

Connecting GitHub Issues with Commits in Open

Source Software Projects

Georgi Dungarov

Department of Computer Science and Engineering

University of Gothenburg

Gothenburg, Sweden

dungarov@gmail.com

Abstract— In the current state of software development a

common way to manage and contribute to an Open Source

Software Project is to use Version Control Systems. GitHub, one

of the largest hosting services for Open Source projects, provides

an issue-tracking system allowing users and developers to report

issues and offer solutions. Further, developers can assign

different labels to an issue, which helps categorize it, as well as,

provide basic characteristics. This method could be time and cost

inefficient. Lack of connection between issues and commits could

lead to Technical Debt by causing developers to return to issues

to resolve them. In GitHub, there is no semantic connection

expressing an issue to a commit that solves and eventually closes

the issue. This lack of connection has a major drawback as tools

analyzing meta-data for project measures related to issues and

commits cannot be processed. For example, if we want to check

whether there is a significant difference among the size of fixes of

issues of different types; it is not possible to determine until we

have established a connection between issues and commits. This

study aims to explore connection between issues and commits, in

order to make them traceable. A theoretical framework is

developed to target the RQ. The theoretical framework for the

research will establish the factors for a possible relation between

issues and commits.

I. INTRODUCTION

 Developing software is becoming more rapid and fast

paced. The demand for quick delivery of working solutions

could cause problems in the projects such as: bugs,

miscommunication between the team, difficulty tracking

implemented changes and rollbacks to a previous version of

the software. In order to reduce those risks, Version Control

Systems (VCS) emerged. Version control software allows the

storage of previous version of the project, easy collaboration

between developers and regular backups. There are multiple

VCS on the market that offer both centralized and distributed

network. Some of the most popular ones are GitHub,

BitBucket, Google Code and SourceForge.
 Version Control System, such as GitHub, makes projects

publicly available, which turns them into a great source for

research. The advantage of publicly available data is the

diverse background and access to large amount of software

artifacts. GitHub was selected for this research study due to

the fact that it is the largest code hosting platform in the world,

with more than 10 million repositories. Another benefit to

choosing GitHub is the fact that most of the projects hosted on

the platform are Open Source.
 GitHub provides an issue-tracking system which allows

for users and developers to report issues and categorize them

by labels. However, in some cases the developers do not

submit direct commits that correspond to the issues. Not

recognizing and underestimating the importance of the issues

and therefore not relating commits to them, could result in

Technical Debt. One scenario could be an occurrence of a bug,

which due to certain restrictions is not immediately resolved.

This means that in a later stage of the project development

unpredicted work could arise, due to escalation of the

unresolved bug, leading to additional resources cost and time.
 So far, researchers that have started exploring GitHub as a

mining source have focused on topics like benefits of labels to

classify issues and the effects it has on projects [1]. Other

topics include the working habits and role of integrators to

manage and integrate commits [2] as well as finding patterns

for software development by mining source code repositories

[3].
This research focuses on mining data from publicly

available repositories on GitHub. The main idea is to find a
connection between commits and issues of GitHub repositories.
To ensure the success of the research a theoretical framework
will be developed. The framework will attempt to discover the
relationship between commits and issues that have both direct
and indirect link. An example of a direct link is when an issue
is resolved with a commit. Indirect links between commits and
issues could be a commit that makes changes to a file in the
project that fixes issues that are not directly linked. To facilitate
the study and build the theoretical framework, three Open
Source Projects have been selected for the data collection. The
data collected is as detailed as possible. That will allow
determining a better and stronger connection between the
issues and commits. Such connection will be based on one or
more factors such as time, tags or committers. Furthermore, a
project called GHTorrent mines GitHub repositories and
retrieves its contents and their dependencies. The data is stored
in MongoDB database. GHTorrent is a data mirroring solution
which offers researchers Source tracking, Network analysis and
Single developer identities. However, the project lacks relating
issues and commits. This research offers a possible solution to
that problem that could be realized in the GHTorrent project.

Additionally, by establishing connection between issues
and commits, this research could contribute by suggesting
candidate commits for issues. The level of accuracy will be
achieved through the theoretical framework and will be based
on the analyzed metadata. Therefore, another benefit could be
lowering the human error in prioritizing issues thus creating
technical debt.

This study could be used as analytical framework for
multiple projects on different version control systems to find
and define connection specific to those projects. It can also be
used for analytics of a singular project. Results could be
beneficial to developers who maintain projects, as well as,
users who would like to contribute to a project.

In this paper, using data from GitHub, the following
questions will be explored:

 RQ (1) How does the issue landscape look?

 RQ (2) How to connect issues and commits in a version
 control system, so that commits can be traced from their
 relevant issues or vice versa?

RQ (3) What are the important factors to establish a
 connection between issues and commits?

II. BACKGROUND

A. Related Work

 A study by Cabot (2015) focused on the use of labels to

categorize issues in Open Source Projects. The focus of the

researchers was the labels/tags used to classify the issues and

more particularly if labelling issues has a beneficial effect to

the project and the commits [1]. In this paper, the team has

analysed GitHub projects in order to get insight on the

labelling system. To achieve that, the researchers have

developed GiLA Label Analyzer to work along with

GHTorrent in order to perform the analysis as dataset [1].

GHTorrent serves as the source for the study. The team found

that even if issues are described poorly, that still favors a

commit with a resolution of that issue [1].
 Another study focused on the role of the integrator to

manage and integrate commits. The study investigated the

working habits and challenges of the integrator via a large-

scale survey [2]. The results showed some of the factors the

integrator takes under account in the decision making if a

certain commit that fixes an issue or adds a feature, should be

accepted or not [2]. Additionally, the study displayed the

struggle of the integrator to prioritize a related commit for an

issue and therefore maintain quality [2].
 A research by Allamanis (2013) aimed at mining source

code repositories in order to find patterns for software

development [3]. The developers introduced new metrics of

measurement with the help of a probabilistic language model.

By using a giga-token corpus of Java code they managed to

successfully predict identifiers across different projects. Later,

the researchers explored the identifiers - class of tokens - that

allowed them to better understand theoretic tools and metrics

in source code repositories. That helped them identify

different aspects of projects [3].
 A study by Gousios (2012) has created a GitHub project

called GHTorrent which offers a scalable event stream and

persistent data that focuses on users, pull requests and all

issues surrounding social coding [4]. In their paper the

researchers have demonstrated the initial design of the project

as well as presenting datasets that can be requested. The data

collected by the project can provide insights on different

aspects of Open Source projects such as community dynamics,

code authorship and attributions [4].

 In a research by Van Der Veen (2015), a tool called

Prioritizer was developed in order to face the challenges that

come when prioritizing pull requests in GitHub [5]. The study

investigates the priority criteria the developers have in order to

create a tool that provides visualization and suggestions. The

research categorizes and examines the pull requests for a

certain project, then Prioritizer presents the top pull requests

that need attention [5]. Further, the developers could sort the

pull requests based on criteria [5]. The researchers found that

users preferred and appreciated the overview of the project

pull requests. But while users found such a priority to be

beneficial, participants also requested more insight on how the

tool works [5].

 The studies exemplified in this section offer different

benefits in relation to issues and commits. Few of them are

related to the way certain factors affect issues [1][3][5]. The

rest of studies are examining patterns in order to explain a

phenomenon. However, those studies explore either a single

aspect, such as labels [1], or focus on describing patterns in

regards to certain events. None of them investigate the

relationship between commits and issues to the full extent.

Therefore, it is necessary to build a theoretical framework that

is capable of collecting and analysing all elements associated

with issues and commits.

B. Theoretical Framework

 The concept of this research is surrounded by the idea of

discovering and defining a relationship between issues and

commits in version control systems, such as GitHub. A simple

definition of what “connection” is, in relation to version

control systems would be:

 The perception of connection as a result of consciously

 comparing a variety of factors with solutions through

 their corresponding issues.

In other words, a connection between issues and commits

could be determined through observation of the factors related

to those issues. Then those factors shall be compared with the

commits. The degree to which a connection is satisfying or not

is determined by the observed commits in relation to the

factors.

Fig 1. Concept of Connection finder

The theoretical framework concept is illustrated in Figure 1. It

shows that tags, references, time, developers and commits

related data determining the factors. Those factors are

compared to the commits (or the lack of them) of

corresponding issues. This comparison between the factors

and commits is important because it determines the essence of

the connection. This model is important for the study, as it can

reveal to what extent factors matter and how it affects a

software project.

 The comparison with commits depends on issue to issue

basis. This is due to the fact that not all issues are resolved

with a commit. Issues that have direct commits are referenced

as direct commit or direct link. On the other hand, issues that

lack direct commits are referenced as indirect commit or

indirect link. This study is looking into both direct and indirect

links, because that could be a basis to find direct and indirect

connection between issues and commits. The lack of direct

commit does not lead to lack of connection. It could mean that

the commit resolving the issue is not directly connected, but

the relationship exists. The relationship between one issue

with a direct commit could lead to another issue being

resolved. That type of connection discovery is a way to answer

RQ (2). As shown in Figure 1, the connection is based on a

comparison between factors and commits. A factor is an

attribute related to an issue or a commit. Such attributes are

references, labels, timestamp, developers, pull requests,

hashtags and files changed. Further, the factors are compared

to the issues that include and exclude commits. That way,

there will be strong evidence of which factor defined the

connection between a commit and issue. By knowing which

factors are more likely to exist between issues and commits, it

will be apparent how to connect them and therefore answer

RQ (2). Also, by weighting the factors, an there can be a

prediction which factors are more likely to be relevant and

beneficial to the project and therefore give an answer to RQ

(3).

C. Terms

In this research paper, there are several terms that are going to

be used. For the purpose of clarity these terms are as follows:

 Issue – submitted issue in GitHub Issue Tracker

 Commit – represents individual change to a file in a

project. Every time a commits is submitted it creates an

unique ID (hashtag, hash), which allows tracking the

made changes

 Connection/Link – the relationship between an issue and a

commit investigated by this research paper.

 Direct commit (direct link) – commit submitted to a

specific issue. Also, the issue contains commits.

 Indirect commit (indirect link) – submitted commits for

issue A it might also fix indirectly issue B

 Hashtag – is the unique ID generated for every commit.

Hashtag is typically only one, representing a single

commit.

III. METHODOLOGY

A. Research strategy

 The research strategy for this study will be based on the

Design Science Research (DSR) methodology. This

methodology focuses on the development and application of

designed artifacts for the purpose of understanding a problem

and gaining knowledge [6]. One of the reasons to choose DSR

is because this method can produce meaningful results in the

absence of existing theory base. The mission of this

methodology is to provide an innovative solution to a problem

in order to not only describe and explain it, but also predict

[4]. This research follows the 7 guidelines for a Design

Science Research described by Hevner [6]:

1) Design as an artifact - DSR must provide an artifact. In the

case of this research - theoretical framework

2) Problem relevance - The developed solution must be

relevant to the specified problem/research

3) Design evaluation - The quality of the designed artifact

must be ensured by evaluation methods. Observational evaluation

will be used for the developed theoretical framework

4) Research contributions - The DSR methodology has to

show a clear contribution of the design artifact or methodology. This

will be presented in the Result section of the study

5) Research rigor - DSR depends on the correct application of

the construction and evaluation of the designed solution

6) Design as a search process - Reach desired results by

employing the available means according to the problematic

environment it will apply

7) Communication of research - DSR methodology must be

presented in an adequate form for variable audiences

 The main objective will be to accurately translate issues

and commits with all possible relations between them. The

artifact developed will be a theoretical framework that

includes all commits and issues from a project with all

metadata that surrounds it - developers, issue submitter,

keywords, date, references and tags. The data that was

collected is translated into quantitative. This is because the

research is primarily objective and outcome-oriented. The

objective nature focuses on testing concepts. With the

development of a framework, the relationship between issues

and commits is manually analysed. The analysis is focused on

a descriptive way which will help determine the weights of the

different factors. Such descriptive statistics give a good idea of

which factors are more important than others. Beyond that,

factors could be combined, in order to illustrate a better

defined relationship between issues and commits. For

example, if tags do not present significant value, a

combination with other factors such as developers, days to get

resolved or reference, could give better results.

B. Research process

 The research process started by selecting three software

projects from GitHub. The projects were selected with

intentional difference in size of total issues in order to show

how and if factors differentiate between different projects. The

nature of the projects did not play a role in the selection. In

order to keep the bias selection to minimum, the criteria was

that all projects need to have a significant amount of issues

and all projects are maintained and updated regularly. The first

project that was selected is called “TestPilot-Containers” [7].

It contains 194 closed issues and 100 Open, which totals in

294 issues. The second project, named “TabCenter” [8],

contains 699 closed issues and 148 open issues, resulting in

847 in total. The third project is called “SSH Scan” and it is

consisted of 99 closed issues and 32 open [9]. From the three

projects, a total of 300 issues (100 per project) both opened

and closed was collected.

Table 1. Projects summary

Issue No

commits

Commits Closed

issues

Total

collect

ed

Total

Project 1 36 61 61 100 294

Project 2 42 72 72 100 847

Project 3 25 81 79 100 131

Total 103 109 212 300 1272

 Based on the collected data, a descriptive analysis could

be conducted. That will allow the determination of how

complex the problem is, as well as, which factors are more

important than others. This type of data can be expanded and

will allow understanding of how to solve the tractability

problem mentioned in RQ (2).

A spreadsheet was created for the data extraction to include all

essential information about the issues and the commits. The

data has been collected manually. Factors range from tags,

dates, keywords, files changes, opened/closed reference and

developers. Table 2 explains the different factors that were

chosen to collect:

Factor Description

Issue ID The unique number of an issue

Status Current status of an issue.

Possible states – Open/Closed

Direct link The issue has (not) a commit.

Possible states – Yes/No

Commit ID

The unique number of a commit

Commit name The name a commit is submit

with

Changed files Specific files that are

added/changed/removed with the

commit

Date submitted

When was the issue created

Date resolved

When was the issue closed

Days taken Time taken for the issue to be

resolved

Keywords Keywords contained in the

commit name

Tags

Tags/Labels added to the issue

Issue submitted by

Developer who created the issue

Developers Developers which

worked/resolved the issue

References References that are related to the

issue.

Possible states – Open/Closed

Milestone name Checks if issue is part of a

milestone
Table 2. Selected factors for data collection

Among the 300 collected issues, 212 are with a status

“Closed” issues. The rest are in an “Open” state.

The closed issues that have a direct commit are 107, which

make up 50.5% of all closed issues. That makes them

relatively 1/3 of all extracted issues.

Additionally, 19 issues without commits from all collected

issues have been resolved because they are a duplicate of

another issue.

Issue that are open were collected together with the closed

issues as they come. Open issue, still in progress, did not have

commits. However, they are part of the data collection and

while they might not have a decisive factor for the research

questions, open issues contain some of the analyzed factors.

That could make an ideal test for predictability. However, it is

hard to ensure if the prediction is correct due to the time

restrains.

C. Data collection

 The data collection procedure consisted of selecting data

that would serve for the purpose of this study, as well as

choosing what type of data will be required. The technique for

data collection was done through observations and

examination of issue record. Observations are a good way of

gaining knowledge about a particular situation and the

frequency of a certain behavior or phenomenon. Each issue

has its own dedicated webpage on GitHub which includes

various data. Since the study is developing a theoretical

framework based on a new concept a larger amount of data

needed to be collected. This allows adequate filtering to

determine importance and the answering of the established

research questions. Table 2 describes all data that was

included in the webpage and that could be useful.

The following figures show a web page of an issue with direct

commit. All issue follow similar patterns, with some missing

certain metadata. The following example includes all

information as represented in Table 2.

Fig 2. Issue title and ID includes also status and developer who created the

issue

 Figure 2 illustrates information which all issues have by

default – titles, issue ID, status and user who submitted the

issue. Titles vary from simple and basic to detailed and

descriptive. At the end of the title, the unique ID of the issue is

represented with the symbol #. The developer who created the

issue is displayed under the title, together with the date of

submission. The status of an issue can be either closed or

open. In this example, the status is Closed.

Fig 3. Tags and Milestone

 Figure 3 presents data which is not included for all

reported issues. That statement is true for both Labels and

Milestone. Labels, called also tags in this study, have

assigned values, which are used as descriptive information

about the reported issue. GitHub offers some default label

names, but developers could use custom ones. Milestone is

also a customly assigned value, which varies from project to

project.

Fig 4 (a). Commit fixing the issue and developer who closed it

Fig 4 (b). Pull request consited of conversation, commits and files changed

information

 Figure 4(a) represents a case when the reported issue is

closed and it includes a commits that resolves it. The commit is

considered a reference to the issue and consisted of a commit

name and commit ID. Figure 4(b) represents a Pull requests

that consists of one or more commits and provides information

which files are changed. Further, GitHub also reports when the

issue was closed and by whom. In case a direct commit is not

present, the developer could close the issue based on other

reasons. GitHub allows for developers to reference issues with

issues. This is done for traceability and redundancy purposes.

D. Issue types

 This research outlines three main classes of issues. They

are based on each possible status of an issue. An issue could

be Closed with commits, Closed without commits or Open.

Those are the names of the classes as illustrated in Fig 5.

 Closed with commits contains a couple of subclasses,

which further defines the main class. The commit,

included in a closed issue, could be either a part of Pull

Request or be directly link to the issue. When the commit

is directly resolving an issue it is characterized by a

unique ID, also defined as hashtag. The Pull Request can

contain one or more hashtags and it is preferred in cases

when one wants to inform other developers about the

changes. Despite their similarities, it is important to

establish difference between those two subclasses. In the

case of a closed issue with a hashtag, it is safe to say that

the issue is fully resolved. When Pull Request is

discussed, it is important to notice that developers could

add follow-up commits as well as review the potential

changes. That means that even though in most cases

issues are fully resolved through Pull Requests, it is still

possible for an issue to be partly resolved while expecting

follow-up changes.

 Closed without commits is the second class of issues. It is

defined by not having commits attached to the issue. This

class is divided by several subclasses – Reference, No

Reference, Questions and Duplicate. The subclass

Reference is exploring the issues that contains references

to other issues with solutions (or commits) or in case the

issues have been resolved by a newer version of the

software. Subclass Duplicate, as the name suggests, refers

to those issues that have already been resolved. The

duplicates do not contain commits on their own, but the

issues they represent could have been resolved by one. In

a small amount of cases, people submit questions in the

form of an issue. Those issues are resolved by comments

from the community and/or developers. The fourth

subclass No reference represents those issues that do not

contain any commits and do not have any connections to

other resolved issues. Such cases could be when an issue

could not be reproduced or there is no immediate plan to

resolve it. There is a scenario of an issue in the No

reference subclass, which refers to issues that are closed

with no explanation. In some cases, the issue in this

subcategory might contain comments from the

developers, but with no solutions or references offered. In

other cases, the issues could be closed if no one offers a

solution for a long time.

 Open is the third type of issue, which at the time of the

data collection those issues have not been resolved. Their

status is Open and they could be resolved by any of the

ways mentioned above.
.

E. Factor types

 Factors need to be established, in order to define the

connection between commits and issues. A single issue could

contain multiple commits which could relate to it. Initially, the

issue has a single commit after it is created. It could have more

commits submitted at any point. The final commit is the one at

which point the issue is closed. Factors will help filter out the

relevant possibilities. The link could be described by a single

or multiple factors at once. More factors mean that the link

between commits and issues is more firm. That is because

factors could narrow down the list of potential relevant

commits. The factors are chosen in a way, so that together

they make a meaningful mapping between issues and

commits. This leads to a commonality between issues and

commits. Most common factors are developer, time, reference,

files changed or labels/tags.

 Developer: is a factor referring to the name of the

developer who submitted the issue and the developer

who resolved the issue. In some cases that could be

the same person. This could be a significant factor, in

a case when it is known that the person submitting

the issues is also a developer and not only a user.

Therefore, it is important to be able to know if an

issue is resolved by the same person or not.

 Time stamp: creates a filter which creates a candidate

list of commits submitted between the Open and the

Closed status of an issue. Naturally, the closer the

commit is to the resolved date of an issue, the more

likely is to be relevant. A combination with the

developer, files changed, labels and references could

help narrow down the list of possible commit

candidates and therefore, make a close call to which

issue it belongs.

 References: is a link that points at different issues

which may or may not contain commits. An issue

could have one or more issues as references.

Exploring the referenced issues could lead to the

discovery of a commit that is applicable to the

original issue. This might be possible due to the fact

that referenced issues could be referenced because

they already contain the desirable commit which will

solve the issue.

 Files changed: stands for all the files that are affected

by submitted commits. That factor could be helpful in

a case of trying to confirm relevance between the

commit and the issue. Further it could contribute to

linking an issue with commits to other issues with

commits.

 Labels/Tags: is a descriptive factor that gives an idea

about the nature of the issue. For example, issues that

are labeled Questions can be excluded from the

investigation in order to save time and resources.

 Hashtag: is a commit directly submitted to the issue

and mentioned when the issue is closed. It is the

clearest connection between and issue and a commit.

 Pull request: could contain one or more commits. It is

a formal way of discussing and reviewing changes as

well as allowing other developers to add follow-up

commits.

F. Data analysis

 Once the data extraction was complete, the data was

processed and organized for analysis. It was placed into tables

where the columns represented each factor as shown in Table

2. Each project has separate tables. In order to get insight and

understand the data, a variety of techniques were applied.

Descriptive statistics are used to understand the nature of the

issues and exemplify how connected they are to the commits.

That also gives an indication to how complex the problem is.

The overall approach to analyze the data is exploratory, which

seeks to summarize the main characteristics and encourage

exploration of data that has not been explored in such details

before. Further, a conceptual algorithm was created to

represent the theoretical solution for RQ (2). The conceptual

algorithm establishes a connection between an issue and a

commit through the factor filters established beforehand.

Single factors can be analyzed individually to see if there is

strong evidence that the factor affects the relationship between

issues and commits. The state of other factors is also

considered. The idea behind is that, two factors by themselves

might not cause a difference, but when combined might show

significance and therefore help address the RQ (2).

1) Descriptive statistics

a) Labels/Tags

 The findings show that the total issues which contain

tags/labels are 157 and 104 of all tagged issues are closed.

This represents 66.2% of all issues containing tags. Further, it

is important to separate the issues based on direct commit

(DC) and not direct commit (NC). The DC issues with a tag

make up 49% from all closed issues. Further, by dividing in

the closed issues into ones with DC and the NC ones, it is

determined that 59.8% (64 closed issues) do have commits.

That leaves 37.1% for tags with NC.

Issue type Project 1

(%)

Project 2

(%)

Project 3

(%)

Total (%)

Total issues
with tags

74 19 64 157

Total closed
issues

61 72 79 212

Closed with
tags – from

all tagged

issues

41 (55.4%) 12 (63.2%) 51 (79.7%) 104 (66.2%)

Closed with

tags – from

total issues

41 (67%) 12 (17%) 51 (64.6%) 104 (49%)

Table 3. Classification of tagged issues

 Looking further into the issues with tags, it is discovered

that 64 (60%) DC issues and 39 (37.1%) NC issues contain a

tag. This result shows that it is ~20% more likely for an issue

with commit to contain a tag. The closed issues that do not

contain any tags for DC and NC are respectively - 43 (40%)

and 68 (64.8%) issues.

Fig.5. Tags distribution within closed issues

GitHub allows tags to be custom, but it also contains some

that are default – such as bug, enhancement, UI. Many

projects use the custom labels for better description of the

issues. However, there are labels that are common across

projects. The most popular ones that were found in the three

projects selected in this study were bug and enhancement.

Closed issues

(DC)

Project 1 Project 2 Project 3 Total

Closed - tag
"bug"

12 2 12 26

Closed – tag
“enhancement

”

1 0 12 13

Table 4. Issues with commits and specific tags

Closed issues

(NC)

Project 1 Project 2 Project 3 Total

Closed - tag

"bug"

9 1 5 15

Closed – tag

“enhancement
”

2 0 6 8

Table 5. Issues without commits and specific tags

b) References

 Another factor that was observed are the references. They

could be an important link when it comes to indirect commits

(NC). A reference for NC could mean that there is a commit

that fixes the particular issues and vice versa, a reference in

DC could mean that the commit resolves a NC. In the data

collection the references that were collected had “Closed” and

“Open” state – representing the corresponding issue.

 Total issues that include reference are 93. Further, 70

issues with reference are closed. That is 74% of all referenced

issues and 33% of the total closed issues. To look further into

the reference as a factor, the closed issues were divided into

the two sub-states they have. The DC issues represent 54.3%

of all references issues, where NC issues represent 45.7%.

Issue type Project 1

(%)

Project 2

(%)

Project 3

(%)

Total (%)

Total issues

with ref

29 37 27 93

Total closed

issues

61 72 79 212

Closed with
tags – from

all ref issues

24 (83%) 26 (70%) 20 (69%) 70 (74%)

Closed with

tags – from

total issues

24 (39%) 26 (36%) 20 (28%) 70 (33%)

Table 6. Classification of referenced issues

Figure 6 represents the strength of a reference when compared

with closed issues which do not contain any references. The

comparison shown below visualizes DC and NC with both

possibilities of containing or missing a reference:

Fig 6. References distribution within closed issues

c) Time

 Another factor that was examined was time. The

spreadsheet includes both date of submission and day of

resolve. Based on that it was calculated the days it took for a

certain type of issues to be resolved. The average days were

calculated for both DC and NC. It turns out that closed issues

with commits are closed in about 22 days on average. For the

issues that do not have commits, that time range is 23 days.

Fig 7. Average days to resolve an issue with DC or NC

Figure 7 shows that issues with commits are resolved up to a

day faster than the issues with no direct commits.

Closed - commits Project 1 Project 2 Project 3 Total

Average days to resolve 17 31 18 22

Table 7. Classification of average days for DC

Closed – No commits Project 1 Project 2 Project 3 Total

Average days to resolve 14 25 31 23

Table 8. Classification of average days for NC

Table 6 and 7 show that for certain projects the time to resolve

issues without commits is less. However, in total that is not the

case.

d) Developers

 Developers who open issues can also close them. In

certain cases this is due to the fact that the project is relatively

small and not many developers are maintaining it. In other

cases, there are restrictions to who has access to close issues.

According to the results from the data extraction, 27.1% of

closed issues with commits are also closed by the same

developer who has opened the issue. In the case of NC issues,

that percentage is 36.2%. That leaves issues closed by a

different developer with 72.9% and 63.8% for DC and NC,

respectively.

Issues – with

commits

Project 1

(%)

Project 2

(%)

Project 3

(%)

Total

(%)

Same developer 4 (16%) 0 25

(48.1%)

29

(27.1%)

Different developer 21 (84%) 30 (100%) 27

(51.9%)

78

(72.9%)
Table 9. Classification of issues with commits closed by developers

Issues – No

commits

Project 1

(%)

Project 2

(%)

Project 3

(%)

Total

(%)

Same developer 10 (27.8%) 7 (16.7%) 21

(77.8%)

38

(36.2%)

Different developer 26 (72.2%) 35 (83.3%) 6

(22.2%)

67

(63.8%)

Table 10. Classification of issues without commits closed by developers

e) Combination – references and labels

There are multiple factors that could predict and determine the

connection between issues and commits. The factors included

in the data collection have been chosen based on the

information on issues provided by the GitHub issue tracker.

The justification is that every factor, even insignificant by

itself, could be determining when combined with another one.

Therefore, the table includes a combination between labels

and references.

G. Limitations and Risks

 One important limitation for this design research

methodology is that the theoretical framework, as an artifact,

cannot be compared to similar tools. The concept of

relationship between issues and commits is new and therefore,

tools or other theoretical frameworks are not available for

comparison. To minimize the risk of not having meaningful

results, most factors gathered with the data extraction were

analyzed with descriptive statistics were used to determine

their significance. Another limitation is the small pool of

projects that were explored, which could lead to non-accurate

representation of the rest of open source projects. Further,

that limitation hides a risk of a biased choice. To limit the risk

of biased results the projects were selected at random. No

previous knowledge about those projects was known

previously. To make sure that those project represent the rest

of the open source projects on GitHub, the only selection

criteria was the projects to have significant difference in their

sizes. That created a filter with three pools – big projects,

medium projects and small projects. From those three pools

the projects were selected randomly.

IV. RESULTS

 The detailed data extraction will help determine a stronger

relationship between issues and commits. Even in the case of

an issue that has been closed without a direct commits (also

named indirect link in the spreadsheet), the issues are reported

due to the possibility of an indirect link. An issue could be

closed as a duplicate of another issue, or it could be closed

because of a commit from another issue. In that case, that

issue has an indirect link.

Table 11. Classification of combined factors

In order to determine which factors can be beneficial to

tracing issues to commits or vice versa, factors from Table 2

were selected to evaluate.

A. Conceptual algorithm

 The conceptual algorithm, illustrated in Fig 8, is the

conceptual approach of collection and analysis through

different factors. The factors act as a filtering system, in order

to evaluate the commits and define a relationship with the

issue. In case a factor is missing for a specific issue, the

algorithm skips to the next one. The conceptual algorithm

checks the status of an issue. The possible outcomes are

Closed or Open. This is the first try to determine the issue type

as described in section III (D). If the status is Open there are

the possibilities of exiting the algorithm or running through

the main factors in order to suggest possible commit

connections for the issue. If the status comes back as Closed

then immediately the next iteration is to determine if the issue

has commits or not. That is the final step of establishing the

issue type as represented in Figure 10. Lack of commits with

trigger the factor checking, if confirmed with Yes. That will

help determine possible connections that fit the specific issue.

After the commits are narrowed down, the user has an option

to filter through the factors again, potentially discovering other

candidates. The system will end if there is no necessity for

another filtering. In case, the issue contains a commit, the

algorithm will try to establish if the commit is part of a Pull

Request. If the commit is not part of a Pull request, the

algorithm will proceed with collecting the commit ID

(hashtag). If the commits is part of a Pull request, the

conceptual approach will collect the Pull Request ID, together

with the commits related to the Pull Request. Further, the

commits will be filtered through the factor algorithm goes

through extra iterations.

Closed issues Project

1

Project

2

Project

3

Total

Tags 41

(67%)

12

(17%)

51

(71%)

104

(49%)

References 24

(39%)

26

(36%)

20

(28%)

70

(33%)

Tags and Refer 25

(41%)

 8

(11%)

14

(19%)

47

(22%)

No tags or reference 15

(25%)

42

(58%)

23

(32%)

80

(38%)

Fig 8.Concept of factor analysis

B. State of factors

Fig 9. Represents the state of the factors

An example of multiple factors could be a case where, we

assume there is an issue A that has a commit B which has a

time stamp as well as, names of the files changed. Later, if

commit C is found with a time stamp close to commit B and

changes the same files commit B does, then it could be safe to

say that commit C could have a link to issue A. However, that

example could work with one of the factors, as long as it gives

satisfactory confirmation of a connection between the issue

and the commit.

Generally, hashtags represent the strongest bond between

issues and commits. This is due the fact that a commit

specifically targets to resolve an issue. That could be

confirmed after the commit is submitted; the issue is marked

as Closed. The second strongest factor is a Pull Request which

could accommodate single or multiple commits. Due to the

nature of a Pull request, it may or may not fully resolve an

issue. That could be confirmed by: combining factors with the

Pull request and drawing a confidence level.

C. Issue types

Fig 10. Represents the issue types

Figure 10 represents classification of issue types. The issue

types were determined by the performed data collection

and relying on the definitions from section III (D). Based

on the entire issue collection, each issue type was

calculated.

D. Data samples

 Each issue type can be investigated by following the

algorithm concept described in section III (F) and represented

in Figure 8. The issues exemplified have different statuses and

factors involved. That is, in order to create diversity and show

multiple cases with different variables.

 Issue #74 from the project SSH_Scan is a closed issue that

contains a commit. The name of the issue is Add support

for IPv4 fallback when IPv6 cannot be established. The

selected issue goes through the first iteration of the

algorithm as shown in Figure 8. Since, it is closed, it

proceeds to the next iterations. It has a commit and it is

not a part of Pull Request, therefore it reaches the state of

Collecting commit ID and exiting the program. The issue

contains factors that are only secondary since it has a

hashtag that resolves the issue. At this point, the

additional information in the form of factors could be

collected for future references. This example is used to

show ideal connection between an issue and a commit,

since the latter is directly attached to the first and resolves

it.

Fig 11. Shows the issue name and date of creation

Fig 12. Shows hashtag number when closing the issue

 Issue #410 from the project TabCenter is a closed issue

that is resolved by Pull Request. The name of the issue is

Option to open links at top or bottom. The issue goes

through the first two checks that aim to establish the issue

type. Next, the algorithm is at the iteration of Part of Pull

Request. Since the issue is resolved by Pull request, the

algorithm proceeds to collect the commits ID and Pull

request ID. Since the issue is already resolved by

commits, it is safe to say that the issue has a definite

connection between the commits. However, because of

the nature of the Pull Request and the time difference

between the issue being resolved (2016-09-07) and the

Pull Request submitted (2016-08-22), a check on other

potential commit candidates might be necessary.

Fig 13. Shows the issue name and date of creation

Fig 14. Shows reference, pull request ID, closing date

 If that is the case, then the algorithm proceeds to the next step

Check through factors. In that stage, all factors mentioned in

section III (E) are analyzed. After going through the factors,

the conceptual algorithm suggests candidate commits based on

the factors it has investigated. Based on the time frame, some

of the suggested commits are listed in Figure 15:

Fig 15. Candidate commits based on the time factor

Issue #410 is missing Labels/Tags, so that factor does not

apply. Looking at the developers, it seems it has been

resolved by a different developer than the developer posting

the issue. The developer closing the issue has submitted other

issues the same day of the resolvement. For example, looking

into the commit fix:Scroll to the correct tab when Tab Center

is expanded seems that is not only submitted on the same day

by the same developer who closed the original issue, but also

it pushes changed to the same file vericaltabs.js. The

investigated issue includes multiple references. They could

point to similar issues and offering different solutions.

Fig 16. References attached to issue #410

Investigating those issues implies that they are either

duplicates or have been resolved by other commits submitted

for issue #410.

 Issue #71 from the project TestPilot-Containers is an issue

without any commits. The name of the issue is Replace

“No Container” copy with something else.

Fig 17.Shows issue name and date of creation

Fig 18. Shows date of resolving the issue

The issue does not have any references, but it contains

labels/tags.

Fig 19. Shows the labels assigned to the issue

Following the logical direction of the conceptual algorithm,

the iteration is at the step where it checks for submitted

commits. When it does not find any, it starts checking for

candidate list based on the defined factors. After using the

time range between opening and closing the issue, it provides

multiple commits. The ones presented below are the closest to

the closure date:

Fig 20. Presents some of the candidate commits based on time frame

The next factor is the developer. It is clear from Figure 20 that

the developer who has closed the issue, has not submitted any

commits prior to the closure of the issue. Issue #71 does not

contain any references to other issues and does not change any

files. However, it contains labels which might narrow down

the candidate list of commits. Combining the time frame

factor and the labels factor return no commits that match the

filters. According to the algorithm, the issue could run again

through the factors and show the commits based on the time

frame. The other option is to end the algorithm.

Some of the investigated issues cannot have possible

connection with commits. This is due to the fact that they are

either questions which need to be addressed by the developers

or the issue itself is open. There are issues that are closed

without an explanation.

 Issue #367 from the project TestPilot-Containers is a

closed issue marked by a label as Question. Based on the

diagram in Figure 5, the issues marked as Questions are

issues closed without commits. According to the

algorithm diagram, an issue without a commit can run

through the factors or it can skip the process and exit it.

Considering the fact, the issue is labeled as Question and

the issue is closed, it is safe to say that the issue is fully

resolve without the need of commits.

Fig 21. Shows the name and the date of creation

Fig 22. Issue is marked as Question

 Issue #984 from the project TabCenter is a closed issue

without any factors or commits attached to it. Further, the

issue is resolved in the same day.

Fig 23. Shows name and date of creation

Fig 24. Issue resolvement date

In some issue cases, the algorithm is not applicable and

candidate list cannot be determine.

 Issue #49 is an open issue from the project SSH_Scan.

The issue contains labels and references to other issues. In

this case, the algorithm concept could be beneficial to

Open issues with suggestions and list of options.

Depending on the issue and when it was opened, it might

not be a good idea to rely on the time frame factor. This is

because the range of possible commits could be too big to

analyze. However, when combined with other factors, it

could be possible to rely on the start date of the issue.

V. DISCUSSION

 After examining the results it is clear that only part of the

factors as described in Table 2 are relevant to the current

study. While, some such as Changed files are not currently

applicable to this research, the theoretical framework requires

all metadata to be collected. This is due to the fact that in the

future different projects might need additional descriptive

factors in order to define a connection. The current factors that

contribute to the research are – tags, time range, references,

hashtags, pull requests and developers. To define a more

accurate relationship and obtain a better result, a combination

of factors were used. Since, most issues rarely contain all

factors it is important to be careful to which factors are

included. When multiple factors are available in an issue, it is

important to be cautious about the choice. This is well

illustrated in issue #71, where combining multiple factors does

not help narrow down the list with possible candidate

commits. However, in most cases, multiple factors point at

more relevant commits, as described in issue #410.

 The descriptive statistics in section III (F) are important

for this study as it shows the frequent occurrence of certain

factors. It affirms the selection of factors as described in

section III (E). Looking into the statistical results, it is obvious

that Labels have a significant application when it comes to

issues. That is evident from the fact that 49% of all issues

included a label. Even more, 60% of issues with direct

commits are likely to be resolved, as pointed in Figure 8.

Labels do not have a pattern for repeatability, since two of the

most popular labels – bugs and enhancement, represent only

16.2% and 8.3% respectively. The fact that labels tend to be

different increases the chance to have more accurate match

when looking for a connection between an issue and a commit.

However, it might also be more difficult to suggest even

broader candidate commits.

 Next factor that has significant values is References. They

are included in 33% of all issues and 74% of all references

issues are closed. When looking further into the data, it seems

that 40.8% of all referenced issue are issues that contain

commits. While it is less than half, it does seem like an

important factor. Most references are used to close duplicates

or to point to an issue that has been resolved. When an issue

with a commit contains a reference, it is rather safe to say that

this commit resolves at least one more issue. That is one way

of defining indirect relationship between commits and issues.

Further, references could be used as a fast and easy way to

trace issues to commits or vice versa.

 When it comes to the time it took to resolve issues, it is

evident in Figure 7, that time by itself does not make a big

difference. Time is most useful as a filter that sets range

between the opening and the closing of an issue. That way it

significantly limits the possibilities of fittings commits. Time

range should be consider as one of the most useful factors

when it comes to linking issues to commits and vice versa.

Table 8 and 9 do not show significant difference in the time to

resolve issues of different types.

 Developers that open issues tend to not be the ones who

are closing them. Only 27.1% of the users that have opened

issues have closed it with a commit. Most of that could be the

people who maintain the projects or people who are aware of

the issue and want to fix it officially. When it comes to issues

without commits, 36.2% of the users that started it have

resolved it. That tendency could be to the fact that issues

without commits could be duplicates or questions. That

statement is supported in the Results section by issue #367.

 The statistic results point out that Labels and References

are a significant part when it comes to defining connection

between issues and commits. Therefore, a combination of the

two was made, as shown in Table 11, to explore if the factors

could be strengthened when combined. Two different

approaches were taken. One was to introduce the combination

of factors and the other was to resemble the issues that contain

one or the other. When factors are combined, the closed issues

represent only 22% of all issues. However, when the lack of

combination is introduced the percentage raises to 62%. That

means that more than half of the issues contain either a label

or a reference. That sort of combination can be beneficial to

the research as it provides evidence that issues that are fixed

are more likely to have one or the other and therefore helping

with addressing RQ (1). Further it also, helps with presenting

which factors are important and therefore addressing RQ (2).

 The hashtag is the factor that provides robust connection

between issues and commits. This is due to the fact that an

issue that is closed with a direct commit (hashtag), is with full

certainty, resolved. Based on Figure 10, it is evident that

hashtags are in 51.4% of all issues with commits. This means

that more than half of the issues that contain commits already

have a firm connection with those commits.

 Pull request is the second most defining factor after

hashtags. Pull requests contain one or more commits which

close the issue. However, that might now always be the case.

Sometimes, Pull requests are a work in progress. Multiple

developers could submit commits, but that might not mean the

issue is solved. On the other hand, it is very likely for a Pull

request to be able to build a bridge between issues and

commits. Especially after a Pull request is merged with the

issue and that issue is closed.

 The statistical data shows solid evidence that the chosen

factors are not only relevant, but also important. It is safe to

assume that the examples given in section IV(D) are

representatives of the pool of data collection. All examples are

chosen at random, based only on the criteria of representing

each issue type as shown in Figure 10. The selected issues

were put through the conceptual algorithm defined in Figure 8.

The randomization lowered the bias choice as well as it gave

more natural representation of the limitations of each issue

type.

 Issue #49 represents the Open status of issues. Typically,

Open issues, depending on their age, do not have many

descriptive characteristics. Therefore, using factors to connect

or even suggest a commit is very limiting. The time frame

factor could be beneficial in combination with another factor.

It narrows down the possibilities of commits.

Issue #984 is representing the issues closed without

explanation. That is a subclass of issues closed without

commits as seen in Figure 10. #984 represents 28% of all

issues without commits. That means that there is a chance

28% of the issues to not have connection with commits. This

is not only due to the fact that those issues types do not have

any of the other factors. It is possible that those issues are

duplicates, that were never marked or issues that have been

opened for a long time that nobody attempted to resolve.

 Only 6% are issues that are questions. Even though, it

represents a small amount of issues, it will not be possible to

make a link between those issues and a commit. Further

analyzing the issue types from Figure 10 shows that 52.4% of

the issues have no references. However, those issues still have

time and developers as descriptive factors. Some of them

might include labels as well. That will allow for the

conceptual algorithm to try and determine some possible links

with commits. The commits shown by the conceptual

algorithm have no definite character and are mostly

suggestive. That is especially good in situations where there is

no fix, a plan for an issue to be fixed or the issue cannot be

reproduced. That way, even if those particular issues were not

fixed, some similar and resolved issues might be available in

the future.

 Those results could not only be beneficial to future

research at multiple projects at once, but also could be helpful

to researchers working on a single project. Furthermore, it

summarizes how the different factors affect the projects in

GitHub.

VI. CONCLUSION AND FUTURE WORK

 This research paper identified several issue types. Each

issue type has specific characteristics. Knowing those

characteristics allows for different approaches when

establishing connection with commits. The approach is

defined in the conceptual algorithm. It handles the different

types of issues while trying to make a connection with

possible commits.

 After examining the descriptive statistics, it is evident that

descriptive data such as labels, references, developers and

timestamp, are beneficial for the projects. The statistics show

that those factors are relevant and important for establishing

connection between issues and commits. If issues contain any

combination of the factors described in this study it is

favorable that there will be a way to define the relationship of

the issues and commits for that particular project. Beneficial

outcome of this research is the theoretical framework and the

landscape of issues which points to way of connecting issues

with commits, as well as, which factors are involved and

important. This is cost and time efficient for projects. That

outcome is possible with the conceptual algorithm describe in

the thesis. Identifying different types of issues and analyzing

the issue through the factors are key contributions of this

research, answering research questions RQ (1), RQ (2) and

RQ (3).

 For future work, more studies could be added in order to

have better resemblance of the GitHub project base. Also,

following the theoretical framework and the conceptual

algorithm, an automatic tool can be created gathering issues

from the GitHub API and then analyzing the issues and their

corresponding factors. Such a tool can be used by project

developers and users contributing to the project.

ACKNOWLEDGEMENT

I would like to thank: my supervisor, Abdullah Mamun, for

his valuable feedback and guidance, my wife, Tierra

Dungarova, for her insightful advice and firm support, and my

parents for their constant patience and love.

REFERENCES

[1] Cabot, J., Izquierdo, J. L. C., Cosentino, V., & Rolandi, B. (2015,

March). Exploring the use of labels to categorize issues in Open-Source
Software projects. In 2015 IEEE 22nd International Conference on
Software Analysis, Evolution, and Reengineering (SANER) (pp. 550-
554). IEEE.

[2] Gousios, G., Zaidman, A., Storey, M. A., & Van Deursen, A. (2015,
May). Work practices and challenges in pull-based development: the

integrator's perspective. In Proceedings of the 37th International
Conference on Software Engineering-Volume 1 (pp. 358-368). IEEE
Press.

[3] M. Allamanis and C. Sutton. Mining source code repositories at massive
scale using language modeling. In MSR, pages 207–216. IEEE, 2013

[4] G. Gousios and D. Spinellis, “GHTorrent: Github’s data from a
firehose,” in Mining Software Repositories (MSR), 2012 9th IEEE
Working Conference on. IEEE, 2012, pp. 12–21

[5] Van Der Veen, E., Gousios, G., & Zaidman, A. (2015, May).
Automatically prioritizing pull requests. In Proceedings of the 12th
Working Conference on Mining Software Repositories (pp. 357-361).
IEEE Press.

[6] Van Aken, J. E. (2004). Management Research Based on the Paradigm
of the Design Sciences: The Quest for Field-Tested and Grounded
Technological Rules. Journal of Management Studies

[7] https://github.com/mozilla/testpilot-
containers/issues?utf8=%E2%9C%93&q=is%3Aissue

[8] https://github.com/bwinton/TabCenter/issues?utf8=%E2%9C%93&q=is
%3Aissue

[9] https://github.com/mozilla/ssh_scan/issues?page=5&q=is%3Aissue+sort
%3Acomments-des

Appendix

Table A1. Data collection from Project “Containers”

Table A2. Data collection from Project “Tab Center”

Table A3. Data collection from Project “SSH Scan”

