

Elaborate Operational Requirements to
Address Reward Hacking in Reinforcement
Learning Agents

Bachelor of Science Thesis in Software Engineering and Management

SINA YAGHOOBZADEHTARI
COLIN OWUSU ADOMAKO
SIAVASH PAIDAR

The Author grants to University of Gothenburg and Chalmers University of Technology the non-exclusive right to publish the
Work electronically and in a non-commercial purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work does not contain text, pictures or other
material that violates copyright law.

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

The Author shall, when transferring the rights of the Work to a third party (for example a publisher or a company), acknowledge
the third party about this agreement. If the Author has signed a copyright agreement with a third party regarding the Work, the
Author warrants hereby that he/she has obtained any necessary permission from this third party to let University of Gothenburg
and Chalmers University of Technology store the Work electronically and make it accessible on the Internet.

© SINA YAGHOOBZADEHTARI, August 2018.

© COLIN OWUSU ADOMAKO​, ​August 2018.

© SIAVASH PAIDAR​, ​August 2018.

Supervisor: Pierguiseppe Mallozzi

Examiner: Rogardt Heldal

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

[Cover:
an explanatory caption for the (possible) cover picture
with page reference to detailed information in this essay.]

2

Elaborate Operational Requirements to Address Reward Hacking
in Reinforcement Learning agents

Colin Owusu Adomako​, ​Siavash Paidar ​and ​Sina Yaghoobzadehtari
Bachelor Thesis

Bachelor Program Software Engineering and Management
Department of Computer Science and Engineering

University of Gothenburg
Gothenburg, Sweden

Abstract

Autonomous agents, in recent times have been used to address
several problems, but these agents in their course of achieving
their task also emit side effects to the environment in which they
operate. Paramount of these side effects is reward hacking. In
this report, we try to address reward hacking using elaborate
operational requirements. The results is evaluated on the unity
machine learning platform using multi agents, a goalkeeper and
a striker where the elaborate operational requirements helped
address these agents from hacking or gaming their results.

I. INTRODUCTION
In the paradigm of reinforcement learning, a learning or
autonomous agent learns to perform its task from interactions
with its environment to receive a reward [1, 2]. At each time
step, the agent observes the current state of the environment
and performs an action, it receives a reinforcement value, also
called a payoff or a reward, and a state transition takes place.

In recent times, autonomous agents are playing a pivotal role
in most critical aspects of human life, ranging from the
medical, transportation, Sports, aviation, manufacturing,
mining, government and non-governmental sector and
therefore quality requirements must be of priority [3] in order
to a maximise their efficient utilisation. Notwithstanding the
recent economic gains and successes chalked up with
autonomous agents [6], these agents (robots) in the
performance of task also pose risk to the environment in
which they operate. A research into the risks posed by
autonomous agents reveals five common defects, paramount
of them, is reward hacking [4].

“Reward hacking” denotes an autonomous agent executing an
unintended task to yield more reward. These agents in their
line of duty tries to find a way to exploit problems in how the
reward was specified to get high reward, whether its behaviour
corresponds to the intent of the reward specifier or not [4].
When the agent discovers an easy way of gaining a reward, it
will not be inclined to stop. This could be the result of wrong

specification of reward function. For example, a soccer
goalkeeper robot that is rewarded based on the number of
goals scored is more likely to concede more goals since it will
leave goal post in search of more goals. From the agents, point
of view, this is not an illegitimate way of gaining a reward but
simply how the environment works and thus a valid strategy
like any other for achieving a reward. This could pose a big
challenge especially if it must work on a long timescale and
thus require urgent attention.

Early elicitation of operational requirements is vital for the
successful design and development of the software [10] agent
and could be adhered to address reward hacking. Operational
requirements are those statements that “identify the essential
capabilities, associated requirements, performance measures,
and the process or series of deficiencies, evolving applications
or threats, emerging technologies, or system cost
improvements” [3]. ​.
This report, therefore seeks to address reward hacking in these
autonomous agents using a goal model or ​Goal-oriented
requirements engineering (a key concept of operational
requirements). This is evaluated using the Unity Machine
Learning platform in a soccer environment setting. The Unity
Machine Learning platform is a suite of reinforcement
learning environment. The goal model is be implemented
using Goal-oriented Requirements Language (GRL) and Use
Case Maps (UCM).

After evaluating the reward function implemented with goal
model approach, it concludes that elaborate operational
requirements can be implemented using goal modelling
approaches to reduce reward hacking.

Concrete Problem

Software or Autonomous agents is their discharge of task, also
engage in activities that pose risk (side effects) to the
environment in which it operates. Since the reward system
plays an essential role on how the agent achieves its task, it is
a pressing AI safety need that require urgent attention
[4].

3

II. LITERATURE REVIEW
 Reinforcement Learning

Reinforcement learning relates to a learning agent interacting
with an environment at some discrete, lowest-level time scale,
t = 0, 1, 2,3… At each time step, t, the environment is in some
state, st ∈ {​1,2,...,m​}. The agent observes st and chooses an
action, at, in response to which environment changes state to
st+1 and emits a reward, ​rt+1 [16]. Below is a picturesque
description of the the reinforcement learning framework [17].

fig 1.0

Beyond an agent and the environment, one can identify four
main sub elements of a reinforcement learning system: a
policy, a reward signal, a value function and optionally, a
model of the environment [18].

Elements of Reinforcement Learning

A Policy: A policy refers to the autonomous agent’s way of
behaving at a given time. Roughly speaking, a policy is a
mapping from perceived states of the environment to actions
to be taken when in those states. It corresponds to what in
psychology would be called a set of stimulus–response rules
or associations. In some cases the policy may be a simple
function or lookup table, whereas in others it may involve
extensive computation such as a search process. The policy is
the core of a reinforcement learning agent in the sense that it
alone is sufficient to determine behavior. In general, policies
may be stochastic.

​A Reward Signal: defines the goal in a reinforcement
learning problem. On each time step, the environment sends to
the reinforcement learning agent a single number called the
reward. The agent’s sole objective is to maximize the total
reward it receives over the long run. The reward signal thus
defines what are the good and bad events for the agent. In a
biological system, we might think of rewards as analogous to
the experiences of pleasure or pain. They are the immediate
and defining features of the problem faced by the agent. The
reward signal is the primary basis for altering the policy; if an
action selected by the policy is followed by low reward, then
the policy may be changed to select some other action in that
situation in the future. In general, reward signals may be
stochastic functions of the state of the environment and the
actions taken.

Whereas the reward signal indicates what is good in an
immediate sense, a value function specifies what is good in the
long run. Roughly speaking, the value of a state is the total
amount of reward an agent can expect to accumulate over the
future, starting from that state. Whereas rewards determine the
immediate, intrinsic desirability of environmental states,
values indicate the long-term desirability of states after taking
into account the states that are likely to follow, and the
rewards available in those states. For example, a state might
always yield a low immediate reward but still have a high
value because it is regularly followed by other states that yield
high rewards. Or the reverse could be true. To make a human
analogy, rewards are somewhat like pleasure (if high) and pain
(if low), whereas values correspond to a more refined and
farsighted judgment of how pleased or displeased we are that
our environment is in a particular state. Expressed this way,
we hope it is clear that value functions formalize a basic and
familiar idea.

Rewards are in a sense primary, whereas values, as predictions
of rewards, are secondary. Without rewards there could be no
values, and the only purpose of estimating values is to achieve
more reward. Nevertheless, it is values with which we are
most concerned when making and evaluating decisions.
Action choices are made based on value judgments. We seek
actions that bring about states of highest value, not highest
reward, because these actions obtain the greatest amount of
reward for us over the long run. Unfortunately, it is much
harder to determine values than it is to determine rewards.
Rewards are basically given directly by the environment, but
values must be estimated and re-estimated from the sequences
of observations an agent makes over its entire lifetime. In fact,
the most important component of almost all reinforcement
learning algorithms we consider is a method for efficiently
estimating values. The central role of value estimation is
arguably the most important thing we have learned about
reinforcement learning over the last few decades.

Environment: The third and final element of some
reinforcement learning systems is a model of the environment.
This is something that mimics the behavior of the
environment, or more generally, that allows inferences to be
made about how the environment will behave. For example,
given a state and action, the model might predict the resultant
next state and next reward. Models are used for planning, by
which we mean any way of deciding on a course of action by
considering possible future situations before they are actually
experienced. Methods for solving reinforcement learning
problems that use models and planning are called model-based
methods, as opposed to simpler model-free methods that are
explicitly trial-and error learners—viewed as almost the
opposite of planning.

Forms of Reward Hacking

Autonomous agents are said to have gamed or hacked results
when it gets a reward for a task or goal it has not

4

accomplished. This can happen in a different ways. In this
section, the various forms of gaming a reward presented as
elaborated by Amodei et al.

Partially Observed goals: ​It is assumed that, in reinforcement
learning systems, rewards are directly experienced, even if the
other parts of the environment are partially known. Since the
agent lack access to perfect measure of task performance, the
engineer has no option than to design a reward that represent a
partial or imperfect measure. An example is an autonomous
soccer striker that is reward for preventing goals. In such
situation the striker agent will not score goals. This imperfect
objective function can be hacked, that is, the robot can create a
mess to clean in order to gain more points.

Complicated Systems: ​Since emerging autonomous agents are
made up of complicated systems, the tendency of having a
high complexity of the program. And the higher the
complexity, the higher the probability that there is a viable
hack affecting the reward function. An example is the
possibility in principle for an agent to execute arbitrary code.

Abstract Reward: ​Complex reward functions will need to
refer abstract concepts which include checking whether a
conceptual goal has been met. These concepts will possibly
need to be learned by models like neural networks, which can
be vulnerable to adversarial counterexamples. A learned
reward function over a high-dimensional space may be
vulnerable to hacking if it has pathologically high values along
at least one dimension.

Goodhart's Law: There is also a possibility of reward hacking
occurring, if a designer or engineer chooses an objective
function that is seemingly highly correlated with
accomplishing the task, but that correlation breaks down when
the objective function is optimised. An example is a designer
might notice that under circumstance, a cleaning robot’s
success in cleaning up the office is proportional to the rate at
which it consumes cleaning supplies such as detergents.
Therefore, if we base the robots, on this measure, it might use
more detergents than it needs, simply by disposing the bleach
to give appearance to success.

Feedback Loops​: it has been realised that sometimes an
objective function has a component that can reinforce itself
and eventually getting amplified to the point where it draws
out or severely distorts what the designer intended the
objective function to represent.

 ​Existing Solutions to Reward Function

These problems might not occur in today’s simple systems or
can be solved without much harm as part of an iterative
development process. Below are the various current
techniques by which gaming or hacking reward can be solved:

Model Lookahead: ​With this model, the autonomous agent
consider future states sequence actions may lead and use that
as its future plan. And it could be rewarded based on

anticipated future states, rather than the anticipated future
states in different setups. This could be very helpful in
resisting situations where the model overwrites its reward
function. This such instances, the reward cannot be controlled
once it replaces the reward function, but it can be given a
negative reward for planning to replace the reward function.

Adversarial Binding​: These techniques can be used to blind a
model to certain variable. It could be used to make it
impossible for an agent to understand some parts of its
environment, or even to have mutual information with it (or at
least to penalise such mutual information). It could prevent an
agent from understanding its environment. This solution could
be described as “cross validation for agents”.

Adversarial Reward Functions: Machine Learning system
has an adversarial function and would find any means possible
in exploiting problems in how the reward was specified in
order to get more rewards whether or not its behaviour
corresponds to the intent of the reward specifier. However,
machine learning system, agents are powerful whilst reward
function is a static object that cannot respond to the system’s
attempt to game it. If instead the reward function were its own
agent and could take actions to explore the environment, it
might be much difficult to game it. To solve this, reward
checking agents must be made more powerful than the agent
that is trying to achieve the rewards. There may also be
situations where a system has multiple pieces trained using
different objectives that are used to check each other.

Trip Wires: ​It is of importance to know whether an agent is
going to try and hack its reward function. By doing that, the
designer or engineer could introduce some plausible
vulnerabilities and monitor them, alerting us and stopping the
agent immediately if it takes advantage of one. Though such
“trip wires” do not solve reward hacking in itself, it may
reduce the risk or at least provide diagnostics.

Careful Engineering: According to the paper [4], some kinds
of reward hacking, like buffer overflow, might be avoided by
very careful engineering. This could be achieved through
formal verification and testing of all parts. Computer security
approaches that attempt to isolate the agent from its reward
signal through a sandbox could also be possible. It may also
be possible to create highly reliable” core” agent which could
ensure reasonable behaviour from the rest of the agent.

Operational Requirement Models

One of the key processes in the development phase is to define
the operational requirements of the system. Operational
requirements are those statements that “identify the essential
capabilities, associated requirements, performance measures,
and the process or series of deficiencies, evolving applications
or threats, emerging technologies, or system cost
improvements” [9]. Operational requirements assessment
starts with the Concept of Operations (CONOPS) and goes to
a greater level of detail in identifying mission performance

5

assumptions and constraints and current deficiencies of or
enhancements needed for operations and mission success [6].
Operation Requirements forms the basis for system
requirements. It must also be emphasised that there is a
positive correlation between system requirements and
software quality. Therefore, one assured way of addressing the
current AI defects or challenges in reinforcement learning, is
to use some improved operational requirements.

The operational requirements for an agent will specify under
which conditions it must operate and what actions it must take
depending on the setup. This can be correctly designed with
the help of a goal model. Goal models play a prominent role in
the operational requirements process. They provide a rationale
for requirements; a requirement exist because of some
underlying goal which provides a base for it [10]. There two
types of frameworks in which goals can be modelled, that is,
the formal [11] and qualitative. In this report, we will dwell on
qualitative framework.

In qualitative framework, the achievement of“soft” goals are
not absolute since they do not satisfy any clear goal but
contributes partially to the realisation of the overall goal. If a
goal is AND- decomposed into subgoals or “soft” goals and
they are all satisfied, then the goal is satisfied and vice versa.
 In the AND/ OR goal graph, the goals are indicated by names,
parameters, and degree of satisfaction or denial by sub goals.

In this paper, we will resort to Goal-oriented Requirements
Language and Use Case Maps. The Goal-oriented Language
(GRL) is used for modelling goals and other intentional
concepts (mainly for non-functional requirements, quality
attributes and reasoning about alternatives and tradeoffs). It
focuses on the why questions of a system.

The Use Case Map (UCM) notation is a visual modeling
language that allows the high-level description of
object-oriented systems. It was first introduced by Buhr and
Casselman in the mid- 1990s. Over the years UCM notation
has gained attention from both researchers and industry. It has
been successfully used for telecommunication systems, web
applications, agent based systems) and operating systems.

A UCM consists of one or more paths each of which represent
a use case scenario. A path starts at a start point (filled circle)
and ends at an end point (bar).The actions performed by the
system or use case actor along these paths are responsibilities
(cross).These responsibilities can be bound to
components—actors, agents, teams, objects and processes.
Anactor component (rectangle including a stickman)
represents a stakeholder who is associated with the system
through a number of usage scenarios. Software agents in
agent-oriented systems can be represented by the agent
component (rectangle with a dark border). Teams (rectangle)
represent high level abstract components that can be further
decomposed into multiple levels of other component types.
However, objects (box with rounded corners), which represent
instances of a class, cannot be further decomposed. Processes

(slanted rectangle) are executing components of a system and
may include object components. An OR-fork divides a path
into one or more alternative paths based on a guard condition.
Concurrent paths emerge from AND-forks (bar). Common
paths are merged by OR- joins and concurrent paths are
synchronized by AND-joins (bar). Stubs (diamond) are
containers for nested maps. Stubs are useful for refactoring
complex UCMs via modularization. Erroneous situations that
may stop the flow of a path are

represented by failure points (ground). Timers(clock) express
the amount of time to wait before a path can progress further.
A waiting place (filled circle and bar) allows a path to wait for
another path to finish before it can continue. The interested
reader may refer to Buhr and Casselman‟s (1996) book on
UCMs for more details on its notation.

III. METHODOLOGY
Research Questions

 RQ1: How state-of -the-art goal modelling approaches can
be used to model a reward function?
 RQ2: How can we ensure that an autonomous agent will
never game its function?

For example, if we reward a goal keeping agent for the
number of goals scored, it will neglect its goal keeping task to
score more goals in order to gain more rewards.

Strategy for the investigation of the problem (Design
Science)

A research method aims to guide researchers in the search for
necessary answers to the proposed research problem [7]). ​To
achieve the objectives of this report or answer the proposed
questions, we will adopt a design science approach. Below is a
description basic design science principles that were adhered
to in this research paper.

6

fig 3.0

Phase 1: Problem Awareness

Since design science approaches first focuses on first
clarifying the goals of an artifact and then building on its
validity [8], in this phase, we will be concerned with
systematically assessing whether a given reward function
satisfies a given operational requirement specification. It must
be emphasised the sources of information for this study are
execution logs from training RL agents using the unity
machine learning platform.

The goal of the reinforcement agents are as specified below:

Goalkeeper: To prevent the ball from entering its goal net.

Striker: To score goals and to defend.

In our case, after assessing the performance of the agents on
the platform, we realised that the both agents were gaming
their rewards. The goalkeeper ws gaming its reward by
leaving the goal area and the striker was also gaming its
reward by moving its goal area which clearly yields
undesirable results.

Phase 2: Suggestions

This phase requires suggesting elaborate requirements from
the counterexample generated from the problem awareness
phase. For examples, how the system should and should not
behave. The next thing will be to elaborate a set of positive
and negative scenarios from a given violation trace. In the case
of the goalkeeper, the elaborate requirements will to defend
the ball from entering its goal net. Also it shall not go beyond
the penalty box area in order to be able to defend the area.

The striker on the other hand shall score goals and defend
within the midfield area. Furthermore, it shall not go within its
own penalty box area in order to be well placed all the time to
score goals.

Phase 3: Development of Rewards Allocation

At this juncture the reward function is implemented or
developed using a goal model approach where rewards and
penalties shall be allocated for various tasks as as specified in
phase . For example if the striker scores a goal a it will be
rewarded with one point whilst when they concede a goal a
point shall be deducted from its accumulated reward. The
same is done for the goalkeeper.

Phase 4: Training and Evaluation

With the reward function implemented in phase 3, the
autonomous agents shall be trained to ascertain the efficiency
with which it accomplishes task or whether it can game or
hack its reward by accomplishing unintended task to achieve
more rewards. In the case of the autonomous goalkeeper, since
it was rewarded the same points for defending and scoring
goals, it was abandoning its goalkeeping task to score goals
which also yielded more points to it. By so doing, it left its

team vulnerable to conceding a goal. This was not the task
assigned to the autonomous goalkeeper so it considered as
reward hacking.

After this, a set of elaborate operational requirements will be
derived and added to the selected requirements or
specifications in phase one and two. This will help strengthen
the reward function to address the reward hacking or prevent
the agent from gaming its reward. Since the goalkeeper was
hacking its reward by moving to the opponents goal area to
score goals, there was an additional specification to give less
points for scoring goals and more points for defending goals.
Also, since it was not to move to the opponents goal area, we
placed existential penalties for moving beyond its goal area.

The results of this training shall be evaluated using a case
study on Unity Machine Learning platform and an evaluation
framework within the Unity platform and a python evaluation
framework called pythotorch.

Phase 5: Conclusion

The initial reward function which is being hacked or gamed by
the agent will be compared with the goal modelled reward
function to ascertain whether the autonomous agents will be
able to still game their reward. By comparing the set of system
goals and specification to how the agents execute their task we
will find out which method (the initial or goal modelled
reward function) best satisfies the system goals. We can then
conclude based on the conclude based on the evaluated report
from the training of the autonomous agents.

IV. ANALYSIS

Operational requirements of a soccer autonomous agent

An implicit operational requirement inherent in every
reinforcement agent is to be able to interact with the outside
world, evaluate its interactions with the environment,
remember what is important and adjust actions on the basis of
current interactions and earlier recollections. Similarly, the
soccer agent or robot must be capable of:

● Interacting with its environment, requiring some form
of perceptions and some means of altering itself or
the environment.

● Evaluate its interactions with the environment.

● Storing these evaluated interactions or perceptions,
popularly referred to as “memory”.

● Adjusting its interactions based on the evaluated
values attained through the previous interactions or
perceptions, colloquially referred to as “learning”
[14].

It is worth emphasising that these three requirements
interact and overlap, allowing for complex and changeable

7

behaviour of the soccer agents. Hence these requirements do
not exist in a vacuum.

In the following paragraphs, the paper discusses how these
requirements are met in the soccer agents in order to address
the reward hacking.

Interaction with environment

Sensors play an essential role in the robot’s interaction
with the environment. It will drive both the hardware and
software requirements. It is argued that the surest way to
guarantee coverage, reliability and safety for the lowest
overall cost is to use many redundant, low-cost sensors. Some
sensors will be used in mapping and, position estimation.
Example of the sensors are passive light detection, ultrasonic
sonar, odometer, reflective IR, pyro-IR, compass system, to
mention but a few.Additional sensors will be used to cope
with operational contingencies. These would drop-off
detectors, inclinometers, moisture indicators, a lift detector, an
external temperature sensor, a remote-control receiver and a
charging-dock.

To enhance the vision or perceptions of the autonomous
agent, low cameras will be used for cost effectiveness. A
structured-light sensing system may also be cost effective if
the light intensity could be used kept at a safe level.

The vision of the agent will me mapped in a grid-like
environment for the robot to plan its movement. Each step
leads the agent into a in grid-box. The image below is a
representation of the how the agents environment is mapped
(gridworld).

fig. 2

Evaluating Interactions

The autonomous agent must capable of creating and
maintaining internal models of its soccer field. It must also be
capable of planning and executing an efficient path.

There could be multiple scenarios in a soccer field
environment but the agent continues throughout the
environment, it starts eliminating the other scenarios until it
finally lands on the most likely possibility. The word likely is
emphasised because the autonomous agent has the tendency of
doubting itself and re-localize if it finds itself elsewhere.

The agent will also record the telemetry data along with its
results to analytics data warehouse which will be evaluated or
analysed using statistical and machine learning techniques to
provide him with more accurate mapping and paths for the
next game.

Storing evaluated Interactions

The agent is equipped with a memory to save its operation
or activities. An operation with the highest value will
supersede all operations in memory and is readily available
whenever the autonomous agent must engage in similar
operation.

Adjusting its interaction based on previous evaluations

As aforementioned, the autonomous agent is capable of
localizing its environment making it possible to adjust to
current environment conditions. The numerous pre-installed
scenarios also make it possible for the agent to make suitable
adjustments.

Also with the help of its memory, it can recollect the
operation with the highest value and adjust its current
operation to suit the one in memory.

Initial Reward Function for Soccer autonomous agents

Goalkeeper

● Goal

➔ Prevent the ball from entering its own net.
● Reward Function

➔ +1 When the enters opponents’s net.
➔ -1 When ball enters own team’s net.
➔ -0.001 Existential penalty

Striker

● Goal

➔ Get the ball into the opponents net.
● Reward Function

➔ +1 When ball enters opponent's goal.
➔ -1 When ball enters own team’s goal.
➔ -0.001 Existential penalty.

Problem Awareness

8

When this reward function was implemented on the Unity
Machine Learning platform, several observations were made.

This includes the goalkeeper leaving the goal post in search of
goals since it got more reward that way. This rendered the
team vulnerable . Also since the striker lost the same points as
the

goalkeeper, it also mostly dropped too deep to defend against
conceding a goal although that's not its task.

This unintended behaviour of the autonomous goalkeeper and
striker led to an implicit elicitation of more operational
requirements.

Development of a Reward Function using a goal model

After several deliberations and consensus (Suggestion)
building, we emerged with a goal model appraoch to help
address the hacking of reward by the autonomous agents.

The diagram below is a representation of the goalkeeper’s goal
model.

fig 4.0 Goalkeeper Agent Goal Model

From the above diagram, it could be realised that, the
goalkeeper is reward 1 point for preventing a goal and 0.001
for scoring a goal. This makes it unattractive for the
goalkeeper to score a goal and thereby keeping to its
goalkeeping task. Also, it could be seen that it was penalised
for by subtracting 1 from its cumulative reward. By this
model, we then came up with the following requirement and
reward function for the goalkeeper autonomous agent.
Goalkeeper

● Goal

➔ Prevent the ball from entering its own net.
● Reward Function

➔ +0.1When the enters opponents’s net.
➔ -1 When ball enters own team’s net.
➔ +1 When ball is prevented from entering

own team’s net.
➔ -0.001 Existential penalty.

Striker Agent

fig 4.1 Striker Agent

Figure 4.1 is a goal model for the striker agent. From this
diagram, it can be realise that the striker is also rewarded 1
point for scoring a goal and less points for defending a goal
(0.001), thereby making it more rewarding to score a goal than
to defend a goal. With in place, the striker is compelled to
score goals for maximum points since thats its ultimate aim (to
maximise its reward).

Striker

● Goal

➔ Get the ball into the opponents net.
● Reward Function

➔ +1 When ball enters opponent's goal.
➔ -0.1 When ball enters own team’s goal.
➔ -0.001 Existential penalty.

9

In addition to this reward function, the goalkeeper’s movement was restricted or confined to the goal area. Below is a
representation of this using a Use Case Map (UCM).

fig 4.3

The red path exhibits the accepted path of both the goalkeeper and the striker autonomous agent whilst the white path depicts the
existential penalties. It could be realised that the goalkeeper has is now confined to stay stay within the penalty box area to
execute its goalkeeping task. The white path from the goalkeeping autonomous agent is an illustration of its existential penalty,
meaning that whenever it goals to the midfield area, it is penalised. And vice versa, the red path from the striker autonomous area
is an illustration of its permissible path. That means the striker is also confined from the midfield area to the opponents goal area.
The white path leading to the its goal area is also an illustration of its existential penalty, meaning that its not allowed to move to
its own goal area to defend since that the task of the goalkeeper autonomous agent.

After the implementation of this reward function, it was realise that the goalkeeper was performing its intended function since it
was highly rewarded (+1) for balls saved from entering the net and less reward for scoring (+0.001). It was also highly penalised

10

for conceding for a goal. On the other hand, the striker got more reward for scoring and less punishment for conceding a goal,
thereby sticking to its goal scoring task.

Below is the evaluation report before and after modelling the elaborate operation requirements was modelled for the goalkeeper
agent. The red and blue lines represent before and after modelling the elaborate operation requirements respectively.

fig 5 ​evaluation report for goalkeeping autonomous agent.

11

fig. 6 evaluation report for goalkeeping autonomous agent.

Discussion of Evaluation Report on the Training of the
autonomous agents

The red lines illustrates the evaluation of the goal modelled
reward function whilst green and blue represents the initial
reward function for the goalkeeåer and striker reward
function respectively.

Below is the the meaning of the various graphs:

● Cumulative Reward - The mean cumulative
episode reward over all agents. Should increase

during a successful training session. From both
graphs it could be realised that, there was not a
significant difference between the cumulative
rewards hence the graph for the goal modelled
reward function exhibits a higher cumulative
reward than the initial graph.

● Entropy - How random the decisions of the model
are. Should slowly decrease during a successful
training process. If it decreases too quickly, the
beta hyperparameter should be increased.

● Episode Length - The mean length of each episode
in the environment for all agents.

12

● Learning Rate - How large a step the training
algorithm takes as it searches for the optimal
policy. Should decrease over time. In both the
initial and the modelled goal function, it is realised
that the agents learned their task to its maximum.

● Policy Loss - The mean loss of the policy function
update. Correlates to how much the policy (process
for deciding actions) is changing. The magnitude
of this should decrease during a successful training
session.

● Value Estimate - The mean value estimate for all
states visited by the agent. Should increase during a
successful training session.

● Value Loss - The mean loss of the value function
update. Correlates to how well the model is able to
predict the value of each state. This should
decrease during a successful training session.

 RQ1: How state-of -the-art goal modelling approaches can
be used to model a reward function?
From the evaluation of results, it could be realised that there
was not significant difference in the cumulative and intrinsic
rewards for before and after the goal modelling. However,
the autonomous agents trained with the goal modelled
reward function perform their respective tasks efficiently
without gaining undesirable rewards (​refer to appendix for
platform​). Therefore by using methodological goal
modelling approaches like UCM paths and Goal-Oriented
Language (KAOS), a reward function can be implemented
efficiently.

 RQ2: How can we ensure that an autonomous agent will
never game its function?

The correct and early elicitation of the agents operational
requirements can help address reward hacking. This
prevents wrong specifications in the reward function as
clearly demonstrated by the goalkeeper and striker
autonomous agents.

V. CONCLUSION
From the above evaluation and the experiment on the Unity
Machine learning platform, it is evident and can be
concluded that, Goal Models and early elicitation of the
autonomous agents specifications as specified in [10], can
help address reward hacking. This is because, having
applied the goal model approach in the formulation of the
reward function, the goalkeeper and striker autonomous
agents were not able to perform undesirable task in order to
gain more reward.

We propose future research, to be expanded further to see
which specific goal model approach is the best fit in
addressing reward hacking in reinforcement agents.

APPENDIX
Platform for evaluation
https://github.com/Unity-Technologies/ml-agents/tree/master/unity-environ
ment/Assets/ML-Agents/Examples/Soccer

REFERENCES
[1] R. S. Sutton, A. G. Barto and R. J. Williams, "Reinforcement learning

is direct adaptive optimal control," in ​IEEE Control Systems
Magazine​, vol. 12, no. 2, pp. 19-22, April 1992.

[2] L. J. Lin, Self Improving reactive Agents based on Reinforcement
Learning, Planning and Teaching​ Volume 8, Issue 3–4, pp 293–32

[3] C. Lindholm, J. Pedersen and M. Höst, A case study on risk analysis
and planning in medical device development. Springer
Science+Business Media New York, 2013.

[4] D. Amodei, C Olar, J. Steinhardt and P. Christiano, J. Schulman and
D. Mane. Concrete Problems in AI Safety, 2016

[5] K. Arulkumaran, M. P. Deisenroth, M. Brundage and A. A. Bharath.
A Brief Survey of Deep Reinforcement Learning, ​IEEE SIGNAL
PROCESSING MAGAZINE​, 2017

[6] A. Kossiakoff, and N. Sweet, Systems Engineering Principles and
Practices, Hoboken, New Jersey, John Wiley & Sons, 2003

[7] Saunders, M., Lewis, P., & ornhill, A. (2012). Research methods for
business students (6th ed.). London: Pearson Education

[8] Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design
science in information systems research. MIS Quaterly, 28(1), 75-105

[9] A. J. Champandard. Reinforcement Learning. 2002. ​Retrieved From
http://reinforcementlearning.ai-depot.com
[10] A. V. Lamsweerde, Building Requirements Models for Reliable

Software, Unpublish Report, ​Retrieved From:
https://pdfs.semanticscholar.org/4ee1/9929335a964eb15e9af4660c2af0be9

2ae51.pdf
[11] A. Dardenne, A. van Lamsweerde and S. Fickas, “Goal-Directed

Requirements Acquisition”, ​Science of Computer Programming​, Vol.
20, 1993, 3-50.

[12] N. R. B. Perdijk, Artificial Reward and Punishment,
 Grounding Artificial Intelligence through motivated learning inspired by

biology and the inherent consequences for the Philosophy of Artificial
Intelligence​. ​ Unpublished master's thesis. Retrieved from:
https://dspace.library.uu.nl/handle/1874/301226
[13] F. Jenkins, Practical Requirements for a Domestic Vacuum-Cleaning

Robot, AAAI Technical Report FS-93-03, 1993
[14] P. Shukla and S. L. Shimi, Design of inspection and cleaning robot,

International Journal of Scientific Research Engineering &
Technology (IJSRET), ISSN 2278 – 0882 Volume 3, Issue 6,
September 2014

[15] M. Srinath, Artificial intelligent Homes: The Robot Vacuum cleaner,
August, 2017.

[16] R. S. Sutton, TD Modeling the world at a Mixture of Time Scales,
Machine-Learning-Proceeding, p.532, 1995

[17] H. Kimura, M. Yamamura and S. Kobayashi, Reinforcement
Learning by Stochastic Hill Climbing on Discounted Reward,
Yokohama, Japan, p. 295, 1995

[18] P. Cichosz and J. J. Mulawka, Fast and Efficient Reinforcement
Learning with Truncated Temporal Differences,
Machine-Learning-Proceeding, p.99, 1995.

13

https://github.com/Unity-Technologies/ml-agents/tree/master/unity-environment/Assets/ML-Agents/Examples/Soccer
https://github.com/Unity-Technologies/ml-agents/tree/master/unity-environment/Assets/ML-Agents/Examples/Soccer
https://pdfs.semanticscholar.org/4ee1/9929335a964eb15e9af4660c2af0be92ae51.pdf
https://pdfs.semanticscholar.org/4ee1/9929335a964eb15e9af4660c2af0be92ae51.pdf
https://dspace.library.uu.nl/handle/1874/301226

14

