(1) if it is nonzero and FALSE (0) if it is zero [8].

• Ratio between blocks layout size and avaialble display
area
The size of the layout of a level in the model can be
measured by the size of the blocks and the length of the
lines connecting them, resulting in pixel dimensions for
the model (i.e. the coordinates of the outermost artifacts
of the model).
If this size is larger than the display size, the model has
to be scaled down in order to get an overview, which in
turn makes it harder to observe details of the model [8].

• Improper configured relational blocks and all re-
lational blocks There are mixed blocks such as the
RelationalOperator (e.g. “<”) that compares to numerical
signals and returns a boolean result [8].

• The ratio between number of explicitly defined inports
and number of all inports The ratio between number of
explicitly defined inports and number of all inports [8].

• The ratio between number of explicitly defined out-
ports and number of all outports

The ratio between number of explicitly defined outports
and number of all outports [8].

• The ratio between cloned blocks and all blocks The
ratio between cloned blocks and all blocks [8].

• Afferent Coupling
Afferent coupling between blocks (CaB) is defined as
measure of the total number of external blocks linked to
a given block due to incoming signal within one layer. In
other words, it is the number of destination blocks for the
block under analysis [2].

• Efferent Coupling
Efferent coupling between blocks (CeB) is defined as the
number of blocks that are linked to a given block due to
outgoing signal within one layer, i.e. it is the number of
source blocks for the given block [2].

• Schneidler instability metric
This metric [10] calculates the average stability of the
blocks of a Simulink model and is based on the concepts
of blocks and their fan-in and fan-out. It is indicated that
a block with more fan-in blocks as fan-out blocks has a
higher probability of change.

• NTM (Number of Transitions)
The number of transitions in (M) [11], that is expressed
as Transition Space (TS) such that:

TS = {t | t : Bi −x /y → Bj}where Bi,

Bj ∈ E, x ∈ X, y ∈ Y, | TS |≤ k ×m

(Note that E: the set of blocks, where B0 is the initial
block, such that |E|= k)

• Fan-in
The fan-in [11] of the block ei is the number of incoming
transitions of ei arriving from another block ej where ei
is a member of E.

• Fan-out
The fan-out [11] of the block ei is the number of outgoing
transitions of ei towards another block ej where ei is a
member of E.

• MC (Model Complexity)
Model Complexity [11] is the simplicity degree of
relationships between blocks of the model at any level of
hierarchy in M.

MC =

n∑
k=1

pk ∗ (fanink ∗ fanoutk)2

After analysis of the found metrics, 12 base measures were
extracted, six of which composed 17 measurement functions(cf.
Fig. 3). Both, measurement functions and base measurements,
are used to measure maintainability or some sub-characteristics
of maintainability in the collected papers.

Throughout data extraction we have categorized metrics,
based on Staron and Meding [14], into two sub categories: Base
measurements and Measurement functions. Base measurements
are derived based on individual and basic attributes of an entity

Fig. 4: Answers of the survey based on a rating from 1 to 7.

in the system and measurement functions are algorithms that
combines two or more base measures.

V. PRACTITIONERS RATING

Based on the 6 valid results that we received from model
based practitioners, we can evaluate existing metrics and
see which base measure indicates a higher complexity or
more difficult maintainability rate. All responders were from
Germany and they were developers within automotive industry
with educations such as mechatronics, electrical engineers
and computer scientists. All the practitioners were using
Simulink and didn’t have any experience on the other modeling
languages.

Another table was designed from replies on the metrics
so that the reader can clearly understand the answers. They
are in scale from 1 to 7, with 4 being neutral, 7 imposing
highest influence on maintainability, and 1 imposing the lowest
influence. On Figure 4, we can see the highest and lowest. The
table shows the average value of of the answered questions.

On the first observation, we can see that the number of linked
libraries has the lowest score of 3.5 from all base measures.
Similarly, the number of fanout/fanin of blocks within the

model was just on 4, however, only 2 of them rated the metric,
the other 4 responders replied "I don’t know". The number of
missing connection also has quite little influence based on the
practitioners, due to its score of 4.16 out of 7.

On the other hand, the peaks are more obvious since most
of our answers were higher than the average, 4. We see a peak
on the number of goto/from pairs in a model with an average
of 6. The number of decision branches signals take inside the
model scores 5.5, as the second most important metric. The
number of signals/connectors, the number of direct connectors
between input and output without functionality, the number of
outputs, and the number of cloned blocks have all a value of
5.33.

Some honorable mentions are the depth of the model with
a value of 5, the number of non discrete blocks with value
of 5.16 and the amount of unused/unconnected functionalities
with a value of 5.

VI. DISCUSSION

Three different patterns were found after data synthesis of
the study aim. Six of our papers [2] [7] [8] [9] [10] [11]
were presenting metrics, five of the papers [7] [9] [10] [11]

Fig. 5: Function measures and quality characteristic relation.

[12] were evaluating metrics and two of the papers [2] [13]
presented tools to measure maintainability of model based
software. Besides the aim of the study, it was interesting to
observe the applicability population of the metrics. We found
that 2 papers aimed to measure quality of hydraulic models, 3
aimed for automotive models, and other 3 aimed for different
areas as long as its model based software.

Although Modelica and Dymola was in our search string, we
did not get any final result that was discussing maintainability
and was tested on its models. All the papers received were
aimed or tested on Simulink models.

We dissolved the measurement functions, in order to relate
them to their base measures. We discovered that 6 of our
base measures composed all the other measurement functions
(cf. Fig. 3). In cases such as Complexity or Distance we also
find that they are composed of other measurement functions.
On the other hand, we find 6 other metrics such as Library
usage, or memory compilation statistics that are base measures
which don’t compose any measurement function. Its important
to note that in some papers, base measurements were also
aiming to measure maintainability or some sub-characteristics
of maintainability.

Besides the relation between measurement functions and
base measures, we visualized the quality characteristics that
the metrics aim to resolve (cf. Fig. 5). However, on a few of
the characteristics, they use old standard definitions to define
maintainability. The qualities are still displayed but they are
not a branch of maintainability based on ISO 25010. On a few
papers, the definition of the precise quality the metric aims

to measure is not exactly clear. Therefore we relate it only to
maintainability but it might resolve other sub-characteristics
as well.

On the 6 base measures that compose other function
measures, we defined the number of links for each base measure.
We observed that block count composed the most measurement
functions and it was also mentioned in every reviewed paper.
However, the result of survey suggests that block count doesn’t
influence maintainability on the same scale as other metrics, the
survey participants gave an average of 4.66 which is slightly
influential. Similarly, fan-out composes 9 other base metrics (2
less than block count) and is also mentioned in all papers. But
whats interesting on the survey, 4 of the participants answered
"I don’t know" and 2 of them answered 4 (average). This might
be a misunderstanding of the question posed as the same exact
answers were received for fan-in.

An interesting perspective is that the hardest paper to have its
data extracted [8] due to its lack of metrics description, showed
the highest influence results on the practitioners answers. Most
of the metrics presented there, such as the number of goto/from
block, where only mentioned from Hu et al. This indicates that
maintainability metrics in model based software, does indeed
lack further research from Academia.

Although the low number of results from our survey is a
validity threat, the clear distinction of results between academia
and industry indicates that more research is necessary in this
area.

Besides the low number of results from our survey, we
consider the question on fan-in and fan-out as a validity threat

as well. For our literature review, a higher number of papers
to be reviewed by including more libraries, can enhance the
quality and the number of papers found.

VII. CONCLUSION

Modern day industries have a great interest on the model
based software development. As an example, automotive indus-
tries primarily design their systems in model-based software.
With that being said, their system models needs to be frequently
changing due to new technology adjustments and improvements.
These changes often affect the size and complexity of the model
which makes it more difficult to maintain. In other programing
paradigms such as object oriented programing or UML models
there are already metrics on maintainability [3] [5].

During our literature review, we found 419 papers which
led us to extracting existing metrics on 8 different papers
and then we compare our finding with the result of the
survey that we have conducted with six industry practitioners.
We visualized existing metrics on two diagrams, one which
describes the relation between base measures and measurement
functions, and the other defining the quality characteristics
that measurement functions aim to measures. In addition to
metric diagrams, we present a chart consisting the result of
our survey.

The comparison between results led us to conclude that
more research needs to be done on academia regarding
maintainability metrics on executable models.

ACKNOWLEDGMENT

We thank University of Gothenburg for providing us access
to the libraries where we managed to read and download the
papers without having to pay for them. Besides the university of
Gothenburg, special thanks to our supervisor Jan Schroeder for
giving us constant feedback and guiding us through the thesis
journey. We also appreciate the effort of Gideon Neumann to
respond to our email regarding his paper [8]. We believe the
participants added great value to our research as well answering
the survey.

REFERENCES

[1] L. H. Putnam and W. Myers, Five core metrics: The Intelligence Behind
Successful Software Management. DORSET HOUSE PUBLISHING,
2003.

[2] Y. Dajsuren, M. G. van den Brand, A. Serebrenik, and S. Roubtsov,
“Simulink models are also software,” Proceedings of the 9th
international ACM Sigsoft conference on Quality of software
architectures - QoSA ’13, p. 99, 2013. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2465478.2465482

[3] R. Harrison, S. Counsell, and R. Nithi, “Coupling metrics for object-
oriented design,” in Proceedings Fifth International Software Metrics
Symposium. Metrics (Cat. No.98TB100262), Nov 1998, pp. 150–157.

[4] C. F. J. Lange, M. A. M. Wijns, and M. R. V. Chaudron, “Metricviewevo-
lution: Uml-based views for monitoring model evolution and quality,” in
11th European Conference on Software Maintenance and Reengineering
(CSMR’07), March 2007, pp. 327–328.

[5] M. Dagpinar and J. H. Jahnke, “Predicting maintainability with object-
oriented metrics - An empirical comparison,” Proceedings - Working
Conference on Reverse Engineering, WCRE, vol. 2003-January, pp. 155–
164, 2003.

[6] B. Kitcheham, Procedures for Performing Systematic Reviews, 2004.
[7] M. Plaska and M. Walden, “Quality comparison title of the technical and

report evaluation of digital hydraulic control systems,” no. 857, 2007.
[8] W. Hu, T. Loeffler, and J. Wegener, “Quality Model based on ISO / lEe

9126 for Internal Quality of MATLAB / SimulinkiStateflow Models,” pp.
325–330, 2012.

[9] M. Olszewska, “Simulink-Specific Design Quality Metrics,” no. August,
2011.

[10] M. Olszewska, Y. Dajsuren, H. Altinger, A. Serebrenik, M. Waldén, and
M. G. J. van den Brand, “Tailoring complexity metrics for simulink
models,” Proccedings of the 10th European Conference on Software
Architecture Workshops - ECSAW ’16, pp. 1–7, 2016. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2993412.3004853

[11] E. A. Antonio, F. Ferrari, F. A. d. P. Caurin, and S. C. P. F. Fabbri,
“A set of metrics for characterizing simulink model comprehension,”
Journal of Computer Science & Technology, vol. 14, no. 2, pp. 88–94,
2014. [Online]. Available: http://sedici.unlp.edu.ar/handle/10915/41807

[12] J. Schroeder, C. Berger, T. Herpel, and M. Staron, “Comparing the
Applicability of Complexity Measurements for Simulink Models during
Integration Testing - An Industrial Case Study,” Proceedings - 2nd
International Workshop on Software Architecture and Metrics, SAM
2015, pp. 35–40, 2015.

[13] “Extensible and automated model-evaluations with INProVE,” vol. 6598
LNCS, 2011, pp. 193–208.

[14] M. Staron and W. Meding, “Industrial self-healing measurement systems,”
Continuous software engineering, vol. 9783319112831, no. August 2014,
pp. 183–200, 2014.

