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ABSTRACT 

Cancer is a diverse disease with large variations between tumor types and patients 
regarding tumor progression and prognosis. Additionally, most individual tumors are 
heterogeneous, containing subpopulations of cells with various characteristics. Numerous 
factors affect the differences observed between tumor cells, such as variations in genetics, 
epigenetics, cellular states and the microenvironment surrounding the individual cells. 
One clinically relevant subpopulation, commonly referred to as cancer stem cells, consists 
of cells with stem cell characteristics. These are present in many tumor types and are 
known to be important for tumor development and treatment resistance. The tumor 
microenvironment is a key factor affecting the cellular phenotype, including the cancer 
stem cell subpopulation. Analysis at cell population level will not capture the true 
variations between individual cells. Instead, single-cell analysis offers new means to study 
and understand cellular and molecular differences between tumor subpopulations. The 
main objective of this thesis was to study tumor cell heterogeneity in myxoid liposarcoma 
and breast cancer with the help of single-cell gene expression analysis methods. We could 
generate a flexible workflow to measure gene expression, including the assessment of total 
mRNA amounts in each cell, using several diverse approaches developed from already 
existing protocols. Subsequently, we combined a number of functional cell culture 
methods to enrich for tumor cells with characteristic cellular properties together with 
single-cell gene expression profiling methods, to match phenotype with the corresponding 
transcription pattern. Single-cell analysis of myxoid liposarcoma cells, sorted based on the 
cell-cycle, identified a number of genes previously not reported as cell-cycle regulated and 
defined two subgroups of cells within the G1 phase. In the same tumor type, we identified 
a subpopulation of cells with cancer stem cell- and chemotherapy resistance properties 
associated with an active JAK-STAT signaling pathway. Here, a combination treatment 
of chemotherapy and JAK-STAT inhibition was in vitro shown to be more effective against 
tumor cells than chemotherapy alone. In breast cancer cells, we identified a number of 
potential biomarkers overexpressed in a subpopulation of cells with cancer stem cell 
characteristics. We also developed a new in vivo-like culture system based on decellularized 
human tumors to study the effect of the microenvironment on breast cancer cells. We 
demonstrated that the gene expression profiles of cells cultured in these patient-derived 
scaffolds closely mimic the profiles of in vivo cells. Furthermore, gene expression patterns 
changed differently depending on the patient-derived scaffold, which could be linked to 
patient recurrence. In conclusion, we developed single-cell analysis methods as well as a 
new in vivo-like model system. Furthermore, we identified genes and pathways connected 
to different subpopulations of myxoid liposarcoma or breast cancer cells that potentially 
can be used as biomarkers and future drug targets. 

Keywords: tumor heterogeneity, single-cell analysis, cancer stem cells 
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POPULÄRVETENSKAPLIG SAMMANFATTNING 

Cancer är en av de huvudsakliga dödsorsakerna i världen. Prognos och behandlings-
respons beror på cancertyp men kan även variera mellan patienter med samma 
cancersjukdom. Det har också visat sig att en och samma tumör kan variera i 
sammansättning och bestå av flera grupper av cancerceller med specifika egenskaper. En 
hypotes är att det finns en mindre population av cancerceller med stamcellsegenskaper, 
de så kallade cancerstamcellerna, som är viktiga för tumörtillväxt och behandlings-
resistens. Flera faktorer påverkar skillnaden mellan de enskilda cellerna i tumören, såsom 
genetiska förändringar och den omgivande miljön. Genom att analysera enskilda celler, 
bland annat genom att mäta genuttryck, kan man undersöka hur olika grupper av 
cancerceller skiljer sig åt. Vi har vidareutvecklat existerande metoder för att mäta 
genuttryck i enskilda celler. Våra studier har fokuserat på två olika cancertyper, 
bröstcancer och myxoid liposarkom, där den senare är en ovanlig cancertyp som vanligen 
uppkommer i lårets muskelvävnad. För att studera dessa har vi använt oss av cellinjer, 
modellsystem baserade på celler från tumörer som i ett laboratorium kan fås att dela sig 
oändligt många gånger. Genom att odla cellinjer på varierande sätt och använda oss av 
infärgningsmetoder har vi kunnat anrika celler med specifika egenskaper. Vi har sedan 
analyserat genuttrycket hos dessa celler. Genom att använda oss av dessa och andra 
metoder har vi kunnat upptäcka en tidigare okänd grupp i en myxoid liposarkom-cellinje 
med cancerstamcellsegenskaper vilka var förknippade med uttryck av gener som tillhör 
JAK-STAT, en specifik signalväg som är inblandad i tumörutveckling. En kombination 
av ett läkemedel riktat mot denna signalväg och en vanlig typ av cellgift som används för 
att behandla patienter drabbade av myxoid liposarkom visades vara mer effektivt i myxoid 
liposarkom-cellinjer än bara cellgiftbehandlingen. I bröstcancer har existensen av 
cancerstamceller varit känd i flera år men de biomarkörer som idag används för att 
identifiera dessa varierar och är inte uttryckta i alla cancerstamceller. Genom att 
kombinera specifika odlings- och infärgningsmetoder av en bröstcancercellinje med 
encellsanalys kunde vi identifiera flera gener som var högre uttryckta i celler med mer 
cancerstamcellsegenskaper. Vi undersökte också effekten av olika tumöromgivningar på 
bröstcancerceller. Vi utvecklade ett nytt odlingssystem där vi tvättade bort celler från 
tumörbitar för att sedan låta cancercellinjer växa i kvarvarande material. Vi kunde se att 
celler odlade i dessa strukturer blev mer tumörlika i jämförelse med celler odlade i 
konventionella odlingsflaskor. Vi kunde också se att sättet vissa genuttryck förändrades 
hos de odlade cellerna varierade och kunde kopplas till återfall hos patienterna som 
tumörbitarna tagits från. Sammanfattningsvis så har vi tagit fram metoder för att studera 
genuttryck på encellsnivå och även tagit fram ett nytt cellodlingssystem. Vi har identifierat 
gener och signalvägar specifika för olika cellpopulationer som, efter mer studier, 
potentiellt skulle kunna användas vid utveckling av nya metoder för diagnostik och 
behandling. 
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INTRODUCTION 

Cancer is one of the leading causes of death worldwide and both incidence and mortality 
is increasing [1]. During the last decades, the understanding of the biology of cancer have 
markedly increased, but little of this has been translated into new prevention and 
treatment strategies [2]. Cancer is a group of diseases where cells, through mainly genetic 
changes, gain properties that allow them to proliferate more than normal cells. The 
amount and type of genetic changes varies between tumor types, patients and during the 
course of tumor progression [3]. The main treatments of cancer include surgery to remove 
the tumor, radiotherapy directed at the tumor site and chemotherapy; cytotoxic drugs that 
aims to kill highly proliferative cancer cells while causing little harm to normal cells. As 
our knowledge about altered signaling pathways has increased, new possibilities for 
development of directed treatments have increased accordingly, though with varying 
results [2, 4]. Both prognosis and treatment response commonly varies between patients 
with the same cancer type and there are several issues associated with today’s treatments. 
Apart from side effects and lack of treatment effect, there is also a problem with treatment 
resistance, when relapses are occurring despite initial response to treatment [5]. To 
complicate things further, cancer cells within one tumor differ from each other where 
some cells seem to be more important for treatment resistance [6]. Increased knowledge 
about tumor cell heterogeneity could be the key to understanding the difference in 
treatment response between patients and to design new and more efficient treatments.  

CANCER SUBTYPES 
Cancer is divided into subtypes, normally depending on their tissue of origin [2]. The most 
common subtype is carcinoma, which comprises tumors arising from epithelial tissues in 
different parts of the body. Further subtypes include; sarcomas from different types of 
connective tissue, hematopoietic cancers such as leukemias and lymphomas from blood-
forming tissues, neuroectodermal tumors from cells of the nervous system, and 
melanomas from the pigmented cells of the skin and retina [2]. Both the amount and type 
of genetic alterations varies between different cancer types [3]. Apart from point 
mutations, other chromosomal changes include changes in chromosome number as well 
as deletions, inversions and translocations, the latter often resulting in fusion of two genes 
to create a fusion oncogene. It is thought that just a few of the genetic changes are 
important drivers of tumor progression whereas many are considered passengers [3].  

In this thesis, we have focused on two different cancer types, breast cancer and myxoid 
liposarcoma (MLS). While breast cancer on average have around 30 mutations [3] and 
consists of several different subtypes [7, 8], MLS is driven by specific fusion oncogenes 
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and harbors few other genetic changes [9, 10] leading to less genetic variations between 
patients.  

Breast cancer 
Breast cancer is the most common cancer type affecting women worldwide and it is one 
of the main causes of cancer-related deaths in women. The risk of developing breast 
cancer before the age of 75 is 5%. The incidence is higher in more developed countries, 
mostly due to a higher prevalence of known risk factors, for example related to 
reproduction, hormone intake and nutrition [1]. In Sweden, the corresponding value is 
10%, according to the Swedish Cancer Society [11]. Breast cancer is a heterogeneous 
disease with several subtypes connected with different prognosis and treatment. Even 
though the overall survival of breast cancer has increased due to early detection and 
improved treatment, with a current 5-year survival rate of 89% in the US [12] and 90% in 
Sweden [11], there are subtypes with worse prognosis [7].  

Currently, breast cancer can be divided into four intrinsic subtypes; Luminal A, Luminal 
B, HER2-enriched and basal-like. Studies have also shown heterogeneity within these 
subtypes [13-15]. The subtypes are further defined based on the expression pattern of 
proliferation marker Ki67, HER2, and the hormone receptors estrogen receptor (ER) and 
progesterone receptor (PgR) [8]. The basal-like subtype usually lacks expression of HER2 
and the hormone receptors and is often called triple-negative breast cancer, although not 
all triple-negative tumors are basal-like. These expression patterns, together with other 
factors such as the size and location of the tumor as well as age and health status of the 
patient are guiding treatment decisions. Treatment of breast cancer includes surgery and 
radiation therapy as well as different types of systemic treatment including chemotherapy, 
endocrine therapy (for treatment of ER positive tumors) and HER2-directed treatment 
(for treatment of tumors with HER2 amplification) [8]. Triple-negative tumors, lacking 
specific treatment, are often aggressive with a poor outcome [16]. 

Myxoid liposarcoma 
Myxoid liposarcoma is a rare type of tumor belonging to the group of soft tissue sarcomas, 
which are malignant tumors arising in soft tissues such as fat or muscle in different parts 
of the body. Most MLS tumors are situated in the muscle of the thigh. The incidence of 
soft tissue sarcomas is less than 1% of all malignant tumors, although more common in 
children. MLS affects mainly young adults and accounts for approximately 5% of soft 
tissue sarcomas in adults. [17].  

Myxoid liposarcoma is characterized by specific chromosomal translocations resulting in 
fusion oncogenes, most commonly t(12;16)(q13;p11) resulting in a fusion between the 
gene FUS and the transcription factor gene DDIT3. Some cases instead has the 
translocation t(12;22)(q13;q12) resulting in the fusion oncogene EWSR1-DDIT3 [17-19]. 
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Myxoid liposarcoma is one of a group of genetically related tumors that are caused by 
fusion oncogenes formed between one of the FET genes FUS, EWSR1 or TAF15 
combined with different transcription factor-coding genes (Figure 1). The three FET 
genes can in many cases be replaced with each other whereas the transcription factor 
partners are specific for each tumor type [20, 21].  

Apart from the fusion oncogene, MLS tumors have few other genetic changes [9, 22]. 
Histologically, MLS is composed of round or oval-shaped cells together with lipoblasts in 
a myxoid surrounding containing a branching vascular pattern [17]. Some tumors display 
a round-cell morphology which is connected to poorer prognosis and tumors with more 
than 5% round cells significantly correlates with increased metastasis and death. A 
retrospective study of 418 cases showed a 5-year disease-specific survival rate of 91% in 
pure myxoid tumors and 79% in round-cell tumors [23]. Myxoid liposarcoma is mainly 
treated with surgery, often combined with radiotherapy. Some patients with high-risk 
disease, based on size of the tumor and round-cell morphology, are also treated with 
chemotherapy [24].  

TUMOR CELL HETEROGENEITY 
The human body is composed of trillions of cells that are of different types and with 
various functions. Also within each cell type, there are variations between individual cells 
[25]. The same is true for tumors, which can contain several subpopulations of cells with 
different characteristics. The cell composition of a tumor can vary in different parts of the 
tumor tissue and can alter over the course of time, which can affect the therapy response. 
For instance, some cell types can be treatment resistant or can acquire resistance over time 
[26].  

Figure 1. Tumors defined by FET fusion oncogenes. Any of the three FET genes, FUS, 
EWSR1 or TAF15, is fused to one of more than 20 transcription factors partners, 
resulting in a specific tumor type defined by the transcription factor. Adapted from [21]. 
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Intrinsic and extrinsic heterogeneity 
The intra-tumor heterogeneity originates from different sources as illustrated in Figure 2. 
[25, 27, 28]. Several of these sources are intrinsic, such as the genomic aberrations within 
each cell. Many cancer cells have much higher mutation rates than normal cells that may 
result in considerable variation in mutations between cells during tumor progression [27]. 
Apart from the genetic variability, epigenetic programming also has a major impact. The 
epigenome involve modifications to chromatin which in turn leads to regulation of gene 
expression, and epigenetic changes are somatically heritable. Epigenetic profiles are 
influenced by mutations, and mutations affecting chromatin-regulating enzymes are 
present in many cancer types. For instance, 20% of all human tumors have mutations in 
genes encoding components of the SWI/SNF chromatin remodeling complex [29]. 
Among other things, the epigenome defines the differentiation state of a cell [30]. 
Hierarchies of stem-like cells as well as more differentiated cells, similarly to normal 
tissues, have been identified in several tumor types with great impact for tumor 
progression [28]. This difference in cellular states will influence the cellular phenotype, 
including the transcriptional profile. The same is true for more dynamic cellular states, for 
example different cell cycle phases, which can lead to considerable variation between cells 
when observing gene expression patterns [31]. Furthermore, stochastic gene expression, 
originating from the fact that mRNA is synthesized in random bursts, can result in more 
transient changes in a cell that give rise to variability between individual cells [32]. Apart 
from the intrinsic sources, there are extrinsic factors leading to cell heterogeneity coming 
from interactions with the microenvironment. The microenvironment consists of stromal 
cells, such as fibroblasts and immune cells, surrounding vasculature, extracellular matrix 
(ECM) and secreted molecules. The microenvironment of a tumor is an important driver 
of cancer progression and induced changes in the surrounding are necessary for the cancer 
cells to be able to proliferate, for example to receive enough nutrients [33-35]. Adding to 
this, there are several connections between intrinsic and extrinsic factors, for example that 
cells with certain mutations survive more easily in certain environments. This leads to the 
fact that some mutations are common in many cancer types and occur early during tumor 
development whereas some more tissue-specific mutations shows up later in cancer 
progression [27].  
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Tumor heterogeneity models 
Two models are commonly used to explain the formation of the main subpopulations 
important for tumor progression. The clonal evolution theory describes a model where a 
tumor progresses from one cell that have acquired advantageous genetic changes [36]. 
Due to genetic instability, more mutations will occur when the cells proliferate, which in 
turn can result in the formation of additional subgroups, or clones (Figure 3A). Due to 
the non-genetic features that affect the cell variation, other factors will influence the 
selection of cellular subpopulations and this model cannot completely explain tumor 
heterogeneity [28]. The other model suggests the presence of a small proportion of cells 
called cancer stem cells (CSCs) believed to drive tumor progression and therapy resistance 
[37-39]. Similarly to normal stem cells, the CSCs have self-renewing capacity and can give 
rise to progenitor cells and more differentiated cells (Figure 3B). These two models are 
not mutually exclusive but could together explain heterogeneity within tumors [38, 39]. 

Figure 2. Tumor cell heterogeneity. Different factors affect the variations observed 
between tumor cells. 
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Cancer stem cell properties and functional assays 
Cancer stem cells (CSCs) are believed to be resistant to many current treatments and 
despite that therapies target the tumor bulk, the small population of CSCs can survive, 
proliferate and eventually cause a relapse. It is therefore important to further characterize 
this subpopulation to be able to develop new treatment strategies that target these cells 
[6]. It has been shown that CSCs share properties with normal stem cells, and one 
suggestion is that they originate from normal stem cells that, through acquiring mutations, 
develop malignant phenotypes [6, 40]. However, studies have also demonstrated that there 
exist plasticity in the CSC model, indicating that more differentiated cancer cells can 
dedifferentiate into a CSC state [41, 42]. Dedifferentiation has for example been 
connected to epithelial-mesenchymal transition (EMT), a trait known to be associated 
with metastases [42, 43]. 

In order to study CSCs, several of their properties are used in functional assays to enrich 
for this subpopulation or to assess the proportion of CSCs in a larger cell population [39]. 
Cancer stem cells are also referred to as tumor-initiating cells based on their unique ability 
to cause tumor formation. Therefore, the xenograft assay, grafting tumor cells into 
immunodeficient mice, is often used to detect CSCs [44, 45]. Another widely used assay 
is the sphere formation assay, where single cells are cultured in non-adherent conditions 

Figure 3. Tumor heterogeneity models. (A) The clonal evolution theory explains different 
subpopulations of tumor cells. Lightning bolts indicate mutational events and crossed-
over green cells are non-surviving clones. Adapted from [36]. (B) The cancer stem cell 
model explains a hierarchical organization of different cell types. Adapted from [39]. 
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leading to sphere formation of the cells that survive anoikis, death induced by loss of 
contact with the ECM or neighboring cells. This type of assays include the mammosphere 
formation assay used in breast cancer research which has been shown to enrich for cells 
with self-renewing properties and the ability to differentiate [46]. Normal stem cells 
commonly show a slow-cycling, or even quiescent, phenotype, a trait which has also been 
shown to be present in the CSC population [40, 47, 48]. This property can be assessed 
with label-retention assays, where the ability of a cell to maintain a high intensity of an 
incorporated dye indicates few cell divisions [40]. Such label-retention assays can be used 
in cancer research to select for CSCs [47, 49, 50]. Further, normal stem cells also express 
ABC transporters, responsible for transporting compounds across membranes, which is 
speculated to be a mechanism for drug resistance in CSCs [6]. The ABC transporters also 
efflux dyes, such as Hoechst dye, and cells expressing these transporters are present in the 
so called side population (SP) during flow cytometry analysis. The SP cells have been 
shown to have increased CSC properties and this technique is therefore used to select for 
CSCs [51, 52]. 

Tumor microenvironment 
Not only cancer cells determine the course of tumor development. Interactions of cells 
with the microenvironment is crucial and deregulation of this interaction is needed for 
cancer cells to be able to proliferate [33]. The microenvironment change during tumor 
progression and influences all stages including invasion and metastasis [53]. This influence 
is mediated through several components of the microenvironment, including stromal cells 
and ECM [35]. Important stromal cells are immune cells, vascular cells and cancer-
associated fibroblasts. Studies have shown that different types of immune cells can have 
either tumor-promoting or tumor-suppressing effects in various tumor types depending 
on cancer type and external stimuli [53]. It has also been shown that chronic inflammation 
is correlated to increased cancer risk [54]. Another important cancer-related process is 
angiogenesis, blood vessel formation, induced to supply the proliferating tumor cells with 
oxygen and nutrients. Angiogenesis is mediated by several stromal compartments, apart 
from the vascular cells. Furthermore, specific fibroblasts, termed cancer-associated 
fibroblasts, provide the tumor with signaling molecules that influence a number of tumor 
processes, including angiogenesis and immune responses [53]. Apart from the stromal 
cells, the ECM has many important functions, including creating a physical scaffold for 
the tumor and to allow signaling between cells. The ECM also promotes many cancer-
related properties, such as invasion and migration, as well as creating a CSC niche. There 
are continuous interactions between the ECM and the different cell types present in the 
tumor and coordination between all these components is needed for cancer growth and 
metastasis  [34]. 
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TUMOR MODEL SYSTEMS 
When studying cancer biology, cell lines derived from specific tumor types are commonly 
used. Cell lines have many advantages as they can proliferate indefinitely, are easy to 
handle and can be expanded to high amounts, allowing many types of analyses to be 
performed. However, culturing cell lines in monolayer cultures also has limitations. For 
example, classical cell culture techniques select for certain cellular properties leading to a 
more homogenous population and cell lines have in some cases been demonstrated to 
change genotype and phenotype after long time in culture. Additionally, normal cell line 
cultures do not take into account the contribution of the tumor microenvironment [55]. 
In vivo mouse models better recapitulate human tumors. These models include cell line-
derived xenografts where cancer cells are injected into mice, and patient-derived 
xenografts (PDXs), which are created from human tumor pieces being engrafted into 
mice. Finally, mice can also be genetically engineered to generate specific genotypes or 
phenotypes. However, all these mouse models have different advantages and 
disadvantages regarding costs and difficulty to establish, time consumption, and lack of 
resemblance to the human microenvironment [56]. Further, the ethical aspect of animal 
experiments must be considered. To better resemble the situation in vivo and to generate 
more tissue-like architectures in vitro, various types of three-dimensional (3D) model 
systems have emerged [57, 58]. These are normally based on either inducing aggregation 
of cells into 3D growth patterns or generating a 3D structure in which cells can be 
cultured. Culturing cells on non-adherent plates can cause spheroid formation which can 
lead to increased in vivo-like behavior in terms of cell-cell contact and  formation of 
nutrient and oxygen gradients [58]. More recently, organoid cultures have gained interest. 
Organoids are formed as a result of spontaneous reassembly of cultured stem cells or 
primary cells, in combinations with added factors. This generates cellular structures that 
include various tissue-specific cell types and to some extent resemble the real organ which 
the cells were derived from [59, 60]. However, organoid cultures lack vital information of 
the tumor microenvironment and are normally dependent on matrigel to provide a 
supporting surrounding matrix [61]. Matrigel is a tumor-derived basement membrane 
extract from mice, which contains ECM proteins. Although matrigel has been shown to 
induce a more in vivo-like morphology in cells cultured therein, as well as promoting 
differentiation and stem cell survival [62], it suffers from batch variability and its 
composition is not fully known [57]. Three-dimensional cultures can also be carried out 
by adding cells on scaffolds created from different types of hydrogels or synthetic 
materials. The structures range from a thick gel layer to more advanced scaffold structures 
to provide physical support for the cells [58]. Recently, scaffolds derived from human 
tissues have been used to better recapitulate the in vivo microenvironments, as they provide 
unique architectures and cell-ECM connections [63-65]. 
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SINGLE-CELL GENE EXPRESSION ANALYSIS 
It is important to consider the heterogeneity within a tumor when studying tumor cells. 
As illustrated in Figure 4A-C, different gene expression patterns among individual cells 
can result in similar results when measured as an average of a population. When 
performing bulk analysis, subpopulations of cells can therefore not be detected. 
Additionally, a change in gene expression within a small subpopulation, such as the CSCs, 
may be hidden by the larger population, since the molecules of the smaller population will 
be in minority. Single-cell analysis can be applied to more accurately define and profile 
each subpopulation. 

Single-cell gene expression analysis has been used in many studies of different topics, 
including cell type identification [66, 67], lineage patterns [68, 69] tumor 
microenvironment [70, 71], and therapy resistance in cancer [72, 73]. 

Experimental methods 
One of the first examples of single-cell gene expression analysis was performed in 1992, 
a gene expression profiling of rat neurons [74]. Many technological advances followed 
and in 2009, single-cell RNA sequencing could be performed [75]. At present, many 
single-cell RNA sequencing protocols are available with different advantages and for 
different applications [76]. For analysis of thousands of cells, droplet-based systems can 
be used [77, 78]. Here, individual cells are encapsulated in droplets together with beads 
containing primers with unique barcode sequences. One barcode sequence is specific for 
each individual cell, thereby allowing all cells to be processed together in a single reaction. 
Another barcode sequence, referred to as a unique molecular identifier (UMI), is specific 
for each individual transcript. The use of UMIs, which are common also in other type of 
RNA sequencing protocols, results in improved quantification of the number of 

Figure 4. Gene expression heterogeneity. Even though the gene expression average in a 
cell population is the same, it can vary between the individual cells. (A) Expression of 
both gene A and gene B are the same in all cells. (B) Some cells only express gene A, 
while others only gene B. (C) Some cells express higher levels of both genes compared 
to other cells. 
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molecules as well as reduced noise [79]. A drawback of these methods is that sequencing 
is only performed at one end of the transcripts, causing reduced sensitivity [76]. Full-
length protocols such as Smart-seq2 [80], on the other hand, been shown to have superior 
sensitivity compared to many other single-cell RNA sequencing protocols [79] and can 
also be used for detection of isoforms or splicing events [76]. However, the library 
preparation needs to be performed on each cell separately as they are not individually 
labelled and UMIs are not included. Apart from RNA sequencing, a widely used tool for 
single-cell gene expression analysis is quantitative PCR (qPCR), which often is more 
sensitive, more accessible and with a simpler data analysis workflow compared to RNA 
sequencing [81, 82]. However, qPCR is limited to the number of genes that can easily be 
analyzed and the targets needs to be decided beforehand.  

Both RNA sequencing and qPCR normally relies on similar initial protocol steps, 
including single-cell isolation, cell lysis, reverse transcription and preamplification (Figure 
5), but the different steps can be performed in various ways [76, 82]. Analysis using qPCR 
can be performed without a preamplification step if few genes, intermediately or highly 
expressed, are to be quantified [83]. 

Data analysis 
Analysis of single-cell qPCR data can be performed with qPCR analysis tools established 
for bulk analysis, with some small but important modifications. The two main differences 
are data normalization and handling of missing data. Traditional qPCR generally relies on 
reference genes for normalization but for single cells, due to the stochastic gene 
expression, no transcripts can be considered stably expressed across samples. Instead, data 
is usually analyzed as expression per cell [82]. Missing data in bulk analysis normally 
depends on technical errors whereas for single-cell analysis, missing data is often due to 
expression values below the limit of detection. For downstream analysis, missing values 
can be handled either  by setting a Cq (cycle of quantification) value higher than the 
highest value among the other cells, or by impute a value based on expression of the other 
analyzed genes [84]. For single-cell RNA sequencing, the amount of data received is much 
larger leading to challenges in data analysis and new analysis tools are continuously 
emerging [85]. There are several ways to normalize single-cell RNA sequencing data that 

Figure 5. Single-cell gene expression analysis workflow. An overview exemplifying the 
different experimental steps needed when performing qPCR or RNA sequencing on 
single cells. 
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will take different sources of bias into account, and what method to use depends on 
biological and technical aspects [86]. Methods developed for bulk RNA sequencing data 
that normalizes the samples according to variations in sequencing depth is commonly 
used. One example is to normalize the raw count for each transcript to the total number 
of transcripts in that sample (reads per million, RPM). Still, these methods might not be 
optimal for single-cell analyses, due to the variation between single cells [85, 86]. One 
aspect is that this type of normalization will not assess gene expression per cell but will 
rather report gene expression of each gene in relation to the total amount of RNA in each 
sample. In cases where the total amount of RNA varies between samples, normalization 
per cell can be possible using spike-in RNA sequences that are added to each cell lysate 
before downstream processing. However, challenges with using spike-ins remain, for 
example due to technical bias and difficulties in protocol optimization [86]. Compared to 
targeted approaches, global single-cell RNA sequencing data will contain expression 
values for tens of thousands of genes, including a lot of missing data and low counts that 
will not be informative and may add noise to downstream analysis. In these cases, data is 
normally filtered to reduce the gene number and complexity. One way  is to select genes 
that have high variation relative to the mean between the different samples, in order to 
only include genes in the analysis that are important for explaining the differences between 
cells [87]. For all kinds of single-cell gene expression data as well as for bulk data, 
downstream analysis normally includes a dimensionality reduction technique to allow 
visualization of the multi-dimensional data, including principal component analysis (PCA) 
and t-Distributed Stochastic Neighbor Embedding (t-SNE). For single-cell analysis, there 
is also commonly an interest to group cells based on similarities in gene expression 
profiles, performed with various kinds of clustering techniques  [85]. These identified 
groups can be further defined by identifying genes that are regulated between them, using 
differential expression analysis [88]. Additionally, pseudo-time analysis, which orders cells 
along a trajectory based on their gene expression profiles, is often used to study 
differentiation paths or cell cycle progression, among other things [89].  
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AIM 

The overall aim of this thesis was to study tumor cell heterogeneity using single-cell gene 
expression analysis. By combining functional cellular assays with single-cell gene 
expression profiling we are able to match cellular phenotype with specific molecular 
profiles. Individual tumor cells differ from each other due to many different factors, such 
as the genetic and epigenetic profiles, the cellular state, stochastic variability and 
interactions with the microenvironment. Some subpopulations of tumor cells, such as 
cancer stem cells (CSCs), have important roles in tumor progression, metastasis and 
therapy resistance. Studying tumor cell heterogeneity and characterizing different 
subpopulations will therefore be important in order to find new biomarkers and targets 
for future therapies.       

The specific aims were: 

Paper I: To develop a global single-cell preamplification protocol that can be applied to 
both targeted qPCR analysis and global sequencing approaches. 

Paper II: To develop a simple and versatile method that can be used to quantify the total 
amount of mRNA in a single cell. 

Paper III: To determine gene expression changes during cell cycle progression using 
single-cell analysis. 

Paper IV: To identify and characterize myxoid liposarcoma cells with CSC properties 
using several functional assays and gene expression analysis.   

Paper V: To identify and characterize ER-negative breast cancer cells with CSC 
properties by combining functional cellular enrichment assays with single-cell RNA 
sequencing. 

Paper VI: To determine the microenvironmental influence on breast cancer cells using 
an in vivo-like culture system based on cell-free patient-derived scaffolds. 
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RESULTS AND DISCUSSION 

This thesis is based on data from six papers where two covers development and 
refinement of methods used to profile tumor cell heterogeneity at single-cell gene 
expression level. In the remaining four papers, combinations of functional assays and 
single-cell gene expression analyses were used to study different aspects of tumor cell 
heterogeneity, including differences due to cell cycle phase, characterization of CSCs and 
effect of the microenvironment, in myxoid liposarcoma and breast cancer. 

GENE EXPRESSION WORKFLOW DEVELOPMENT 
To gain more information about the cellular profile of individual cells, we examined the 
possibility of combining several types of gene expression analyses in a flexible manner. 
Single-cell gene expression analysis protocols normally include a preamplification step in 
order to receive enough transcripts to be detected with downstream analysis. Quantitative 
PCR analysis normally use target-specific preamplification protocols [90-92]  that 
amplifies chosen targets of interest, generally using pools of specific primers. In contrast, 
RNA sequencing relies on global protocols [80, 93, 94] that theoretically amplifies all 
transcripts in your sample.  In paper I, the aim was to develop a global preamplification 
strategy that can be used to profile single cells using both a global sequencing technique 
as well as a targeted qPCR approach. This would allow for a flexible workflow where 
samples can initially be screened by analysis of limited number of genes using qPCR after 
which cells of interest can be further analyzed with either additional qPCR or RNA 
sequencing. To examine this, we compared different reverse transcription and 
preamplification protocols for gene expression profiling using qPCR. Here, a global 
approach that generates, amplifies and analyzes full-length cDNA established from the 
Smart-seq2 protocol [80] was compared to a target-specific approach based on the 
targeted analysis of cDNA preamplified using multiplex PCR [91] (Figure 6). The two 
strategies were evaluated using high-throughput qPCR. The reverse transcription of the 
Smart-seq2 protocol is initiated by an oligodT primer that hybridizes to polyadenylated 
RNA at the 3’-end. At the 5’-end the reverse transcriptase switch template molecule using 
a template-switching oligo (TSO). With both primers containing an identical adapter 
sequence this generates full-length cDNA molecules that can be amplified using a single 
primer (Figure 6). The targeted approach instead uses a combination of oligodT primers 
and random hexamers during reverse transcription, followed by preamplification using 
multiplex PCR with a pool of primers targeting a predefined panel of genes (Figure 6). 
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We compared yield and reproducibility between the two methods based on expression 
analysis of 96 genes using high throughput qPCR. Target-specific preamplification 
generated both higher yield and reproducibility than global preamplification. However, 
yield and reproducibility are related as the variation will be increased for low expression 
values [84] which is also shown in our data. This indicates that the decreased 
reproducibility for global preamplification was, at least to some extent, due to the lower 
yield. The lower yield seen in the global protocol is largely explained by only using oligodT 
primers, while the target-specific protocol uses a mix of oligodTs and random hexamers, 
which generates comparably larger yield [95]. Furthermore, global preamplification relies 
on incorporation of the adapter sequence on both ends of the cDNA transcript, which is 
not needed for target-specific preamplification. This incorporation may be incomplete 
due to inefficiencies in the template-switching mechanism. Finally, preamplification 
efficiency is also likely decreased due to the longer full-length transcripts. Another 
drawback of the full-length protocol, not evaluated in this paper, is that intact 
polyadenylated RNA is required, whereas the target-specific protocol is compatible with 
samples of poorer integrity as well as non-polyadenylated RNA. A number of these 
limitations may potentially be overcome by using a global preamplification protocol that 
relies on an alternative priming strategy [96-99]. Some of the drawbacks with the target-
specific preamplification protocol is that it requires time to develop, optimize and validate 
predefined gene panels. In contrast, the global preamplification protocol is the same every 
time regardless of the genes of interest. Hence, the global strategy is more versatile, since 
any polyadenylated transcript can be quantified after the initial experiment, either by qPCR 

Figure 6. Preamplification protocols. Protocols for the global and target-specific 
preamplification strategies used in paper I. The global protocol attaches an adapter-
sequence on both ends of the cDNA molecule during reverse transcription and 
amplification is performed using a primer directed against this sequence. The target-
specific protocol uses a mix of oligodT and random hexamers in reverse transcription 
and amplification is performed with a pool of primers directed against specific genes. 
Adapted from paper I.  
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or RNA sequencing. Our conclusions regarding the advantages of the two methods are 
summarized in Figure 7. 

Finally, to assess if global preamplification may be used for gene expression profiling with 
qPCR on small sample sizes, single-cell analysis was performed. This experiment 
demonstrated that the number of cells expressing a certain gene correlated with the 
average expression value of that gene. Furthermore, the biological variability observed 
between single cells was considerably larger than explained by technical noise, indicating 
that this method is able to distinguish the heterogeneity between single cells. Additionally, 
when simulating the reduced yield resulting from global preamplification on a previously 
published single-cell dataset generated using the target-specific strategy, the same 
subpopulations could still be detected when performing principal component analysis. In 
summary, we concluded that our global preamplification protocol based on the Smart-
seq2 protocol offers a simple and flexible workflow that can successfully be used for 
targeted mRNA quantification of even limited sample sizes. 

It has been shown that the total amount of RNA varies depending on several biological 
factors such as cell type [94], cell size [100], cell cycle state [101, 102] and aging [103]. 
Studies have also shown that specific proteins can affect the transcriptome globally, for 
example MYC (also known as c-myc) in both tumor cells and other cell types [104, 105], 
and MECP2 in neurons [106]. The aim of paper II was to develop a simple method to 
quantify the total amount of mRNA in single cells enabling studies of variations in RNA 
amount that may be related to tumor cell properties. Apart from the potential biological 
implications, the heterogeneity in RNA amount is also important to consider when 
analyzing gene expression data as many normalization methods assume equal amounts of 
RNA in each sample. One indirect method to handle this is to add known concentrations 
of spiked-in RNA standards to each cell, such as the ones developed by the External RNA 
Controls Consortium (ERCC) [107]. This can be used to estimate the relative amount of 
RNA in each single cell by comparing the number of sequencing reads of the spike-in 
standard in relation to number of reads per cell. However, there are challenges and 
uncertainties related to the use of ERCC spike-ins, for example due to technical bias and 
difficulties in protocol optimization [86]. To develop an easy and flexible method to 
measure the total amount of polyadenylated RNA, we applied the Smart-seq2 protocol 
used in paper I. The preamplification part of this protocol will, in theory, amplify all 
polyadenylated transcripts in each sample and by adding SYBR green I to this 

Figure 7. Advantageous properties of global and target-specific preamplification, 
respectively, in combination with targeted qPCR analysis. 
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amplification reaction, we were able to quantify the amount of transcripts using qPCR 
(Figure 8). Melting curve analysis was included as quality control. Standard curve analysis 
of diluted RNA and sorted cells from cancer cell lines indicated a wide dynamic range, 
high reproducibility and high sensitivity of the method. These experiments, together with 
single-cell analysis, demonstrated that we can reliably quantify the total amount of 
polyadenylated RNA down to single cells and distinguish it from the background noise 
generated in cell-free controls. Single-cell analysis further showed a four-fold difference 
in total amount of polyadenylated RNA between single cells from the same proliferating 
cell line. This variation can, at least to some extent, be explained by variability in cell cycle 
phase. The expression of polyadenylated RNA in different individual cells followed a log-
normal distribution, which is in line with what is normally the case for individual 
transcripts [84, 108]. Since this protocol solely relies on oligodT priming it will only target 
polyadenylated transcripts, which will fail to reverse transcribe histone transcripts and 
many non-coding RNAs that lack polyA tails [109]. However, protocols that rely on other 
types of priming strategies could potentially be used for assessment of the total RNA 
amount including that of non-polyadenylated RNA [96-98]. In conclusion, we have 
developed a method that can be used to measure the total amount of polyadenylated RNA 
in single cells which may for instance be used to investigate the differences between cell 
types, cell states or the effect of various external stimuli. This method can also be 
integrated into our gene expression analysis workflow to be combined with targeted qPCR 
or RNA sequencing analysis (Figure 8). 

EFFECT OF CELL CYCLE PHASE ON GENE EXPRESSION 
Cell proliferation is a key part of cancer progression and is therefore of interest when 
studying cancer cells. Cell cycle deregulation is commonly observed in cancer and 

Figure 8. Gene expression analysis workflow. (A) Sample preparation followed by 
reverse transcription and preamplification according to a full-length global protocol. (B) 
Different applications based on the same initial protocol that can be used by themselves 
or in combination. Adapted from paper II. 
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important mediators thereof are proposed as therapeutic targets [110]. As cells pass 
through the cell cycle, their gene expression profiles will be altered. Therefore, the aim in 
paper III was to determine the gene expression profiles at different phases of the cell 
cycle, G1, S and G2/M, using single-cell analysis of an MLS cell line. Myxoid liposarcoma 
is a slow-growing tumor and we have previously reported that the fusion oncoprotein 
FUS-DDIT3 is associated with decreased cell proliferation [111, 112]. As it is not clear at 
what regulatory level FUS-DDIT3 is affecting cell proliferation, we wanted to study if and 
how the cell cycle in MLS cells was deregulated on the gene expression level. We sorted 
single MLS cells from different phases of the cell cycle using a DNA-binding dye (Figure 
9A) and analyzed the cells with RNA sequencing. Using a pseudo-time line, we ordered 
the cells within each phase based on their gene expression profile (Figure 9B).  

Visualization of the cells using the dimensionality reduction technique t-SNE 
demonstrated a gradual difference in gene expression from each phase to the next which 
overlapped with the pseudo-time ordering. Furthermore, the cells were ordered in a circle 
where the late G2/M cells were similar to the early G1 cells, which is logical since 
proliferating cells were collected. Of the genes identified as cell-cycle regulated in our 
study, many could be confirmed to have associations to the cell cycle by comparing them 
to reported annotations in Gene Ontology [113] or Reactome [114] databases. We could 
also further validate several gene expression patterns using Cyclebase 3.0 [115]. 
Additionally, we were able to identify a number of genes differentially expressed between 
the phases that have not previously been described as cell cycle-regulated. For several of 
these, we could detect a similar expression pattern in a public dataset of human embryonic 

Figure 9. Gene expression variation over the cell cycle. (A) Single cells were collected 
from different phases of the cell cycle using fluorescence-activated cell sorting based 
on the intensity of a DNA-binding dye. (B) Normalized expression of 472 genes 
differentially expressed between any of the collected groups. Each row in the circle 
represents one gene and each column, perpendicular to the circle, represents one cell. 
The cells are ordered according to a pseudo-timeline with the cell-cycle phase 
indicated. Adapted from paper III. 
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stem cells [116]. The regulated genes could be divided into groups with distinct expression 
patterns between the different cell cycle phases. These groups could, in turn, be associated 
with specific gene ontology terms as well as transcription factor- and microRNA binding 
sites. This provided information about possible mechanisms active in different parts of 
the cell cycle that can be used as a foundation for future research. Our experimental 
approach also allowed us to detect two distinct groups of cells in the G1 phase of the cell 
cycle (Figure 9B). Here, we could identify a number of genes that differed in expression 
between these two groups of G1 cells that were not otherwise cell-cycle regulated. We 
propose that these groups are connected to early and late G1 separated by a known 
restriction point. At this G1 restriction point, cell division is controlled and cells that pass 
this point are commited to complete the cell cycle. Cells can also exit the cell cycle and 
enter a quiescent state, G0 [117].  

Further analyses of the single-cell gene expression data combined with previously 
published data on transcript half-life [118] showed that genes with long half-life had a 
lower cell-to-cell variation compared to more unstable ones. This is expected when 
considering the notion that genes are transcribed in bursts [119]. The expression of short-
lived mRNA transcripts will decrease more between the bursts and thereby induce a larger 
variation in expression over time which can be translated to a larger variation between 
different single cells. As discussed in paper II, the total amount of RNA is known to vary 
depending on several biological factors and, by normalizing the reads of all genes to those 
of ERCC spike-ins added to each sample, we could observe that the total amount of 
polyadenylated RNA is increasing throughout the cell cycle from G1 to G2/M, in 
accordance with the increase in cell size [101, 120]. This result was confirmed by 
quantification of the preamplified cDNA of each cell.  

In MLS cells, we have previously demonstrated with single-cell analysis that FUS-DDIT3 
expression is associated with lower cell proliferation [111]. This effect has also been 
observed when expressing FUS-DDIT3 in cell lines from other tumor types [112]. Still, 
this study indicates that the cell cycle in proliferating MLS cells is transcriptionally intact 
as most gene expression patterns could be validated with public data. It has previously 
been reported that MLS tumors display an abnormal expression pattern of specific cell-
cycle controlling proteins indicating a cell cycle deregulation in these tumors [121]. 
Moreover, it has been shown that MLS tumors contain high proportion of senescent cells, 
which may explain the slow-growing phenotype [122]. Collectively, this may imply that 
FUS-DDIT3 controls whether the cells should enter the cell cycle or a senescent state. 
The selection process occurring during cell culture does not benefit senescent cells in MLS 
cell lines compared to the situation in tumors, which is supported by increased senescence 
properties not being detected in MLS cell lines [112]. Therefore, a more comprehensive 
analysis of primary tumor cells will be needed to determine the effect of FUS-DDIT3 on 
cell proliferation, for example by single-cell analysis.  
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In summary, we have identified cell-cycle regulated genes whose expression patterns had 
previously not been reported as associated with the cell cycle. We have also discovered 
genes with distinct differences in early and late G1 phase. To reveal the importance of 
these genes, further mechanistic studies are needed. These studies would also help 
understand if the genes are related to cancer progression or not. Additionally, we have 
reported that proliferating MLS cells appear to have a normal cell cycle gene expression 
profile.   

IDENTIFYING CANCER STEM CELLS IN MYXOID LIPOSARCOMA 
The two main models describing tumor cell heterogeneity are the clonal evolution theory 
and the CSC model. While a combination of both models probably may be used to 
describe most tumor types [39, 123], the contribution of each model most likely varies 
between different tumor entities. Myxoid liposarcoma is genetically stable, hence it is 
reasonable to believe that there are not so many different mutational clones present and 
instead, the CSC model may be more influential. Additionally, studies have demonstrated 
that expression of FUS-DDIT3 in mesenchymal stem cells or progenitor cells lead to 
formation of tumors in mice resembling myxoid liposarcoma. Therefore, MLS is thought 
to originate from such an undifferentiated cell type [124, 125]. To study the heterogeneity 
among MLS cells and to determine what cellular processes are important for different 
subpopulations, the aim of paper IV [126] was to investigate the presence of a CSC 
subpopulation in MLS and further characterize these cells. Cancer stem cells are thought 
to be important for tumor progression and therapy resistance [6, 39], but their presence 
has not been confirmed in MLS. In order to identify a CSC population, we applied two 
functional cellular assays commonly used to enrich for CSC properties; non-adherent 
sphere formation assay and side population assay using Hoechst staining, on three 
different MLS cell lines. The results indicated subsets of cells with CSC properties in all 
three MLS cell lines, but to different degree. These three cell lines harbors the same fusion 
oncogene, FUS-DDIT3, but the genomic breakpoint in the FUS gene varies. We have 
previously demonstrated that the expression level of FUS-DDIT3, both at protein and 
gene expression level, differs between these three cell lines [111]. The cell line with the 
highest protein expression of FUS-DDIT3 contained most cells with CSC properties. As 
FUS-DDIT3 expression is varied between individual cells within the same cell line [111], 
this could indicate a potential connection between FUS-DDIT3 expression and CSC 
properties in subpopulations of MLS cells.   

To further characterize the MLS CSCs, we wanted to study potentially important 
pathways in this subpopulation. The JAK-STAT signaling pathway is involved in many 
cellular processes, such as cell proliferation, differentiation, cell migration and apoptosis 
[127] and has been shown to be related to CSCs [128-130]. Furthermore, a previous study 
has linked the expression of IL6, a cytokine known to activate the JAK-STAT pathway, 
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to FUS-DDIT3 [131].  Here, we studied the potential link between JAK-STAT and CSCs 
in MLS cells. We could show that subsets of MLS cells expressed most JAK-STAT gene 
members using single-cell gene expression profiling. The observed variation in JAK-
STAT signaling between different cells could also be demonstrated on protein level in 
MLS tissues where active, phosphorylated STAT3 was detected in minor subpopulations, 
to varying degrees in different samples. Treating MLS cells with a JAK1/2 inhibitor, which 
blocked phosphorylation of STAT3, showed no effect on general cell proliferation or 
migration but reduced the number of spheres formed in non-adherent conditions. This 
suggests that JAK-STAT signaling affects the CSCs but not the proliferating cells. 
Treatment of MLS cells with chemotherapy, such as doxorubicin, instead target 
proliferating cells. We could show that doxorubicin treatment increased the number of 
cells that can form spheres, indicating that the cell population surviving treatment was 
CSC-enriched. Combining the chemotherapy treatment with the JAK1/2 inhibitor 
prevented this sphere formation increase suggesting that a combination treatment could 
serve as an improved therapeutic strategy in MLS, targeting both proliferating and more 
CSC-like cells (Figure 10). Gene expression data from MLS cells treated with doxorubicin 
confirmed the association between chemotherapy resistance and JAK-STAT signaling 
since genes upregulated in treatment-resistant cells showed an overlap with JAK-STAT 
signaling gene sets. However, other pathways were also enriched suggesting that processes 
other than only JAK-STAT signaling are involved in regulating the CSCs. This was 
expected since we observed experimentally that some cells with CSC properties survived 
JAK1/2 inhibition.  

Figure 10. Proposed combination treatment mechanism in MLS. Chemotherapy 
treatment kills the proliferating cells but the cancer stem cells survive. Combining 
chemotherapy with JAK-STAT inhibition would also potentially reduce the CSC 
population. 
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JAK-STAT signaling also has a role in epigenetic changes [132]. For example, activated 
STAT3 regulates the expression of methyl transferase DNMT1 [133, 134]. Furthermore, 
epigenetic regulation is important for maintaining pluripotency and regulate 
differentiation in embryonic stem cells and has been suggested to have an important role 
also for CSCs [135, 136]. We wanted to investigate the connection between JAK-STAT 
signaling and epigenetic regulators in our cells. We could, by immunoprecipitation, show 
that phosphorylated STAT3 binds to SMARCA4, one of the components of the 
SWI/SNF chromatin remodeling complex, in all three MLS cell lines. Knock-down of 
SMARCA4 lead to decreased protein expression of phosphorylated STAT3 as well as 
decreased sphere formation, suggesting a connection between the epigenetic program and 
the CSC population in MLS. Additionally, in a separate publication we demonstrated that 
the majority of FUS-DDIT3 interacts with the SWI/SNF complex, which also was the 
case for the related fusion oncoprotein EWSR1-FLI1 that is specific for Ewing sarcoma 
[137]. We could further show that expression of the fusion oncoproteins led to shifts in 
specific histone marks which could be a functional effect of this binding. The interaction 
of the fusion oncoproteins to SWI/SNF may be important for the tumor progression in 
these tumors. Another study has shown a high proportion of superenhancers, clusters of 
enhancers associated with certain active histone marks, among FUS-DDIT3 target 
sequences. This further indicates a role for the fusion oncoprotein in generating an 
aberrant epigenetic landscape in these tumors [138].   

In summary, we identified cells with cancer stem cell properties in MLS cell lines and 
could connect those properties to an active JAK-STAT pathway, something that can be 
used for developing an improved therapeutic strategy. 

CHARACTERIZATION OF BREAST CANCER STEM CELLS 
Breast cancer is a heterogeneous disease with several subtypes. Triple-negative tumors 
lack specific treatment options and are often aggressive [16], making it valuable with new 
treatment strategies for these tumors. The presence of CSCs in breast cancer has already 
been verified [139-141] and characterizing these cells is important both for understanding 
more about the processes during tumor progression and recurrence, but also to develop 
novel treatments. Existing markers used to select for breast CSCs include surface marker 
signature CD44+/CD24-/low [140] and ALDH1 [142]. However, their expression varies 
depending on breast cancer subtype and the expressions of the different markers do not 
correlate [143, 144]. There also seems to be subpopulations of cells with CSC properties 
not defined by these markers [145] and studies investigating their connection to clinical 
outcome have given variable results [146]. Several pathways have been associated to breast 
CSCs, including the Wnt [147], Notch [148] and Hedgehog [149] pathways related to self-
renewal, the PI3K-mTOR pathway [150] and the JAK2-STAT3 pathway [128]. Several of 
these pathways have been connected to CSCs in additional tumor types [151]. For 
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example, we linked the JAK-STAT pathway to MLS CSCs in paper IV. Multiple 
connections between CSC-related pathways in breast cancer have been reported [152, 
153], indicating a complex system for CSC maintenance. Although some attempts of 
targeting the CSC population in breast cancer have yielded promising initial results [154-
158], no therapy is used in the clinic. Altogether, there is a need for further 
characterization of breast CSCs in order to find improved markers, for example through 
single-cell analysis. Previous studies have aimed to characterize CSCs by single-cell gene 
expression analysis without relying on markers to select cell populations, by studying 
migratory subpopulations [159] or cells able to form spheres [160]. Due to limited amount 
of studies with varying results, more data and functional validation can give a more 
complete picture of breast CSC properties.  

In paper V, the aim was to further define the CSC population in ER-negative breast cancer 
by using our single-cell gene expression analysis workflow in combination with functional 
cellular assays that enables detailed CSC characterization (Figure 11). We used the ER-
negative breast cancer cell line MDA-MB-231 and combined the non-adherent 
mammosphere formation assay with a label-retention assay to enrich for cells with 
different self-renewing properties and at high or low proliferation rates. This combination 
has previously been used to isolate human normal mammary stem cells [47]. As control, 
we included cells grown under normal adherent cell culture conditions. As demonstrated 
in paper III, the cell cycle phase greatly affects the gene expression profile and we 
therefore collected the control cells only from the G1 cell cycle phase to minimize cell 
cycle bias.  

Figure 11. Functional cellular assays combined with single-cell gene expression analysis. 
Cells were collected from three different subpopulations with various cellular properties 
based on staining and culture methods. After RNA sequencing, cells were separated 
based on their gene expression profile into a t-distributed Stochastic Neighbor 
Embedding (t-SNE) plot. Cells are colored according to their group as defined in the 
figure. The yellow area indicates one of the clusters identified with k-means clustering. 
This cluster proposedly included cells with CSC properties and was therefore further 
characterized. Adapted from paper V. 
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After single-cell RNA sequencing, we clustered the cells into groups based on their gene 
expression profile independently of sample collection method. The clusters overlapped 
to large extent with the functional cellular enrichments but not completely. Even though 
the functional methods used enrich for certain characteristics, they are not completely 
limited to one specific property. The label retention intensity will be affected by cell size 
[161] and the mammosphere assay have been shown to select for a larger population than 
only the CSCs [162], indicating an influence by other properties. Still, gene expression 
profiling is not enough for a complete phenotypic assessment and thereby a combination 
of the two may improve identification of cellular subpopulations. As expected, we 
identified proliferation as an important factor separating the cells. We argued that the 
cluster of cells enriched for low-proliferating mammosphere-cultured cells (indicated in 
Figure 11) contained cells with most CSC properties and we further studied this subgroup. 
We could demonstrate, by normalizing the entire set of genes to spiked-in synthetic RNA, 
that the total mRNA expression was reduced in this cluster in line with earlier studies 
showing reduced amount of total RNA in stem cells [163, 164] as well as in quiescent cells 
[165]. We further identified 14 genes upregulated in the CSC-like cluster, which could be 
potential biomarkers for the CSC population in ER-negative breast cancer. Indeed, several 
of them have previously been connected to CSC properties in breast cancer. Three of 
these genes; LGALS3, MYH9 and DSTN, could further be connected to worse relapse-
free survival in ER-negative breast cancer, evaluated using a publicly available data base 
[166], thereby being of extra interest for future studies.  

In conclusion, we have through the combined use of functional cellular assays and single-
cell gene expression profiling identified potential biomarkers related to CSCs in ER-
negative breast cancer. However, to further elucidate the role and potential clinical use of 
these markers, validation experiments need to be performed. Such experiments could 
include knock-down or overexpression experiments followed by functional assays using 
cell lines, similarly to a study of the non-coding RNA NEAT1 in breast cancer cell lines 
[167]. Additionally, other more in vivo-like model system may yield more relevant 
information as the microenvironment has an important role for CSC functions [168]. 
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MICROENVIRONMENTAL EFFECT ON BREAST CANCER CELLS 
The microenvironment includes stromal cells, vasculature, extracellular matrix (ECM) and 
signaling molecules, which greatly affects the properties of tumor cells. In paper VI, we 
aimed to determine the effect of different tumor microenvironments on cancer cells. We 
therefore developed a 3D culture system based on tumors that are washed repeatedly with 
mild detergents to remove all cells and thus generating so called patient-derived scaffolds 
(PDSs). These PDSs can thereafter be repopulated with cells of interest, such as cancer 
cell lines (Figure 12). Despite being an ex vivo system, PDSs maintain critical properties of 
the original tumor-specific microenvironments, which can be used to reveal important 
patient-specific information in vitro.  

Scanning electron microscopy analysis of decellularized PDSs, before recellularization, 
revealed structural differences between individual PDSs but also, in some cases, 
heterogeneity between specific surfaces of the same PDS. Intertumor heterogeneity was 
also evaluated using mass spectrometry, which demonstrated the variations in protein 
composition between 15 decellularized PDSs with different clinical properties. Self-
organizing map (SOM) analysis based on the expressed proteins was used to divide the 
PDSs into two groups, which could be related to grade and expression of proliferation 
marker Ki67 assessed from the original tumors. This demonstrates that analysis of the 
protein composition of PDSs alone can potentially provide valuable information that can 
be linked to clinical information. Additionally, an interaction network was constructed 
based on the proteins detected in PDSs and their first-order interaction partners, using 
information from the Human Protein Reference Database [169]. Several PDS proteins 
with central roles within this network could be connected to the cellular process of 
exosome secretion, indicating that secretion plays an important role in the 
microenvironment of PDSs. 

Repopulation of PDSs with two breast cancer cell lines, the ER-negative MDA-MB-231 
and the ER-positive MCF7, demonstrated infiltrative growth of cells, but also 
morphological differences between cells within the same cell line. Analyzing the cells 

Figure 12. Generation of patient-derived scaffolds (PDSs). A fresh or frozen breast 
cancer tissue piece is washed with detergents to remove the cells and create PDSs. 
Cancer cell lines, or other cells of interest, can then be used to repopulate the PDSs. 
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cultured in PDSs compared to normal 2D cultures as a reference point, both at mRNA 
and protein level, showed increased expression of markers related to pluripotency and 
EMT whereas markers connected to proliferation and differentiation were decreased as a 
result of growth in the 3D system. Together with increased mammosphere formation as 
well as increased tumor growth in immunodeficient mice, these results indicated a CSC-
enriched population of cells cultured in PDSs, which has previously been shown in other 
3D growth models [170-172]. Furthermore, single-cell gene expression analysis of MCF7 
cells cultured in two different PDSs, in comparison to conventional 2D conditions, 
showed that PDS-cultured cells had become more heterogeneous. The PDS-cultured cells 
were separated into two subgroups, each including cells from both PDSs, of which one 
was defined by high expression of differentiation markers whereas the other by high 
expression of pluripotency and EMT markers. In order to compare the effect of the PDS 
to in vivo conditions, we performed RNA sequencing on cells grown in PDSs compared 
to both 2D and xenograft-derived cells. Principle component analysis indicated that PDS 
cultures were more similar to xenograft cultures in relation to 2D growth. Furthermore, 
among the pathways associated to the upregulated genes in PDS or xenograft, 
respectively, in relation to 2D, several overlapped including extracellular matrix 
organization and collagen formation. Collectively, this points towards an adaptation of 
the cells to a 3D growth environment. Next, we showed that the majority of the 
significantly enriched pathways associated with the upregulated genes in PDS-cultured 
cells compared to 2D cells overlapped with pathways which were found based on the 
mass spectrometry analyses, suggesting a connection between protein composition of 
PDSs and the induced gene expression profiles of cells cultured within. Additionally, 
several of the regulated genes were included in the previously constructed protein 
interaction network further indicating such a connection.  

Finally, we could show that high induced expression of EMT-markers VIM and SNAI2 
in PDS-cultured cells could be linked to worse relapse-free survival of the patients the 
tumors were derived from. The VIM protein was also included as one of the central 
proteins in the network constructed from scaffold proteins, serving as a link between 
important pathways in the PDSs, induced gene expression changes in cells grown in PDSs 
and to clinical effects in the patients the PDSs were derived from. This clinical link 
supports that prognostic information indeed can be extracted from the cell-free tumor 
microenvironment. 

In contrast to many other 3D culture systems, PDSs are unique for each patient, and 
analyzing cells from homogenous cell lines in heterogeneous PDSs makes it possible to 
study the effect of various tumor microenvironments. Culturing cells in different PDSs 
will generate changes in the cellular properties specific to each PDS (Figure 13). Indeed, 
we could demonstrate that PDSs from different patients affected the cultured cancer cells 
in dissimilar ways. This makes the PDS model system a potentially valuable tool as a drug 
screening platform. Drugs can be tested in different PDSs to connect the drug response 
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to specific breast cancer subtypes, or even patients. Additionally, by studying the PDSs, 
important biological information about how the environment affect tumor cells can be 
determined that can lead to the identification of novel drug targets. The PDS system can 
also be used to study the effect of different microenvironments on other aspects of tumor 
cell heterogeneity, such as cell states and epigenetic changes. For instance, the PDS system 
could be an interesting platform for studying cancer stem cells, including validation 
experiments of the markers identified in paper V. In fact, when analyzing the RNA 
sequencing data comparing PDS-cultured MDA-MB-231 cells to 2D-cultured cells, 13 of 
the 14 markers from paper V showed increased expression in the PDS group, of which 7 
were significantly two-fold upregulated. Additionally, several of the genes were also 
significantly upregulated in MCF7 cells cultured in PDSs. This further point towards the 
fact that the PDS system enriches for CSC properties.  

The PDS system, though developed for breast cancer, is not limited to one tumor type 
but can be evaluated for different solid cancer forms, for example MLS. As MLS is a rare 
cancer form, there is limited access to patient material as well as relevant model systems. 
The PDS system could therefore be a welcomed addition to the possibilities of studying 
MLS cells, as well as similar tumor types. Even though the challenge of accessing tumor 

Figure 13. The Patient-derived scaffolds determines the cellular phenotype. When 
culturing cell lines in different patient-derived scaffolds (PDSs), subpopulations of cells 
will be formed with various degree of cellular properties such as proliferation, 
differentiation, pluripotency and EMT. For each PDS, the number of cells within each 
subpopulation will be altered. 
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material remains, one tumor can be used to create many PDS pieces and can therefore be 
used for numerous analyses. Hence, by using several pieces from the same PDS, the 
microenvironment can be held more constant, while instead comparing different cell lines, 
treatments or other induced variations among the cells. However, the possibility of 
comparing many varying tumor microenvironments and relate the induced effect in cell 
lines to clinical outcome, which we could do in breast cancer with established biobanks 
and data records, is likely not possible in such a rare tumor type as MLS.  

In summary, we have developed a novel culture system based on decellularized PDSs. We 
could demonstrate that this 3D culture system induces increased heterogeneity, more 
similar to what is observed in vivo, in standardized cancer cell lines. Additionally, molecular 
properties of the PDSs, as well as of cells cultured in PDSs, could be linked to clinical 
parameters of the original tumors used to create the PDSs. Further studies could 
potentially demonstrate the use of this culture system for prognostic or drug screening 
purposes.  
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CONCLUSIONS 

We have developed methods for single-cell gene expression analysis. We have studied 
gene expression changes in different tumor cell subpopulations in relation to various 
intrinsic and extrinsic sources of variation. We have been able to identify markers and 
pathways connected to these subpopulations that potentially can be used as biomarkers 
and future drug targets. Finally, we have developed a novel in vivo-like model system.  

Paper I: We concluded that global preamplification can be used in combination with 
targeted qPCR analysis enabling a simpler and more flexible workflow, where gene 
expression profiling using qPCR and RNA sequencing can be combined in single cells.  

Paper II: We developed a method to measure the total amount of mRNA in single cells 
which can easily be combined with other transcriptomic analyses. Using this method, we 
could observe a four-fold variability in the total amount of mRNA between single cells 
from a cancer cell line.  

Paper III: We demonstrated how established and previously unreported cell cycle-
regulated genes displayed different expression patterns throughout the cell cycle and we 
also illustrated a distinct difference between early and late G1 phase. Furthermore, we 
confirmed that stable mRNAs had a reduced variability between single-cells, in line with 
the transcriptional burst theory. 

Paper IV: We concluded that myxoid liposarcoma contain a subpopulation of cells with 
cancer stem cell (CSC) characteristics. Further, we could show that the JAK-STAT 
signaling pathway control the number of cells with these properties. Hence, a combination 
of chemotherapy and JAK-STAT inhibition could potentially target both proliferating 
cells and cells with CSC features, improving the current treatment of myxoid liposarcoma 
patients. 

Paper V: Through a combination of functional assays and gene expression profiling, we 
identified 14 genes upregulated in a subpopulation of breast cancer cells with CSC 
properties. Some of these potential breast CSC markers were associated to reported stem 
cell properties and obtained clinical survival data.    

Paper VI: We demonstrated that cells grown in patient-derived scaffolds (PDSs) 
displayed increased CSC properties as well as increased heterogeneity, more closely 
resembling in vivo conditions than cells cultured in normal cell culture conditions.  
Furthermore, we concluded that growth in PDSs lead to different transcriptomic 
alterations in cells, which in some cases could be linked to clinical information about the 
original tumor used to create the PDSs, such as recurrence. 
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FUTURE PERSPECTIVES 

Tumor cell heterogeneity has significant implications for disease progression and 
treatment response. As illustrated in Figure 2, there are several sources that promote 
heterogeneity among tumor cells, such as genetic and epigenetic changes as well as the 
surrounding microenvironment. Characterizing aspects of this variation is therefore 
important for developing new treatments against different cancer types. Such differences 
between individual cells can generally not be deciphered when performing analyses at cell 
population level and instead, single-cell assays are frequently used.  

We have developed and refined methods for single-cell gene expression analysis, thus 
creating a toolbox which may be used to combine sensitive target-specific quantification, 
high-throughput mRNA sequencing and total mRNA quantification in the same 
individual cell (Figure 8). By combining these analyses with functional cellular assays and 
model systems we are able to study several properties of tumor cell heterogeneity, such as 
cellular states or the microenvironment, and their effect on gene expression. As single-
cell RNA sequencing has become more established, high-throughput measurements of 
other analytes in individual cells are being developed [173], which are needed to study 
other aspects of cellular variation. Genetic analysis is especially relevant to include in 
studies of tumor types with large genetic heterogeneity. One example is breast cancer, 
where there is mutational variability within, as well as between, different subtypes of the 
disease [14, 15]. Several methods for single-cell genome sequencing have been reported 
with varying technical challenges regarding, for example, risk of false positives [174]. For 
the genetically stable MLS, information about the epigenetic landscape is instead of more 
interest, due to the interactions we recently reported between the fusion oncoprotein 
FUS-DDIT3 and the SWI/SNF chromatin remodeling complex [175]. Single-cell analysis 
could potentially be used to connect certain epigenetic changes to FUS-DDIT3 
expression or to specific subpopulations, such as CSCs. Epigenetic profiling is complex 
and various methods are used to study specific epigenetic aspects. At the single-cell level, 
examples of assays that have been developed include variations of bisulfite sequencing to 
detect methylation status and ATAC-seq to identify open chromatin regions [176, 177]. 
Gene expression profiling is widely used as a phenotypic readout [173], but correlations 
between gene expression and corresponding protein expression are often weak [178, 179]. 
This we have also observed regarding FUS-DDIT3 expression in MLS [111]. Hence, 
protein measurements may be desired together with gene expression profiling. Several 
single-cell protein analysis methods exist, including classical methods such as 
immunohistochemistry and flow cytometry that are limited in the number of proteins that 
can be analyzed at the same time. More recent technologies have emerged with increased 
throughput although most are still antibody-based with challenges regarding specificity 
and scalability. This might be overcome by recent developments in single-cell mass 
spectrometry analysis [180].  
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Regulation of cellular properties occur at both DNA, RNA and protein level. Hence, to 
get a more complete picture of cellular heterogeneity, combining analyses of multiple 
analytes in the same single cell is essential, i.e. single-cell multiomics. Previously, we have 
demonstrated the possibility to combine analysis of DNA, RNA and protein levels in the 
same single cell using qPCR-based methods [181]. Other methods where gene expression 
analysis has been combined with protein measurements have been reported [182, 183]. 
Furthermore, several other single-cell-based multiomic approaches have been developed 
[184], including genome with transcriptome sequencing [185, 186], methylome with 
transcriptome sequencing [187, 188], and methylome and transcriptome sequencing 
together with copy number variant detection [189]. A number of companies, including 
10X Genomics, Mission Bio and BD Biosciences, have also started to commercialize 
products to use for multiomics analyses, such as combined assessments of gene 
expression and protein levels in the same cell. Altogether, these studies show that there 
are already possibilities for an even more comprehensive workflow where multiple types 
of analyses can be combined in the same individual cell depending on the specific research 
question.  

The studies in this thesis have mainly been performed using established cancer cell lines. 
Cell lines are easy to handle and uncomplicated to manipulate as well as easily expanded 
to high amounts. In comparison, in vivo experiments are more challenging due to limited 
tissue availability and high complexity. Still, performing studies using tumor cells yields 
more relevant information and these two approaches are therefore often combined. For 
instance, we used primary cell analysis in a previous study to validate findings identified 
using cell lines [190]. In that study, we demonstrated in cell lines that  ER-negative and -
positive breast cancer share a common subpopulation of cells with CSC properties and 
subsequently confirmed these findings using primary tumor cells. Similarly, potential 
markers or pathways identified with cell line screening, like in papers IV and V, can be 
further studied using primary tumor cells. Conversely, clinical findings can be 
experimentally tested using in vitro experiments, for example by combining functional 
assays with different types of downstream analyses. Another interesting alternative for 
tumor heterogeneity would be to analyze the primary tumor cells as well as the PDS from 
the same tissue, for example to connect genotype, protein composition of the PDS and 
effect of the ECM on standardized cell lines This could also include analyses of 
surrounding stromal cells. In breast cancer, the availability of patient material is far greater 
compared to MLS. However, the large genetic variation between breast cancer subtypes 
and individual patients lead to difficulties in generalizing findings. As MLS is genetically 
more homogenous, there is probably less variation between different tumors. It would be 
interesting to perform single-cell gene analyses on MLS cells to study the large 
subpopulation of senescent cells and the role of the fusion oncogene in vivo.  

To further study tumor cell heterogeneity in relation to the microenvironment, spatial 
analysis can be applied. Here, the molecular analyses are performed while retaining 
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information about the position of the cell in a tissue [191, 192]. Recently, various spatially 
resolved transcriptomic assays have been developed. These differ in terms of sensitivity, 
spatial resolution and the number of transcripts that can be analyzed simultaneously, as 
well as if they are targeted or non-targeted [191]. The ability to identify the position of 
specific subpopulations within a tumor in relation to various parts of the 
microenvironment, such as blood vessels and neighboring cells, would be invaluable to 
better understand tumor biology and to design new treatment strategies. As an example, 
spatial differences in breast cancer has been demonstrated, where regions with varying 
expression of genes related to prognosis and diagnosis as well as different cancer-related 
processes such as immune signaling, invasiveness and stemness could be identified [193]. 
Spatial transcriptomics may be especially interesting in the study of CSCs since there is a 
specific region within the tumor microenvironment in which CSCs resides, referred to as 
the CSC niche [194, 195]. Furthermore, spatial analysis may be applied on PDS cultures, 
potentially determining if the subpopulations of the cultured cells that we identified with 
single-cell gene expression analysis in paper VI can be connected to specific regions of 
the PDS.  

Further characterization of tumor cell heterogeneity is key to tackle patient variation in 
treatment response. With technological advancements in multiomics allowing larger 
number of analyses and cells, the amount of data that can be gained is continuously 
increasing. Together with the information attained about the microenvironment through 
novel model systems, such as PDSs, and spatial analyses this opens up for identification 
of future drug targets. 
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