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Simulation and Statistical Methods for Stochastic Differential Equations
CHRISTIAN KÄLLGREN
Department of Mathematical Sciences
University of Gothenburg

Abstract

We look at numerical methods for simulation of stochastic differential equations
exhibiting volatility induced stationarity. This is a property of the process which
means that the stationary behaviour is mostly imposed by how volatile the process
is. The property creates issues in simulation and hence also in statistical methods.
The methods considered for simulations are the fully implicit Euler scheme and time-
changed simulation. We look at statistical methods for estimation of parameters.
The specific statistical methods we investigate is the likelihood ratio, which gives
expressions for the drift parameters for CKLS and least squares estimation, which is
used together with quadratic variation to estimate parameters in different models.
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1
Introduction

In this chapter we give a short background and problem statement together with an
outline of the thesis.

1.1 Background and problem statement

Simulation of stochastic differential equations, SDE, has been a topic of research for
decades. Stochastic differential equations exhibiting the property called volatility
induced stationarity, vis, have been a topic of research for a long time, however,
generally, the concept has not been explicitly used in the academic literature. In
[3] an early definition for the concept in the context of CKLS was introduced, a
generalized CIR model. This was in 1997. Later [1] extended this definition and
made a more generalized version. Stochastic differential equations that exhibit this
property are generally difficult to simulate, certain traditional methods that are
normally used, are not enough. They become unstable as they are not able to
handle their wild behaviour of. In particular [1] produced results regarding this
problem. Where, specifically the Euler scheme, a traditional method, fails with
a positive probability. Hence one has to look for different schemes to solve this
issue. One option is the fully implicit Euler scheme, Section 2.3.2, which can handle
the high volatility, but instead the issue is to solve a (non-)linear equation. We
also present a different method for simulations that works well for SDEs without
drift. This method is based on the result of the Theorem 2.1. This method is very
efficient numerically, since we only have to generate normal random numbers in each
iteration.

Since traditional numerical methods have difficulties with stability, statistical meth-
ods regarding parameter estimation are also unstable. If the simulated path exhibits
numerical issues then this will transfer to the parameter estimation. We investigate
how the certain methods behave after using the fully implicit Euler scheme and also
the second method mentioned above. We do not look at fitting any model to real
data. We are only interested in the estimation behaviour with certain parameter
configurations.

The SDEs we are interested in are presented briefly in Section 2.5.1, 2.5.2 and 2.5.3.
The first model mentioned shortly above is CKLS. The second SDE is a so called
hyperbolic diffusion, which has no drift. The last SDE has just one parameter, but
behaves very wild and can reach extremely large values.
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1. Introduction

1.2 Method

As mentioned above we will first investigate two different simulation techniques. One
called the fully implicit Euler scheme. This scheme is generally a simulation method
that finds the next value by solving a non-linear equation. In addition to the implicit
scheme we will utilize a clever transformation, Section 2.4, to represent the SDE in
a simpler way. This transformation turns the original SDE which has multiplicative
noise, i.e. the volatility function v(x) in (2.2) depends on the process, in to a new
SDE which instead has constant volatility. This will make the simulations more
stable. The other technique we examine is called change-of-time simulation, Section
2.3.3. Which, in short, changes the time of a Brownian motion so it becomes a
solution to the SDE.

In both cases we will then estimate the parameters. With CKLS, we look at the
likelihood ratio method, Section 3.2. In this case we have an expression for the
parameters in the drift function. While the parameters for the volatility function
are estimated using least squares. For the two other SDEs mentioned above we will
just use least squares estimation method, Section 3.3.

1.3 Outline

The outline of the thesis is as follows. In Chapter 2, we present useful notation
and an overview of the theory we will use. We also give a description of the Euler
schemes, volatility induced stationarity and introduce the SDEs. In Chapter 3 the
methods regarding simulation and statistical estimation of the SDEs are presented.
The results are shown with figures in Chapter 4. Chapter 5 is the final chapter
containing conclusions.
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2
Theory

In this chapter we will introduce the theory that will be used in this thesis. The
structure and content presented assumes knowledge of stochastic calculus, hence
some theorems will only be presented for completion. While proofs and more details
will be referenced. The main book for theory that will we reference for details is [5],
but also some specifics can be found in [7, 8].

2.1 Preliminaries

Set (Ω,F , P ) to be a probability space. Let {Wt}t≥0, t ∈ [0, T ], be a standard
Brownian motion and I = (l, r), −∞ ≤ l < r ≤ ∞ an open interval. For measurable
functions b : I → R and v : I → R+, consider the following Itô process

Xt = X0 +

∫ t

0

b(Xs) ds+

∫ t

0

v(Xs) dWs. (2.1)

Where X0 = ζ ∈ I is a real random variable independent of the Brownian motion
W . The first integral is a Lebesgue integral and the second integral is an Itô integral.
For a detailed theory and construction of the Itô integral we reference to [5]. The
process Xt (or just X) is said to have a stochastic differential on t ∈ [0, T ],

dXt = b(Xt) dt+ v(Xt) dWt, X0 = ζ, (2.2)

called a stochastic differential equation. The SDE (2.2) is only interpreted in the
sense of (2.1). We present the famous Itô’s lemma. With notation from [5, p. 111].

Lemma 2.1 (Itô’s lemma) Let Xt have a stochastic differential on the form (2.2)
for 0 ≤ t ≤ T . For f ∈ C2 the stochastic differential of the process f(Xt) exists and
is given by

df(Xt) = f ′(Xt) dXt +
1

2
f ′′(Xt) d[X]t

=

(
f ′(Xt)b(Xt) +

1

2
f ′′(Xt)v

2(Xt)

)
dt+ f ′(Xt)v(Xt) dWt.

Where the quadratic variation of an Itô-process X is defined to be

Definition 2.1 (Quadratic variation, [5]) The quadratic variation of the process Xt

with differential (2.2) for 0 ≤ t ≤ T is given by

[X]t =

∫ t

0

σ2(Xs) ds (2.3)

3



2. Theory

For a process to not explode, i.e., reach infinite values in finite time, the following
function has to go to infinity,

p(x) =

∫ x

x0

S ′(y)

(∫ y

x0

dm(z)

)
dy

This is called the Feller’s test for non-explosion, see e.g. [5].

We introduce the following assumptions, which will be assumed throughout the
thesis, first some conditions on the drift and volatility functions of (2.2),

Assumption 2.1 The drift b is continuous and the volatility σ is (strictly) positive
and locally Hölder continuous of order 1

2
.

Secondly, conditions regarding non-explosions,

Assumption 2.2 We have p(l+) = limx↓l p(x) =∞ and v(r−) = limx↑r v(x) =∞

By [4] we know that SDEs that fulfill Assumption 2.1 and 2.2 have a unique strong
solution.

2.2 Volatility induced stationarity

In this section we present the concept of volatility induced stationarity, vis. Which,
briefly, states that the stationary behaviour of the process is determined by the
volatility of the process. Hence, as the name suggests, it means that the process’
stationarity is induced by its volatile behavior.

The traditional interpretation of SDEs is to view the solutions as a noisy ordinary
differential equation, ODE. Which means that the SDE is split in two separate
parts, one deterministic and one stochastic. And the long term behaviour of the
process is determined by the deterministic part, which can be seen as a solution
to an ODE. This together with the noisy part of the original equation gives the
complete solution process. In cases where the process exhibits vis the deterministic
and stochastic parts interact. This means that the traditional interpretation of SDEs
on the general form (2.2) where the drift and volatility is separated, and the long-
term stationary behaviour is dictated/imposed by the drift alone is not sufficient.
It is not sufficient in the sense that the the numerical scheme (2.4) will fail with a
non-zero probability, see Proposition 2.1 in Section 2.3.1 with details in [1].

Stochastic calculus has been researched for decades, but the concept of vis has been
a recent topic. In 1997 [3] gave the following definition of vis in the context of CKLS,
(2.7),

Definition 2.2 ([3]) The stationary solution to the SDE given by (2.2) is called
volatility induced if, for some x > 0,∫ ∞

x

b(y)

v(y)
dy > −∞.

4



2. Theory

This means, for example, that the solution process can reach large values, even in
cases when the drift is positive, and still exhibit a mean-reversion effect due to the
volatility-induced stationarity.

The (derivative of the) scale measure S and the speed measurem, the latter is known
as the non-normalized distribution for the process, is defined to be

S ′(x) = exp

{
−
∫ x

x0

2 b(y) dy

v(y)2

}
and dm(x) =

2 dx

v(x)2S ′(x)
for x ∈ I

With these measures the following definition, which is a generalized version of Defi-
nition 2.2, made by [1] can be stated.

Definition 2.3 ([1]) The stationary solution to the SDE given by (2.2) has vis at l
[r] if S ′(l+) <∞ [S ′(r−) <∞]. In this case we call l [r] a vis-boundary.

For a process to not explode in finite time, i.e., not reach ±∞ for t ∈ [0, T ] the
function p(x) must go to infinity as x→ +∞,

p(x) =

∫ x

x0

S ′(y)

(∫ y

x0

dm(z)

)
dy.

This means that for stationarity to hold the speed measure m must fulfill m(I) <∞
for a general solution process. In the case of b(x) = 0 we have that the derivative
of the scale measure is constant, S ′(x) = 1. Here we note that, by inspection of
the speed measure, we must have that v(x) → ∞ as x → ∞. This means that as
the solution process reaches high values, v(x) will increase and the speed measure
will decrease. This makes it more likely to take smaller values as the time spent at
large values will decrease. And the process will return back to where it is (locally)
unbiased. I.e. the volatility will push the process back to smaller values, [1].

2.3 Numerical simulation schemes

In this section we present why the regular Euler method, which is also the traditional
interpretation of SDE, fails with a non-zero probability. The propositions presented
here are proved in full detail in [1]. Firstly we set up the notation used in the
discretization of the SDE (2.2).

Following the notation in [6], we set {tn}Nn=0 to be the (equidistant) mesh of the time
interval, i.e.,

0 = t0 < · · · < tn < tn+1 < · · · < tN = T.

By equidistant mesh we mean that tn+1 − tn = h for n = 0, . . . , N − 1. The process
X with SDE (2.2) then satisfies

Xtn+1 = Xtn +

∫ tn+1

tn

b(Xs)ds+

∫ tn+1

tn

v(Xs) dWs

5



2. Theory

We also set ∆Wn = Wtn+1 −Wtn for the time steps {tn}Nn=0. We then approximate
the integrals above with the following,∫ tn+1

tn

b (Xs) ds ≈ b (Xtn)h

and ∫ tn+1

tn

v (Xs) dWs ≈ v (Xtn) ∆Wn

This gives rise to the Euler-Maruyama scheme, or just The Euler scheme, for {Yn}Nn=0

defined by

Y0 = X0,

Yn+1 = Yn + b(Yn)h+ v(Yn)∆Wn. (2.4)

This is just one of many schemes. In (2.4) only the last value is used to compute
the next in the sequence. One can also use the next value as an unknown variable
and solve a (non)-linear equation. This is known as the fully implicit Euler scheme,
see section Section 2.3.2 below.

2.3.1 Issues with the Euler scheme

The regular Euler scheme is a numerical approximation of the SDE (2.2) where the
drift term and the volatility term are treated separately. The iterative algorithm
was presented in (2.4). Where each term gives a contribution "independently" of
the other. When trying to simulate these SDEs with this method, one notices
rather quickly that the scheme breaks down. By breaking down we mean that the
algorithm produces infinite values, although the SDE is non-explosive. In this section
we present two propositions that tells us that the Euler scheme is not an option for
the SDEs we are interested in.

The first proposition we present is for the general case, when the drift is non-zero.
This is the case for the SDEs (2.7) and (2.11).

Proposition 2.1 ([1]) Let {Yn}n≥0 be the Euler approximation by (2.4) of (2.2)
with σ > 0. If there exists constants p > 0 and φ > 0 such that

lim
x→±∞

|x|p|b(x)|
|v(x)|

= 0 and lim inf
x→±∞

|b(x)|
|x|

≥ φ

then

P

{⋂
n≥0

{
|Yn+1| ≥ (1 + φ̃) |Yn|

}}
> 0, for φ̃ ∈ (0, φ).

Proposition 2.1 states that with a positive probability the Euler scheme detailed in
(2.4) will fail, i.e., reach ±∞ in finite time.

The following proposition describes the setting for the local martingale process, that
is the solution to the SDE detailed in Section 2.5.2, will fail using the regular Euler

6



2. Theory

scheme. The reason why we introduce the method of time-changed simulation in
Section 2.3.3 is due to the following proposition.

Proposition 2.2 ([1]) Let {Yn}n≥0 be the Euler approximation by (2.4) of (2.2)
with zero drift, b = 0, and σ > 0. If

lim
x→±∞

|x|p

v(x)
= 0 for some p > 1,

then

P

{⋂
n≥0

{
|Yn+1| ≥ (1 + φ̃) |Yn|

}}
> 0, for φ̃ > 0.

Mainly, because of these results we will use the fully implicit Euler scheme presented
in the next section for the SDEs (2.7) and (2.11). While the method described in
Section 2.3.3, change of time simulation, will be used to simulate the SDE without
drift (2.10).

2.3.2 Implicit Euler scheme

The implicit Euler method is the following method, which gives a simulated path
{Yn}Nn=0, defined by

Y0 = X0

Yn+1 = Yn + b̂(Yn+1)h+ v(Yn+1)∆Wn

Where for each time step tn we have to solve a (non)-linear equation using the next
value, Yn+1 as the unknown variable. Hence the function takes the form,

y = Yn + (b(y)− v(y)v′(y))h+ v(y)∆Wn

and setting the root as the new value Yn+1.

2.3.3 Change-of-time simulation

In this section we give a description of a simulation technique for SDEs where the
solution process is a continuous local martingale,

dXt = v(Xt) dWt.

The simulation method builds on the result from Theorem 2.1. The theorem states,
in short, that a continuous (local) martingale is a time-changed Brownian motion.
Where time is then scaled by the quadratic variation of the (local) martingale pro-
cess. Which in practice means that we can get a (weak) solution to a complicated
SDE by simulating a Brownian motion instead of other more complex and time con-
suming methods. To understand this simulation technique we start with defining
the following concepts, [5], used in the statement of the theorem.

7



2. Theory

Definition 2.4 (Stopping time) A non-negative random variable τ : Ω→ R+∪{∞}
is called a stopping time with respect to F if for each t,

{τ ≤ t} ∈ Ft.

Set
τt = inf{s : [X]s > t}

To see that [X]t is stopping times for Fτt , note that {[X]s ≥ t} = {τt ≥ s}.

Let A0 bet the set of all càdlàg and non-decreasing functions f defined on [0,∞)
and taking values in [0,∞) with f(0) = 0.

Definition 2.5 (Change of time) A stochastic process {τt}t∈[0,∞) with trajectories in
A0 is called a change of time (or time change) if the random variable τs is a stopping
time, for each s ≥ 0.

Now the theorem in question is stated in several books but we chose to present it in
the same form as [5, p. 204], however they only give an outline of the proof. For a
detailed one we reference to [7, p. 181] or [8, p. 64].

Theorem 2.1 (Dambis, Dubins-Schwarz, [5]) Let X be a continuous martingale,
null at zero, such that [X]t is non-decreasing to ∞, and τt defined by τt = inf{s :
[X]s > t}. Then the process Wt = Xτt is a Brownian motion with respect to the
filtration Fτt. Moreover, [X]t is a stopping time with respect to this filtration, and
the martingale X can be obtained from the Brownian motion W by the change of
time Xt = W[X]t. The result also holds when X is a continuous local martingale.

The algorithm to simulate a SDE with this method is the following, first note that
we can approximate the quadratic variation, defined as Definition 2.1, assuming
equidistant time step h, with

[X]tn ≈
n∑
i=1

v2(Xi−1)h (2.5)

By Theorem 2.1 we have that a (weak) solution to (2.10) is given by

Xt = W[X]t

So the iterative method is the following

Xtn+1 = Xtn+1 −Xtn +Xtn

= W[X]tn+1
−W[X]tn +Xtn

using that Wt − Ws ∼ N (0, t − s) and the approximation (2.5) we arrive at the
following algorithm for n = 1, . . . , N − 1

Y0 = X0

Yn+1 = Zn + Yn.

where Zn ∼ N (0, v2(Yn)h) is independent of earlier iterations. In the case where one
would use non-equidistant time-steps, the modification is to replace h with tn+1− tn
above.

8



2. Theory

2.4 Transformations

We want to find a transformation of the SDE that removes the multiplicative noise
of the SDE and represents it in a new form with additive noise instead and where
the drift fulfills a one-sided Lipschitz condition.

Definition 2.6 (One-sided Lipschitz) A function f : R → R is said to fulfill a
one-sided Lipschitz condition if there exists a constant C such that

(x− y)(f(x)− f(y)) ≤ C|x− y|2 for x, y ∈ I.

If Assumption 2.1 holds and the volatility in (2.2) has an absolutely continuous
derivative, then the transformation1

F (x) =

∫ x 1

v(u)
du,

where the lower point of integration is arbitrary, is strictly increasing and the trans-
formed process Zt = F (Xt) satisfies the following SDE now with additive noise

dZt = ϕ(Zt) dt+ dWt, Z0 = F (ζ),

where

ϕ(z) =
b (F−1 (z))

v (F−1 (z))
− 1

2
v′
(
F−1 (z)

)
This expression can be obtained by using Itô’s lemma, Lemma 2.1, with F ′ = f

f(z) =
1

v(z)
, f ′(z) = − v

′(z)

v2(z)

And written out on complete form, the transformed SDE,

dZt =

(
b (F−1 (Zt))

v (F−1 (Zt))
− 1

2
v′
(
F−1 (Zt)

))
dt+ dWt, Z0 = F (ζ) (2.6)

2.5 Stochastic differential equations

Here we give a short introduction to the three different SDEs we will be investigating.

2.5.1 CKLS

This SDE is a generalized version of the CIR model, i.e., we have γ > 1. The type of
CKLS models we want to investigate is where α > 0, β ≈ ±α and γ > 1. Specifically
we consider parameter values where the volatility elasticity, γ, is large, γ � 1, with
example values for γ = 5, 10, 50. The SDE was originally formulated in the famous

1Called the Lamperti transform
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2. Theory

paper [2]. There are several representations2 of CKLS, however the one we will use
is,

dXt = (α + βXt) dt+ σXγ
t dWt, X0 = ζ > 0. (2.7)

The transformation mentioned in Section 2.4 for this model is the following, f(z) =
z1−γ. Hence applying Itô’s lemma, Lemma 2.1, the new representation for the SDE
(2.7) is,

dZt = ϕ(Zt) dt+ (1− γ)σ dWt (2.8)

where the drift function

ϕ(z) = α(1− γ)z
γ
γ−1 + β(1− γ)z +

1

2
σ2γ(γ − 1)z−1 (2.9)

To solve this SDE with numerical methods, we use the fully implicit Euler scheme,
Section 2.3.2, together with the transformation above. Hence the scheme is produc-
ing the simulated path {Zn}Nn=0, by

Z0 = X0

Zn+1 = Zn + ϕ(Zn+1)h+ (1− γ)σ∆Wn

The non-linear equation to be solved is, f(Zn+1) = Zn, where

f(z) = z − ϕ(z)h− (1− γ)σ∆Wn.

After we have simulated {Zn}Nn=0, we transform back with f−1 = y
1

1−γ to get the
path {Yn}Nn=0, where f−1(Zn) = Yn.

2.5.2 Hyperbolic diffusion

This SDE is formulated in [3] as a model for stock prices. Following the notation
they use, we start by introducing the function.

v2(x) = σ2 exp
[
α
√
δ2 + (x− µ)2 − β(x− µ)

]
where α > |β|≥ 0 , δ, σ > 0 and µ ∈ R, v : R→ (0,∞) is a strictly positive function.

The SDE then takes the form

dXt = v(Xt) dWt, X0 = ζ ∈ R (2.10)

The transformation in Section 2.4 is not an option since the transformed SDE will
not have a one-sided Lipschitz drift function. The fully implicit Euler scheme is
intractable, since we have to solve a very complicated function in each time step. We
instead turn to the simulation method detailed in Section 2.3.3 to simulate a solution
path to this SDE. We show a sample path using this scheme for (α, β, δ, γ, σ) =
(5,−4, 1, 7, 0.05) of (2.10), in Figure 2.3. Where we, for example, can see how
volatile the process is, but it keeps mostly around its stationary level. And the
excursions are short and quickly the process comes back up or back down.

2For example dXt = θ(κ−Xt)dt+ σXγ
t dWt with κ = −αβ , θ = −β.
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2. Theory

Figure 2.1: Simulated path of the CKLS, using original representation (2.7)

Figure 2.2: Simulated path of the CKLS, transformed representation (2.8)

2.5.3 A family of heavy tailed SDE

The last model we will investigate is the following SDE. With only one parameter,
α < 1

3
,

dXt = 3Xα
t dt+ 3X

2/3
t dWt, X0 = ζ > 0 (2.11)

11



2. Theory

Figure 2.3: Sample path of (2.10) using the parameter set (α, β, δ, µ, σ) =
(5,−4, 1, 7, 0.05) the scheme from Section 2.3.3 with T = 500.

We simulate this SDE with the fully implicit Euler scheme, giving the path {Yn}Nn=0,

Y0 = X0

Yn+1 = Yn + 3Y α
n+1h+ 3Y

2/3
n+1∆Wn.

Giving the non-linear equation, f(Yn+1) = Yn, where

f(y) = y − 3yαh− 3y2/3∆Wn

A simulated path for this SDE, with α = −10 is shown in Figure 2.4. If we let the
time interval increase, we see that this SDE can take excursions to very large values,
and come back down.

We can use the transform from Section 2.4, f(z) = z
1
3 , with inverse transform,

f−1(y) = y3. This gives a representation of the original SDE which has multiplicative
noise, in to a SDE with additive noise, i.e.,

dZt = ϕ(Zt) dt+ dWt

dZt =
(
Z3α−2
t − Z−1t

)
dt+ dWt (2.12)

We simulate with the transformed SDE, then go back with the inverse transformation
g(y) = y3. In Figure 2.12 we show a path of the transformed SDE.

12



2. Theory

Figure 2.4: Simulated path of the original representation (2.11)

Figure 2.5: Simulated path of the transformed representation (2.12)
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3
Methods

In this Chapter we will look at some statistical methods for estimation of parameters.
Specifically classical maximum likelihood methods. For CKLS, the expressions for
the drift parameters the likelihood equations take a complicated form. This method
is well detailed in Chapter 10.6 in [5]. While the diffusion parameters in CKLS,
Section 2.5.1, together with the parameters for the other two models Section 2.5.2
and 2.5.3, will be estimated using least square methods.

3.1 Simulation

In this section we describe the method used to check convergence of the numerical
method. The method works in the following way. First we generate a Brownian
motion, {Wn}Nn=0, with the number of time steps, N ,1. With size of the time step
h = 1/N . Then we simulate a path of the SDE using a suitable method, Section
2.3.2 or Section 2.3.3. The next step is to half the number of time steps in the
Brownian motion. This is done by adding the adjacent values of the Brownian
motion, Ŵn := Wn + Wn−1. Where {Ŵn}Nn=0 denotes this new Brownian motion,
with N

2
number of steps.

After constructing this new Brownian motion, we redo the numerical scheme. This
time we simulate a path with N

2
time steps. This process is repeated for an ap-

propriate number of iterations. We show an example of the Brownian motions we
get from this method, see Figure 3.1. If we see that the numerical simulations are
similar, we know that the scheme has converged.

3.2 Likelihood ratio method

Here we describe the likelihood ratio method, LR-method. This method can be
used to estimate parameters, specifically we will use the method to estimate the
drift parameters for CKLS. Generally speaking it is a ratio between two models,
with two different drift functions, b1 and b2. Where a decision is made based on if
the ratio is larger than one. We will use this method to find an estimate for α and
β parameters in the case of CKLS, (2.7). For details of derivation of the likelihood
ratio, based on the Radon-Nikodym theorem we reference to [5]. The function in

1We used N ≈ 218, due to computational limitations. But here we use N = 212 for better
visualization.
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3. Methods

Figure 3.1: Brownian motion where the steps are decreased from 212 down to 23

question is the following, where θ denotes the parameters of interest, which the
functions b1, b2 and v depends on,

Λ(θ, {X}Tt=0) = exp
[∫ T

0

b2(Xt)− b1(Xt)

v2(Xt)
dXt −

1

2

∫ T

0

b22(Xt)− b21(Xt)

v2(Xt)
dt

]
We will derive expressions for the drift parameters, first in the original representa-
tion, (2.7). Then, as we will simulate the transformed version, we give LR-estimates
in for the transformed equation, (2.8). To arrive at the desired equations, we begin
to set the b1 function to zero. We arrive at the following, with θ = (α, β),

Λ
(
α, β, {Xt}Tt=0

)
= exp

[∫ T

0

(α + βXt)

σ2X2γ
t

dXt −
1

2

∫ T

0

(α + βXt)
2

σ2X2γ
t

dt

]
16



3. Methods

First we use that the logarithm of a function has the same maximum, and we also
expand the parentheses inside the integrals, giving us the following,

λ(α, β, {Xt}Tt=0) = α

∫ T

0

dXt

X2γ
t

+ β

∫ T

0

Xt dXt

X2γ
t

− 1

2

(
α2

∫ T

0

dt

X2γ
t

+ αβ

∫ T

0

Xt dt

X2γ
t

+ β2

∫ T

0

X2
t dt

X2γ
t

)
Now taking derivatives with respect to α and β, respectively, and setting each one
to zero we get the following expressions,

α̂ =

∫ T
0
X−2γ̂t dXt

∫ T
0
X2−2γ̂
t dt−

∫ T
0
X1−2γ̂
t dXt

∫ T
0
X1−2γ̂
t dt∫ T

0
X2−2γ̂
t dt

∫ T
0
X−2γ̂t dt−

∫ T
0
X1−2γ̂
t dt

∫ T
0
X1−2γ̂
t dt

and

β̂ =

∫ T
0
X1−2γ̂
t dXt

∫ T
0
X−2γ̂t dt−

∫ T
0
X−2γ̂t dXt

∫ T
0
X1−2γ̂
t dt∫ T

0
X2−2γ̂
t dt

∫ T
0
X−2γ̂t dt−

∫ T
0
X1−2γ̂
t dt

∫ T
0
X1−2γ̂
t dt

Using the scheme detailed in Section 2.3.2, we simulate a path denoted {Yn}Nn=0,
which we use to estimate the integrals in (3.2) and (3.2). Specifically, we estimate
the integrals by, with appropriate function f ,∫ T

0

f (Xs) ds ≈
N−1∑
n=0

f(Yn)h,

and ∫ T

0

f (Xs) dXt ≈
N−1∑
n=0

f(Yn) (Yn+1 − Yn) .

The estimate γ̂ for the γ parameter is found by minimizing the function,

(σ̂, γ̂) = arg min
σ,γ

(
QV (T )− σ2

∫ T

0

Y 2γ
s ds

)2

where QV (T ) is denoting the observed quadratic variation,

QV (T ) =
N−1∑
i=1

(Yn − Yn−1)2 (3.1)

and the theoretical quadratic variation expressed with the integral in (3.1) is esti-
mated by

σ2

∫ T

0

Y 2γ
s ds ≈ σ2

N−1∑
n=0

Y 2γ
n h.

The volatility σ parameter is still estimated simultaneously together with the γ
parameter, but the estimate σ̂ is not used here in the estimation for α and β.
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3. Methods

Since we instead want to use the representation (2.6), with additive noise, we derive
an expression in this setting as well. Now the LR-method takes the following form,
continuing to use the function ϕ(z) in (2.9) for more compact notation,

λ(α, β, {Zt}Tt=0) = exp
[∫ T

0

ϕ(Zt)

σ2(1− γ)2
dZt −

1

2

∫ T

0

ϕ2(Zt)

σ2(1− γ)2
dt

]
Similarly as above, taking the derivatives and setting each expression to zero. Then
solving for α and β respectively we get the following equations. Using estimates
for γ and σ found from least squares estimate where T is the length for the time
interval. Using that QV (T ) is the observed quadratic variation, the estimations
found by minimizing the following function,

(σ̂, γ̂) = arg min
σ,γ

(
QV (T )− σ2(1− γ)2T

)2
. (3.2)

We denote the following integrals, to make the final expression as compact and
readable as possible,

A =

∫ T

0

Z
γ̂
γ̂−1

t dZt, B =

∫ T

0

Zt dZt, C =

∫ T

0

Z
2γ̂
γ̂−1
−1

t dt,

D =

∫ T

0

Z2
t dt, E =

∫ T

0

Z
γ̂
γ̂−1

+1

t dt, F =

∫ T

0

Z
γ̂
γ̂−1
−1

t dt.

The new expression for α and β are the following

α̂ =
2BE − 2AD + (γ̂ − 1)γ̂σ̂2 (DF − ET )

2(γ̂ − 1) (CD − E2)
, (3.3)

and
β̂ = −2BC − 2AE + (γ̂ − 1)γ̂σ̂2 (EF − CT )

2(γ̂ − 1) (CD − E2)
. (3.4)

And we estimate the integrals as we mentioned above. The results after estimating
the drift parameters using these two expressions are presented in Section 4.2.1.

3.3 Least squares estimation

To estimate the volatility parameters in CKLS we use a least squares estimation.
Which we use to minimize the squared difference between the observed quadratic
variation, denoted QV (T ), and the theoretical quadratic variation, (2.3). This gives
the following expression, where we denote the parameter set to be estimated, θ. For
the SDE in Section 2.5.2, we use the least squares method to estimate all of the
parameters at once.

θ̂ = arg min
θ

(QV (T )− [Y ]T (θ))2

For the family heavy tailed SDE, Section 2.5.3, we also use least squares estimation.
However we instead minimize the following squared difference,

α̂ = arg min
α

N−1∑
n=0

(
Yn+1 − Yn −

(
Y 3α−2
n − 1/Yn

)
h
)2
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4
Results

In this Chapter we present the results. First we show convergence figures for each
of the SDEs, which says that our numerical schemes have converged. Secondly, we
present the results from the statistical methods from Section 3.2 and 3.3. This is
done by the use of box plots.

4.1 Simulation results

Firstly we show the convergence results for CKLS, (2.5.1). We give a figure for the
parameter set (α, β, σ, γ) = (1, 1, 1, 10), but we have tried many different choices
and the result is the same.

When we use the transformed representation, (2.9), the result remains. Using the
same parameter set and the same seed, the result is shown in Figure 4.2. For the
SDE discussed in Section 2.5.3, we see the convergence of the numerical method,
Figure 4.3. With the transformed representation, (2.12), the result is the same, as
shown in Figure 4.4.

Finally, we show the convergence results for the SDE in Section 2.5.2. In Figure 4.5
we see that the method in Section 2.3.3 results in a convergent numerical scheme.

4.2 Statistical results

Here we present the results from the statistical methods described in Chapter 3.

4.2.1 CKLS

We see in Figure 4.6 that the estimation for the drift parameters is fairly stable
around the true value, (α, β = (1, 1), with some extreme results. We have simulated
100 different paths using the representation (2.8), by the fully implicit Euler method,
Section 2.3.2, with many different combinations of parameters. Here we include
four different ones, the parameter sets (α, β, σ, γ) = (1,±1, 1, 10), and γ = 50,
With larger values α or |β| the same behaviour remains, hence we show only these
results. The estimation for the drift parameters is done by using the likelihood ratio
equations (3.3) and (3.4). As we see in Figure 4.6 and Figure 4.7, the estimation is
generally stable. With only a few extremes. In Figure 4.7 we instead simulate 100
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4. Results

Figure 4.1: Plot of the convergence results for the CKLS model using the parameter
set (α, β, σ, γ) = (1, 1, 1, 10).

paths but with negative β. The estimation is still stable. The estimation for the
volatility parameters using least squares, (3.2), σ and γ is very precise, with a very
small variation around the true value.

While we still have to estimate both the sigma and the gamma parameters in (3.3)
and (3.4), the estimation for them are so precise that this does not affect the esti-
mation, compared to using the true values.

We show also results from simulations where we increase the γ parameter to 50,
but keep the other parameters the same. Now we see that when both the drift
parameters are positive the estimation is very difficult using the likelihood ratio
method. As we can see in Figure 4.8, the estimated drift parameters are very spread
out. We even get that on average the β parameter is estimated negatively, while the
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4. Results

Figure 4.2: Plot of the convergence results for the transformed CKLS model using
the parameter set (α, β, σ, γ) = (1, 1, 1, 10).

true is positive. When we instead set the true β parameter to −1, which means we
have a mean reversion also in the drift. The estimation is similar to when γ = 10.

4.2.2 Hyperbolic diffusion

We have tried many different combinations of parameters, however we show only
(α, β, δ, µ, σ) = (7,−6, 1, 7, 0.05) as the results is the same. In Figure 4.10 we see
that the parameter estimation is fairly stable with the exception of the α parameter,
denoted by a in the figure. For every simulation we have run, the α parameter is
estimated negatively. We try to investigate where the issues in estimating α is. First
we use the real values in place for (β, δ, µ, σ) and only estimate α. When we do this
see that estimation is stable, with very small variation between the estimated and
the real value. So we try to do this for different combinations where we estimate α
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4. Results

Figure 4.3: Plot of the convergence results for the family of heavy tailed SDE using
α = −10

together with the some of the other parameters, while using the true value for the
remaining parameters. What we see is that when we try to combine the estimation
with one or more unknown parameter estimations, the estimation for α is very poor
and unstable from the true value.

4.2.3 A family of heavy tailed SDE

The least squares estimate for the heavy tailed SDE (2.11) is fairly stable, with only
a few paths being estimated to larger negative values, as seen in Figure 4.11. The
paths where α is estimated to larger negative values are ones that spend most of
the time away for the stationary level. We also note that for positive α, for example
with values around 1

10
, the estimation is as stable and gives similar results as for

large negative values.

22



4. Results

Figure 4.4: Plot of the convergence results for transformed SDE, (2.12), using
α = −10
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4. Results

Figure 4.5: Plot of the convergence results for the hyperbolic diffusion using
(α, β, δ, µ, σ) = (7,−6, 0.05, 7, 1)
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4. Results

Figure 4.6: Drift parameters estimated by (3.3) and (3.4) with (α, β, σ, γ) =
(1, 1, 1, 10).

Figure 4.7: Drift parameters estimated by (3.3) and (3.4) with (α, β, σ, γ) =
(1,−1, 1, 10).
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4. Results

Figure 4.8: Drift parameters estimated by (3.3) and (3.4) with (α, β, σ, γ) =
(1, 1, 1, 50).

Figure 4.9: Drift parameters estimated by (3.3) and (3.4) with (α, β, σ, γ) =
(1,−1, 1, 50).
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4. Results

Figure 4.10: Parameters estimated for the hyperbolic diffusion, Section 2.5.2 using
the parameter set (α, β, δ, µ, σ) = (7,−6, 1, 7, 0.05) with h = 218 and interval length
T = 50.

Figure 4.11: The parameter α estimated for the transformed SDE Section 2.11 using
step length h = 218 and interval length T = 10.
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5
Conclusion

5.1 Simulation

The main problem with the simulation was that the methods were time consuming.
This forced us to limit the step size and length of the interval. This was the issues
for CKLS and the SDE in Section 2.5.3. While for the SDE in Section 2.5.2 we only
had to generate random normal numbers, which allowed us to simulate a path over
a much longer interval and with shorter time step.

5.2 Statistical methods

For CKLS, Section 2.5.1, the statistical methods in Section 3.2 works well for γ ≈ 10.
In this setting the likelihood ratio method is generally stable for the drift parameters,
with some exceptions. When γ is increased to around 50, the estimation of the drift
parameters is unstable when β > 0. But similarly stable when β < 0 as for smaller
γ. This make sense, as in this case we have a mean-reversion both in the volatility
and the drift, causing the path to behave not as wildly as when β > 0.

In the case of the SDE from Section 2.5.2, estimation is stable for all parameters
except the α(> 0) parameter. This parameter is estimated negatively consistently.
We tried to see in what setting the estimation became more stable. But we could
only get the estimation to be stable when α was the single unknown parameter to be
estimated. As soon as we introduced another unknown, the estimation for α became
very difficult.

The estimation using least squares for the SDE in Section 2.5.3 works well, even as
the path can take on very large values compared to the stationary level. When we use
the original representation the estimation is not as stable as when the transformed
SDE is considered.
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