

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2019

Accelerating Software Delivery in the context of Requirements
Analysis and Breakdown for DevOps: A multiple-case study

Bachelor of Science Thesis in Software Engineering and Management

Fahd Debbiche
Markus Wrang
Kundananji Sinkala

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2019

The Author grants to University of Gothenburg and Chalmers University of Technology the
non-exclusive right to publish the Work electronically and in a non-commercial purpose make
it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work does
not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author has
signed a copyright agreement with a third party regarding the Work, the Author warrants
hereby that he/she has obtained any necessary permission from this third party to let
University of Gothenburg and Chalmers University of Technology store the Work
electronically and make it accessible on the Internet.

© Fahd Debbiche, June 2019.

© Markus Wrang, June 2019.
© Kundananji Sinkala, June 2019.

Supervisor: Lucy Lwakatare

Examiner: Richard Berntsson Svensson

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Accelerating Software Delivery in the context of Requirements
Analysis and Breakdown for DevOps: A multiple-case study

Kundananji Sinkala∗, Fahd Debbiche∗and Markus Wrang∗

Department of Computer Science and Engineering, Gothenburg University
Box 100, SE-405 30 Gothenburg, SWEDEN

{ gussinku, gusdebfa, gusmarwr }@student.gu.se

Abstract—Context: Requirements analysis and breakdown in
agile context has numerous challenges that is yet to be addressed.
The incorporation of DevOps in agile settings inherited agile re-
quirements engineering related challenges. Thus, it is paramount
to explore what strategies are used in the requirements engineer-
ing process in agile-DevOps environment

Objectives: We aim to fulfill the research gap by eliciting
the current strategy applied by DevOps practitioner during
requirements analysis and breakdown phase in industrial context,
and explore the effect they have in practice. Ultimately, suggesting
useful strategy to mitigate the impact or limitation imposed by
current strategy for the purpose of accelerating software delivery.

Methods: An exploratory multiple case study design using
qualitative research approach was used across multiple case
companies operating in agile-DevOps environment. Data was
collected mainly through semi structured interviews with DevOps
practitioners from five industrial cases. Results: Using thematic
analysis, four different strategies were identified. The effects of
each of the strategies are assessed with respect to DevOps princi-
ples. From a cross-analysis of 5 company cases, five effects were
identified. Negative effects of those strategies were determined
in five different areas which are: delivery speed, architectural
design, shared vision, requirements process, and testing.

Conclusion: The proposed alternatives are suggested specifi-
cally to accelerate software delivery in a DevOps environment.

Keywords: Agile, Continuous software engineering, De-
vOps, Requirements Analysis, Requirement Breakdown.

I. INTRODUCTION

A multitude of factors represented in the market with
ever changing requirements and business competitiveness have
caused a boost in growth of agile methodologies. Agile
methodologies strive for continuous customer involvement and
adaptability to change. Software organizations have allocated
significant resources to set up an agile infrastructure and adapt
to an agile way of working for evolutionary software delivery.
Transition from traditional to agile approach was one of the
means of delivering quality software at a higher pace [41].

Acquiring agile focused-perspective of software develop-
ment allowed some organizations to observe the need and ben-
efits of frequent realization of certain critical activities, such
as ‘release often’, based on the fact that this concept is well
established in open source projects [11]. Organizations have
focused on addressing several barriers in order to establish a
continuous engineering environment. This complex construct

requires an initiative of implementing continuous integration
and delivery processes. The initiative is represented in a set of
actions, such as increasing the number of automated testing in
a short period of time [31]. Furthermore, companies realized
the need to interlink continuous integration with continuous
deployment [11] in order to shorten the feedback loop with
end-users. Evidently, adopting a continuous deployment prac-
tice requires multiple organizational units to be involved in this
activity [31]. Nonetheless, what is important is to incorporate
mechanisms of gathering constructive customer feedback and
translate it to functional and non-functional requirements.

The progress to continuous software engineering addressed
challenges that agile held, in particular, with the customer
collaboration models. However, some challenges were persis-
tent, mainly in requirements engineering. During this process,
breaking down a requirement in order to test it separately
is still regarded as a challenging task [40]. Organizations
recognized, to truly implement continuous practices, an au-
tomation infrastructure is needed [40]. DevOps comes into
play and promotes a tighter interaction between development
and deployment. DevOps provides configuration management
and automation infrastructure to compensate on delays in
software releases to customer. The infrastructure builds a
homogeneous environment for development and production,
and capture feedback through customer’s logs, which explains
the adoption of DevOps especially in cloud web application
and data-centric systems [6].

DevOps builds upon the agile approach and supports con-
tinuous practices paradigms, with an emphasis on interlinking
different organizational silos. Mainly, DevOps fosters effective
communication between development and operations as an
attempt to improve software release cycle times. Therefore, it
is essential in a DevOps environment, for developers to under-
stand the real-world production environment where operational
teams release code. In a similar way, operational teams need
to collaborate with the developers and configure production-
like development environments [40]. Indeed, operations in
DevOps settings have the responsibility to handle the system
configuration management, including setting up the infrastruc-
ture and pipelines required for the build, test and deployment
automation. As well, operations report on the system quality
aspects, such as security and performance based on the data
provided in production unlike in agile development practices.

For DevOps practitioners, this represents a source of hidden
product and operational requirements, as requirements are also
shaped by operations. This inclusion of DevOps practitioners
in shaping requirements makes resources more elastic and
reduce operational challenges arising from frequent deploy-
ments. Gathering product performance-related data enable the
infrastructure and operational teams to set product operational
requirement [2].

DevOps caters well to continuous software engineering and
agile. However, DevOps inherited multiple challenges from
agile that diminishes the DevOps performance of building
software. Such challenges pertain, for instance, to some prac-
tices in the requirements analysis and breakdown process. In
agile settings, product owners have ownership and control the
product backlog, they are the guide for acceptance, decide
what to build and in what order [44]. Product owners (PO)
receive requirements from different stakeholders, thus, a prod-
uct backlog may handle all requirements related information.
But is has been reported that product owner may ignore the
recommended guidelines for managing the product backlog
thus affecting product time-to-market [44]. As identified by
Bass [1], six main roles of the product owner are: groom,
prioritizers, release masters, technical architects, governors
and communicators. DevOps brings more automated release
process and equal distribution among the roles thus limiting
the hand-offs that occur particularly in large software develop-
ment organizations, thereby, providing feature teams with full
responsibility of software development and release [24], [16].

When it comes to requirement analysis and breakdown,
agile methodologies to some extent fail to achieve release
cadence desired by many organizations, part of the reason is
due to a bottleneck in the collaboration between development
and operations which is responsible for software maintenance,
delivery, and release [16]. Furthermore, frequent releases help
address issues associated with continuous deployment [23].
Developing software in smaller batches makes each deploy-
ment less risky, help teams address bugs faster and detect from
which deployment the error was caused. However, keeping up
with frequent releases is a non-trivial task since it reflects
on the requirement breakdown efficiency to keep up with
continuous integration (CI) and testing [7]. Additionally, recent
studies show that depicting an abstract requirement given by
the customer as a deployable unit is a challenging task for
DevOps practitioners as it may not fit DevOps continuous in-
tegration and deployment pipelines’ frequency flow. Similarly,
DevOps practitioner’s target integration frequency is limited by
the capability of breaking down software requirements [27].

There are seldom studies that differentiate the requirements
analysis process in DevOps from agile. Further, we noticed
that operation-monitoring metrics should be automatically
traced back to requirements. This way, development teams
and POs are able to monitor the status of the requirements in
the production environment and manage them at a lower cost.
In this research, We looked at different cases that adopted
DevOps in a lean agile development environment and we
explored requirements analysis and breakdown approaches of

functional and operational requirements.

A. Research purpose

In order to provide the software community with insight
into the requirement analysis and breakdown process within
DevOps settings, this thesis aims to identify the strategies used
by DevOps practitioners in requirement breakdown. Those
strategies encapsulate a set practices and tools used during
requirement breakdown process. We proceeded with a selec-
tion of relevant aspects and dimensions from existing literature
and refer to DevOps practitioners’ reflections to analyze the
effects of the strategies used. Eventually, we seek to put in
place useful strategies identified from our analysis that would
help to increase the organization capability to deliver software
at a more rapid pace.

B. Paper Structure

The remainder of this research is organized as follows:
Section II provides an overview of the state-of-the-art and of-
practices of requirements engineering practices, particularly,
requirements analysis in agile development. Additionally, we
introduce DevOps principles and its objectives, as well as
the different approaches used for requirement analysis and
breakdown in agile. Section III describes the research method
applied to achieve the objectives of this thesis, presents our
research questions and potential validity threats. Section IV
introduces an overview of studied cases. Section V encapsu-
lates the results of the data collection followed by a discussion
in Section VI. The paper concludes with a summary and
viewpoint on future research in Section VII.

II. LITERATURE REVIEW

The literature of focus in this thesis relates to three main
concepts which are agile, DevOps, and the requirement anal-
ysis and decomposition challenges in agile and DevOps.
The first sub-section introduces DevOps and highlights how
DevOps builds upon agile methodologies. The second sub-
section focuses on the requirements analysis and breakdown
aspect in agile by presenting its status quo. The purpose of the
agile requirements engineering (RE) process overview is to
introduce the practices and strategies that DevOps is building
upon. The last sub-section gives the state of the art of the
challenges that requirement breakdown brings to a continuous
software engineering environment and its effects, thus, similar
challenges may arise in a DevOps environment.

A. Background

1) Agile to DevOps: DevOps uses agile as a foundation and
enables continuous software engineering [26]. Conceptually,
DevOps, similar to agile emphasizes collaboration between
stakeholders of software development especially developers
and operations. DevOps extends the agile practice of CI by
incorporating deployment automation through infrastructure-
as-code concept. Thus, this concept embodies configuration
management tools and themes, such as automation pipelines
which is a major practice used to mainstream CI, testing,

deployment, and quality monitoring [25]. Consequently, De-
vOps brought useful solutions to orchestrate the deployment
and release processes to deliver with a short cycle time.
The solutions came in the form of a set of tools and best
practices with the aim to favor better agility in delivery,
architecture, integration, and testing [24]. Many agile software
organizations have started to integrate DevOps in an attempt
to benefit from its advantages, covered by [9], and align it
with the organization’s high-level business objectives [37].

Gupta et al. [13] explored different DevOps attributes and
assess their maturity level within a company. DevInOps was
one of the listed attributes. Its domain encapsulates the com-
munication of requirements and design from the development
team to operations teams to sustain high deployment pace
with improved quality. DevInOps supposedly encourages col-
laboration between divisions which helps correspondence and
representative welfare. Continuous releases empower a more
experimental approach and rapid feedback gathering. The
difficulties emerging from communication structures prevent
cross-department collaboration and tend to address the cultural
shift [37].

Those attributes outline the benefits of DevOps in delivery
and release frequency, improved test automation, and better
communication. In this context, Humble and Farley [17] stated
that frequent software delivery and deployment required a
connection between different activities of software develop-
ment. Ample evidence shows there is a need to continuously
deploy software changes and gather data in the operational
environment. The data is related to system performance and
feature usage gathered from monitoring tools and traced back
to requirements. Paulin [33] supports these claims and high-
lighted that, indeed, benefits were found in system quality and
in release cycle time. Yet, challenges were raised regarding
a lack of common understanding of DevOps concept which
requires highly skilled practitioners [37].

Various literature provided insight into how to implement
DevOps [32], along with its variations. Namely, on an architec-
tural level, driven by the need to increase software delivery.
DevOps addressed a key architectural barrier and promoted
the adoption of micro-service architecture that supports de-
ployment independency by a modularized development of
smaller units, which in return reduced the deployment time,
and enables quality monitoring through incremental quality
change [5].

2) Requirements Analysis and Breakdown Practices in Ag-
ile: Requirements are a central concern in software engineer-
ing research. This concept was well studied in previous work
as agile researchers have investigated different RE process
challenges and best practices [19].

To be open and adaptive to changes, agile practitioners
adopted several RE practices to overcome challenges emerged
from the traditional way of development. Inayat et al. [18]
have conducted a literature review on agile RE practices
and challenges and identified 17 practices related to RE in
agile methods, such as user stories, iterative requirements, and
pairing for requirements analysis. The last practice encourages

a stakeholder to play several roles to fill the communication
gap.

Agile has treated the RE differently compared to when
traditional ‘waterfall’ software development approach was
used. Agile RE process encompasses methods and tools to
handle requirements change such as product backlog refine-
ment and impact analysis between requirements. Various agile-
inspired frameworks, such as scrum employ collaborative and
iterative software development with the customer. The use of
different methods and supported tools of agile make software
development process responsive to changing requirements
and/or customer needs. Disregarding the size of the agile
organization, the system functional requirement is the most
commonly documented type of requirement, using free-form
textual domain/business process models, free-form textual
structured requirements lists or even use case models as text
with constraints.

There are still challenges in the RE process in agile [43].
For instance, following user stories format in requirements
documentation can be insufficient if the requirements are
communicated to off-site stakeholders [15]. Bjarnason et al.
[3] have identified five variants for test cases usage for require-
ment which poses both benefits and challenges. Bjarnason et
al [3] relate to aligning goals and perspectives of requirements
among different stakeholders by favouring cross-functional
communication between roles, and the need for constant
customer involvement respectively in terms of requirements
elicitation and validation. Further, the effects of the mentioned
practices in agile RE process were also studied in [20], where
constant challenge regarding breaking down knowledge about
customer value is reported by the researchers.

In literature there exist different approaches to require-
ment analysis and break-down. Racheva et. al [35] suggest
a conceptual approach to re-prioritize requirements in agile.
In order to produce a prioritized list with requirements, this
approach takes as an input a list of relevant inputs such as
work-breakdown structure, business value per feature, effort
estimation, project constraints and knowledge information
experience. Determining the value of a feature is a non-trivial
task since requirements experts lack explicit measurements
techniques that calculate the value of a requirement or a feature
which affect in return the features or requirements dependency
mapping.

Having a vertical of a multi-hierarchical structure of re-
quirements are considered to have both benefits and challenges
with respect to easing requirement traceability and effect on
development speed. With that being said, Gorschek et al. [12]
studied different requirements abstraction levels through the
RAM (Requirements Abstraction Level) which encapsulates a
product level, a feature level, a function level, and a component
level. Prior the requirement analysis, a single requirement must
be categorized in one of those levels, must relate to one of the
product goals and then broken down at least to a function level
and not necessarily to a component level due to the fact that
having multiple iteration on a requirement leads to problems
in e.g. comparing requirements.

B. Related Work

1) Impacts of Requirement Analysis and Breakdown on ag-
ile : The link between requirements and its effect on different
steps of the development has been studied [42] and [22]. But
then, there is no explicit research on how the requirement
breakdown effect Agile-DevOps in practice to the best of
our knowledge. Often requirements management represents a
hurdle as requirements research falls short in identifying the
scalability of the RE process [36]. Agren et al [46] explored
from a managerial perspective, the requirements impact on the
development speed. They found that in automotive systems,
requirements are regulated by safety and legal features, thus,
it implies the traceability of development and verification
results to requirements. However, these aspects affects the way
requirements are decomposed.

Decomposing requirements into several hierarchies is a key
challenge for agility according to Agren et al [46]. Having
several levels of abstraction affects the requirement change by
the inability to ensure that decisions are made on the most
appropriate abstraction, and make the information flow hard
to trace.

In large scale software development, such as in the auto-
motive industry context, Eliasson et al [8] reported on four
different levels in the required structure. First, the functional
requirements are broken down by a function realizer and
expressed in use cases or scenarios describing the interaction
of a customer with the car. However, some of the functional
requirements providers may not have the required implemen-
tation knowledge, hence, the requirement can end-up being
under-specified and the scenarios do not cover the different
behaviors of the system [8]. This is mainly caused by a
challenge in identifying requirements at a specific abstraction
level [8].

Further literature identifies in large scale organization re-
quirement over-scoping as one of the roots of communication
gaps. This can affect requirements coverage specification,
subsequently problems when implementing and verifying them
arise [4]. In a similar vein, Berntsson et al [44], incomplete
information is often the root cause for mismanaged items in
backlog which are the basis for decision making process. Such
situation hinders the collaboration of team members of doing
their jobs thus affect the development speed.

In addition to that, Regnell et al [36] state that require-
ments complexity is proportionate to its size. Therefore, a
requirement complexity can be categorized in four levels of
magnitude to judge on its complexity: Small-Scale RE (10),
Medium-Scale RE (100), Large-Scale RE (1000), and Very
Large-Scale RE (10000). Requirements inter-dependencies
heavily affect its level of complexity. In large scale RE,
similarly for a very large scale, one way to depict requirements
inter-dependencies is to assign requirements to different par-
titions and illustrate dependencies between partitions instead.
However, in a very large scale requirements engineering situa-
tions further research needed to investigate how requirements
are to be structured and designed, and which attributes, links

and concepts need to be maintained. Similarly, the gap is yet to
be filled regarding the required level of details and abstraction
related to each defined requirement.

According to Inayat et al, agile RE depicts the “agile way of
planning and managing requirements [18]. Only little is written
about the requirements process in DevOps context. DevOps
focus on bridging the gap between the development and oper-
ational teams. This involves establishing a solid requirement
communication throughout the project which is a key factor for
delivering what the customer wants [4]. Development teams in
DevOps take into accounts various resources such as standards,
organizational process descriptions and more to elicit product
and operations process requirements to facilitate knowledge
sharing between developer and operators divisions [9].

Explicitly, Bass et al. [2] proposed several of sources
that development teams could refer to determine operational
requirement, and highlighted the fact that issues related to
incomplete requirements in agile projects may lead to project
failure [43]. Furthermore, Bass et al argue that the devel-
opment staff should provide features of use to the delivery
process as well as to the operations process, since, including
those features will simplify the release process and reduce the
number of associated errors [2].

Yasar [45] points out to the applicability of DevOps prac-
tices in case of new requirements late in the software devel-
opment life cycle (SDLC) in highly regulated environments.
Normally accepting a new requirement in a later stage of
the SDLC entails problems on project consuming significant
time for design, development, or testing. Therefore, in order
to mitigate its impact, Yasar sets restrictions on the identity
of the requirement requestor. The original requestor can create
new requirements based on its domain knowledge, for essential
functions to the original project, and ads non-essential features
to a project backlog. Upon approving requirement by Yasar
[45], time is allocated for building and testing. Ideally, to
handle late requirements Yasar [45] suggests to incorporate
small task at a time and conform to DevOps concept of
progressing the project through the entire SDLC process one
small task at a time, as it contains a small number of sources
to be deployed and tested.

In particular, literature reports for instance, on how con-
tinuous integration requires a link between development and
operations [10]. The work reported in [40] revealed that
balancing between breaking down a requirement to a small
size with customer value and continuous integration is a
challenging task. Similarly, breaking down a requirement to an
adequate size in order to be tested separately is also a barrier.
Consequently, this entails considerable delays in continuous
integration.

We deduce that since these effects are persistent in agile,
they are likely to impede DevOps practices. Thus, since
DevOps has not been adequately studied in current literature
[9], and the body of knowledge about the RE, in general, is
limited [43], this study, explore in a problem driven manner,
the current state of the art in of requirements analysis and
breakdown strategies.

III. METHODOLOGY

This study is an exploratory multiple-case investigation
of requirement analysis and breakdown in DevOps within
industrial contexts. We applied a qualitative research approach
to enable us to observe the phenomena in real-world setting
of multiple cases, thereby increasing the robustness of the
result [29]. The data was collected through semi-structured
interviews and questionnaires from DevOps practitioners in
five different organizations and was analyzed using thematic
coding.

A. Research Questions

Literature has not explicitly explored the requirement
breakdown and analysis in agile development context [43].
Hence three research questions were raised to fill in the gap
of this study:

RQ1: What strategies adopted by DevOps practitioners for
requirements analysis and breakdown in practice?

The question, based on empirical data gathered from
multiple case investigation, aims to look at requirements
analysis and breakdown process by exploring different
activities, best-practices, tools, and roles involved in the
process. Hence, this helps gain a deeper insight into
requirement analysis and breakdown process within industrial
settings.

RQ2:What effects do the current practice strategies present
for DevOps practitioners?

based on the strategies identified in RQ1, this question aims
to identify the effects of the overall requirements analysis
and breakdown process on DevOps goals and principles .

RQ3: What alternative strategy could be used to overcome the
reported challenges and accelerate software delivery?

This question Provides alternatives to mitigate the
highlighted negative effects for DevOps practitioners to bring
software to the market at a more rapid pace.

B. Study Design

We report on a multiple-case study design for this research.
The case and the basis of this study, is DevOps environments
within organizations. We found the companies of interest
based on their DevOps environment and requirements analysis
related work. Across all the cases, a DevOps environment
represents the characteristics of a department or an entire or-
ganization that employ DevOps approach, including practices
such as Dev-Ops collaboration, automation in deployment
pipelines. The unit of analysis are companies and department,
with each characterized by the latter described DevOps envi-
ronment/context.

For this study, we conducted four semi-structured interviews
and two group interviews across five cases, and one ques-
tionnaires for one individual case. We followed the guidelines
by Runeson et al [38] to develop the interview guide. The

interview guide was divided into four sections. The first
section provides information about the background of the
participants, the system under development. The second sec-
tions questions relate strategies of the requirement breakdown
process by DevOps practitioners and the third section, about
benefits and challenges of requirements breakdown on DevOps
practices and fourth section, alternative strategies supporting
requirements break down and analysis to accelerate software
delivery. At the minimum we secured one participant per
case, thus, the main core of triangulation is achieved by cross
analysis of the cases [38].

Two pilot interviews were conducted prior to data collection.
The purpose of the pilot interviews was to assess the validity
of the guide, assure that the interview has a good structure that
allows the interview to follow the questions adequately. The
participants of pilot interviews possessed a minimum of four
years of experience of work in DevOps environment which
makes them potential interview candidate. The participants
interviewed in the pilot interviews were not involved later in
the study.

The interview updates realized:
1) The relevance of the questions: since the questions were

categorized according to the research questions, we
raised the level of abstraction of some of the questions,
in particular in the beginning of each. This is done to
help keep the conversation in a natural flow, with less
repetition or jumps from one topic into another, and
make the interviewee more talkative.

2) The clarity of the questions: some questions were further
broken down into more concise questions and follow-up
questions, for the aim to reduce the complexity.

C. Subject Selection

For each case, we looked for practitioners of DevOps within
companies that adopts the principles and practices of DevOps.
The participants’ selection was based on convenient sampling.
The authors referred to the company suggestions to select
relevant participants to this research. The roles range from
Product owners, business analyst requirement engineers, devel-
opers, architects, testers, etc. At first, we contacted a specific
person to be our coordinator at each case that was working
within DevOps environment, through whom we communicated
our research objectives and interview guide, and how having
different perspectives are useful for us. Eventually, the candi-
dates were selected based on their preference, availability, and
knowledge about the topic area. Table I gives an overview
of our respondents, domain, roles, years of experience and
organization team size. In order to preserve the anonymity of
the candidates, we provided unique IDs for each participant.

D. Data Collection

Given the relative newness of the concept of DevOps in
software engineering, the researchers aimed at gathering data
from managerial, architect and developer perspective. The
data was collected through semi structured interviews, semi

Case
Unique

ID Role
DevOps

Experience Domain
Departmental Size

(No. of Teams)

Case P CP-1
CP-2

Product Owner
Product Owner

5
5

Platform & Tools
Full-scale Web Systems 22

Case X CX-1 Cloud Engineer 5-6 Embedded Software & Cloud Adoption 100

Case Q
CQ-1
CQ-2
CQ-3

Programme Coordinator
Technical Coordinator
System Manager

2-3
10
10

Embedded System, Hardware & Software 60

Case Y CY-1 CI/CD Consultant 4 Software Development & Cloud Adoption 55

Case Z CZ-1
CZ-2

CI/CD DevOps Analyst
UX Designer

4
3

CI/CD Development & Support
UX/UI 40

TABLE I: Demographics of participants

structured group interviews and questionnaire. One unique
interview protocol was used for individual interviews, group
interviews and for the questionnaire. This interview protocol
in (Appendix A) was also used across five cases. However,
during both individual and group interviews, the interviewers
did not strictly follow the exact ordering of the questions.

1) Interviews: As pointed out by Runeson et al. [38]
interviews are considered an important and common technique
for collecting data. Each interview lasted one hour and was
conducted by at least two researchers. With the permission of
the interview participant, interviews were recorded and later
transcribed for analysis. During the interviews the researchers
followed an interview guide, see appendix A. The participants
were invited through the company’s email with the proposed
time and date for the interview. For the participant located in
the Gothenburg vicinity, we scheduled on-site meetings which
resulted in face-to-face interviews. However, for participants
in remote location such as Stockholm and Netherlands, thus,
we conducted Skype interviews.

2) Group interviews: For each group interview the number
was limited to two participants. The second participant was
suggested by the original candidate that was supposed to have
an individual interview. Initially, we aimed to limit the group
interview to three people since focus groups of a large number
are difficult to control [34], and also we aimed at getting each
participant to answer all the interview question.

3) Questionnaire: A questionnaire was used with par-
ticipant from company Y. As stated above, the participant
answered the questions provided in the interview protocol
(Appendix A). The researchers resort to questionnaire as a
substitute for interviews due to the participant unavailability.

E. Data analysis

The semi-structured interviews provided a large amount of
qualitative data. Hence, a thematic analysis approach was used

to support our qualitative research. This approach is used to
find patterns and themes related to our main research questions
and organize the rich data provided from our interviews [39].

A total of seven transcripts resulting from our data collection
with each containing at a minimum fourteen pages were
analyzed. The coding process including the data visualization
and categorization was done using Nvivo (see Appendix B).

Prior to coding, we determined according to our research
questions, high level themes (strategies, effects and challenges,
and alternatives). The word strategy is generic in a sense it is
likely to be interpreted in many ways. Therefore, we defined
a strategy based on a list of specific characteristics. Those
characteristics were specified as conceptual themes such as
practices, tools, roles and responsibilities. Later on, from the
data set, we generated extensive codes. We grouped each of
these discrete codes into conceptual sub-themes under the high
level themes mentioned above. This is done by highlighting
questions and related answers. This step resulted in a list
of sub-themes and codes that were later categorized. The
remainder of all the transcripts were coded in the same way.
It is important to note that one code can pertain to more
than one sub-theme. Eventually, after all transcripts are coded,
each of the sub-themes were refined. This refinement included
the addition and deduction of some codes and sub-themes
for the purpose to avoid misinterpretation of the results. The
Appendix C gives an overview of the initial themes and
codes used in the analysis. The tone of the conversation and
all informal nature of the interview was maintained during
transcription and coding process.

F. Limitations & Validity Threats

This section discusses different types of threats identified
for this study in according with Runeson et. al [38].

1) Construct validity: Construct validity reflects on whether
the methodology and measurements adopted by the researchers

were sufficient to answer the suggested research question. For
instance, the use of non-suitable data elicitation technique can
distort the findings [21] making it unusable or unreliable.

The first interview participant for each case were selected
based on a convenient sampling. This may introduce a sam-
pling bias. Based on the nature of our study, the sample of
the interviewees does not represent the entire population. To
compensate on that, we aimed to study different perspectives
form different case companies.

The context of our research requires interpretations from
different perspectives. However, the number of subjects per
case is limited. In other words, saturation per each case was not
achieved. Instead of interviewing multiple roles in one single
case, we alternatively explored different contexts and cases to
help achieve triangulation. In a similar vein, the triangulation
is still affected by making interviews as the main elicitation
technique.

At some points during the interview, the participants had a
different conceptions regrading some of the questions or did
not have a constructive or a detailed answer. So, this threat
was reduced by suggesting potential areas that could reflect
on sample answers.

2) Internal validity: Internal validity is concerned with the
collection of the data, that no other unknown cause affects the
data. If participants have biases based on how we perform our
interviews, the collected data will be affected. To minimize
this effect, we performed all the interviews in the same
fashion. The interviews are performed at a neutral place to
reduce the impact the environment has on the interview. All
the interviewees got a short introduction about our research,
our aim and the purpose of our study to make sure they
understand the purpose of our research.

3) External validity: The requirements analysis and break-
down process is context-dependant and can vary form com-
pany to another. This study included interviewees with mul-
tiple roles and teams in different companies for the aim to
increase the generalizability of the results. Therefore, compa-
nies with context similar to the case companies can benefit
from the results produced by this study. To help extend this
research and identify similar contexts, a detailed description
of the case companies context and characteristics is provided
in section four.

4) Reliability: This aspect inspects that the research is unbi-
ased and that result isn’t dependent on researchers. Qualitative
data brings a lot of interpretation and there is a chance that we
interpret the data incorrectly [28] resulting in a faulty and unre-
liable final result. To make our research reliable and repeatable,
we used common and tested methods mentioned previously in
the methodology section to collect and analyze our data. All
our steps for data elicitation and analysis was documented in
a clear and concise manner to ensure reliability and make it
reproducible. Further, all members were responsible for the
elicitation and analyzing of the data, reducing the risk of one
persons influence the data.

IV. OVERVIEW OF STUDIED CASES

This section provides an overview of the cases and their
software development contexts, including information of what
the team/organization is developing, DevOps usage/adoption
and requirement breakdown process.

A. Case X

Case X is a cloud option team from an automotive com-
pany. The company is developing transport solutions, such
as trucks and buses, combined with an extensive product-
related service such as rental service to enable its customers
to focus more on their core business. Within this Case, we
interviewed a cloud engineer, who was previously helping
feature engineering teams of connected vehicles and services
to automate deployment and set-up testing frameworks. Case
X helps internal teams to work with DevOps and Amazon Web
Service (AWS) such as building a secure service in AWS cloud
environment. Case X utilizes the core platform of the company
and provide assistance to about 1000 engineers across 100
teams.

Case X’s requirements come from internal features teams
at connected vehicle and connected services within the orga-
nization. The requirements are usually communicated to Case
X by PO of internal feature teams. As such the requirements
are reported as having being prioritized and refined, which
makes it easier for Case X to further analyse them and begin
implementation. An example of such requirement is if an
internal team wants to migrate its hosted applications from
Case premise in the data center into AWS.

Case X has quite high-level epics that they call stories that
are discussed over a whiteboard and about five different activ-
ities or more are generated. Stories are later written on post-it
notes and are then transferred to the Kanban board to facilitate
further discussion and how to work on the tasks. The PO writes
formal words as epics then take the epics, discusses them and
then the outcome is prioritized. This is a common practice
consistent within multiple teams within Company. However,
for larger applications e.g connected services consisting of 30
teams, high-level requirements require the effort of all the
teams and customer because they focus on satisfying end-
customer needs. Hence teams are built on specific use case
or service for easy and direct customer feedback. Testability,
batch size and ease of monitoring are among three criteria
used by Case X to assess break down of the requirement.
Weekly demos are held to demonstrate what they had made
from the previous week, after that, they set a day for a session
for requirement refinement.

Requirements are decomposed and detailed in JIRA or post-
it notes on the wall in order to track all the activities done
within the group. However, there is no unique tool within Case
X used during this process as this varies from team to team. A
dateline of one to two weeks maximum is set as completion
of these tasks after the breakdown and implementation, the
product is shipped into production. Thereafter new small
action and stories are formed again based on the feedback
from the end-customers and the process repeated.

B. Case Y

Case Y is an IT organization with banking licenses rather
than as financial institutions with IT departments. The Com-
pany provides financial services and advice to private, corpo-
rate and retail clients through creative solutions to suit their
clients business needs. A CI/CD consultant from this Case
was interviewed and belonged to a central team providing a
container-based platform on Amazon Elastic Container Service
for 55 internal teams wanting to deploy their applications on
containers. The interviewee’s responsibility within this central
team was requirements gathering for the implementation of
new tools and processes as well as building a container
platform for an entire software development teams within the
organization and doing migrations of tools to the cloud.

The infrastructure team defines the requirements themselves
through the PO based on what happens in the market and what
could benefit the Case. The requirements are usually written as
text and are based on stakeholders intuition. However, there
are some requirements that are derived from problems and
issues which happen on a daily basis within the organization
e.g. lack of security steps (Hashed against plain passwords in
git) or from slow release cycles.

Requirements are split between functional domain, such as:
what the tool should do, which security aspects are needed,
which enterprise-grade features are needed, what the amount
of work is to maintain it and the level of automation. As
such, the requirements become stories and later these stories
are decomposed to task. Within the organization, a small
refinement session is performed and later development begins.
If issues occur, for example a fault tool, a technical session is
held mostly via video call to discuss with vendors and other
stakeholders. The central teams have high-level epics in Jira
and they are detailed in confluence.

C. Case P

Case P is a telecommunication company that provides
customized local and global telecommunication services and
solutions. We interviewed two POs from Case P. The first PO is
responsible for the platform and tools team and the second PO
is from the sales development teams. The platform and tools
team is a dedicated IT department responsible for providing
DevOps tools and maintaining the DevOps platform for differ-
ent teams (about 22 teams) working in a CI/CD environment.
The platform and tools team consist of three sub-teams, of
which two are infrastructure and tooling development teams
and one is a process-oriented team. The sales development
team is responsible for the whole sale process done on their
website for specific products. The sales team consists of a
solution architect, UX designer, testers and, front and back
end developers. Both teams typically work in agile manner
with team sizes between 8-12.

During the requirement gathering phase, requirements for
the team come in form of small issue or a large issue e.g.
building a continuous delivery pipeline on top of legacy. In
contrast, for the sales development team, the requirements

come from different sources such as internal business unit,
marketing unit and special cases from external customers
as comments/feedback. Activity of specifying requirements
involves the product owner and a group of architects that rather
rely on conceptual reasoning in identifying both the structure
and how a single requirement should be implemented rather
following a requirement specification template.

Requirement breakdown was done differently from both
the teams. For an agile sales development team, the Product
Owner is only involved in customer requirement level and as
for technical task level, the solution architect breaks it down
and works with the developers to implement a solution. In
contrast, platform and tools team used to be a requirement
driven team but now working in agile kind of way breakdown
the requirements into smaller chunks starting from the epics.

The sales development teams and platform and tools POs
both materialize the user stories and document them using a set
of tools such as JIRA, emails, PowerPoint, MS Excel and Case
P’s Confluence which are later prioritized. Case P’s Confluence
is used to document technical related details on how things
are being developed. It outputs a developers handbook and
operations handbook. On the other hand, Jira is used for more
formal documentation such as instructions.

D. Case Q

Case Q is a large scale multinational networking and
telecommunications company. Case Q is developing software
and hardware solutions for the telecommunication industry
mainly 4G and 5G networks. The company has adopted a
DevOps program that targets to improve the release cycles
and efficiency. In case Q, we interviewed a System manager
from System Department Early Phases Program, Technical
coordinator and programme manager at R&D product devel-
opment unit. Responsibilities include finding new strategies in
improving the ways of working, wherein DevOps program is
established to improve the collaboration between development
and operations. Among the goals is to ensure that development
teams efficiently get feedback based on customer data e.g.,
product performance benchmarks to further improve system
functionality. This is in addition to finding ways of employing
modular (microservice) architecture while building on estab-
lished CI and CD practices.

The telecommunication industry is regulated in terms of
software development. You can only develop something that
is in the standard requirement which comes from the standard-
ization (e.g 3GPP) c. In Case Q requirements comes in two
different types. Often a big part of the requirement and feature
provision is based on the standards. Those requirements are
created by the product managers. The Product manager gets
the requirement from such standardization source in order for
Case Q to position its superiority in the market.

Case Q’s requirement process is long all because of stan-
dardization and regulations. A feasibility study of one to two
pages of high-level text describing the outcome of what they
want to achieve is conducted. The proposal is then studied by
the system team to understand what changes are needed and

what at cost. Thereafter, Product Manager decides if the study
items are feasible to be implemented. A number of detailed
standards documents are produced to answer and describes
how things should be implemented. DevOps set up is based on
pre-established CI practices and test machinery, that execute
the basis of 50,000 test cases every week and Currently, the
organization has the capability to delivery from mainline on
weekly basis to up to 10-15 customers.

E. Case Z

Case Z is a large scale company working with different
business solutions such as salary and HR systems. The Case
has worked with CI for about 4-5 years and they have recently
started with continuous deployment in several departments
within the organization. The goal of implementing DevOps
is to enable frequent deployments and later increase and
improve customer feedback in their development workflow.
In this Case, we interviewed a developer working in their
infrastructure project that works with other companies, helping
them with technical challenges like on improving the delivery
process and a UI/UX-designer who, together with the PO, form
and break down the requirements specifically those concerned
with User Interface.

The PO handles the requirements before they get provided
to Case Z’s different development teams. The PO are respon-
sible for a set of requirement that is either suitable for the
development teams from preliminary work documents or made
from by business people covering what the customers would
want. The product owners get support from various roles in
decomposition phases, such as UX designers and Case experts.
Further, it also ensures that the POs requirements are accurate
to Case Z guidelines.

After break down of requirements by the PO hands over
to the development teams who further discuss on how to
prioritize and handle the requirements via team meetings. A
requirement varies a lot in size and could take from one
iteration to five or six to implement. The different levels of the
requirements are legendaries, epic, and features which are a
part of the epics. The features are added to the backlog as one
or more product backlog items and all backlog items contain
tasks which the developers start to develop.

V. RESULTS

This section encapsulates the findings of this study resulting
from the thematic analysis of the data collected through our
interviews. The results are presented according to the main
research questions.

The first research question provides insight into industrial
practices of requirements analysis and breakdown process by
exploring what practices, tools, and which roles are involved
in this process. The second part of the analysis answers the
second research question by highlighting what effects do the
strategy has on DevOps practitioners. Eventually, we suggest
a list of potential improvements on requirement breakdown
strategies that could enhance the software delivery pace.

A. RQ1: What strategies adopted by DevOps practitioners for
requirements analysis and breakdown in practice?

The strategies illustrated in this first section are adopted by
teams working in agile-DevOps environment. There is no par-
ticular way a company must follow to establish DevOps, rather
adopting principles and practices to comply with DevOps
capabilities. Those capabilities not only on a practical level,
for example, automating continuous integration, delivery and
deployment, but also on cultural level where a new mindset,
behaviour, and skill set is required to cope with this new
style of software development. This section will elicit the
requirements analysis and breakdown process in agile-DevOps
environment among the five case companies. The purpose of
this, is to scrutinize changes made for altering requirements
process in industrial contexts in order to adapt to DevOps.

Requirements analysis and breakdown activities take vari-
ous types of requirements as an input. This process include
activities that check the requirement consistency, clearness,
and feasibility with the provided resources. Furthermore, the
analysis process rely on a set of practices such as requirements
negotiation and prioritization to handle requirements conflicts.
As observed in the cases, infrastructure requirements are also
considered as key both in development and accelerating the
delivery of software changes.

We report on four identified requirements breakdown strate-
gies, namely:

• Hierarchical-based
• Feature-based
• Feature-based
• Value-based

The strategies identified are blended with a set of best practices
and tools.

1) Hierarchical-Based Strategy: The hierarchical based
strategy is observed within Case Q. This strategy is charac-
terized by a top-down, sequential requirement analysis and
breakdown. It comprises phases, during which specific roles
perform specific activities on requirements. Interestingly this
strategy is observed to co-exists with the data-based strategy
(discussed later).
During this lifecycle, the requirement goes through a couple
of iterations before it is specified and systematized. First, the
requirement is described at the highest level along with its
outcome. One example of a requirement is ”Increasing the
number of users supported by the system to a certain magni-
tude”. The reason for still employing traditional requirements
engineering is due to the constraints, such as standardization,
complexity of the system, and a highly regulated industry.

Multiple cross-fuctional/domain experts called system man-
agers provide initial specification of the requirement through
a feasibility study. Afterwards, the product manager provides
the initial breakdown of the requirement into deployable items.
After the implementation items have been specified, system
managers, who are more knowledgeable about the architecture
perspective of the overall system, produce detailed documen-
tation of how the requirement should be implemented.

Strategies Practices Roles Involved Case

Hierarchical-Based

• Align Test and Requirement
• Continuous Customer Involvement
• Document Update
• Feature Analysis
• Requirement Specification
• Requirement Management

• System Architect
• Product Managers
• Developers

Case Q

Feature-Based

• Continuous Customer Involvement
• Feedback Driven
• Requirement Refinement
• Requirement Specification
• Cross-Functional Team

• Cross-Functional Teams
• Product owner
• Developers

Case X

Value-Based
• Document Update
• Feature Analysis
• Requirement Management

• Architect
• Product Owner
• Developers
• Business Analyst

Case P & Z & Y

Data-Based

• Align Test and Requirement
• Continuous Customer Involvement
• Document Update
• Feature Analysis
• Requirement specification
• Requirement Management
• Cross-Functional team
• Feedback Driven
• Requirement Refinement

• Cross-Functional Teams
• Product Owner
• System Architect
• Product Managers
• Developers

Case Q & X

TABLE II: The table shows a list of identified strategies within the case companies. The strategies encapsulates a set of best
practices

”Requirements are analyzed by the product analyst
and the product owner, basically the people owning
the budget. They then consult with the system depart-
ment with those requirements and then the iterative
process starts from there where we have dialogue
with the end users so there is not so much, that
aspect is not so digitized” (System manager, CQ-3)

The system managers get in this process and study the cost
and effect related to this implementation. At a second phase,
based on the inputs provided by the system managers, product
managers decide upon the feature implementation.

”The product managers, in the beginning they do not
go to that level, they put it a bit on the abstract level,
and then we have what we call system managers who
are more knowledgeable about the product details
who then go deeper into these high level require-
ments and break them down into implementation
items.” (Programme Coordinator, CQ-1)

The deployable items description is specified in details and
documented to ensure that the developers follow the imple-
mentation plan accordingly. After the first decomposition, the
requirements are read again by the system managers who spec-

ulate on the implementation logic. Our interviewee reported
on an extensive level of details provided in the requirements
specification and systematization. The requirements specifica-
tion are documented in specific detailed documents which is
provided as inputs to the development teams. Thus, this applies
a traditional process of requirement specification during which
the analysis and decomposition of the requirements are in
charge of a limited amount of stakeholders. Project managers
and technical coordinators have to come up with a consensus
on what needs to be implemented and how.

”Once that done we need deeper study on how we
want to implement this, and then there is a number
standards documents that we produce which answer
and they are very detailed and describing how things
should be implemented” (Programme Coordinator,
CQ-1)

The documents produced in the requirements specification and
systematization highlights the requirements dependencies at an
early stage. System managers highlights possible requirements
dependencies by depicting higher level and lower level require-
ments. Before it is handed into a specific department(multiple
teams).

”When you have one kind of a program view and
the program has a certain purpose, certain phase
and a set of functional responsibility. But then it
could become a cross program requirement. Then
different stakeholder can have different priorities.
Then it becomes like a negotiation, can I borrow
a thing from you?” (Programme Coordinator, CQ-3)

Departments in Case Q works for either a long term strategy or
a short term strategy. The feasibility study output which spec-
ifies the spectrum and the implementation of the requirement.
The requirement aggregation take into account which teams
are available and at which date the requirement is planned
to be delivered. The requirements are later broken down to a
functional level in accordance with the system architecture and
handed it over to the development teams. This also highlights
the systematization effort estimate. System managers coordi-
nate with the cross-functional teams. In a series of meetings,
the requirements are then reviewed for possible conflicts
and refined and implementation is aligned with the system
architecture. On a low level, our interviewee highlighted the
implementation details get addressed in solution agreement
meetings. The meetings involved the developers and their
direct requirements authors, hence, more dynamic teams which
include roles varying from developers to product owners to
architects. We noticed that no formal documentation produced
to trace requirements change. Instead, most of the process is
handled by communication.

” We usually start with describing the requirements
and working it into a business case and also what
kind of extra things that we need. And then we
dig further into the systematization work and then
a certain point have those texts that can vary. we
talk about sprints of 6-7 week of time if you want
to do systematization. I can say that the best setup
you can have is that you are aware about where
the cross functional teams are able to receive a new
requirement” (System manager, CQ-3)

In summary, the analysis and breakdown process heavily relies
on the product managers and system departments to whom
falls the reasoning about the requirement implementation in
the early development phases.
We report on other constraints that reflect on the decomposi-
tion process. This highlights the decomposition process takes
into consideration resources, such as the budget and number
of teams.

”Product line have a certain frame, a certain budget
and that, correspond to certain amount of teams. It’s
about what the team should be fed the next sprint.
” (System manager, CQ-3)

Weekly solution agreement meetings are conducted between
development teams and system people to discuss further the
requirement specifications and interdependencies.

”If still are any gaps than this gets addressed in
the end. It’s when like discussed in implementation
because it is a hard hand-over but they do what

we call solution agreement in meeting” (Technical
Coordinator, CQ-2)

This entire process limits in a way the role of the developers
and technical teams. The developer does not play a role within
the process apart from reasoning about low-level requirement
details to come up with implementation decision of a task.
Further, we noticed that not all of the information is provided
to the development teams.

”There’s just a little discussion I would say during
the handover between the system managers and the
developers” (System manager, CQ-3)

Consequently, based on the complexity of the system and
sub-systems the developer is bounded to specific tasks, thus,
developer task scope is very limited.

”If you are a developer you get a requirement and
you need to have a implement these requirement in
the code make sure that you pass all the testing all
the verification needed then your job is basically
more or less completed form that and then, the
developer loose the oversight of what they have done
and internally behaves in the feed this is one aspect”
(Technical Coordinator, CQ-2)

JIRA is the tool for task management as well as other internal
tools developed internally by the company.

2) Feature Based Strategy: In feature-based strategy, the
requirement analysis and breakdown output focuses on cre-
ating features with the ultimate goal of examining how the
different features behave and used. Development is relatively
fast and incremental in comparison to above Hierarchical-
based. Assumptions and speculations on requirements are
observed in this strategy. This strategy was observed for
example in case X and Z.

”We have product specialists and we have sales-
people. And then together with the product owner,
they usually decide or I have a feeling for what the
customers want.” (CI/CD DevOps Analysts, CZ-1)

For Case Y they start with an idea, this idea gets analyzed
and requirements get set. They send a request for proposal and
create a proof of concept. They then install the application in
the development environment. The requirements get discussed,
tested and accepted and are then ready to go into production
release when all the requirements are met.

The requirements have different abstractions that at higher
level constitute features, epics and legendaries. Figure 1 gives
an overview of the different abstraction levels.

Fig. 1. Requirement abstraction levels

The requirements start as legendaries or epics which are
decomposed into smaller tasks as the team then can start to
work on.

”We have quite high level epics or we call them
stories. Those are then discussed in a whiteboard
and then we can probably have for each story an
average of five different activities more or less only
written on post-its and then they come up to our
Kanban board and then we start to discuss and work
with those.” (Cloud Engineer, CX-1)

The legendaries and epics are handled by the product owners.
Legendaries are broken down into epics and the initial break
down of the epics result in features which can be added to a
product backlog. Product backlog items are later created that
contain these features and is handed over to the development
teams. The development teams, later, decompose the backlog
items to tasks.

”But we try to get the team involved, at least at a fea-
ture level. Maybe even at an epic level, but it depends
we have meetings where we discuss this features
like what it give to the product or service and how
to maybe time estimate and, discuss what kind of
features we’re prioritizing depending on some kind
of return on investment or time management.” (UX
Designer, CZ-2)

The main requirements analysis work from the feature level
is handled by the cross-functional teams. The product backlog
items prioritization is under the teams’ responsibilities. Team
autonomy has an impact on the requirement analysis and
breakdown as the team analyze and breakdown the require-
ments independently of any other team.

”We have, you could say every week we have a
meeting with the team where we define and talk
about the most prioritized backlog items that we
need to do” (CI/CD DevOps Analysts, CZ-1)

The requirement they set in Case Y get prioritized based on
four different prioritization levels ”Must have”, ”Should have”,
”Could have” and ”Won’t have” and if the requirements are
unclear the team attempt to clear it up as quick as possible
through a technical session.

”We create the requirements and the task or story.
After a small refinement session we just start work-
ing on it. If problems arise we will tackle it right
away. If needed organize a technical session with a
software vendor” (CI/CD Consultant, CY-1)

The conflicting requirements are handled by either the chief
managers or the product owners. They have meetings with
other product owners and chief managers to talk about what
the different teams are developing and deal with potential
conflicts in requirements. However, on the team’s level, the
scrum master identifies possible requirement dependencies.

”I think, it’s mostly up to the product owners. They
had some meetings or a structure for discussing what
they are doing now and what they were focusing
on, but happens that things get built twice or three
times.” (UX Designer, CZ-2)

In case Z context, the scrum master is in charge of identifying
requirement dependencies and work on how to handle them.

”We have our scrum masters, a big part of their role
is to identify dependencies and try to isolate them
or not, not to have as many dependencies ” (UX
Designer, CZ-2)

3) Value-Based Strategy: In the context of the analysis
and breakdown of the development infrastructure requirement,
we report on a value-based strategy of requirement analysis.
This was observed in company P. In this case the aspect of
value is different since this strategy concerns the analysis and
breakdown of system operational requirements. Operational
requirement are driven by security and performance aspects.
Thus, a value in this strategy form a product manager perspec-
tive should be a list of task on the product backlog that must
affect the way the system behave or the development teams
delivery pace. One interviewee responded :

”What value we can provide by making the teams
more efficient. We started four years ago, providing
a new pipeline for the teams. So they went from like,
30 or 40 releases a year or to, 3000 releases a year.”
(Product Owner, CP-1)

Requirements are often provided by the development teams
that are using the infrastructure. Therefore, they represent the
original authors of the requirement. The requirements are more
often specific and technically well described.

”It’s not very abstract. It’s very concrete.” (CI/CD
DevOps Analysts, CZ-1)

The analysis of the gathered requirements is critical in this
strategy. This is conducted by the product owner and a group
of architects. The requirements are provided in the form of
issues. The analysis takes as input the reported small an big
issues. Afterwards, these issues are regrouped separated by
the their domains, thus, each service teams will receive a
predefined requirement. Each requirement constitute a set of
tasks which represents the reported issues.
The product owner relies more on conceptual reasonin g in ma-
terializing tasks. When asked about how does the breakdown
and requirement structure look like our interviewee quoted

”Normally I have my brain, so that’s what I try to
use” (CI/CD DevOps Analysts, CZ-1)

As mentioned in the interview, product owners and architects
usually write requirements and user stories. It is up to the
team to prioritize and reflect on the low level implementation
details. The product owner initially fills the product backlog
with epics, which are large grained chunks of business value,
before it is being handed it to the developers. Moreover, the
product owner is in charge of the product backlog update and
task prioritization.

”Product backlog for me as a product owner for
one of the team’s where I try to write down our
requirements (CI/CD DevOps Analysts, CZ-1)

The requirements refinement occurs every week. During which
a scrum master of each team meets the product owner to work
on requirements aspects that are not clear.

”The scrum masters that provide very much clear
and direct communication to me if something does
not work. So that we have the refinement process
every week (CI/CD DevOps Analysts, CZ-1)

JIRA and Confluence are used for documentation and activity
tracking. However, our interviewee mentioned the impede the
process in a case of driving complex systems and handling re-
quirements conflicts. The tool does not provide a requirement
or epic traceability and coordination.

”We tried to document that in the JIRA, this sort of
documentation, but they are very shortly documen-
tation. If you want the instructions, you have Con-
fluence. JIRA system is absolutely terrible. (Product
Owner, CP-1)

4) Data-Based Strategy: this strategy can co-exist with
the previous strategy especially it constitute to new source
of requirement. In data-based strategy, the data of the system
overall performance reported from customer logging is what
grounds the requirements work. For instance, in Case Q,
requirements are shaped by the systems response in clients
network configurations. This is handled by the operational
infrastructure, where customer’s feedback of product usage is
observed and collected. This strategy, is characterized by a
specific type of data that is collected from the infrastructure.
These data can be in a form of metrics that indicate the per-
formance of a requirement. A good traceability in requirement
decomposition (such as the hierarchical strategy), makes the
breakdown of the newly updated requirement less risky.

” Development should have possibility to see feed-
back the performance of the code commit and for
the problem in all these kinds of levels and get data
back to be able to analyze and improve for further
development of features and functionalists that they
working on” (Programme Coordinator, CQ-1)

Performance metrics data reported from logging constitutes the
basis of the systematization of the requirements. This feedback
is necessary to report on the behaviour of the feature under
a specific configuration which cannot be fulfilled by the tests
suites.

”And the reason for that is we need feedback on
how it works in a commercial network configura-
tion environment, in real environment” (Programme
Coordinator, CQ-1)

One aspect important for Case X is that when developing a
feature it should be able to be monitored, thus they can get
data on how a specific feature behaves. The data helps them
when analyzing and breaking down new requirements. Data
such as system behaviour helps them on what to focus on and
can help them to detect inaccuracies within requirements.

”One thing that also is very important when we
build, evolve our services is that it should be able
to monitor that the feature is used, that the feature
is behaving as expected” (Cloud Engineer, CX-1)

One important aspect is that they prioritize the features they
implement based on feedback from the customer. The require-
ment update is also based on the this feedback .

”So this important point to have a continuous dis-
cussion about what this is the most important thing
to do. So this should encourage teams to prioritize
based on end user feedback. So we started to do a
work it happens to see that the customer didn’t want
it. We shouldn’t then just to finish a story because
we have written it, we should drop it continue with
the work and continue what now looks to be most
important.” (Cloud Engineer, CX-1)

Case P gets continuous feedback on how their product is used
by customers. Through the product, users can give feedback
on the system. The feedback is visible to the development
teams.

”We have on the web page, we have places where
the customers can, give us a score and also com-
ment, we have a channel in Mattermost where we
are receiving customer comments and the customer
score of the area we are responsible for so that, that
is one kind of input we get.” (Product Owner, CP-2)

Case X follow different feature trends and focus their work
on what feature is used the most by the customer. They get
the data by monitoring the different features they implement
so an important aspect when analyzing and working with the
requirements is the monitoring part.

”But, in general, is very much about trends but if we
see that a feature is being used more and more that
it is a positive trend then we encourage the team to
continue explore that area.” (Cloud Engineer, CX-1)

B. RQ2:What effects do the current practiced strategies
present for DevOps practitioners?

In agile environment, the incorporation of DevOps brought
new guiding principles. Thus, the list of the identified strate-
gies is perceived to have effects that hinders DevOps and the
attributes that influence its implementation. This is done with
regards to papers such as [16], [30], [13].

Thus, one relevant concern of this study is the effects of
the adopted strategies on DevOps attributes and principles.

In order to discern the effects of the applicability of the
strategies in agile-DevOps environment, this study examines
the impact of the strategies. Table III illustrates the link
between identified strategies and their effect with respect to
RQ2 (The + sign indicates a positive effect while the - sign
indicates a negative effect). Figure 2 depicts how each of
these effects affects the 5 high level themes we formulated
from thematic analysis with respect to DevOps. We present
the description for each high-level theme with accompanied
representative quotes of this section.

Strategies Effects

Hierarchical-Based

+ Requirement Specification
+ Requirement Dependencies
- Autonomous teams
-Lead Time

Feature-Based

- Cross System Requirements
- Under specified Requirements
+ Lead Time
- Assumption and speculation
- Design decision
-Shared Vision

Value-Based - Early requirement Conflict
- Requirement interdependence

Data-Based
- Decomposition
- Requirement Traceability
+ Autonomous teams

TABLE III: The table shows a link between identified strate-
gies and their corresponding effects

1) Delivery Speed: The results of this case showed that
the current strategies in use affect the acceleration of delivery
speed. The effects mostly noted were how fast and more
frequently releases and deployments were done. hierarchy-
strategy is characterized by a waterfall requirements process
due to many bureaucratic steps from different departments.
Contrarily, data and feature based strategies provide faster
feedback by continuously integrating minimal task hence
satisfying the customer through early and continuous delivery
of valuable software. When asked about the DevOps and
proper requirement breakdown and analysis set-up technical
coordinator in Case Q posits the idea that they are able to
execute 50,000 test cases every week and deliver upon that to
10 - 15 customers weekly.
Our interviewee confirmed that although at the beginning
of breakdown process is always slow, it later lead to faster
delivery since templates and best practices are re-used for other
feature improvement based on the feedback from the logs after
production release.

”Frequent release is very important and has very
big impact since, the better requirements are set
up, the faster and more reliable the release process
will be. Once stuff is worked out and deployed to
production release for the first time, things will only
need maintenance and upgrades etc. If requirement
analysis not done properly this takes really a lot
more time than expected” (CI/CD Consultant, CY-
1)

Our interviewee reported that it happens sometimes that they
have some problems with splitting the issue to the correct size.

”That development stopped actually because of split-
ting requirements that was, contradictory and they
could not fuse them in the answer. Then we stopped
development on that issue” (Product Owner, CP-1)
”Every other week we are delivering ten continuous
deployments to customers, that actually load in their
commercial network in certain area. With that way
we even more feedback on the quality and also the
new functionality” (Technical Coordinator, CQ-2)

Consequently, the interviewee noted that operational require-
ment breakdown is overlooked during breakdown analysis and
thus there is slow time-to-market, increased lead time and slow
releases.

”Most of the time overlooking while this is an
important factor to consider. Remember: once stuff
is worked out and deployed to PR for the first time
things will only need maintenance and upgrades.
If requirement analysis is not done properly this
takes really a lot more time than expected.” (CI/CD
Consultant, CY-1)

2) Architectural Design: For faster integration and delivery
within a system, an architectural consideration is necessary in
requirements analysis and breakdown, since they have a differ-
ent architecture for the subsystems and different architecture
for other systems. In the case of hierarchy-strategy, require-
ment breakdown requires inputs from architecture prior to im-
plementation and architecture highly influences the breakdown
process. In contrast, in a feature-strategy the autonomy needs
to ensure minimum conflict among each other. That there were
instances where 20 people were working on one issue and it
was difficult to know what each was doing and which task
was completed. Therefore traceability of each task is thus
eventually left to each practitioner.

”As the task that we are doing do not really have
to be really high coupled to a specific task if for
example we talk about Jira there is no requirement
that something has been made should be connected
to a specific task of course the stuff that has been
made was the outcome of a discussion which is
important to do but having that perfect traceability
of requirement i would not say that something that
we give so much value on” (Cloud Engineer, CX-1)

Feature-Based strategy encapsulates architectural forums for
the cross-functional teams. The teams address requirements

Fig. 2. Effects of Strategies

conflicts on either a team’s level or higher level requirements
conflicts.

”Absolutely on the architecture decisions are made
within the teams but there are some scenarios where
teams in the same domains needs to discuss all the
team borders. So there are, there are a couple of
architecture forums, where at least one team mem-
ber from any team are gathered together” (Cloud
Engineer, CX-1)

Nonetheless, In strategy Q large complex systems are built
on top on the legacy system and different levels of require-
ments are discussed, from the architecture perspective, nothing
changes but even if requirement break was done properly done.
In the end, it depends on the person that is going to implement
the application which architecture to consider.

”The architecture has been set 10 years ago. We
are not change the architecture, so there’s the basic
functional level. If she wants anything that is added
extra, is controlled by license or feature. But the
conflict comes is two features is enables in the same
time, which produce contradicting result.” (Techni-
cal Coordinator, CQ-2)

Similarly, in a data based strategy the focus on requirement
breakdown is limited. Therefore, most of related issues result-
ing form this activity is backed up in architectural forums.
Those forums are handled one to two times a week.
From the interviewee perspective, architectural design
consideration should be prioritized in early design decision to
avoid jumping into conclusion and miss to oversee the entire
set of requirements or solution.

3) Shared Vision: Three effects were identified as the out-
come of breakdown and analysis are relative to shared vision
which are increased waste, team coordination and feature
development conflict.

In feature-based strategy, during the break down process,
different teams are asked to work on different features simul-
taneously. This is usually ends up with conflict, especially in

cases which where e.g value-driven sales development team
wants to release a product quickly.

”I said this is really a large organizations. Some-
times features can not go together. So let’s say
that a product manager wants to have a feature
implemented and another product manager wants
to have another feature implemented, sometimes
we have features who are conflicting against each
other.” (Technical Coordinator, CQ-2)

This is evident enough that once requirements are split this
way, there is a need for coordination between managers and
developers in such a large organization. The requirement
breakdown at a certain level does not highlight feature de-
pendencies. In a hierarchical based strategy, the development
teams does not interfere in this activity thus they loose
oversight after the integration of the code. To compensate on
this and minimize risks in the integration, in a hierarchical
based, this challenge is addressed by the practice of feature
toggles. However, this is handled in a more ad-hoc way in a
feature based strategy though weekly meetings.
However, the interviewee expressed concerned on how large
teams from his department had a high focus on creating
autonomous team which relied on using forums as way to
coordinate between teams. This lead teams reinventing the
same wheel multiple times.

”It is a challenge to be efficient because there are a
lot of the teams here in different departments, but I
think it’s mostly up to the product owners. They have
meetings or a structure for discussing what they are
doing now and what kind of, what they were focusing
on, but it happens, that things get built twice or three
times. ” (CI/CD DevOps Analysts, CZ-1)

In the value based strategy, each requirement formulated is
analyzed then addressed to a particular team that is responsible
for a specific service. The teams are more autonomous , in a
sense they have more the freedom to work independently or
try out new innovation. However the interviewee pointed out
that it reduced communication and hindered the team share
vision.

”When the teams are encouraged to work very
autonomous could also be harsh miscommunication
between the teams when they are parts that are
interconnected in terms of a system that the end user
faces so the miscommunication is also one thing that
is challenge for us” (Product Owner, CP-1)

In some autonomous teams, breakdown process was mostly
based on assumptions where the team assumed that there’s a
value if feature A or B for example is implemented. However,
there’s no guarantee in the end based on that theoretical
assumption that things will be used in reality and lead to
increase waste.

4) Testing: Our respondent thought that one criterion in
analysis and breakdown is that a requirement item should be
testable but in large complex systems there are several levels of
testing and this has to be optimized for better testing execution
time. In hierarchical-based strategy the focus and effort of
analysis and breakdown enables the developers and testers to
execute a high number of test cases daily. On the other hand,
for feature-based strategy and value based strategy aiming to
perform higher regression and unit tests has put pressure on the
breakdown work. Also, the developers tend to lack precision
in developing accurate testing even when they are responsible
for testing.

”So we have software main track where we have
all the designers that delivering code into this and
then we have all the different test level: block level
module level, on complete node level, on complete
RAN level so we have daily feedback from this, we
tried to improve this feedback and make it even more
visible and better and automatic so it can be more
efficient than quicker when we have the quality in
place for our main track, which we planned to have
daily actually. But sometimes it’s a bit difficult with
all this thousands of people develop and delivering
code into it” (Programme Coordinator, CQ-1)

Despite the difficulties caused by the frequent testing, practi-
tioners are still encouraged to commit small units of code to
the main machinery from break down process as reported by
the interviewee. this is observed to be implemented better in
the hierarchical strategy.

”Its all in the last phase when we want to say the
requirement is going to be implemented. So how
should we add a new configuration needed or if
test needed to verify new requirement into our CI
loop that’s only place where we get you know, this
discussion” (Technical Coordinator, CQ-2)

Only in the value based strategy, interviewee indicated that the
smallest unit of the requirement breakdown must be testable.

Life cycle management issues arose a few years ago due
to a lot of backlog and legacy. Managing technical debt is
problematic for software testers, especially those organizations
that develop and maintain large software systems however,
there was always room for improvement as reported by the
interviewee.

”But there are situations when I met teams where
we see applications have a high technical debt and
that is a typical situation when a team have a highly
stressed requirements and requirements are pushed
very hard with time estimate and those are the one
that suffers from hard system that is hard to maintain
and so they are slow to develop during the time.”
(Cloud Engineer, CX-1)

5) Requirement Process: Some teams have a tremendous
responsibility in the testing or putting down the business
requirement into the technical requirements. Our finding in this
research was that requirement specific process such require-
ments assumptions and speculations challenges and mindset
were the effects from strategies used by DevOps practitioner.
If the requirements are not specified in accordance with the
customer needs, it impacts the product negatively.

An interviewee said that sometimes they get used to working
in a certain way, and the whole breakdown process is a
challenge to them hence they have a motto ”if it does not
break do not change it”.

”That process is kind of a challenge at some times
because the teams are not too interested in,new ways
of working” (Product Owner, CP-1)

Consequently, a lack of interest from the practitioners of
DevOps, because they deem the process as overwhelming in
the case, were the requirements, in the beginning, were too
abstract thus putting so much pressure on the practitioner to
break down and materialize task.

”We sometimes misses information because everyone
is so engaged and his style is completely frustrated
with the task he is doing. He has no time to look
little bit, on what is happening on the or the related
areas to get the fairly complete picture” (Technical
Coordinator, CQ-2)

C. RQ3:What alternative strategy could be used to overcome
the challenges and accelerate software delivery?

This section answers the third research question of this
study, what alternative strategy could be used to overcome
the negative effects discussed in by RQ2. Table IV gives
an overview of the challenges linked to the strategies from
RQ1. The presented results are a cross-analysis of what each
DevOps practitioner outlined. Hence they are not specific to
each case.

D
elivery

Speed

A
rchitectural

D
esign

Shared
V

ision

R
equirem

ent
Process

Testing

Hierarchical-based Strategy X X
Feature-based Strategy X X
Value-based Strategy X X
Data-based Strategy X X X

TABLE IV: Mapping of challenges

Hierarchy-based strategy towards more feature-based strat-
egy were the recommended strategies to address effects on
delivery speed, shared vision and requirement process. Two
respondents thought that in order to address these effects,
autonomous teams should be self-sufficient, central and have
enough freedom to make good choices while monitoring how
teams are working, on what details and how marginal the scope
is. Furthermore, it was highlighted that teams and developers
should be close to the requirements discussion in order to build
the correct applications that were scalable and maintainable.

”Give teams enough freedom to make good choices
but keep an eye on teams which are working in too
much details which will slow down development”
(CI/CD Consultant, CY-1)

Assumptions and speculations in requirements which is an
effect from requirement process are better addressed by data-
based strategy. The Respondent thought that there is need for
autonomous teams not to rely on Product owner to breakdown
the requirements but formulate refinement sessions, structured
meetings and specific forums in order to acquire the technical
knowledge to break down the requirements. This way everyone
will have a good understanding of the thing that is being built.

”I would say the only way to accelerate this is to
understand very well what is, how the products are
being used in the field.” (Technical Coordinator, CQ-
2)

One aspect mentioned by our interviewees was that delivery
speed could be accelerated through feedback the teams gets
from the customers via integrating a build system that takes
customer logs and categorize the issues that the customers
have. From this, requirements are created and fed back to the
backlog and at the same time removing logs that have no value
through cost-benefit analysis. Feature-based strategies could
address this aspect.

”I was coming back to the same things. Try to get
back to that weeding out non valuable things from
the backlogs. Then we would have a much smoother
delivery process. We do a lot of non valuable stuff.”
(Product Owner, CP-1)

Data-based strategy while using prototyping was identified by
the respondent as one way to remedy the outlined effects.

A discussion of different implementation aspect beforehand
with the focus on user experience metrics is done before
even development begins. The purpose of the discussion is
to allow customers requirement to be discussed in details for
easy understandable of what kind of problem customers are
trying to solve and then a solution mock-up is agreed on,
hence the whole system will not be built, if the customer sees
no value.

”Early and open customer engagement to under-
stand what problem we should solve , mock-ups and
prototyping before starting to code the full solution.”
(Technical Coordinator, CQ-2)

Our respondent elaborated that they are producing very de-
tailed, easy to understand and standard documents describing
how features implementation should be, iteration to make, and
how the phase has been executed and done. After that, the
documents are shared to the development teams and the whole
process into the moment a feature or requirement has been
developed in the code. This document should be reusable.
Hence Hierarchy-based strategy could be used to addresses
effects of architectural design and increased waste.

”Try to create and make standard documents or
templates which can be reused for every kind of
project.” (CI/CD Consultant, CY-1)

While this is true that DevOps practitioners use different
strategies, these strategies have their pros and cons. To remedy
these effects, it’s imperative that alternative strategies, in terms
of the practices and roles involved, can be outlined as general
solutions rather than only the discussed one.

VI. DISCUSSION

The findings of the study reveal that the identified strategies
are characterized by a top-down approach. This means a high-
level requirement is first provided and then decomposed into
smaller stories, cases or epics. This Figure 3, depicts those
strategies. This section will further discuss the highlighted
effects and suggest alternatives to mitigate them. Our sugges-
tions would not disturb the overall strategy rather than mitigate
potential risks.

Fig. 3. Strategy Overview

The implementation of DevOps did not provide the required
agility in analyzing and breakdown requirement in the case
of company Q. In that context, The process is still driven
by the complexity of the software, thus, it limits the De-
vOps capabilities to achieve an optimized level of DevOps
maturity [30]. The strategy identified in case Q poses several
challenges persistent form agile requirements solutions which
will be listed in a latter part of this study. In a relatively less
critical system, the contrast was not visible between feature-
based, data-based, value-based strategies and literature about
agile requirement engineering [14]. Agile overcame traditional
software development issues and provides agility in developing
software. One of the agility is primarily achieved by the ability
to handle requirements change. The requirements analysis and
breakdown is tailored to favour incremental releases to cus-
tomer. This is done by breaking down software requirements
into user stories [14]. DevOps and agile are synchronized
to release software faster to the customer. The value behind
DevOps lays in bridging between departmental functions.

Pre-existing agile strategies can still be used in agile-
DevOps settings. However, the effects of those strategies are
still persistent form agile way of analyzing and breaking down
requirement, and has not been addressed in the industry.

A. Delivery Speed

In a hierarchical, the time required for requirement prepa-
ration is regarded high by our interviewee and a new way
of working with requirement analysis is required to optimize
software delivery, thus, get faster feedback from the customer.

”I would say maybe two years from the moment that
trigger the feasibility study until we have it done
in production. The product got, of course, I tried to
make it faster, but this is a pure waterfall process
that we haven’t changed so far after we have gone
agile and we have introduced DevOps, we need to
work like this.” (Programme Coordinator, CQ-1)

Unlike the other strategies, in the hierarchical-based, this is
aggravated by a high number of hand-offs in order for a
requirement to be deployed. The concept of autonomous teams
and required skills in a DevOps environment is limited as
no indication about a capacity to cooperate, between require-
ments teams, development, and operations [16]. This affects
one of the key attributes of DevOps attributes ”OpsinDev”
[13]. The role of the operational teams is limited in the
analysis and breakdown process. The strategies disentangle
the process from multiple expertise. However, It is essential
for Devs to understand the real-world production environment
where Operational teams release the code. In a similar way,
operational teams need to collaborate with the developers and
configure the system according to how the code is being pro-
duced. Furthermore, in a DevOps environment, requirements
are not only shaped by development feedback but also by
operations monitoring. Hence, operational teams much know
which requirements are being developed. The incorporation of
operational teams in the process will add agility to the overall

process and help product owners address requirements issues
faster int the production environment.

Moreover, there should be a balance between continuous
engineering practices and change management across all cases
based on Mohamed’s work [30]. The change management in
the case of our research, involves the requirements change.
This applies to the hierarchical strategy. This strategy offers a
better requirement specification and traceability. Contrarily, to
the rest of the strategies, which usually causes rework on re-
quirements, thus impede continuous integration by increasing
the time from requirement analysis until the integration of a
task. In feature and value-based strategies, cross requirements
management has been reported to cause undesirable delay
and lead to failed tests. In value-based strategy, this aspect
is limited by the capabilities of the tools used for task
management to handle the requirements inter-dependencies.
A lack of tools to handle requirements conflicts.

Suggestion: Cross-requirements create dependencies on de-
liveries thus it will be useful to discuss early requirements
conflicts and align the tests with requirements. This can
be supported in the development by tools for requirement
management in large scale software development. Misman-
agement in requirement can cause errors in the system in-
tegration tests thus delay software delivery. Feature-strategy
gives better delivery speed but has much work to resolve
conflict/dependencies, however, a more modular architecture
such as microservice would address the latter. Microservice ar-
chitecture [5] supports autonomous teams which is emphasied
in the feature-strategy.

B. Architectural Design

Mapping requirement breakdown with software architec-
tural is challenging task [7], this affects the design choices
and the overarching architectural style. This is lined to Case
X as they said having multi-layered decomposition cause
misunderstanding from architectural perspective.

Suggestion: One potential suggestion is the requirement
traceability and decomposition should work hand in hand.
Also, early participation of the testers in the requirements
work. This is observed in the feature-based and data-based
strategies, which offer better support incremental improvement
to architecture In feature-based and data-based strategies better
support incremental improvement to architecture.

C. Requirements Process

This section reflects on the implication on the remaining
requirements engineering activity as well as the requirements
process output.

Feature and value based strategies did not have neither an
established approach for traceability nor a standardized way
of requirement specification which may impact the delivery
process [4]. This also increase rework on requirement which
is typically handled in meetings and forums in both strategies.
This aspect is yet to be digitilized which can facilitates the
participation of a larger number of teams .

In feature-based and value-based strategies, development
teams often end up with missing information in the backlogs.
This is caused by under-specified requirement or missing
intrinsic dependencies links between requirements [45].
Similar issues get readdressed in frequent meetings and
architectural forums. However, this rework impedes lead
time and require more resources from the company which is
typically overlooked. Thus, to deal with the and cross-system
requirements, in the hierarchical strategy peoples use their
personal network to learn about potential conflicts from other
teams. This is oblivious as one of our interviewee mentioned
”I’m a bit against the actually putting too much time in
breaking down because it takes a lot of time and it’s the
often, it’s not until we start working on something that you
really understand what do you need to do? its sort of hard
to break something down too much from the beginning..”
(CI/CD DevOps Analysts, CZ-1).

Moreover, breaking down requirements of to small chunks
of business value is not only reported in [20], but also has
been found problematic as one of the interviewee replied

”Try to better keep out small issues that have a
tendency to get into the backlog that is not directed
at value creation.” (Product owner, CP-1)

. Challenge regarding breaking down knowledge about
customer value is reported by the researchers.

Suggestion: Validate proposed solutions for requirement
analysis and cross-communicate across roles. The solution can
be in the form of a set attributes such as testability, integrability
specific to each level of abstraction that should be verified in
the requirement hierarchy of the case. This is observed in the
hierarchical based strategies, in which , more resources and
concrete techniques are provided to the requirements analysis
and breakdown process. However, driven by the fast delivery
pace and high testing frequency, requirement analysis should
not only identify the dependencies between requirements but
also to communicate them. Hence, this can be facilitated by
involving multiple expertise in this process.

Suggestion: One major impact is having multiple require-
ments authors, Reducing the requirement structure size and
handoffs, and allow more developers to be involved in this
process however concerns have been raised regarding the level
of knowledge of the system as this seems to be challenging
for large scale systems.

Finding from this study shows that case Z relied more
on their experience and their intuition on breaking down
requirement. Implicitly, they favour people and interaction
over a defined process. It is not easy to understand whether
small changes that do not directly add value to a feature are
worth integrating or not.

D. Testing

No strategies indicated a positive change in the requirement
breakdown to supported a high number of test execution. It is
imperative for the case company to achieve faster delivery of

software daily to the main track. However, continuous delivery
requires various types of tests to be automated. Initially, CI
must be backed up by a concise and clear requirement break-
down [27]. Respondents from feature-based strategy reported
that determining how much a single requirement must be
broken down is a challenging task and should align with the
system architecture.

Suggestion: Testers work should be familiar with the analy-
sis and breakdown phases in order to which tests cases should
be generated at which level of abstraction. Linking testing
to requirements can be thought of as a practice. Continuous
integration, delivery, deployment requires high number of
different types of tests to be executed daily.

E. Autonomous teams

Across all cases apart from case Q has dedicate operational
teams. The operational teams are discarded from the require-
ments process thus this limits their knowledge about some
aspects of the development lifecycle such as release planning.

We observed that the aspect of the autonomous teams is
limited. Top hierarchies in the process are engaged in the
requirements analysis and breakdown process. They reflect
and posits that this area particularly requires and extensive
knowledge of systems and subsystems. Therefore, we observed
that agility in the requirements is still hindered by the level
of knowledge that DevOps practitioners need to possess.
Specifically for (Case Q), driven by system complexity and
a large number of components and subsystems, little is left to
the development teams. This to some extent limit the capa-
bilities to leverage the effort and skills of the cross-functional
teams. Also multiple requirements author make analysis risky
increase information and adversely affect the accuracy of the
analysis [44]. Building on these needs, companies need to
develop concrete planes to address their DevOps capabilities
and invest on their resources skill set to cope with this new
style of IT. Those improvement needs also to be on the
requirements analysis level.

Suggestion: For the purpose to increase the capabilities of
the cross functional in the hierarchical strategy, it is required
to merge the requirement systematization department with
developers in order to ensure reliable software releases within
shorter time.

IN both feature-and value based strategies, Devs interfere in
the requirements analysis at a lower level. However, we report
on a gap in the knowledge required to decompose requirement.
In Feature-based and Value based strategies requirements is
decomposed based on speculation and assumptions rather then
predefined . Suggestion: We suggest that on a project level
the teams should include training session and workshops and
agree on one common technique for analyzing and specifying
requirements level on the team’s or department level, give
further support to the concept of autonomous teams in DevOps
environment favour the autonomous teams.

The findings of this study did not showcase how DevOps is
different in agile-DevOps environment. From the perspective
of requirement analysis and breakdown challenges seems to

persistent form the agile way of breaking down software
requirements. Strategies do not follow standardized techniques
in this process to predict potential risks. Instead, they wait
for the issues to arise which in most cases addressed through
meetings rather than formal documentation traceability and
updates.

VII. CONCLUSION & FUTURE WORK

In this study, we explored in a multiple case study of how
requirements analysis and breakdown is conducted within five
distributed cases of agile-DevOps environment. Further this
study reports the effects and on DevOps implementation prac-
titioners. The incorporation of DevOps in an agile environment
aims to bring software faster to the customer. However, this
fusion did not produce any changes on requirements process
level most notably on analysis and breakdown. This still pre-
sented challenges to DevOps practitioners which part of it is
inherited form agile. The effects found hindering a faster soft-
ware delivery to the market were requirement process related,
especially, assumption and speculation over requirement. Also
on architecture design, lack of shared vision within the team,
release and deployment. In conclusion, it seems that in the
industry, especially with regards to the adoption of DevOps,
DevOps practitioners did not accommodate refinements to
the requirement analysis and breakdown, which some effects
highlighted in this study proves the opposite. This study further
suggest improvements to the strategy identified for the aim to
enhance software delivery speed. these improvements targets
the practices used within the strategies and how can be tailored
to support DevOps attributes. Based on our results collected,
we highlight one area that we believe that DevOps researchers
can contribute to:

• A cross-analysis of aspects of development and process
elements when developing in house and outsourcing
DevOps tools in organizations that have adopted DevOps.

Such contribution will foster perpetual automation and faster
delivery for organizations while providing support to their
business development teams by developing in house tools
and infrastructure pipelines in order to adapt to the target
development pace. Therefore future work would benefit in
evaluating and comparing to what extent requirements engi-
neering practices and DevOps differ in an agile environment
using similar domains used in our research. Further, we hope
our results alleviated vagueness regarding how operational
requirements are analyzed in Agile-DevOps setup, thus trigger
further researcher in how functional and operational require-
ments management and specification is conducted.

ACKNOWLEDGEMENTS

Foremost we want to thank our families for their uncon-
ditional support. We also want to thank all the interviewees
in the study for their valuable input during the interviews.
We also thank CI/CD consultant & developer from Business
IT Nerd for his help in providing thesis feedback, relevant
company related information to connect both the theory and

practical aspects. Lastly our supervisor Lucy Lwakatare for
her invaluable feedback and guidance throughout this thesis.

REFERENCES

[1] Julian M Bass. How product owner teams scale agile methods to large
distributed enterprises. Empirical Software Engineering, 20(6):1525–
1557, 2015.

[2] Len Bass, Ross Jeffery, Hiroshi Wada, Ingo Weber, and Liming Zhu.
Eliciting operations requirements for applications. In Proceedings of the
1st International Workshop on Release Engineering, pages 5–8. IEEE
Press, 2013.

[3] Elizabeth Bjarnason, Michael Unterkalmsteiner, Markus Borg, and
Emelie Engström. A multi-case study of agile requirements engineering
and the use of test cases as requirements. Information and Software
Technology, 77:61–79, 2016.

[4] Elizabeth Bjarnason, Krzysztof Wnuk, and Björn Regnell. Requirements
are slipping through the gapsa case study on causes & effects of
communication gaps in large-scale software development. In 2011 IEEE
19th international requirements engineering conference, pages 37–46.
IEEE, 2011.

[5] Lianping Chen. Microservices: architecting for continuous delivery and
devops. In 2018 IEEE International Conference on Software Architecture
(ICSA), pages 39–397. IEEE, 2018.

[6] Jürgen Cito, Philipp Leitner, Thomas Fritz, and Harald C. Gall. The
making of cloud applications: An empirical study on software develop-
ment for the cloud. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2015, pages 393–403,
New York, NY, USA, 2015. ACM.

[7] Adam Debbiche, Mikael Dienr, and Richard Berntsson Svensson. Chal-
lenges when adopting continuous integration:: A case study. volume
8892, pages 17–32, 2014.

[8] Ulf Eliasson, Rogardt Heldal, Eric Knauss, and Patrizio Pelliccione.
The need of complementing plan-driven requirements engineering with
emerging communication: experiences from volvo car group. In 2015
IEEE 23rd International Requirements Engineering Conference (RE),
pages 372–381. IEEE, 2015.

[9] Floris Erich, Chintan Amrit, and Maya Daneva. Report: Devops
literature review. University of Twente, Tech. Rep, 2014.

[10] Brian Fitzgerald and Klaas-Jan Stol. Continuous software engineering
and beyond: trends and challenges. In Proceedings of the 1st Interna-
tional Workshop on Rapid Continuous Software Engineering, pages 1–9.
ACM, 2014.

[11] Brian Fitzgerald and Klaas-Jan Stol. Continuous software engineering:
A roadmap and agenda. Journal of Systems and Software, 123:176–189,
2017.

[12] Tony Gorschek and Claes Wohlin. Requirements abstraction model.
Requirements Engineering, 11(1):79–101, 2006.

[13] Viral Gupta, PK Kapur, and Deepak Kumar. Modeling and measuring
attributes influencing devops implementation in an enterprise using
structural equation modeling. Information and Software Technology,
92:75–91, 2017.

[14] Ville T Heikkilä, Daniela Damian, Casper Lassenius, and Maria Paasi-
vaara. A mapping study on requirements engineering in agile software
development. In 2015 41st Euromicro conference on software engineer-
ing and advanced applications, pages 199–207. IEEE, 2015.

[15] Ville T Heikkilä, Maria Paasivaara, Casper Lasssenius, Daniela Damian,
and Christian Engblom. Managing the requirements flow from strategy
to release in large-scale agile development: a case study at ericsson.
Empirical Software Engineering, 22(6):2892–2936, 2017.

[16] Aymeric Hemon, Barbara Lyonnet, Frantz Rowe, and Brian Fitzgerald.
From agile to devops: Smart skills and collaborations. Information
Systems Frontiers, pages 1–19, 2019.

[17] Jez Humble and David Farley. Continuous Delivery: Reliable Software
Releases through Build, Test, and Deployment Automation. Pearson
Education, 2010.

[18] Irum Inayat, Siti Salwah Salim, Sabrina Marczak, Maya Daneva, and
Shahaboddin Shamshirband. A systematic literature review on agile
requirements engineering practices and challenges. Computers in human
behavior, 51:915–929, 2015.

[19] Teemu Karvonen, Woubshet Behutiye, Markku Oivo, and Pasi Kuvaja.
Systematic literature review on the impacts of agile release engineering
practices. Information and Software Technology, 86:87–100, 2017.

[20] Rashidah Kasauli, Grischa Liebel, Eric Knauss, Swathi Gopakumar, and
Benjamin Kanagwa. Requirements engineering challenges in large-
scale agile system development. In 2017 IEEE 25th International
Requirements Engineering Conference (RE), pages 352–361. IEEE,
2017.

[21] K. Louise Barriball and Alison While. Collecting data using a semi-
structured interview: a discussion paper. Journal of Advanced Nursing,
19(2):328–335, 1994.

[22] R. R. Lutz. Analyzing software requirements errors in safety-critical,
embedded systems. In [1993] Proceedings of the IEEE International
Symposium on Requirements Engineering, pages 126–133, Jan 1993.

[23] Lucy Ellen Lwakatare, Teemu Karvonen, Tanja Sauvola, Pasi Kuvaja,
Helena Holmström Olsson, Jan Bosch, and Markku Oivo. Towards
devops in the embedded systems domain: Why is it so hard? In 2016
49th Hawaii International Conference on System Sciences (HICSS),
pages 5437–5446. IEEE, 2016.

[24] Lucy Ellen Lwakatare, Pasi Kuvaja, and Markku Oivo. Dimensions
of devops. In International conference on agile software development,
pages 212–217. Springer, 2015.

[25] Lucy Ellen Lwakatare, Pasi Kuvaja, and Markku Oivo. An exploratory
study of devops extending the dimensions of devops with practices.
ICSEA 2016, 104, 2016.

[26] Lucy Ellen Lwakatare, Pasi Kuvaja, and Markku Oivo. Relationship
of devops to agile, lean and continuous deployment. In International
Conference on Product-Focused Software Process Improvement, pages
399–415. Springer, 2016.

[27] Torvald Mårtensson, Daniel Ståhl, and Jan Bosch. Continuous inte-
gration impediments in large-scale industry projects. In 2017 IEEE
International Conference on Software Architecture (ICSA), pages 169–
178. IEEE, 2017.

[28] Nigel Mathers, Nick Fox, and Amanda Hunn. Using Interviews in a
Research Project, pages 113–134. 01 2000.

[29] Michael MLewis-Beck, Alan Bryman, and Tim Liao. Multiple Case
Study. 2004.

[30] S Mohamed. Devops maturity calculator domc-value oriented approach.
International Journal of Engineering Science and Research, 2(2):25–35,
2016.

[31] Helena Holmström Olsson, Hiva Alahyari, and Jan Bosch. Climbing
the” stairway to heaven”–a mulitiple-case study exploring barriers in
the transition from agile development towards continuous deployment
of software. In 2012 38th euromicro conference on software engineering
and advanced applications, pages 392–399. IEEE, 2012.

[32] Nicolás Paez. Versioning strategy for devops implementations. In 2018
Congreso Argentino de Ciencias de la Informática y Desarrollos de
Investigación (CACIDI), pages 1–6. IEEE, 2018.

[33] Tuomas Paulin. Devops in finland-study of practitioners’ perception.
2018.

[34] Richard A Powell and Helen M Single. Focus groups. International
journal for quality in health care, 8(5):499–504, 1996.

[35] Z. Racheva, M. Daneva, and L. Buglione. Supporting the dynamic repri-
oritization of requirements in agile development of software products. In
2008 Second International Workshop on Software Product Management,
pages 49–58, Sep. 2008.

[36] Björn Regnell, Richard Berntsson Svensson, and Krzysztof Wnuk. Can
we beat the complexity of very large-scale requirements engineering?
In International Working Conference on Requirements Engineering:
Foundation for Software Quality, pages 123–128. Springer, 2008.

[37] Leah Riungu-Kalliosaari, Simo Mäkinen, Lucy Ellen Lwakatare, Juha
Tiihonen, and Tomi Männistö. Devops adoption benefits and challenges
in practice: A case study. In Pekka Abrahamsson, Andreas Jedlitschka,
Anh Nguyen Duc, Michael Felderer, Sousuke Amasaki, and Tommi
Mikkonen, editors, Product-Focused Software Process Improvement,
pages 590–597, Cham, 2016. Springer International Publishing.

[38] Per Runeson and Martin Höst. Guidelines for conducting and report-
ing case study research in software engineering. Empirical software
engineering, 14(2):131, 2009.

[39] Per Runeson, Martin Host, Austen Rainer, and Bjorn Regnell. Case
Study Research in Software Engineering: Guidelines and Examples.
Wiley Publishing, 1st edition, 2010.

[40] Mojtaba Shahin, Muhammad Ali Babar, and Liming Zhu. Continuous
integration, delivery and deployment: a systematic review on approaches,
tools, challenges and practices. IEEE Access, 5:3909–3943, 2017.

[41] Hossein Sharifi and Z Zhang. Agile manufacturing in practice-
application of a methodology. International Journal of Operations &
Production Management, 21(5/6):772–794, 2001.

[42] E. J. Uusitalo, M. Komssi, M. Kauppinen, and A. M. Davis. Linking
requirements and testing in practice. In 2008 16th IEEE International
Requirements Engineering Conference, pages 265–270, Sep. 2008.

[43] Stefan Wagner, Daniel Méndez-Fernández, Marcos Kalinowski, and
Michael Felderer. Agile requirements engineering in practice: Status
quo and critical problems. CLEI Electronic Journal, 21(1), 2018.

[44] Jonas Widerberg. Bam-backlog assessment method. Agile Processes in
Software Engineering and Extreme Programming, page 53.

[45] Hasan Yasar. Implementing secure devops assessment for highly regu-
lated environments. In Proceedings of the 12th International Conference
on Availability, Reliability and Security, page 70. ACM, 2017.

[46] S Magnus gren, Eric Knauss, Rogardt Heldal, Patrizio Pelliccione, Gösta
Malmqvist, and Jonas Bodén. The manager perspective on requirements
impact on automotive systems development speed. In 2018 IEEE 26th
International Requirements Engineering Conference (RE), pages 17–28.
IEEE, 2018.

VIII. APPENDIX

APPENDIX A
INTERVIEW QUESTIONS

Interview questions Category

1) What is your current role and how many years of experience do you have in
this role and in DevOps in general?

2) What is the context and scale of the project that you are working on?What is
your team responsible for? What is the current hierarchy of your team? Which
stakeholders you can constantly working with?

3) Can you give a high level description of your individual work flow?
4) Can you briefly describe the overall work flow in your work environment?

• How does a typical requirement analysis process look like?
• How does a typical delivery/release cycle look like?
• Testing environment for functional and nonfunctional requirement

Background

RQ1:What strategies adopted by DevOps practitioners for requirements analysis
and breakdown in practice?

1) Who is the source of your requirement? And in what form are they given?
2) Which team (unit/person/roles) is responsible for analysing and breaking down

requirements? which roles are involved?
3) What tools are used to decompose requirements? Do you adjust the require-

ments according to (external) changes after when the requirements are set-up?
If yes, how do you deal with it?

4) which artifacts and on which level do you produce from the requirement
analysis and breakdown? Do you provide those artifacts to anyone?

5) Are requirements provided in different abstraction levels to different teams?
How so? How abstract the requirements you receive are?

6) How many iteration do you it is necessary to fully integrate a requirement?
7) How a task/story is fit for development? Are there criteria that a single

requirement must verify
8) When and how are the system non-functional requirements determined? How

are they monitored?
9) Are operational teams involved or have an affect or in the requirements process

operational teams?
• Do you think there are gaps in the information provided?
• Do you think receiving requirements from various sources or having

multiple iteration in the RE process effect requirements decision making?
• The communication of requirement is it easy to trace the different levels

of a single requirement?

Strategies

RQ2:What effects do the current practice strategies present for DevOps practi-
tioners?

1) What challenges do you face when analysing and implementing the provided
requirements? and how do you solve those?

2) Given your current project scale, what is the estimated time for the effort put
into materializing tasks? and what is the average time elapsed from integration
until production

3) Based on your experience, what effect does the requirement analysis and
breakdown process have on:

• Early-design decisions
• Continuous integration and delivery
• Automated Testing
• Integration Testing
• Continuous delivery
• Frequent release
• Operational requirements?

4) How your requirement analysis and breakdown process work with continuous
integration? How often have your team faced a problem such as having higher
active branching tasks as compared to the number of active development.

Challenges

RQ3:What alternative strategy could be used to overcome the challenges and
accelerate software delivery?

1) In requirement analysis context, what would you do differently to reduce
customer time-to-value?

2) In your opinion, does it exist any bottlenecks in the requirement breakdown
process?.

3) Which roles do you think also should be involved in the requirement and
analysis process?.

4) Though all your experience working in DevOps environment, How your
requirements analysis and breakdown process evolved ? are you of any
previous bottlenecks that you solved in other projects?

• Do you think of any suggestions that could potentially improve the current
ways of requirement analysis.

• What Lessons have you learned from your requirements analysis process
improvement?

Alternative Strate-
gies

APPENDIX B
NVIVO NODES

APPENDIX C
HIGH LEVEL THEMES

Re
qu

ir
em

en
t

br
ea

kd
ow

n
an

d
an

al
ys

is
Cu

rr
en

t
St

ra
te

gi
es

CI
 &

 T
es

ti
ng

Q
ua

lit
y

M
on

ot
or

in
g

Re
gr

es
si

on
 T

es
ti

ng

Va
lid

at
io

n
&

 S
ys

te
m

Te
st

in
g

G
oa

ls

Au
to

m
at

ed
 D

el
iv

er
y

D
ri

ve
rs

Fe
ed

ba
ck

 lo
op

Fe
ed

ba
ck

 T
im

e

Te
st

 a
ut

om
at

io
n

Pr
ac

ti
ce

Al
ig

n
Te

st
 &

Re
qu

ir
em

en
t

Co
nt

in
ou

s
Cu

st
om

er
In

vo
lv

em
en

t

Cr
os

s-
Fu

nc
ti

on
al

 T
ea

m
s

D
oc

um
en

t
U

pd
at

e

Fe
at

ur
e

St
ru

ct
ur

e
an

al
ys

is

Fe
ed

ba
ck

 D
ri

ve
n

In
te

gr
at

ed
Re

qu
ir

em
en

t
An

al
ys

is

In
tr

os
pe

ct
io

n

It
er

at
iv

e
Re

qu
ir

em
en

ts

Re
qu

ir
em

en
t

Ch
an

ge
M

an
ag

em
en

t

Re
qu

ir
em

en
t

Re
fin

em
en

t

U
se

r
St

or
ie

s

Re
qu

ir
em

en
t

Ab
st

ra
ct

io
n

H
ig

h-
le

ve
l A

bs
tr

ac
ti

on

Lo
w

-L
ev

el
 A

bs
tr

ac
ti

on

Re
qu

ir
em

en
t

Br
ea

kd
ow

n

Cu
st

om
er

 V
al

ue

Q
ua

lit
y

D
ri

ve
n

Ap
pr

oa
ch

Sp
ec

ifi
ca

ti
on

 O
ut

pu
t

U
se

 C
as

e

Ro
le

s
an

d
re

sp
on

si
bi

lit
ie

s
W

or
kF

lo
w

To
ol

s

Ac
ti

vi
ty

 t
ra

ck
in

g

Co
lla

bo
ra

ti
on

 T
oo

l

Si
m

ul
at

io
n

To
ol

Al
te

rn
at

iv
e

st
ra

te
gi

es

An
al

ys
is

 A
pp

ro
ac

h

Au
to

no
m

ou
s

Te
am

s

In
cr

ea
se

 D
om

ai
n

Kn
ow

le
dg

e

Pr
ot

ot
yp

in
g

Re
us

ab
ili

ty

Ro
le

s
In

vo
lv

em
en

t

Se
cu

re
 C

us
to

m
er

va
lu

e

Sh
ar

ed
 V

ie
w

U
se

r
Ex

pe
ri

en
ce

Ef
fe

ct
s

&
Ch

al
le

ng
es

Ar
ch

it
ec

tu
ra

l
D

es
ig

n Ac
ce

le
ra

ti
on

 o
f

So
ft

w
ar

e
D

el
iv

er
y

Re
le

as
e

&
 D

ep
lo

y

M
in

ds
et

La
ck

 o
f I

nt
re

st

Re
si

st
an

ce
 t

o
Ch

an
ge

Re
qu

ir
em

en
t

Pr
oc

es
s

Au
to

m
at

e
&

 In
te

gr
at

e

D
ec

om
po

si
ti

on

Ef
fo

rt

Li
fe

 C
yc

le
 m

an
ag

em
en

t

te
ch

ni
ca

l D
eb

t

Tr
ac

ea
bi

lit
y

Re
qu

ir
em

en
ts

 t
o

in
te

gr
at

e

Sh
ar

ed
 V

is
io

n

Fe
at

ur
e

D
ev

el
op

m
en

t
Co

nfl
ic

t

In
cr

es
ed

 W
as

te

Te
am

 C
oo

rd
in

at
io

n

Te
st

in
g

Fr
eq

ue
nc

y

Le
ve

ls

M
an

ua
l

Ph
as

e

