
How software documentation helps
communication in development teams: A
case study on architecture and design
documents
Bachelor of Science Thesis in Software Engineering and Management

Omid Manai

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2019

The Author grants to University of Gothenburg and Chalmers University of Technology the
non-exclusive right to publish the Work electronically and in a non-commercial purpose make
it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work does
not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author has
signed a copyright agreement with a third party regarding the Work, the Author warrants
hereby that he/she has obtained any necessary permission from this third party to let
University of Gothenburg and Chalmers University of Technology store the Work
electronically and make it accessible on the Internet.

© Omid Manai, June 2019.

Supervisor: Michel R. V. Chaudron
Examiner: Richard Berntsson Svensson

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2019

How software documentation helps communication
in development teams: A case study on architecture

and design documents
Omid Manai

Computer Science and Engineering Department
University of Gothenburg

Gothenburg, Sweden
gusmanom@student.gu.se

Abstract—[Context] Communication between developers and
within development teams takes place through various commu-
nication channels. Software documentation acts as a commu-
nication channel among software professionals. But, to what
extent documentation can help communication in development
teams? [Objective] This paper evaluates how software docu-
mentation and specifically architecture and design documents
help communication among/within development teams. [Method]
We performed a multiple-case study at the IT departments of
two Swedish manufacturing companies. The research method
followed a qualitative approach consisting of a survey with
24 participants, two semi-structured interviews, and two work
diaries. [Results] By performing the case study, the following
results were derived: (1) software documentation complements
communication rather than replacing it; (2) documentation
usage frequency depends on its up-to-dateness and accuracy;
(3) the main reasons for using documentation are assistance
in development and maintenance phases, knowledge transfer
and architecture comprehension, although incomplete/outdated
documentation is the main concern; (4) architecture and design
documents complement communication channels, and their us-
age is affected by company policies and education/employment
background; (5) knowledge evaporation results in excessive time
and cost consumption however, software documentation is a
possible remedy to that. [Conclusions] It is concluded that design
documents and documentation in general mainly complement
communication in development teams and avoid knowledge
evaporation, however, their usage depends on their accuracy,
company policies and employees’ background.

Index Terms—documentation, communication, architecture
and design documents, software development, knowledge evapo-
ration

I. INTRODUCTION

Software development is no longer the task of a mere
individual to develop standalone software, and it has shifted
to a collaborative activity, highly dependent on shared under-
standing [1], [2]. Software developers seek to communicate
in order to collaborate and contribute to various development
efforts. Documentation is one of the means of conveying
information within projects, and therefore, it is a form of
communication among various project members [3], [4], [5].
In this research, the software documentation that we mainly
consider are product and process documentation, including
system documentation. The documents can be any type of

artefact related to a software system which holds informa-
tion relevant to that, e.g., requirements, process, architecture
and design, testing, code comments, etc. Although relevant
research have been conducted regarding the importance and
inseparability of documentation from software development
processes, there is a lack of research in how design documents
and documentation in general help with communication in
development teams.

Effective and productive communication is a substantial
need in team-work software development efforts; however, to
avoid incompleteness and vagueness, communication requires
a basis and the means which serve its needs. Forward [4]
has argued that by comprehending our natural limitations for
effective communication, documentation can serve and fulfill
the purpose of productive communication. Storey et al. [5]
have found that software developers have various communi-
cation channels in order to share externalized knowledge (or
explicit knowledge, the knowledge that has been recorded in
a certain form, e.g., code, model, documentation [6]) and tacit
knowledge (the knowledge that resides in people’s head and
cannot be accessed, e.g., experience of working with various
tools, specific details regarding systems [6]) including software
documentation. However, the extent to which documentation
and specifically design documents can help communication
in development teams and their activities is unknown. For
instance, is documentation capable of being the primary
communication channel replacing verbal communication in a
software development activity?

In this paper, the author is exploring the feasibility and effect
of having documentation and specifically design documents
as a means of communication. The results of a multiple-case
study, including the data triangulation of three data collection
methods are presented:

• A qualitative survey on developers contributing to col-
laborative software development activities. The survey
investigates the views on software documentation as
a communication channel and its effect on knowledge
evaporation.

• Semi-structured interviews with selected participants
from two software development organizations who have

participated in the survey as well. The interviews expand
on the survey by studying what developers expect of
documentation as a communication medium, their reasons
for using documentation, and documentation’s role in
knowledge disappearance.

• Work diaries of the same developers from the two soft-
ware development organizations who have participated in
the survey. Work diaries mainly focus on the usage fre-
quency of software documentation and design documents.
They also seek to find the primary reasons for which the
developers seek software documentation.

The case study intends to further research the relation
between documentation and communication, and explore the
effects of documentation on communication among/within
software development teams. Recent studies have focused on
various types of software documentation, and their views on
them among software professionals. However, there have not
been any research on how documentation specifically helps or
affects communication. Moreover, knowledge evaporation and
disappearance were not studied in the context of documen-
tation. Furthermore, this study confirms and extends existing
results on the reasons in which developers seek to use docu-
mentation, and any findings related to software documentation
as a communication channel. The study results will benefit
software professionals including software developers, main-
tainers, architects, and middle management to have a better
understanding of software documentation as a communication
channel, and the extent to which documentation can serve as a
channel. Moreover, software decision-makers can benefit from
the results in order to design tools and features which will
improve software documentation.

The rest of the paper is structured as follows: section
II reviews the existing literature on the topic. Section III
introduces the research objectives, research questions, and the
research methodology. Section IV presents the findings of the
case study, along with discussions and interpretations of the
results. Section V discusses threats to validity. And finally,
section VI draws conclusions from the paper and explains
possible future research.

II. REVIEW OF THE LITERATURE

Various research have been conducted on the usage and
benefits of software documentation. Ding et al. [6] state that
software documentation is an indivisible part of the software
development process in which it acts as a communication
medium for stakeholders and especially among individuals
and teams that are geographically distributed. They further
state that software documentation is capable of transforming
tacit knowledge into explicit knowledge, and minimizing the
risk of knowledge evaporation. Similarly, Glinz and Fricker
[1] believe that due to the complexity of software, implicit
shared understanding is not sufficient in software development
processes, and access to explicit documentation is crucial.
Moreover, they state that software systems evolve and require-
ments and design decisions that are in the form of implicit
shared knowledge can get lost; therefore they suggest that such

information are better to be recorded as explicit documenta-
tion. However, they further elaborate that merely relying on
explicit shared understanding in the form of documentation is
economically incorrect as it wastes considerable amounts of
cost and time.

Accordingly, Storey et al. [5] have found that along with
three main communication channels for software developers
that are code hosting sites, face-to-face interactions, and Q&A
sites, developers have also mentioned software documentation
as a communication channel for learning, finding answers, and
being up-to-date. Moreover, Garousi et al. [7] conducted an
industrial case study and investigated the usage and usefulness
of technical software documentation. They found that software
developers use documentation in order to comprehend and un-
derstand a system both during and after the development cycle.
They state that quality technical documentation (e.g., software
architecture and design documents), 1) allow communication
among team members, and 2) reduce the risk of domain-
specific knowledge disappearance. Moreover, they explain that
software engineers communicate their required information
either through face-to-face interactions with their colleagues
and/or by referring to the documentation.

On the other hand, Curtis et al. [3] designed a field study of
17 unstructured interviews with personnel from various large
system development projects. They investigated the problems
of designing such systems at individual, team, project, and
company levels. At the individual level, they found that
although documentation is a form of communication, docu-
mentation is a weak communication medium, and incomplete
documentation is problematic. Moreover, they state that writ-
ten documentation does not entirely serve the communication
needs of teams. Although their study is focused on large
software systems, some of their findings are challenged in our
study. However, we affirm some of the mentioned software
documentation issues as well.

Fernández-Sáez et al. [8] conducted a single-case study
by interviewing 31 software maintainers regarding the use
and the purpose of design documents and specifically UML
diagrams. They found that more than half of the intervie-
wees perceive UML diagrams as a communication tool, i.e.,
allowing communication within or among teams, transferring
knowledge to newcomers, and other stakeholders. Interviewees
have also expressed that design documents and specifically
UML diagrams help software professionals to complement
their verbal or textual communication as it follows a standard
notation known by the software industry. In regards to software
documentation relevance, Forward and Lethbridge [9] describe
that software documentation is an essential communication
tool which should follow a purpose and transfer knowledge
to its intended audience whether the knowledge is up-to-
date or not, just like any other means of communication.
Building on Forward and Lethbridge’s study, Lethbridge et
al. [10] found that software documentation can be the only
communication channel for developers when the main devel-
opers who designed the software system are not available.
Moreover, they found that abstract documentation mainly in

TABLE I
INTERVIEWEES BACKGROUND

Participant Experience Context Educational field Educational level Company role

[Int1], [Diarist1] High Front-end
DevOps Computer science Master’s degree DevOps engineer

[Int2], [Diarist2] Very high - Computer science Master’s degree Delivery lead
Developer

the form of architecture and design documents do not have
to be updated to impart knowledge in contrast to testing and
quality documents that require high accuracy.

Relevant to the related works, our case study delves into
the relationship between software documentation and its effect
on communication among and within software development
teams.

III. RESEARCH METHODOLOGY

A. Research questions

The authors seek to answer the following research questions:
• RQ1) What are the views on software documentation as

a communication channel?
• RQ2) How often do developers refer to software doc-

uments and specifically architecture and design docu-
ments?

• RQ3) Why do/do not software developers seek to use
software documentation?

• RQ4) In what way do/do not design documents help
software developers to communicate within/among devel-
opment teams?

• RQ5) How does knowledge evaporation affect software
development teams, and what role can software documen-
tation play in that?

B. Multiple-Case Study

In what follows, we mainly follow the descriptions and
methodologies proposed by Runeson and Höst [11], and Yin
[12] regarding case study research. A multiple-case study
research method has been chosen for this research as this
method allows studying a phenomenon in its real-life context
[11]. Case study research seeks to have an in-depth focus on
a specific number of cases to better understand their dynamics
[12], [13]. Yin [12] states that suitable research questions for
the case study method are either explanatory questions or
descriptive questions (e.g., how/why, or what), very much the
same as the research questions in this study. Our multiple-case
study follows exploratory empirical research by seeking and
exploring insights regarding a specific phenomenon and deriv-
ing new ideas and theories from that [11]. The multiple-case
study relies on multiple sources of evidence and compared to
a single-case study, it results in more convincing findings [12].

The authors have selected two software development com-
panies as the two cases of the multiple-case study. The first
company (Company A) was the IT department of a Swedish
multinational manufacturing company. The second company
(Company B) was the IT department of a manufacturing
company based in Gothenburg. The main participants of the

study were software developers working in various teams
within the organizations. Although developers were the main
subjects of the study, architects, testers, maintainers, and
middle management were also encouraged to participate in the
study, in order to have a richer picture of the phenomenon.

In each case, we had one data point as a participant of our
research, and the participants’ backgrounds are presented in
table I.

Furthermore, we chose to do data triangulation to increase
confidence in the research data and give a better picture
of the phenomenon from different viewpoints [14]. For the
data triangulation, three different data sources are chosen,
interviews, work diaries, and a qualitative survey in the form
of a questionnaire. Regarding the order of data collection, first,
the survey was conducted during a time span of 24 days from
April 23, 2019, to May 17, 2019. On May 1, 2019, the authors
started the interview process by doing the first interview on
the same day. In the meanwhile, on May 2, 2019, the work
diary templates were sent to the participants. The case study
approach is represented in figure 1.

C. Data collection

Interviews – From the six sources of evidence that Yin
[12] suggests, the authors have chosen to run semi-structured
interviews with the subjects. Semi-structured questions seemed
more appropriate with qualitative research in which they
would allow the authors to further explore the opinions and
perceptions of the subjects on critical issues and in-depth
clarifications [15].

In the context of the case study, we performed two inter-
views, one with the participant from company A ([Int2]), and
the other with the participant from company B ([Int1]). Both
interviewees have had experience in software development in
their entire work experience, and they were currently occupied
with software development activities within their companies.
All interviewees received open-questions with no predefined
choices in order to allow them to better explain their ideas and
express themselves.

The first two questions represent demographic questions,
and the specific ones which have ’pre’ notions were accom-
panied by an explanation of the topic and some examples
allowing the interviewee to have a better understanding of
the question. Moreover, prior to the interviewees receiving
the interview questions, they received a short introduction to
the interview objectives, their anonymity, how the interview
data was going to be handled, and a description of the
technical terms including various communication channels,
different software documentation types, etc. Both interviews

Survey

Multiple-case
study design

Interviews

Step 1

Work diaries

Step 2

Step 3

Analyzing the
collected data

Step 4

Producing the
report

Step 5

Fig. 1. Case study approach

took from 30 minutes to 45 minutes in order to cover all
the structured questions and their follow-up questions. The
structured interview questions can be found in appendix A,
although each question had one or more follow-ups in the
interview.

Survey – Survey method gathers information from a group
of specific people who represent the sample of a larger
population [16], [17]. The survey objective was to collect
information on the use of software documentation, how it can
act as a communication channel, and its effect on knowledge
evaporation. A questionnaire was constructed and used as the
survey instrument. The questionnaire consisted of six partially-
structured questions and four open questions. The question-
naire can be found in appendix B, and it is also accessible
online through this link [18]. The survey population was
mainly software developers working in development teams,
but software architects, testers, maintainers, and middle IT
management were also encouraged to participate in the survey
as they are part of software development teams, and their use
of software documentation could be evaluated. The survey
followed the convenience sampling method, and hence people
were asked to participate by accessing the shareable link of the
survey in LinkedIn, alternatively the authors contacted specific
people and asked for their participation.

At the beginning the survey was limited to the respondents
from the two case companies, but it was opened to other
companies when the authors found that, 1) the company name
is not being recorded in the responses and therefore, the
responses can not be traced mainly to the two case companies,
2) the sample group will be extremely limited. The survey
was opened to various IT organizations in Gothenburg and
Stockholm. As the data was not entirely related to the case
companies anymore, the authors removed the survey data from
the case study and did not analyze it with the interview and
work diary data. However, the survey data is just included
in the results as the findings were still showing the opinions
of software professionals regarding their usage frequency of

documentation and the reasons for that. This also introduced
a threat to the construct validity of the study which has been
discussed in section V.

As shown in figure 2, the sample group was mainly devel-
opers from various IT organizations in Gothenburg and Stock-
holm, and the sample size reached a total of 24 individuals.

15
2

3

1
1

1
1

Developer Manager Tester Architect Researcher Analyst Student

Fig. 2. Survey sample group

Work diary – Additionally, work diaries require the partic-
ipants to record their flow of thoughts and actions regarding
a specific behavior [19]. In this method, diarists were the two
participants who have participated in the survey and interview
methods as well. The work diary template can be found in
appendix C, and it is also available online through this link
[20]. To fill the template, diarists received an email having
the template attached, and including a description of the diary
objectives, how the data is handled, their anonymity, and an
explanation of the technical terms including knowledge evap-
oration, different software documentation types, etc. Diarists
had to fill in the work diary templates within a normal working
day (8 hours).

By filling the work diary templates, the participants were
obliged to record the efforts they made to reach software

documentation by providing 1) the time they have accessed
the document, 2) the amount of time they have spent on the
document, 3) the type of the software document, and 4) a short
description of the reason they have reached the documentation.
Moreover, diaries also included questions that were supposed
to be filled at the end of the day.

D. Data Analysis

The last phase in the research methodology was analyz-
ing the collected data. As three different sets of data were
collected, each dataset was analyzed individually, and the
analyses of the three sources were used for interpreting the
results and drawing conclusions. Analyses of the interview
data and the work diaries [21] were carried out in parallel
with the data collection processes of the methods. All three
types of collected data were analyzed by performing a thematic
analysis, and by following Braun and Clarke’s [22] guide for
doing a thematic analysis.

The thematic data analysis consists of the following six
steps:

1) Familiarizing with the data: the interview and work
diary data were transcribed into text, and the survey
data was gathered into spreadsheets. The data from both
sources were read several times, and the initial ideas
noted.

2) Generating codes: interesting and salient parts of data
were highlighted and coded, and the data relevant to
specific codes were collated.

3) Looking for themes: the codes were focused and
grouped into themes.

4) Reviewing themes: the themes and codes were com-
pared, and a thematic map of the analysis produced.
Also, themes were defined and named clearly in this
step.

5) Defining and naming themes: the potential themes
were refined, and names and concise definitions for each
theme were provided.

6) Producing the report: examples of the datasets were
extracted, and the analysis was used to relate back to
the research questions and to finalize the report.

The data analyses of the work diaries and interviews were
integrated at the fourth step of the thematic analysis, and their
results and interpretations are included in section IV. However,
the findings based on the survey data analysis are reported
separately from the other two methods in section IV. Also,
several charts have been included relating to the results of the
semi-structured questions in the survey. The thematic map of
the identified themes and codes is shown in figure 4. Although,
some of the identified codes have not been used in the case
study as they were mainly related to the survey data.

It is worth noting that the authors have used “NVivo”
(a computer-assisted qualitative data analysis package) to
perform the analysis phase.

IV. RESULTS AND DISCUSSION

This section presents the results of the case study, along
with the interpretation of the findings and their relation to the
published work. The results come from all three data collection
methods; survey, interviews, and work diaries. By following
Braun and Clarke’s [22] guide for doing a theoretical (deduc-
tive) thematic analysis, the collected data has been transcribed,
coded and, the identified themes are explained excessively in
their subsections relevant to the research questions.

Face-to-face
interactions

Private chats
(Instant messengers,

Skype chat, ...)

Private discussions
(Email, ...)

Software
documentation

(design documents,
Question & Answer

websites (Stack
Overflow, Quora, ...)

Code hosting
websites (GitHub,

Sourceforge, ...)

0 5 10 15 20 25

Fig. 3. Which communication channel(-s) do you find more helpful to
understand a system?

A. Documentation as a communication channel (RQ1)

The first research inquiry was devoted to the views on
software documentation as a communication channel. The
second question in the survey specifically asked the partici-
pants to reflect their views on software documentation as a
communication channel for transferring information among
people and projects. The findings show that all of the re-
spondents think that software documentation can act as a
communication channel to transfer information among people
and projects. Furthermore, the third question in the survey
asked the participants about their preferred communication
channel(-s), in terms of being helpful for understanding a
system. As shown in figure 3, the majority of respondents
(91.7%) have chosen software documentation in the first place.
The second is face-to-face interactions with 75%, and the rest
are Q&A websites 37.5%, code hosting sites 33.3%, private
chats (instant messaging, etc.) 29.2%, and private discussions
(emails, etc.) 25%.

The thematic analysis on the work diary and interview
data shows that the participants from both cases believed that
software documentation helps communication among/within
development teams in both development and maintenance
phases. It allows the team members to understand the overall
functionality and architecture of a system: “software documen-
tation is the most important a maintenance and development
team can have for the system they work with. Software
documentation is an important channel or an important way
to understand the functionality, work with the system, and

D
oc

um
en

ta
tio

n

R
ea

so
ns

 f
or

 u
si

ng
 d

oc
um

et
at

io
n

(P
ro

s)

K
no

w
le

dg
e

tr
an

sf
er

H
el

pi
ng

 in
 th

e
de

ve
lo

pm
en

t p
ha

se

H
el

pi
ng

 in
 th

e
m

ai
nt

en
an

ce
 p

ha
se

U
nd

er
st

an
di

ng
 a

rc
hi

te
ct

ur
e

U
nd

er
st

an
di

ng
 r

eq
ui

re
m

en
ts

U
nd

er
st

an
di

ng
 th

e
ov

er
al

l f
un

ct
io

na
lit

y

D
oc

um
en

ta
tio

n
la

ck
 c

on
se

qu
en

ce
s

Lo
w

 q
ua

lit
y

fin
al

 p
ro

du
ct

P
er

ce
iv

ed
 d

oc
um

en
ta

tio
n

co
ns

In
co

m
pl

et
e/

ou
td

at
ed

 d
oc

um
en

ta
tio

n

S
ee

n
as

 m
or

e
w

or
kl

oa
d

S
ee

n
as

 a
n

ex
tr

a
co

st

D
om

ai
n-

sp
ec

ifc
 k

no
w

le
dg

e

La
te

 d
el

iv
er

ie
s

D
om

ai
n-

sp
ec

ifi
c

kn
ow

le
dg

e
lo

ss

C
os

t-
ef

fe
ct

iv
en

es
s

Ti
m

e-
sa

vi
ng

A
cc

es
si

bl
e

E
xt

ra
 ti

m
e

E
xt

ra
 w

or
kl

oa
d

E
xt

ra
 c

os
t

In
te

gr
at

io
n

is
su

es

C
od

e
re

us
e

is
se

s

A
rc

hi
te

ct
ur

e

K
no

w
le

dg
e

ev
ap

or
at

io
n

D
et

ai
ls

F
un

ct
io

na
lit

y

Ta
ci

t k
no

w
le

dg
e

Fi
g.

4.
T

he
m

at
ic

M
ap

further develop it” [Int2]. The interviewee from company B
states that documentation acts as a communication channel at
certain points: “Software documentation can act as a com-
munication channel at points. It can act as a communication
channel when people want to refer to something which they
have discussed before or they want to review it later”[Int1].
Company A interviewee believes that software documenta-
tion should ‘ideally’ replace face-to-face interactions, verbal
communication, and other communication channels when the
purpose of communication is for understanding the overall
functionality and architecture of a system: “To act as the
primary communication medium and reduce the amount of
verbal communication and face-to-face meetings” [Diarist2].

However, the second interviewee continues that: “That
[having documentation as the primary channel] is the ideal
case and that is what we are striving for but, the challenges
such as the constant need for updating documentation in
new releases, new functionality, new customer input, and
the changing world around us in general” [Int2] diminishes
the ideal case for using software documentation. Moreover,
the interviewee believed that a communication channel is
a medium that transfers information, and in most cases it
is difficult to have software documentation as the primary
communication channel replacing the verbal communication as
it would better serve if accompanied by other communication
channels in order to enhance and complement the information:
“For me a communication channel is just a facility that
transfers some type of information. So, I would rather not
call documentation a channel. I interpret it for example if you
send the documentation over email then you have sent it over
the mail channel” [Int2].

The views on software documentation in our two cases
seem to be aligned with the recent works of Forward [4],
Fernández-Sáez et al. [8], and Zhi et al. [23]. Forward [4] and
Fernández-Sáez et al. [8] support the concept of documentation
as a communication channel and, stress that documentation
is written for the purpose of communication among software
engineers and maintainers. However, Zhi et al. [23] see doc-
umentation as an ‘aid’ for communication among developers
and maintainers.

Based on our empirical findings, software documenta-
tion helps communication within/among development
teams, but it mainly complements other communica-
tion channels rather than replacing them or acting as
the primary channel for communication.

B. Documentation usage frequency (RQ2)

The second research inquiry is devoted to the software
documentation and specifically architecture and design doc-
uments usage frequency by developers and development team
members.

The fourth question in the survey is asking for the frequency
of referring to any type of software documentation in a normal
working day. As shown in figure 5, less than half of the
respondents (43.4%) refer to software documentation 1 or 2
times a day. 21.7% of respondents do not refer to software

Not at all

1 to 2 times a day

Once or twice a week

3 to 5 times a day

More than 5 times

2 to 3 times a week

0 2 4 6 8 10

Fig. 5. How often do you refer to software documentation in a normal working
day?

documentation at all. The rest are as follows: 8.7% more than
5 times a day, 13% 3 to 5 times a day, 4.3% 2 to 3 times
a week, and 8.7% once or twice a week. The fifth question
in the survey focuses merely on the frequency of referring to
architecture and design documents in a normal working day.
As shown in figure 6, 37.5% have stated that they do not refer
to design documents at all. 29.2% have mentioned that they do
access 1 or 2 times a day and the rest are as follows: 8.3% 3
to 5 times a day, 8.3% once or twice a week, 8.3% sometimes,
4.2% once in a sprint, and 4.2% at most once a month.

At most once a
month

Not at all

1 to 2 times a day

Sometimes

One or twice a week

Once in a sprint

3 to 5 times a day

0 2 4 6 8 10

Fig. 6. How often do you refer to architecture and design documents in a
normal working day?

Based on the interview data, the company B interviewee
([Int1]) stated that the software documentation regarding some
of their projects in the company are not up-to-date, and this
lack of valid information has led the developers to refer to
documentation only ‘from time to time’: “Well, we hope that
we have a very updated information somewhere that we can
refer to them, but sometimes with some applications that we
are using, the documents are not very updated and don’t have
valid information. Then we have to choose another way to find
those information [..] in general, we use documentation from
time to time but of course we have a daily meeting or scrum

meetings, and then we discuss about what we are going to do
during the day” [sic] [Int1].

He mentioned that company B is going under a major
transformation from old tools and technologies to new ones,
and also migrating some of their IT projects from Gothenburg
to development sites in India. The interviewee mentioned that:
“everyone in the company have felt the need for correct and
complete documentation mainly in this period, but there is
not much that we can do about it now”[Int1]. Deployment
guides, installation documents, health check documents, and
even meeting notes are some of the documents that they use
‘several times during a week’. Regarding architecture and
design documents, he mentioned that they use and update these
documents every three to four weeks, at the end of each sprint,
when the new functionalities are added to the system: “We use
them (design diagrams) after the sprints when it is done and
we have added the new features to the application [..] for us
each sprint takes 3 to 4 weeks”[Int1].

On the other hand, company A’s development teams use
architecture and design documents, and documentation in
general on a daily basis, but their exact frequency of usage
depends on the situation, and the document: “It depends on the
issue and what we are looking into. So, a software architecture
document is more on a very high level. It usually describes our
system is integrated in xyz based on these technologies, etc,
etc. But, for example one delivery specific document that we
have is BMD, Busines Mapping Document, and that describes
exactly what goes in each integration. So, that is more a detail
if you have an integration problem, we need to go to that
detail. But, I would say on daily basis” [sic] [Int2]. Moreover,
he stressed that company A follows strict guidelines on the
creation and availability of documentation: “We have a strict
process with designated gates on when a project can hand over
and go to maintenance mode. If a project lacks documentation,
it will not pass those gates”[Int2].

Additionally, based on the work diary data, we found that
the frequency of using documentation in company B is primar-
ily based on the information that the teams residing outside of
Sweden are seeking. For instance, they have recorded a 1.5-
hour usage of a software architecture document for transferring
knowledge to the remote team. The diarist ([Diarist1]) men-
tioned that they have such usage of architecture documents as
these documents are more ‘reliable’. Also, these sessions take
place when a remote team requests to have a deeper knowledge
of the system, and recently, the sessions have been happening
more. He continued that they are currently using documents
such as health check documents and release notes a few times
a week as well.

In contrast, company A has shown a more rigorous usage
of documentation in their work diaries ([Diarist2]). They have
recorded the usage of various types of documentation includ-
ing technical documents (e.g., JavaDoc, API reference guides,
code comments), and business documents(e.g., business map-
ping document) on a daily basis. The diarist belonging to
company A ([Diarist2]) has recorded several instances of using
documentation in a single day and has mostly spent less than

five minutes on a document. Comparing the time spent on
documentation between the two companies, we found that
company A’s diarist have reported less time being spent on
documentation than the diarist from company B. Company B
diarist ([Diarist1]) reported ten minutes to one and a half hour
for using various types of documentation.

The findings are in line with previous works of Garousi
et al. [7], and Lethbridge et al. [10] that the frequency of
using and consulting documentation has a direct relationship
with its accuracy. Company B had problems with the accuracy
and up-to-dateness of its documentation; therefore developers
and team members use documentation from time to time. On
the other hand, as company A had strict processes to create
and update documentation, their frequency of usage was on
a daily basis. Furthermore, Lethbridge et al. [10] state that
software engineers consider abstract documents such as design
documents to be more accurate. Regarding company B, we
have found that although some of the documentation were not
up-to-date, their usage of design documents was significant.

Based on our empirical findings, the frequency of
software documentation usage depends on the up-to-
dateness and accuracy of the documents. Concurrently,
developers consider architecture and design documents
to be more accurate.

C. Documentation as an asset vs a liability (RQ3)

The third research inquiry is devoted to the reasons that
developers and development team members do/do not seek to
use software documentation. Concerning this research inquiry,
the sixth question in the survey asks the participants for
reason(-s) they would use software documentation. By coding
the answers of the open-ended question, the authors found
that more than half of the participants (62.5%) use software
documentation to acquire more knowledge regarding the over-
all functionality of a system. In the second place, 16.6%
of the respondents use software documents to know more
about the design and architecture of a system. The rest are
as follows: 16.6% seek to have better understanding about the
requirements of a system, 12.5% believe that documentation
helps in the development phase, 8.3% seek to know more
about the test cases and the reported bugs, 4.1% believe that
documentation helps in the maintenance phase, and 4.1% have
the intention of avoiding knowledge evaporation.

By analyzing the interviews and work diaries, the following
reasons and documentation advantages have been identified in
both cases (ordered from the highest amount of relevant codes
found during the thematic analysis to the lowest):

1) Helping in the development phase: the most common
reason that the participants have mentioned is that soft-
ware documentation helps in the development phase in
different forms. An interviewee mentioned that it helps
developers and team members to recall the forgotten
domain-specific knowledge: “Let’s say, the development
team is trying to add new features and some people are
working with some services or components, and in the

future they leave that team for some time then there
is a lack of knowledge transfer here, so you will lose
that information. You have to keep it [..] to be able to
continue development”[Int1]. Another diarist mentioned
that documentation related to programming languages,
frameworks, and libraries help them in implementation:
“To understand how to use a Java method; Usage,
type of return value, type of parameter values, type of
exception that the method may throw”[Diarist2]

2) Transferring knowledge: sharing and transferring
knowledge is one of the most common reasons men-
tioned by the participants for using documentation. Doc-
umentation transfers the tacit knowledge of an individual
by making it into explicit knowledge and providing
information to the people who are seeking it: “The goal
for documentation is for it to be picked up by a new
person and can be understood. [..] In my opinion, if we
have the correct documentation then I can just give it
to you and leave the building” [Int2].

3) Understanding the architecture: the next most com-
mon reason for using documentation is to have a better
understanding of a system’s architecture and design.
Design documents provide an abstract, higher level view
of the components and relationships within a system:
“We need to have the great picture of the application
so for example we should know the integration between
various subparts of the system. Then we search based
on those components that we are looking for and then
as each component has a specific team behind it, we
can ask that team to help us regarding some incident or
problem that we might have” [sic] [Int1].

4) Helping in the maintenance phase: the next most com-
mon reason for using documentation is how documen-
tation helps maintainers acquire more knowledge about
the specific system they are maintaining. There are cases
that maintainers of a software system are not the ones
who implemented the system in the first place. In these
situations, documentation plays a key role in a successful
maintenance effort: “Every new development that has
been added to the application should be explained to
the support and maintenance team via documentation
that they should know what are the expected incidents or
challenging problems you may face in the future” [Int1],
“Beside executable code that is running in production,
and in different pre-production environments, software
documentation is the most important a maintenance and
development team can have for the system they work
with” [Int2].

5) Time-saving: another reason mentioned by the partici-
pants for using documentation is the fact that documen-
tation saves time by minimizing the need for consulting
people by various means of communication such as face-
to-face meetings, and seeking information from them:
“The greatest thing about the documents is that you can
refer to them all the time. And, you are not anymore
wasting other people’s time, spending so much time for

having a conversation, or let’s say asking for a meeting
regarding some information that you can always find in
the documents” [Int1].

6) Accessible: one of the other reasons for using docu-
mentation is the accessibility of documents that allows
anyone who holds the right to access documents refer
to them. Moreover, most organizations have centralized
online repositories for storing documentation today, and
this removes the geographical limits of accessing and
using documentation: “We should have documents that
are accessible for everyone, so anyone can easily find
it and review it quickly. [..] the best way I would say is
having a centralized domain of information somewhere
that can be accessible for everyone” [sic] [Int1]. “The
presence of documentation helps to track all the aspects
of an application however it is highly important to make
documents accessible as much as possible and also read-
able so users can easily refer to the required documents
and find the information that they are searching for”
[Diarist1].

There are other reasons as well that were rarely mentioned
by the participants, including: understanding the overall func-
tionality, cost-effectiveness, and understanding the require-
ments.

The reasons for using documentation were diverse. Al-
though participants saw documentation as an asset and were
mostly supportive of using it, they mentioned some disad-
vantages for documentation as well. The disadvantages were
related to their previous jobs (in the case of company A) or
the struggles within their current companies (in the case of
company B). The following cons were identified within the
interview and work diary data, and are sorted from the highest
amount of relevant codes to the lowest:

1) Incomplete/outdated documentation: although incom-
plete or outdated documentation is not truly a problem
with documentation itself, the extent to which docu-
ments have not been updated or left incomplete have
brought a disadvantage for accessing valid information
in some organizations. Among our cases, company B
seemed to have this problem: “We hope that we have a
very updated information somewhere that we can refer
to them but sometimes with some applications that we
are using the documents are not very updated and don’t
have valid information then we have to choose another
way to find those information. [..] still the document, the
template, or the tool that we are using they are highly
limited [..] so, still face-to-face interaction is the first
and most usable way to communicate” [sic] [Int1].
Regarding company A, the company strives to have
updated documents: “The tricky thing in having doc-
uments related to a software is to keep them updated
[..] because when you have a software you do a first
release, you have documents to that, then it comes to
the customer and wants to change maybe a component,
add a component or remove a component, or add an

integration, then you need to trace back and see that
all changes are reflected back into all the documents.
When you miss to do that then the documents are
out of date” [Int2]. He continues: “That is what we
are striving for. But, the challenges are new releases,
updated functionality, new customer input, a changing
world around us. Both from what the customer wants but
also the technology that we need to deliver the service
on. So, that is also important to measure, we are not
just being hit by the customer and getting the support
in production, we are being hit by a machine part that is
getting old that we need to update all the time in order
to have the right level of support.” [Int2].

2) Seen as more workload: writing and updating docu-
mentation requires time and effort from the ones who
hold the knowledge that needs to be documented, and
everyone else who are responsible for keeping track
of the information to be up-to-date. Therefore, some
organizations might see this effort as an extra workload.
Among our cases, we have found that company B
developers and development team members follow this
mindset: “Since we do not have people that have this
only task (writing documentation) then it is something
that other people need to do. It is gonna be more
workload for them. So, they are quite busy with other
stuff so, they might skip that process but in the future
they will realize that yeah, still they need to have that
information somewhere. [..] it is not followed that well
due to the time consumption and the amount that people
need to spend time on writing documentation. And of
course, I would say it is not a very interesting task, you
know, people prefer to speak about it rather than write
and keep that information somewhere.” [sic] [Int1]

3) Seen as an extra cost: considering documentation as an
extra cost relates to an organization’s policy or manage-
ment decision, and it is not very much a decision made
by teams and their members. Moreover, it is dependant
on the type of documentation and the specific needs of
that organization which has come to have such a view
on documentation. Seeing document as a cost was not
present in any of the two organizations in our case study,
but the 2nd interviewee explained a previous assignment
with his/her former company which had such a notion on
documentation: “I was working in a consultancy which I
will not mention them. I was on an assignment for a big
manufacturing company here in our region, and I got to
know that company, and the customer had agreed upon
not having any test cases because of the costs. [..] that
lead to the delivery company receiving the worst grades
for the delivery because the customer was expecting a
qualitative delivery each time but there were no test
cases [..] I can understand, it is either the customer
or the delivery team providing it to the customer that
did not understand the criticality of these documents,
they rather took a short-term cost-saving and did not
saw what this will bring further down the road” [Int2].

The findings on the advantages and reasons for using
documentation are aligned with the results of previous studies,
especially the works of Aghajani et al. [24], Curtis et al. [3],
Garousi et al. [7], and Forward and Lethbridge [9]. Based on
the findings, ‘helping in the development phase’ is the first
reason for using documentation, this is in line with Garousi
et al. [7] that found documentation to be more effective in
the development phase than maintenance. Also, knowledge
transfer was seen as an ability of documentation to impart
knowledge [9].

Regarding the disadvantages, Curtis et al. [3] have found
as well that incompleteness and tardiness of documentation
make it a weak medium for communication. We have seen
that company B was struggling with incomplete/outdated
documentation, and this might be the reason that they were
having issues with knowledge transfer to their remote teams,
and the best solution they have come up with was face-to-face
interactions. Additionally, as we saw in our cases, Garousi et
al. [7] found that the larger a document gets, the more it adds
to the workload, and the lower the cost-effectiveness will be.
Also, Curtis et al. [3] mention that as a software project gets
larger, the time spent on writing documentation shifts toward
verbal communication due to the heavier workload.

Based on our empirical findings, developers tend to
use documentation as it helps them in development,
knowledge transfer, maintenance, understanding archi-
tecture, saving time, and its accessibility. However,
there are concerns on incomplete/outdated documents
and the possibility of the required costly and tiresome
efforts.

D. Design documents and communication (RQ4)

The fourth research inquiry is devoted to how architec-
ture and design documents help developers to communicate
among/within development teams. Related to this research
inquiry, the seventh question in the survey asks the participants
to what degree design documents are a remedy for the lack
of communication and knowledge disappearance. As shown in
figure 7, 37.5% of the participants think that design documents
can play that role ‘A lot’. 29.2% have mentioned ‘Sometimes’,
and 20.8% have selected ‘Always’. The rest are as follows:
8.3% have mentioned ‘not at all’, and 4.2% ‘A little’.

Architecture and design documents are one of the technical
software documentation types. This type of documentation is
mainly known with various modeling languages and templates
such as Universal Modelling Language (UML), which present
a unified notation for writing and using design documents. In
both interviews and work diaries, we asked the participants
to express their opinions regarding how design documents
can help communication in development teams, and if design
documents can act as the primary and individual communica-
tion channel for knowledge transfer without the need of other
channels.

In the case of company B, Diarist 1 recorded a one and
a half hour usage of architecture documents for transferring
knowledge to a remote operation team in India. During an

Sometimes

A lot

Always

A little

Not at all

0 2 4 6 8 10

Fig. 7. To what degree do you think that design documentation is a remedy
against knowledge disappearing because of people leaving projects?

interview with the same diarist, the interviewee ([Int1]) men-
tioned that their team uses architecture documents to explain
the system to the remote team, but these documents do not
cover all the details and they need to have video calls with
the remote team to explain the documents in a verbal manner
and add the necessary details as well: “Every session is around
1 or 2 hours and it is quite long, but it is their challenge to
store that video and try to review it and understand everything
[..] we need to compensate that lack of knowledge with video
conference or some video calls but we could have better
documentation and just give them the documentation instead
of that” [Int1]. He further adds that the design documents in
the company are limited to the point that they cannot be the
primary source of information; in other words, the documents
need to be complemented with the tacit knowledge of the team
members in order to make sense: “We have to have them (the
design documents) open every time and add information or get
some information from that document so, still the conversation
is the first and most usable way to communicate” [sic] [Int1].

Regarding company A, interviewee 2 explained that they
use software documentation, including architecture and design
documents on a daily basis. However, he remarked that they
are still not able to depend on design documents as the primary
channel of communication, but that is their goal: “The goal
for design documents is to be picked up by a new person and
can be understood [..] but, always it is easier if you have
someone that have been working with this in 20 years and he
sits in front of you and he helps you understand the diagram,
or describes for you the diagram [..] in the best of worlds, yes
I should be able to give my (design) document to someone in
India and he/she should be able to take that and do not talk
with me. Take it and understand it, because that is the aim of
the document” [sic] [Int2].

During the analysis of the interview and work diary data, we
found two concepts that affect the usage of design documents:

• Educational/Employment background: the intervie-
wees pointed out that the usage of documentation and
mainly design documents are in direct relationship with

the employees educational and employment background.
They elaborated that for the people who have a back-
ground in a field other than software engineering and
computer science, design documents and documentation
are not seen very important in general: “It depends on
what background you come from. So, if you have a
software architecture background and you know the pro-
cesses and you know the importance of documentation,
yes, but based on other experience background that may
not be seen as so important [..] you need to have the right
background, right education to understand the criticality
of what you need to have. If you don’t understand that,
then you are focused on the cost, of course” [sic] [Int2].
Also, as Interviewee 1 mentioned: “As far as I know
designing a UML diagram, it needs a great knowledge,
or something that people should know how to interact
with it, and how to add the new information, and most
people they prefer to just write some notes” [Int1].

• Company policies: another aspect that affects the usage
of design documents and documentation in general, is
the company policies toward the importance and value
of documentation. For example, as mentioned by inter-
viewee 2, company A moves projects from development
phase to maintenance when several ‘gates’ have passed:
“When we take an application from project mode to
maintenance mode, there are several gates that needs
to be passed within our organization. As the project
proceeds with various gates within the project, there
are hand-over, pointed out processes or instructions on
what type of documentation should be ready from the
project hand-over to maintenance along the way. So,
there are processes how the documentation should be
created, evolved and what type of documentation should
be provided [..] if a project lacks documentation, it will
not pass those gates” [Int2]. In contrast, interviewee
1 explained that in company B they have a lack of
an authority who would define and check the process
of writing and using documentation: “Each application
should have some special roles to lead the project so
they should define some policies that everyone would
follow [..] designing documents should be accepted by
the team and somebody needs to control those policies
that everyone is following, regarding what type of task
you are doing or developing, somebody needs to keep an
eye on that” [sic] [Int1].

The findings are in line with the previous studies of
Garousi et al. [7], and Fernández-Sáez et al. [8]. Aligned with
Fernández-Sáez et al. [8] study, we found that architecture and
design documents complement face-to-face interactions and
other communication channels in general, rather than replacing
them. However, in the case of company A, development teams
have shown interest in setting their goal in having complete
and accurate documents to the point that the design documents
would replace verbal communication. Moreover, educational
and employment background influences the views on design

documents as these document might be seen costly, or not
capable of being a communication channel, as reported by [8]
as well. As mentioned by Garousi et al. [7], company policies
affect the amount of support that the teams receive for using
technical documentation, and these policies mainly define the
value of such documentation. By looking at the two case
companies, we found that in most cases delivering a working
product is the first priority of software companies to the extent
that producing and updating documentation becomes an unim-
portant activity, or fades away entirely. Various companies
have different values; some might value reducing expenses
as much as possible which might target documentation as
well. Others might value the software product more than the
accompanying documentation.

Based on our empirical findings, architecture and
design documents are seen as a complement to com-
munication channels by enhancing the information
being exchanged, rather than entirely replacing it. Ed-
ucational and employment background, together with
company policies, affect the usage and value of design
documents in a company.

E. Knowledge evaporation (RQ5)

The fifth research inquiry is devoted to the effects of
knowledge evaporation on development teams and the role
that software documentation plays in that. Relevant to this
research inquiry, the eighth question in the survey asks the
participants for any type of information regarding the design
that they tend to forget. After coding the answers, we found
that 42.8% of the participants tend to forget the details
related to the functionality of a system, 28.5% forget the
architecture and abstract elements, and 28.5% do not tend
to forget any information. The rest have reported that they
tend to forget: tacit knowledge (9.5%), and Domain-specific
knowledge (4.7%). Additionally, the ninth question asks the
participants for their personal experience about the lack of
software documentation and its effect on development teams.
By coding the answers of the open-ended question, we found
that most participants (80.9%) have reported that the lack
of software documentation will lead to a consumption of
extra time and workload, 33.3% mentioned that it leads to
knowledge disappearance, 28.5% think that it results in poor
software quality and final delivery. The rest are as follows:
9.5% anticipated a delay in delivery, 9.5% mentioned that
software integration and code reuse would be problematic, and
4.7% saw no effect for the lack.

In both interviews and work diaries, the participants were
asked to express their opinions about knowledge evaporation
and disappearance, and how they affect development teams.
In both cases, the participants indicated that software docu-
mentation avoids knowledge disappearance and evaporation,
but we found that company B is struggling with knowledge
evaporation as the first interviewee brought an example of their
current project: “For the current project that I am working on,
a couple of weeks ago we wanted to make some adjustments

on the database. We tried to add new stuff to that but we
realized there are some problems behind it and we did not
understand it. Then we should have spent so much time to
see what the issue is, because sometimes the errors that we
get from the system are not very understandable. Then, after
spending some time we realized that this is something that
someone else was working on, and we had to contact that
person. Sometimes, we might see that the person has already
left the project and it becomes scary because now you have a
problem with your time planning that you did not expect. So,
that becomes a very frustrating situation. We needed to find
that person and ask him, what have you done and what can
be the issue and the possible solution now [..] the best way is
that whatever you do, you store that information somewhere
that people can refer to it, and if something went wrong then
people can go to the stored information and solve the issue”
[sic] [Int1].

The findings show that knowledge evaporation results in its
disappearance, and it affects the teams in both development
and maintenance phases: “the best way is to have documen-
tation than to have meetings, let’s say we ask information
from other people, but then we might forget during time.
It’s better that we have that information somewhere, so if
someday we wanted to understand the problems and solutions,
we know that we always have access to that information”
[sic] [Int1]. The second diarist also answered a diary question
regarding the role of documentation in knowledge evaporation:
“To access the knowledge of former developers who have
designed/implemented the system and have left the company”
[Diarist2]. Furthermore, we found that waste of resources (in
terms of cost and time) is another consequence of knowledge
disappearance and the lack of documentation as company A
interviewee explains that: “If you as a developer have the right
documentation with the right content, that’s it. Then you are
free of the need of anybody else. But, if you don’t have the
documentation, that is where the tricky things start. Either
you need to dig yourself in, or you need to find somebody
who was responsible [..] because then you need to have 10
persons maybe to do the documentation job that you should
have had, because all the critical parts of the system that
are not documented, they should be documented as soon as
possible” [Int2].

Our findings on knowledge evaporation effects on develop-
ment teams are aligned with the previous research [8], [6],
and [7]. As Fernández-Sáez et al. [8] have found as well,
software documentation and mainly design documents prevent
knowledge evaporation, which affects the teams mainly in the
maintenance phase. The tacit knowledge of an individual is
a valuable but transient source of information due to the fact
that the information might fade away over time, or get lost
as people leave projects and assignments. Therefore, the tacit
knowledge needs to be transformed into explicit knowledge,
and be recorded and archived in the form of documentation
to avoid knowledge evaporation and disappearance [6], [7].
Based on both cases, the lack of documentation results in
knowledge disappearance and evaporation, and the lost knowl-

edge leads to a consumption of extra time and workload for
the development teams.

Based on our empirical findings, knowledge evapo-
ration and disappearance results in a consumption of
extra time and workload for the development teams,
but by creating documentation and storing the knowl-
edge, the information will be saved from the risk of
getting lost.

V. VALIDITY THREATS

There are specific validity characteristics in research that
represent the quality and validity of it; e.g., construct validity,
internal validity, and external validity [12]. A number of
threats to validity were identified in the study.

Construct validity is the correct choice of operational mea-
sures in a study and their alignment with the research questions
and objectives [12]. In this study, multiple sources of evidence
were used to increase the construct validity. Moreover, we
performed three collection methods on both cases of the case
study in order to increase the confidence in research data.
However, it is worth mentioning that the survey method did not
have any questions regarding the company of the respondents.
Therefore, we could not identify the respondents that were
from the two companies under study. For this reason, we opted
out the survey findings from our case study data sources, and
only presented the results in section IV as they were still
valuable findings covering the opinions of a sample group
within the software industry.

Internal validity ensures that the factors under study in
the research were not affected by any another factor outside
the scope of the study [12]. During data collection, the
authors asked the participants to cooperate in the survey, work
diaries, and the interviews. As the same group of participants
were approached in various methods, their awareness of the
usage and usefulness of software documentation might be
exaggerated and altered in comparison to their everyday use
of documentation. In order to mitigate this threat, we sched-
uled a seven-day break between each data collection method.
Moreover, an interviewee’s feelings toward his company and
the state of relationship with his team members might risk
the internal validity of the research as well. To lower the
risk, we approached the participants with various types of
questions, some of them asking the same concept but from
different viewpoints, in order to circumvent personal feelings
and focusing on professional aspects.

External validity concerns if the findings of the study
are generalizable afar from the current study [12]. In our
research, we have one data point in each company under
study; this might limit the generalisability of our results.
However, by running a multiple-case study with various data
collection methods, we are having a more in-depth look at
the phenomenon through two cases. Also, our results will
encourage other researchers to examine more companies and
cases by applying our proposed case study approach in order
to seek the ability of replicating the results in this context.

Reliability is the extent to which the same results and
conclusions of a research can be reached if it is to be
operated by other researchers [12]. By using a computer-
assisted data analysis software (NVivo), we made a database of
the interview recordings, transcriptions, work diary templates,
survey responses, and their relevant codes and themes. This
presents a transparent view of our case study approach and a
chain of evidence from all the data collection methods in the
study. By inspecting this data, the study can be replicated by
other researchers.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we studied the relation between software
documentation and communication among/within develop-
ment teams, and how software documentation and specifically
architecture and design documents can be of help to com-
munication. We carried out a multiple-case study on the IT
departments of two Swedish manufacturing companies. Our
proposed approach consisted of a qualitative evaluation of
cases by having a data triangulation of three data sources:
two semi-structured interviews, a survey with twenty-four
participants, and two work diaries.

In relation to our case study, we found that 1) software doc-
umentation complements communication channels rather than
replacing them, 2) documentation usage frequency depends on
its up-to-dateness and accuracy, 3) the main reasons for using
documentation are helping in development and maintenance
phases, knowledge transfer and architecture comprehension,
although incomplete/outdated documents and assumptions of
extra cost and time consumption are the main concerns, 4)
architecture and design documents round out communication
channels, and their usage is effected by company policies and
educational/employment background, 5) knowledge evapora-
tion results in excessive time and cost consumption, however
software documentation is a remedy to that.

This study approach can be applied to other software devel-
opment organizations as researchers will be able to compare
the existing results with the ones expected from the context
of their cases. Other Possible future works can be toward the
following directions:

• What can be improved in various types of documentation
in order to act as the primary communication channel
replacing verbal communication?

• What are the elements affecting the accuracy and up-to-
dateness of software documentation?

• What incentives will encourage software professionals to
create and update software documentation? And why?

• To what extent the modelling language or template of an
architecture and design document affects its usage and
usefulness?

• How software processes can help mitigating the knowl-
edge evaporation effects on software development teams?

Moreover, there is a contradiction between the findings of
this study and how agile manifesto emphasizes on working
software over comprehensive documentation. Future qualita-

tive research is required to evaluate the findings of this study
in correlation with agile methodology.

REFERENCES

[1] M. Glinz and S. Fricker, On shared understanding in software engineer-
ing. Gesellschaft für Informatik eV, 2013.

[2] S. Ghobadi, “What drives knowledge sharing in software development
teams: A literature review and classification framework,” Information &
Management, vol. 52, no. 1, pp. 82–97, 2015.

[3] B. Curtis, H. Krasner, and N. Iscoe, “A field study of the software design
process for large systems,” Communications of the ACM, vol. 31, no. 11,
pp. 1268–1288, 1988.

[4] A. Forward, Software documentation: Building and maintaining arte-
facts of communication. University of Ottawa (Canada), 2002.

[5] M.-A. Storey, A. Zagalsky, F. Figueira Filho, L. Singer, and D. M.
German, “How social and communication channels shape and challenge
a participatory culture in software development,” IEEE Transactions on
Software Engineering, vol. 43, no. 2, pp. 185–204, 2017.

[6] W. Ding, P. Liang, A. Tang, and H. Van Vliet, “Knowledge-based
approaches in software documentation: A systematic literature review,”
Information and Software Technology, vol. 56, no. 6, pp. 545–567, 2014.

[7] G. Garousi, V. Garousi-Yusifoğlu, G. Ruhe, J. Zhi, M. Moussavi, and
B. Smith, “Usage and usefulness of technical software documentation:
An industrial case study,” Information and Software Technology, vol. 57,
pp. 664–682, 2015.

[8] A. M. Fernández-Sáez, M. R. V. Chaudron, and M. Genero, “An
industrial case study on the use of uml in software maintenance and
its perceived benefits and hurdles,” Empirical Software Engineering,
vol. 23, no. 6, pp. 3281–3345, 2018.

[9] A. Forward and T. C. Lethbridge, “The relevance of software documen-
tation, tools and technologies: a survey,” in Proceedings of the 2002
ACM symposium on Document engineering. ACM, 2002, pp. 26–33.

[10] T. C. Lethbridge, J. Singer, and A. Forward, “How software engineers
use documentation: The state of the practice,” IEEE software, vol. 20,
no. 6, pp. 35–39, 2003.

[11] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical software engineering,
vol. 14, no. 2, p. 131, 2009.

[12] R. K. Yin, Case study research and applications: Design and methods.
Sage publications, 2017.

[13] K. M. Eisenhardt, “Building theories from case study research,”
Academy of management review, vol. 14, no. 4, pp. 532–550, 1989.

[14] V. A. Thurmond, “The point of triangulation,” Journal of nursing
scholarship, vol. 33, no. 3, pp. 253–258, 2001.

[15] K. Louise Barriball and A. While, “Collecting data using a semi-
structured interview: a discussion paper,” Journal of advanced nursing,
vol. 19, no. 2, pp. 328–335, 1994.

[16] S. L. Pfleeger and B. A. Kitchenham, “Principles of survey research: part
1: turning lemons into lemonade,” ACM SIGSOFT Software Engineering
Notes, vol. 26, no. 6, pp. 16–18, 2001.

[17] J. Linåker, S. M. Sulaman, R. Maiani de Mello, and M. Höst, “Guide-
lines for conducting surveys in software engineering,” 2015.

[18] O. Manai. How software documentation helps communica-
tion in development teams: A survey. [Online]. Available:
https://forms.gle/5rzhwzAEPkrg2QCw8

[19] T. C. Lethbridge, S. E. Sim, and J. Singer, “Studying software engineers:
Data collection techniques for software field studies,” Empirical software
engineering, vol. 10, no. 3, pp. 311–341, 2005.

[20] O. Manai. How software documentation helps com-
munication in development teams: Work diary tem-
plate. [Online]. Available: https://drive.google.com/file/d/
1gSZF8wXE1D11Brbd2o3ng8BTD94zKGPW/view?usp=sharing

[21] A. Alaszewski, Using diaries for social research. Sage, 2006.
[22] V. Braun and V. Clarke, “Using thematic analysis in psychology,”

Qualitative research in psychology, vol. 3, no. 2, pp. 77–101, 2006.
[23] J. Zhi, V. Garousi-Yusifoğlu, B. Sun, G. Garousi, S. Shahnewaz, and

G. Ruhe, “Cost, benefits and quality of software development documen-
tation: A systematic mapping,” Journal of Systems and Software, vol. 99,
pp. 175–198, 2015.

[24] E. Aghajani, C. Nagy, O. L. Vega-Márquez, M. Linares-Vásquez,
L. Moreno, G. Bavota, and M. Lanza, “Software documentation issues
unveiled,” in In Proceedings of ICSE 2019 (41st ACM/IEEE Interna-
tional Conference on Software Engineering).

APPENDIX A
INTERVIEW QUESTIONS

TABLE II
INTERVIEW QUESTIONS

RQ Interview Question
Q1 D What is your role within the company?
Q2 D How many years of experience do you have with software development?

Q3 RQ1
(pre) What is the most preferred communication channel(-s) personally for you
to seek information in development/maintenance phases? Software
documentation, emails, face-to-face communication, Q&A websites, etc.

Q4
RQ1,
RQ3

Why do you think software documentation can act as a communication
channel?

Q5 RQ1
(pre) Which form of communication channels can yield a faster and a more
reliable response in your experience?

Q6 RQ2 (pre) How often do you refer to various types of software documentation?
Q7 RQ2 How often do you refer to architecture and design documents?

Q8
RQ3,
RQ4 For what purposes do you mainly refer to design documents?

Q9 RQ4
Do you think design documents are capable of being the primary form of
communication in specific situations?

Q10 RQ3
As a developer, do you think software documentation can reduce the time
spent on finding answers/solutions compared to other means of
communication?

Q11 RQ5
In your personal experience, how does the lack of software documentation
affect development teams?

Q12 RQ5 (pre) Does the lack of documentation result in knowledge evaporation?

APPENDIX B
SURVEY (QUESTIONNAIRE) QUESTIONS

University of Gothenburg - CSE department -Thesis
research: How software documentation helps
communication in development teams
Software developers seek to communicate and engage with each other in order to collaborate and
contribute to various development practices. Documentation is one of the means of conveying
information within projects and therefore it is a form of communication among various project members.
The case study intends to research into the correlation between software documentation and
communication, and seeking the effects of documentation on communication among/within software
development teams.

The research is designed for DIT565 Software Engineering and Management Bachelor thesis project at
the Computer and Software Engineering department of the University of Gothenburg.

Note: All the data gathered in this survey are anonymized and no email addresses, names, or any other
forms of identification are recorded.

*Required

1. What is your role within your organization? *
Mark only one oval.

 Developer

 Architect

 Tester

 Manager

 Other:

2. Do you think software documentation can act as a communication channel to transfer
information among people and projects? *
Mark only one oval.

 Yes

 No

3. Which communication channel(-s) do you find more helpful to understand a system? *
Tick all that apply.

 Face-to-face interactions

 Private chats (Instant messengers, Skype chat, ...)

 Private discussions (Email, ...)

 Software documentation (design documents, requirement specifications, test documents, ...)

 Question & Answer websites (Stack Overflow, Quora, ...)

 Code hosting websites (GitHub, Sourceforge, ...)

 Other:

Fig. 8. Questionnaire page 1

4. How often do you refer to software documentation in a normal working day? *
Mark only one oval.

 Not at all

 1 to 2 times a day

 3 to 5 times a day

 More than 5 times

 Other:

5. How often do you refer to architecture and design documents in a normal working day? *
Mark only one oval.

 Not at all

 1 to 2 times a day

 3 to 5 times a day

 More than 5 times

 Other:

6. For what reasons do you lookup in software documentation? *

7. To what degree do you think that design documentation is a remedy against knowledge
disappearing because of people leaving projects? *
Mark only one oval.

 Not at all

 A little

 Sometimes

 A lot

 Always

8. Is there any type of the information about the design that you tend to forget? *

Fig. 9. Questionnaire page 2

Powered by

9. In your personal experience, how does the lack of software documentation can affect the
software development teams? *

10. If you have any comments, please add them here.

Fig. 10. Questionnaire page 3

APPENDIX C
WORK DIARY TEMPLATE

Department of Computer Science and Engineering
Software Engineering & Management Program

Work Diary Template

Date: YYYY-MM-DD

Diarist No. or Initials: For privacy purposes, the first letter of the first name and the last letter of the

family name works just fine.

Page No.:

1. How is it common for you to use/refer to software documentation? (Check the box which best

describes your usage. From lowest to the highest amount of usage, ‘1’ represents No at all, and

‘5’ represents Most of the times.) (RQ2)

1☐ 2☐ 3☐ 4☐ 5☐

2. Please record each effort you make to reach software documentation. If the following table is

not enough for all your efforts, please record the rest in another diary template and increment

the page number. (RQ2, RQ4)

Time of
reference1

Time spent on
documentation

Type of the software
document2

Reason for using
documentation3

(1) The approximate time you referred to software documents. In 24-hr format.

(2) Software documentation can be architecture and design documents (AD), Requirements specifications (R), Source code comments

(SC), Test Documents (T), and Process descriptions (P). You can add any extra type of documents as well.

(3) A short sentence on the reason you have used documentation. For example, the type of the document was a design document, and

your reason for using it was “for checking the higher-level structure/design of a specific class.”

Fig. 11. Work diary template page 1

Department of Computer Science and Engineering
Software Engineering & Management Program

Please answer the following questions at the end of the day:

3. Which one of the following cases best describes your view on the use software documentation?

You can add any extra cases in the last part as well. (RQ1, RQ3)

- To access the knowledge of former developers who have designed/implemented the system

and have left the company ☐

- To use in communication with your current colleagues ☐

- To act as the primary communication medium and reduce the amount of verbal

communication and face-to-face meetings ☐

- To allow knowledge transfer among various teams within an organization ☐

- (You add other cases here)

4. Do you think software documentation can decrease knowledge evaporation in software

development teams? (RQ5)

Fig. 12. Work diary template page 2

