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Abstract—There is a need to improve the test procedure
of Active Safety Systems through the automation of scenario
generation, especially accident scenarios that are critical for
testing. The purpose of this thesis is to provide an approach
to automate the test generation process using machine learning.
We use a recurrent neural network, applied in other domains
to related problems where temporal data needs to be modelled
for the generation of accident scenarios. We build a dataset of
accident scenarios that occur at an intersection in a road traffic
simulator and use it to train our model. We deliver an approach
by testing different model parameters and input features and
show generated accident scenarios in comparison to ground truth
scenarios. We evaluate the quality of our generated accident
scenarios through a set of metrics which we introduce in the
paper.

Keywords-Machine Learning, Recurrent Neural Networks, Ac-
tive Safety Systems, Scenario Generation, Testing, Time Series
Prediction.

I. INTRODUCTION

The automotive industry and consumers are preparing for
an autonomous world where vehicles will navigate seamlessly
through a concoction of unfolding events. Ultimately this leads
to a resolution of trust between humans and the systems
designed to keep them safe. Today’s vehicles have powerful
on-board computer systems and amongst them are Active
Safety systems which are responsible for decisively mitigating
accidents and minimising damage [1]. State of the art systems
in vehicles include safety critical Advanced Driver Assistance
Systems(ADAS) and Autonomous Drive(AD) which have to
meet stringent standards. The current verification and valida-
tion process involved in meeting these standards must be run at
different levels of development and crucial among these tests
is how integrated vehicle systems respond to reconstructed
events. The binding of vehicle autonomy, sophisticated on-
board devices and increased integration of a vehicle’s systems
requires more complex reconstructed scenarios for testing to
safely deploy autonomous vehicles that are still feasible.

For the Active Safety domain, the need to attain realistic test
scenarios within a reasonable effort persists. Much is done
through manual analysis taken from accident databases [2]
and even though model based testing techniques are widely
used, manual specification of test scenarios is still the norm

[3]. State-of-the-art vehicles use a wide range of sensors to
capture data with, utilising this data to model and derive tests
would be beneficial however the state space is so large that this
makes it impossible to manually analyse. Real life scenarios
involve external actors such as pedestrians, traffic signals,
obstructions to lines of sight and behavioural patterns of
other drivers. Statistical models are useful for modelling data
but capturing models that are non-linear models or without
prior specification is better achieved by applying Artificial
Intelligence (AI) methods [4] [5]. Euro NCAP 2025 roadmap
- Vision to Zero suggests the domain will become centred
towards scenario based testing and that vehicle to vehicle and
vehicle to infrastructure (V2x) communication will play a
major role in active safety [6] . To recreate complex scenarios
which becomes necessary to test an autonomous infrastructure
of vehicles, automated and other capable methods are needed.
It is important to understand that there are many tools for
automated test execution and Continuous Integration but not
for automatic test generation. Our paper provides an approach
which includes a prototype that uses artificial intelligence to
generate accident scenarios by modelling data taken from
a simulator. We also provide a set of metrics to evaluate
generated scenarios. Research by A. Knauss et al. [7], on
testing challenges for safety of automated vehicles, mentions
that a promising strategy for extracting test cases from real-
world events is possible with the application of Artificial
Intelligence(AI) on big data.

Machine Learning is an approach within the Artificial
Intelligence domain. “A computer program is said to learn
from experience E with respect to some task T and some
performance measure P, if its performance on T, as measured
by P, improves with experience E.” -Tom Mitchell (1997) [8].
The premise is that data can be fed into a program in such
a way that a program’s performance of a task is improved
through the experience of information. More data improves
the scope for understanding and revision of that information
increases knowledge.

Artificial Neural Networks (ANN) are part of a family of
machine learning algorithms such as Support Vector Machines
and Naive Bayes. A distinction between a traditional program
and a program that is an ANN is that a task is not executed



2

by an explicit set of instructions. Instead an ANN is an
environment of neurons with constraints (connections between
neurons) where a task may be learnt.

Fig. 1. Example of Forward-Feed Network

So called Deep Learning has revitalised the neural net-
work domain with a combination of layered networks, big
data, and computational power previously unavailable. Two
important ANN structures exist: forward-feed networks and
recurrent neural networks (RNN). For forward-feed networks
data moves one way between neurons (shown in Fig. 1), whilst
in recurrent networks (shown in Fig. 2) data can flow in cycles,
not only restricted to forward connections.

Fig. 2. Example of Recurrent Network

Machine learning is being applied to range of applications
from image classification in applications like Snapchat [9] to
regression for prediction of weather patterns [5]. Forward-
feed networks such as convolution neural networks are being
researched for uses in image recognition in the automotive
industry [10] and increasingly RNNs are explored in domains
where temporal information is important [11] [12].

Vehicle manufacturers together with suppliers and a wider
infrastructure have set a goal for zero traffic fatalities. Being
able to accurately construct detailed accident scenarios will be
crucial because as vehicle systems become more complex with
rich features and because these new features transfer control
from humans to automated systems, a complete certainty of
these new features under test must be guaranteed. Once de-
ployed, these new systems will continue to reduce the number
of incidents whilst a potential for new types of risks will
develop. Resources for collecting and methods for deriving

test scenarios requires re-thinking and in this paper we explore
the practical application of using an recurrent neural network,
a machine learning approach to generate test scenarios which
leads to our research question:

RQ: How can Recurrent Neural Networks be applied to
achieve automated accident scenario generation for Active
Safety system testing?

We verify our approach through testing different model
parameters and features of our dataset. We evaluate how
accurately our model can generate collision scenarios at an
intersection by measuring the quality of scenarios by a set of
metrics.

Developing a model that could automate the generation
of scenarios could reduce the errors caused and the effort
needed to model each specific actor involved through manual
specification. Using such a model would help automate test
scenario generation in a similar approach to S. Khastgir et
al. [13] without the need of actively defining constraints
and dependencies between actors in a given environment.
Such generated scenarios could be rich in detail and utilise
simulation or augmented reality to deploy tests, reducing costs
towards accomplishing feasibility.

As the scope of possible scenarios is large we narrowed our
focus on modelling accident scenarios at an intersection. Our
goal is to provide an approach that could lead to an end-to-end
solution which can take real value data, such as data from on-
board systems in vehicles, to automatically generate feasible
test scenarios.

II. BACKGROUND

A. Active safety systems and testing

Active safety systems in vehicles are those systems that
take preemptive measures in order to avoid situations where
individuals inside or outside of the vehicle may be injured
or in the worst case killed. An example of this is a forward
collision warning system where the vehicle detects a slow
or stationary object ahead of the vehicle that might cause a
collision. Depending on how the system is built it can either
alert the driver of the upcoming hazard or trigger another
system that takes control of the vehicle to avoid an imminent
collision.

To test one of these systems there needs to be a defined
scenario that the system has to handle and pass. For this paper
we will use the following definition of a scene and scenario:

“A scene describes a snapshot of the environment
including the scenery and dynamic elements, as well
as all actors’ and observers’ self-representations,
and the relationships among those entities. Only a
scene representation in a simulated world can be
all-encompassing (objective scene, ground truth). In
the real world it is incomplete, incorrect, uncertain,
and from one or several observers’ points of view
(subjective scene).” [14]
“A scenario describes the temporal development
between several scenes in a sequence of scenes.
Every scenario starts with an initial scene. Actions
and events as well as goals and values may be
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specified to characterise this temporal development
in a scenario. Other than a scene, a scenario spans
a certain amount of time.” [14]

Other terms used in this paper are :
• ”Scene” and ”frame” where a scene is the metadata within

a frame.
• The words ”timestep” and ”frame” are interchangeable.
• ”Accident scenario” and ”collision scenario” are used

interchangeably as well.
• The term ”seed” is used throughout the Results and

Discussion sections refers to input values that the model
requires to produce an output.

.

B. Machine Learning with ANN

With the notion of learning through experience of infor-
mation, knowledge is stored through iterative change of an
abstract memory state: the learning parameters in artificial neu-
rons. Neurons can have different and complex cell structures
and are based on the neuron shown in Fig. 3.

Fig. 3. Simple artificial neuron. C is a bias function

Simply put, a neuron takes an input value for some task and
computes an output according to a computation with an initial
randomised learning parameter value. We expect some error
since this learning parameter is random and so the parameter
value is altered to some degree to potentially reduce the error.
A task is tried again and again until some level of satisfaction
or exhaustion is reached. Intuitively it is not dissimilar to the
way in which humans learn. As a child we learn to use utensils
to eat, awfully at first with lots of errors but with practice we
learn how to manage the complex problem! Likewise, artificial
neurons can model complex tasks by intricate connections
between neurons.

A neuron shown in Fig. 3, also referred to as a cell, contains
learnable parameters wi and where a nonlinear activation
function is applied to a transfer function, the following two
equations describe the process. An activation function:

h = g(u) (1)

where g is commonly a logistic sigmoid or hyperbolic tan
function and h by convention is used to denote a hidden output,
shown as output in Fig. 3.

And a transfer function :

u =

n∑
i=1

Wixi + c (2)

where xi are inputs, wi weights and c a bias function.
The activation function in equation 1 outputs a squashed

value which becomes the input into another neuron. Con-
nections between neurons and layers of neurons complete a
network through which a learning task takes place.

A goal of learning is to generalise. Data that a model has
never previously seen during learning should output a value
accurate to some degree. Often, causes for inaccuracy come
from underfitting or overfitting. Underfitting occurs when a
model has not been able to learn data well enough, overfitting
occurs when a model has learnt the pattern of a training set so
precisely that predicting any new unique data is now inaccurate
to some valid degree. We say that neurons learn weights W
by reducing a margin of error through updating its learnable
parameters.

Models can be taught to generalise data by either super-
vised, unsupervised or semi-supervised learning. In supervised
learning a model is provided with a target value to measure
its own predictions against in order to adjust its learning
parameters to achieve a better prediction. Unsupervised learn-
ing implies that no target value is provided and a typical
application for this is clustering where the target value is not
known. Semi-supervised learning may include target values on
some data but not on others. There is no formal definition but
in our research we use supervised learning and regression to
predict vehicle states.

To put into context neurons and learning Fig. 4 illustrates
an entire flow, forwards (black) to prediction and backwards
(blue) updating learning parameters. The network is con-
structed as a directed graph.

Fig. 4. Forward pass (black) and backward pass (blue) for a recurrent neural
network

During a forward pass through a network, input values X
are passed through some function in hidden units H where the
output values are measured against target values T to compute
an error. This is refered to as a loss function such as the Mean
Squared Error (3):

MSE =
1

n

n∑
t=1

e2t (3)

Remembering that a network learns through updating its
learning parameters W seen in Fig. 3 and that a network is a
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set of directed nodes show in 4, then adjusting learning param-
eters values can be done through moving through the nodes in
a graph. A backpropagation algorithm can be used for this task
and in practice is calculated using a computation graph. Within
each neuron there is a set of nodes which represent a function
f(x, θ) and edges that are the output values. Backpropagation
works by computing the partial derivative of the output from
the loss and recursively flowing backwards. The local gradient
from each node function in a computational graph is computed
and the partial derivative of composite functions can be derived
using the chain rule, that if f = qz and q = x + y then the
partial derivative of x can be found by:

∂f

∂x
=
∂f

∂q

∂q

∂x
(4)

This final step to learning is an optimisation problem, how
to adjust the learning parameters so that the error produced by
the next forward pass is minimised. To solve this a Gradient
Descent algorithm (5) is applied to minimise the cost function
of some high dimensional space:

∆Wn = −α ∂L

∂wn
(5)

where α is a learning rate between 0 and 1.
Using the derivative of the error function, the gradient of

the steepest slope is found from a randomised starting point
in the high dimensional space. The amount in which we move
down along the gradient towards a local minima is set by a
hyper parameter, a learning rate shown by the paths in in Fig.
51. At this new point the learning parameters can be updated
for the next forward pass. This set of subtle processes is a
generalisation of how learning in supervised deep networks is
accomplished in practice and many optimisation techniques
are available for computing nodes and moving in a high
dimensional space.

Fig. 5. Gradient descent from two randomised points

C. Recurrent Neural Networks

Recurrent Neural Networks(RNN) are a category of ANNs
which can take a sequence of values as input to output a hidden

1https://www.analyticsvidhya.com/blog/2017/03/introduction-to-gradient-
descent-algorithm-along-its-variants/

state. A hidden output of recurrent cell is described by the
equation:

ht = f(h(t−1), xt; θ) (6)

where t ∈ T and T is a sequence of timesteps, ht is
a hidden state, xt an external input with θ as parameters.
Fig. 6 illustrates an RNN cell with hidden outputs as a
cyclic graph(left) and depicted as an unfolded computation
graph(right). For RNNs the special case of backpropagation of
cyclic graphs can be solved by unrolling a cyclic graph into
finite steps shown in Fig. 6. This is equivalent to a forward-
feed network where backpropagation can be applied.

Fig. 6. RNN cell with hidden outputs(left). Unrolled computation graph(right)

Forward-feed only networks output values from one neuron
layer into another in one direction. Each input to output
through the network is independent of each other. For RNNs,
the sequence of inputs are not independent. The number of
cycles in the graph corresponds to the number of sequences
which the network is fed which we refer to as a timestep. A
timestep could be seconds, hours, days or an abstract value.

Fig. 7. Long Short Term Memory(LSTM) cell

A popular cell architecture for Recurrent Neural Networks
is Long Short Term Memory Networks (LSTM) that have a
more detailed cell structure than a regular RNN described
above. Alex Graves (2012) [9] gives a detailed description of
LSTMs, here we describe useful concepts for understanding
our methodology. An LSTM cell has a memory state that can
add and discard information during learning. In a regular RNN
new information is learned but past information is eventu-
ally lost as there is no mechanism for storing, adding, and
discarding information. LSTM networks introduced by Sepp
Hochreiter and Jürgen Schmidhuber help towards rectifying
the problem of losing information [15].

The fundamental components of an LSTM cell are: a forget
gate, input gate, output gate and a cell state that form four
layers illustrated in Fig. 7. A forget gate selects which data
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to discard, an input gate selects which data will be updated
and what new cell state values are to be added. The cell state
is altered through element-wise operations ⊗ and ⊕ and the
output gate decides what to output in relation to the input
which will be combined with it’s cell state to output a new
hidden state ht. Equations (4-8) describe the hidden outputs
H of an LSTM cell as a composite function [16]:

ft = σ(Wxfxt +Whfht−1 +Wcf + bf (7)

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi) (8)

ct = ftct−1 + it tanh(Wxcxt +Whcht−1 + bc) (9)

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo) (10)

ht = ot tanh(ct) (11)

where f , i, o and c are the activation outputs of forget,
input gates, output gates and cell state and h is the hidden
output from a cell. Wxf , Wxi, Wxc, Wxo are the input
weight matrices for each gate, hf , hi, hc, ho are hidden input
matrices, and t is the timestep. b are bias terms not included
for clarity.

III. RELATED WORK

Within the Active Safety domain problems exists to attain
realistic test scenarios within reasonable effort. The follow-
ing describes the state-of-the-art rationale and techniques of
data collection, analysis and modelling for testing within the
domain.

In-vehicle systems are used to collect data about behaviour
in the field [17]. The data collected can include GPS position-
ing, acceleration, speed, and LIDAR point cloud data [18] [19].
Data is also collected from driving simulators that use human
participants set in a virtual environment where they encounter
different traffic situations. Their subsequent actions, steer
angle, brake pedal depression and gaze direction can then be
recorded [20]. To determine when and what data to analyse
there are metrics such as surrogate safety measures e.g time to
collision between two vehicles, that can be used as indicators
of interesting events to analyse [21]. The data collected by
these systems is then in turn used to model actors in simulators
or create test scenarios. Scenario generation for Active Safety
Testing is widely derived through manual specification. This
has been identified as a major challenge amongst industry
practitioners as the complexity of scenarios increases [19].
This is especially true as systems move towards autonomous
drive. JJ Ference at al. [22] present a method for creating
objective test scenarios based on a crash database. They
analyse the most common scenarios and provide metrics that
can be used to reconstruct those scenarios. F Spitzhüttl at al.
[23] have developed a methodology of creating scenarios (pre-
crash simulations) based on the iGLAD accident database2.
As the iGLAD dataset was at times incomplete they had to
compensate and introduce assumptions in order to provide
a greater yield of scenarios however reducing accuracy and
reliability. A quality criterion was introduced as well in order

2http://iglad.net

to try to address inaccuracy and reliability of the created
scenarios.

The use of a constrained randomisation technique, to gen-
erate scenarios for a driving simulator, is presented by S.
Khastgir et al. [13] in order to derive possible scenarios and
test cases based on a given use-case.

Specific topics are studied independently such as bicycle
to car collisions [24], light to heavy vehicles [18] and those
results are incorporated into test cases or used to improve a
wide array of driver model behaviours [25]. Modelling this
complexity even in state of the art simulations is difficult [26].

With the availability of big data, research has turned towards
machine learning algorithms that can be used to infer a
probability of future events derived from learned patterns.
BT Morris et al. [27] describe several approaches for using
machine learning algorithms for the domain of behaviour
modelling. Long Short Term Memory (LSTM) has become
popular to predict and generate temporal information [28].

IV. METHODOLOGY

A. Overview

Design Science is a research paradigm in which the goal is
to solve identified problems through performing a set of activ-
ities with a resulting artefact. The Design Science framework
is used to assess and refine an artefact through building and
evaluating in an iterative process. It is accomplished by using
and adding to the knowledge domain through rigour, and the
application of a solution that reflects the business need [29].

Our artefact provides an approach on how to automatically
generate collision paths using an RNN. We utilise TensorFlow
(version 1.0) a machine learning library from Google and
Python (version 3.4) to implement our model. Fig. 8 illustrates
the key components of our design process. The key driver
to undertake our research is the need to improve the test
procedure of Active Safety Systems through the automation
of scenario generation for testing. We add to the Environment
shown in Fig. 8 a prototype application to demonstrate end-to-
end accident scenario generation and to the Knowledge Base
propose a set of metrics to evaluate the quality of generation.
These metrics help us understand how accurately our RNN
model is able to generate accident scenarios. A good generated
accident scenario should be plausible to the given situation.

We utilise a Recurrent Neural Network (RNN) used in other
domains where temporal awareness is important. Our RNN
model will be used to generate scenarios which include the
speed and direction of two colliding vehicles at each point
in time and that are also reactive of independent actor/s, in
our case traffic light states at an intersection that each vehicle
approaches.

We start our solution by examining time series data pre-
diction 3 and iteratively develop our prototype for multiple
time series of multiple actors. We re-use helper functions4

to separate data into training, validation and test sets that
the model is fed. Data is separated into 80% training, 10%

3https://github.com/pusj/LSTM-Time-Series-Analysis-using-Tensorflow
4https://github.com/pusj/LSTM-Time-Series-Analysis-using-Tensorflow
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Fig. 8. Design Science Framework.

validation and 10% test sets. An example of the data format
can be seen in Table I.

B. Artefact: Collision Model

Our artefact includes a design and implementation of a
neural network model, that we call Collision Model, exem-
plified in Fig. 9. Input Features contain a subset of data
shown in Table I and are fed into the Collsion Model in
batches. Data distributed to separated neural networks and is
not predetermined. The LSTM cells used are described by
Zaremba et al. [30].We evaluate how data can be processed,
which variables are important and the architecture of the model
to achieve the best qualities of scenario generation. These
include traffic light states, normalisation, scenario distinction,
timesteps and a single versus parallel network:

1) : Light States during intersection Constraining a model
to make it simpler and reduce the risk of overfitting is called
regularisation. Traffic light data is collected as an array of
length 3 eg; [0, 1, 1]. Each element is a binary value where
‘go’ = 1 or ‘stop’ = 0 and where the array represents [left,
straight, right]. The traffic lights are limited to four states: ‘all
stop’, ‘go left’, ‘go right and straight’ or ‘all go’. The total
value of each array is summed respectively to 1, 2, 3 or 4 in

order to represent each state as a single integer. We added a 5th
“null” traffic light state for all vehicles inside an intersection
perimeter. This was done to measure whether traffic light states
of a next intersection, which the cars record, will affect cars
in its current intersection.

2) Normalisation: The entire dataset for each correspond-
ing feature was normalised using feature scaling (12) where
x ∈ X and X is the input feature set. The features are
normalised between a range of 0 and 1 before feeding them
into the model for training, as normalising has been shown
to help the rate of convergence [31]. Batch normalisation is
suggested between input-hidden layers in a network, however
we opted to normalise the entire data set prior to input as our
data set was of a feasible size [32]. The input features of the
model were normalised values of light, speed, direction.

x′ =
x−min(x)

max(x)−min(x)
(12)

3) Scenario Distinction: A key is added at the end of each
scenario to remove overlapping timesteps between scenarios.
An alternative would have been to add zero values and use
sequences of variable lengths. One downside to our method is
that we lose some sequences by n-1 timesteps.
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Fig. 9. Collision Model: Input Features consist a batch of pre-processed data
collected from the simulator, it details the state in which vehicles and traffic
lights are in. LSTM layers captures the learning process. The Output Layer
gives a prediction of a next world state.

4) Timesteps: We train the Collision Model using different
length timesteps. Using one timestep would be equivalent to a
standard forward-feed network. We model using 1-4 timesteps.

5) Single and Parallel networks: We model data using up
to 192 neurons with a single network of two layers, 62 and
128 neurons and parallel network with 16 and 32 neurons
respectively.

C. Aretfact: Scenario Generation Model

A second inclusion to the approach is Scenario Generation
Model (GM) show in Fig. 10 where we describe how we
generate an entire collision scenario.

D. Evaluation

Applying our artefact for test generation in Active Safety
System development is likely novel and as such we will be
providing a proof of concept. In the following paragraphs we
describe how we will evaluate our artefact:

1) Analytical: We will analyse the feasibility of our ap-
proach in terms of what pre-processing is needed from raw
data. As sensor data is available from in-vehicle systems,
standards need to be established in the automotive domain
for machine learning.

2) Descriptive: We will further determine the success of
our approach through looking at the quality of scenarios
generated in comparison with ground truth data. The quality
is defined by the following metrics:

Fig. 10. Generation Model: The Input layer to the model is an initial seed:
S1, S2 and S3 which are three sequential world states of light, speed, direction
for vehicle A and light, speed, direction for vehicle B. Hidden Layers 1 and
2 are LSTM layers that process the input data. The Output Layer gives a
prediction of a next world state. To build an entire scenario a new seed is
made. Prediction O1 is concatenated to the S2 and S3 but the predicted light
state is removed and an external light state is inject into the new world state.

1) A collision occurs defined by two vehicles intersecting
at the final point from generated paths.

2) The distance travelled from both vehicles.
3) The total speed at collision from both vehicles.
4) The cumulative angular change from both vehicles dur-

ing a scenario.

E. Data collection

We source our data from the publicly available road traffic
simulator5 shown in Fig. 11 to train, validate and test our
RNN implementation. The source code for the simulator can
be found here6. The simulation is built using models such
as the Intelligent Driver Model (IDM) and MOBIL [33] that
define rules and behaviour of vehicles. As the simulator has
no built-in data logging system we have had to implement
this as well as a collision detection algorithm. The simulation
runs at 60 frames per second and for each frame we can collect
each individual vehicle position, state of upcoming traffic light,
speed, direction and whether it has collided or not. There
are also definable states concerning the environment including
number of roads, intersections, traffic light switching interval
and time-factor which is a coefficient that determines the rate
at which the simulations runs.

5http://volkhin.com/RoadTrafficSimulator/
6https://github.com/volkhin/RoadTrafficSimulator
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TABLE I
EXAMPLE OF RAW DATA REPRESENTING TWO VEHICLES INVOLVED IN A COLLISION SCENARIO

Car 1 Car 2

ID X Y TLS Speed Direction ID X Y TLS Speed Direction

333 -29.23042 -19.25 5 0 0 1233 -33.25000 -11.27591 3 0.2333883 -1.570796

Each scene contains 12 data-points as seen in Table I
which include the car identification number, x-coordinate, y-
coordinate, traffic light state (TLS), speed and direction for
the two cars involved in the collision.

After running the simulation with various map configura-
tions, different numbers of cars and different time-factors, we
concluded that for the purposes of our research we could run
the simulation in the configuration seen in Fig. 11 with 100
cars at a time-factor of 2. The total amount of frames collected
was determined by logging high speed vehicles from entry into
the lane boundary highlighted in green up until collision in the
red intersection which was approximately 50 frames.

We focused our data collection around a signalised inter-
section highlighted in red in Fig. 11 due to the complex and
possible interesting scenarios that appear there. 100 cars are
added to the simulation in designated areas highlighted in blue
in order to avoid creating immediate collisions. Data logging
begins whenever a car enters one of the roads highlighted
in green connected to the intersection. If a collision occurs
within the red area then data of the past 50 frames of the two
vehicles involved are saved as a scenario, the two vehicles are
subsequently removed from the simulation and two new cars
are added in the designated blue areas.

With this configuration of the simulator we were able to
record 4835 collision scenarios containing 241750 scenes with
an estimated total running-time of a week. The simulator was
monitored as there were instances where it would become
congested by the vehicles and the simulation world had to be
reinitialised. The reasoning for a time-factor of 2 was due to
the need of finer data for the RNN. If a vehicle drove down one
of the roads towards the intersection at a very high speed then
we observed that a time-factor greater than 2 would result in
scenarios containing a lot less scenes as the logging frequency
is static.

V. RESULTS

In this section we describe the quality of generated scenarios
in respect to our evaluation criteria in the subsection: Gener-
ated Collision Scenarios, and the development of our model in
the subsection: Training. Independent variables experimented
with in Training are timesteps, normalised variables, light
states, network shape where the dependant variable is the
Mean Square Error.

A. Generated Collision scenarios

The model used to generate collision scenarios consisted
of a parallel network with 16 and 32 neurons respectively.
Data was regularised, normalised using feature scaling, had a
learning rate of 0.01, and trained for 200 epochs. Total amount
of data used for the model consisted of approximately 120875

Fig. 11. Road traffic simulator

scenes (2417 scenarios). We used 237 seeds from the test
dataset, consisting of 3 timesteps each, to generate scenarios
that are 47 timesteps long.

From the 237 seeds, the model was able to generate 32
(13.5%) successful collision scenarios (SCS) and 205 (86.5%)
unsuccessful collision scenarios (UCS) according to criteria 1.
Fig. 12 shows where the collisions from the training set (green
dots), test set (blue squares) and the successfully generated
occurred (red stars). Fig. 13, 14 and 15 show the generated
scenario in red that were created using the seed from the
corresponding ground truth scenario indicated in blue. These
figures show the trajectories (dotted line), the final positions
(rectangle) and directions (arrow) of vehicles. Fig. 13 shows
the most common SCS 46.88% where two vehicles are moving
with similar speeds. Fig. 14 shows the second most common
SCS 37.5% where one vehicle is moving and the other is
stationary. Fig. 15 shows the third most common SCS 15.63%
where one vehicle is moving at a higher speed than the other.
Fig. 16 is an example of a UCS where one vehicle has veered
off path and travelled an insufficient distance. In order to
present our results for criteria 2, 3 and 4 we use Kernel Density
Estimation (KDE), which is a non-parametric technique used
for visualising the underlying distribution of our data [34]. For
each KDE plot (Fig. 17, 18 and 19) we include the distribution
of the whole training set (purple), all of the ground-truth data
used for SCS (blue), all of the UCS data (green) and all of the
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Fig. 12. Collision points at intersection

Fig. 13. Most common SCS

SCS data (red). Fig. 17 shows the distribution of the distance
travelled by both vehicles combined during a scenario, Fig. 18
shows the distribution of the combined speed of both vehicles
at the point of collision and Fig. 19 shows the cumulative
angular change in radians by both vehicles combined during
a scenario. From Fig. 17 we see that distances generated from

Fig. 14. Second most common SCS

Fig. 15. Third most common SCS

SCS have a similar distribution to the ground truth values.
The total speed at collision shown in Fig. 18 is skewed left
towards the lower values of speed as is the same with ground-
truth data however with a much greater density more in line
with that of the training data. The model however fails at
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Fig. 16. Example of a UCS

properly capturing the change in direction seen in Fig. 19.
The training data and ground truth data are heavily skewed
to the left meaning that the vehicles barely change direction
during a scenario whilst the generated scenarios are skewed
to the right leading to greater changes in direction.

Fig. 17. Evaluation criteria 2

Fig. 18. Evaluation criteria 3

Fig. 19. Evaluation criteria 4

B. Training

1) Timesteps: We saw that using more than 1 timestep
significantly improved the error by 55.24%. Table 2 shows
the errors produced between 1-4 timesteps. The lowest error
recorded was produced at 3 timesteps at 13.54% lower than the
nearest value at 4 timesteps. A use of more than 3 timesteps
saw a rise in error. Up to 10 timesteps were tested under
slightly varying parameters (omitted due to the potential of
discrepancy).

2) Light States: We also tested the effect of having light
states for vehicles once they travel inside the intersection
boundary shown in Fig. 11. Removing light states inside the
intersection shows a 5.7% decrease in error.
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3) Single and Parallel networks: Halving the neurons per
layer and then adding a second network, so that we have two
networks of 16 and 32 neurons for each layer, improves how
the network was able to converge. A single network with equal
neurons showed that after 200 epochs the error was of near
equal values seen in Table II, but did not converge as well as
seen in Fig. 20.

TABLE II
TRAINING MSE VALUES

Timesteps 1 2 3 4

MSE 3.7181 2.0425 1.6643 1.9249

Light State Original Null-state

MSE 0.00742 0.0066

Network Single Parallel

MSE 0.0021 0.002

Fig. 20. Parallel vs Single network with equal amount of neurons.

VI. DISCUSSION

A small yield of successfully generated collision scenarios
were produced over seeds that had a distribution close to
population of the data set. It is important to notice that having
this comparable distribution yields towards the scale of a
critical test. We would expect to see an increase in the number
of collisions if we aimed to generate within certain parameters.
Increasing the number of layers or neurons did not yield better
results beyond our model. Deep layers offer better feature
extraction but are difficult to penetrate while too many neurons
reduce a training loss but lead to overfitting so often multiple
training strategies need to be considered [35].

Evaluating the density plots we notice that the cumulative
angular change distribution is skewed to the right compared
to the ground-truth and training data. It is clear that angular
data had not been accurately modelled. We reason that the
direction a vehicle will travel is dependent on the context
of its position, X and Y coordinates in our dataset. This
was omitted during training since excluding the X and Y
coordinates as input features generated a lower loss (MSE)
value. Whilst training, we use the MSE as an indication of
how well the model was converging. One possible solution

for improving the directional modelling could be to use a
value that represents the change in direction for each vehicle
rather than the true direction of the vehicle with respect to the
simulation environment.

Understanding how to represent and model data came
through iterative process with the results motivating further
progress. For instance granularity of the data needed to be
considered as well as how far back in time data is collected
is relevant. We were able to model scenarios, generating 47
timesteps in the future using 3 timesteps of starting sequential
data. We did not test variable time lengths for slow and fast
moving vehicle but should be considered for future work.

The notion to remove light states during an intersection
was an intuitive choice from examining the behaviour of the
simulator and real world driving. We felt it appropriate to
measure the effect of removing light states which showed
a decrease in error. This could suggest that vehicles inside
an intersection are not reacting to lights states, at that time.
Simply identifying an independent variable is not enough in
this case, so consideration should be taken into place that
available data from in-vehicle systems used for modelling may
have a conditional influence.

Dropout is a strategy to improve generalisation against
overfitting but RNNs find it hard to benefit from it when used
between neurons because important temporal information is
lost. Zaremba et al. [30] demonstrated that better results can
be obtained when dropout is applied between layers and not
between neurons. We experimented with a different approach,
splitting a network into two separated networks to force
constraints on learning. We did not discriminate which features
should be modelled in each network. The rate of convergence
was higher and the error after training was near identical for
the single network. This suggests that the parallel model was
better able to generalise.

A. Alternative Approaches

Our chosen approach is an initial step towards the automatic
generation of collision scenarios using an RNN for active
safety system testing, which is reflected in our process and
complexity of the models we built. There exist more complex
approaches that tackle similar problems of modelling trajecto-
ries and sequence generation but the implementation of those
were deemed out of scope for this research paper.

A. Alexandre. et al [36] propose, what they call, a ”Social-
LSTM” model for the task of predicting the trajectory of
multiple humans in a scene. Their model uses a LSTM
network for each individual trajectory and, depending on
the spatial proximity of the individuals, pool these networks
together in order to allow the LSTM networks to share
information. This is done as individuals will alter their paths
depending on the motion of their neighbours who in turn
do the same. Their method outperforms other state-of-the-art
methods. Implementing a similar approach could increase the
accuracy of prediction for our collision model.

Another viable approach would be to use the framework of
a Generative Adversarial Network (GAN) for sequence gen-
eration [37]. The framework consists of training a generative
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model and discriminate model at the same time, then pitting
them against each other in a form of unsupervised learning. To
put it into context we can generate an entire scenario and use a
discriminative model to determine whether or not the collision
scenarios are real. Both models compete to improve their
performance until generated scenarios are indistinguishable
from the real scenarios.

B. Threats to validity

As our approach is a proof of concept and to the extent of
our own research in this domain, also novel, it is not validated
against other approaches. It is not implemented using real
life data nor evaluated in a real testing environment used in
the automotive industry. Data used from the simulation is a
simplified example of patterns that may occur at a real-world
intersection. We also assume that real world intersections
have some pattern in which vehicles react to actors in an
environment.

The metrics chosen to evaluate the generated scenarios were
defined by the researchers themselves as deemed appropriate.
For criteria 1 the researchers rely on human observation
whether or not the two vehicles intersect by looking at each
generated graph. The size of the vehicles in the simulation
environment vary between 3-5 units in length but with a static
width of 1.7 units. This was not recorded at time of data
collection so a length of 5 units was given to each vehicle
in the generated scenarios. When calculating the X and Y
coordinates of the generated scenarios a time constant had to
be derived in order to calculate the next coordinate as the speed
value defined in the simulation environment is arbitrary. The
time constant has been validated against ground-truth data in
order to mitigate this but still leads to some uncertainty. The
use of techniques such as Dynamic Time Warping [38] in order
to analyse the similarity between trajectories were considered
but due to time constraints were never used.

We learned that MSE values were not always a precise
indicator of good generation. Generation could have been
done earlier in our process to verify that any changes were
a good choice. Our model does generate scenarios but there
still remains the problem of automatically assessing the quality
of the generated scenarios without having to observe the
generated paths and analysing statistics.

VII. CONCLUSION AND FUTURE WORK

We use an RNN to generate collision scenarios and the
quality of those generations are measured by a set of metrics.
A key driver of our paper was the need to find a solution
with reasonable effort to accurately automate generation of
scenarios for Active Safety testing and crucially for the advent
of Autonomous Drive. Our results show that an automated
generation of a collision scenario is by some means achievable
using a recurrent neural network. We acknowledge that with
additional data mining techniques and a complex model our
results may have been improved. The scope of our thesis
was to provide an approach and we reason that while RNNs
have been applied in other domains to related problems where

temporal data is important, approaches in general for automat-
ing the generation of collision scenarios are sparse. Whilst
the percentage of collisions achieved from a test set with a
distribution comparable to the population is relatively low,
the qualities that have been derived from successful collisions
and non-collisions alike are interesting enough in relation
to distance, speed at impact. Future work in this domain
would include a thorough assessment of the features available
and needed as well as implementing our approach with the
use of real-world data. Our results pose questions towards
experimenting with other accident data sets and combining
RNN with other artificial intelligence methods.
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