
DEPARTMENT OF PHILOSOPHY,
LINGUISTICS AND THEORY OF SCIENCE

IMPLEMENTINGPERCEPTUALSEMANTICS
IN TYPE THEORY WITH RECORDS (TTR)

Arild Matsson

Master’s Thesis 30 credits
Programme Master’s Programme in Language Technology
Level Advanced level
Semester and year Spring, 2018
Supervisors Simon Dobnik and Staffan Larsson
Examiner Peter Ljunglöf
Keywords type theory, image recognition, perceptual semantics,

visual question answering, spatial relations, artificial intelligence



Abstract
Type Theory with Records (TTR) provides accounts of a wide range of semantic and linguistic phenomena
in a single framework. This work proposes a TTR model of perception and language. Utilizing PyTTR, a
Python implementation of TTR, the model is then implemented as an executable script. Over pure Python
programming, TTR provides a transparent formal specification. The implementation is evaluated in a basic
visual question answering (VQA) use case scenario. The results show that an implementation of a TTR
model can account for multi-modal knowledge representation and work in a VQA setting.



Acknowledgements
Huge thanks to my supervisors and to professor Robin Cooper, all of whom have provided significant help
through this process.



Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Contribution of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Image recognition and object detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 Computational semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2.1 Type theory in linguistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3 Perceptual semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.4 Type Theory with Records (TTR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.4.1 Overview of TTR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.5 Visual question answering (VQA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 PyTTR: Programming with TTR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 Object detection with YOLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.3 Objects and perception with TTR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.4 Spatial relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.5 Language and visual question answering (VQA) . . . . . . . . . . . . . . . . . . . . . . 8

4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.1 TTR model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.1.1 Object detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.1.2 Individuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.1.3 Spatial relation classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.1.4 Beliefs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1.5 Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1.6 Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2 Combining situation types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.3 Parsing language to TTR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.3.1 Parsing to first-order logic (FOL) . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3.2 Translating FOL to TTR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3



4.4 The relabel-subtype relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.4.1 Subtype relabeling algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.4.2 Restrictions of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.5 Additions to PyTTR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.6 Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.1 Subtype check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2 PyTTR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.3 Inference-first . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.1 Suitability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.2 Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.3 Can it tell us something about semantics? . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

A Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31



1 Introduction
Having computers understand visual input is desirable in several areas. A domestic assistant robot may use
a camera to navigate and identify useful objects in a home. Driver-less cars need to be able to read road
signs and track other moving vehicles. Web crawlers may extract information from images alongside text
on the web.

This kind of understanding involves processing sensory (such as visual) input on a cognitive level. Low-
level image processing may include tasks such as prominent color extraction, edge detection and visual
pattern recognition. Higher-level processing, however, includes identifying objects, their properties and their
relations to each other. This information can then be used for language understanding, reasoning, prediction
and other cognitive processes. Making the connection between sensory input and cognitive categories is
what concerns the field of perceptual semantics (Pustejovsky, 1990).

Humans use language to communicate information. Thus it is useful to add linguistic capacities to a per-
ceptual system. With vision and language connected, a robot can talk about what it sees, and descriptions
can be automatically generated for images found on the web. Image caption generation is indeed a popular
task for evaluating computer vision systems. Another one is visual question answering (VQA) (Antol et al.,
2017), where the system is expected to generate answers to natural-language questions in the context of a
given image.

The connection between different modes of information, such as vision and language, requires a model of
semantic representation. Formal models such as first-order logic (FOL) have long been of choice, but recent
developments have seen data-driven approaches excel in some cases. Briefly put, the former kind tends to
deliver deep structures of information in narrow domains, while the latter more easily covers wide domains,
but with shallow information content (Dobnik & Kelleher, 2017). A recent contribution that combines
several branches in formal systems is Type Theory with Records (TTR) (Cooper, 2005a, 2016). TTR is
implemented in Python as PyTTR (Cooper, 2017).

1.1 Contribution of this thesis

The main purpose of this thesis is to extend the basic implementation of TTR (PyTTR, Cooper (2017)) to
apply it for the first time in a practical task relating vision and language, in particular VQA.

The questions that this research raises are:

1. To what degree is (a) TTR as a theoretical framework and (b) its existing practical implementation
suited to connect existing vision and language systems?

2. What are the benefits of using TTR this way for (a) vision and language systems and (b) visual question
answering?

3. What can connecting vision and language systems tell us about semantics (and TTR)?

To explore these questions, a model will be formulated in TTR and implemented using PyTTR. The model
will benefit from builing on past proposals; especially relevant are Dobnik & Cooper (2013) and Dobnik
& Cooper (2017). As a limitation for the VQA task, the language domain is restricted to polar (yes/no)
questions.

1



The theoretical background is summarized in Section 2. In Section 3, the strategies and techniques used
for the implementation are described. The implementation is then presented in Section 4. In Section 5, the
results are discussed in relation to the questions above. Finally, some conclusions are made in Section 6.

2 Background
This section will highlight some important pieces of the history of past research in relevant fields.

2.1 Image recognition and object detection

In image recognition, visual data is analyzed in order to detect and classify objects. A wide range of models
have been developed to solve this task. Some focus only on the detection of objects (Blaschko & Lampert,
2008), some only on classification (e.g. ResNet, He et al., 2016), and others attempt to solve the full problem
in an integrated fashion (Redmon et al., 2016; He et al., 2017).

Like in machine learning in general, and other kinds of data processing, significant values from the input
data (the image) are collected in a process known as feature extraction. Various types of features exist
for image processing. For one, Scale-invariant feature transform (SIFT) is a technique where significant
locations of an image are used to extract keypoints (Lowe, 1999). Classification can then be performed by
comparing the keypoints of a target image to those in a database.

With deep neural networks, however, the need for prior feature extraction is generally eliminated (He et al.,
2016, 2017). Neural networks that process image data typically contain convolutional network layers. Color
image data is highly dimensional, typically represented as a 2D matrix of pixels, where each pixel itself
specifies a quantity of each of three basic colors. Convolutional layers are used to divide the image into
smaller, overlapping segments, thus capturing locational aspects of the data. This way, the dimensionality
can be reduced to a single, one-dimensional vector.

2.2 Computational semantics

Semantics is the study of meaning. Computational semantics is concerned with how to represent meaning
digitally, and use it to perform semantic parsing, inference and other tasks (Blackburn & Bos, 2003).

A well-established and largely capable formalism for expressing and operating on propositions is first-order
logic (FOL). In FOL, the phrase “all dogs run” can be expressed as ∀x[dog(x) → run(x)]: for each indi-
vidual it holds that if it is a dog then it runs. Blackburn & Bos (2003) claimed that FOL is an adequate
semantic representation in a majority of cases, but “other approaches are both possible and interesting”.

Montague (1974) connected FOL and lambda calculus with syntactic parsing to obtain semantic parsing.
Thus, a natural-language utterance can be translated to a logical representation. One method for this is
context-free grammar (CFG) with feature structures. In CFG, a set of rules determine how an utterance is
parsed into a syntax tree: A determiner followed by a common noun form a noun phrase (NP→ Det N), a
sentence consists of a noun phrase and a verb phrase (S→NPVP), and so on. Extending a CFG framework
with feature structures allows constituents to carry additional information, such as semantic representations,
which can be combined as defined in the grammar rules.

For a simple example, a noun phrase may carry the term tNP = λP∃xP (x), and a verb phrase may
carry tVP = λz sleep(z). A sentence rule may combine them as tS → tVP(tNP). The result is tS =
(λP∃xP (x))(λz sleep(z)) which, after β-reduction, is equal to tS = ∃x sleep(x). In real applications,

2



the rules for noun and verb phrases are usually more complex in order to cover more complex grammatical
constructions.

With recent advancements in computer science, ambitious computational-semantic theories are now in
abundance. As a competitor to formal systems, statistical methods have emerged which do well in various
tasks within semantics. They leverage the performance of modern computers and the large amounts of data
that are available as a product of our largely digitalized society. These data-driven approaches are easily
adapted for wide coverage (assuming enough data is available) but they often produce shallow knowledge.
Formal approaches, on the other hand, require more or less precisely crafted rules and formulations, which
is time-consuming, but it typically enables the result to be more structured and comprehensive (Dobnik &
Kelleher, 2017).

Searle (1980) disputes whether a computer really can understand concepts, that is, whether it will be able
operate on grounded symbols or just the (arbitrary) symbols themselves. Harnad (1990) names this the
symbol grounding problem. Steels (2008) describes experiments where a number of artificial agents partic-
ipate in a language game, where they make up random words for preset concepts and manage to “agree”
on which words to use for which concepts. With the success in these experiments, Steels argues that the
symbol grounding problem is solved.

2.2.1 Type theory in linguistics

Type theory is a logic system developed by Whitehead & Russell (1910), Church (1940), Martin-Löf &
Sambin (1984) among others (Coquand, 2015). The theory revolves around the concept that any object
belongs to a type. The judgement that an object a belongs to a type T is written a : T . Functions are
restricted to certain types, which allows more specificity in how they can be applied. For example, the
factorial function f! may be declared over natural numbers by typing it as f! : N → N.

Ranta (2011) uses type theory to drive a method of syntactic parsing. At a glance, consider how the type-
theoretical judgements “the” : Det, “door” : N and fDetN : Det → N → NP dictate that fDetN(“the”, “door”)
is an object of the type NP.

Another example of type theory in natural language processing (NLP) is Kohlhase et al. (1996), which
extends Discourse Representation Theory (DRT) with elements from type theory in order to provide com-
positionality.

2.3 Perceptual semantics

An artificial device perceiving its environment will make internal, symbolic representations of the real world
outside (Pustejovsky, 1990). According to Frege (1948), these symbols will have sense as well as reference.
A symbol with the sense “the dog” may have a certain dog in the environment as reference. Later, the same
symbol and sense may refer to another dog.

By using terms of spatial relations (“left”, “right”, “above”, etc.), the location of one object is specified in
terms of the location and orientation of another. Different terminology have been used to refer to the two
roles, but we will use located object and reference object (Dobnik et al., 2012).

Garnham (1989) explores terms of spatial relations and claims that there are three types of meanings for
each term: basic, deictic and intrinsic. The basic meaning is relative to the speaker and holds for a single
object only. The deictic and intrinsic meanings hold for relations between two objects. The deictic meaning
is relative to the coordinate frame of the speaker, while the intrinsic is relative to that of the reference object.
For someone standing near a car and facing its right-hand side, an object said to be “to the left of the car”

3



could be understood to be either near the car’s backside (deictic meaning) or its left side (intrinsic meaning).

Logan & Sadler (1996) propose spatial templates for the classification of spatial relations. A spatial template
is a field of acceptability ratings for a certain spatial relation term. The center of the field is the location
occupied by the reference object and each rating denotes the acceptability of using the term if the located
object is at the location of that rating. The ratings in spatial templates are collected through experiments.

Regier & Carlson (2001) instead propose a computational classification model known as attentional vector-
sum (AVS). The model considers distance between objects and the fact that they can have different shapes
(especially elongated in some direction). This model is compared to three simpler alternatives in seven
experiments, and AVS is found to perform best.

Coventry et al. (2001) explore extra-geometric constraints on the meaning of spatial relational terms, espe-
cially functional ones. The functional relation between objects is significant for the acceptability of terms
of spatial relations. For example, an umbrella may well be said to be above a man, but less clearly over him,
if it does not protect him from rain falling sideways in hard wind (Coventry et al., 2001).

2.4 Type Theory with Records (TTR)

Type Theory with Records (TTR) (Cooper, 2005b) combines several theories from logic, semantics and
linguistics in a single type-theoretic framework. It employs records, objects which themselves are structured
compositions of other objects; and accordingly, record typeswhich are structures of other types. More details
on the features of TTR are given in the overview in Section 2.4.1.

TTR has primarily been used to power various accounts of NLP, for example syntax (Cooper, 2005a,b,
2012, 2016), dialogue (Larsson & Cooper, 2009; Larsson, 2011; Cooper, 2016), situated agents (Dobnik
et al., 2012; Dobnik & Cooper, 2013, 2017) and spoken language (Cooper, 2016).

Dobnik et al. (2012) present howTTR can be used tomodel a situated conversational agent. The agentmoves
around in a point-space world. Objects, detected as sub-point-spaces are recognized, as are (geometric and
extra-geometric) spatial relations between them. The work is followed up by Dobnik & Cooper (2013) and
Dobnik & Cooper (2017), which model similar situated agents.

2.4.1 Overview of TTR

This section is an overview of TTR based on Cooper (2012) and Cooper (2016).

In TTR there are two kinds of entities: types and objects. Each type is associated with a set of objects which
are of that type, or in other words are witnesses of that type. The judgement that the object a is a witness
of the type T is written a : T . For example, 34 : Int means that 34 is of the type Int.

A record type is a set of fields, each field carrying a label and a type. In the record type
[
person : Ind

age : Int

]
there is a field labeled ‘person’ of type Ind, and one labeled ‘age’ of the type Int.

The witnesses of record types are records. A record is also a set of fields with labels, but instead of a type,
a label is associated with an object. A record r is a witness of a record type T , if and only if every field
in the record type has a matching field in the record, that is, the labels are the same and the object in the
record field is a witness of the type in the record type. The record

[
person = a12

age = 28

]
is a witness of the

record type just mentioned, provided a12 : Ind and 28 : Int.

4



A type Tsub is a subtype of another type Tsuper, written Tsub ⊑ Tsuper, if any witness of the subtype is
necessarily also a witness of the supertype. For example, Int ⊑ Number. In the case of record types, this
means that a record type Tsub is a subtype of a record type Tsuper if and only if every field in Tsuper is
present also in Tsub (allowing that a type in a Tsub field is itself a subtype of the type in the corresponding
Tsuper field). For example,

[
x : Int

]
⊑

[
x : Number

]
, provided Int ⊑ Number.

Relationships between objects can be modeled using ptypes. A ptype is constructed from a predicate and a
list of objects. For instance, the type hug(a, b) is constructed from the predicate ’hug’ with the objects a in the
first place and b in the second. The situation that a is hugging b is true if there exists a witness of hug(a, b).
In a record type, a ptype typically uses the labels of other fields for its arguments: In

[
x : Ind
c : green(x)

]
, the

field ‘c’ is dependent on the field ‘x’.

A type can be restricted to only have a single witness: If T is a type and a : T , then Ta is a singleton type
having a as its only witness. There is an alternative notation for singleton types used in record types: The
record type

[
x : Inda

]
can also be written

[
x = a : Ind

]
, and is restricted to the record

[
x = a

]
.

A singleton-typed field notated this way is known as amanifest field. Any number of fields in a record type
may be manifest fields.

A function from Tdom to Trng is a witness of the function type Tdom → Trng. For instance, if f = λx :
Ind . blue(x), then f : Ind → Type.

A list of objects of type T is a witness of the list type [T ]: If L is a list and ∀a ∈ L, a : T , then L : [T ].
In this thesis, the list containing a, b and c will be written as [a, b, c].

Types themselves may be the witnesses of other types. In order to allow this, types are sorted into orders,
where types of one order may be witnesses of a type of a higher order. (This technique is known as strati-
fication.) The type Typen, n > 0 is the type of all types of order n− 1. Similarly, RecTypen, n > 0 is the
type of all record types of order n−1. Most of the types in this thesis will be of order 0, so we will skip the
order superscript unless necessary, and use Type and RecType to denote Type1 and RecType1, respectively.

The relabeling η of a record type T is a set of tuples where the first element is a label in T and the second
is another, new label. Tη is another record type, similar to T but where the first item in each element of η
has been replaced with the second item. So, if T =

[
x : T ′ ] and η = {⟨x, y⟩}, then Tη =

[
y : T ′ ].

Flattening transforms a nested record type into an non-nested record type. In a nested record type such as
T =

[
x :

[
y : T1

]
z : T2

]
, a path of labels from consecutive levels can be used to address a nested field,

thus x.y refers to the field with the type T1. The flattened type φ(T ) contains every field in the first level,
and the paths from the nested type are used as labels: φ(T ) =

[
x.y : T1

z : T2

]
The meet of two types T1 ∧ T2 is a new type whose witnesses are those that are witnesses both of T1 and
T2 (an intersection of the sets of witnesses). The join T1 ∨ T2 is a type whose witnesses are those that are
witnesses either of T1 or of T2, or both (a union).

The merge of two types T1 ∧· T2 is a more complicated operation. If T1 and T2 are record types, their
fields are added together to a new record type; if any label occurs in both types, so T1 has ⟨ℓ, T ′

1⟩ and T2

has ⟨ℓ, T ′
2⟩, a field with that label is added, which has the merge of the two field types, ⟨ℓ, T ′

1 ∧· T ′
2⟩. If any

of T1 and T2 is not a record type, then T1 ∧· T2 = T1 ∧ T2.

5



2.5 Visual question answering (VQA)

Antol et al. (2017) suggest visual question answering (VQA) as a challenge for multi-modal semantic sys-
tems. AVQA system is presented an image and a natural-language question about the image, and is expected
to produce a natural-language answer. The initiative includes datasets and a series of annual competitions
since 2016.

A neural-network approach to question answering tasks in general is proposed by Andreas et al. (2016),
where multiple neural-network modules are assembled like constituents in a syntax tree. For example, for
the VQA question “What color is the bird?”, a network that locates objects of a given class is connected to
one which classifies the color at the indicated location. The method of composing the various modules is
trained jointly with the module networks themselves.

3 Method

3.1 PyTTR: Programming with TTR

Cooper (2017) provides a Python implementation of TTR known as PyTTR. It supports the modeling of
TTR types and operations such as judgement and type checking. As a Python library it also enables other
features and peripheral procedures to be written in Python.

PyTTR allows, in turn, the implementation of TTR models. By implementing a theoretical model as a
computer program, it can “come alive” and be tested on real problems and data. When implemented, the
model can be evaluated and compared in practical settings to other models.

3.2 Object detection with YOLO

You only look once (YOLO) (Redmon et al., 2016) is a neural network model for image recognition.
Given an image, it will detect objects and classify them. Each detection consists of a bounding box in pixel
coordinates, a class label and a confidence score between 0 and 1.

YOLO is trained using a loss function which takes detection as well as classification into account. In other
words, it simultaneously predicts bounding boxes and classifies the contained objects. Unlike He et al.
(2017) and others, it does not contain any recurrent layers. The joint, recurrence-free model makes for a
rather small network size and a high evaluation speed, although it does lag behind in accuracy compared to
the state of the art (Redmon et al., 2016).

Themodel exists in a few different network configurations, which have all been trained on the COCO dataset
(Lin et al., 2014). Development within this thesis has been using the “YOLOv2” configuration (Redmon,
2018).

YOLO is written in C, using the Darknet neural network library (Redmon, 2013). It can be used in Python
with the TensorFlow machine learning library (Abadi et al., 2015) and the Darkflow library (Trieu, 2018)
which translates a Darknet model to TensorFlow.

When invoked from Python, the return value is a collection of dictionary objects, each containing a label,
coordinates and a confidence score, as exemplified in Listing 1. Results with confidence over a certain
threshold are cast into TTR records. In this process, the bounding box coordinates are cast from a top-left
and bottom-right tuple ⟨⟨x1, y1⟩, ⟨x2, y2⟩⟩ to a center-width-height tuple ⟨xc, yc, w, h⟩ (later defined as the

6



Figure 1: Visualization of the labels and bounding boxes emitted by YOLO when given an image depicting
a cyclist with a dog.

Segment type), as the latter is more adequate for the spatial classification used in this project.

3.3 Objects and perception with TTR

The perception of objects in this model is largely based on Dobnik & Cooper (2017, Section 5.1). First, the
object detection algorithm returns a set of perceptual objects. Each of these is evidence that a certain location
is associated with a certain property (such as being a dog). Second, an individuated object is generated for
each perceptual object. The individuated object additionally refers to a specific individual, and explicitly
associates the property and the location with this individual. It is the type of situations where, for example,
the individual a1 is a dog at location l1.

In Dobnik & Cooper (2017), the world has the form of a 3D point space rather than a 2D image. This
necessitates different types for the perceptual input and the locations of perceived objects. In the point
space case, the PointMap list type (a list of points) is used for the full “world”. Any part of the world is also
a list of points, thus also a PointMap. In our case, Image is used for the full image but we use Segment to
refer to parts of it.

3.4 Spatial relations

Our method of spatial relation classification is inspired by Dobnik & Cooper (2013) but more simplistic.
One simplification is that the reference frame is fixed. In the words of Garnham (1989) (as introduced in
Section 2.3), this means we only consider the deictic meaning of spatial relation terms, and not the intrinsic.
“Left” will mean to the left in the plane of the image, even if the reference object is turned on the side
or toward the viewer. Another simplification is the neglection of the functional aspects of spatial relations

7



[
{

’ t o p l e f t ’ : { ’ x ’ : 354 , ’ y ’ : 86} ,
’ b o t t om r i g h t ’ : { ’ x ’ : 551 , ’ y ’ : 437} ,
’ l a b e l ’ : ’ p e r s o n ’ ,
’ c o n f i d e n c e ’ : 0 .80116189 ,

} ,
{

’ t o p l e f t ’ : { ’ x ’ : 224 , ’ y ’ : 234} ,
’ b o t t om r i g h t ’ : { ’ x ’ : 646 , ’ y ’ : 476} ,
’ l a b e l ’ : ’ b i c y c l e ’ ,
’ c o n f i d e n c e ’ : 0 .85828924 ,

} ,
. . .

]

Listing 1: Example output of YOLO invocation.

(Coventry et al., 2001).

In our model, a spatial classifier κ takes two locations and returns a boolean result. We have implemented
spatial classifiers as Python functions. For the purpose of this thesis, no sophisticated spatial classification
has been considered. Instead, a naive comparison between centers of bounding boxes was implemented
using pre-defined rules. This was done for the four relations “left”, “right”, “above” and “below”.

3.5 Language and VQA

In contrast to full VQA systems, the model presented in this thesis will be restricted to a limited type of
questions, namely polar questions on the location of one object in relation to another. Such a question has
a corresponding declarative statement: The question “Is there a lamp above a table?” corresponds to the
statement “There is a lamp above a table”.

Giving the natural-language utterance a representation in the same formal framework as the image allows
comparing them to each other. The system will laborate with a question type (Q) representing the question,
as well as a scene type (S) representing the perceived scene.

The situation described by the question type will be true if there exists a witness of that type, r : Q (Barwise
& Perry, 1981; Cooper, 2005a). The scene type, on the other hand, is considered true by virtue of being
generated by perceptual classification. It follows that the question type is true if it is a supertype of the scene
type. Thus, rather than looking for a witness to the question type, we formulate the problem as subtype
checking, described in detail in Section 4.4. The question is answered with “yes” or “no” depending on
whether the scene type is a subtype of the question type, S ⊑ Q.

The existing research on TTR-based approaches to natural-language parsing, overviewed in Section 2.4,
might be extensive enough to cover the kind of utterances considered here. However, there is currently no
implementation available and ready to use, and parsing is not within the main focus of this thesis. Therefore,
the natural-language parsing implemented for this thesis is instead a simplistic one, detailed in Section 4.3

8



4 Results
The results of this project consists primarily of a TTR model, which connects language to visual perception
in a basic VQA setting and uses TTR throughout (Section 4.1). The project also solves a few significant
sub-problems, which are not entirely within the TTR model but tightly connected to it. These have been
solved as algorithms implemented in Python. They are: efficiently combining multiple belief record types
into one (Section 4.2), basic translation from first-order logic to TTR (Section 4.3) and finally a subtype
relation insensitive to labels, ⊑rlb (Section 4.4).

The code is written in a Jupyter notebook file and released at https://github.com/arildm/
imagettr under the open-source MIT license. This section contains references to that code (specifi-
cally the version tagged 1.1) in the form of notebook cell numbers.

4.1 TTR model

The types in the TTR model are largely based on Dobnik & Cooper (2017), but the Segment type is new,
the individuation function is improved and the RelClf mechanism is more concretely defined. The Agent
type is also new.

In the code, the TTR model is constructed in notebook cells 9–10, 14–19 and 23–26.

Four basic types exist in the model.

Ind A reference to a single individual object, such as the reader or the Eiffel Tower.

Int An integer, such as 415.

Image A 2-dimensional digital image. It serves as an identifier to a set of extracted information, and its file
type and actual data is not important in this thesis.

String A piece of plain text of arbitrary length.

A Segment is a record type describing a rectangular bounding box within an (implicit) image (Equation 1).
Its fields contain the center coordinates of the box (‘cx’ and ‘cy’) and the width (‘w’) and height (‘h’) of the
box. Ppty is the type of functions that can be applied to an individual and return a type (Equation 2). In our
account the resulting type will be restricted to a ptype that is dependent on the individual, thus describing a
property of it.

Segment =


cx : Int
cy : Int
w : Int
h : Int

 (1)

Ppty = (Ind → Type) (2)

4.1.1 Object detection

A perceptual object is a record of the record type Obj (Equation 3). It contains a bounding box (the ‘seg’
field) and a property (‘pfun’). An example record is given in Equation 4. An object detector is a function

9

https://github.com/arildm/imagettr
https://github.com/arildm/imagettr


from an image to a set of such perceptual objects, as captured by theObjDetector function type (Equation 5).
The YOLO object detector is typed as ObjDetector in notebook cell 14.

Obj =
[

seg : Segment
pfun : Ppty

]
(3)

obj =

 seg =


cx = 435
w = 422
cy = 355
h = 242


pfun = λv : Ind . bicycle(v)

 : Obj (4)

ObjDetector = (Image → [Obj]) (5)

4.1.2 Individuation

The perceptual object couples a property with a location, but it does not explicitly say anything about any
individual object. In Dobnik & Cooper (2017), the step from the perceptual to the conceptual domain is
made by generating a record type that corresponds to a situation, namely the situation that a certain individual
has a certain property and is at a certain location. This situation record type is known as an individuated
object, and is a subtype of IndObj (Equation 6).

IndObj =


x : Ind
cp : PType
cl : location(x, loc)
loc : Segment

 (6)

Here, ‘x’ is an individual and ‘loc’ is a bounding box. The ‘cl’ field specifies that ‘loc’ is the location of ‘x’,
and the purpose of ‘cp’ is to declare a property of ‘x’. As all individuated objects are subtypes of IndObj,
the ‘cp’ field must have a type that will be a supertype of any ptype; we define PType to be this.

Definition 1 For any ptype T = pred(v1, ..., vn), T ⊑ PType.

A function for generating an IndObj subtype from an Obj record is known from Dobnik & Cooper (2017)
as an individuation function. It is typed as IndFun (Equation 7). Note that it generates a record type, in
contrast to ObjDetector which generates records.

IndFun = (Obj → RecType) (7)

The individuation function is defined as fIndFun in Equation 8 (notebook cell 15). The record type resulting
from applying fIndFun is a subtype of IndObj, where the ‘x’ and ‘loc’ fields are specified using manifest fields.
The ‘x’ field is specified as a newly instantiated Ind object, an (where n is a number such that the new
instatiation is unique). The ‘loc’ field is specified as the value of ‘seg’ in the Obj record. Having these fields
specified allows us to access the values (the individual and the location) at a later stage, when we are looking
at the IndObj record types and not the Obj records. For the types in the ‘cl’ and ‘cp’ fields, it is not important

10



to know what the proof is, as long as there is a proof. Therefore, they do not need to be instantiated and
specified.

The instantiation of new individual objects an assumes that no twoObj records describe the same individual.
If more than one object detection model were applied, perhaps in an attempt at wider coverage, then we
might end up with generating multiple individual objects where a human observer would detect only one. A
merging step could then be added in connection with the individuation procedure, where objects of the same
property and similar locations are merged as one. Furthemore, the detection models may return different
but similar labels, such as “car” and “truck”. Covering these cases would additionally require measuring the
similarity of different semantic concepts.

An example application of fIndFun is shown in Equation 9. The output record type describes a situation
where an individual identified as a0 is classified as a bicycle and is occupying a 422 × 242-sized rectangle
with its center at (435, 355).

fIndFun = λr : Obj .


x = an : Ind

cp : r.pfun(x)
cl : location(x, loc)

loc = r.seg : Segment

 (8)

fIndFun(

 seg =


cx = 435
w = 422
cy = 355
h = 242


pfun = λv : Ind . bicycle(v)

) =


x = a0 : Ind
cp : bicycle(x)
cl : location(x, loc)

loc =


cx = 435
w = 422
cy = 355
h = 242

 : Segment


(9)

4.1.3 Spatial relation classification

Relations may hold between pairs of individuated objects. How do we detect and model a certain relation
between such a pair?

Since we are interested in the spatial relation between a reference object and a located object, we will be
constructing tuple-like records of the type LocTup defined in Equation 10. Records of this type contain
instantiations (records) of two IndObj record types. In Equation 11, a classifier is modeled as a function
from such a record to a new record type which should describe the relation.

LocTup =

[
lo : IndObj

refo : IndObj

]
(10)

RelClf = (LocTup → RecType) (11)

For instance, a classifier for “left” might look like in Equation 12, where κleft is a non-TTR, boolean function.
Of course, the requirement that the individual r.lo.x is actually located at r.lo.loc (and same for r.refo) is

11



implicit from the typing as IndObj, where a field typed as location(x, loc) is necessarily present.

λr : LocTup .



 x : r.lo.x
y : r.refo.x
cr : left(x, y)

 , if κleft(r.lo.loc, r.refo.loc)

[ ], otherwise

(12)

This is implemented in notebook cell 16, where the function relclf creates functions like the one in Equa-
tion 12. The function get_relclfs creates such a function for each of the four predicate-classifier pairs,
and find_all_rels applies each classifier to each IndObj pair. (The latter step is later re-implemented
in the agent algorithm.)

4.1.4 Beliefs

The set of individuated objects, added to the set of relation classification results, forms a set of beliefs. Each
of these types is a situation held to be true, by virtue of resulting from perception mechanisms. They can
be combined into one scene record type which describes the full scene. The method of such combination is
not trivial, and is discussed in Section 4.2.

4.1.5 Language

In order to add the connection to language, any natural-language utterance must be parsed into TTR. As
discussed in Section 3.5, TTR-based natural-language parsing has not yet been implemented as a ready-to-
use library. Therefore, parsing must be done externally to the TTR model. This is described in Section 4.3.
Equation 13 models the question “Is there a lamp above a table?” (equivalent to the statement “There is a
lamp above a table”).


x : Ind
y : Ind
cx : lamp(x)
cy : table(y)
cr : above(x, y)

 (13)

Asmentioned in Section 3.5, answering the question corresponds to checkingwhetherS ⊑ Q. An important
problem, however, stems from the fact that TTR record types are labeled. In general, fields in the scene
type and question type will not share labels in a way that enables simple subtype checking to be useful. The
remedy to this is an alternative subtype relation ⊑rlb which is insensitive to label names. This new relation
is discussed in Section 4.4.

4.1.6 Agent

The perceptual-conceptual pieces described above are now connected in an agent record type (Equation 14
and Equation 15) with associated manipulation algorithms. Upon receiving an image, it will carry out object
detection, individuation and spatial relation classification, in order to form its beliefs. It may also receive a
parsed natural-language utterance, which will then be verified against the beliefs. A construction like this

12



provides a means to answer to natural-language questions about the image.

Agent =


objdetector : ObjDetector

indfun : IndFun
relclfs : [RelClf]
state : AgentState

 (14)

AgentState =


img : Image
perc : [Obj]
bel : [RecType]
utt : String
que : RecType

 (15)

The fields ‘objdetector’, ‘indfun’ and ‘relclfs’ of Agent are to be statically defined for a specific agent. While
running, the agent will modify theAgentState record in ‘state’. The ‘perc’ field will contain a list of perceptual
objects. The ‘bel’ field will be a list of beliefs modelled as record types: individuated objects and spatial
relations between individuals.

For an agent record ag : Agent, the perception and question-answering procedure is carried out as follows.

Visual perception

1. Visual input in the form of an image is received and assigned to ag.state.img.

2. ag.objdetector is invoked on ag.state.img and creates a collection of perceptual object records that
are assigned to ag.state.perc.

3. ag.indfun is, in turn, invoked on each record in ag.state.perc and resulting individuated object record
types are added to ag.state.bel.

4. Now, each function in ag.relclfs is applied to each pair of record types in ag.state.bel:

(a) For each pair T1 and T2 in ag.state.bel, a LocTup record type is constructed as
[

lo : T1

refo : T2

]
.

Note that this will be specified to certain individuals and segments, and is thus more informative
than the plain LocTup type.

(b) The specified LocTup type is instantiated to a record.
(c) Each function in ag.relclfs is applied to the created record, and the record type resulting from

each application is added to ag.state.bel unless it is empty ([ ]).

For example, the “left” classifier in Equation 12 is applied to each pair of IndObj after combining
them into a LocTup and instantiating it. Note that the IndObj have manifest fields which carry on to
the LocTup type, so it is more specific than just instantiating LocTup itself.

The individuated objects and the spatial relations are contained in the same list, ag.state.bel, which models
beliefs of the agent. (Remember that an individuated object is a belief that a certain individual has a certain
property and location.) In extension, this list may contain record types of many other shapes, perhaps
describing situations where an individual has a certain color or two individuals are involved in an event (as
suggested in Section 6.4). Step 4 works here because ag.state.bel is sure to contain only IndObj record types

13



at this point, and because ag.relclfs only contains RelClf functions. The general case would necessitate a
different formulation (and a new name for the ‘relclfs’ field), perhaps utilising subtype checking to qualify
possible argument combinations.

Language

1. Any language input utterance is assigned to ag.state.utt.

2. The utterance is parsed and the resulting record type (Q) assigned to ag.state.que.

3. The record types in ag.state.bel are combined to one (S). If the resulting record type is a relabel-
subtype of ag.state.que, S ⊑rlb Q the answer “Yes” is emitted; otherwise “No”.

The Agent type is implemented in notebook cell 23 and instatiated as a record in cell 24. Its algorithms are
implemented in cell 25 as agent_see for the visual perception part and agent_hear for language.

The state of an agent is a record of the type Agent. An example state ag is shown in Equation 16.

14



a
g
=

                                                  ob
jd
ete

cto
r
=

y
o
l
o
_d
e
t
e
c
t
o
r

in
df
un

=
i
n
d
f
u
n

re
lcl
fs

=
[C

lf
lef
t,
C
lf
rig
ht
,C

lf
ab
ov
e,
C
lf
be
low

]

sta
te

=

                                          im
g

=
<
I
m
a
g
e
”
d
o
g
r
i
d
e
.
j
p
g
”
>

pe
rc

=
[       se

g
=

     cx
=

4
5
2

w
=

1
9
7

cy
=

2
6
1

h
=

3
5
1

     
pf
un

=
λ
a
:
In
d
.
pe
rso

n(
a
)

       ,       se
g

=

     cx
=

4
3
5

w
=

4
2
2

cy
=

3
5
5

h
=

2
4
2

     
pf
un

=
λ
a
:
In
d
.
bi
cy
cle

(a
)

       ,.
..
]

be
l
=

[            

x
=

a
0

:
In
d

cp
:
pe
rso

n(
x
)

cl
:
loc

ati
on
(x
,l
oc
)

loc
=

     cx
=

4
5
2

w
=

1
9
7

cy
=

2
6
1

h
=

3
5
1

     :
Se
gm

en
t

            ,

  x
=

a
0

:
In
d

y
=

a
1

:
In
d

cr
:
ab
ov
e(
x,
y)

  ,...
]

ut
t
=

“Is
th
er
ea

do
gt
ot
he

lef
to
fa

bi
cy
cle
?”

qu
e

=

       x
:
In
d

y
:
In
d

c 0
:
do
g(
x
)

c 1
:
bi
cy
cle

(y
)

c 2
:
lef
t(x

,y
)

       

                                                                                            

(1
6)

15



4.2 Combining situation types

The beliefs of the agent are formed by a collection of record types. These are combined into one, in order
to build the scene type S.

Consider the spatial relation classifiers, which create record types with the fields ‘x’, ‘y’, and ‘cr’. One of
these record types may be specified so that it declares that an individual a1 is above another individual a2
(Equation 17). Another record type may declare that a2 is to the right of a1 (Equation 18). The combi-
nation of these beliefs, which declares both these relations, is described by Equation 19. To avoid conflict,
some fields have been relabeled, prompting the expectation that combination results have no informative or
predictable labels.

T1 =

 x = a1 : Ind
y = a2 : Ind

cr : above(x, y)

 (17)

T2 =

 x = a2 : Ind
y = a1 : Ind

cr : right(x, y)

 (18)


x = a1 : Ind
y = a2 : Ind

cr1 : above(x, y)
cr2 : right(y, x)

 (19)

TTR features an merge operation (∧· ), but a merge will not have the result desired here. Since the same
labels occur in both belief types, a merge would result in meet types, as seen in Equation 20, in a way which
is not useful for this purpose. The meet type of two different singleton types, Inda1 ∧ Inda2 , can only be true
if the two individuals are the same, a1 = a2. The constraint in the ‘cr’ field then says that some individual
is above and to the right of itself, which is meaningless and certainly not what we are trying to obtain.

T1 ∧· T2 =

 x : Inda1 ∧ Inda2
y : Inda2 ∧ Inda1
cr : above(x, y) ∧ right(x, y)

 (20)

Cooper (2016) solves this by a method of nesting and flattening (notebook cell 17). Each belief is added as
the type of a new field ‘prev’ in the next belief: [prev : T1] ∧· T2 (Equation 21). The result is then flattened
to avoid the nesting (Equation 22). The field labeled ‘x’ in T1 is now labeled ‘prev.x’ and does not conflict
with the field labeled ‘x’ from T2.


prev :

 x = a1 : Ind
y = a2 : Ind

cr : above(x, y)


x = a2 : Ind
y = a1 : Ind

cr : right(x, y)

 (21)

16





prev.x = a1 : Ind
prev.y = a2 : Ind

prev.cr : above(prev.x, prev.y)
x = a2 : Ind
y = a1 : Ind

cr : right(x, y)

 (22)

Another method is used in this project for the purpose of computational speed (notebook cell 18). In this
method, each belief record type is relabeled to only have unique labels, and then merged. An example result
is shown in Equation 23. Generating unique labels is an operation outside TTR, making this method less
purely TTR-powered.



x1 = a1 : Ind
y1 = a2 : Ind

cr1 : above(x1, y1)
x2 = a2 : Ind
y2 = a1 : Ind

cr2 : right(x2, y2)

 (23)

Both methods result in duplicate fields: there is no meaningful difference between the fields labeled ‘x1’ and
‘y2’ above, as both have the same singleton type. Removing these duplicates (also deduplication, or dedupe)
is necessary for the subtype check that will follow. This process first involves finding which fields have the
same type as another field. Subsequently, simply removing duplicates is not an option, as there may be other
fields that depend on the duplicate field. These dependent fields must also be updated to use the remaining
field.

The combine and dedupe functions are defined in Listing 2 (notebook cells 7 and 18).

In combine, a list of record types are reduced to one type by unique relabeling and merging. The
unique_labels function makes use of gensym in the PyTTR library, which generates new, con-
secutively numbered labels such as loc_4 (typeset here as loc4). A label containing an underscore (‘_’) is
assumed to already be uniquely numbered. Thus, labels without undescores are relabeled to new, numbered
labels.

Finally, the dedupe function removes any duplicated singleton and complex field types by relabeling all
occurrences of each such field type with one of their labels. For example, in

[
x = a1 : Ind
y = a1 : Ind

]
, ‘y’ is

relabeled to ‘x’. (Or possibly vice versa; the order of record type fields is unspecified.) When all duplicates
of some field type have been removed, recursion is used to avoid usage of old labels in the outer for-loop.

4.3 Parsing language to TTR

As mentioned in Section 2.4, pure TTR solutions to natural language parsing have been developed but
not implemented. Such an implementation is sufficiently complex and outside the scope of this thesis.
Furthermore, the language domain is limited for the purpose of this thesis, and a wide-coverage parsing
solution is more than what is necessary. Therefore, instead of implementing natural language parsing in
TTR, this project uses another standard method to parse natural language to first-order logic (FOL). The
FOL expression is subsequently translated to TTR in a new algorithm.

17



from f u n c t o o l s import reduce

def u n i q u e _ l a b e l s (T ) :
” ” ” R e l a b e l a RecType so each f i e l d l a b e l i s u n i q u e o v e r a l l RecType s . ” ” ”
r l b = ( ( l , gensym ( l ) ) for l in T . l a b e l s ( ) i f ’ _ ’ not in l )
re turn r e c t y p e _ r e l a b e l s (T , d i c t ( r l b ) )

def dedupe (T ) :
” ” ” Make a copy of a r e c o r d t y p e w i t h o u t d u p l i c a t e d f i e l d v a l u e s . ” ” ”
for l , v in T . f i e l d s ( ) :

# Are t h e r e more f i e l d s w i t h t h e same v a l u e ?
l 2 s = [ l 2 for l2 , v2 in T . f i e l d s ( ) i f l 2 != l

# Dedupe s i n g l e t o n t y p e s and comp l e x t y p e s .
and ( i s i n s t a n c e ( v , S i n g l e t o nTyp e ) or not i s _ b a s i c _ t y p e ( v ) )
# Us i ng show i s e r r o r−prone , p y t t r s h o u l d have an e q u a l s me thod .
and show ( v ) == show ( v2 ) ]

i f l en ( l 2 s ) :
# R e l a b e l a l l t h e s e f i e l d s t o t h e same l a b e l ,
# o v e r w r i t i n g u n t i l one r ema i n s .
for l 2 in l 2 s :

T . R e l a b e l ( l2 , l )
# Dependen t f i e l d s have changed , s o s t a r t o v e r .
re turn dedupe (T )

# No more d u p l i c a t e s .
re turn T

def combine ( Ts ) :
” ” ” Combine a l i s t of b e l i e f r e c o r d t y p e s i n t o one . ” ” ”
f = lambda a , b : a . merge ( u n i q u e _ l a b e l s ( b ) )
re turn dedupe ( reduce ( f , Ts , RecType ( ) ) )

Listing 2: The combine and dedupe functions.

18



QS[SEM=<?np ( ? pp ) >] −> ’ i s ’ ’ t h e r e ’ NP[SEM=?np ] PP [SEM=?pp ]
QS[SEM=<?np ( \ P . t r u e ) >] −> ’ i s ’ ’ t h e r e ’ NP[SEM=?np ]

NP[SEM=<? d e t ( ? n ) >] −> Det [SEM=? de t ] N[SEM=?n ]
Det [SEM=<\P Q. e x i s t s x . ( P ( x ) & Q( x ) ) >] −> ’ a ’ | ’ an ’

VP[SEM=?pp ] −> ’ i s ’ PP [SEM=?pp ]
PP [SEM=<\x . ( ? np ( \ y . ? p rep ( x , y ) ) ) >] −> Prep [SEM=? prep ] NP[SEM=?np ]

Prep [SEM=< l e f t >] −> ’ t o ’ ’ t h e ’ ’ l e f t ’ ’ o f ’

N[SEM=<dog >] −> ’ dog ’
N[SEM=<per son >] −> ’ p e r s on ’

Listing 3: A snippet of the FCFG grammar.

4.3.1 Parsing to FOL

Parsing is done using the NLTK library (Bird et al., 2009), which contains a semantically augmented CFG
framework just like the method introduced in Section 2.2. It uses feature structures to associate each con-
stituent with a FOL term possibly using lambda calculus. A snippet of the grammar is given in Listing 3 (the
full grammar is given in notebook cell 20). The grammar can be used to generate the sample parse tree in
Figure 2. Above the word-tokenized sentence, every node in the tree represents a constituent. Underneath
the abbreviation, each constituent features first the expression given in the grammar specification (with some
typographical modification), and second, the FOL term resulting from substitution and β-reduction.

Figure 2: Example syntactic-semantic parsing of an utterance into first-order logic.

4.3.2 Translating FOL to TTR

The result of the CFG parsing is a Python object that encodes the FOL expression. A custom Python
function fol_to_pyttr, given in Listing 4 (notebook cell 20), traverses this object recursively and builds
a PyTTR type.

19



import n l t k
from n l t k . sem . l o g i c import App l i c a t i o nE x p r e s s i o n , AndExpress ion , E x i s t s E x p r e s s i o n ,

C o n s t a n t E x p r e s s i o n

def f o l _ t o _ p y t t r ( expr , T=RecType ( ) ) :
” ” ” Turn s a FOL o b j e c t i n t o a RecType . ” ” ”
# E x i s t e n t i a l q u a n t i f i e r −> Ind f i e l d .
i f i s i n s t a n c e ( expr , E x i s t s E x p r e s s i o n ) :

T . a d d f i e l d ( s t r ( exp r . v a r i a b l e ) , I nd )
re turn f o l _ t o _ p y t t r ( exp r . term , T )

# A p p l i c a t i o n −> p t y p e , e . g . l e f t ( x , y )
i f i s i n s t a n c e ( expr , A p p l i c a t i o n E x p r e s s i o n ) :

pred , a r g s = exp r . u n c u r r y ( )
# C r e a t e a PType f u n c t i o n , e . g . lambda x : Ind . dog ( x )
fun = c r e a t e _ f u n ( s t r ( p red ) , ’ abcd ’ [ : l en ( a r g s ) ] )
T . a d d f i e l d ( gensym ( ’ c ’ ) , ( fun , [ s t r ( a ) for a in a r g s ] ) )
re turn T

# For and−e x p r e s s i o n s , i n t e r p r e t each t e rm .
i f i s i n s t a n c e ( expr , AndExpre s s ion ) :

f o l _ t o _ p y t t r ( exp r . f i r s t , T )
f o l _ t o _ p y t t r ( exp r . second , T )
re turn T

# A c o n s t a n t f u n c t i o n i n t h e ” i s t h e r e an X” r u l e t r i v i a l l y g i v e s ” t r u e ” .
i f i s i n s t a n c e ( expr , C o n s t a n t E x p r e s s i o n ) and s t r ( exp r . v a r i a b l e ) == ’ t r u e ’ :

re turn T

r a i s e Va l u eE r r o r ( ’ Unknown␣ e x p r e s s i o n : ␣ ’ + s t r ( type ( exp r ) ) + ’ ␣ ’ + s t r ( exp r ) )

def e n g _ t o _ p y t t r ( t e x t ) :
# To k e n i z e .
s e n t = t e x t . l owe r ( ) . s t r i p ( ’ . ? ! ’ ) . s p l i t ( )
# NLTK−p a r s e t o s y n t a x t r e e .
t r e e s = p a r s e r . p a r s e ( s e n t )
# E x t r a c t s em a n t i c r e p r e s e n t a t i o n fo r t h e t r e e .
sem = n l t k . sem . r oo t _ s emrep ( l i s t ( t r e e s ) [ 0 ] )
# I n t e r p r e t t o TTR r e c o r d t y p e .
T = f o l _ t o _ p y t t r ( sem , RecType ( ) )
re turn T

Listing 4: Translation from FOL to TTR.

• For an “Exists” expression, an Ind field is added to the type.

• For an “Application” expression, a ptype field is added, copying the predicate and variable names.

• An “And” expression simply triggers recursion into each of the two terms.

• The constant ‘true’ is added to allow simple existential questions like “Is there an aeroplane?”

A wrapper function eng_to_pyttr combines simple word tokenization, CFG parsing and FOL-to-TTR
translation.

4.4 The relabel-subtype relation

Perceptual mechanisms and the combination of belief types have produced a scene type S. Separately,
natural language parsing of a speaker utterance has provided a question type Q. Now, in order to answer

20



the question, we are interested in whether S ⊑ Q.

However, the fact that TTR record types are labeled prevents direct usage of the subtype relation. Field
labels in the scene type will generally not agree with those in the question type. This prompts for a more
advanced variant of subtype checking, allowing relabeling.

Definition 2 A record type S is a relabel-subtype of the record type Q, S ⊑rlb Q, if there is a relabeling η
of Q such that S ⊑ Qη.

The number of relabelings in one record type, to the labels of another, can be quite large: If S has 20
fields andQ has five, then there are 20!

(20− 5)!
= 1 860 480 relabelings of Q (the number of 5-permutations

of 20). It is practically impossible to perform all relabelings and check whether subtypeness holds. An
alternative algorithm is presented below for the purpose of this project, where fast computation is enabled
by making a few assumptions about the input record types.

4.4.1 Subtype relabeling algorithm

This algorithm handles non-dependent (“basic”) and dependent fields separately.

First, when considering relabelings of Q, only the basic fields are included. (In this project, those fields are
associated with singleton types of either Ind or Segment.) This drastically limits the number of relabelings
to try: If S has eight basic fields and Q has two, there are only 8!

(8− 2)!
= 56 relabelings.

Then, for each relabeling being tried, the remaining (dependent) fields are subtype-checked individually, in
order to avoid more relabeling. This means checking dog(x) ⊑ dog(x) (true) instead of

[
c1 : dog(x)

]
⊑[

c2 : dog(x)
]
(false). If there is some field inQη that does not have a subtype field in S, then subtypeness

cannot hold, and the rest of the complex fields are skipped in favor of trying the next basic-field relabeling.

For an illustration, consider the following simple example. A relabel-subtype check is being performed on
the record types S (Equation 24) and Q (Equation 25).

S =


x : Ind
y : Ind
z : Ind
c : right(x, y)
d : left(x, z)

 (24)

Q =

 p : Ind
q : Ind
e : left(p, q)

 (25)

1. The first basic-field relabeling to try is η1 = {⟨p, x⟩, ⟨q, y⟩}, yielding Qη1 =

 x : Ind
y : Ind
e : left(x, y)

.
2. However, neither right(x, y) or left(x, z), the dependent fields in S, is a subtype of left(x, y)

21



3. The next relabeling to try is η2 = {⟨p, x⟩, ⟨q, z⟩}, yielding Qη2 =

 x : Ind
z : Ind
e : left(x, z)

. Similar to
before, Qη2 .x ⊑ S.x and Qη2 .z ⊑ S.z

4. Now, left(x, z) ⊑ left(x, z)

5. Conclusively, S ⊑ Qη2 and thus S ⊑rlb Q

4.4.2 Restrictions of the algorithm

As a prerequisite, any dependent fields must depend only on basic (non-dependent) fields. For example, the

algorithm will not correctly handle

 x : Ind
c1 : great(x)
c2 : believe(x, c1)

.
The algorithm does not recurse into nested record types. This restraint could be eliminated by using flat-
tening, but it is not needed in this scope.

4.4.3 Implementation

A Python implementation is given in Listing 5 (notebook cell 21).

4.5 Additions to PyTTR

Some extensions to PyTTR, listed below, were necessary for the implementation to be possible. Of these,
some were added directly to the PyTTR library, because simpler version of the operations of functions were
already there. Others were defined in the custom application; in these cases, a notebook cell reference is
supplied in the list below.

Python-body functions A TTR function is modelled by the PyTTR Fun class, where the function body
is made up by another PyTTR object. Application of the function is implemented as substituting
the argument in the body object. Some operations here have required more advanced operations. I
created a LambdaFun subclass of Fun to allow any Python code as its body (notebook cell 8).

Copying a record type This facilitates the creation of new record types based on an existing one, without
altering the original.

Relabeling multiple fields (notebook cell 4) PyTTR originally only contains a method for relabeling a
single field.

Relabel fix When a relabeled field occurs in a sibling dependent field value, the dependent field value must
be updated to use the new label. For instance, if ‘x’ is relabeled to ‘y’ in

[
x : Ind
c : p(x)

]
, then p(x)must

be updated to p(y).

A fix for LazyObject LazyObject is a class in the PyTTR library used for making references between
fields. Prior to the fix, it could only be used for paths longer than one item, for instance r.x but not r.

Flatten for record types The flatten operation was previously implemented for records but not for record
types. I added it to the record type class in order to implement Cooper’s merge-and-flatten method
described in Section 4.2.

22



from i t e r t o o l s import p e rmu t a t i o n s , c omb i n a t i o n s

def my_sub type_of ( sub , sup ) :
” ” ” I s T a s u b t y p e of U? Ac c e p t d e p e n d e n t r e c t y p e f i e l d s (= ( fun , a r g s ) t u p l e s )

w i t h s i m p l i s t i c e q u a l i t y t e s t . ” ” ”
t r y :

re turn sub . s u b t y p e _o f ( sup )
excep t A t t r i b u t e E r r o r :

re turn i s i n s t a n c e ( sub , t up l e ) and i s i n s t a n c e ( sup , t up l e ) and show ( sub ) ==
show ( sup )

def f i n d _ s u b t y p e _ r e l a b e l i n g ( S , Q) :
’ ’ ’ Cou ld r e c o r d t y p e S be a sub t y p e of r e c o r d t y p e Q i f r e l a b e l i n g i n Q i s

a l l ow ed ? ’ ’ ’
# For each r e l a b e l i n g of b a s i c−t y p e f i e l d s
for s l s in p e rmu t a t i o n s ( b a s i c _ f i e l d s ( S ) , l en ( b a s i c _ f i e l d s (Q) ) ) :

# Try t h e b a s i c−f i e l d s r e l a b e l i n g of Q
r l b _ b a s i c = d i c t ( z ip ( b a s i c _ f i e l d s (Q) , s l s ) )
Q2 = r e c t y p e _ r e l a b e l s (Q, r l b _ b a s i c )

# For each Q f i e l d , f i n d a S f i e l d t h a t i s a s u b t y p e
r l b _ d e p = d i c t ( )
for q l in n o n b a s i c _ f i e l d s (Q2) :

for s l in n o n b a s i c _ f i e l d s ( S ) :
# The new l a b e l s mus t be u n i q u e .
i f s l in r l b _ d e p . v a l u e s ( ) : cont inue
i f my_sub type_of ( S . f i e l d ( s l ) , Q2 . f i e l d ( q l ) ) :

r l b _ d e p [ q l ] = s l
break

i f q l not in r l b _ d e p :
break

# S u c c e s s f u l i f a l l non−b a s i c f i e l d s match .
i f l en ( r l b _ d e p ) == l en ( n o n b a s i c _ f i e l d s (Q2) ) :

re turn d i c t (** r l b _ b a s i c , ** r l b _ d e p )
re turn None

Listing 5: The find_subtype_relabeling function.

23



4.6 Demonstration

With the purpose of testing the integrity of the model, and for the sake of illustration, the model has been
run on a handful of images from the VQA dataset (Antol et al., 2017) (notebook cell 26). The results are
presented in Table 1. Each question is followed by the answer returned by the model as well as a subjective
intuition on whether the answer is correct or incorrect.

Note that the accuracy of the answers returned by the model are not a priority in this project. The perfor-
mance is dependent on what external modules for classification are integrated. This is discussed further in
Section 5.

5 Discussion

5.1 Subtype check

Once the perceived scene and the parsed question had been modeled as two situation types, the task of
finding an answer to the question was reduced to a subtype check. Under the current restriction to polar
questions, type theory has thus proven itself useful and straightforward as a means for the VQA problem
(and, in extension, question answering in general).

TTR in particular posed a problem for the subtype check due to the dependence on field labels. This fea-
ture necessitated an extra algorithmic layer to allow a label-insensitive comparison in the proposed relabel-
subtype check. As a variant of the subtype check, this solves the problem within the scope of this project,
but if the model of perception is extended, the computation time grows quickly. In particular, generating
more basic-type fields would drastically increase the number of relabelings.

5.2 PyTTR

The PyTTR programming library provided the ability to workwith TTR types, objects and operations. Some
extensions were needed in order to realise the present project. Some of these were quite simple, providing
more or less basic operations through only a few lines of code (such as copying a record type). These
could be implemented directly in the PyTTR library. Others provided operations that were quite specific to
the use case at hand, such as “combining” record types with label conflict resolving and deduplicated field
types. As such, they are less suited for direct inclusion in PyTTR, and should remain in the project-specific
source code. (As both PyTTR and the source code for this project are released open-source, all parts of the
implementation are open for anyone to reuse.)

5.3 Inference-first

The algorithm of perception described in Section 4.1.6 performs classification of spatial relations on all
pairs of individuated objects. In other words, all of the agent’s beliefs are inferred at once. Later, when
attempting to answer the given question, the beliefs can be queried directly in the subtype check.

In this application, where the goal is to answer a given question, that means spending more effort than
necessary. So far as this project goes, this is no significant impediment, as the number of inferences to
make (namely, classification of spatial relations) is rather small. In extension, however, the computation
time will grow with the amount of inferences (as well as the amount of detected objects) and this approach
does not scale.

24



1.1 Is there an aeroplane?
Yes (Correct)

1.2 Is there a person to the right of a car?
No (Incorrect?)

3.1 Is there a snowboard above a person?
Yes (Incorrect)

3.2 Is there a snowboard below a person?
Yes (Correct)

2.1 Is there a tent?
No (Incorrect)

2.2 Is there a kite above a person?
Yes (Correct)

4.1 Is there a giraffe below a tree?
No (Incorrect)

Table 1: Demonstration of model performance.

25



A more viable alternative is to first parse the question and then perform inference as needed to arrive to an
answer. If the question is about the spatial relation between a dog and a person, it will probably be enough
to see that there is a dog and a person in the scene, and that the spatial relation between them matches the
one expressed in the question.

6 Conclusions
Within this project, the foundations of visual question answering (VQA) have been implemented in Type
Theory with Records (TTR). The result is an executable application powered by PyTTR.

6.1 Suitability

This project has shown that TTR can indeed be used to connect existing vision and language systems. It
enables a detailed model of multi-modal perception and semantics. TTR is the single framework that serves
to operate all parts of the pipeline: perception, language and grounding.

This is one of the few applications of the recently developed PyTTR library, which has enabled executing
this model on actual data. Extensions to PyTTR were made where needed.

6.2 Benefits

The formal-semantic framework behind the application provides transparency and reversibility. This can
be contrasted to neural-network-based models, where the path from input to results is encoded in imper-
mable statistical data. The framework also enables relatively simple implementation of operations (such as
verifying a proposition).

6.3 Can it tell us something about semantics?

The problem of answering polar questions has beenmodeled as a subtype check between two situation types:
a grounded scene type and a hypothetical question type. This is different than the commonly established
modeling of questions as sets of propositions (Hamblin, 1973). The question could be cast into a set as
{T | T ⊑rlb Q}, but it still relies on the subtype check.

6.4 Future work

The agent structure is a rather simplistic model, tailored for the use case at hand. It accepts as input an
image followed by a number of questions. There is no semantic connection between the current image and
question, other than the sequence in which they are input. There is also nothing like a dialogue system; the
background to any answer from the agent is the latest image and the latest question only. Changing these
things could be important for further some extensions.

Spatial classification and language parsing were achieved using minimal and simplistic implementations.
Substituting them with sophisticated systems would make for wider question coverage and higher question
answering scores. For instance, Logan & Sadler (1996) proposes spatial templates, regions of acceptability
and compound relations (like “above to the right of”).

As discussed in Section 3.4, the present treatment of spatial relations excludes the assignment of the frame of
reference, as well as functional aspects, in favor of model simplicity and easy implementation. Both features

26



are treated in terms of TTR by Dobnik & Cooper (2013). The former requires a notion of the orientation of
reference objects. Assuming an object classifier with this capability were available, implementing intrinsic
spatial relations would not be a large step from the present model. Such a classifier might detect that a car is
facing left in the image; an object to the right in the image could then be classified as being “behind” the car.
Support for the functional aspect of spatial relations requires two things. Firstly, classifiers for functional
relations (such as protects(o3.a, o1.a, o2.a) in Dobnik & Cooper (2013), for an umbrella protecting a man
from rain). Secondly, prediction from a set of functional relations to spatial classifiers that are sensitive to
those functional relations. The second is needed to activate the appropriate spatial relation term depending
on which functional relations are true according to the classifiers in the first. That is, if the relation between
the umbrella and the man is classified as “protects”, then the spatial classifier selected for “over” should be
one that includes this condition.

Extending the language domain should be an interesting topic for further research. Keeping within the
problem domain of geometric spatial relations, allowing other question types than polar questions is one
direction to explore. Dobnik (2009, p. 156) lists four basic question types: “Where is the chair?”, “Is the
table to the left of the chair?” (this is the focus of this project), “What is to the left of the chair?” and “What
is the chair to the left of?” Another is to widen the problem domain and add more properties and relations
than a primary object class (“car”) and spatial relations. For instance, attribute classifiers could recognise
color, size, facial expressions and positions, in order to authorise questions such as “Is the girl sitting down?”
and “Where is the red flower?”. Action event classifiers could identify actions such as “riding” and “talking
to”.

The use of formal frameworks for question-answering tasks especially invites techniques for logical in-
ference. Consider an image of a person wearing glasses, and the question “Does this person have 20/20
vision?” It is reasonable to assume that a person is wearing glasses because they do not have perfect eye-
sight, to which “20/20 vision” is synonymous. Logical inference could help to achieve the synonymity as
well as the relationship between eyesight and wearing glasses.

The relabel-subtype implementation in thefind_subtype_relabeling Python functionmakes some
assumptions about the record types being checked (Section 4.4). More specifically, a field type may not be
dependent on another dependent field, and record typesmay not be nested. More complex applications could
be achieved if the implementation were extended to handle these cases and eliminate the assumptions.

Furthermore, as discussed in Section 5.1, the implementation does not scale to handle some of the extensions
mentioned here. One measure to improve the performance is to introduce type-sensitivity when finding
feasible basic-field relabelings. For example, do not try to relabel a field with type Ind to one with type Int,
since Int��⊑ Ind. In the general case, however, the relabel-subtype algorithm may need to be replaced with
one that utilises theorem proving in order to find a subtype-compatible relabeling.

As mentioned in Section 5.3, this algorithm does not scale well, as it performs classification of spatial
relations (and, in extension, any other kind of inference) before parsing the question. This problem could
be overcome by first extracting only direct information from the image, namely the result of theObjDetector;
then, when the question has been parsed, finding out what inference steps are necessary to perform. The
process of finding required inferences may need to be integrated with the amended subtype strategy just
mentioned. This is a necessary condition for most extensions of the language domain and inference.

From a software engineering perspective, the code implemented in this project could be better structured.
The code was implemented in a single Jupyter Notebook file, for the sake of easy experimenting. It could
be rewritten in standard Python files to make it easier to run on different systems.

The PyTTR codebase deserves some additional development. Its documentation is currently in the form of

27



Jupyter Notebook files, but it would be helpful to also add in-code comments that explain how the library
can be used. It would also help to package the code properly so it could be released and imported to projects
like this one more easily.

References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J.,

Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz,
R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah,
C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V.,
Vasudevan, V., Viégas, F., Vinyals, O.,Warden, P.,Wattenberg, M.,Wicke, M., Yu, Y., &Zheng,
X. (2015). TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software
available from tensorflow.org.

Andreas, J., Rohrbach, M., Darrell, T., & Klein, D. (2016). Learning to Compose Neural Networks for
Question Answering. In HLT-NAACL.

Antol, S., Agrawal, A., Lu, J., Mitchell, M., Batra, D., Zitnick, C. L., & Parikh, D. (2017). VQA: Visual
Question Answering. International Journal of Computer Vision, 123(1), 4–31.

Barwise, J. & Perry, J. (1981). Situations and Attitudes. Journal of Philosophy, 78(11), 668–691.

Bird, S., Klein, E., & Loper, E. (2009). Natural Language Processing with Python. O’Reilly Media, Inc.,
1st edition.

Blackburn, P. & Bos, J. (2003). Computational Semantics. Theoria: An International Journal for Theory,
History and Foundations of Science, (pp. 27–45).

Blaschko, M. B. &Lampert, C. H. (2008). Learning to Localize Objects with StructuredOutput Regression.
In D. Forsyth, P. Torr, & A. Zisserman (Eds.), Computer Vision – ECCV 2008, volume 5302 (pp.
2–15). Berlin, Heidelberg: Springer Berlin Heidelberg.

Church, A. (1940). A Formulation of the Simple Theory of Types. The Journal of Symbolic Logic, 5(2),
56–68.

Cooper, R. (2005a). Austinian truth, attitudes and type theory. Research On Language And Computation,
Vol. 3, 2005, pp. 333-.362, (pp. 333–362).

Cooper, R. (2005b). Records and Record Types in Semantic Theory. Journal of Logic and Computation,
15(2), 99–112.

Cooper, R. (2012). Type Theory and Semantics in Flux. Handbook of the Philosophy of Science, 14,
271–323.

Cooper, R. (2016). Type Theory and Language: From Perception to Linguistic Communication. Draft
of book chapters available from https://sites.google.com/site/typetheorywithrecords/drafts (accessed
on 2018-01-17).

Cooper, R. (2017). PyTTR. https://github.com/GU-CLASP/pyttr.

Coquand, T. (2015). Type Theory. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. Meta-
physics Research Lab, Stanford University, summer 2015 edition.

Coventry, K., Prat-Sala, M., & Richards, L. (2001). The Interplay between Geometry and Function in
the Comprehension of Over, Under, Above, and Below. Journal of Memory and Language, 44,
376–398.

28



Dobnik, S. (2009). Teaching Mobile Robots to Use Spatial Words. PhD thesis, The Queen’s College,
University of Oxford.

Dobnik, S. & Cooper, R. (2013). Spatial Descriptions in Type Theory with Records. In Proceedings of
IWCS 2013Workshop on ComputationalModels of Spatial Language Interpretation andGeneration
(CoSLI-3) (pp. 1–6). Potsdam, Germany: Association for Computational Linguistics.

Dobnik, S. & Cooper, R. (2017). Interfacing Language, Spatial Perception and Cognition in Type Theory
with Records. Journal of Language Modelling, 5(2), 273–301.

Dobnik, S., Cooper, R., & Larsson, S. (2012). Modelling Language, Action, and Perception in Type
Theory with Records. In International Workshop on Constraint Solving and Language Processing
(pp. 70–91).: Springer.

Dobnik, S. & Kelleher, J. D. (2017). Modular Mechanistic Networks: On Bridging Mechanistic and Phe-
nomenological Models with Deep Neural Networks in Natural Language Processing. In S. Dob-
nik & S. Lappin (Eds.), Proceedings of the Conference on Logic and Machine Learning in Natural
Language (LaML 2017), Gothenburg, 12–13 June 2017, volume 1 of CLASP Papers in Compu-
tational Linguistics (pp. 1–11). Gothenburg, Sweden: Department of Philosophy, Linguistics and
Theory of Science (FLOV), University of Gothenburg CLASP, Centre for Language and Studies
in Probability.

Frege, G. (1948). Sense and Reference. The Philosophical Review, 57(3), 209–230.

Garnham, A. (1989). A Unified Theory of the Meaning of Some Spatial Relational Terms. Cognition,
31(1), 45–60.

Hamblin, C. L. (1973). Questions in Montague English. Foundations of Language, 10(1), 41–53.

Harnad, S. (1990). The Symbol Grounding Problem. Physica D: Nonlinear Phenomena, 42(1-3), 335–346.

He, K., Gkioxari, G., Dollár, P., & Girshick, R. B. (2017). Mask R-CNN. 2017 IEEE International
Conference on Computer Vision (ICCV), (pp. 2980–2988).

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recognition. In 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 770–778). Las Vegas,
NV, USA: IEEE.

Kohlhase, M., Kuschert, S., & Pinkal, M. (1996). A Type-Theoretic Semantics for λ-DRT. In P. Dekker &
M. Stokhof (Eds.), Proceedings of the 10th Amsterdam Colloquium (pp. 479–498). Amsterdam.

Larsson, S. (2011). Do Dialogues Have Content? In Sylvain Pogodalla And Jean-Philippe Prost, Eds:
Proceedings Of Logical Aspects Of Computational Linguistics (Lacl 2011), Springer Lecture Notes
In Computer Science., volume 6736.

Larsson, S. & Cooper, R. (2009). Towards a Formal View of Corrective Feedback. In Proceedings of the
EACL 2009 Workshop on Cognitive Aspects of Computational Language Acquisition (pp. 1–9).:
Association for Computational Linguistics.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, C. L. (2014).
Microsoft COCO: CommonObjects in Context. In D. Fleet, T. Pajdla, B. Schiele, & T. Tuytelaars
(Eds.), Computer Vision – ECCV 2014, volume 8693 (pp. 740–755). Cham: Springer International
Publishing.

Logan, G. D. & Sadler, D. D. (1996). A computational analysis of the apprehension of spatial relations. In
Language and Space., Language, speech, and communication. (pp. 493–529). Cambridge, MA,
US: The MIT Press.

29



Lowe, D. G. (1999). Object Recognition from Local Scale-Invariant Features. In Proceedings of the Seventh
IEEE International Conference on Computer Vision, volume 2 (pp. 1150–1157 vol.2).

Martin-Löf, P. & Sambin, G. (1984). Intuitionistic Type Theory, volume 9. Bibliopolis Napoli.

Montague, R. (1974). Formal Philosophy; Selected Papers of Richard Montague. New Haven: Yale Univer-
sity Press.

Pustejovsky, J. (1990). Perceptual Semantics: The Construction of Meaning in Artificial Devices. In
Proceedings. 5th IEEE International Symposium on Intelligent Control 1990 (pp. 86–91 vol.1).

Ranta, A. (2011). Grammatical Framework: Programming with Multilingual Grammars. Stanford: CSLI
Publications. ISBN-10: 1-57586-626-9 (Paper), 1-57586-627-7 (Cloth).

Redmon, J. (2013). Darknet: Open Source Neural Networks in C. https://pjreddie.com/darknet/ (accessed
on 2018-09-21).

Redmon, J. (2018). YOLO: Real-Time Object Detection. https://pjreddie.com/darknet/yolov2/ (accessed
on 2018-09-21).

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You Only Look Once: Unified, Real-Time
Object Detection. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(pp. 779–788). Las Vegas, NV, USA: IEEE.

Regier, T. & Carlson, L. A. (2001). Grounding Spatial Language in Perception: An Empirical and Com-
putational Investigation. Journal of Experimental Psychology: General, 130(2), 273–298.

Searle, J. R. (1980). Minds, Brains, and Programs. Behavioral and Brain Sciences, 3(03), 417.

Steels, L. (2008). The symbol grounding problem has been solved, so what’s next? In Symbols and Em-
bodiment. Oxford University Press.

Trieu, T. H. (2018). Darkflow. https://github.com/thtrieu/darkflow (accessed on 2018-09-21).

Whitehead, A. N. & Russell, B. (1910). Principia Mathematica. Cambridge [usw.]: Cambridge Univ. Pr,
2. ed., reprint edition. OCLC: 252383138.

30



Appendix A Code

Cell 1

import sys
sys.path.append(’pyttr’)
from pyttr.ttrtypes import *
from pyttr.utils import *
import PIL.Image

Cell 2

Ind = BType(’Ind’)

Cell 3

# Can be called with multiple args *at the end* of a code block to illustrate PyTTR types and objects.
def latex(*objs, code=False):

# code = True # Uncomment to always get code.
texcode = ’\n\n’.join(to_ipython_latex(obj) for obj in objs)
if code: print(texcode)
return Latex(texcode)

# Redefine Image.show() to work with Rec.show().
def image_show(self):

return str(self)
PIL.Image.Image.show = image_show

Cell 4

def rectype_relabels(T, rlbs):
”””Relabel multiple fields, given a dict of from-to pairs.”””
T = T.copy()
# Add a temporary label to each pair, to avoid overwriting.
# This is not a guard against {a:c, b:c}, but against {a:b, b:c}.
rlbs = [(l1, l2, gensym(’rlb’)) for l1, l2 in rlbs.items()]
# First relabel all fields to tmp labels, then all to desired labels.
for l1, l2, l_tmp in rlbs:

T.Relabel(l1, l_tmp)
for l1, l2, l_tmp in rlbs:

T.Relabel(l_tmp, l2)
return T

def is_basic_type(T):
”””Whether a type is a ”basic field”, i.e. a BType or a SingletonType of a BType.”””
return (isinstance(T, SingletonType) and is_basic_type(T.comps.base_type)) or isinstance(T, BType)

def basic_fields(T):
”””The labels of basic fields in a RecType.”””
return [k for k, v in T.fields() if is_basic_type(v)]

def nonbasic_fields(T):
”””The labels of non-basic fields in a RecType.”””
return [k for k, v in T.fields() if not is_basic_type(v)]

Cell 5

T = RecType({’a’: 1, ’b’: 2, ’c’: 3})
# Valid relabeling; is handled.

31



print(show(rectype_relabels(T, {’a’: ’b’, ’b’:’d’})))
# Invalid relabeling; fails. Fix your usage.
print(show(rectype_relabels(T, {’a’: ’c’, ’b’:’c’})))

Cell 6

# mkptype saves the created PType objects. If called a second time with the same pred and vars,
# the existing object is returned, instead of instantiating PType every time.
ptypes = dict()
def mkptype(sym, types=[Ind], vars=[’v’]):

”””Make preds and ptypes identifiable by their predicate names.”””
id = ’/’.join([sym, ’,’.join(show(type) for type in types), ’,’.join(vars)])
if id not in ptypes:

ptypes[id] = PType(Pred(sym, types), vars)
return ptypes[id]

def create_fun(pred_name, vars=[’a’]):
”””Create a function of a given number of Inds (length of vars).

Example: create_fun(’give’, ’abc’) –> \a. \b. \c. give(a, b, c)
”””
fun = mkptype(pred_name, types=[Ind]*len(vars), vars=vars)
for v in reversed(vars):

fun = Fun(v, Ind, fun)
return fun

latex(create_fun(’give’, ’abc’))

Cell 7

def dedupe(T):
”””Make a copy of a record type without duplicated field values.”””
for l,v in T.fields():

# Are there more fields with the same value?
l2s = [l2 for l2,v2 in T.fields() if l2 != l

# Dedupe singleton types and complex types.
and (isinstance(v, SingletonType) or not is_basic_type(v))
# Using show is error-prone, pyttr should have an equals method.
and show(v) == show(v2)]

if len(l2s):
# Relabel all these fields to the same label, overwriting until one remains.
for l2 in l2s:

T.Relabel(l2, l)
# Dependent fields have changed, so start over.
return dedupe(T)

# No more duplicates.
return T

T = RecType({
’x’: SingletonType(Ind, ’a’),
’y’: SingletonType(Ind, ’a’),
’c’: (create_fun(’foo’), [’x’]),
’d’: (create_fun(’foo’), [’y’]),

})
latex(T, dedupe(T.copy()))

Cell 8

class LambdaFun(Fun):
”””Models a unary Python function as a TTR function.

Type/subtype checking on a Fun will app() on a HypObj and use the result.
In a LambdaFun, the body function may require a real object,
and would have to be rewritten to be able to handle a HypObj for this purpose.
To avoid this, an example argument can be specified in __init__,

32



in which case that will be used in place of a HypObj.
”””
def __init__(self,dom,body, example=None):

self.__setattr__(’domain_type’,dom)
self.__setattr__(’body’,body)
self.__setattr__(’example’, example)

def show(self):
return ’lambda r’ + ’:’ + self.domain_type.show() + ’ . ’ + self.body.__name__ + ’(r)’

def to_latex(self):
return ’\\lambda r’ + ’:’ + self.domain_type.to_latex() + ’\\ .\\ ’ + self.body.__name__ + ’(r)’

def validate(self):
return isinstance(self.domain_type,Type)

def app(self,arg):
if self.example is not None and LambdaFun.is_hypobj(arg):

arg = self.example

res = self.body(arg)
if ’eval’ in dir(res):

return res.eval()
else:

return res

def is_hypobj(r):
return isinstance(r, HypObj) or \

(isinstance(r, Rec) and forsome([v for l,v in r.fields()], LambdaFun.is_hypobj))

def subst(self,v,a):
return self

P = FunType(Ind, Ty)
T = RecType({’f’: P})
def on_a(r):

return RecType({’c’: r.f.app(’z’)})
fun = LambdaFun(T, on_a, Rec({’f’: create_fun(’ex’)}))
print(show(fun.app(Rec({’f’: create_fun(’dog’)}))))

# With hypobj.
F = FunType(T, RecTy)
print(F.query(fun))

Cell 9

# Basic types.

# Ind has already been defined.

Int = BType(’Int’)
Int.learn_witness_condition(lambda x: isinstance(x, int))
print(Int.query(365))

String = BType(’String’)
String.witness_conditions.append(lambda s: isinstance(s, str))
print(String.query(’Hello World!’))

Image = BType(’Image’)
Image.learn_witness_condition(lambda x: isinstance(x, PIL.Image.Image) or x is None)
img = PIL.Image.open(’res/dogride.jpg’) # https://www.flickr.com/photos/hickatee/34017375600
print(Image.query(img))

# Segment type: a rectangular area of a given image.

Segment = RecType({’cx’: Int, ’cy’: Int, ’w’: Int, ’h’: Int})
print(Segment.query(Rec({’cx’: 100, ’cy’: 150, ’w’: 40, ’h’: 20})))

Cell 10

PTy = Type(’PType’)

33



PTy.learn_witness_condition(lambda p: isinstance(p, PType) or (
isinstance(p, HypObj) and forsome(p.types, lambda t: isinstance(t, PType))))

Ppty = FunType(Ind, PTy)
Obj = RecType({’seg’: Segment, ’pfun’: Ppty})
Objs = ListType(Obj)
ObjDetector = FunType(Image, Objs)

latex(ObjDetector)

Cell 11

# Instantiate YOLO.

from darkflow.net.build import TFNet

tfnet = TFNet({”model”: ”yolo/yolo.cfg”, ”load”: ”yolo/yolo.weights”,
’config’: ’yolo’, ”threshold”: 0.2})

Cell 12

# Function to apply YOLO to a given image.

import numpy as np

yolo_out = dict()
def yolo(img):

”””Invokes YOLO on a PIL image, caches and returns the result.”””
if str(img) not in yolo_out:

res = tfnet.return_predict(np.array(img))
# Save the most confident detections.
res.sort(key=lambda o: -o[’confidence’])
yolo_out[str(img)] = res[:7]

return yolo_out[str(img)]

def yolo_coords(o):
”””Extract the coordinates from a YOLO output item as ((x0,y0), (x1,y1)).”””
return (o[’topleft’][’x’], o[’topleft’][’y’]), (o[’bottomright’][’x’], o[’bottomright’][’y’])

def xy1xy2_to_cwh(x1, y1, x2, y2):
”’Transform to center, width and height.”’
return {’cx’: int(x1/2 + x2/2), ’cy’: int(y1/2 + y2/2), ’w’: x2 - x1, ’h’: y2 - y1}

def yolo_reformat(o):
”””Discards the confidence item and reformats the coordinates.”””
return {’label’: o[’label’],

’loc’: xy1xy2_to_cwh(*sum(yolo_coords(o), ()))}

Cell 13

from PIL import ImageFont, ImageDraw
from IPython.display import display

# Generate distinguishable colors.
phi = 2 / (1 + 5 ** .5)
colors = (’hsl({}, 90%, 70%)’.format(int(x * 360)) for x in count(0, phi))

def yolo_annotate(img):
”””Displays the image with YOLO results annotated.”””
img_annotated = img.copy()
draw = ImageDraw.Draw(img_annotated)
for o in yolo(img):

color = next(colors)
draw.rectangle(yolo_coords(o), outline=color)
draw.text(yolo_coords(o)[0], o[’label’], fill=color)

34



display(img_annotated)

yolo_annotate(img)
# Modified image under licence CC-by-nc-sa: https://creativecommons.org/licenses/by-nc-sa/2.0/

Cell 14

# Representing detected objects in TTR.

def yolo_detector(i):
”””Creates IndObj records for YOLO results.”””
for o in yolo(i):

o = yolo_reformat(o)
yield Rec({

’seg’: Rec(o[’loc’]),
’pfun’: create_fun(o[’label’].replace(’ ’, ’_’)),

})
ObjDetector.witness_cache.append(yolo_detector)

objs = list(yolo_detector(img))

print(ObjDetector.query(yolo_detector))
print(Objs.query(objs))
print(Obj.query(objs[0]))
print(Ppty.query(objs[0].pfun))
print(Segment.query(objs[0].seg))

latex(objs)

Cell 15

location_ptype = mkptype(’location’, [Ind, Segment], [’k’, ’l’])
cl_fun = Fun(’k’, Ind, Fun(’l’, Segment, location_ptype))

IndObj = RecType({
’x’ : Ind,
’loc’ : Segment,
’cp’ : PTy,
’cl’ : (cl_fun, [’x’, ’loc’]),

})
IndFun = FunType(Obj, RecTy)

def indfun(r):
if not Obj.query(r):

raise ValueError(’Input must be Obj’)
indobj = RecType({

’x’: SingletonType(Ind, Ind.create()),
’cp’: (r.pfun, [’x’]),
’loc’: SingletonType(Segment, r.seg),
’cl’: (cl_fun, [’x’, ’loc’]),

})
if not indobj.subtype_of(IndObj):

raise ValueError(’The result is not a subtype of IndObj’)
return indobj

IndFun.witness_cache.append(indfun)

indobjs = [indfun(r) for r in objs]

print(Obj.query(objs[1]))
print(RecTy.query(indobjs[1]))
print(indobjs[1].subtype_of(IndObj))
print(IndObj.query(indobjs[1].create_hypobj()))
latex(indobjs)

Cell 16

from itertools import product

35



LocTup = RecType({’lo’: IndObj, ’refo’: IndObj})
RelClf = FunType(LocTup, RecTy)

location_relation_classifiers = {
# predicate: classifier
’left’: lambda a, b: a.cx < b.cx,
’right’: lambda a, b: a.cx > b.cx,
’above’: lambda a, b: a.cy < b.cy,
’below’: lambda a, b: a.cy > b.cy,

}

def relclf(r, pred, f):
# Support type checking of this function, which uses HypObj.
if isinstance(r.lo.loc.cx, HypObj):

return RecType()
# @TODO Why not? IndObj.query(r.lo) and IndObj.query(r.refo)
if f(r.lo.loc, r.refo.loc):

c = create_fun(pred, ’ab’)
return RecType({

’x’: SingletonType(Ind, r.lo.x),
’y’: SingletonType(Ind, r.refo.x),
’cr’: (c, [’x’, ’y’]),

})
return RecType()

def get_relclfs():
relclfs = []
for pred, f in location_relation_classifiers.items():

relclfs.append(lambda r, pred=pred, f=f: relclf(r, pred, f))
return relclfs

relclfs = [LambdaFun(LocTup, relclf) for relclf in get_relclfs()]

loctups = []
def find_all_rels(indobjs):

”””Find all relations between IndObj records.”””
for relclf in relclfs:

for loT, refoT in product(indobjs, indobjs):
loctup = Rec({’lo’: loT.create(), ’refo’: refoT.create()})
loctups.append(loctup)
yield relclf.app(loctup)

rels = list(rel for rel in find_all_rels(indobjs) if len(rel.labels()) > 0)

latex(rels)

Cell 17

# The classical method using nesting and flattening.

from functools import reduce

Prev = LambdaFun(RecTy, lambda old:
LambdaFun(RecTy, lambda new:

RecType({’prev’: old}).merge(new).flatten()))

def combine_prev(Ts):
f = lambda old, new: Prev.app(old).app(new)
return dedupe(reduce(f, Ts, RecType()))

Cell 18

# Custom method with unique labels before merging.

def unique_labels(T):
”””Relabel a RecType so each field label is unique over all RecTypes.”””
rlb = ((l, gensym(l)) for l in T.labels() if ’_’ not in l)

36



return rectype_relabels(T, dict(rlb))

def combine(Ts):
”””Combine a list of belief record types into one.”””
f = lambda a, b: a.merge(unique_labels(b))
return dedupe(reduce(f, Ts, RecType()))

Cell 19

bel = indobjs + rels

# combine = combine_prev
bel_comb = combine(bel)

latex(bel_comb)

Cell 20

import nltk
from nltk.sem.logic import ApplicationExpression, AndExpression, ExistsExpression, ConstantExpression

# Parsing to PyTTR cannot really be done directly. NLTK feature grammars support output in the form
# of strings or FOL, where variable substitution is only allowed in FOL. Here we produce a FOL
# expression and later translate it to a PyTTR record type.

grammar = nltk.grammar.FeatureGrammar.fromstring(r”’
%start S
S[SEM=<?np(?vp)>] -> NP[SEM=?np] VP[SEM=?vp]
S[SEM=?q] -> QS[SEM=?q]
QS[SEM=<?np(?pp)>] -> ’is’ ’there’ NP[SEM=?np] PP[SEM=?pp]
QS[SEM=<?np(\P.true)>] -> ’is’ ’there’ NP[SEM=?np]

NP[SEM=<?det(?n)>] -> Det[SEM=?det] N[SEM=?n]
Det[SEM=<\P Q.exists x.(P(x) & Q(x))>] -> ’a’ | ’an’

VP[SEM=?pp] -> ’is’ PP[SEM=?pp]
PP[SEM=<\x.(?np(\y.?prep(x, y)))>] -> Prep[SEM=?prep] NP[SEM=?np]

Prep[SEM=<left>] -> ’to’ ’the’ ’left’ ’of’
Prep[SEM=<right>] -> ’to’ ’the’ ’right’ ’of’
Prep[SEM=<above>] -> ’above’
Prep[SEM=<below>] -> ’below’
N[SEM=<aeroplane>] -> ’aeroplane’
N[SEM=<backpack>] -> ’backpack’
N[SEM=<bicycle>] -> ’bicycle’
N[SEM=<car>] -> ’car’
N[SEM=<dog>] -> ’dog’
N[SEM=<giraffe>] -> ’giraffe’
N[SEM=<kite>] -> ’kite’
N[SEM=<person>] -> ’person’
N[SEM=<snowboard>] -> ’snowboard’
N[SEM=<tent>] -> ’tent’
N[SEM=<tree>] -> ’tree’
”’)
parser = nltk.FeatureChartParser(grammar)

texts = [
’A dog is to the left of a bicycle’,
’Is there a dog to the left of a bicycle?’,
’Is there a person?’,

]

def fol_to_pyttr(expr, T=RecType()):
”””Turns a FOL object into a RecType.”””
# Existential quantifier -> Ind field.
if isinstance(expr, ExistsExpression):

T.addfield(str(expr.variable), Ind)
return fol_to_pyttr(expr.term, T)

37



# Application -> ptype, e.g. left(x, y)
if isinstance(expr, ApplicationExpression):

pred, args = expr.uncurry()
# Create a PType function, e.g. lambda x:Ind . dog(x)
fun = create_fun(str(pred), ’abcd’[:len(args)])
T.addfield(gensym(’c’), (fun, [str(a) for a in args]))
return T

# For and-expressions, interpret each term.
if isinstance(expr, AndExpression):

fol_to_pyttr(expr.first, T)
fol_to_pyttr(expr.second, T)
return T

# A constant function in the ”is there an X” rule trivially gives ”true”.
if isinstance(expr, ConstantExpression) and str(expr.variable) == ’true’:

return T

raise ValueError(’Unknown expression: ’ + str(type(expr)) + ’ ’ + str(expr))

def eng_to_pyttr(text):
# Tokenize.
sent = text.lower().strip(’.?!’).split()
# NLTK-parse to syntax tree.
try:

trees = parser.parse(sent)
except ValueError:

return RecType()
# Extract semantic representation for the tree.
sem = nltk.sem.root_semrep(list(trees)[0])
# Interpret to TTR record type.
T = fol_to_pyttr(sem, RecType())
return T

print(texts[1])
q = eng_to_pyttr(texts[1])
latex(q)

Cell 21

from itertools import permutations, combinations

def my_subtype_of(sub, sup):
”””Is T a subtype of U? Accept dependent rectype fields with simplistic equality test.”””
try:

return sub.subtype_of(sup)
except AttributeError:

return isinstance(sub, tuple) and isinstance(sup, tuple) and show(sub) == show(sup)

def find_subtype_relabeling(S, Q):
”’Could record type S be a sub type of record type Q if relabeling in Q is allowed?”’
# For each relabeling of basic-type fields
for sls in permutations(basic_fields(S), len(basic_fields(Q))):

# Try the basic-fields relabeling of Q
rlb_basic = dict(zip(basic_fields(Q), sls))
Q2 = rectype_relabels(Q, rlb_basic)

# For each Q field, find a S field that is a subtype
rlb_dep = dict()
for ql in nonbasic_fields(Q2):

for sl in nonbasic_fields(S):
# The new labels must be unique.
if sl in rlb_dep.values(): continue
if my_subtype_of(S.field(sl), Q2.field(ql)):

rlb_dep[ql] = sl
break

if ql not in rlb_dep:
break

# Successful if all non-basic fields match.

38



if len(rlb_dep) == len(nonbasic_fields(Q2)):
return dict(**rlb_basic, **rlb_dep)

return None

Cell 22

utts_rlb = []
for text in texts:

q = eng_to_pyttr(text)
rlb = find_subtype_relabeling(bel_comb, q)
print(text + ’ - ’ + str(bool(rlb)))
if rlb:

utt_rlb = rectype_relabels(q, rlb)
utts_rlb.append(utt_rlb)

latex(utts_rlb)

Cell 23

AgentState = RecType({
’img’: Image,
’perc’: Objs,
’bel’: ListType(RecTy),
’utt’: String,
’que’: RecTy

})
Agent = RecType({

’objdetector’: ObjDetector,
’indfun’: IndFun,
’relclfs’: ListType(RelClf),
’state’: AgentState,

})
latex(Agent)

Cell 24

st = Rec({
’perc’: [],
’bel’: [],
’img’: None,
’utt’: ”,
’que’: RecType(),

})
ag = Rec({

’objdetector’: yolo_detector,
’indfun’: indfun,
’relclfs’: relclfs,
’state’: st,

})

print(AgentState.query(st))
print(Agent.query(ag))

Cell 25

# The combined beliefs are ”cached”.
bel = None

def agent_see(ag, img):
if not Agent.query(ag): raise ValueError
ag.state.img = img
ag.state.perc = list(ag.objdetector(ag.state.img))
ag.state.bel = [indfun(r) for r in ag.state.perc]

39



for Ta, Tb in product(ag.state.bel, ag.state.bel):
if Ta == Tb: continue
loctup = RecType({’lo’: Ta, ’refo’: Tb})
for relclf in ag.relclfs:

new_bel = relclf.app(loctup.create_hypobj())
if new_bel:

ag.state.bel.append(new_bel)

global bel
bel = combine(ag.state.bel)
if not Agent.query(ag): raise ValueError

def agent_hear(ag, text):
if not Agent.query(ag): raise ValueError
ag.state.utt = text
ag.state.que = eng_to_pyttr(text)
if not Agent.query(ag): raise ValueError

def agent_answer(ag):
rlb = find_subtype_relabeling(bel, ag.state.que)
return bool(rlb)

q = ’is there a person above a bicycle’
print(’Q:’, q)
agent_see(ag, img)
agent_hear(ag, q)
a = agent_answer(ag)
print(’A:’, a)

Cell 26

vqa_items = [
{’imgpath’: ’res/vqa1.jpg’, ’questions’: [

’Is there an aeroplane?’,
’Is there a person to the right of a car?’,

]},
{’imgpath’: ’res/vqa2.jpg’, ’questions’: [

’Is there a tent?’,
’Is there a kite above a person?’,

]},
{’imgpath’: ’res/vqa3.jpg’, ’questions’: [

’Is there a snowboard above a person?’,
’Is there a snowboard below a person?’,

]},
{’imgpath’: ’res/vqa4.jpg’, ’questions’: [

’Is there a giraffe below a tree?’,
]},

]

def vqa_eval(imgpath, questions):
img = PIL.Image.open(imgpath)
yolo_annotate(img)
agent_see(ag, img)
for question in questions:

agent_hear(ag, question)
ans = ’Yes’ if agent_answer(ag) else ’No’
print(question + ’ - ’ + ans)

for item in vqa_items:
vqa_eval(**item)

40


	Introduction
	Contribution of this thesis

	Background
	Image recognition and object detection
	Computational semantics
	Type theory in linguistics

	Perceptual semantics
	ttr
	Overview of ttr

	vqa

	Method
	PyTTR: Programming with ttr
	Object detection with YOLO
	Objects and perception with ttr
	Spatial relations
	Language and vqa

	Results
	ttr model
	Object detection
	Individuation
	Spatial relation classification
	Beliefs
	Language
	Agent

	Combining situation types
	Parsing language to ttr
	Parsing to fol
	Translating fol to ttr

	The relabel-subtype relation
	Subtype relabeling algorithm
	Restrictions of the algorithm
	Implementation

	Additions to PyTTR
	Demonstration

	Discussion
	Subtype check
	PyTTR
	Inference-first

	Conclusions
	Suitability
	Benefits
	Can it tell us something about semantics?
	Future work

	Code

