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Abstract 

Immunotherapy with PD-1 inhibitors has transformed the treatment of meta-
static cutaneous melanoma, and can lead to complete and durable responses in 
a proportion of patients. However, in around half of the patients, the treatment 
has little or no effect. In patients with metastatic uveal melanoma, a rare form 
of melanoma arising in the eye, effective treatments are lacking altogether. The 
overall aim of the research on which this thesis is based, is to develop and utilize 
mouse models to identify new immunotherapies for patients with metastatic 
melanoma. 
 
In paper I we describe the development of a novel immune humanized patient 
derived xenograph (PDX) model. The PDX is based on sequential transplan-
tation of ex vivo expanded, autologous tumor infiltrating lymphocytes (TIL), 
and mirror the treatment effects seen in corresponding patients. In paper II we 
evaluate the feasibility and preclinical efficacy of chimeric antigen receptor 
(CAR)-T cell therapy in melanoma and find that CAR T cells against HER2 are 
able to kill human cutaneous and uveal melanoma cells in vitro and in vivo. In 
paper III we first assess the rationale of combined epigenetic modulation and 
PD-1 inhibition in experimental melanoma, and show that the histone deacety-
lase (HDAC) inhibitor entinostat increases expression of HLA-I and PD-1 on 
melanoma cell lines and enhances the effect of a PD-1-inhibitor in vivo. Next, 
we describe the design and preliminary results of an ongoing phase II trial eval-
uating the effect of entinostat in combination with pembrolizumab (a PD-1 
inhibitor) in patients with metastatic uveal melanoma. 
 
In conclusion, this thesis shows that i) PDX models can be used to study key 
aspects of the human antitumoral immunity in melanoma; ii) that HER2 CAR-
T cells represent a potential future treatment for metastatic melanoma refrac-
tory to other immunotherapies; and iii) that entinostat increases HLA-I expres-
sion and potentiates the effect of PD-1 inhibition in melanoma models, and 
that the same combination can result in clinical efficacy with manageable tox-
icity in patients with metastatic uveal melanoma. 
 
Keywords: Metastatic melanoma, uveal melanoma, humanized mouse models, 
immunotherapy, tumor infiltrating lymphocytes, chimeric antigen receptor T 
cells, PD-1 inhibition, epigenetics, HDAC-inhibition
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Sammanfattning på svenska 

Immunsystemet består av en rad olika vävnader, celler och signalmolekyler 
vilka skyddar kroppen från inkräktare. Att immunsystemet även kan känna igen 
cancerceller som främmande har varit känt länge, men under senare år har man 
identifierat flera bromssystem som hindrar immunsystemet från att hålla can-
cern under kontroll. Läkemedel som inaktiverar dessa bromsar, framförallt så 
kallade PD-1 hämmare, kan ge immunsystemet förmågan at döda cancerceller. 
Denna sorts immunterapi har varit banbrytande för en rad cancerformer, i syn-
nerhet malignt melanom, vilken utgår från kroppens pigmentproducerande cel-
ler (melanocyter), oftast i huden. I de fall där sjukdomen har spridit sig till andra 
organ i kroppen (metastaserat), är melanom en mycket allvarlig cancersjukdom, 
men behandling med PD-1 hämmare kan hos vissa patienter få tumörerna att 
försvinna helt. Tyvärr har dock flertalet patienter begränsad eller ingen nytta av 
behandlingen. I sällsynta fall kan melanom uppstå i ögat (uvealt melanom). 
Uvealt melanom sprider sig hos upp mot hälften av patienterna, oftast till  
levern, och i regel har varken PD-1 hämmare eller andra cancerläkemedel effekt 
hos dessa patienter. 
 
För att bättre kunna studera immunterapier i laboratoriet utvecklade vi en mo-
dell som gör det möjligt att undersöka cancerceller och immunceller från en-
skilda patienter i så kallade avatarmöss. Behandlingseffekterna hos mössen 
återspeglar effekten hos patienter och avatarmössen kan komma att få använd-
ning som en modell för immunterapi. Vi visade sedan att immunceller som 
blivit genetisk modifierade (CAR-T celler) för att känna igen ytproteinet HER2, 
effektivt dödar melanomceller, även från uveala melanom. Detta är således en 
lovande behandling för melanom där annan immunterapi inte har effekt. Ge-
nom studier av melanomceller och musmodeller i laboratoriet har vi vidare visat 
att entinostat (ett så kallat epigenetisk läkemedel som påverkar hur cellers olika 
gener uttrycks eller tystas) tycks kunna göra melanomceller mer känsliga för 
effekten av PD-1 hämmare. Vi initierade därför läkemedelsprövningen 
PEMDAC, där 29 patienter med metastaserat uvealt melanom behandlats med 
en kombination av entinostat och PD-1 hämmaren pembrolizumab. Prelimi-
nära data visar att det är möjligt att uppnå positiva behandlingseffekter med 
hanterbara biverkningar genom en kombinationsbehandling av entinostat och 
pembrolizumab hos patienter med metastaserat uvealt melanom. Förhopp-
ningsvis kan fortsatta studier bidra till att klarlägga vad som särskiljer patienter 
med god effekt av immunterapi samt utveckla nya immunterapier som kan 
komma fler patienter till nytta. 
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1. Introduction 

O l’oun t’awa se n’yara, Je k’abere 
-Fela Kuti 

 

Humans are all about connections. From our thoughts, feelings and consciousness 
arising from synapses between neurons, to the relations that make up our social lives. 
And then there is everything in between. Like cancer. And science. Cancer arise 
when cells start to ignore the signals and connections that govern growth and arrest 
in a healthy body. Fueled by the forces of natural selection, cancer cells rewire con-
nections in the networks within to drive proliferation and get eternal life. They start 
to disrespect the natural boundaries of tissues, dethatch and spread to distant sites, 
and create new connections to favor its own invasive growth and propagation, with 
no regards to the health of its bodily host. Science is to make sense of the world 
through systematically establishing new connections: Between prior knowledge and
future aims; between predictions and observations. Particular progress can arise from 
connecting different fields of research, like cancer biology and immunology. One of 
the biggest breakthroughs in cancer research was the laboratory finding that cancer 
disrupts many of the numerous connections that the immune system uses to it con-
trol it, and that amazing treatment effects can occur in patients when functioning 
connections are restored or created. Here lies the promise of translational research. 
To create functional connections between laboratory findings, medical needs and 
clinical observations. And back.  

1.1 Melanoma 
Malignant melanoma is a cancer originating from melanocytes, the pigment produc-
ing cells of the body. In its most common form, cutaneous melanoma, the tumor
develops from melanocytes in the skin, but melanomas can also form in the uvea of 
the eye or in mucosal linings. Uveal melanoma will be covered separately due to its 
distinct biology and clinical characteristics. Cutaneous melanoma is increasing at an 
alarming rate in the fair-skinned population worldwide [1]. In Sweden the annual 
increase in incidence is around 5%, with the most recent age-adjusted incidence 
being 43/100 000 in men and 36/100.000 in women [2]. The mortality has not in-
creased at the same rate, and appear to have levelled out at around 500 deaths per 
year in Sweden, making cutaneous melanoma the most deadly skin cancer [2].  
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The major environmental risk factor for developing cutaneous melanoma is UV ra-
diation, recorded as self-reported, high intermittent sun exposure [3]. Other risk fac-
tors include high number of melanocytic nevi, red headedness, fair skin, low tanning 
ability and the propensity to freckle [4]. Between 5-10 % of cutaneous melanoma 
cases occur in patients with a family history of the disease; however, identification of 
inherited germline mutations is rare and then usually reside in the tumor suppressor 
CDKN2A [5].  
 
Although the vast majority of cutaneous melanomas are cured with surgical excision 
of the primary tumor, some patients’ disease metastasizes. The risk for metastatic 
disease can be predicted by characteristics of the primary tumor, where tumor thick-
ness (measured as Breslow-depth) has the highest prognostic value, followed by pres-
ence of ulceration and number of mitoses (Stage I-II) [6]. Sentinel node biopsy is 
usually performed in melanomas thicker than 1 mm and provide important prognos-
tic information; however, additional lymph node surgery has not been shown to im-
prove survival over observation [7, 8]. If the disease has spread to the regional lymph 
nodes (stage III), a proportion of the patients will still be cured by lymph node 
excision. The risk of local or distant recurrence is heterogenous, and can be estimated 
by size and number of involved nodes, as well as the presence of in transit metastases 
(i.e. cutaneous or subcutaneous metastases between the primary tumor and the drain-
ing lymph node basin). Adjuvant radiation therapy effectively reduces the risk of local 
recurrence in high risk patients, but does not lead to improved survival [8]. Due to 
recent advances in medical melanoma oncology, patients with high risk stage III are 
now instead offered adjuvant systemic treatment that dramatically reduce the risk 
of both local and systemic recurrence.  
 
If a melanoma has spread to distant sites of the body (Stage IV) the disease has
generally, like most metastatic cancers, been considered incurable. Historically, met-
astatic melanoma has had a dismal prognosis, with two thirds of the patients suc-
cumbing to the disease within a year of diagnosis. All organs can be affected, but the 
most frequent sites of metastases include distant lymph nodes, skin and soft tissue, 
lungs, bone, liver and brain, with increasing impact on survival. In addition, elevated 
serum levels of lactate dehydrogenase (LDH) is associated with poor prognosis (Ta-
ble 1) [9]. 
 
Since its approval in the 1970’s, the chemotherapy dacarbazine long was the only 
FDA approved drug for metastatic melanoma. Although chemotherapy can obtain 
objective response in some 15 % of patients, the responses are rarely durable [10].
Decades of clinical trials later failed to demonstrate proven survival benefit, usually 
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finding a median overall survival around only 6-9 months. Recent years have, how-
ever, seen a revolution in the treatment of metastatic melanoma with the introduction 
of both targeted therapy and immunotherapy which has dramatically improved sur-
vival [11]. Equally important, adjuvant treatment with either modality has been
shown to significantly reduce the risk of recurrence after resection of stage III or IV 
melanoma [12-15]. How adjuvant treatment in clinical routine will affect the long-
term survival of melanoma is still unclear.  
!
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1.1.1 Genetics and targeted therapies 

Like all cancers, cutaneous melanoma develops under the accumulation of genetic 
alterations. Due to its typical location in sun-exposed skin, cutaneous melanoma har-
bors amongst the highest numbers of somatic mutations of all cancers, with an aver-
age of 14 mutations per megabase (Mb) of DNA [16]. Recurrent mutations occur 
predominantly in the mitogen activated protein kinase (MAPK)-signaling pathway,
which is normally under the control of growth factors binding to their surface recep-
tor tyrosine kinase (RTK) (Figure 1). Most frequently, mutations are found in the 
BRAF gene occurring in around half of patients or, in a mutually exclusive manner, 
NRAS in ca 30% [17]. These activating mutations lead to constituent MAPK-
signaling through the downstream proteins MAPK/ERK kinase (MEK) and extra-
cellular signal-regulated kinase (ERK), which drives cancer cell survival and prolifer-
ation. A third group of patients (14%) have inactivating mutations in the tumor
suppressor gene Neurofibromin 1 (NF1), encoding a negative regulator of RAS signal-
ing. In the remaining group of triple wildtype patients, alterations or overexpression
of growth factor receptors like KIT, MET or EGFR is described, underlining the 
crucial importance of the MAPK pathway in melanoma biology. Frequently inacti-
vated tumor suppressor genes include phosphatase and tensin homolog (PTEN) which is 
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particularly frequent in BRAF mutated melanoma, TP53, most often found in BRAF, 
NRAS or NF1 mutated cases, and CDKN2A which is equally distributed between 
the four groups [18]. 
 
Targeting mutated BRAF with small molecule BRAF inhibitors leads to impressive
objective responses for the approximately 50% of melanoma patients harboring an 
activating BRAF mutation at position V600 [19, 20]. By adding a MEK inhibitor, 
the objective response rate increases, and the time to development of resistance, and 
consequently overall survival, is prolonged, without any increase in toxicity [21, 22]. 
Unfortunately, most patients will nevertheless develop resistance to the therapy 
within a year of treatment. The underlying mechanisms of resistance are only partly 
understood, but does not seem to include alteration or loss of the activating mutation 
itself (as seen in several targeted therapies of other malignancies). Instead reactivation 
of the MAPK-pathway (ERK signaling) can be restored by diverse processes like 
activation of parallel converging pathways, genetic alterations in other MAPK pro-
teins, alternative splicing or amplification of the BRAF V600 allele and upregulation 
of receptor tyrosine kinases [23-27]. Studies in mice have demonstrated that triple 
targeting of BRAF, MEK and ERK can have curative effects by suppressing the evo-
lution of resistance; however, this treatment is yet to be tested in patients [28]. 
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Unfortunately, there is no known way to directly inhibit mutated NRAS, and inhib-
iting the downstream MEK does not give meaningful effects in NRAS mutated pa-
tients [29]. Mutated KIT on the other hand is known to be directly inhibited by 
imatinib [30]. KIT alterations are particularly common in acral and mucosal 
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melanoma as well as melanomas arising on chronically sun-damaged skin, and 
imatinib can have efficacy in some patients with KIT mutations (but not amplifica-
tions) [31].   
 
Apart from the obvious risk of inducing oncogenic mutations, UV radiation can also 
drive tumor-promoting inflammation. On the other hand, mutations may also alter 
the tumor cells and make them more prone to recognition by the immune system. 
Finally, it was increased knowledge about the interplay between cancer and the im-
mune system that led to the biggest revolution in melanoma oncology: Effective im-
munotherapies. 

1.1.2 Immunotherapy  

The immunogenic potential of melanoma has been known for centuries, e.g. through 
observations of melanoma-associated vitiligo and spontaneous regressions of pri-
mary, and even in extreme cases metastatic, melanomas [32, 33]. The proposed im-
munogenicity of melanoma spurred long-lasting efforts to stimulate the immune 
system using vaccines and cytokines to achieve therapeutic effects, albeit with limited 
success. Instead, it was the identification of inhibitory receptors in the immune system 
(immune checkpoints), and drugs that disrupt their suppressive effect on the anti-
tumoral immune response (immune checkpoint inhibitors), that became the long-
awaited breakthrough.  
 
In 2011, the cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitor ipili-
mumab became the first immune checkpoint inhibitor to be approved, and at the 
same time the first drug ever to demonstrate a survival benefit in metastatic mela-
noma [34]. Although the response rate is low (10-20 %) and toxicities significant, 
around 20% of the patients seem to achieve long-term survival, leaving clinicians to 
speculate about a possible cure [35]. In the years to follow, trials with the pro-
grammed death receptor-1 (PD-1) inhibitory antibodies nivolumab and pembroli-
zumab, demonstrated a higher objective response rate (approximately 40%), 
unprecedented improval in survival over standard therapy, and a much more favora-
ble toxicity profile, making them the current first line of treatment for most patients 
with metastatic cutaneous melanoma [36, 37]. Consequently, there has been consid-
erable improvements in the overall survival of patients with metastatic melanoma 
treated in clinical routine [38, 39]. If the same very long-term benefit in survival ob-
served with responders to ipilimumab will be achieved with PD-1 inhibitors, remains 
to be seen; however, recently published follow up found a 5-year survival as high as
around 50% (Figure 2) [40].  
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Combining the CTLA-4 and PD-1 inhibitors ipilimumab and nivolumab (ipi-nivo),
leads to an increased response rate of around 60%, and a small numeric benefit in 
survival (Figure 2), but at the cost of severe toxicities that render a general use of 
this regimen controversial [40]. However, it has been shown that some patients with 
brain metastases (a major medical need in melanoma oncology), can have excellent 
response to ipi-nivo [41, 42]. Future trials are needed to identify additional patient 
groups with a clear benefit of combined CTLA-4 and PD-1 inhibition. Hopefully 
even the rapidly increased knowledge about the underlying mechanisms of response 
and resistance to checkpoint blockade will result in biomarkers that may one day
guide the selection of this and other novel immunotherapy combinations. 
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1.2 Cancer and the immune system  
The idea of manipulating the immune system to fight cancer is by no means novel. 
A famous early attempt dates back to the 1890s when the New York-based surgeon 
William B. Coley noticed an apparent association between post-operative wound in-
fections and a favorable outcome after surgery of soft tissue sarcomas. He conse-
quently started treating tumors with “inoculation of erysipelas”, i.e. live cultured 
bacteria, later refined to Coley’s toxin, and reported spectacular cases of tumor re-
gression [43]. Although the concept of bacterial inoculation to treat cancer still exists
for treatment of bladder cancer [44], Coley’s method of early immunotherapy was
hampered by variable results and side effects, and soon overshadowed by modern 
innovations like radiotherapy and chemotherapy.  
 
We now know that acute bacterial infections like erysipelas primarily elicit an immune 
response form the innate immune system. The innate immune system represents a 
rapid, first line of defense against pathogens that breach the anatomical barriers of 
the body. In the tissues, phagocytic cells of the innate immune system like macro-
phages and dendritic cells carry pattern recognition receptors (PRR) that recognize 
common structural components of pathogens -so called pathogen-associated molec-
ular patterns (PAMPs)- and initiate an inflammatory response through the produc-
tion of cytokines. Cytokines are soluble proteins that immune cells use to influence 
each other and include chemokines that direct the movement of cells to the sites 
where they are most needed. Effects on the capillary bed induce extravasation of cells 
and plasma and cause the red, warm and painful swelling that we are all familiar with. 
In sum, the inflammatory response results in a rapid recruitment of plasma proteins 
and circulating white blood cells, most notably neutrophils, that directly target mi-
crobes, amplify the response, and together help eliminate the intruding pathogen [45, 
46] 
 
Although inflammation is central in cancer biology and can mediate both pro- and 
antitumoral effects [47], the innate immune system lacks the necessary specificity to 
distinguish cancer cells from healthy cells. Instead it has become evident that an ef-
fective recognition and elimination of established cancer cells also require the effects 
of the adaptive immune system. Lymphocytes, named after their site of maturation 
in bone marrow (B cells) or thymus (T cells), are the cellular components of the 
adaptive immune system and themselves carry most of the features that characterize
it: They have receptors of exquisite specificity; a huge replicative potential, enabling an 
amplifiable response; the potential of a long lifespan generating immunological memory; 
and the capacity of recirculation between blood, lymphatic and peripheral tissues 
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giving them body-wide distribution. These characteristics also happen to be very desira-
ble features of a cancer therapy.  
 
While B cells produce antibodies that foremost recognize and help destroy extracel-
lular pathogens, T cells on the other hand have the unique capability of reacting upon
intracellular processes in dysfunctional somatic cells. T cells can be further divided 
into CD4+ T cells (or T helper cells) and CD8+ T cells (or cytotoxic T cells). Each 
individual T cell carries a unique T cell receptor (TCR) capable of recognizing a
peptide sequence (antigen) bound to a major histocompatibility complex (MHC)
molecule on a cell surface through antigen presentation. CD4+ T cells are restricted 
to recognize antigens presented on MHC class II and respond by producing cyto-
kines that affect surrounding immune cells. MHC-II is generally limited to profes-
sional antigen presenting cells (APC), particularly dendritic cells, that present antigens
derived from internalized extracellular proteins. As APCs sample their surroundings for 
pathogen derived proteins to present, they represent a crucial link between the innate 
and adaptive immune response.  
 
CD8+ T cells recognize antigens presented on MHC class I that is expressed on all 
nucleated cells. MHC-I classically presents peptides derived from intracellular proteins
in somatic cells. A sample of all synthesized proteins are degraded by cytosolic pro-
teasomes to peptides. These are transported to the endoplasmatic reticulium (ER) 
and loaded to MHC-I, and the peptide-MHC-I complex is transported to the cell 
surface [48]. In this way the immune system can monitor processes hidden deep in 
the cells interior since e.g. intracellular bacteria or vira expose themselves when their
peptidome is put on display on the cell surface. Upon recognition of its cognate an-
tigen-MHC-I complex, the T cell releases cytotoxic granules that kill the dysfunc-
tional target cell.  
 
The number of possible TCR target antigens greatly exceeds the number of genes in 
the human genome [49]1. Instead TCR specificity is generated through stochastic re-
shuffling of TCR gene segments in individual precursor cells. This process, V(D)J 
recombination, generates a huge surplus of TCRs in T cell precursor clones that 
then undergo selection and maturation in the thymus as thymocytes. First, thymocytes 
that fail to bind MHC-I are sorted away (positive selection), then the developing T cells 
are exposed to a wide array of self-antigens, and if they bind too strongly undergo 
apoptosis (negative selection) [50]. In this way, thymic maturation of the T cell pool 
generates central tolerance. When naïve T cells leave the thymus, they are trained !
1 In fact, the theoretical limit of the TCR repertoire is estimated to more than 1013 and thus exceed even 
the number of nucleotides in the human genome.  
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to ignore self-antigens, but are collectively capable of recognizing virtually any non-
self-peptide derived from e.g. virus or intracellular bacteria in infected somatic cells,
as long as it is presented on MHC-I. Fortunately, even cancer cells can be sufficiently
altered for some of the mature T cells to carry a TCR capable of recognizing it.  

1.2.1 What the immune system sees in cancer 

There are indeed other cell types that are capable of directly killing cancer cells (most 
particularly NK-cells [51]). However, for the purpose of brevity and focus, antitumoral 
immune response will here be used for the complex process that ends with a CD8+ T
cell killing a cancer cell, and immunotherapy as an intervention that explicitly aims at 
increasing the chances for it to succeed.  
 
With its TCR, the CD8+ T cell can recognize tumor-antigens presented on MHC-I 
on cancer cells and selectively kill it with the release of cytotoxic granules. “Tumor
antigen” is a broad and loosely defined term describing antigens with varying degrees 
of cancer specificity and include i) aberrantly expressed peptides (e.g. tissue restricted) 
ii) peptides altered through post-translational modification iii) viral antigens (endog-
enous retroelements, or in virus associated cancers), iv) peptides altered through non-
synonymous mutations in the parental gene, so called neo-antigens [52]. There is 
now growing acceptance in the field that neo-antigens probably are of greatest im-
portance in the recognition of cancer cells as non-self (or rather altered-self) by the 
immune system [53].  
 
Simply binding TCR to an antigen-MHC complex does not by itself trigger a T cell 
attack, instead it actually leaves the T cell in a dysfunctional, anergic state [54]. To 
acquire full effector function, naïve T cells first require activation (priming) by APCs, 
predominantly dendritic cells in the tumor draining lymph nodes. In addition to liga-
tion of TCR to antigen-MHC complex on the APC (signal 1), T cell priming also 
requires engagement of co-stimulatory molecules (signal 2), of which binding of 
CD28 by CD80 or CD86 on the APC is best characterized [55] (Figure 3A). Upon 
activation the naïve T cell begins a massive proliferation (clonal expansion) that ampli-
fies the immune response towards the encountered antigen. Furthermore, it under-
goes differentiation to obtain effector functions and in parallel generate a population 
of long-lived memory T cells that can ensure a more rapid expansion and response in 
future encounters with the antigen. In addition to direct cell-cell interactions, even 
cytokines secreted by the APC and surrounding immune cells shape the differentia-
tion pathways of the activated T cell and is required for effective proliferation (signal 
3).  
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The necessity of T cell activation underlines the crucial role of APCs in connecting 
the innate and the adaptive immune response. In cancer, antigens are released by
dead cancer cells and internalized by activated APCs. The APC then migrates to the 
tumor draining lymph node where it can present the cancer antigen to T cells carrying 
the corresponding TCR. Since CD8+ T cell TCRs are restricted to binding MHC-I, 
and internalized proteins are generally processed for presentation on MHC-II, prim-
ing of CD8+ T cells requires alternative processing. In a process called cross presen-
tation, certain subsets of dendritic cells in particular, are able to direct internalized 
proteins for cytosolic degradation and subsequent loading onto MHC-I [48]. Once 
activated, the CD8+ effector T cell leaves the lymph node and enter the blood 
stream. It has now gained the capacity to mount a cytotoxic response and produce
interferon gamma (IFN-γ) when encountering its cognate antigen. Due to upregula-
tion of chemokine receptors and adhesion molecules it can now home to the site of 
cancer associated inflammation, extravasate into the tumor and lyse its target cell 
upon recognition of its tumor antigen, presented on MHC-I on cancer cells (Figure
3B). Although this response has been speculated to regularly eliminate premalignant 
lesions (immunosurveillance), it is obviously not sufficient to eradicate established 
tumors under normal conditions. Indeed, one of the hallmarks of established cancer 
is the acquired ability to evade the immune system (immune evasion) [56]. 
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Central tolerance is not perfect. In part because of cross-reactivity towards a large 
number of similar peptides, there is an overlap in TCR affinity between pathogenic-
and self-antigens, particularly in antigens of self-origin such as in cancer. However, it
is also becoming increasingly clear that the T cell response is not a simple dichoto-
mous discrimination of self vs. nonself, predetermined by its development and nature 
of the antigen. Rather, the T cell response is highly dependent on context, and can 
be viewed as the sum of the highly integrated input of several stimulatory and inhibi-
tory signals during all stages of T cell activation. This is one of the mechanisms of 
peripheral tolerance that balance the risk of autoimmunity against the risk of
chronic infection. Cancer immune evasion involves tipping this balance towards in-
creased peripheral tolerance. Of particular importance seems to be the dysregulation 
of ligands on APCs or cancer cells that bind to regulatory receptors on the T cells, 
collectively described as immune checkpoints. As blocking inhibitory immune 
checkpoints with monoclonal antibodies skew the balance towards an improved and 
prolonged antitumoral immune response, immune checkpoints have become 
amongst the hottest targets of cancer drug development [57]. 

1.2.2 Immune checkpoint inhibition 

It was first described in chronic viral infections that prolonged antigen stimulation
generates T cell populations with decreased capacity for renewed stimulation. Likely 
part of an evolutionary important mechanism to avoid autoreactivity during chronic
infections, these exhausted T cells have reduced effector functions, proliferation, 
cytotoxicity and cytokine production and express high levels of several inhibitory re-
ceptors on their surface [58]. It was later shown that a similar phenotype is often 
present amongst tumor infiltrating lymphocytes (TILs), particularly in the small sub-
set of TILs that actually show reactivity towards cancer antigens, but, despite their
presence, obviously lack the effector function to control tumor growth [59]. Alt-
hough the prevailing model of T cell exhaustion as a linear “wearing out” of once 
functional cells is being challenged, it has been a fruitful concept in informing the 
hunt for receptors and ligands that govern T cell activation and function [60].  
 
CTLA-4 is one of the first negative regulators of T cell activation to be induced, and
becomes expressed upon TCR binding on both CD4+ and CD8+ T cells already
during priming. CTLA-4 outcompetes the costimulation provided by CD28 due to 
its higher affinity to their shared ligands CD80 (B7-1) and CD86 (B7-2) on the APC,
and consequently attenuate the T cell response (Figure 3A) [61, 62]. In pioneering 
experiments in the late 1990s, James P Alison and colleagues showed that inhibition 
of CTLA-4 with antibodies caused rejection of several kinds of tumor types in mice 
[63]. Despite decades long experience with its effects in mice (and later humans), the 
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exact mechanism of action of CTLA-4 inhibition is still not clear. Translational stud-
ies suggest that the CTLA-4 inhibitor ipilimumab enhances T cell priming by allowing 
expansion of new clones and phenotypes, and imply a critical role of CD4+ T cells 
[64-67]. At the end of the millennium, the novel concept of “releasing the brakes” of 
the immune system to treat cancer gained little interest from the pharmaceutical in-
dustry. Hence the translation from lab to clinic was slow, and the definitive break-
through first came more than a decade later: In 2010 ipilimumab became the first 
drug ever to show a survival benefit in metastatic melanoma and the first demonstra-
tion of the potential of immune checkpoint inhibition in humans [34]. Even though 
only a minority of patients benefited from treatment, the effects were unlike anything 
seen before in medical oncology: The responses could be delayed by months, some-
times following an initial significant tumor growth (pseudoprogression); the side effects 
mimicked autoimmune disease; and most importantly, the occasional responses
proved exceptionally durable and spurred talk about a “tail of the survival curve”,
suggestive of a cure. In fact, many patients from the very first trials are still alive and 
well today, more than 15 years later [35]. Although ipilimumab has failed to demon-
strate a meaningful effect in most cancer types, its success in melanoma represented 
a true paradigm shift: Pharmacological targeting of a common target in the immune 
system could cure metastatic cancer. In the following decade the field of immuno-
therapy exploded, new targets were identified and tested, and ipilimumab soon be-
came overshadowed by the success of PD-1 inhibition2. 
 
PD-1 come into play later during T cell activation. Although expressed by all acti-
vated T cells upon ligation of TCR, a high PD-1 expression is sustained only during 
prolonged antigen stimulation [68, 69]. Its ligands PD-L1 (B7-H1) and PD-L2 (B7-
DC) are widely expressed by both immune cells and some non-hematologic cells, but 
of particular relevance is that PD-L1 is commonly expressed by cancer cells and stro-
mal cells in the tumor infiltrate [70, 71]. PD-1 attenuates TCR signaling through in-
hibition of its intracellular messengers, which maintains the T cell in the dysfunctional 
state that characterizes an exhausted phenotype [72]. As PD-L1 expression is induc-
ible by inflammatory cytokines, most notably IFN-γ, PD-1 appear to be particularly 
important in the feedback loop of adaptive resistance that limit the T cell attack
against peripheral tissues, including cancer (Figure 3B) [73]. Indeed, seminal exper-
iments in the mid 2000s showed that inhibiting PD-1 appeared more effective, and 
less toxic, than CTLA-4 in mouse models [74, 75]. When the first study of efficacy in 
humans were published in 2012 it became clear that these findings translated well:
PD-1 inhibition had greater efficacy in more diseases and less side effects than ipili-
mumab [76]. In 2014 the first randomized trial of a PD-1 inhibitor (nivolumab) !"!#$!%&'!()**)+,$-!%'.%/!!"#$%&'(&)&*&+'%+,**!0'('0!%)!1$2!%0'1%3'$%!%&1%!4,5067%!%&'!,$&,8,%)02!5,-9$1*,$-!82!:;9<!1$4!%&65!,$=*64'!%0'1%3'$%!+,%&!,$&,8,%)02!1$%,8)4,'5!%)!',%&'0!:;9<!)0!:;9><?!



!

!

& ' ! ()*+,-./*(,)! !!&1

showed a 40% response rate and an unprecedented improvement in survival over 
standard therapy in melanoma, leading to its approval the same year [36]. In the fol-
lowing years several inhibitors of PD-1 or PD-L1 have been approved for a large 
number of diseases in various settings, and have cemented immunotherapy as a 
fourth modality for cancer treatment alongside surgery, radiation therapy and cyto-
toxic drugs [77]. However, the response rates are usually much lower that the 40% 
seen in melanoma (with some rare notable exceptions such as Hodgkin’s lymphoma, 
Merkel cell carcinoma and advanced squamous cell carcinoma of the skin) [78]. Due 
to the spatial and temporal separation of CTLA-4 and PD-1 in T cell activation, there 
is a rationale for dual inhibition. Indeed, combined CTLA-4 and PD-1 inhibition with 
ipilimumab and nivolumab gives a numerically higher response rate and overall sur-
vival in cutaneous melanoma, but at the expense of drastically increased toxicities 
[40]. A lower dose of ipilimumab may significantly lower the toxicity and is evaluated 
in melanoma and other diagnoses [79] (NCT02714218; NCT03302234). At the same 
time several other checkpoint inhibitors are being investigated that hopefully have a 
more acceptable toxicity profile. 
 
Lymphocyte-activation gene-3 (LAG-3) is commonly co-expressed with PD-1 in 
CD8+ TILs with an exhausted phenotype both in mouse models and patients [80, 
81], and dual blockade synergizes to inhibit tumor growth in mice [82]. LAG-3 has 
structural similarities to CD4, and binds MHC class II with high affinity, although 
other ligands have been proposed [60]. Several trials are ongoing with LAG-3 inhib-
itors, mostly in combination with a PD-1 inhibitor. The LAG-3 inhibitor relatinib is 
already in phase III (in combination with nivolumab), following demonstration of 
safety and an 11.5% response rate in PD-1 refractory patients in a phase I study [83], 
as well as satisfying results in an unpresented phase II cohort (NCT03470922). Other 
inhibitory checkpoints currently investigated as targets for inhibition include T cell 
immunoglobulin- and mucin-domain-containing molecule 3 (TIM-3) and T cell im-
munoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory 
motif domain (TIGIT) as well as several other ligands of the B7 family (of which 
CD80, CD86, PD-L1 and PD-L2 are also part) [84].   
 
While there is certainly a large number of potential “next generation” checkpoints to 
be explored, there are also reasons for curbed expectations. Many of the known 
checkpoints either show overlapping expression and function with PD-1/PD-L1, or 
have a complexity in ligands and biology that may make the effects of simple inhibi-
tion unpredictable. Even as more potential targets emerge, inhibition of PD-1 will 
likely continue to be the mainstay of immunotherapy in many years to come, due to 
its apparent central role in inhibition of T cell effector function, as well as excellent 
tolerability. Indeed, most ongoing trials of novel immunotherapies have a PD-1 
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inhibitor backbone and as the number of potential combinatory candidates grow, it 
is becoming increasingly important to decipher the underlying mechanisms of re-
sponse (and lack thereof) and let basic science guide the choice of rational combina-
tory partners.  

1.2.3 Determinants of response and resistance to immunotherapy  

The accumulation of clinical experience with checkpoint inhibition has taught us that 
the effect of immunotherapy is diverse. First, the efficacy varies greatly between di-
agnoses, from no meaningful effect in general in diseases like brain tumors or pan-
creatic cancer, to effect in almost all patients with Hodgkin’s lymphoma [85, 86]. But 
even within the same tumor type the effect varies, as illustrated by PD-1 inhibition 
in melanoma: One fifth of patients get a rapid onset of a complete response with 
the durability that has become the hallmark and promise of immunotherapy. Twice 
as many patients, however, seem to have no effect at all and experience an immediate
progression of disease telling of an inherent resistance. The rest fall somewhere in 
between: They either have a limited period of disease stabilization, or an initial re-
sponse that weans with time under the development of acquired resistance [40]. As 
of today, there is no way to determine in advance if a patient will respond to immu-
notherapy or not. It has therefore become a major focus of translational immuno-
therapy research to search for biomarkers for response and resistance. Much of what 
we have learned so far comes from the experience with PD-1 inhibitors in melanoma 
and non-small-cell lung cancer (NSCLC), as well as mouse models. Due to the com-
plexity of the underlying biology of both cancer and the immune system, generaliza-
tion between species, diseases and treatments should be done with some caution. 
 
The commonly proposed mechanism of action of checkpoint inhibitors would re-
quire some pre-existing antitumor reactivity, evident by the existence of an immune 
infiltrate in the tumor micro environment (TME). Indeed, the crude quantification 
of TILs was identified as a prognostic factor in numerous cancers long before the 
current era of immunotherapy [87]. Furthermore, the characteristics of the TIL infil-
trate was early shown to be associated with response to PD-1 inhibitors in melanoma 
[88]. Particularly the density of CD8+ T cells showed correlation, whereas the influ-
ence of CD4+ T cells seemed more diverse. Paradoxically, the first disease to have a 
validated prognostic immunohistochemistry (IHC) immunoscore based on characteris-
tics of the T cell immune infiltrate, was colorectal cancer, a disease where immune 
checkpoint inhibitors in general have been particularly disappointing [86, 89]. Simply 
counting TILs does not, however, reflect the complexity of the immune infiltrate. T 
cells come in many flavors, and particularly CD4+ T cells undergo a polarizing dif-
ferentiation during their activation thought to be mostly influenced by cytokines. The 
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resulting CD4+ subsets can have conflicting roles in shaping the tumor micro envi-
ronment. The classical type 1 T helper cells (Th1) that develop under the influence 
of type I interferons and IL-12, are considered to have a crucial role in facilitating an 
anti-tumorigenic “inflamed” TME through their secretion of e.g. interleukin-2 (IL-
2) and IFN-γ as well as chemokines that attract other inflammatory cells. CD4+ T 
regulatory cells (Tregs), on the other hand, are known through studies of autoim-
mune disease to have a potent immunosuppressive capacity [90]. Thought to develop 
under the influence of the cytokine transforming growth factor-β (TGF-β), Tregs’
exact role in tumor biology remains elusive, but their presence has been shown to be
associated with impaired outcome [91]. Unlike other T cells, Tregs constitutively ex-
press CTLA-4 and in mouse models the effects of CTLA-4-inhibition appear to de-
pend upon depletion of Tregs, although this is of doubtful importance in humans 
[92, 93]. Even B cells may have an important role in generating an efficient immune 
response against tumors. Although their role is incompletely understood, recent work 
show that their presence in intratumoral tertiary lymphoid structures correlate with 
effect of CTLA-4 and PD-1 inhibition in melanoma [94-96]. 
 
According to the model of adaptive immune resistance described above, PD-L1 ex-
pression could be seen as a surrogate for a pre-existing immune response. If it were 
the dominating mechanism for immune escape, PD-L1 expression (measured in tu-
mor biopsies by IHC) should further be predictive for response of PD-1 inhibition. 
Indeed, there is a correlation between PD-L1 expression and response across dis-
eases, including melanoma [97], but it is rather weak: A high PD-L1 expression does 
not guarantee a response, on the other hand, even patients with no PD-L1 staining 
can have durable responses [98]. Hence the predictive value of PD-L1 expression in 
individual cases is low. In other diseases and settings, the negative predictive value of 
low PD-L1 expression is sufficient to exclude patients from treatment. However,
different methods, antibodies and cut-offs for positivity (ranging from ≥1% to 50% 
of counted cells), makes comparison between studies difficult [99]. Furthermore, the 
use of archival tissue raises concerns, e.g.: Does a tumor sample, often acquired by 
needle biopsy, months or years earlier, represent the current state of a tumor with a 
heterogenous and changing PD-L1 expression? As discussed above, PD-L1 expres-
sion is a dynamic response to an ongoing T cell attack, therefore PD-L1 expression 
in a biopsy taken after start of treatment seems to correlate better with response [100]. 
However, the value of repeated on-treatment biopsies in clinical routine is limited by 
the impracticality and invasiveness of a biopsy, and the fact that a clinical/radiological 
evaluation often gives a definitive answer only weeks later. A promising, more feasi-
ble way of assessing PD-L1 expression in real time, is by positron emission tomog-
raphy (PET). By labelling anti-PD-L1 antibodies with zirconium-89 (89Zr) isotopes,
PD-L1 expression can be visualized and quantified in vivo. In a pilot study, pre-
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treatment PD-L1 PET signal was a strong predictor of response to subsequent PD-
1 inhibition, but this still needs to be validated [101].  
 
PD-L1 is not only expressed on tumor cells, but can even be upregulated on cells in 
the immune infiltrate. The added value of separating expression on tumor and im-
mune cells in PD-L1-testing is still uncertain, but is being explored in several trials
[99]. Macrophages are myeloid cells of the innate immune system that often make up 
a major component of the immune infiltrate, frequently express high levels of PD-
L1, and may be a significant contributor to the adaptive immune resistance [102-104].
However, the role of tumor associated macrophages (TAMs) is diverse. During 
activation, macrophages undergo a polarizing differentiation, classically divided into 
proinflammatory M1 or anti-inflammatory M2 phenotypes. Whereas classical (M1) 
macrophages are usually considered antitumoral, TAMs more often have a M2-like 
phenotype and mediate immune suppression and resistance to checkpoint inhibition
through e.g. secretion of  TGF-β and IL-10, and expression of PD-L1 [105-107]. It 
has, however, become clear that activated macrophages are in fact highly plastic and 
adapt their phenotype on a continuum between (and beyond) the M1-like and M2-
like extremes [108]. Several novel approaches, in various stages of clinical testing, 
aims to manipulate TAMs and skew (repolarize) the population towards an anti-tu-
morigenic phenotype, inhibit the recruitment of TAMs monocytic precursor, or to 
target the survival of TAMs in the TME [109]. Even other myeloid cells can have a
suppressive effect in the TME. In the recent decade, particular interest has been de-
voted to the elusive myeloid derived suppressor cell (MDSC). With a morphology 
and phenotype similar to monocytes or neutrophils, MDSCs are now thought to rep-
resent pathologic activation states of these cell types [110]. The monocytic MDSC 
(M-MDSC) has even been proposed to be a precursor cell of TAMs, and high num-
bers of M-MDSCs in blood has been associated with impaired survival and inherent
resistance to checkpoint inhibition in melanoma [111, 112]. Consequently, MDSCs 
have become an attractive target for novel immunotherapies [113]. Even dendritic 
cells share hematopoietic precursor with macrophages and neutrophils. Due to their 
crucial role in T cell activation, dendritic cells in the immune infiltrate are subject to
intense study. It has been shown in mice that a rare subset of migratory BATF3-
driven/CD103+ DCs are particularly good at cross-priming T-cells in the tumor
draining lymph node [114-116]. Additionally, their continued presence in the TME 
appears to be required for recruitment of CD8+ effector T cells through their pro-
duction of ligands to chemokine receptor CXCR3, which is highly expressed on ac-
tivated T cells [116]. Strategies to enhance DC activation with agonists of the innate 
immune response are being evaluated in clinical trials. 
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An obvious prerequisite for effective T cells in the TME, is that there is something 
there for the T cell to recognize: Antigens presented on MHC. As random somatic 
mutations can be the source of immunogenic neoantigens, a high number of somatic 
mutations should imply a greater chance of generating an antigen for which there is 
a pre-existing T cell clone [117-121]. Indeed, a high tumor mutational burden 
(TMB) is associated with benefit of checkpoint inhibition across cancer types [122-
124]. A particular high TMB is found in cancers with alterations in genes involved in 
mismatch repair (MMR) [125]. As predicted, a trial of PD-1 inhibition in MMR 
deficient cancers showed an exceptionally high response rate (53%) across 12 differ-
ent tumor types, many of which are otherwise unresponsive to PD-1 inhibition [126]. 
In addition to support for the hypothesized importance of neoantigens, these find-
ings led to FDA-approval of pembrolizumab for all MMR deficient cancers, making 
it the first ever tissue agnostic cancer drug [127]. However, TMB may be confounded 
by several other factors [128, 129], and in MMR proficient cancer, TMB lack predic-
tive value in individual cases [130]. This may be partly because all neoantigens are not
created equal. For instance, small insertions and deletions (indels) that cause 
frameshifts, have a much greater impact on the amino acid sequence in the translated 
peptide, than non-synonymous single nucleotide variants (SNV). As T cells specific 
to highly altered neoantigens are more likely to have avoided central tolerance, a high 
amount of indels may in part explain why some cancers like renal cell carcinoma 
respond better than predicted by their rather low TMB [131]. Furthermore, a high 
TMB may be counteracted by high intra tumor heterogeneity that seems to impair 
immunogenicity, suggesting that clonal neoantigens may be more immunogenic than 
subclonal events [128, 132, 133].  
 
An altered peptide first becomes an antigen for a CD8+ T cell when presented on
MHC-I. Human MHC-I is encoded by the genes human leucocyte antigen (HLA)-
A, HLA-B and HLA-C. The HLA genes are the most polymorphic genes known, 
and each HLA allele only binds a restricted repertoire of peptides [134]. The finding 
that maximal heterozygosity at the HLA-I genes is associated with better outcome of 
checkpoint inhibition, may therefore be explained by presentation of a broader rep-
ertoire of neoantigens [135]. Conversely, downregulation of HLA, or other parts of 
the antigen presenting machinery, is a well described mechanism for immune evasion
and may also cause resistance to immunotherapy through e.g.: Loss of a single HLA
allele [135-137]; transcriptional suppression of HLA expression [138]; mutations and 
loss of heterozygosity (LOH) of beta-2-microglobulin (B2M) (a protein needed for 
the MHC-I complex to be stably bound at the cell surface) [139]. Alterations in the 
antigen presenting machinery is actually one of the few identified mechanisms of 
acquired resistance to checkpoint inhibition; however, it seems limited to very few 
cases [139]. Furthermore, the data on MHC expression in primary resistance to 
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checkpoint inhibition is conflicting and also implies a role of MHC-II that is incom-
pletely understood [129, 140]. 
 
Cancer is a genetic disease, so ultimately even the immune response is shaped by the 
cancer genome, including its driver mutations. For instance, PTEN loss is associ-
ated to resistance to PD-1 inhibition [141]. In melanoma mouse models, oncogenic
WNT/β-catenin signaling reduces T cell infiltration and abrogates checkpoint inhi-
bition [114] and the common oncogenic BRAF V600E mutation drives degradation 
of MHC-I [142]. The clinical relevance and actionability of these mechanisms are 
being investigated. Just as cancer genetics influence the immune system, the immune 
system also seems to influence cancer genetics and shape the evolution of oncogenes 
in a HLA dependent manner, evidence of the bidirectional nature of immunoedit-
ing and subsequent immunevasion [143]. 
 
A tumor is more than just cancer cells and immune cells. The tumor stroma even 
comprises a connective tissue of cancer associated fibroblasts (CAF) and blood-
and lymph vessels entangled in an extracellular matrix of proteins and extracellular 
fluid (ECF). Both CAF and endothelial cells of the tumor vasculature have been 
shown to directly impair trafficking and function of T cells [144-146]. Furthermore,
they contribute in making the ECF a very hostile environment for T cells: Hypoxic 
and low in pH; low in glucose and crucial amino acids like tryptophan and arginine; 
and high in immunosuppressive metabolites like adenosine and lactate [147-152]. 
 
Due to its complexity in structure and function, there is a need to characterize the 
TME beyond what is possible with traditional IHC. A now widely used approach is 
global transcriptomic analyses to characterize gene expression profiles (GEPs) as-
sociated with response or resistance to checkpoint inhibition. Not surprisingly, such 
GEPs generally show enrichment of genes associated with T cell function or genes 
expressed in response to IFN-γ [153-156]. Although GEPs are showing impressive
predictive value for response to checkpoint inhibition in some cases, their usefulness 
in clinical routine has not been prospectively validated, and their reproducibility in
multiple patient cohorts has been challenged [157]. At the same time, novel sequenc-
ing techniques that allows for deep sequencing of single cells in the TME, as well as 
dramatic improvements in imaging technologies and bioinformatic tools, are rapidly 
increasing the detail with which the TME can be studied [158-161]. Hopefully, com-
ing years will see an increased mechanistic understanding in how the components of
the TME influence response and resistance to immunotherapies.  
 
A tumor is not an isolated system. Both the cancer and the immune system are influ-
enced by the organism they inhabit. In a surprising example, several independent 
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preclinical, translational and clinical studies have revealed an association  
between response to checkpoint inhibition and the composition of the gut micro-
biome in both melanoma and NSCLC [162-166]. The underlying mechanism is still 
unknown, and the complexity of the issue is illustrated by the fact that different stud-
ies imply importance of different microbial taxa [167]. Other host factors associated 
with improved outcome of checkpoint inhibition include higher age, male gender and 
obesity [168-170]. However, these (hardly modifiable) factors are difficult to isolate 
from possible confounders, and their generalizability is uncertain.   
 
As of now, biomarkers have very limited relevance in melanoma. Although many 
correlates to response have been identified, they lack the predictive value to guide 
treatment decisions in individual cases. Instead classical clinical markers of poor 
prognosis, such as impaired performance status, elevated LDH and brain metastases, 
unfortunately are also predictors of poor response to PD-1 inhibition [39, 171]. Ow-
ing to the immense heterogeneity within, and between patients and cancer types, it is 
unlikely that any single marker will have the same predictive value as we have become 
used to with targeted therapies. Instead we might hopefully in the not too distant 
future rather use an array of different biomarkers to tailor combinations of immuno-
therapy in a more individualized manner.  

1.2.4 Beyond Immune Checkpoint Inhibitors 

Although checkpoint inhibition has transformed the treatment of metastatic mela-
noma, more than half of the patients still die from their disease within five years, 
clearly underlining the need for enhancing immunotherapies further. A very direct 
approach is to enhance, activate, expand or modulate T cells in vitro: Adoptive cell 
transfer (ACT). In fact, one of the first successful attempts at restoring an efficient 
antitumoral immunity was pioneered already in the 1980s by Dr. Steven Rosenberg 
and colleagues at the NIH surgery branch, USA, using ACT. By culturing tumor bi-
opsies in high doses of IL-2, TILs can be extracted. Subsequent ex vivo stimulation 
massively expands the TILs before transfusing them back to the patient together with 
IL-2, following lymphodepleting chemotherapy. This method of TIL therapy can 
achieve impressive durable responses in as many as 50% of the patients with meta-
static melanoma in non-randomized trials [172-174]. However, it is labor intensive, 
costly and has significant toxicities (mainly attributed to high dose IL2), making it 
unlikely to ever become a standard of care in its present form (particularly considering 
the success of immune checkpoint inhibitors). However, it has proven an invaluable 
platform for translational research, particularly in the fields of antigen selection and 
prediction [136]. But maybe most importantly: The occasional cures of individual 
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patients treated with TIL therapy have served as powerful demonstrations of the 
unique potential of immunotherapies. 
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Further development of cell-based immunotherapies include selecting TILs for anti-
gen specificity, or providing T cells with exogenous receptors against known antigens 
in a patient’s cancer by transgenic expression of TCRs or chimeric antigen recep-
tors (CAR) [175]. The CAR is a synthetic receptor with a binding domain (usually
derived from a monoclonal antibody) fused to the intracellular signaling domain
(CD3ζ) of the TCR (signal one) as well as costimulatory domains (signal two) (Figure 
4). Since the CAR provides both signal one and two, the CAR T cell does not require 
priming by an APC. Furthermore, the antibody-derived binding domain makes it in-
dependent of MHC, so that the cytolytic capacity of T cells can be unleashed against 
cancer cells bearing any specific surface protein. The first major clinical breakthrough
came with CAR T cells against the common B cell marker CD19. Two commercial 
CAR T cell products have shown impressive durable responses in large fractions of 
patients with certain adult and pediatric B cell malignancies, and are now part of the
standard medical care [176-178]. So far, no CAR T-cell therapy has demonstrated 
convincing effects in solid tumors. Challenges include finding an appropriate target 
(as truly cancer specific surface markers are scarce) as well as enhancing trafficking,
function and survival of the CAR T cell in the hostile TME of solid tumors. Drawing
from experience with TIL therapy, addition of lymphodepletion and cytokine stimu-
lation are currently investigated approaches that aim to overcome some of these hur-
dles [179, 180]. 
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A major disadvantage of current cell therapies is that they are produced in a person-
alized manner and require advanced biotechnological techniques, making them labor
intensive and costly. This may also be an obstacle for feasible cancer vaccines. While 
early cancer vaccines targeted common cancer associated antigens and probably 
failed due to central tolerance, current promising approaches utilize platforms to 
identify and target personal neoantigens with individualized mRNA- or peptide vac-
cines [181, 182]. However, cancer vaccines have yet to demonstrate efficacy in clinical 
trials and, like cell therapies, still face challenges in obtaining scalability. Advances in 
molecular engineering has enabled novel concepts for redirecting T cells to specific 
cancer antigens, using “off-the-rack” mass produced therapeutic agents. One such 
example is that of immune!mobilizing monoclonal TCRs against cancer (Im-
mTACs), that combine a soluble epitope-specific TCR fused with an antibody de-
rived (single chain variable fraction (scFv)) binding site against CD3. The ImmTAC 
tebentafusp has a TCR domain against a fragment of gp100 presented on HLA 
A*02:01 on melanoma cells, and recruits adjacent non-specific T cells through cross-
binding with CD3. Trials with tebentafusp are ongoing in both cutaneous and uveal 
melanoma and show promising effects [183].  
 
Early attempts to stimulate the immune response with cytokines had very limited 
success, maybe because of the strong inhibitory signals of immune checkpoints (in 
analogy to stepping on the gas with the parking brakes engaged). Now that important 
breaks have been identified and uncoupled, we see an awakened interest in augment-
ing the immune response by cotreatment with stimulatory agents. Furthermore, im-
proved knowledge in cytokine biology, as well as modern molecular techniques, has 
enabled modification of cytokines that may have a better risk-benefit profile than 
earlier. One such example is bempegaldesleukin, a modified IL-2 agonist [184], that
recently demonstrated encouraging response rates in combination with nivolumab in 
metastatic melanoma [185]. Additionally, several trials are ongoing with agonists of
costimulatory receptors in T cell activation, such as 41-BB, OX40, ICOS, GITR
and CD40 [186]. Even costimulators of the innate immune response have great 
potential to enhance T cell mediated therapies through improved T cell activation 
and recruitment by APCs. The stimulator of interferon genes (STING) pathway ap-
pears to be critical for initiation of the type I interferons that activate BATF3+ den-
dritic cells capable of cross priming CD8+ T cells [187]. Once initiated, the innate 
response is further propagated by PRRs like toll like receptors (TLRs), and several 
agonists of STING and TLRs are in clinical development and testing (NCT02680184; 
NCT03956680; NCT04096638).  
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One goal of novel immunotherapies is to modulate the TME to become a less hostile 
milieu for immune cells. Already mentioned approaches include targeting of macro-
phages and MDSCs. As dysfunctional cancer vasculature contributes to the immune 
suppressive environment, there is also a strong rationale to target the drivers of an-
giogenesis (e.g. vascular endothelial growth factor (VEGF) or its receptor VEGFR) 
to improve the effect of immunotherapy and several trials are ongoing [147]
(NCT03820986). The first clinical attempt to modify metabolites in the TME targeted
degradation of tryptophan by inhibiting the enzyme indoleamine-pyrrole 2,3-dioxy-
genase (IDO). After promising early phase data, the following trial unfortunately
broke a remarkably long streak of positive phase III trials in melanoma, when the 
addition of the IDO-inhibitor epacadostat to pembrolizumab failed show benefit 
over pembrolizumab alone [188]. Currently developing approaches include inhibiting
the degradation of arginine, and inhibition of adenosine signaling (NCT02903914)
[189]  
 
Finally, even traditional treatment modalities in oncology may synergize with immu-
notherapy. For instance, both chemotherapy and radiation therapy have the po-
tential to induce immunogenic mutations, antigen spread, immunogenic cell death
and T cell chemoattraction, and are already in use in combination or sequence with 
PD-1 inhibition in NSCLC [190, 191]. In BRAF V600 mutant melanoma, BRAF 
and MEK inhibition synergizes with immunotherapy in mouse models and early 
phase trials [192-197]. Ongoing phase III trials will elucidate whether combined
BRAF/MEK/PD-1 inhibition will result in a survival benefit (and reasonable tox-
icity) compared to sequential treatment (NCT02908672; NCT02967692; NCT-
02902029; NCT02224781).  
 
Considering the vast number of possible immunotherapy combinations, trials will
soon risk to outnumber the eligible patients. It is therefore becoming increasingly 
important to develop preclinical models that can guide rational combinations, and 
mitigate the risk of exposing patients to ineffective and potentially harmful treat-
ments. Because when you unleash the force of the immune system, healthy tissue 
may end up in harm’s way.  

1.2.5 Adverse events associated with immunotherapies 

Due to their unique mode of action immunotherapies can induce side effects that are 
nothing like what we are used to from other cancer therapies. Considering the roles 
of immune checkpoints in peripheral tolerance, it should be no surprise that check-
point inhibition may lead to the immune system attacking healthy tissues, and give 
rise to autoimmune-like, immune related adverse events (irAEs). Although any 
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organ can be affected, some are much more frequently involved than others. Highest 
risk of irAE is seen the first weeks and months of treatment, but irAE may even
occur months after cessation of treatment. In recently reported five-year follow-up 
data, there were no new late stage AEs observed [40].  
 
In monotherapy for metastatic melanoma CTLA-4 inhibition with ipilimumab (at 
3 mg/kg) give rise to irAEs in approximately 75% of patients, with around 25% of 
patients developing irAEs graded as severe (common terminology criteria for adverse 
events (CTCAE) grade ≥3) [34, 198]. The most common severe irAE is diarrhea
and/or colitis, which can be life threatening. Other irAE include skin reactions, en-
docrinopathies (hypophysitis and thyroiditis), hepatitis and neurologic disorders. 
Even though around 50% of patients treated with PD-1 inhibition for metastatic 
melanoma develop an irAE, the rate of grade ≥3 irAE is less than 10% [199]. The 
most common irAEs are skin reactions, followed by diarrhea and hypothyroidism, 
which is more common than with ipilimumab. Although PD-1 inhibition is generally 
very well tolerated, rare irAE like pneumonitis and myocarditis can be life threatening
[200]. Combined CTLA-4 and PD-1 inhibition with ipilimumab and nivolumab, 
leads to irAEs in almost all treated patients, with around 50% developing grade 3-4 
irAEs. As with ipilimumab monotherapy, diarrhea/colitis is the most common severe 
irAE, but combined checkpoint inhibition is also associated with particularly high 
rates of hepatitis and hypophysitis.  
 
Several consensus guidelines for management of irAEs have been published [201-
203] and generally include: Assessments for diagnosis and to rule out other causes
(e.g. infection or progression of disease); grading of severity; symptomatic and sup-
portive care; immunosuppressive agents (primarily corticosteroids) in severe or per-
sistent cases. Checkpoint inhibition may be continued, withheld until irAE is resolved 
or permanently discontinued, depending on severity and type of irAE, as well as ben-
efit of treatment. As irAEs mimic autoimmune disease in their presentation, manage-
ment guidelines draw heavily on experience from autoimmunity in organ specific 
specialties. However, irAEs often respond much better to immunosuppressive ther-
apy than their autoimmune counterpart, underlining that extrapolation between the 
two should be done with some caution. Instead, prospective studies of optimal han-
dling of irAEs are warranted to fill current evidence gaps. Another imminent need is 
to improve the consistency in assessment and reporting of irAE in clinical trials [204]. 
The commonly used grading system (CTCAE) have weaknesses in capturing the type, 
severity and duration of irAEs, which has probably resulted in underreporting of 
several common irAEs, as well as a substantial difficulty in assessing true incidence 
of irAEs in the pivotal clinical trials [205-207]. Ongoing efforts for harmonization of 
immunotherapy trial reporting, will hopefully result in a terminology that better 
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separate assumed etiology from symptoms and signs; increase reporting of the use of 
immunosuppression; and better capture the incidence, grade, timing and duration of
irAEs [208]. 
 
The underlying mechanisms of irAEs are only partly understood, and probably di-
verse. Some evidence exists for tissue specific antibody-effects, as well as unmasking 
of pre-existing autoimmunity [209, 210]. Other possible mechanisms imply a more 
direct bystander effect from antitumoral T cells that would link irAEs and response
to treatment [211, 212]. There is indeed cumulating evidence that the occurrence of 
irAE is associated with treatment benefit of PD-1 inhibition across tumor types [39, 
199, 213-216]. Conversely, concerns may be raised that treatment effects could be 
hampered by immunosuppression in the management of irAEs. Although most stud-
ies show that patients who receive immunosuppressive treatment for irAEs have 
comparable outcomes to those who do not, it is impossible to rule out or that immu-
nosuppression might have blunted an otherwise superior outcome in this group. 
Hence the impact of high dose corticosteroids remains controversial [217-219].
Hopefully, ongoing and future work will identify targetable, non-overlapping mech-
anisms that can uncouple the relationship between irAE and effect, and improve the 
risk-benefit of checkpoint inhibition.  
 
Even adoptive cell therapies have adverse events. In the case of TIL therapy, tox-
icity is dominated by those of the lymphodepleting regimen and subsequent IL-2
treatment. High dose IL-2 leads to sepsis-like symptoms of fever, capillary leak and 
hypotension, frequently requiring management at an intensive care unit [220]. A re-
lated clinical presentation is seen in cytokine release syndrome (CRS), the domi-
nating acute toxicity of CAR T-cell therapy in B cell malignancies [221]. CRS is
characterized by high levels of inflammatory cytokines, like IL-1 and IL-6, and usually 
responds well to IL-6 inhibition. In addition to CRS, CAR T cell-therapy is associated 
with reversible neurological toxicities, that can be severe [176-178]. Furthermore, all
cell therapies may even potentially have on-target/off-tumor effects due to shared 
antigens in healthy tissues, as exemplified by vitiligo and anterior uveitis with TIL or 
TCR based therapy for melanoma, and B cell aplasia in CD19 CAR T-cell therapy
[220].  !  
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1.3 Uveal Melanoma 
Unfortunately, the progress in treatment of cutaneous melanoma has so far not trans-
lated to metastatic uveal melanoma. In fact, uveal and cutaneous melanoma have 
very little in common other than in name and melanocytic origin, and their disparities 
may actually be traced all the way to the developing embryo. All melanocytes originate 
from highly migratory progenitor cells in the neural crest (thus sharing origin with 
e.g. peripheral neurons and their supporting glia) [222]. However, as they migrate 
throughout the developing embryo, these melanoblasts are subject to different intrin-
sic and extrinsic factors on their separate routes that likely give rise to site specific 
heterogeneity in different melanocyte populations [223]. As carcinogenesis often in-
clude dedifferentiation and reverting to embryonic traits [224], it is fair to hypothesize
that their developmental origin may contribute to making uveal and cutaneous mela-
noma biologically and clinically distinct entities. 
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The terms ocular melanoma or eye melanoma are sometimes used interchangeably with 
uveal melanoma or choroidal melanoma. While the vast majority of uveal melanomas (90%)
indeed arise from the choroid, the latter term would, however, exclude melanomas 
from the ciliary body and iris which are also part of the uveal tract (Figure 5) [225].
Ocular- or eye melanoma on the other hand, would anatomically include even conjunc-
tival melanomas which have more in common with cutaneous or mucosal melanomas
(possibly due to a related embryonic origin) and should be treated accordingly [226].  
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Uveal melanoma is the most frequent intraocular malignancy in adults. However, 
with an annual incidence of only approximately 8 new cases per million in Sweden, 
it is a very rare cancer and make up only 2 % of all melanoma cases [227]. Known 
host risk factors include fair skin, a propensity to sunburn and freckle, cutaneous 
nevi, ocular melanosis and choroidal nevi, [228]. The incidence is fairly equal between 
the genders and increase with age with a median age at diagnosis around 60 years 
[229].  
 
Little is known about the etiology and environmental risk factors of uveal mela-
noma. Epidemiological evidence seems to contradict a role of sun exposure: Unlike
the case for cutaneous melanoma, the incidence of uveal melanoma is stable, or even 
decreasing in certain populations and the latitude gradient in incidence appears to be
inverted [227, 230-232]. However, several of the mentioned host risk factors are in-
deed associated to photosensitivity. Furthermore, an increased risk of uveal mela-
noma in occupational welders has been attributed to artificial light exposure [233]. 
On the other hand, a recent metanalysis found no significant impact of common 
surrogates for UV-exposure, despite their strong associations to cutaneous melanoma 
[228]. Most importantly, modern molecular profiling should now have provided de-
finitive evidence in a decades long debate: Independent whole genome sequencing 
efforts show an unambiguous absence of a UV-light induced mutational signature in 
a large number of sequenced primary and metastatic uveal melanomas [234, 235]. 
The sole exception seems to be iris melanomas (which only constitutes 1% of all 
uveal melanomas and hence had not been sequenced before), where we recently
demonstrated a UV-light induced mutational signature, explained by its sun exposed 
origin in the anterior parts of the eye [235]. With the rare exception of iris melanoma,
the above-mentioned host risk factors are thus likely due to confounding factors 
other than UV-exposure. For instance, traits like fair skin, blue eyes and a propensity 
to freckle are caused by production of relatively more yellow-reddish pheomelanin 
pigment than black or brown eumelanin which may itself contribute to carcinogenesis 
in melanocytes [236]. Even the increased risk in welders may well be attributed to
several uncontrolled exposures in an industrial working environment.  
 
Although usually being only millimeters in size, most uveal melanomas give rise to
symptoms like blurred vision or visual field defects that lead to the diagnosis [229]. 
Other cases may be incidentally found by an ophthalmologist or optician. Treatment 
modalities for the primary tumor include enucleation, transpupillary thermal therapy, 
brachytherapy with radioisotopes (ruthenium-106 or iodine-125), external proton 
beam radiation or observation. An aggressive approach has not been shown to give 
superior survival over less invasive modalities, suggesting that metastatic seeding is a 
very early event in the disease [237]. Consequently, most patients in Sweden are now 
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treated with brachytherapy which spares the eye and often some degree of vision.
The choice of treatment is, however, highly personalized based on size and location 
of the tumor as well as comorbidities, age and preference of the patient. 
 
Metastases are rare at the time of diagnosis. But despite successful treatment of the 
primary tumor and excellent local control in most cases, up to half of the patients 
will nevertheless develop metastatic disease and die from the disease in the follow-
ing years [238]. The risk of relapse is associated with several clinicopathological char-
acteristics of the primary tumor: Size (diameter or protrusion), the presence of 
epithelioid cells, extraocular tumor extension, presence of orange pigment and tumor
location in the anterior uvea, all confer a higher risk of metastatic relapse [239].  
 
In addition to clinicopathological characteristics, cytogenetic analyses can provide 
further prognostic information: It has long been known that the presence of mono-
somy of chromosome 3 in primary uveal melanomas is strongly correlated with 
metastatic relapse and subsequent death [240]. Monosomy 3 often occur with other
copy number alterations such as gain of the long arm of chromosome 8 (8q+),
whereas the gain of the short arm of chromosome 6 (6p+) is correlated to disomy 3 
and good prognosis [241]. More recently, gene expression profiling has identified
signatures that can define two distinctive classes strongly associated with excellent
(class 1) or poor (class 2) survival [242, 243]. Although developed into a patented, 
commercially available and internationally validated qPCR kit of only 12 discrimina-
tion genes, the lack of therapies to modify risk of recurrence renders its value in 
clinical practice limited [244]. 
 
For unknown reasons, the primary site of metastases in the vast majority (90%) of 
patients is the liver [238]. For patients with hepatic metastases only, liver directed 
therapies like surgery, stereotactic radiotherapy, radiofrequency ablation, isolated he-
patic perfusion (IHP) with chemotherapy or transarterial embolization with chemo-
therapy or radioisotopes, may benefit well selected patients, although prospective 
data demonstrating this is lacking. An ongoing trial of IHP with chemotherapy versus 
best supportive care will demonstrate if promising retrospective data translates to 
improved survival in a randomized phase III setting (NCT01785316) [245, 246]. For 
patients presenting with extrahepatic metastases or progression of disease following
liver directed therapies, empirical treatment with chemotherapy can be considered,
but responses are few and seldom durable. Consequently, the prognosis of metastatic 
uveal melanoma is poor, with a median survival of less than a year in most trials, and 
only around 10 % of the patients surviving two years after diagnosis, making it a 
major unmet medical need in melanoma oncology [247, 248].  



!

06! !!& ' ! ()*+,-./*(,) !

1.3.1 Genetics, molecular profiling and targeted therapies 

In contrast to its cutaneous counterpart, uveal melanomas generally have an excep-
tionally low mutational burden (0.24/Mb). Furthermore, recurrent mutations reside 
in different oncogenes and tumor suppressors than in cutaneous melanoma, under-
lining that the diseases are distinct entities [234]. Uveal melanoma lacks recurrent 
mutations in BRAF, NRAS, NF1 or KIT. Instead, 80-90% of uveal melanomas har-
bor activating mutations in the Guanine Nucleotide-Binding Protein G(q) subunit Alpha 
(GNAQ) gene or, in a mutually exclusive manner, Guanine Nucleotide-Binding Protein 
subunit Alpha-11 (GNA11) [249, 250]. In most remaining cases, recurrent mutations 
can be found in PLCB4 or CYSLTR2 [251, 252]. GNAQ and GNA11 are paralogs 
that encode for an alpha subunit downstream of several G protein-coupled receptors
that are important for melanocyte homeostasis. The recurring mutations at codon 
Q209 (or in some cases R183) lead to blocked GTPase activity and lock the G protein 
in a GTP-bound active state that constitutively stimulates downstream signaling. Like 
the recurring BRAF or NRAS mutations in cutaneous melanoma, GNAQ/GNA11
mutations appear to be early or initiating events in uveal melanoma and similarly lead 
to increased signaling in the MAPK pathway [253, 254]. Mutant GNAQ/11 drives
MAPK through PLCβ-mediated activation of protein kinase C (PKC) and RAS 
guanyl-releasing protein-3 (RasGRP3) (Figure 1B). 
 
Drugs selectively inhibiting mutated GNAQ/11 are lacking, and may in fact be chal-
lenging to develop due to the nature of the mutations and the ubiquity of G-proteins 
in normal cell functions. Instead attempts have been directed at inhibiting down-
stream signaling molecules such as PKC or MEK. Indeed, the selective MEK 1/2 
inhibitor selumetinib showed pre-clinical activity against GNAQ mutant uveal mela-
noma cell lines [255] and an objective response rate of 14% as well as improved pro-
gression free survival over chemotherapy in a phase II trial in metastatic uveal 
melanoma [256]. However, in a following randomized phase III study, adding selu-
metinib to dacarbazine, did not significantly improve progression free survival nor 
overall survival [257]. Even PKC inhibitors have demonstrated anti-cancer effects in 
vitro, but reports from early phase clinical trials indicate modest efficacy in mono-
therapy [258, 259]. 
 
The PI3K/AKT/mTOR pathway is also commonly activated in uveal melanoma, 
often in conjunction with MAPK hyperactivity [260, 261]. PI3K/AKT/mTOR acti-
vation appears to be independent of GNAQ/11 signaling in uveal melanoma. In-
stead, PI3K/AKT/mTOR activation can be driven by loss of PTEN (Figure 1B). 
Although rarely mutated in uveal melanoma, LOH of the PTEN locus is common, 
and reduced cytoplasmatic expression of PTEN is associated with impaired progno-
sis [262]. Furthermore, PI3K/AKT/mTOR signaling can also be activated by the
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binding of ligands to receptor tyrosine kinases (RTK) such as MET, KIT or the
insulin-like growth factor 1 receptor (IGF-1R), which are all frequently overexpressed
in uveal melanoma [263-265]. RTKs signal through numerous intracellular pathways, 
so downstream inhibition may be challenging. There is therefore a rationale for in-
hibiting multiple targets in the signaling cascade, nevertheless, combined inhibition 
of IGF-1R and mTOR showed limited efficacy in a phase II trial [266]. Other trials 
are ongoing evaluating the effect of mulitkinase inhibitors (e.g. NCT02223819, 
NCT02068586). In one study, simultaneous inhibition of both the PI3K/AKT/
mTOR and MAPK pathways was required for apoptotic cell death in uveal melanoma 
cell lines [267]. However, in a randomized phase II trial the addition of an AKT 
inhibitor to a MEK inhibitor did not to improve progression free survival [268].  
 
Part of the reason for disappointing results in trials targeting MAPK-signaling in 
uveal melanoma, may be because GNAQ/GNA11 mutations lead to signaling in 
parallel pathways other than MAPK, most notably leading to hippo-independent ac-
tivation of the potent oncogene yes associated protein (YAP) via the proteins TRIO, 
Rho and focal adhesion kinase (FAK) (Figure 1B) [269, 270]. Furthermore, sole in-
hibition of targets downstream of oncogenes has so far not been very successful in 
other diagnoses. In analogous examples, MEK inhibition in NRAS mutated meta-
static cutaneous melanoma failed to yield meaningful effects [29], and the effect of 
MEK inhibitor monotherapy in BRAF mutated melanoma is modest compared to 
that of direct BRAF inhibition [20, 271]. It may be speculated that the approach of 
indirect, downstream targeting may be particularly susceptible to selection of resistant 
clones. Combined inhibition of several targets in the same or related pathways may 
be more effective, but all attempts so far have been disappointing (although a trial 
assessing the effect of combined PI3K and PKC inhibition is still ongoing 
(NCT02273219)). Intriguingly, recent data have raised new hope for directly targeting 
GNAQ/GNA11 in uveal melanoma when it was shown that the cyclic depsipeptide 
FR900359 inhibits GNAQ/11 and 14 (but not other mammalian Gα isoforms) and 
has in vitro and in vivo efficacy against GNAQ/11 driven uveal melanoma [272, 273].
As it is not specific for mutated GNAQ/11 it remains to be seen if the on-target/off-
tumor effects of compounds like FR900359 allows for use in patients. 
 
While GNAQ/GNA11 mutations appear to be initiating events in uveal melanoma,
they are roughly equally distributed between the low risk class I and high-risk class II 
tumors, and can also be found in benign melanocytic lesions [249, 250]. Conse-
quently, additional alterations are required for a uveal melanoma to obtain metastatic 
behavior. Monosomy of chromosome 3 has been known for decades to be strongly
correlated with poor risk [240]. Eventually, sequencing efforts revealed frequent al-
terations in the gene for BRCA1 associated protein 1 (BAP1) on the remaining copy
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of chromosome 3, consistent with the Knudsen two hit hypothesis for a tumor sup-
pressor [274]. While mutated in a less than half of primary uveal melanomas, loss of 
function mutations in BAP1 has subsequently been found in over 90% of metastatic 
tumors [235, 275]. Additionally, the majority of BAP1 mutations are truncal, suggest-
ing a crucial role in the metastatic process [235, 254]. Indeed, knocking out or restor-
ing BAP1 in cell lines is sufficient to initiate a switch between a Class I and II-like 
gene expression pattern [235, 276]. The mechanisms by which loss of BAP1 induces
metastases is still not clear; however, a recent study demonstrated an association with 
vast epigenetic changes including downregulation of several loci on the remaining 
chromosome 3 [276]. 
 
In cases with disomy 3, single nucleotide substitutions in EIF1AX or SF3B1 can be 
seen in an almost non-overlapping pattern [277, 278]. Consequently, these alterations 
are both associated with class I tumors; however, SF3B1 mutations seem to infer an
intermediate metastatic risk. By integrating copy number data, methylation patterns
and RNA expression with DNA analyses, a further subdivision of primary uveal mel-
anomas into four molecularly distinct subsets with strong correlation to prognosis 
has now been suggested (as summarized in Figure 6) [275]. While the clinical value 
of such pure prognostic markers is questionable, this and similar efforts have greatly 
increased our molecular mechanistic understanding of uveal melanoma and provide 
a framework for continued research that will hopefully one day soon result in a ther-
apeutic breakthrough for patients in dire need for treatment options.  
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1.3.2 Uveal melanoma and the immune system 

Uveal melanoma is a very rare disease compared to skin melanoma, but the uvea is 
also very small compared to the skin. Actually, the “tumor density” (i.e. incidence
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adjusted for tissue surface area) is almost 50 times higher for uveal than for skin 
melanoma, which is puzzling since uveal melanocytes are shielded from UV radiation 
and other known carcinogens [227]. One may hypothesize that efficient immunosur-
veillance is lacking. The eye is frequently described as a site of immune privilege, 
often defined by delayed rejection of tissue grafts in tissues with a limited capacity to 
regenerate (e.g. gonads and brain). Rather than a passive “lack of an immune system”, 
immune privilege actually involves several active mechanisms that dampen inflam-
mation and suppress adaptive immune responses, many of which may be highjacked 
by uveal melanoma [279]. For instance, primary tumors often have a low expression 
of MHC-I, which has been associated with impaired survival, maybe implicating a 
role of NK cells in immunosurveillance [280]. Furthermore, and in contrast to most 
other cancers, a rich immune infiltrate is correlated with a higher mortality rate in 
uveal melanoma, suggesting a presence of suppressive immune cells [281]. 
 
While the exclusively hematogenic spread of uveal melanoma can be explained by 
lack of lymphatics in the uvea, there is no anatomical basis for liver tropism. A pos-
sible explanation may be high levels of liver-synthesized growth factors like hepato-
cyte growth factor (HGF) and IGF-1 whose receptors MET and IGF-1R are both 
frequently expressed on uveal melanoma cells [264, 265]. An alternative, albeit spec-
ulative, explanation, may be that cancer cells developed without immunoediting will 
have difficulties surviving in tissues with an efficient immunosurveillance. Perhaps 
the liver represents an immunologic niche that is suitable for the uveal melanoma 
cells? It has a natural population of MDSCs, and the liver’s Kupffer cells can suppress 
CD8+ T cells through expression of PD-L1 [282]. However, the liver is extremely 
rich in NK cells, and metastasized uveal melanoma cells with low expression of MHC
would need to adapt to avoid NK cell killing. Indeed, metastatic uveal melanoma cells 
have been shown to lose expression of ligands for the NK-cell activating receptor 
NKG2D [283]. The immunogenic potential of uveal melanoma was demonstrated 
when a non-randomized trial of adoptive TIL therapy demonstrated an objective re-
sponse rate of 35% [284]. However, the toxicity and inaccessibility of TIL therapy 
makes it unlikely to become standard of care in its current form. 
 
Patients with uveal melanoma were excluded from all phase III trials of checkpoint 
inhibition in melanoma and no prospective trial of PD-1 inhibition in uveal mela-
noma has been completed to date. There are reasons to suspect that metastatic uveal 
melanoma may be rather unresponsive to checkpoint inhibition: It has among the 
lowest number of somatic mutations of all cancers, and generally a low expression of 
PD-L1 on tumor cells (and of PD-1 on TILs), factors associated with a low response 
rate to PD-1 directed therapy across tumor types [234, 285]. Indeed, two large early, 
retrospective multicenter studies of PD-1 inhibition in patients with metastatic uveal 
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melanoma both found an objective response rate below 5% [286, 287]. In addition, 
a later multicenter, retrospective study, evaluated 100 patients with uveal melanoma
treated with checkpoint-inhibitors. The cohort included 68 patients treated with PD-
1-inhibitors in first line (n=37) or following ipilimumab (n=31), among which not a 
single objective response was observed [288]. Studies are ongoing to evaluate if com-
bined CTLA-4 and PD-L1 inhibition have better efficacy, but no study has been 
published. However, preliminary data from a phase II trial of ipi-nivo, showed an 
objective response rate of 11.5% as well as an overall survival and progression free 
survival that compare favorably to historic data [289]. Before widespread use of ipi-
nivo, the indication of modest efficacy should be carefully balanced against the sig-
nificant associated toxicities. A more promising and seemingly less toxic alternative 
is tebentafusp, a biological drug bispecific for CD3 and gp100 (as briefly described 
under 1.2.4) [183]. !  
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1.4 Epigenetics 
 
All cells of the body have practically identical genomes. Yet cells can take on a myriad
of shapes to serve vastly different functions, and pass their identity on to their daugh-
ter cells if dividing. The nuclear processes that govern cellular development and dif-
ferentiation are called epigenetics, and can be defined as mechanisms responsible for
heritable and reversible changes in gene expression that are not due to any al-
teration in the DNA sequence [290].  

1.4.1 Epigenetic modifiers 

The best described mechanisms of epigenetic modification involve covalent changes 
to DNA or the associated histone proteins. Additionally, even changes in the higher 
order chromatin structure and the expression of non-coding RNAs influence 
gene expression, although the underlying mechanisms are less well characterized
[291, 292].  
 
DNA methylation (addition of methyl groups to cytosine residues) in promotor re-
gions, generally suppresses the expression of the associated gene. While methylation
is catalyzed by DNA methyl transferases (DNMT), mechanisms for active demeth-
ylation are more complex, and traditionally, DNA methylation has been assumed to
lead to a rather persistent repression of gene expression [293]. 
 
In eukaryotic organisms, DNA is effectively packed in nucleosome units. Each nu-
cleosome consists of a section of the duplex DNA molecule, wrapped almost two 
turns around an octamer of histone proteins. The enzymatic addition and removal of 
small molecules to specific sites and residues in the histone tails influences the acces-
sibility of DNA-binding complexes and consequently the expression of genes. The 
most extensively studied post-translational modification (PTM) of histones is
acetylation, but histone PTM also includes methylation, phosphorylation, ubiquityla-
tion and others less well described [294]. In general, acetylation of lysine residues 
within the histone tails by histone acetyltransferases (HATs, “writers”), leaves the 
DNA more accessible to transcription, whereas histone deacetylation by histone 
deacetylases (HDACs, “erasers”), decreases gene expression (Figure 7). To date, 18 
different HDACs have been discovered and are grouped in four classes (I-IV) based 
on sequence similarities and diversity in substrates, tissue specific expression and cel-
lular location. In addition to histones, many HDACs have been shown to also have 
significant non-histone targets [295].  
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In addition to “writers” and “erasers”, there are also a large group of proteins that 
serve as “readers” of histone modifications. For instance, 46 human proteins contain 
bromodomains that can bind acetylated lysine residues in histones (and other pro-
teins) and, via mechanisms only partly understood, regulate transcription and chro-
matin remodeling [296]. A particularly well studied family of epigenetic readers in 
cancer, are the bromodomain and extra-terminal (BET) bromodomains. There are 
now several available potent BET inhibitors that alter the transcriptional programs
of treated cells and show broad anti-cancer activity in preclinical studies [297]. 
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1.4.1 Epigenetics and cancer  

In addition to somatic mutations involving oncogenes and tumor suppressor genes, 
it is now widely accepted that epigenetic alterations contribute to oncogenesis [298].
Tell-tales of epigenetic involvement in cancer include abnormal patterns of DNA 
methylation, disrupted patterns of histone modifications and changes in chromatin 
organization (visible to the pathologist in IHC as changes in nuclear morphology). In 
the absence of specific mutations identified to drive hallmark malignant behavior like
invasiveness and metastases, it can be argued that the instability of the epigenome
is central in cancer development, as it can lead to vast changes in cancer cell
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differentiation and changed expression of oncogenes and tumor suppressors. Con-
versely, strikingly many recurrent mutations in cancer affect genes with known roles 
in the epigenetic machinery, telling of an inextricable relationship between genetics 
and epigenetics in cancer biology [294]. 
 
Epigenetic contribution to oncogenesis is believed to be of particular importance in 
cancers with few somatic mutations such as certain pediatric cancers, with which 
uveal melanoma shares genetic similarities [234, 299, 300]. Like developing tissues, 
cancer cells undergo switches in phenotype that are under epigenetic regulation. For 
instance, the common aberration of BAP-1 in high risk uveal melanoma was recently 
shown to be associated with vast changes in methylation of genes implicated in mel-
anocyte differentiation, suggesting activation of a latent epigenetic program leading 
to the aggressive class 2 phenotype [276]. Focal hypermethylation of promoters is a 
well described method for inactivation of tumor suppressor genes in cancer. How-
ever, a more general hypomethylation, which is often seen in cancer, is thought to 
lead to increased genetic instability [301]. Although inhibitors of DNMT exist (e.g. 
azacitidine and decitabine) and may restore expression of tumor suppressors, their 
global effect also risks inducing oncogenes, DNA damage and genetic instability in 
healthy tissues; gives rise to considerable side effects, and thus far DNMT inhibitors 
are only proven effective for treatment of myelodysplastic syndrome and not for solid 
cancer [301-304].  
 
Dysregulation of HDACs has been demonstrated in a large number of solid tumors
and is probably involved in silencing of tumor suppressor genes. Although deacety-
lation generally leads to reduced transcription, HDACs can paradoxically also be nec-
essary for the formation of super-enhancers of core regulatory transcription factors
that drive tumor growth [305]. Histone PTM is a highly dynamic process and reflects
the balanced effects of HDACs and HATs. Pharmacological inhibition of HDACs 
has the potential of reversing some of the epigenetic alterations acquired during can-
cer development and progression [306, 307]. Different HDAC inhibitors have var-
ying selectivity for different HDAC classes, which may make their effects diverse. In 
particular, dysregulation of class I HDACs has been implied for solid tumors. Of 
note, class I HDACs also have a well described non-histone target in the tumor sup-
pressor protein p53, which is suppressed by deacetylation [308].  
 
In vitro studies show that HDAC inhibition can induce growth arrest and differenti-
ation in for instance uveal melanoma [309]. However, a phase II trial of the HDAC 
inhibitor vorinostat in melanoma (including uveal melanoma) reported modest effi-
cacy [310], and HDAC inhibitors are yet to be proven effective as monotherapy for 
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solid tumors. There is, however, emerging optimism of synergistic effects of HDAC 
inhibitors with other cancer treatment modalities, including immunotherapy [311].  

1.4.3 Epigenetics and immunotherapy  

Through their key role in cell development, epigenetic mechanisms even regulate im-
mune cell differentiation and exhaustion states [312, 313]. Multiple HDACs are in-
volved in the regulation of cytokine production, and some HDAC inhibitors have 
anti-inflammatory effects [314]. However, different HDACs may have opposing 
roles, and HDAC inhibition may have diverse effects on different immune cell pop-
ulations. The net effect of HDAC inhibition on immune cells is therefore hard to 
predict, with reports of both reduced viability of T cells, as well as improved cytokine 
production and cell function [315, 316]. In contrast to other HDAC inhibitors, selec-
tive class I HDAC inhibitors seem to impair inhibitory immune cells like Tregs and 
MDSCs, more than CD8+ T cells or activated CD4+ T cells [317-319]. Furthermore,
inhibitors of class I HDACs have been shown to increase the function of both CD8+ 
T cells and NK cells [316, 320]. Considering the unpredictable effects of HDACs on 
immune cells, it is reasonable to hypothesize that narrow spectrum class I HDAC 
inhibitors may be most beneficial in enhancing the antitumoral immune response.  
 
Epigenetic mechanisms are also likely to be important to the cancer cells for effective 
immune evasion. Probable mechanisms include suppressing the expression of immu-
nogenic retroelements and germline specific genes, downregulation of antigen 
presentation and impaired interferon responsiveness [321-323]. Therefore, reversal
of a dysregulated epigenome may lead to improved expression of tumor antigens and 
sensitivity to the antitumoral immune response. Indeed, preclinical studies have 
shown that DNMT inhibition gives rise to immunogenic viral mimicry, increased 
interferon responsiveness and synergistic effects with immunotherapy [324]. Even 
HDAC inhibitors may enhance immunogenicity of cancer cells by enhancing the ex-
pression of HLA, possibly leading to enhanced antigen presentation [325], trigger 
immunogenic cell death [326, 327] and induce the expression of ligands to activating 
NK cell receptors [320].  
 
Synergistic effects of HDAC inhibition with different modalities of immunotherapy 
have been demonstrated in preclinical models [316, 318]. HDAC inhibitors generally 
have acceptable side effects and are currently evaluated in combination with PD-1 
inhibitors in several ongoing trials (e.g. NCT01928576; NCT02619253; NCT-
02393794; NCT02638090), with promising early results in NSCLC [328]. Even in-
hibitors of BET bromodomains can induce transcriptional programs that partly over-
lap with those induced by HDAC inhibition [329]. The potential for synergy between 
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BET inhibitors and immunotherapy in solid tumors is more poorly characterized,
although some preclinical evidence exists [330, 331].  
 
The combined complexity of the epigenetic machinery and the human antitumoral 
immune response, makes it next to impossible to predict the net outcome of partic-
ular interventions and illustrate the necessity of improved preclinical models to guide 
the continued development of novel immunotherapies. !  
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2. Aims 

Stay on target 
-Gold Leader 

 
 
The overall aim of the research on which this thesis is based, is to develop and utilize 
mouse models to identify new immunotherapies for patients with metastatic  
melanoma.  
 

2.1 Specific aims 
The specific aims of the thesis are: 
 
•! To develop and validate a humanized mouse model for the study of anti-

tumoral T-cell responses (Paper I) 
 

•! To use the animal model described in Paper I in the development of a CAR-
T cell therapy for melanoma (Paper II) 
 

•! To investigate if HDAC-inhibitors can enhance the effect of PD-1 inhibi-
tors in experimental melanoma models and in patients with metastatic uveal 
melanoma (Paper III) 

 !  
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3. Methods  

Is it real, son, is it really real, son? 
Let me know it’s real son, if it’s really real 

-Method man 

3.1 Preclinical methods 

3.1.1 Mouse models 

Due to advantages in housing and breeding, as well as reasonable homology to hu-
man genetics and disease, the house mouse (mus musculus) has long been the mainstay
animal model in biomedical research. Amongst the oldest in vivo cancer models are 
syngeneic models that utilize transplantable murine cancer cell lines in histocom-
patibile strains of inbred mice, typically C57Bl/6 or BALB/c. The cancer cell lines 
can be derived from spontaneous tumors (such as the melanoma cell line B16) or be 
carcinogen induced, and are usually subcutaneously injected at the flank. As syngeneic 
mouse models are fully immunocompetent, well characterized, reproducible and easy 
to use, they have been the most used model in early studies of cancer immunology 
and immunotherapy. However, they have several major limitations: For instance, the 
B16 model of melanoma lacks the recurrent driver mutations in human cutaneous 
(or uveal) melanoma. Furthermore, the fast-growing cell lines develop tumors with-
out a representative TME. Modern molecular techniques have facilitated the devel-
opment of genetically engineered mouse models (GEMMs) where tumorigenesis 
is driven by relevant genetic events and tumors develop spontaneously on a germline 
background, or by selective inducible expression [332]. Although GEMMs allow for 
better mechanistic studies of the molecular underpinnings of cancer and their au-
tochronous development lead to a more representative TME, GEMMs usually have
relatively low immunogenicity, possibly owning to a simple genetic background with 
few neoantigens. Moreover, both syngeneic mouse models and GEMMs share the 
major limitation that they do not represent the complexity and heterogeneity of human 
cancer.  
 
The transplantation of established human cancer cell lines to mice, cell line derived 
xenographs (CDX), was demonstrated in athymic nude mice already in the 1960’s. 
However, CDX models have been shown to poorly represent human cancer, and also 
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fail to capture the considerable heterogeneity between, and within, individual patients 
[333]. Successful transplantation of tumor samples from individual patients requires
a more severe immune deficiency. Severe combined immune-deficiency (SCID) 
mice, first described in the early 80’s, have a spontaneous mutation in a protein kinase
(Prkdc) necessary for B and T cell development. Crossing the SCID mutation on a 
non-obese diabetic (NOD) background, introduces a polymorphism in the Sirpa gene 
which encodes the CD47 receptor. This polymorphism impairs the macrophages’
ability to engulf human cancer cells, leading to massively improved engraftment of 
human tissues. In the early 2000’s a further improvement was made by knocking out 
the gene encoding the common γ-chain of the IL-2 receptor (Il2rg) leading to defec-
tive binding (or signaling) of several interleukins and loss of murine NK cells. The 
resulting NOD-SCID-IL2rg knock out (NSG or NOG) mouse has since revolu-
tionized the ability to grow patient derived tissues in mice [334, 335]. Although the 
use of patient derived xenographs (PDX) is limited in some diseases by poor en-
graftment, cutaneous melanoma shows a near complete take rate, possibly owning to 
the orthotopic nature of subcutaneous implantation [336].  
 
Our group and others have shown that PDX models carry the possibility of capturing
the genetic complexity and heterogeneity that characterize human cancers, and model 
patient responses to several targeted therapies [24, 336-338]. However, serial passag-
ing in PDX applies a selective pressure and drives the accumulation of copy number 
alterations that may influence the efficacy of tested compounds [339]. Furthermore,
the human tumor stroma gradually gets replaced with murine stroma which may sig-
nificantly influence cancer biology [340, 341]. Paradoxically, the severe immunodefi-
ciency that ultimately enabled the success of these mouse strains, represents a major 
disadvantage in the current era of cancer immunotherapy, but at the same time also 
allows for engraftment of human immune cells, e.g. from peripheral blood mononu-
clear cells (PBMCs), bone marrow or fetal hematopoietic tissues. Such immune hu-
manized models have been shown to successfully reconstitute several niches of the 
human immune system, but have thus far not been able to induce complete responses
in autologous cancer models. Furthermore, the use of current immune humanized 
models is limited by frequent development of severe graft-versus-host disease
(GvDH) [342, 343].  
 
In paper I we describe the development of a novel immune humanized PDX model
based on sequential transplantation of ex vivo expanded, autologous TILs in PDX 
models. Tumors were grown and expanded in NOG or human IL-2 transgenic NOG
(hIL-2 NOG) mice in parallel with TIL expansion, before allocation of mice to treat-
ment groups and adoptive transfer of TILs by tail vein injection. To support TIL 
persistence, NOG mice were treated with regular s.c. injections of human IL-2. 
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Cancer cells and corresponding TILs were derived from patients with metastatic cu-
taneous melanoma enrolled in a phase II trial of ACT TIL therapy. Tumor volumes 
were assessed by caliper measurements or in vivo luminescence. In paper II a similar 
approach is used for the study of allogeneic CAR T cells against cutaneous and uveal 
melanoma PDX and CDX.  
 
One of the many obstacles for translational research on uveal melanoma is the lack 
of representable mouse models. Spontaneous uveal melanoma has not been de-
scribed in mice, hence there are no syngeneic mouse models. Human cell lines can
generate CDX, but have the same limitations discussed above. Recently developed 
GEMMs driven by the canonical GNAQ or GNA11 mutations, do form melanocytic 
tumors, but fails to mimic the human disease as they do not metastasize to the liver 
[344, 345]. Unfortunately, even PDX models have limited utility in uveal melanoma
due to a very low take rate (10% from liver metastases) and slow growth [346]. Con-
sequently, the in vivo studies in paper III use the common melanoma model B16-
F10 cell line in B57Bl/6 mice to study combination immunotherapy aimed at meta-
static uveal melanoma.  

3.1.2 In vitro methods  

Cancer cell lines derived from human or murine cancers are arguably the most 
widely used tool for cancer research. Cancer cell lines are cheap, and particularly use-
ful in functional studies through pharmacological inhibition or genetic manipulation 
of defined targets. For instance, the function of individual genes can be studied by 
transgenic introduction or knock out. Recently, the CRISPR/Cas9 system has dra-
matically increased the precision and ease with which the human genome can be ed-
ited.  
 
Cancer cell lines are usually grown attached to plastic, at ambient oxygen pressure
and in a cell culture medium high in glucose and supplemented with essential amino 
acids. These artificial conditions are far from the harsh TME where oxygen, glucose 
and other nutrients are limited. Cell culture thus applies a significant selective pres-
sure that over time dramatically alters the cell lines, that eventually may poorly repre-
sent the cancer tissue they were derived from [333]. 
 
Even immune cells can be cultured in vitro, provided the right stimulation of cyto-
kines. In the work presented here, TILs were extracted by culturing pieces of patient 
metastases in a medium supplemented with high doses of IL-2 as previously de-
scribed [347-349]. For further use in experiments these TILs were expanded using a 
standard small-scale rapid expansion protocol (REP) [348]. In short this includes 
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stimulating the TILs with CD3 antibodies in the presence of high dose IL-2 and
feeder cells (pooled donor PBMCs, inactivated through radiation). After a 14-day
REP cycle, the TILs have typically expanded by a 1000-fold or more and can be 
harvested, resuspended in buffered saline and intravenously injected in mice. To en-
able in vivo tracking of TILs, they were transduced with lentiviral GFP-firefly lucif-
erase immediately before initiating the REP. 
 
In vitro assays of TIL cytotoxicity and reactivity were performed by co-culturing 
TILs with autologous cancer cells for 24 hours, followed by measuring the fraction 
of surviving cancer cells (by relative bioluminescence or cell count) as well as medium 
concentrations of IFN-γ (by ELISA) and TIL surface expression of the degranulation 
marker CD107a (by flow cytometry).  
 
Immune cell identity and function can be characterized by the presence and levels of 
several surface (or intracellular) markers using monoclonal antibodies labelled with 
fluorochromes. Flow cytometry allows for analysis of multiple markers at a rate of 
several thousand cells per second and has long been a crucial technique in both pre-
clinical and clinical immunology. In the work presented here, we used flow cytometry 
to characterize the phenotype, differential status and expression of immune check-
points in PBMCs, expanded TILs as well as TILs extracted from the mouse models. 
Furthermore, flow cytometry was used in the studies of tumor cell viability and PD-
L1 expression, T cell reactivity and to enrich populations for successfully transduced 
cells.  

3.1.3 Statistical analyses 

The effects of interventions in all mouse studies in papers I-III were evaluated using 
tumor growth curves and survival curves. Mouse experiments generally contained
five mice per group based on a pre-determined ability to detect a >30% suppression 
of tumors growth with power of 0.8. However, following the curative effects of adop-
tive TIL or CAR-T cells in the hIL-2 NOG models, the sample size was normally
decreased to three. In grouped experiments, values are shown as mean ± standard 
error and growth curves are compared using multiple t-test (with Sidak corrections). 
No randomization or blinding was used. Survival curves were generated with the 
Kaplan-Meier method and compared using the log-rank test.  !  
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3.2 Clinical investigations  
Preclinical findings from the lab were extensively analyzed in order to design a clinical 
trial to explore key results in the treatment of metastatic melanoma. Findings sugges-
tive of a synergistic effect between HDAC inhibition and PD-1 inhibition in experi-
mental melanoma models, added to a strong exciting rationale in the literature for
testing this combination in patients. Combining studies of both metastatic cutaneous 
and uveal melanoma was found not feasible and led to a study focusing on metastatic
uveal melanoma, an area of high medical need and much less interest from the phar-
maceutical industry. The study, PEMDAC, is conducted in collaboration within the 
Swedish Melanoma Study Group (SMSG) at four university hospitals (in Lund, 
Stockholm, Uppsala and Gothenburg), with the potential to include all eligible pa-
tients in Sweden. 
 
The study protocol is available in an open access publication [350]. Below is a brief 
summary of key aspects of the trial.  

3.2.1 Patients  

The investigated cohort of patients includes both untreated and previously treated 
patients with histologically (or cytologically) confirmed metastatic uveal melanoma. 
Other key inclusion criteria include: Age above 18; ECOG Performance status 0-
1; measurable disease by computed tomography (CT) or Magnetic resonance imag-
ing (MRI) per RECIST 1.1 criteria. Key exclusion criteria include: Active brain 
metastases; previous treatment with anticancer immunotherapy; active autoimmune 
disease; immune deficiency or treatment with systemic corticosteroids; life expec-
tancy of less than 3 months 

3.2.2 Study design 

The PEMDAC study is an investigator initiated, prospective multicenter, non-ran-
domized, open label study. Patients with metastatic uveal melanoma are concomi-
tantly treated with pembrolizumab 200 mg administered intravenously every third 
week and entinostat 5 mg administered orally once weekly. Planned sample size is 29 
patients, allocated using Simon’s Optimal Two Stage Design. Radiological assessment 
is scheduled every 9 weeks. Treatment is continued until documented disease pro-
gression, intolerable side effects, patient’s withdrawal of consent, decision of the in-
vestigating physician to end treatment, or to a maximum of 2 years. Treatment 
beyond progression is allowed if the patient is clinically stable according to criteria 
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specified in the study protocol. Adverse events (AEs) are registered and graded ac-
cording to CTCAE v4.03 Blood and tissue for biomarker analyses is collected 
throughout the study. Primary endpoint is objective response rate (ORR) according 
to RECIST v1.1 [351]. Secondary endpoints include clinical benefit rate (CBR) at 
week 18, progression free survival (PFS), overall survival (OS) as well as incidence 
and severity of AEs.  

3.2.3 Statistical analysis 

All analyses are based on all patients who received at least one dose of study drug. 
 
The sample size and power estimation are based on the primary endpoint only. Power 
is required to be 80%, significance is generally set to 5%. We assume that an ORR of 
5% is not a clinically relevant treatment effect, whereas 20% is sufficient to consider 
the treatment useful. Enrollment will continue until the required sample size has been 
reached. Patients will be enrolled in two batches, the first consisting of 10 patients 
and the second group of 19. The second group will not be recruited if the result from 
the 10 first is considered inadequate. This is the optimal allocation according to Si-
mon’s Optimal Two Stage Design (significance level = 5% (one-sided)) [352]. If no 
objective response is reported after the first stage of 10 patients, the study is inter-
rupted early for futility. Outcome measures that are proportions will be reported us-
ing a 95% confidence interval. Since the sample size is small an exact method will be 
used. If applicable, tests are conducted versus zero or highest non-efficient value.
Outcome measures that are times to various events will be analyzed using non-para-
metric methods. Time is summarized using medians, together with 95% confidence 
intervals. If applicable, tests are conducted versus zero or highest non-efficient value. 
Results are graphically presented using Kaplan-Meier survival curves. The study is 
considered positive when at least 4 patients of the total of 29 have a confirmed ob-
jective response. 

3.3 Ethical considerations 
 
All patient samples used in the research on which this thesis is built, were obtained 
after informed consent and approval by the institutional review board. All animal 
experiments were performed in accordance with EU directive 2010/63 and approved 
by the regional animal ethics committee of Gothenburg.  
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The study protocol and all amendments for the trial described in paper III were ap-
proved by the institutional review board and the Swedish Medical Products Agency 
(EudraCT registration number: 2016–002114-50). ClinicalTrials.gov registration 
number: NCT02697630 (Registered 3 March 2016). Signed and dated informed con-
sent was obtained from each patient in accordance with the principles of ICH-GCP 
and the latest version of the Declaration of Helsinki.  !  
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4. Results 

-It's like this and like that  
and like this and uh 

-Dr. Dre 

4.1 Paper I 
This paper describes the development of a novel immune humanized mouse model 
where autologous TILs are transplanted to tumor bearing PDX models in mice.  

4.1.1 TILs cumulate in autologous tumors in NOG mice 

For our first test of adoptive TIL transfer in PDX models, we chose a patient sample 
with high in vitro TIL cytotoxicity and reactivity against autologous cancer cells, as 
well as a feasible growth rate in NOG mice. Nevertheless, transplanting 20 x 106

autologous TILs to the tumor-bearing NOG mice, led to no significant suppression 
of tumor growth, compared to untreated controls. A tumor from one treated mouse 
was examined by flow cytometry and IHC which demonstrated presence of human 
CD3+ cells in the tumor as well as upregulation of PD-1 and PD-L1 on T cells and 
tumor cells respectively. However, treating the remaining mice with a PD-1 inhibitor 
failed to induce tumor regression. We repeated the experiments with samples from a 
patient with a known response to TIL ACT with the addition of a PD-1 inhibitor 
from the start, and observed only slightly protracted tumor growth but no regression.  

4.1.3 IL-2 is essential for TIL persistence and tumor eradication 

We hypothesized that s.c. injections of human IL-2 failed to provide sufficient plasma 
levels to support TIL persistence and effect in vivo. This was confirmed when repeat 
measurements of IL-2 plasma levels showed a peak after two hours, followed by a 
rapid and complete elimination the following few hours. To circumvent this, we ob-
tained a strain of NOG mice that produce human IL-2 (hIL-2 NOG), with constitu-
tive high plasma levels of IL-2 (although varying between individual mice). By 
transducing TILs with a luciferase expressing lentivirus, we could track the prolifer-
ation and distribution of the injected cells in NOG and hIL2-NOG by repeat in vivo 
bioluminescence imaging. We observed that the signal disappeared from the NOG 
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mice within days. In the hIL2 NOG mice on the other hand, the signal persisted for 
several weeks. In mice with the highest plasma levels of IL-2, the signal even in-
creased over time with an apparent accumulation in bone marrow, spleen and liver. 
However, when injected in tumor-bearing hIL2 NOG mice, the labelled TILs exclu-
sively accumulated in the tumor and in the following weeks the tumor started shrink-
ing and eventually disappeared completely.  

4.1.4 Responses to ACT can be modelled in hIL-2 NOG 

Subsequent experiments demonstrated a relationship between response to ACT and 
the level of IL-2 in plasma as well as number of injected cells, and helped us define a 
minimum plasma IL-2 level for use in following experiments. Next, we wanted to see
if the responses in our PDX model correlated with the effects in the clinic. Therefore,
we repeated the experiments with six different patient TIL and tumor samples: Three 
from patients responding to TIL ACT, and three from patients who had no effect of 
the treatment. We found that ACT in our model caused durable regression in all 
samples from responding patients, whereas if the samples came from a non-respond-
ing patient, no effect was seen of ACT in the PDX. Finally, we even demonstrated 
that ACT is effective in eradicating metastases that developed in PDX models after 
resecting large implanted flank tumors in untreated mice.  

4.2 Paper II 
In paper II we evaluate the feasibility and in vitro efficacy of CAR-T cell therapy in 
melanoma, before testing CAR-T cell therapy in the model described in paper I. 

4.2.1 HER2 is expressed in melanoma 

To identify potential targets for CARs in melanoma, we searched the The Cancer 
Genome Atlas (TCGA) database for expression of mRNA for surface proteins
against which there are commercially available CAR T cells. Among seven evaluated 
targets, we found that only HER2 (ERBB2) was expressed at a considerable level in
the majority of both uveal and cutaneous melanomas. The finding was validated in a 
local biobank of melanoma biopsies and corresponding PDXs that showed constit-
uent expression of HER2 mRNA. The expression in commercially available cell lines 
of cutaneous and uveal melanoma was on the other hand more variable.  
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4.2.3 HER2 CAR-T cells can kill melanoma cell lines 

We tested the in vitro cytotoxicity and reactivity of commercially available allogeneic
HER2 CAR T cells against two melanoma cell lines, and found that killing and reac-
tivity was greater in the cell line with highest HER2 expression. To further ensure 
target specificity, we used the CRISPR/Cas9 system to knock out HER2 in cell lines 
of uveal and cutaneous melanoma which abrogated both killing and reactivity of the 
CAR T cell.  

4.2.3 HER2 CAR T cells can kill T cell resistant melanoma in vivo 

The in vivo efficacy of HER2 CAR-T cells was tested against five patient derived 
samples growing in NOG or hIL2-NOG mice. Adoptive transfer of HER2 CAR T 
cells caused durable deep or complete regression of all tumors growing in hIL2 NOG 
mice, but showed little or no effect in NOG mice. Three of the tested samples were 
derived from patients that were resistant to TIL therapy. Moreover, we also demon-
strated in vivo regression in two models of uveal melanoma (one CDX and one 
PDX).  

4.3 Paper III  
In paper III we assess the rationale of combined epigenetic modulation and PD-1 
inhibition in experimental melanoma in vitro and in vivo. Next, we describe the ra-
tionale, design and preliminary results of an ongoing phase II trial evaluating the ef-
fect of HDAC inhibitor entinostat in combination with pembrolizumab, a PD-1 
inhibitor, in patients with metastatic uveal melanoma.  

4.3.1 Preclinical studies 

BET inhibition suppressed the expression of PD-L1 and MHC in B16-F10 mela-
noma cell lines, and abrogated the curative effects of combined checkpoint inhibition
in vivo. HDAC inhibition, on the other hand, increased both MHC-I and PD-L1 ex-
pression in B16-F10 cells as well as in human uveal melanoma cell lines. Combined 
treatment with HDAC inhibition and PD-1 inhibition showed superior inhibition of 
tumor growth of B16-F10 in vivo compared to either agent alone.  
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4.3.2 Clinical investigations 

Twenty-nine patients were enrolled between February 2018 and December 2018. 
Data cut off for the analysis in paper III was June 21, 2019, i.e. 6 months after the 
last enrolled patient received the first dose. Median follow up for OS was 7.7 months. 
Median age was 70 years (range, 34 - 83). Ninety percent had liver metastases. Twelve 
patients (41%) had received no previous treatment for metastatic disease and only 8 
patients (24%) had received previous systemic therapy for uveal melanoma. 
 
Twenty-eight patients had at least one follow-up radiological evaluation. One patient 
was excluded the first week following the first dose due to a protocol violation. A 
partial response (PR) was confirmed in three patients resulting in an ORR of 10% 
(95% CI, 2.2 to 27). All responses were ongoing at data cut off, with a duration of 
1.5, 6.3 and 13.9 months respectively. Nine patients (31%) had a best overall response 
of stable disease (SD). Clinical benefit for 18 or more weeks was observed in 7 pa-
tients (CBR = 24%). Treatment was ongoing in seven patients (24%) at the time of 
data cut off.  
 
Adverse events (regardless of assessed causality) were reported in 28 patients (97%). 
Eighteen patients (62%) had an AE of grade ≥3, the most common being increased 
blood alkaline phosphatase, followed by neutropenia, increased aspartate/alanine 
aminotransferase and rash. Twenty-three patients (79%) experienced an immune re-
lated adverse event (irAE) and 7 patients (24%) had an irAE of grade ≥3 or greater: 
Two events each of hepatitis and skin toxicity and one event of colitis, hypophysitis 
and stomatitis respectively. Three patients (10%) had an AE leading to treatment 
discontinuation. There were no treatment related deaths. 
 !  
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5. Discussion 

Was ist ist was nicht ist ist möglich 
-Einstürzende Neubauten 

5.1 Paper I 
To overcome some of the limitations of current in vivo models, we developed a hu-
manized PDX model inspired by TIL ACT in humans. When the TILs used in our
model came from patients who had experienced a response to TIL ACT in the clinic, 
ACT also caused curative effects in hIL2-NOG mice bearing their tumors. This is, 
to the best of our knowledge, the first publication to demonstrate durable complete 
responses of human tumors to autologous immune cells in mice. Equally important, 
tumors from patients that had no effect of TIL ACT, were resistant to autologous 
TILs even in mice. The truthful recapitulation of clinical responses, makes the PDX 
model a promising biomarker for response to TIL therapy. Another important find-
ing of this study is the necessity of IL-2 to achieve an effect. As treatment with high 
dose IL-2 has severe adverse event, there have been attempts to reduce, or even omit, 
concomitant IL-2 in ACT trials (NCT01995344; NCT01468818). Based on our find-
ings, completely omitting IL-2 in ACT would be unadvisable. Instead, novel and po-
tentially less toxic IL2 analogues could hopefully make systemic IL-2 treatment better 
tolerated [184, 353]  
 
Despite its potential usefulness in translational immunotherapy research, the pre-
sented model has some considerable limitations. First, the general limitation of PDX 
models lacking human stroma applies even to this model and may even be more 
relevant as the cancer stroma has been shown to greatly influence immune function
[354]. As the TILs used are expanded by a T cell directed method, the immune re-
constitute in the model further fails to represent the large spectrum of immune cell 
types involved in the antitumoral immune response. Most notably the model lacks all 
myeloid cell lineages, which are crucial e.g. for T cell activation and it does therefore
not capture T cell priming. Instead, it should be seen as a model for studying the 
effector function of activated T cells, which is underlined by the fact that the infused 
TILs almost exclusively consist om T effector memory cells. An outstanding question 
is how well (if at all) the described PDX model can imitate PD-1 inhibition or other 
immunotherapies currently in use or development in the clinic. In the model, PD-1 
inhibition was unable to enhance the effect of ACT in responders, and did not reverse 
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resistance in non-responders. This, however, may be due to several factors. First, in 
responding patients the effect was curative, making it difficult to improve further. 
The complete lack of effect of PD-1 inhibition in non-responding samples, could be 
because IL-2 has been shown to override the inhibitory effect of PD-1 in vitro, mak-
ing further inhibition redundant and pointing to other mechanisms of immune eva-
sion in these particular samples [355]. It is therefore conceivable that the mode of 
action of PD-1 inhibition is partly overlapping with that of IL-2 and can be repre-
sented in the model. Furthermore, it may be a tool to investigate immune checkpoint 
inhibitors beyond PD-1, other T cell directed therapies, and to study how other treat-
ment modalities may interfere with, or enhance, the antitumoral T cell response. It 
also remains to see how our TIL humanized PDX model compares to other models 
in use or development. Recently, organoid cultures have shown promise in predicting 
response to immunotherapy [356-358]. Furthermore, the efforts to humanize im-
munocompromised mice with human CD34+ stem cells are gaining progress [359]. 
Although these have the promise of recapitulating more niches of the immune sys-
tem, they so far fail to induce autologous antitumoral responses and are hampered 
by frequent GvHD, which was not a limitation in our model. Despite its limitations,
we believe that the described PDX model have potential usefulness in the search for 
the molecular mechanisms that underly inherent or acquired resistance to immuno-
therapy.  

5.2 Paper II 
 
The shortcomings of CAR-T cell therapies in solid tumors have generally been mir-
rored by few curative effects by single injections in PDX models. Inspired by the 
responses of TIL ACT in our newly developed humanized PDX model, we wanted 
to see if resistance to CAR-T cell therapy could be overcome by similar means. We 
found appreciable levels of HER2 mRNA expression in melanoma samples in the 
TCGA, a local biobank, as well as in most commercial melanoma cell lines. HER2
expression in melanoma has previously mainly been assessed by ICH and found at 
very low rates, and more recent panel sequencing efforts of large cohorts have re-
vealed targetable HER2 amplifications only in a small group of acral and mucosal 
melanomas [360]. While HER2 aberrations and high surface expression may be rare 
events in melanoma, the expression levels of mRNA found in paper II were compa-
rable to that seen in sarcoma, a disease where HER-2 CAR-T cell therapy is currently 
investigated in a phase I trial with encouraging preliminary efficacy and safety [361]. 
We further show effective and target specific killing of human cutaneous and uveal 
melanoma with allogeneic HER2 CAR T cells in both cell lines and hIL-2 expressing 
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CDXs and PDXs. Particularly encouraging is the finding of effect against cutaneous 
melanoma resistant to T cell therapy as well as uveal melanoma, both settings with
scarce treatment options. As in paper I, the effect of CAR T cells in vivo was de-
pendent of IL-2. This suggests that exhaustion or depletion of IL-2 in the TME could 
be contributing to the relative resistance of CAR-T cell therapy in solid tumors. Our 
findings thus support the attempts to develop CAR T cells that are self-sufficient in 
IL-2 production or signaling [180]. Alternatively, novel engineered IL-2 analogues 
may make concomitant systemic IL-2 treatment more feasible [184, 353]. 

5.3 Paper III  
The results from the preclinical experiments strengthens the rationale to combine 
inhibition of HDAC, but not BET, with PD-1 inhibition in uveal melanoma. The
presented phase II study PEMDAC, is the first to investigate combined HDAC- and 
PD-1 inhibition in uveal melanoma, and the first study to investigate the combination 
of pembrolizumab and entinostat in a cohort that include treatment-naive patients, 
and where no patients have previously received immunotherapy. However, an ongo-
ing phase I/II study of the same combination recently reported encouraging efficacy 
in PD-1 refractory metastatic cutaneous melanoma [362]. 
 
The observed ORR of 10% may be modest, but compares favorably with the very
low ORRs reported in most representative series of PD-1 inhibition in uveal mela-
noma [286-288]. However, the small sample size makes the estimate uncertain, and 
it will require one more response to meet the prespecified primary endpoint. There 
are data that challenge ORR as the most appropriate primary endpoint for phase II 
studies of immunotherapy in cancer as it risks underestimating the treatment benefit
[363]. However, ORR is still the primary endpoint recommended by the European 
Medicines Agency (EMA) in exploratory single armed studies such as PEMDAC.
Many immunotherapy trials have now adopted one of several modified RECIST cri-
teria that have been developed to account for the unconventional response charac-
teristics associated with immunotherapies [364-366]. Our experience with cutaneous 
melanoma is that responses to PD-1 inhibitors usually occur quite early, without pre-
vious pseudoprogression, and are generally captured with conventional RECIST cri-
teria. In the present study however, late onset of response was observed, as well as 
shrinkage of target lesions after an initial increase in one patient, indicating different 
response kinetics from PD-1 inhibition in cutaneous melanoma. Response (ORR, 
CBR and PFS) according to immune related RECIST (irRECIST) criteria will be 
evaluated as an exploratory endpoint.   
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Retrospective data suggest that combined CTLA-4 and PD-1 inhibition may be more 
effective than PD-1 inhibition alone in uveal melanoma, but no prospective trial in-
vestigating this has been published [38, 287]. In preliminary results from an ongoing 
phase II trial of ipi-nivo, Piulats et al reported an ORR of 11.5%, comparable to that 
found in the PEMDAC trial [289]. Furthermore ipi-nivo seems associated with a fa-
vorable PFS and OS compared to historic data, having led to a quite widespread use 
of the regimen in metastatic uveal melanoma. The possible benefit of ipi-nivo should,
however, be carefully balanced against a very high rate of severe (grade 3-4) irAEs. 
With a more favorable toxicity profile, combined entinostat and pembrolizumab 
could be a feasible alternative to ipi-nivo in uveal melanoma if efficacy is confirmed 
in an upcoming analysis. In any case, the preliminary results from the PEMDAC trial 
adds to the growing body of evidence that at least a subset of patients with uveal 
melanoma may have considerable benefit of immunotherapy. Hopefully, future work 
will identify biomarkers to better predict who may respond to treatment.  
 !  
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6. Conclusions and future work 

Roads? Where we going, we don’t need roads. 
-Dr. Emmett Brown 

 
 
Paper I demonstrates that it is possible to achieve durable complete responses to 
immunotherapy in humanized PDX models. The model has since been applied in 
testing interactions between targeted therapies and the immune system [194, 367]. In 
a recently published paper, we used a modified version of the model to screen for
immunogenicity of patient samples from a retrospective biobank by transplanting 
melanoma metastasis biopsies directly into NOG or hIL-2 NOG mice. While the 
take rate was almost complete in NOG mice, growth patterns in hIL-2 NOG were 
variable and appear to reflect the inter- and intrapatient heterogeneity of response
patterns to immunotherapy in a large number of patient samples. Furthermore, lack 
of engraftment in hIL-2 NOG mice appears to be correlated with survival in patients 
previously treated with PD-1 inhibition [194]. Although prospective validation is re-
quired, the model thus shows promising utility in predicting response to PD-1 inhi-
bition, and in the study of inherent or acquired resistance to checkpoint inhibition. 
In Paper II we show that the model described can be utilized in the study of genet-
ically modified T-cells. This work has continued and may in the future also include 
TCR engineered T cells. We believe that the described model will contribute to filling 
the gap between preclinical and clinical immunotherapy research and facilitate the 
development of novel immunotherapeutic strategies.  
 
Paper II presents encouraging in vivo efficacy for HER2 CAR-T cell therapy in hu-
man melanoma, including subgroups with few or no treatment options such as uveal 
melanoma. Our continued work has therefore focused on trying to bring HER2 CAR 
T cells towards a clinical application. We have demonstrated scalability in automated
production according to Good Manufacturing Practice (GMP) (Forsberg et al, un-
published). Toxicity studies are ongoing in other animal models and a protocol for a
future phase I trial in humans is in development.   
 
Paper III describes the first results of combined HDAC and PD-1 inhibition in met-
astatic uveal melanoma and shows signs of clinical efficacy with manageable toxici-
ties. The trial is ongoing and at the time of data cut of several patients were still 
receiving treatment. The next update (scheduled for late December 2019), will pro-
vide an updated ORR, ORR as per irRECIST, toxicity data, as well as mature
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estimates of PFS and overall survival. Although several patients achieved durable 
benefit, and the final analysis is pending, it is clear that a majority of the patients had 
little or no effect of the treatment. It will be our utmost priority to try and identify 
biomarkers associated with a treatment benefit. For this purpose, we have established 
a comprehensive biobank and extensive exploratory analyses are in progress: Whole 
exome sequencing (WES) of germline and tumor DNA; tumor RNAseq; multiplex 
immunohistochemistry; paired scRNAseq of PBMC in selected patients; serial anal-
yses of circulating tumor DNA (ctDNA), serum cytokines and detailed phenotyping 
of PBMC. In this way the PEMDAC trial will hopefully contribute to bringing new 
insight into the biology of uveal melanoma, and maybe help uncover what character-
izes the small subset of patients with uveal melanoma that can achieve durable re-
sponses to immunotherapy.  !  
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