
Automated quality-assessment for UML
models in open source projects
Master’s thesis in Software engineering

BASSEM HUSSEIN

Department of Software Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2019

Master’s thesis 2019

Automated quality-assessment for
UML models in open source projects

BASSEM HUSSEIN

Department of Software Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2019

Automated quality-assessment for UML models in open source projects
BASSEM HUSSEIN

© BASSEM HUSSEIN, 2019.

Supervisor: Michel Chaudron, Department of Software Engineering
Supervisor: Truong Ho-Quang, Department of Software Engineering
Examiner: Jennifer Horkoff, Department of Software Engineering

Master’s Thesis 2019
Department of Software Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Gothenburg, Sweden 2019

iv

Automated quality-assessment for UML models in open source projects
Bassem Hussein
Department of Software Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Unified Modelling Language (UML) provides the facility for software engineers to
specify, construct, visualize, and document the artifacts of a software system and to
facilitate communication of ideas [1, 2]. It is shown in many studies [9, 14, 16] that
the quality of UML models has an impact on the quality of software systems. It is
not easy, and often a time-consuming task to maintain a good quality of UML mod-
els throughout the development process. For that reason, in many projects, UML
models are left outdated as the projects go on. This will lead to a gap between the
software design (reflected in UML models) and the actual implementation [4]. The
goal of this thesis is to automate the process of assessing the quality of UML models
in open source projects. We chose the design science research methodology to carry
out this thesis to achieve the thesis goal. The result of this thesis is UML-Ninja,
which is a web tool that can automatically assess the quality of UML models in
open source projects based on metrics and rules. The resulted tool (UML-Ninja)
was evaluated based on 15 interviews with researchers, students, and practitioners.
Researchers, students, and practitioners found UML-Ninja and the automated ap-
proach behind it can help them to obtain a better assessment of UML models quality
as well as improving the quality of UML models.

Keywords: UML, Quality metrics, Quality assessment, Automation, FOSS.

v

Acknowledgements
I would like to express my heartfelt gratitude to my supervisors Michel Chaudron
and Truong Ho-Quang, for guiding me and supporting me throughout the thesis.
The constant feedback that i received from them during the thesis helped me a
lot. I would like to extend my gratitude to my examiner, Jennifer Horkoff, and her
valuable comments. I would also like to thank all the participants that participated
in the interviews. Their feedback was really valuable to and critical for this thesis.

Bassem Hussein, Gothenburg, May 2019

vii

Contents

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Statement of the problem . 2
1.2 Research questions . 4
1.3 Purpose of the study . 4
1.4 Disposition . 5

2 Background and related work 6
2.1 Identifying UML models from open source project 6
2.2 Classifying and extracting data from UML models 6
2.3 UML models quality . 7

3 Research methodology 11
3.1 Awareness of the problem . 12
3.2 Suggested design . 13
3.3 Development . 13
3.4 Evaluation . 13

3.4.1 Procedure . 14
3.5 Conclusion . 19

4 Design and Implementation of UML-Ninja 20
4.1 Data collection . 20

4.1.1 Identifying potential UML files 20
4.1.2 Filtering UML files . 22

4.2 Data analysis . 23
4.2.1 Data extraction . 23
4.2.2 Quality Metrics calculator . 23
4.2.3 RESTful API interface . 24

4.3 Data presentation . 24
4.3.1 Repositories list page . 26
4.3.2 Repository page . 27

4.3.2.1 Repository information 28
4.3.2.2 Commit history box: 28
4.3.2.3 "Issues to watch out for" box 29

ix

Contents

4.3.2.4 UML process . 29
4.3.2.5 UML content . 29
4.3.2.6 UML files . 30

4.3.3 UML (class diagram) page . 30
4.3.3.1 class diagram information 30
4.3.3.2 Metrics . 31
4.3.3.3 Classes . 32

4.3.4 Compare page . 33
4.3.5 Metrics definition page . 33

5 Results 36
5.1 Iteration 0 . 36

5.1.1 Awareness of the problem . 36
5.1.2 Suggested design . 36
5.1.3 Development . 37
5.1.4 Evaluation . 38

5.2 Iteration 1 . 38
5.2.1 Awareness of the problem . 38
5.2.2 Design . 38
5.2.3 Development . 39
5.2.4 Evaluation . 39
5.2.5 Evaluation results . 40

5.2.5.1 Category: Use of UML 40
5.2.5.2 Category: Assessing the quality of UML 42
5.2.5.3 Category: Use of UML-Ninja 42
5.2.5.4 Category: Advantages 43
5.2.5.5 Category: Limitations 45

5.2.6 Usability of UML-Ninja . 46
5.3 Iteration 2 . 47

5.3.1 Awareness of the problem . 47
5.3.2 Design . 47
5.3.3 Development . 47
5.3.4 Evaluation . 47
5.3.5 Evaluation results . 48

5.3.5.1 Category: Use of UML 48
5.3.5.2 Category: Assessing the quality of UML 50
5.3.5.3 Category: Use of UML-Ninja 51
5.3.5.4 Category: Advantages 52
5.3.5.5 Category: Limitations 53

5.3.6 Usability of UML-Ninja . 54

6 Discussion 56
6.1 Research questions . 56
6.2 Threats to validity . 60

6.2.1 Construct validity . 60
6.2.2 Internal validity . 60
6.2.3 External validity . 61

x

Contents

6.3 Research Ethics . 61
6.3.1 Informed consent . 61
6.3.2 Anonymity and confidentiality 61
6.3.3 Fraud . 61

7 Conclusion and Future work 63
7.1 Conclusion . 63
7.2 Future work . 64

xi

Contents

xii

List of Figures

1.1 Software documentation . 3

2.1 Quality Model [16] . 9
2.2 Relations between metrics and rules and characteristics [16] 10

3.1 Design Science Research Cycle [6] . 11
3.2 SUS standard questions [29] . 17
3.3 SUS score ranking [32] . 18

4.1 UML-Ninja components and connectors diagram 21
4.2 Formats for storing UML models [5] 22
4.3 UML-Ninja sitemap . 26
4.4 Repositories list page . 27
4.5 Repository page . 28
4.6 Repository commit history chart . 29
4.7 UML files view . 30
4.8 Class diagram information view . 31
4.9 Class diagram metrics view . 32
4.10 Classes view . 33
4.11 Compare page . 34
4.12 Metrics definition page . 35

5.1 Zero iteration design . 37
5.2 Iteration 1: Coding results for category: Use of UML 41
5.3 Iteration 1: Coding results for category: Assessing the quality of UML 42
5.4 Iteration 1: Coding results for category: Use of UML-Ninja 43
5.5 Iteration 1: Coding results for category: Advantages 44
5.6 Iteration 1: Coding results for category: Limitations 45
5.7 Iteration 2: Coding results for category: Use of UML 48
5.8 Iteration 2: Coding results for category: Assessing the quality of UML 50
5.9 Iteration 2: Coding results for category: Use of UML-Ninja 51
5.10 Iteration 2: Coding results for category: Advantages 52
5.11 Iteration 2: Coding results for category: Limitations 53

xiii

List of Figures

xiv

List of Tables

2.1 Metrics and Rules [16] . 8

4.1 Metrics and rules supported by UML-Ninja 25

5.1 Iteration 1 identified limitations . 46
5.2 Iteration 1: Average SUS scores . 46
5.3 Iteration 2 identified limitations . 54
5.4 Iteration 2: Average SUS scores . 55

xv

List of Tables

xvi

1
Introduction

The software architecture (SA) of a system is the set of structures needed to reason
about the system, which comprises software elements, relations among them, and
properties of both [17]. (SA) Provides an overview of the whole system, and it
contains the models and the design decisions that are made during the architecture
design process. The SA design process is an essential and important part of the
software development process. SA models are often represented by Unified Modelling
Language (UML) [3]. UML provides the facility for software engineers to specify,
construct, visualize and document the artifacts of a software system and to facilitate
communication of ideas [1, 2].

Maintaining a good quality of software UML models throughout the development
process is not easy and often a time-consuming task. For that reason, in many
projects, UML models are left outdated as the projects go on [5, 18]. This often
leads to a gap between the software design (reflected in UML models) and the
actual implementation [4]. It is shown in many studies [9, 14, 16] that quality of
software design (UML models) has an impact on the quality of the software system.
Therefore, we need to assess the quality of UML models. Moreover, to make the
process easier and feasible, the process could be automated by developing a service
or a tool that performs the quality-assessment of the UML models automatically.
The quality assessment process will help in keeping track of the UML models during
the software development process. If the quality assessment process is automated,
it can be easily integrated as a step in the continuous integration (CI) chain or as a
part of DevOps. This will help to assess how well UML models are and how it can
be improved through the development process.

The thesis aims to automatically assess the quality of the UML models in Free/Open
Source Software (FOSS). For commercial software development, the use of UML
models has been introduced and commonly accepted to be a part of the software de-
velopment process. However, commercial projects are very reluctant to share models
because they believe these reflect critical intellectual property and/or insight into
their state of IT-affairs, which make it not easily accessible and challenging to study.
In (FOSS) development, all the project artifacts are publicly accessible, which makes
it more accessible and easier to study and collect data. (FOSS) Development charac-
terized by dynamism and distributed workplaces, code remains the key development
artifact [19]. Little is known about the use of UML in FOSS.

1

1. Introduction

Researches in the software modeling area have done some effort to collect exam-
ples of UML models from (FOSS) project that use modeling, but the results are
often limited [21]. The work done by Hebig et al. [5] aims to systematically mine
GitHub projects to answer the question when models if used, are created and up-
dated throughout the whole project’s life-span. Hebig et al. [5] present a database
that includes a list of 3 295 open source projects which include together 21 316
UML models. However, Hebig et al. [5] work aim to identify UML models if used
in FOSS, and it doesn’t include assessing the quality of UML models.
We aim to build a system that automatically assesses the quality of the UML models.
We will name the system UML-Ninja. Such a tool could assist different stakeholders
in different cases of use in the software engineering field. By stakeholders, we mean
potential users who will take advantage of UML-Ninja. For example:

• Practitioners: A practitioner can be a software developer, tester, or solution
architect involved in a software project. As a practitioner, you would like to
see the current status of the project’s UML models quality and be able to
recognize and rectify any issues with UML models.

• Student: As a student, you would like to check the quality of your UML models
in your course projects so that you can improve it.

• Researcher: As a researcher, you would like to collect data for further research
and analysis or collect data regarding quality of UML models in software
projects for empirical studies. A researcher could also be wanting to compare
one project with another in terms of what UML models are used and the
quality of UML models.

UML-Ninja will be a web tool that will allow the different stakeholders to assess the
quality of UML models in (FOSS) by presenting and visualizing the data collected in
a dashboard. This is done by crawling and analyzing data from GitHub repositories,
and according to quality assessment metrics, the tool will display an overview of the
project quality in terms of UML models. The quality check is on the model level
and not code level.

1.1 Statement of the problem

Software documentation consists of three main parts, user documentation, require-
ments documentation, and software architecture design documentation (SAD), as
shown in Figure 1.1. User documentation is about how the software is used, and
it describes the software features and how it can be used to complete a specific
task. Requirement documentation contains what the software does or shall do. It
is produced and consumed by all the stakeholder. It is used more for communi-
cation purposes throughout the development process between all the stakeholders
involved in the development process. Software architecture design documentation
(SAD) describes how the software is structured [17], how the system is split into
multiple components, and how these components are connected and communicating.
SAD should also contain all the design decision made and patterns used to construct
such software. Some practices can be used to create SAD such as the use of text

2

1. Introduction

documentation and UML models, updating and versioning, naming conventions and
navigation.

Figure 1.1: Software documentation

This thesis focus will be the SAD and more specifically, the UML models. The
study aims to automatically perform the quality assessment for UML models in
open source projects. Our goal can be achieved by developing a system that can
perform the quality assessment process automatically on a given project. To be able
to develop the desired system, we shall have to tackle some problems on the way.
Firstly, mining open sources projects repositories to extract UML models files is a
difficult and complicated process. Extracting data from UML files to be able to
evaluate it is a complex process. UML files can be stored in many different formats,
e.g., images or XMI based files; these formats can also include other information than
models. Research efforts [5, 20] have been made to tackle each problem separately,
but they are not integrated into one system. Secondly, the quality assessment of
UML models is a challenge itself. Some research efforts have been made to tackle
this challenge, for example, the work done by Chaudron et al. [16], which presents a
quality model for managing UML-based software development. This model enables
identifying the need for actions for quality improvement already in the early stages
of the life-cycle.
The first major challenge of this thesis is to build a system that integrates the works
that have been done into one system and adding more functionality to make the
automated quality assessment process possible. The second major challenge is to
evaluate the usefulness of such a system to different stakeholders (e.g., researchers,
students, practitioners). Since the system doesn’t exist, so there was no evaluation
done before.

3

1. Introduction

1.2 Research questions

This section presents the research questions (RQ) this thesis is answering. The re-
search questions consist of three main questions; the first RQ is divided into three
sub-questions (SQ). The research questions are formulated as follows:

• RQ1: How to automatically assess the quality of UML modelling in open
source projects?
– SQ1.1: How to assess the quality of UML models?
– SQ1.2: How to assess the quality of use of UML models in software

development processes?
– SQ1.3: How to visualize feedback to different stakeholders with a given

result of quality metrics?
• RQ2: Can metrics and feedback provided by UML-Ninja help the stakeholders

(e.g., researchers, students, practitioners) to obtain a better assessment of the
quality of UML models?

• RQ3: What are stakeholders (e.g. researchers, students, practitioners) per-
ceptions of the use of UML-Ninja in improving the quality of UML models?

The scope of RQ1 refers to the automated process of assessing the quality of UML
models. RQ1 is complemented by three SQ. The first SQ is scoped towards how can
we assess the quality of UML models using metrics and rules that can be automati-
cally calculated given the data collected from FOSS repositories. The second SQ is
scoped towards assessing the quality of the UML process in software projects. UML
process includes e.g., contribution ratio to see how many people actively contribute
to UML. The third SQ is scoped towards the feedback that can be provided to dif-
ferent stakeholders using the results calculated from the metrics and rules that are
automatically calculated.
In RQ2, we aim to answer if the feedback provided by the system could help stake-
holders to make a better assessment of the quality of UML models.
The scope of RQ2 refers to stakeholders perceptions of UML-Ninja as a tool that
can help to improve the quality of UML models given the feedback provided by the
system.

1.3 Purpose of the study

The purpose of the study is making the quality assessments process of UML models
easier and more feasible by developing online service for performing the quality-
assessment process (UML-Ninja).
The study will also report the usefulness of the UML-Ninja for different stakeholders
(e.g., researchers, students, practitioners) by allowing them to evaluate the useful-
ness and the usability of tools.

4

1. Introduction

1.4 Disposition
This document provides the reader with a comprehensive description of the thesis
research. In the remainder of this document, we present the background and related
work related to the subject of the thesis in chapter 2. Following that in chapter
3, we present the methodology we used to conduct the research. Next, we present
the results for the design science iterations in chapter 5. Following that chapter,
we present the design and implementation of the system (UML-Ninja) developed
as a part of the thesis in chapter 4. The discussion and reflection of the research
questions and the relevant threats to validity are presented in chapter 6 — finally,
The conclusion and future work in chapter 7.

5

2
Background and related work

This chapter discusses the background and related work about the quality assess-
ment of UML models. The problem of automatically performing quality assessment
for UML models is divided into sub-problems in this section; we will list each iden-
tified related work for each sub-problem.

2.1 Identifying UML models from open source
project

Identification and comprehension of UML models in (FOSS), Reggio et al. [7] inves-
tigated the types of UML diagrams used based on diverse available resources such as
online books, university courses, tutorials, or modeling tools but this work was done
mainly manually. On the other hand, Karasneh et al. [7] use a crawling approach
to fill an online repository with model images automatically.
But the work mentioned above focused on repositories that include just UML models
these repositories were created for teaching purposes, so these repositories seldom
include other artifacts than the models, making it impossible to study the models
in the environment of actual projects.
The work done by Hebig et al. [5], is the closest one towards an automated system to
identify UML models in (FOSS) by systematically mining GitHub projects to extract
UML models (if used) and find when they were created and updated throughout the
whole project’s life-cycle. As a result of their work, they created a database called
Lindholmen DB [15]. Lindholmen DB includes a list of all projects with a summary
per project, including the number of identified UML files and the file format (.xmi,
.uml, .jpg, .jpeg, .svg, .bmp, .gif, or .png) of the UML files in each project. It also
includes a list of links to all identified UML files. This work will be used as a part of
UML-Ninja to retrieve UML models from (FOSS) repositories to be able to perform
the quality assessment process. The UML retrieval process in Lindholmen DB is
not completely automated; some parts of the retrieval process are done manually.
However, our aim with UML-Ninja is to make the retrieval process automatically.

2.2 Classifying and extracting data from UML
models

UML models can be stored in many different formats, e.g. images or XMI based files.
Classifying and extracting data from XMI or UML formats is not a big challenge

6

2. Background and related work

since they are XML based formats. However, classifying and extracting data from
images is a difficult and complicated process to perform. Firstly regarding classifying
UML models from image formats, Ho-Quang et al. [22] investigate image features
that can be effectively used to classify images as class diagrams. Ho-Quang et al.
[22] use an automatic learning approach with a training set of 1300 images, and with
a success rate (90%-95%). Ho-Quang et al. [22] work will be used as a part of the
UML-Ninja tool to classify UML models from images.
Secondly, regarding extracting UML models data from image formats, Karasneh et
al. [20] have published research to tackle this problem. They created a tool called
Img2UML [20] that can extract UML class models from pixmap images and exports
them into XMI files that can be read by a commercial CASE tool. Karasneh et al.
[20] reported that the accuracy of the "Img2UML" system is: 95% for rectangles
classes, 80% for relationships and 92% for text recognition.
However, they do not use an automatic learning approach, but a fixed set of clas-
sification criteria. In this sense, the "IMG2UML" tool will be a part of the desired
system to make the quality assessment process possible.

2.3 UML models quality
The quality of UML models has an impact on the quality of software systems, and
it is shown in many studies. For example, the work of Ariadi (Chapter 6) [14] ex-
plained the link between the level of details (LOD) in UML and the defect density.
Ariadi used two types of UML models, which is class diagrams and sequence di-
agram in the study because they are the most commonly used. Ariadi concluded
that there is a significant correlation between (LOD) in UML and the defect density
of the associated implementation classes, the classes that have higher LOD tend to
have a lower defect density in their implementation. The work of Ariadi et al. [9]
also prove that the use of UML modeling potentially reduces the defect density in
the software system.

The impact of UML models on the quality of software systems is the main mo-
tivation to perform a quality assessment on UML models. Therefore, metrics and
rules have to be applied to UML models to make it possible to determine the qual-
ity of UML models. The work of Chaudron et al. [16] proposed a quality model
for UML models. This model considers the different uses of models in a project
as well as the phase in which a model is used as shown in Figure 2.1. This model
enables identifying the need for actions for quality improvement, by analyzing the
UML models using metrics/rules suggested by the quality model. Actions can be
identified to improve the UML model quality according to the results of applying
the UML models metrics/rules. The quality model is divided into a three-level de-
compositional structure as shown in Figure 2.1. The first level of the quality model
is the primary use of the artifact either in the development phase or in the main-
tenance phase. The second level of the quality model contains the purposes of the
artifact it describes why the artifact is used. These purposes are related to different
phases in the life-cycle of the product. The third level of the quality model contains
the inherent characteristics of the artifact. The characteristics concepts of the qual-

7

2. Background and related work

Name Description Ref

Ratios Ratios between number of elements
(e.g. number of methods per class) [16]

DIT Depth of Inheritance Tree [11, 12]
Coupling The number of other classes a class is related to. [11]

Cohesion Measures the extent to which parts
of a class are needed to perform a single task [11]

Class Complexity The effort required to understand a class [10]

Fan-In
The number of incoming association relations of a class.
Measures the extent to which other classes use
the class provided services.

[16]

Fan-Out
The number of outgoing association relations of a class.
Measures the extent to which the class uses
services provided by other classes.

[16]

Naming Conventions Adherence to naming conventions
Design Patterns Adherence to design patterns
NCL Number of crossing lines in a diagram [13]

Multi defs. Multiple definitions of an element (e.g. class)
under the same name. [16]

Comment Measures the extent to which the model contains comment.
Example: lines of comment per class. [16]

Table 2.1: Metrics and Rules [16]

ity model cannot be measured directly from the artifact. The characteristics can
be measured by a set of metrics/rules that are related to each characteristic. The
quality model relates the third level that present characteristics to a set metrics and
rules as shown in Figure 2.2.
Several efforts have been made to produce meaningful metrics and rules that could
measure the quality of UML models. Figure 2.2 list some of these metrics and
rules in relation to relevant quality characteristics of UML models. The metrics
and rules used in Ninja-UML should be quantifiable. Table 2.1 shows the list of
metrics/rules, their definition and prior works that have provided a way to calcu-
late the metrics/rules. The availability of these metrics in UML-Ninja, however,
depends on the type of data that Lindholmen DB [5] (the database we shall build
our system upon) can provide. Some of these metrics/rules that are listed in Table
2.1 can be hard to measure with the data provided by Lindholmen DB. For example,
quantifying number of cross lines in a diagram might be challenging, as Lindholmen
DB does not offer any information about this. Design pattern might be difficult to
quantify as well, since Lindholmen DB seems not to store multiplicity of association.

Regarding the automatic assessment of UML models, SDMetrics [23] is an object-
oriented design measurement tool used to measure the structural properties of UML
models. It provides a big catalog of UML metrics and rules. We believe that SD-
Metrics is a powerful tool, but it has some limitations. SDMetrcis only support
UML files in XMI format. It only presents the metrics information of a UML file
in the form of tables and histograms. Furthermore, it does not allow the user to
visualize multiple UML files simultaneously to make it easier for the user to compare
them. It does not facilitate the process of automatically identifying UML files; the

8

2. Background and related work

user is required to pick the desired file for the tool to analyze explicitly. Addition-
ally, SDMetrics is only focused on the content of UML models; it does not focus
on the UML process. SDMetrics does not provide metrics for UML process, such
as UML commit ratio or contributor ratio. With UML-Ninja we will try to tackle
the identified limitations for SDMetrcis. UML-Ninja aims to automate the process
of identifying and assessing the quality of UML models with minimal interaction
from the user. Furthermore, we aim to support more UML formats not only XMI
as well as allowing the user to work with multiple UML files simultaneously. With
UML-Ninja we will focus on both UML content and UML process metrics.

Figure 2.1: Quality Model [16]

9

2. Background and related work

Figure 2.2: Relations between metrics and rules and characteristics [16]

10

3
Research methodology

This chapter explains the methodology of this research. Along with the research
methodology, we also discuss how we obtained the research questions and how this
research is carried out to address them.

Figure 3.1: Design Science Research Cycle [6]

The research methodology that we follow in this thesis is the design science research
methodology [6]. The design science methodology helps in addressing unsolved and
important problems in new and innovative ways. Therefore, we chose the design
science research methodology for this thesis research, which enables us to develop
and study the approach of the automated quality assessments of UML models. This
design science research method consists of the following activities: awareness of the
problem suggested design, development, evaluation, and conclusion, as shown in
Figure 3.1. In this thesis, we followed the steps presented in Figure 3.1 in three
iterations. After the evaluation step for each iteration, the feedback collected were
analyzed, and we started a new iteration by identifying new problems and enhance-
ments from the feedback received. In the first iteration, we investigated possible

11

3. Research methodology

implementations for the automated process of assessing the quality of UML mod-
els. A prototype was developed that integrates the resulted tools form [5, 20, 22],
followed by an internal evaluation with the supervisors. The intention behind this
evaluation was to determine if such a system is possible to implement using the
existing tools and the data and metadata that can be retrieved from FOSS reper-
tories. In the second iteration, we aimed to implement quality metrics and rules.
Additionally, Developing a dashboard for visualizing the calculated metrics and rules
to support stakeholders in assessing the quality of UML models. The evaluation in
this iteration was done by conducting user studies with 6 participants (2 of each
stakeholder group). The feedback collected is analyzed, and we started a new iter-
ation by identifying new problems and enhancements from the feedback received.
The feedback collected from the previous iteration was used as an input for the third
iteration. The evaluation in this iteration was done by conducting user studies with
9 participants (3 of each stakeholder group). It should be noted that no participants
were reused in this evaluation; we chose 9 different participants. By analyzing the
data collected from this evaluation, we wanted to study and understand the areas
of improvement, which could be useful for future research works.

3.1 Awareness of the problem
In this thesis, the problem identification is done using an extensive literature review,
as discussed in Chapter 2. This process resulted in a need for a new system that
could facilitate the automated process of UML models quality assessment. The au-
tomated process of UML models quality assessment problem contains subproblems
that we also identified as follows:

• Identifying UML models files in project repositories.
• Designing quality assessments code for UML models files, using the quality

model and the metrics/rules mentioned in the related work section.
• Implementing indicators/measures for UML models files and to able to do that

we need to be able to recognize UML files found and taking into consideration
the changes history.

In this step, the research questions were formulated to address the aim and the in-
tended contribution of this study. This study aims to answer the identified research
questions. The research questions are formulated as follows:

• RQ1: How to automatically assess the quality of UML models in open source
projects?
– SQ1.1: How to assess the quality of UML models?
– SQ1.2: How to assess the quality of use of UML models in software

development processes?
– SQ1.3: How to visualize feedback to different stakeholders with a given

result of quality metrics?
• RQ2: Can metrics and feedback provided by UML-Ninja help the stakeholders

(e.g., researchers, students, practitioners) to obtain a better assessment of the

12

3. Research methodology

quality of UML models?
• RQ3: What are stakeholders (e.g., researchers, students, practitioners) per-

ceptions of the use of UML-Ninja in improving the quality of UML models?

3.2 Suggested design
In this thesis, the suggested solution is to develop a system that can automatically
perform the process of quality assessment for UML models. The intention of devel-
oping the proposed system is to automate the quality assessment of UML models in
a given project, by collecting data and metadata from GitHub repositories. Further-
more, identify all the UML model files, as well as helping stakeholder in assessing the
quality of UML models by calculating meaningful metrics from the data collected.

3.3 Development
To answer RQ1, we had to analyze how such a system can be implemented. Firstly
we implemented a prototype that integrates the resulted tools from previous re-
searches that are discussed in the related work chapter 2 as one automated system.
The main purpose of this prototype is to answer SQ1.1 and SQ1.2 by automatically
collecting the data needed for calculating the quality metrics to make the quality
assessment process of UML models possible. Secondly, we built a visualization com-
ponent to able to provide the desired feedback to stakeholders. The main purpose of
the visualization component is to answer SQ1.3. The UML-Ninja chapter 4 contains
a complete description of the development process of UML-Ninja.

The development process consisted of several iterations, as several iterations have
to be conducted to tweak UML-Ninja to the initial requirements. Every iteration
will contribute to the knowledge contributions of the project as shown in Figure 3.1.

3.4 Evaluation
In this step we aim to answer RQ2 and RQ3 and thereby to find out how stakeholders
perceive the new artifact and the new automated technique proposed. To obtain
their perception, we decided to perform qualitative user studies. The qualitative
user studies would help us in exploring participants views, their understanding and
experiences of the artifact (UML-Ninja). Furthermore, we wanted to know how
participants perceive the system (UML-Ninja) and the feedback that the system
(UML-Ninja) provides. Results from such evaluations typically include opinions
and suggestions. Moreover, we wanted to recognize areas of improvement, which
could be useful for future research works. Additionally, we wanted to know if the
system (UML-Ninja) could help participants to obtain a better assessment of the
quality of UML models. Therefore, as we are concerned about stakeholders views
on such a system as well as the metrics and rules that the system offers, we wanted
to achieve the following evaluation goals.

13

3. Research methodology

• Evaluate whether participants could understand and use the system (UML-
Ninja).

• Identify whether the participants could use the system (UML-Ninja) to obtain
a better assessment of the quality of UML models.

• What are the advantages and limitations of such a system?
• Identify whether the participants could use the system to improve the quality

of UML models.
Since such a system and the automated approach used are new, the participants had
no prior experience with such a system. That will make it difficult to understand
the participant’s perception of the system. This leads us to perform a user study.
The user study involves tasks or scenarios that the user has to perform during the
study. In other words, tasks are activities the participants of a study should perform
as a part of an evaluation. Using the task in the user study made it possible for
us to evaluate whether participants could understand and use this system. More-
over, through the evaluation task, we wanted to understand if the system can help
participants to achieve a better quality assessment of UML models as well as im-
proving the quality of UML models. After knowing whether the participants could
understand the technique, we wanted to identify other outcomes such as advantages
and limitations of the system (UML-Ninja). By identifying the advantages of the
results, it would help us to emphasize the importance and contribution of the newly
proposed system. Knowing the limitations would help in improving the system.
The outcomes of the evaluation, such as advantages and weakness of the system are
studied qualitatively after conducting the user studies.

3.4.1 Procedure
The design of the user study involves the following four activities.

• Choosing participants: In this user study, we targeted participants who are
to some degree experienced with UML models and software development. We
sent an invitation for voluntary participation to the user study via personal
networks of the supervisors and the author. In the invitation, the following
information was clearly mentioned:
– Date and time for the interview
– Description of the system (UML-Ninja) and feedback that it offers.
– A short description of the study.
– expected time and duration of the study as well as the expected amount

of work from the participants.
We tried to choose participants that are representative to be able to get the
most realistic feedback about the tool. We chose participants from the three
stakeholder categories: students, developers, and practitioners. All partici-
pated in the study have good English knowledge, and this made us carry out
the process in the English language. They have also had the needed knowledge
about UML models and the impact of the UML models on software quality.

14

3. Research methodology

• Evaluation task: In this study, we made use of prescribed tasks, because the
system (UML-Ninja) and the automated technique behind it are rather new
to the participants. The evaluation task was steered towards answering if the
system (UML-Ninja) helps participants to achieve a better quality assessment
of UML models, hence helping them to improve the quality of UML models.
A preprocessed (by UML-Ninja) repository was used in the task. The project
contains UML models (class diagrams); some of these UML models have some
quality issues. The evaluation task is split into five steps, as follows:

1. Each participant were given the repository’s UML models (Class dia-
grams).

2. Each participant were asked to assess the quality of the given UMLmodels
using their current method of assessing the quality. This can be done
either using another software or by doing a manual review of the UML
model.

3. We introduced UML-Ninja to the participant, and we made sure that we
go through all the functions and features of UML-Ninja. Furthermore, we
made sure that all the participants received the same information about
UML-Ninja.

4. After introducing the UML-Ninja, each participant were asked to use
UML-Ninja to assess the quality of the same UML models.

5. Furthermore, each participant were asked if they can improve the quality
of UML models that has quality issues, using the feedback provided by
UML-Ninja.

• Data collection: For data collection, we used interviews. To elicit the opin-
ions and feelings about using the system, we made use of standardized, struc-
tured, open-ended questions for the interview questions. The interview ques-
tions consist of three parts, as follows:

Interview questions part 1: Part 1 consists of 6 questions concerning
the participant’s background of UML models, how they use it, and what types
of UML models they often use.
1. How would you describe yourself as (Developer, Student, Researcher,

other)?
2. How often do you use UML models in software projects?

(a) Very often
(b) Moderate
(c) Rarely
(d) Not at all

3. If you are using UML models at all, can you describe in your words what
do you use it for?

4. In which stage of the project do you use UML models?
5. What types of UML models do you often use?

15

3. Research methodology

6. How do you see the impact of UML models on the quality of software
systems? and why?

Interview questions part 2: Part 2 consists of 8 open-ended questions
concerning the usefulness of the system (UML-Ninja). The participants will
be asked if and how the tool could help them in accomplishing their tasks in
terms of assessing the quality of UML models in a project. They will also be
asked questions regarding the limitations of the tool and possible indicators
and features that could be implemented in UML-Ninja. The questions of part
2 are as follows:

1. Do you assess the quality of UML models? if yes, How often and for what
reason?

2. Do you think the UML-Ninja tools can help you accomplish your task of
assessing the quality of UML models?

3. If yes how do you compare UML-Ninja with your current way of checking
the UML models quality in terms of ease of use?

4. Does the tool motivate you to perform model quality check more often?
How would this benefit the modeling practices in your project(s)?

5. Do you think such a tool will motivate you to improve the quality of UML
models?

6. What are your thoughts about the automated quality assessment of UML
models approach taken by UML-Ninja?

7. What are your thoughts about the indicators (Metrics and rules) that
UML-Ninja offers, in terms of relevance?

8. Do you have any ideas for indicators or features that can be implemented
in UML-Ninja?

16

3. Research methodology

Figure 3.2: SUS standard questions [29]

Interview questions part 3: Part 3 of the questions are focused on evalu-
ating the usability of UML-Ninja using the System Usability Scale (SUS) [29]
standard questions. SUS is one of the standards and reliable ways to eval-
uate usability [30]; it consists of 10 questions with five response options for
respondents. The choices are based on a 5-point scale, ranging from "Strongly
agree" to "Strongly disagree". The SUS questions form used in the interviews
is shown in Figure 3.2. Evaluating usability is important because we want
UML-Ninja to be user-friendly and easy to use.

The structure of the evaluation interviews was divided as follows:

– Introduction: (3 min) A verbal introduction of the research and UML-
Ninja was given to the participant. The participant was informed on the
procedure and had the right to discontinue the interview at any time they
wished to.

– Interview questions part 1: (5 min) The participant was introduced

17

3. Research methodology

to the list of prospective stakeholders of UML-Ninja along with the in-
terview questions part 1.

– Evaluation task part 1: (10 min) The participant was introduced to
the evaluation task. Furthermore, the participant was asked to assess the
quality of chosen UML models using their current method of assessing
the quality. Their current method can be using a computer software
(SDMertcis) or manually.

– Hands-on Tutorial: (7 min) A hands-on tutorial was given to the par-
ticipant while explaining various functions and elements of UML-Ninja.

– Exploration: (10 min) The participant was requested to freely explore
the tool and clarify any issues he/she experienced when operating it.

– Evaluation task part 2: (10 min) The participant was asked to assess
the quality of chosen UML models using UML-Ninja.

– Interview questions part 2 and 3: (15 min) The participant was then
posed with open-ended questions regarding the usefulness of the tool fol-
lowed by SUS standard questions for usability.

• Data analysis: After the data from the interviews were collected. The in-
terview data were then analyzed using the coding [31] method. Coding is one
of the methods used in the qualitative data analysis, especially the analysis of
interview data. It is the process of capturing essential words or phrases from a
set of data that give the same ideas, themes, and categories [31]. Before start-
ing the coding process, a list of codes was created based on the motivation of
the evaluation that was discussed earlier. Once we had the list of codes, we
began coding the interviews data.
As mentioned earlier in the procedure activity, we are using SUS standard
questions [29] to evaluate the usability of the system (UML-Ninja). SUS cal-
culations produce a single number that represents a composition measure of
the overall usability of the tool being evaluated. SUS score values have a
range of 0 to 100; it should be noted that it is not a percentage value. The
interpretation of SUS score according to [32] is shown in Figure 3.3.

Figure 3.3: SUS score ranking [32]

18

3. Research methodology

3.5 Conclusion
The conclusion step is the last step in the design science research methodology. This
phase could be the end of a research cycle, or it can lead to starting new research
iteration. The final step of a research effort is typically the result, in this step
the results need to be communicated to practitioners and researcher so that it will
contribute in the design science knowledge and contributions as shown in Figure
3.1.

19

4
Design and Implementation of

UML-Ninja

In this chapter, the design and implementation of UML-Ninja will be covered. The
main intention of building UML-Ninja is to answer RQ1. The main functionality of
UML-Ninja is to automatically assess the quality of UML models to help stakehold-
ers to obtain a better quality assessment.
The main quality attributes that drive the design and development of UML-Ninja
are usefulness, usability, and flexibility.

• Usefulness: Checking if the tool does what it is supposed to as well as helping
stakeholders to accomplish their tasks more efficiently. Furthermore, checking
if the tool can help to accomplish tasks more efficiently.

• Usability: Checking if the tool is easy to use and understand.
• Flexibility: Checking if the tool is flexible enough to modify. Adaptable to

other products as well as easy to integrate with other standard 3rd party
components.

The development of UML-Ninja consists of four main components: data collection,
data analysis, RESTful API interface component, and data presentation, as shown
in figure 4.1.

4.1 Data collection
This component is mainly based on the work done by Hebig et al. [5]. However,
UML-Ninja automates the whole process. The main functionality of this component
is collecting data needed for the quality assessment process. The data required is
obtained from GitHub using GitHub API. The data collection component is divided
into two steps as following:

4.1.1 Identifying potential UML files
To understand how UML-Ninja searched for UML files, it is important to understand
how these files are created and stored. Based on Hebig et al. [5] work Figure 4.2
illustrates the different sources of UML files (at the bottom in green). Furthermore,
UML models can be created manually as manual drawing (sketching). It can also
be created using tools that have drawing functionality, or dedicated modeling tools,

20

4. Design and Implementation of UML-Ninja

Figure 4.1: UML-Ninja components and connectors diagram

21

4. Design and Implementation of UML-Ninja

Figure 4.2: Formats for storing UML models [5]

such as StarUML or Argo UML. It is possible as well to generate UML models based
on the source code. This large variety of tools lead to a wide range of ways in which
UML models are represented by files, as shown in 4.2 in blue.
Manual sketches are sometimes digitized, thus lead to image files of diverse formats.
Tools with drawing capabilities can either store the UML models as images, such as
.jpeg and .png or .bmp, or may have tool specific formats, e.g., "pptx". Dedicated
modeling tools work with tool specific file formats, e.g., the Enterprise Architect
tool stores files with a ".eap" extension. Other tools store UML files in a "standard"
formats such as ".UML" and ".XMI".
As a consequence, when searching for UML files, many different file types need to be
considered. UML-Ninja search for potential UML files using heuristic filters based
on the creation and storage nature of UML files. However, UML-Ninja only detects
UML files standard formats, as well as image formats.

4.1.2 Filtering UML files
Not every image, .XMI or .UML file is UML. Therefore, the filtering process is
needed to check whether the collected files are UML files or not. Standard UML
formats (.XMI and .UML) and images formats each has it is own filtration process as
following: Filtering UML images All identified image is download to the UML-Ninja
server. Unreadable images were eliminated from the process. Duplicate images were
automatically detected, and representative images were added to the candidate list.
To detect duplicate images, an open source .NET library "Similar images finder" were
used to calculates differences between their RGB projections to say how similar
they are. The similarity threshold is set at 95% since it gave the best detection
rate, according to Hebig et al. [5]. It’s almost impossible to find reasonable UML
content in icon-size images; thus, images with less than 128 x 128 were excluded
from the candidate list. The final images candidate list were classified as UML
or non-UML images by using a UML classifier created by Ho-Quang et al. [22].

22

4. Design and Implementation of UML-Ninja

However, this classifier is only able to classify class diagrams from images therefor
all UML images are classified as a class diagram. This classifier is using a machine
learning algorithm that was trained by a set of 1 300 images. Filtering Standard
UML formats (.XMI and .UML) Firstly UML-Ninja runs a duplicate detection on
.XMI and .UML files by comparing hash values of the file contents. Standard UML
formats (.XMI and .UML) are special form of XML format. XMI is a standard
format that should enable the exchange of models between different tools. In theory,
it should be simple to identify whether an XML file. We can determine if the
XML file contains UML model or not based on the schema reference in the XML
for example, the following three schema references to the UML: "org.omg/ UML",
"omg.org/spec/UML", and "http://schema.omg.org/spec/UML". Therefore UML-
Ninja search with a simple search function for these schema references in all XMI
and UML files detected and if found the file will be classified as UML file. Each type
of UML type has different XML representation according to the schema references.
UML-Ninja can automatically classify class diagrams, sequence diagrams, use case
diagrams, and activity diagrams from standard UML formats.

4.2 Data analysis
After the process of identifying UML files is done, a list of UML files in different
formats is produced as discussed in the section before. The data analysis component
takes this list of UML as an input, and it extracts data needed for calculating quality
metrics. The data analysis process is divided into two steps as following:

4.2.1 Data extraction
In this step, UML-Ninja will extract all the data and metadata needed for each
identified UML file to be able to calculate the quality metrics. Firstly UML-Ninja
downloads all the metadata from GitHub such as commits, contributors and some
other metadata about the repository itself (for example: first and last commit,
founder of the repository, ...). This process is done using a python script that
downloads all metadata needed in a JSON format from GitHub. Then UML-Ninja
saves all metadata to a local database. Secondly, UML-Ninja extracts data from
the UML file content. Each UML formats (images, .XMI and .UML) has it is own
process. For .XMI and .UML files, UML-Ninja has a parser component that parses
the content of these files and then saves it to the local database. For image formats,
UML-Ninja converts class diagram images to XMI format using IMG2UML [8]. The
produced XMI file is sent to the XMI parser to parse the content of the XMI and
save it to the database.

4.2.2 Quality Metrics calculator
After the data extraction step is done, now it is time to calculate all the quality
metrics that UML-Ninja support. The quality metrics are based on the quality
model by Chaudron et al. [16] and SDMetrics [23]. Table 4.1 shows the list of
metrics, their level, their type, definition, and prior works that have provided a way

23

4. Design and Implementation of UML-Ninja

to calculate the metrics.
The Quality Metrics calculator component does do not support all metrics and
rules suggested by Chaudron et al. [16] due to limitations on the collected data
in the "Data extraction" step. As a result, some of the metrics and rules couldn’t
be calculated with the given data. For example, quantifying the number of cross
lines in a diagram (NCL) is challenging, as the tools used and data collected does
not provide any data about the multiplicity of the associations. Moreover, Design
pattern metrics is difficult to quantify as well, since the tools used and data collected
does not provide any data about that. The quality model introduces by Chaudron
et al. [16], doesn’t always explain how the metrics can be calculated, for example,
complexity, cohesion, naming conventions, and level of details metrics. SDMetrics
[23] provides a big metrics catalog that includes the mentioned metrics. Therefore,
SDMetrics [23] metrics definition is used to be able to calculate these those metrics.
Several research efforts [33, 34] have been made to identify a meaningful threshold
for quality metrics. The work done by Filó et al. [33] used an empirical method
to identify identifying thresholds for 17 object-oriented software metrics using 111
system. Filó et al. [33] suggested three levels for the thresholds: Good/Common,
Regular/Casual, and Bad/Uncommon. The UML-Ninja metrics calculator uses the
suggested Bad/Uncommon level as metrics threshold for the following metrics.

• For the Depth of inheritance tree (DIT), the threshold is 4.
• For the number of classes (NOC), the threshold is 28.
• For the number of methods (NOM) per class, the threshold is 14.
• For the number of fields (NOF) per class, the threshold is 8.

Furthermore, other metrics have a threshold of 1, such as the number of unused
classes, number of god classes, and the number of classes with long parameter list
operations. If the calculated value if a specific metric is higher than or equal the
threshold, UML-Ninja will display a warning, as will be discussed in Section 4.3.

4.2.3 RESTful API interface
The RESTful API interface component is an interface between UML-Ninja and other
systems or components that uses HTTP protocol to retrieve data from UML-Ninja in
JSON format. This component can be used by any external system, hence this will
make UML-Ninja fixable and scalable. As shown in Figure 4.1, the data presenta-
tion component is using the RESTful API interface component to retrieve the data
it needs. The RESTful API interface component function as the communication
channel between the UML-Ninja back-end and front-end.

4.3 Data presentation
The Data presentation component aims to present the data and metadata collected
about the UML models. Furthermore, displaying the calculated values for the qual-
ity metrics and rules. This will allow stakeholders to easily assess the UML quality,
as well as getting an indication on how to improve the quality of UML models. The
Data presentation component presents data and metadata in a visually appealing

24

4. Design and Implementation of UML-Ninja

Metric Level Type Description Ref
UML commit ratio Repository UML process Ratio between UML files commits and all commits
Editable UML ratio Repository UML process Ratio between editable UML files and all UML files
UML contributor ratio Repository UML process Ratio between UML contributors and all contributors

Number of diagrams Repository UML content Total number of each identified diagram (class diagram,
use case diagram, ...)

Unused classes Diagram UML content Number of classes that have no child classes, dependencies,
or associations [25]

DIT Diagram UML content The maximum length of a path from a class to a root class in
the inheritance structure of the class diagram [11, 12]

Number of classes Diagram UML content Total number of classes [35]
Coupling Diagram UML content The number of other classes a class is related to. [11]

Complexity Diagram UML content

The number of relationships between classes and interfaces in
the class diagram.
There is a dependency from class or interface C to class or
interface D if:
- C has an attribute of type D.
- C has an operation with a parameter of type D.
- C has an association, aggregation, or composition
with navigability to D.

- C has a UML dependency or usage dependency to D.
- C is a child of D.
- C implements interface D.

[23, 28]

LOD Diagram UML content
The ratio of attributes with signature to the total number of
attributes of a class + the ratio of operations with parameters
to the total number of operations of a class

[14]

Cohesion Diagram UML content

This is the average number of internal relationships per
class/interface, and is calculated as the ratio of
Complexity+1 to the number of classes and interfaces
in the class diagram.

[23, 28]

Multi-defs Diagram, Class UML content Multiple definitions of an element (e.g. class) under the
same name. [16]

Naming Conventions Class UML content Adherence to naming conventions recommended by the
guideline in the UML standards [24]

Number of attributes Class UML content Total number of attributes [35]
Number of operations Class UML content Total number of operations [35]
Fan-in Class UML content The number of incoming association relations of a class. [16]
Fan-out Class UML content The number of outgoing association relations of a class. [16]
God classes Class UML content The class has more than 60 attributes and operations. [26, 27]

LongParList Operation Class UML content The operation has a long parameter list with five or
more parameters.. [23, 27]

Table 4.1: Metrics and rules supported by UML-Ninja

manner to support stakeholders in making decisions. Furthermore, it structures and
displays the information from high to low abstraction.
The Data presentation component is divided into five pages as shown in the Figure
4.3.

• Repositories list page.
• Repository page.
• UML (class diagram) page.
• Compare page.
• Metrics definition.

25

4. Design and Implementation of UML-Ninja

Figure 4.3: UML-Ninja sitemap

4.3.1 Repositories list page

The Repositories list page is the home page of UML-Ninja. From this page, the user
can access the two main functions of UML-Ninja, which are:

• Automatically assesses the quality of UML model from a GitHub repository.
• Displaying the data collected about the repository and it’s identified UML

models, as well as displaying the quality assessment information of an already
proceed repository.

The first function is implemented as shown on the top box of Figure 4.4. This box
contains an input field as well as a clickable button named process. The user en-
ters the desired GitHub repository URL in the input field and clicks on the process
button. UML-Ninja will send the user request to its back-end to start processing
the repository. The user will be provided by progress feedback. As soon as the
processing is finished, the user will be notified.
The second main function of the repositories page is represented as a list of reposi-
tories (projects) shown as cards for all processed repositories. The cards are shown
under the top box in Figure 4.4. Each repository card show some metadata about
the repository such as name, creator, first commit, the last commit, the number of
contributors, and the number of identified UML files. The user has the possibility
to search with the repository name or the repository creator name as well. There is
also a possibility to sort repositories by the following field:

• Number of UML files
• Number of Editable UML files
• Number of contributors
• Number of UML files contributors

26

4. Design and Implementation of UML-Ninja

• Number of commits
• First commit
• Last commit

Each repository card could have one or more badge from the following badges:

• Editable UML: If the repository contains UML files in editable format (.XMI
or .UML).

• UML naming conversions: If all identified UML files follows UML naming
conventions [24] in a given repository.

• Correctness: If each UML files in a given repository follow the following two
rules:
– The UML file doesn’t contain multiple definitions of an element (e.g.

class) under the same name.
– The UML file doesn’t contain unused classes.

The main intention behind developing these badges is to motivate stakeholders to
enhance the quality of UML models. There is also a possibility to filter repositories
with badges, as shown in Figure 4.4. Moreover, each card has two clickable buttons
located on the bottom of the card. The first button allows the user to navigate to
the repository page on GitHub; the second one is for showing more details about
the repository by navigating to the Repository page.

Figure 4.4: Repositories list page

4.3.2 Repository page
The user will be navigated to the repository page, as soon as the view button
located on each repository card on the repositories page 4.4 is clicked. The main
functionality of this page is to provide an overview of the selected repository, and
it’s identified UML files. The repository page is divided into six different views:

27

4. Design and Implementation of UML-Ninja

repository information, commit history chart, "Issues to watch out for" box, UML
process, UML content, and UML files as shown in Figure 4.5.

Figure 4.5: Repository page

4.3.2.1 Repository information

This box shows metadata about the repository such as name, creator, first commit,
the last commit, total number of commits, number of editable UML files identified
(.XMI and .UML), the total number of identified UML files and a button that links
to the repository page on GitHub.

4.3.2.2 Commit history box:

Is a multi-line chart that represents the repository commit history as shown in Figure
4.6. The x-axis represents the commit date and time, and the y-axis represents the
number of committed files. The multi-line chart contains two lines; the red one
is representing the commits that contain identified UML files, and the blue one
is representing the commits that contain other files than UML files (e.g., source
code). This chart gives the user an idea about the development methodology of
the project. For example, if the project follows the Waterfall software development
methodology, it could be that all the UML files are committed at the start of the
project and the UML files are not updated throughout the process. On the other
hand, if the software development methodology is Agile, the UML files might be
updated more frequently.

28

4. Design and Implementation of UML-Ninja

Figure 4.6: Repository commit history chart

4.3.2.3 "Issues to watch out for" box

In this box, UML-Ninja presents indicators that need attention from the user. These
indicators can be on the repository level or the Identified UML files level, for exam-
ple:

• The repository contains class diagrams with unused classes.
• The repository contains class diagrams with multi-defined items (classes or

attributes under the same class).
• The repository contains class diagrams with DIT value higher than the thresh-

old.

4.3.2.4 UML process

In this view, UML-Ninja presents qualitative features regarding the process of UML
in the selected repository, for example, UML commits ratio, editable UML ratio,
and UML contributors ratio. As shown in Figure 4.5, the data are presented as
three progress bars. The UML process indicators are implemented because of sev-
eral reasons, including the importance of the indicators and value they add to the
assessment of UML models, the type of available data about the repositories, time
constraints and the level of complexity of indicator. Data regarding repositories is
different than a local software project. For example, data about every change in a
GitHub repository is stored under GitHub’s version control system, whereas, this
does not apply to a local software project. UML-Ninja uses the data that was acces-
sible and stored during the data analysis process discussed earlier, to implement the
respective indicators. For example, to calculate the UML contributor ratio metrics,
UML-Ninja stores the data about the number of people who added and updated the
UML models as well as the total number of project contributors. The same for the
UML commit ratio UML-Ninja stores all the commit history retrieved from GitHub
and flag the commits that contain UML files.

4.3.2.5 UML content

This view presents an overview of the types of the identified UML models as well
as the count of each type. As shown in Figure 4.5. UML-Ninja can identify (class
diagram, sequence diagram, use-case diagram, and activity diagram). However,
UML-Ninja has some limitation on identifying UML models. UML-Ninja can iden-
tify class diagrams from image formats, .XMI format, and .UML format. On the
other hand, UML-Ninja can’t identify sequence diagrams, use-case diagrams, and

29

4. Design and Implementation of UML-Ninja

Figure 4.7: UML files view

activity diagrams from image formats, but it can only identify them from .XMI
format and .UML format.

4.3.2.6 UML files

This view lists all identified UML files as cards, as shown in Figure 4.7. Each
card contains information about the UML file such as UML type, UML file name,
creator, created date, format (image format, XMI or UML). For UML files in image
format, the UML file image will be displayed on each card. Moreover, each card
shows some of the overviews of the quality metrics that UML-Ninja calculates for
each identified UML class diagram. These metrics are number of classes, depth of
inheritance tree (DIT), number of multi-defined objects, number of unused classes,
and max coupling. These metrics are represented as a radar chart, as shown in
Figure 4.7. Each card has two buttons; the first button is for adding the file to the
compare list. The other is for navigating to "UML (class diagram) page" to show
more information about the selected UML file.

4.3.3 UML (class diagram) page
UML-Ninja only supports class diagrams quality metrics as discussed earlier; hence,
the primary purpose of the UML page is to show information and quality metrics
for class diagrams. The user will be navigated to the UML page when the view
button on the class diagram card on the UML files view is clicked. The UML page
is split into three views: class diagram information, metrics, and classes. The user
can navigate between these views by clicking on the tab menu bar located on the
top of Figure 4.8.

4.3.3.1 class diagram information

The class diagram information view displays metadata about the class diagram as
well as class diagram image if the class diagram is in image format. These metadata

30

4. Design and Implementation of UML-Ninja

are: class diagram name, commit date and time, and creator as well as two buttons.
The first button is for navigating to the GitHub page for this class diagram, and
the other is for adding the class diagram to the compare list. Moreover, if the class
diagram is in image format, the class diagram information view allows the user to
download the XMI file generated from the IMG2UML [20] tool discussed in the data
extraction step discussed earlier in this chapter.

Figure 4.8: Class diagram information view

4.3.3.2 Metrics

In this view, the class diagrams metrics are displayed. The motivation behind the
class diagrams metrics that are currently implemented is based on the quality model
introduced by Chaudron et al. [16] and SDMetrics [23]. The supported metrics for
the UML class diagrams shown in Figure 4.9 are:

• Number of classes
• Fan-in
• Fan-out
• Number of unused classes
• Coupling
• Complexity
• Cohesion
• Number of multi-defined objects
• Depth of inheritance tree
• Number of god classes
• Level of details
• Number of classes follow UML naming conventions that are recommended by

the guideline in the UML standards [24]
• Number of classes with long parameter list operations

According to Chaudron et al. [16] quality model, each metrics is connected to char-
acteristics. Therefore we implemented a filter function that allows the user to filter
metrics by characteristic as shown on the top of Figure 4.9. These characteristics
are purposed by Chaudron et al. [16] quality model.

31

4. Design and Implementation of UML-Ninja

Additionally, If the calculated value of a specific metric is higher than or equal the
threshold, UML-Ninja will highlight the value of the metric in a red circle as shown
in Figure 4.9.

Figure 4.9: Class diagram metrics view

4.3.3.3 Classes

This view shows a list of all the classes exists in the selected class diagram. Each
class is represented as a card that contains information and indicators about the
class, as shown in Figure 4.10. The information displayed for each class are: class
name, number of attributes, number of operations, Fan-in, Fan-out, and coupling.
Moreover, four indicators can be displayed for each class. Those indicators are:

• If the class is following naming conventions or not.
• If the class is a god class.
• if the class is unused.
• If the class has a long parameter list operation.

This view provides a sorting function, as shown in Figure 4.10. The user can sort
classes by all supported class level metrics: Number of attributes, Number of oper-
ations, Fan-in, Fan-out, and coupling. This view also presents a histogram for the
value distribution for the chosen metrics.

32

4. Design and Implementation of UML-Ninja

Figure 4.10: Classes view

4.3.4 Compare page
As discussed in the UML files view 4.3.2.6 and class diagram information view
4.3.3.1, UML-Ninja allows users to add class diagrams to the compare list. The
class diagrams can be from the same project or a different project. This function
enables the user to compare the quality of two or more class diagram using the results
calculated by the quality metrics. All the metrics that UML-Ninja support (shown
on Table 4.1) will be displayed on this page. Each class diagram is represented as
a column in the compare page, as shown in Figure 4.11. There is also a possibility
to remove file by file from the compare list by clicking on the red remove button on
the top right side of each UML file card.

4.3.5 Metrics definition page
This page display all metrics and rules supported by UML-Ninja . Furthermore,
this page describes each metrics, how it is calculated and related work, as shown in
Figure 4.12.

Technology choices
UML-Ninja is developed using modern web technologies. The back-end is written
in C# using Microsoft’s latest framework .NET Core 2.2 [36]. The front-end is
developed using the Angular 7 [37]. For creating charts, two chart libraries were
used: Plotly [38] and Chartjs [39].

33

4. Design and Implementation of UML-Ninja

Figure 4.11: Compare page

34

4. Design and Implementation of UML-Ninja

Figure 4.12: Metrics definition page

35

5
Results

In this chapter, the implementation of the research methodology will be discussed.
As discussed earlier in the methodology chapter 3, we follow the design science
research methodology in three iterations. This chapter discusses the three iterations
in details.

5.1 Iteration 0
In this section iteration 0 of the design science methodology will be discussed. This
iteration is the first step towards answering RQ1.

5.1.1 Awareness of the problem
In this iteration we aim to solve the following problems:

• Identifying UML models files in FOSS repositories.
• Extracting data and metadata from UML models files.

Research efforts [5, 20] have been made to tackle each problem separately, but they
are not integrated into one system. This iteration aims to integrate the resulted
tools [5, 20] into one system.

5.1.2 Suggested design
To be able to solve the identified problems in the previous step, the data collection
and the data analysis components were designed, as shown in Figure 5.1. These two
components are designed to integrate the work mentioned earlier [5, 20]. Further-
more, saving the data collected to a local database.

• Data collection: The main functionality of this component is collecting data
needed for the quality assessment process. The data required is obtained from
GitHub using GitHub API. The output of this step is a list of UML files in
different formats.

• Data analysis: The data analysis component takes this list of UML as an
input, and it extracts the data needed for calculating quality metrics.

36

5. Results

Figure 5.1: Zero iteration design

5.1.3 Development

The aim for the development in this iteration is to automate the process of identi-
fying UML models from GitHub repositories. Additionally, Extract data and meta-
data needed for the quality assessment process. The development in this iteration
is mainly based on the work done by Hebig et al. [5]. However, we aim to auto-
mate the process. Therefore, resulted tools form [5, 20, 22] needs to be integrated
into one system to make the automated process possible. The development in this
iteration involved modifications to the existing tools. For example, we modified the
"img2uml" tool create by Karasneh et al. [20] from a windows desktop application to
a command line script. Additionally, modifications were done to the GitHub crawler
(python script) that obtains potential UML files from GitHub repositories. Some
other tools were rewritten completely such as "UMLDetect". "UMLDetect" is a the
textual UML identifier (for .uml, .xmi files). Furthermore, developing the data col-
lection component and data analysis component, as discussed in the design section
5.1.2. Moreover, the core development of the back-end and the database were done.

37

5. Results

There is always a certain rate of inaccuracy in the existing automated systems/tools
used to identify and extract from images. Thus this will directly affect UML-Ninja
accuracy rate. For example, the class diagram image classifier accuracy rate is be-
tween (90%-95%). Moreover, the reported accuracy of the "Img2UML" system is:
95% for rectangles classes, 80% for relationships and 92% for text recognition.

5.1.4 Evaluation
The Zero evaluation iteration was conducted approximately one month after the
starting of the project. This evaluation iteration was done internally with the su-
pervisors. The intention behind this evaluation was to determine whether implement
of such a tools is feasible using the existing tools and whether the data and metadata
can be retrieved from FOSS repositories. Furthermore, we aimed to find out which
metrics and rules can be automatically calculated given the data collected.
Most importantly, getting early feedback is essential to steer the project in the
right direction. It should be noted that throughout the project time frame, weekly
evaluation meetings were performed with the supervisors on updates and progress.
One recurring theme in the feedback sessions was the design of the User Interface
and the shape of the graphs and dashboard.

5.2 Iteration 1
In this section iteration 1 of the design science methodology will be discussed. The
rationale behind this iteration is to answer the research questions.

5.2.1 Awareness of the problem
To answer RQ1 and the three sub-question: SQ1.1, SQ1.2 and SQ1.3, we have to
solve the following problems:

• Implementing quality metrics and rules for UML models.
• Developing a dashboard for visualizing the calculated metrics and rules in a

visually appealing manner to support stakeholders in assessing the quality if
UML models.

To answer RQ2 and RQ3, UML-Ninja has to be evaluated. As mentioned in the
research methodology chapter 3, the evaluation will be done as user studies. Details
of the evaluation are discussed in the evaluation section 5.2.4.

5.2.2 Design
To be able to solve the identified problems, new components were added to the
UML-Ninja components and connectors diagram, as shown in Figure 4.1. The com-
ponent "quality metrics calculator" was added to the data analysis component. The
metrics and rules supported by UML-Ninja are implemented and calculated in the
"quality metrics calculator" component. Table 4.1 represents a list of metrics and
rules supported by UML-Ninja. The "RESTful API interface" component is another
main component that was added. The "RESTful API interface" component is an

38

5. Results

interface between UML-Ninja and other systems or components that uses HTTP
protocol to retrieve data from UML-Ninja in JSON format. This component func-
tion as the communication channel between the UML-Ninja back-end and front-end.
In addition to "RESTful API interface" component, the "Data presentation" compo-
nent was added, this component function as the UML-Ninja front-end. The primary
purpose of the "Data presentation" component is to present the data and metadata
collected. Furthermore, display the calculated values for the supported quality met-
rics and rules.

5.2.3 Development
The development in this iteration is split into three main parts.

• Modifying the data analysis component by adding the Quality metrics calcu-
lator.

• Developing the "RESTful API interface" component that works as a commu-
nication channel between UML-Ninja back-end and the front-end.

• Developing the "Data presentation" component, which is the UML-Ninja front-
end.

5.2.4 Evaluation
Halfway through the project time frame, the first evaluation iteration was conducted.
This evaluation iteration aims to collect early feedback about the usability and use-
fulness of the system (UML-Ninja). As mentioned in the research methodology
chapter 3, this evaluation iteration was done by conducting user studies. The data
collected were analyzed and then used to identify problems and new features. As
discussed in the research methodology chapter, the data collection method used is
conducting interviews. In this iteration, we conducted interviews with 6 participants
(2 of each stakeholder group). Two students were studying software engineering
master program at the University of Gothenburg. The two researchers are Ph.D.
students at the department of software engineering at the University of Gothen-
burg. Furthermore, two practitioners with about ten years of experience in the field
of software development. The two practitioners are software developers working at
two different consulting companies located in Gothenburg.
The collected data from the interviews were then analyzed using the coding method.
After the interviews data were collected, the data were read twice to get familiar
with the data. The next step after that was to perform the coding on the interview
data to capture the key phrases/sentences. At the beginning of the process, we
created a list of codes and divided them into five categories corresponding to the
goals of the interview questions, as follow:

1. Category: Use of UML
(a) FREQUENCY
(b) STAGE
(c) IMPACT ON SOFTWARE QUALITY
(d) TYPE

39

5. Results

(e) REASON
2. Category: Assessing the quality of UML

(a) METHOD
(b) FREQUENCY

3. Category: Use of UML-Ninja
(a) BETTER QUALITY ASSESSMENT
(b) IMPROVE UML
(c) MOTIVATE TO CHECK UML QUALITY

4. Category: Advantages
(a) USABILITY AND EFFICIENCY
(b) METRICS AND RULES

5. Category: Limitations
(a) NEW FEATURES
(b) BUGS
(c) POSSIBILITY FOR IMPROVEMENT

The first category consists of four codes emphasizing the use of UML. It covers
how often the interviewees use UML, in which stage of the project, type of UML
they use, the reason they use it for, and how they see the impact of using UML
on the quality of software. The second category has two codes. The codes aim
to inquire if the interviewees asses the quality of UML or not when they do it and
how. The third category consists of three codes, capturing the interviewee’s opinions
on the use of UML-Ninja. This category is mainly about if UML-Ninja helps the
interviewees to assess the quality of UML, improve the quality of UML, and if UML-
Ninja motivates them to check the quality of UML. The fourth category consists of
two codes capturing the advantages of UML-Ninja. This category includes two
codes: USABILITY AND EFFICIENCY and METRICS AND RULES. The fifth
category has three codes. The codes aim to capture the limitations of UML-Ninja
as bugs, Possibility for improvement, and feature requests.

5.2.5 Evaluation results
The data collected from the interviews were analyzed using the coding method, as
explained in Section 5.2.4. In this section, the results from the coding are presented
by mind maps for five coding categories in the following sub-sections. Each mind
map consists of three objects: the blue rectangle represents the coding category, the
yellow rectangle represents code, and the gray rectangle represents coded data from
the interview data. The gray rectangle has a number in parentheses representing
the number of times it appears in the interview data.

5.2.5.1 Category: Use of UML

Figure 5.2 illustrate the codes and their coded data under the category "Use of
UML". The category has four codes: FREQUENCY is for the data that provides
information on the frequency of using UML. STAGE is used for the data that pro-
vides information about in which stage of the project UML is used. TYPE is for the
data that provides information about which type of UML stakeholders often use.

40

5. Results

REASON to represent the reason why they use UML. IMPACT ON SOFTWARE
QUALITY explains how stakeholders see the impact of using UML on software qual-
ity.

As we observed after coding the interviews data, the interviewees use UML dif-
ferently. As shown in Figure 5.2, we noted three different levels of the frequency
of using UML: very often, rarely and moderate. Moreover, interviewees use UML
mainly for communication purposes as well as to get a broader overview of the sys-
tem they develop, as represented with the REASON code. Furthermore, we found
that the stage that UML is used at varying between interviewees. As shown in
Figure 5.2, the STAGE code has three different coded data: Design, Analysis, and
Testing. One interviewee (Researcher) mentioned that they use UML in the testing
phase, as quoted below.

“We use UML in the testing phase, if the application we develop use
UML models as input”

Another interviewee (Practitioner) mentioned that they use UML models in the de-
sign phase, as quoted below.

“We use UML early in the design phase for reasoning and getting an
overview. ”

Figure 5.2: Iteration 1: Coding results for category: Use of UML

We found that the types of UML often used are: Class diagrams, sequence diagrams,
and use case diagrams represented as TYPE code shown in Figure 5.2. Finally,

41

5. Results

Interviewees expressed their opinion about the impact of UML on software quality
represented as IMPACT ON SOFTWARE QUALITY code shown in Figure 5.2.
Interviewees see the impact between moderate and high.

5.2.5.2 Category: Assessing the quality of UML

Figure 5.3: Iteration 1: Coding results for category: Assessing the quality of
UML

The codes and coded data for category "Assessing the quality of UML" are shown in
Figure 5.3. The "Assessing the quality of UML" category has two codes: METHOD
and FREQUENCY. METHOD is for the data that provides information about the
current method used to assess the quality of UML. FREQUENCY is for the data
that gives information about the frequency of assessing the quality of UML.

As observed for the "Assessing the quality of UML", the interviewees don’t use any
computer software to assess the quality of UML, they do it manually. Furthermore,
we found that not all interviewees do assess the quality of UML and if they do they
do it manually. The interviewees that assess the quality of UML often do it after
making changes to the UML to make sure that it is correct after the change is done.

5.2.5.3 Category: Use of UML-Ninja

Figure 5.4 illustrate the coding results for "Use of UML-Ninja" category. The
category "Use of UML-Ninja" has three codes: BETTER QUALITY ASSESS-
MENT, IMPROVE UML, and MOTIVATE TO CHECK UML QUALITY. BET-
TER QUALITY ASSESSMENT is for the data obtained about if UML-Ninja pro-
vides a better quality assessment over the method that the interviewees currently
use. IMPROVE UML is for the data collected about if UML-Ninja help in improv-
ing the quality of UML. MOTIVATE TO CHECK UML QUALITY is for the data
that provides information about if UML-Ninja could be a motivation to check the
quality of UML.

42

5. Results

Figure 5.4: Iteration 1: Coding results for category: Use of UML-Ninja

All interviewees found that UML-Ninja has the potential to help them in assessing
the quality of UML. Additionally, Interviewees prefer UML-Ninja over their current
way, for example, an interviewee (Practitioner) mentioned in the quote below.

“My current way of assessing the quality is manual review. I prefer
UML-Ninja because it offers the facility to assess the quality of UML
and represent that as numbers (Metrics)”

Furthermore, Interviewees (Student) do find that UML-Ninja will help them to im-
prove the quality of UML models, for example an interviewee mentioned in the quote
below.

“The tool automates the process; it guides me on how can I improve
my UML. It also gives me indications about problems that I might not
know about or see ”

Moreover, we found that UML-Ninja is perceived as a motivation to perform UML
quality assessment, for example an interviewee (Practitioner) mentioned in the quote
below.

“yes, the tool motivate me. Especially when I want to ensure a good
quality of a model for code generation purposes. ”

5.2.5.4 Category: Advantages

Figure 5.5, shows that the codes and the coded data for the category "Advantages".
The "Advantages" category has two codes: USABILITY AND EFFICIENCY, MET-
RICS AND RULES. The code USABILITY AND EFFICIENCY is for data related
how the interviewees perceive UML-Ninja in terms of usability and efficiency. MET-
RICS AND RULES is for the data related to the advantages of the metrics and rules
provided by UML-Ninja.

43

5. Results

Figure 5.5: Iteration 1: Coding results for category: Advantages

As noted from the coded data, interviewees found the metrics and rules provided by
UML-Ninja are relevant, enough, and useful as interviewees (Practitioner, Student)
mentioned in the quotes below.

“It is good and relevant. it makes it easy to detect problems.”

“I think they are relevant for me. Moreover, they are enough.”

Interviewees (Practitioner, Researcher) found UML-Ninja and the automated ap-
proach behind it, make the quality assessment easier and time efficient as mentioned
in the quotes below:

“I think a fully automated approach to assess the quality of UML mod-
els is very needed and it reduce a lot of effort.”

“It is a good approach, and the tool is going in the right direction”

Another advantage for using UML-Ninja, according to interviewees (Researcher)
that UML-Ninja makes it easy to compare UML as quoted below.

“Adds numeric measure to model. Makes it comparable.”

44

5. Results

Furthermore, interviewees found that the feedback provided by UML-Ninja could
help them in improving the quality of UML. UML-Ninja makes it easier to assess
the quality of UML models as well as detecting quality issues. UML-Ninja makes it
easy for them to find what needs to be improved in the UML.

5.2.5.5 Category: Limitations

Figure 5.6: Iteration 1: Coding results for category: Limitations

Figure 5.6, illustrate the codes and the coded data for the category "Limitations".
The "Limitations" category has three codes: BUGS, POSSIBILITY FOR IMPROVE-
MENT, and NEW FEATURES. BUGS is for data related to the bugs detected in
UML-Ninja by the interviewees. POSSIBILITY FOR IMPROVEMENT is used
for the data that provides Information about UML-Ninja functions that can be
improved. NEW FEATURES is for the possible new features that can be imple-
mented in UML-Ninja to make a better system. Interviewees identified list of bugs,

45

5. Results

new features and enhancements as shown in Table 5.1

Limitation Type
Redesigning the look and feel New feature
Sort and filter function for the repositories list page New feature
Possibility to sort classes with class level metrics (fan-in, fan-out, ..) New feature
Display detected issues for each class in the class list view New feature
Rewards (badges), for example, if all UML models in a project follow the UML
naming conventions, this project will get the "naming conventions" badge. New feature

A summary for identified issues in the repository dashboard New feature
Filter metrics with characteristics New feature
Replace complicated charts with easy to understand ones Enhancement
Making pages more compact by removing tabs when it is not needed Enhancement
Make the navigation more accessible by implementing breadcrumb navigation Enhancement
Help function to describe metrics and how it’s calculated Enhancement
The date and time are displayed wrongly Bug
Navigating between pages is slow Bug
Compare page is not working Bug
Information displayed twice in the repository list page Bug

Table 5.1: Iteration 1 identified limitations

5.2.6 Usability of UML-Ninja

Usability measurement Mean
Q1: Willing to use the system 4.50
Q2: Complexity of the system 1.67
Q3: Ease of use 4.33
Q4: Need of support to use 2.00
Q5: Integrity of functions 4.33
Q6: Inconsistency 1.67
Q7: Intuitiveness 3.50
Q8: Cumbersomeness to use 1.17
Q9: Feeling confident to use 3.67
Q10: Required learning-effort 2.83
Total SUS Score 77.50

Table 5.2: Iteration 1: Average SUS scores

As mentioned in the methodology chapter 3, we are using SUS standard questions to
evaluate the usability of UML-Ninja. Each of the individual scores on the question
ranges from 0 to 4. Questions 1, 3, 5, 7, and 9, representing the positive aspects of
usability. The score contribution is the value of choice minus 1. For example, for
question 1, if the value of the choice is 3, the score is 2. Questions 2, 4, 6, 8, and
10, representing the negative aspects of usability. The score contribution is 5, minus
the value of the choice. For example, for question 2, if the value of the choice is 3,
the score is 2. Table 5.2 show the mean for each question as well as the Total SUS

46

5. Results

score. Total SUS score values have a range of 0 to 100; it should be noted that it is
not a percentage value. The Total SUS score we achieved for UML-Ninja’s usability
in this iteration was: 77.50. According to the SUS scale shown in Figure 3.3 is a
solid grade C, which is good but not excellent.

5.3 Iteration 2
In this section iteration 2 of the design science methodology will be discussed. This
iteration intends to enhance UML-Ninja according to the feedback collected from
iteration 1 as well as conducting a new evaluation iteration.

5.3.1 Awareness of the problem
The feedback collected from the previous iteration is used as an input for this it-
eration. The limitations 5.2.5.5 discussed in the evaluation of iteration 1 are the
challenges for this iteration.

5.3.2 Design
The Design of UML-Ninja will remain the same as shown in Figure 4.1, however, new
features, enhancements, and bug fixes will be done to enhance UML-Ninja according
to the feedback collected.

5.3.3 Development
The development in this iteration involved enhancement, adding new features and
bug fixing as shown in Table 5.1

5.3.4 Evaluation
After the new developments were finished, a new evaluation iteration was conducted.
The intention behind this evaluation iteration is to get more feedback about the
system usability and usefulness from different stakeholders. By evaluating the data
collected from this iteration, we wanted to study and understand the areas of im-
provement, which could be useful for future research works.

In this iteration, we conducted interviews with 9 participants (3 of each stakeholder
group). It should be noted that none of the participants from Iteration 1 were
reused in this evaluation. Three students were studying software engineering mas-
ter program at the University of Gothenburg/Chalmers University of technology.
Three practitioners, one is working as a software architect and two software de-
velopers working for different consulting companies located in Gothenburg. The
practitioner’s experiences are between 5 and 12 years of experience. Moreover, both
software developed holds a Bachelor degree in computer science, and the software
architect holds a Master degree in software engineering.
Furthermore, our choice of researchers was much broader. We chose three researchers

47

5. Results

from three different countries, and their primary research field is software engineer-
ing. The first researcher is working as Associate Professor at the University of Chile,
and the second is working as Associate Professor at Universidad Rey Juan Carlos,
the third researcher is a Post Doc Researcher at the Technical University of Munich.
It should be noted that the last three user studies with researchers were conducted
via Skype.

5.3.5 Evaluation results
In this section, we will present the evaluation results for iteration 2. The same
procedures were performed as in iteration 1. Moreover, the same categories and
codes were reused in iteration 2 as well.

5.3.5.1 Category: Use of UML

Figure 5.7: Iteration 2: Coding results for category: Use of UML

Figure 5.7 illustrate codes and coded data for the "Use of UML" category. The
stage UML is used at is different from interviewee to another. As shown in Figure
5.7, the STAGE code has four different coded data. UML is used in the Design,
implementation, maintenance, or at any stage of the project life cycle as reported
by the interviewees. An interviewee (Practitioner) mentioned that they use UML

48

5. Results

both in the Design phase and implementation phase, as quoted below.

“We use UML in the entire of design stage and some in implementa-
tion stage. ”

Another interviewee (researcher) mentioned that they use UML in any stage of the
project as quoted below.

“We use UML in any stage. ”

We observed that the frequency of using UML is between moderate and rarely as
represented by the code FREQUENCY shown in Figure 5.7. The primary reasons
of using UML are represented with the REASON code shown in Figure 5.7. As
observed, interviewees use UML primarily for communication purposes and to get
an overview about the system architecture before they start developing it as well as
getting a better understanding of the system, as quoted below.

“ We use UML to design the system and for communication purposes.”

“ We use UML To get an overview of the solution and the code.”

“ Viewing architecture components and the relationship between the
components.”

One interviewee (Researcher) mentioned that they use UML for reverse engineering
purposes, as quoted below.

“ We use UML for Reverse engineering for software quality assess-
ment.”

For the types of UML used, interviewees often use the following types:

• Class diagram
• Component and connectors diagram
• Sequence diagram
• Use case diagram
• State machine.

Finally, interviewees see the impact of UML on the software quality between mod-
erate and high as represented with code IMPACT ON SOFTWARE QUALITY in
Figure 5.7.
For the "Use of UML" category, We didn’t observe significant differences in the
results between iteration 1 and iteration 2. We noted minor differences such as
interviewees use more types of UML, and they use UML at any stage of the project.

49

5. Results

5.3.5.2 Category: Assessing the quality of UML

Figure 5.8: Iteration 2: Coding results for category: Assessing the quality of
UML

Figure 5.8 shows codes and coded data for category "Assessing the quality of UML".
Not all interviewees do assess the quality of UML. But, when they do, they manually
review the UML to check the quality as represented with METHOD code shown in
Figure 5.8. However, one interviewee (Researcher) is using SDMetrics [23] to assess
the quality of UML. Furthermore, we observed that interviewees do assess the quality
of UML, after doing modifications to the UML, as quoted below.

“I do assess the quality of UML When I intend to do changes within
the UML models. It is for ensuring the quality of the software system.”

Moreover, interviewees assess the quality of UML when they implement a complex
feature, to make sure that the UML is correct and with good quality before they
start the implementation of the feature as quoted below.

“I do assess the quality of UML, every time I have to implement a
complex feature that requires to make sure it is correct and with good
quality.”

Additionally, We found that interviewees do assess the quality of UML when they
want to do a quality inspection.
We observed differences in the results between iteration 1 and iteration 2 for the
"Assessing the quality" category such as, one interviewee use SDMetrcis to assess
the quality of UML. Furthermore, interviewees assess the quality of UML for quality
inspection purposes as well as before implementing a complex feature.

50

5. Results

5.3.5.3 Category: Use of UML-Ninja

Figure 5.9: Iteration 2: Coding results for category: Use of UML-Ninja

Figure 5.9 illustrate the coding results for "Use of UML-Ninja" category. Inter-
viewees found that UML-Ninja could help them in assessing the quality of UML.
Additionally, interviewees prefer UML-Ninja over reviewing the UML manually, as
interviewees (Practitioner, Student) mentioned in the quotes below.

“UML Ninja is quicker and more consistent than the manual check.
Applying the metrics as rules manually would take too much time.”

“UML-Ninja is doing the process in a systematical way and with more
precision. In terms of ease of use, it is straightforward to use and
indicative.”

“Now I use manual review, UML-Ninja allows for further possibili-
ties.”

Moreover, an interviewee (Researcher) that uses SDMetrics [23] mentioned that he
could use UML-Ninja beside using SDMetrics [23]. UML-Ninja is easier to use, but
SDMertcis [23] provides much more metrics than UML-Ninja as quoted below.

“ I’m more convenience with SDMetrics because it provided a bigger
list of metrics and rules. However, I could use UML-Ninja as a part
of my assessment tools, because, UML-Ninja is easier to use and un-
derstand. UML-Ninja gives an intuitive graphical representation for
the metrics and rules. UML-Ninja is automated, with SDMetrics I
have to choose file by file manually to assess the quality. UML-Ninja
also takes into consideration the process of creating UML.”

Furthermore, Interviewees do find that UML-Ninja could help them to improve the
quality of UML models, as interviewees (Student, Practitioner) mentioned in the
quotes below.

51

5. Results

“Yes, it will motivate you. It will increase the quality of UML, and
finding the problem earlier when it simple, and it will decrease the
tech. dept.”

“Yes. It would help me improve the quality of the models I create and
ensure that I am following standards.”

For the "Use of UML-Ninja" category, We did not observe differences in the results
between iteration 1 and iteration 2.

5.3.5.4 Category: Advantages

Figure 5.10: Iteration 2: Coding results for category: Advantages

Figure 5.10, represent the observed advantage of UML-Ninja. Interviewees perceive
the metrics and rules provided by UML-Ninja as relevant and useful, as represented
by the code METRICS AND RULES shown in Figure 5.10. One of the Interviewees
(Researcher) reported that the metrics and rules provided by UML-Ninja are not
enough. The interviewee (Researcher) uses SDMetrics to assess the quality of UML.
SDMetrics provides a bigger catalog of metrics and rules than UML-Ninja. Inter-
viewees found UML-Ninja and the automated approach behind it, make the quality
assessment easier, effective, and time efficient as mentioned in the quotes below:

“It makes it easier to assess the quality if it is manual, people will not
do it. And it is error born because it is a human activity. it will also
be useful to see the feedback from the tool in the sprint review.”

52

5. Results

“Automating the process of quality assurance is positive because it
saves time and ensures consistency.”

“The automated quality assessment (UML-Ninja) seems to be reason-
able, intuitive, and easy to use.”

For the "Advantages" category, We didn’t observe significant differences in the results
between iteration 1 and iteration 2. The only noted difference was that one of the
interviewees reports that the metrics and rules provided by UML-Ninja are not
enough for his workflow.

5.3.5.5 Category: Limitations

Figure 5.11: Iteration 2: Coding results for category: Limitations

Figure 5.11, illustrate the codes and the coded data for the category "Limita-
tions".The "Limitations" category has two codes: POSSIBILITY FOR IMPROVE-
MENT, and NEW FEATURES. Interviewees identified list of enhancements and
new features as shown in Table 5.3.

The quotes below represent the limitations mentioned by the interviewees.

“UML-Ninja needs to support some metrics for visual indicators (e.g.,
how many colors are used in the model? How many crossing lines?).”

53

5. Results

Limitation Type
Easier integration with GitHub Enhancement
ToDos should be first (Possible issues to watch out for) Enhancement
Less info at first, more information on demand. Enhancement
Different dashboard layout for different stakeholder category. New feature
Code correlation metrics. New feature
Warning for not updated UML files. New feature
User-defined Metrics. New feature
Show repository contributors as a list. New feature
Commit history for each UML New feature
Continuous quality monitoring New feature
Metrics for visual indicators (how many colors? How many crossing lines?) New feature
User-defined metrics threshold New feature
Extract metrics values as JSON New feature
Support for more metrics (SDMetrics) New feature

Table 5.3: Iteration 2 identified limitations

“A feature that I would like to see in UML-Ninja would be to relate
the content of the diagram to the actual code and indicate how good
the diagrams are in the context of the code.”

“Continuous monitoring will be helpful and will add more value to
UML-Ninja.”

“User-defined Threshold, more metrics (SDMetrics provide more info)
will be my feature request.”

We observed that none of the limitations that were found in iteration 1 were repeated
by the interviewees in iteration 2. In fact during the interviews the issues found in
UML-Ninja in the first iteration were fixed.

5.3.6 Usability of UML-Ninja
Table 5.4 show the mean for each question as well as the Total SUS score. Total SUS
score values have a range of 0 to 100; it should be noted that it is not a percentage
value. The Total SUS score we achieved for UML-Ninja’s usability in iteration 2 was:
85.71. According to the SUS scale shown in Figure 3.3 is a solid grade B, which is
an excellent score. The calculated SUS score is significantly higher compared to the
value of iteration 1, which is 77.50. That indicates that the usability of the tool has
been improved since the iteration 1.

54

5. Results

Usability measurement Mean
Q1: Willing to use the system 4.14
Q2: Complexity of the system 1.71
Q3: Ease of use 4.57
Q4: Need of support to use 1.43
Q5: Integrity of functions 4.29
Q6: Inconsistency 1.43
Q7: Intuitiveness 4.43
Q8: Cumbersomeness to use 1.00
Q9: Feeling confident to use 4.14
Q10: Required learning-effort 1.71
Total SUS Score 85.71

Table 5.4: Iteration 2: Average SUS scores

55

6
Discussion

In this chapter, we present four sections. The first section presents answers to the
research questions. The second section discusses different validity threats that we
have encountered and how we mitigated them. The third section discusses research
ethics.

6.1 Research questions

RQ1: How to automatically assess the quality of UML models in open
source projects?

RQ1 is mainly scoped to how can we build a system that automates the process
of assessing the quality of UML models. In this thesis, we introduced an ap-
proach to automate the process of assessing the quality of UML models in
FOSS projects. As a result, we built a tool (UML-Ninja) that follows this
approach, as discussed in Chapter 4. The implementation of the tool indicates
that the automated approach of the quality assessment is technically possible and
applicable.
However, to be able to develop such a system, we faced some challenges. To be able
to Identify and extract data from GitHub repositories resulted tools form [5, 20, 22]
had to be integrated into one system. The integration process was challenging
since the mentioned tools were written in different programming languages (Python,
C++, and Java). Additionally, the integration process involved modifications to the
existing tools. For example, we modified the "img2uml" tool create by Karasneh
et al. 20 from a windows desktop application to a command line script. Addition-
ally, modifications were made to the GitHub crawler (python script) that obtains
potential UML files from GitHub repositories. Some other tools were rewritten com-
pletely such as "UMLDetect". "UMLDetect" is a textual UML identifier (for .uml,
.xmi files).
There is always a certain rate of inaccuracy in the existing automated systems/tools
used to identify and extract from images. Thus, this will directly affect UML-Ninja
accuracy rate. For example, the class diagram image classifier accuracy rate is
between (90%-95%). The accuracy of the "Img2UML" system is 95% for rectangles
classes, 80% for relationships and 92% for text recognition. This inaccuracy rate
made really difficult to accurately extract form low-resolution images. We faced this
challenge in two directions. Firstly, we added the "Filtering UML files" step in the

56

6. Discussion

"Data collection", to filter all low resolution and small image from the identification
process as discussed in Chapter 4. Secondly, We implemented UML-Ninja using
plug-in mechanisms, making it a flexible system to make it easy to replace the
current tools and services with others that have a higher accuracy rate.
In comparison with SDMetrics, UML-Ninja automates the process of identifying and
assessing the quality of UML models. However, with SDMetrics, the user is required
to pick the desired file for the tool to analyze explicitly.

SQ1.1: How to assess the quality of UML models?

To be able to answer this questions we had to investigate what UML
metrics and rules that can be automatically calculated using the data
collected from FOSS repositories. We based our metrics choice on the
work done by Chaudron et al. [16] and SDMetrics [22]. From Chaudron
et al. [16] and SDMetrics [22] suggested metrics, we could implement 16
metrics, as shown in Table 4.1. However, some remaining challenges were not
tackled in this thesis. For example, UML-Ninja does not support all metrics and
rules suggested due to limitations on the collected data by the tools and services
that the system depends on. For example, quantifying the number of crossing lines
in a diagram (NCL) is challenging, as the tools used and data collected does not
provide any data about the multiplicity of the associations. Moreover, Design pat-
tern metrics is difficult to quantify as well, since the used tools and collected data
do not provide any data about that. Besides, the aim is to automate the quality
assessment process for all types of UML models. In fact, for now, we only have the
technology for one type of UML models, which is a class diagram. As a result of
this limitation, the system only supports class diagram metrics. The large catalog
of metrics and rules supported by SDMetrics is another challenge that remains un-
solved in this thesis. Furthermore, user-defined metrics is another SDMetrics feature
that UML-Ninja does not support.

SQ1.2:How to assess the quality of use of UML models in software
development processes?

To be able to address this question we need to investigate what UML process metrics
that can be calculated using the data collected from FOSS repositories. From the
data collected, we could implement three UML process metrics as shown in Table
4.1. For example, for UML contributor ratio we could retrieve the data about the
number of people who added and updated UML models as well as the total number
of project contributors. Furthermore, by retrieving all repository commits and flag
the commits that contain UML files, we could calculate the UML commit ratio.
Finally, by identifying all UML files and their types, we could calculate the Editable
UML ratio. The "UML commit ratio", "Editable UML ratio" and "UML contributor
ratio" are one of the contributions of this thesis, since they were not supported by
SDMetrics or other identified related work.

57

6. Discussion

SQ1.3: How to provide feedback to different stakeholders with a given
result of quality metrics?

To answer the third part (SQ1.3) of the RQ1, we implemented the "Data presenta-
tion" component. The "Data presentation" component is discussed in Section 4.3.
The main goal of this component is to present the data and metadata
collected for the UML models. Besides, displaying the calculated values
for the quality metrics and rules. The "Data presentation" component
presents the repository data and metadata in a visually appealing manner
to support stakeholders in assessing the quality of UML models as well
as making decisions on how to improve the quality of UML models. UML-
Ninja presents the calculated values for metrics and rules as a simple chart. These
charts make it easier for the stakeholders to get a visualized overview of the quality
of UML models. On the other hand, SDMetrics only presents the metrics informa-
tion of a UML file in the form of tables and histograms. Furthermore, UML-Ninja
allows the user to visualize multiple UML files simultaneously to make it easier for
the user to compare them. However, this feature is not supported by SDMetrics.
Additionally, we evaluated the feedback provided by UML-Ninja by conducting 15
user studies in two iterations. The feedback obtained from the evaluation iterations
were used to improve the feedback supplied by UML-Ninja. During the evaluation
interviews, interviewees report that UML-Ninja is useful in pointing out UML de-
sign problems, but it will be even better if it can give rewards for good quality UML
models. That is why we implemented the badges feature, as discussed in Chapter
4. The badges aim to motivate stakeholders to enhance the quality of UML models.

RQ2: Can metrics and feedback provided by UML-Ninja help the stake-
holders (e.g., researchers, students, practitioners) to obtain a better
assessment of the quality of UML models?

From the data collected during the user studies, we obtained answers for RQ2. Dur-
ing the user studies, participants used UML-Ninja to perform a prescribed task.
This task was to assess the quality of UML models using their current way of assess-
ing the quality and with UML-Ninja. We found that one of the participants uses
SDMetrics to assess the quality of UML models. The remaining participants do not
use any computer software to assess the quality of UML, but they do it manually.
All 15 participants who took part in the user study managed to use the
feedback provided by UML-Ninja to assess the quality of UML models
in the given task. All participants reported that the metrics and rules
supplied by UML-Ninja are relevant and useful. Additionally, Partici-
pants reported that UML-Ninja is time efficient to use than their current
way of assessing the quality of UML. The participant who uses SDMetrics
found UML-Ninja time efficient over SDMetrics, because UML-Ninja automates the
process of assessing the quality of UML. Moreover, SDMetrics supports only UML
models in .XMI file format. However, UML-Ninja supports .XMI, .UML as well
as image formats. SDMetrics has its advantages, such as the big metrics and rules
catalog that SDMetrics support. However, UML-Ninja is built to be flexible and
easy to extend. According to the data collected from the user studies, we see that

58

6. Discussion

UML-Ninja has the potential in helping stakeholders (e.g., researchers, students,
practitioners) to obtain a better assessment of UML models. The two evaluation
iterations that were conducted showed the advantages of using UML-Ninja. The
advantage of using UML-Ninja are shown in the mind maps in the following Figure
5.4, 5.5, 5.9, and 5.10.

RQ3: What are stakeholders (e.g., researchers, students, practitioners)
perceptions of the use of UML-Ninja in improving the quality of UML
models?

The answer to this question is obtained from the data collected during the user
studies. Participants found that UML-Ninja is easy to use and time efficient over
their current way of assessing the quality of UML models as addressed in RQ2.
The SUS score calculated for both evaluation iterations (77.50 and 85.71, respec-
tively) supports what the participants reported about the usability of UML-Ninja.
Participants perceive UML-Ninja as a motivation to check the quality
of UML. Checking the quality of UML more often will lead to improv-
ing the quality of UML. Furthermore, one of the advantages reported by
participants that UML-Ninja makes it easier to detect issues. Detecting
and visualizing issues in an easy way will lead to improving the quality of
UML. The data collected from the user studies emerged that participants
perceive that UML-Ninja could help in improving the quality of UML. As
we observed during the interviews, participants see UML-Ninja as a tool that helps
in assessing the quality of UML. Moreover, the majority of participants manually
check UML quality, and that is not time efficient and easy to use compared to an
automated tool.
Feature requests and enhancements were reported in Iteration 1 that was taken in
consideration while improving the tool in Iteration 2 such as: "Display detected
issues for each class in the class list view" and "A summary for identified issues in
the repository dashboard". UML-Ninja can identify issues such as:

• Class diagrams with unused classes.
• Class diagrams with a high coupling (more than 10).
• Class diagrams with multi-defined items (classes or attributes under the same

class).
• Class diagrams with DIT more than 5.
• Classes that do not follow UML naming conventions.
• God class.
• Classes with long parameter list operation.

Display a summary of identified issues will allow the user to identify areas of improve-
ments easily. This will lead to better UML models quality. The implementation of
those features was also one of the factors that lead to the significant increase of the
SUS score in Iteration 2.
Implementing more metrics and rules is one of the challenges reported by the inter-
viewees in the second evaluation round. This challenge has remained unsolved in
this thesis. However, it should be taken into consideration and a future challenge.
By supporting more metrics and rules, will increase UML-Ninja ability in detecting
quality issues hence improve the UML models quality.

59

6. Discussion

Continuous quality monitoring is a feature that was requested by an interviewee in
the second evaluation round. This feature aims to assess the quality of UML models
automatically after each UML commit. Thus, this will lead to quicker feedback from
UML-Ninja about the quality of UML. Continuous quality monitoring is another
challenge that remained unsolved in this thesis.

6.2 Threats to validity
In this section, the relevant threats to validity are discussed and how we tried to
mitigate them. Four aspects of validity threats were considered.

6.2.1 Construct validity
Due to some constraints, not all interviews were in-person interviews. Some inter-
views were conducted over Skype. This can lead to a threat to validity. To mitigate
this threat, we included a brief introduction about UML-Ninja and the purpose of
the study in the invitation email. Additionally, we presented a brief introduction
before each interview.
The is a possibility that the participants interpret the interview questions differently
from each other. To mitigate this threat, We double check with each participant to
insure that they understand the question correctly. Examples were used in case the
participant needed more explanation.

6.2.2 Internal validity
UML-Ninja calculates quality metrics and provides feedback on basis of automated
extraction of UML models from various inputs, including textual and image files.
There is always a certain rate of inaccuracy in the existing automated systems/tools
used by UML-Ninja. For example, from low-resolution images result in inaccurate
data extraction from class diagram images. This could affect the accuracy of the
feedback provided by UML-Ninja. However, We do not have much control over these
threats; they are potential threats to validity and cannot be ruled out. To mitigate
this threat, We tried to reduce the rate of inaccuracy during the development and
the integration process.

With UML-Ninja, we aim to automate the quality assessment process for all types
of UML models. In fact, for now, we only have the technology for one type of UML,
which is a class diagram. To mitigate this threat, we implemented UML-Ninja us-
ing plug-in mechanisms, making it a flexible system that can easily be extended to
support more UML types. For example, researchers will be able to plug-in their sys-
tem for classifying and/or extracting contents of UML sequence diagrams, activity
diagram, etc.

The experience and background of the participants may influence their feedback.
For example, a participant who may not think UML is important may find UML-

60

6. Discussion

Ninja not useful or necessary. We mitigated this threat by making sure that the
prospective participants had some degree of competence regarding UML.

6.2.3 External validity
We can foresee that we will not be able to reach the opinions of all researchers,
students, or practitioners. Therefore, there is always a risk of not covering needs from
everybody. We mitigate this threat by choosing stakeholders that are representative
to be able to get the most realistic feedback about the tool.

6.3 Research Ethics
We took two important things into account when conducting this thesis, harm that
might happen to participants involved in this thesis work, and reporting everything
with honesty. This section discusses the actions taken to minimize the risk of harm
to the participants and to the way we report the results.

6.3.1 Informed consent
In this thesis, we had 15 participants in total involved in the evaluation interviews.
To minimize the risk of harm, we provided each participant with a clear description
of the study and expected time and duration of the study, as well as the expected
amount of work from each participant. Furthermore, the description included the
information about the author and supervisors names and universities. Each partic-
ipant was also informed about what kind of information was needed as part of the
study. In addition to that, the participants were not forced to take part in any work
in the study.

6.3.2 Anonymity and confidentiality
The data collected during the interviews, including personal information, were anony-
mous. Before the interview, each participant was asked for permission to record the
conversations. The recordings and transcripts were kept anonymous and confiden-
tial. During the data analysis process, all data that could disclose the participant’s
identities were removed, to ensure that there would be no physical harm to them.
Furthermore, to prevent psychological distress and discomfort they might face after
giving their information as a part of this thesis work.

6.3.3 Fraud
In this thesis, fraud was also considered. The fraud may happen when collecting,
analyzing, and reporting the results from the study. The data in the study are
real and not made up as well as the methods we used to get them are explained
clearly. Moreover, the data were not manipulated or discarded in order to get the
desired outcome. To get the most benefit from the study, we report everything both

61

6. Discussion

negative and positive results. Most importantly, we have not taken someone else’s
work without giving the credits to them.

62

7
Conclusion and Future work

In this chapter, we present two sections. The first section covers the conclusion of
our thesis work. In the second section, we discuss the proposed future work.

7.1 Conclusion

This thesis has two main challenges. The first challenge is to build a tool that auto-
mates the quality assessment process of UML models in open source projects. The
second challenge is to evaluate the usefulness of such a tool to different stakeholders
(e.g., researchers, students, practitioners). To tackle these challenges, we used the
design science research methodology in three iterations. As a result, We introduced
UML-Ninja, which is an online web tool with a dashboard. The goal of UML-Ninja
is to help stakeholders in assessing the quality of UML models in software projects.

To evaluate UML-Ninja usefulness and usability, 15 user studies were conducted
across two iterations with participants from three different stakeholders category:
students, developers, and researchers. The user studies were done as semi-structured
interviewers in two iterations. Participants reported that UML-Ninja has the poten-
tial in helping them to obtain a better quality assessment of UML models because
it is easy to use and time efficient. Furthermore, participants perceive UML-Ninja
as motivation to assess the quality of UML models. The motivation, in turns, will
hopefully lead to improvements in the quality of UML models. Finally, several lim-
itations of UML-Ninja were presented and explained. These limitations were taken
as inputs for future improvement of the tool across iterations of the study.

The first contribution of this thesis is UML-Ninja tool. UML-Ninja is the first
attempt to automate the assessment of UML models quality in FOSS projects.
UML-Ninja is implemented using plug-in mechanisms, making it a flexible system
that can easily be extended to support more UML types. For example, researchers
will be able to plug-in their system for classifying and/or extracting contents of UML
sequence diagrams, activity diagram, etc. The second contribution is the evaluation
of the usefulness of UML-Ninja in assisting users to perform the quality assessment
of UML models in their projects. We found that such an automated tool could
be used to motivate the users to ensure the quality of UML models within their
projects.

63

7. Conclusion and Future work

7.2 Future work
Based on the feedback received in the last evaluation phase, UML-Ninja can be
improved in many ways. From evaluation iteration 2 results, we identified a list of
limitations that are good candidates for future work. Future research work includes
implementing more metrics, such as source code correlation metrics and visual indi-
cators metrics. Moreover, a new feature that allows users to create custom metrics as
well as thresholds. Another possible future work is better integration with GitHub
that makes easier to choose repositories. The new integration with GitHub includes
continuous monitoring and quality assessment for UML models.
Text and UML models are two practices that can be used to create software ar-
chitecture design documentation (SAD). With UML-Ninja, we aimed to assess the
quality of UML models. We think that extending UML-Ninja to assess the quality
of Text is another possible future work.
Finally, we evaluated UML-Ninja on FOSS project, we think that evaluating UML-
Ninja on commercial software is another possible future work.

64

References

[1] M. Shahin, P. Liang, M.R. Khayyambashi, “Architectural design decision: Ex-
isting models and tools”, in: Proceedings of the Joint 8th Working IEEE/IFIP
Conference on Software Architecture 3rd European Conference on Software Ar-
chitecture (WICSA/ECSA), Cambridge, UK, pp. 293-296, 2009.

[2] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R. Nord, J.
Stafford, Documenting Software Architectures: Views and Beyond, 2nd Edition.

[3] Rich Hilliard. Using the UML for Architectural Description. Integrated Systems
and Internet Solutions, Inc., 2000.

[4] Eliasson, Ulf Heldal, Rogardt Pelliccione, Patrizio Lantz, Jonn. (2015). Ar-
chitecting in the Automotive Domain: Descriptive vs Prescriptive Architecture.
Proceedings - 12th Working IEEE/IFIP Conference on Software Architecture,
WICSA 2015. 10.1109/WICSA.2015.18.

[5] Hebig, Regina Ho-Quang, Truong Chaudron, Michel Robles, Gregorio Fernán-
dez, Miguel. (2016). The quest for open source projects that use UML: mining
GitHub. 173-183. 10.1145/2976767.2976778.

[6] Vaishnavi, V., Keuchler, W. (2004, January 20). Design Research in Information
Systems Association for Information Systems. Retrieved December 11, 2007.

[7] G. Reggio, M. Leotta, and F. Ricca. Who knows/uses what of the uml: A
personal opinion survey. In Model-Driven Engineering Languages and Systems,
pages 149–165. Springer, 2014.

[8] B. Karasneh and M. R. V. Chaudron. Online img2uml repository: An online
repository for uml models. In EESSMOD@ MoDELS, pages 61–66, 2013.

[9] Nugroho, Ariadi Chaudron, Michel. (2009). Evaluating the Impact of UML
Modeling on Software Quality: An Industrial Case Study. MoDELS. 181. 181-
195. 10.1007/978-3-642-04425-014.

[10] J. Muskens, C. F. J. Lange, and M. R. V. Chaudron. Experiences in applying
architecture and design metrics in multi-view models. In Proceedings of EU-
ROMICRO 2004, Rennes, France, August 2004.

[11] S. R. Chidamber and C. F. Kemerer. A metrics suite for object-oriented design.
IEEE Transactions on Software Engineering, 20(6):476–493, 1994.

[12] M. Genero, M. Piattini, E. Manso and G. Cantone, "Building UML class dia-
gram maintainability prediction models based on early metrics," Proceedings. 5th
International Workshop on Enterprise Networking and Computing in Healthcare
Industry (IEEE Cat. No.03EX717), Sydney, NSW, Australia, 2003, pp. 263-275.
doi: 10.1109/METRIC.2003.1232473

65

References

[13] H. C. Purchase, L. Colpoys, M. McGill, D. Carrington, and C. Britton. UML
class diagram syntax: an empirical study of comprehension. In Australian sym-
posium on Information visualisation, volume 9, pages 113–120, September 2001.

[14] Nugroho, Ariadi. (2018). The effects of UML modeling on the quality of soft-
ware.

[15] R. Hebig, T. Ho Quang, G. Robles, and M. R. V. Chaudron. List of identified
projects with uml and replication package. http://oss.models-db.com

[16] C. F. Lange and M. R. V. Chaudron, "Managing Model Quality in UML-
Based Software Development," Proceedings. 13th IEEE International Workshop
on Software Technology and Engineering Practice(STEP), Budapest, 2005, pp.
7-16.

[17] Len Bass, Paul Clements, and Rick Kazman. 2012. Software Architecture in
Practice (3rd ed.). Addison-Wesley Professional.

[18] Marian Petre. 2013. UML in practice. In Proceedings of the 2013 International
Conference on Software Engineering (ICSE ’13). IEEE Press, Piscataway, NJ,
USA, 722-731.

[19] O. Badreddin, T. C. Lethbridge, and M. Elassar. Modeling practices in open
source software. In Open Source Software

[20] B. Karasneh and M. R. V. Chaudron, "Img2UML: A System for Extract-
ing UML Models from Images," 2013 39th Euromicro Conference on Software
Engineering and Advanced Applications, Santander, 2013, pp. 134-137. doi:
10.1109/SEAA.2013.45

[21] H. Störrle, R. Hebig, and A. Knapp. An index for software engineering models.
In International Conference on Model Driven Engineering Language

[22] T. Ho-Quang, M. R. V. Chaudron, I. Sam´uelsson, J. Hjaltason, B. Karasneh,
and H. Osman. Automatic classification of uml class diagrams from images.
In Proceedings of the 2014 21st Asia-Pacific Software Engineering Conference
- Volume 01, APSEC ’14, pages 399–406, Washington, DC, USA, 2014. IEEE
Computer Society.

[23] J. Wüst. SDMetrics. http://sdmetrics.com/, last accessed: March 17, 2019,
2019.

[24] Object Management Group, "OMG Unified Modeling Language Specification",
Version 1.5, OMG Adopted Formal Specification formal/03-03-01, 2003.

[25] A. Riel, "Object-Oriented Design Heuristics", Addison Wesley, 1996.
[26] W. Brown, R. Malveau, H, McCormick, T Mowbray, "AntiPatterns: Refactor-

ing Software, Architectures, and Projects in Crises", Wiley, 1998.
[27] M. Fowler, "Refactoring: Improving the Design of Existing Code", Addison

Wesley, 1999.
[28] R. Martin, "Agile Software Development: Principles, Patterns, and Practices",

Prentice Hall, 2003.
[29] Brooke, John. "SUS: a retrospective." Journal of usability studies 8.2: 29-40,

2013.
[30] Bangor, A., Kortum, P. T., Miller, J. T. "An empirical evaluation of the System

Usability
[31] Wicks, David. (2017). The Coding Manual for Qualitative Researchers (3rd

edition)The Coding Manual for Qualitative Researchers (3rd edition) Johnny

66

References

Saldaña Sage 2015 ISBN-13: 978-1473902497. Qualitative Research in Organiza-
tions and Management: An International Journal. 12. 169-170. 10.1108/QROM-
08-2016-1408.

[32] A. Bangor, P.T. Kortum, and J.T. Miller. "Determining What Individual SUS
Scores Mean: Adding an Adjective Rating Scale." Journal of Usability Studies,
4(3), 114-123, 2009.

[33] Filó, T.G., Bigonha, M.A. (2015). A Catalogue of Thresholds for Object-
Oriented Software Metrics.

[34] Kecia A.M. Ferreira, Mariza A.S. Bigonha, Roberto S. Bigonha, Luiz F.O.
Mendes, Heitor C. Almeida, Identifying thresholds for object-oriented software
metrics, Journal of Systems and Software, Volume 85, Issue 2, 2012, Pages 244-
257, ISSN 0164-1212, https://doi.org/10.1016/j.jss.2011.05.044.

[35] Genero M., Piattini M. and Calero, C.: “Early Measures for UML Class Dia-
grams” L Objet, vol. 6, no. 4, Hermes Science Publications, pp. 489- 515, 2001.

[36] AspNetCore. [online] Available at: https://github.com/aspnet/AspNetCore
[Accessed 10 May 2019].

[37] Angular. [online] Available at: https://angular.io/ [Accessed 10 May 2019].
[38] Plotly. [online] Available at: https://plot.ly/ [Accessed 10 May 2019].
[39] chartjs. [online] Available at: https://www.chartjs.org/ [Accessed 10 May 2019].

67

References

68

	List of Figures
	List of Tables
	Introduction
	Statement of the problem
	Research questions
	Purpose of the study
	Disposition

	Background and related work
	Identifying UML models from open source project
	Classifying and extracting data from UML models
	UML models quality

	Research methodology
	Awareness of the problem
	Suggested design
	Development
	Evaluation
	Procedure

	Conclusion

	Design and Implementation of UML-Ninja
	Data collection
	Identifying potential UML files
	Filtering UML files

	Data analysis
	Data extraction
	Quality Metrics calculator
	RESTful API interface

	Data presentation
	Repositories list page
	Repository page
	Repository information
	Commit history box:
	"Issues to watch out for" box
	UML process
	UML content
	UML files

	UML (class diagram) page
	class diagram information
	Metrics
	Classes

	Compare page
	Metrics definition page

	Results
	Iteration 0
	Awareness of the problem
	Suggested design
	Development
	Evaluation

	Iteration 1
	Awareness of the problem
	Design
	Development
	Evaluation
	Evaluation results
	Category: Use of UML
	Category: Assessing the quality of UML
	Category: Use of UML-Ninja
	Category: Advantages
	Category: Limitations

	Usability of UML-Ninja

	Iteration 2
	Awareness of the problem
	Design
	Development
	Evaluation
	Evaluation results
	Category: Use of UML
	Category: Assessing the quality of UML
	Category: Use of UML-Ninja
	Category: Advantages
	Category: Limitations

	Usability of UML-Ninja

	Discussion
	Research questions
	Threats to validity
	Construct validity
	Internal validity
	External validity

	Research Ethics
	Informed consent
	Anonymity and confidentiality
	Fraud

	Conclusion and Future work
	Conclusion
	Future work

