UNIVERSITY OF
GOTHENBURG

Delayed-acceptance approximate Bayesian
computation Markov chain Monte Carlo:
faster simulation using a surrogate
model

Master’s thesis in Mathematical Statistics

ANDREA KROGDAL

Department of Mathematical Sciences
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2019






MASTER’S THESIS 2019:NN

Delayed-acceptance approximate Bayesian
computation Markov chain Monte Carlo: faster
simulation using a surrogate model

ANDREA KROGDAL

UNIVERSITY OF
GOTHENBURG

Department of Mathematical Sciences
Division of Mathematical Statistics
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2019



Delayed-acceptance approximate Bayesian computation Markov chain Monte Carlo:
faster simulation using a surrogate model

ANDREA KROGDAL

© ANDREA KROGDAL, 2019.

Supervisor: Umberto Picchini, Department of Mathematical Sciences
Examiner: Petter Mostad, Department of Mathematical Sciences

Master’s Thesis 2019:NN
Department of Mathematical Sciences
Division of Mathematical Statistics

University of Gothenburg
SE-412 96 Gothenburg

v



Delayed-acceptance approximate Bayesian computation Markov chain Monte Carlo:
faster simulation using a surrogate model

ANDREA KROGDAL
Department of Mathematical Sciences
University of Gothenburg

Abstract

The thesis introduces an innovative way of decreasing the computational cost of ap-
proximate Bayesian computation (ABC) simulations when implemented via Markov
chain Monte Carlo (MCMC). Bayesian inference has enjoyed incredible success since
the beginning of 1990’s thanks to the re-discovery of MCMC procedures, and the
availability of performing personal computers. ABC is today the most famous strat-
egy to perform Bayesian inference when the likelihood function is analytically un-
available. However, ABC procedures can be computationally challenging to run,
as they require frequent simulations from the data-generating model. In this thesis
we consider learning a so-called "surrogate model", one that is cheaper to simulate
from, compared to the assumed data-generating model, and in this manner save
computational time. The strategy implemented is known in MCMC literature as
"delayed acceptance MCMC", however to the best of our knowledge has not been
previously adapted into an ABC framework. Simulation studies consider the ap-
proach on two different models, producing Gaussian data and g-and-k distributed
data, respectively. For the most challenging example we observed that our approach,
consisting in a delayed-acceptance ABC algorithm, led to a 20-folds acceleration in
the MCMC sampling, compared to a standard ABC-MCMC algorithm.

Keywords: ABC, MCMC, delayed acceptance, DA, surrogate model.






Acknowledgements

Throughout the work on my master thesis I have received a tremendous amount of
support and assistance from my supervisor as well as my friends and family.

First, I would like to express my deepest appreciation to the person who have played
by far the most important role during my work, my supervisor professor Umberto
Picchini. He has contributed not just with his wide range of knowledge in the area
of my thesis, but he has also shown an incredible ability to support me while facing
several challenges during this process. I am truly grateful that I was fortunate to
have Umberto as my supervisor. Thank you for everything.

I would also like to acknowledge my friend Abraham Deniz for using his precious
time to proofread my work, thank you.

Last but not least, my friends and my family. Without you I would not have
survived this. Thank you for always being there.

Andrea Krogdal, Gothenburg, December 2019

vii






Contents

Introduction
1.1 Background . . . . .. .. ...
1.2 0utcome . . . . . ..

Theory
2.1 Approximate Bayesian Computation, ABC . . . . ... ... ... ..
2.1.1 ABC-Rej Algorithm . . . . ... ... ... ... .. ... ..
2.1.2  ABC-MCMC Algorithm . . . .. ... ... ... ... ....
2.2 Delayed acceptance, Approximate Bayesian computation, DA-ABC .
2.2.1 Introducing Delayed Acceptance for Metropolis Hastings Al-
gorithm . . . . . . ...
2.2.2  Introducing Delayed Acceptance for ABC-MCMC, DA-ABC-
MCMC . . .

Implementation and Interpretation

3.1 Implementation Details . . . . . . . . ... .. ... 0.
3.1.1 Mahalanobis Distance . . . . . ... ... .. .. ... ...
3.1.2 Threshold, e . . . . . . . .. ... .

3.2 Diagnostic Plots . . . . . . . ...
3.2.1 Trace Plot and Histogram . . . . . . ... ... ... .....
3.2.2  Acceptance Rate Plot . . . . . .. ... ... ... ... ...
3.2.3 Distance Analysis . . . . . .. ...

Case 1, Gaussian Distribution

4.1 Method . . . . . . ..
4.1.1 ABC-MCMC Algorithm . . . ... ... ... ... ......
4.1.2 DA-ABC-MCMC Algorithm . . . . ... ... ... ... ...

4.2 Results . . . . . . .

4.3 Analysis and Discussion . . . . . . . ... ... L.

Case 2, G-and-k Distribution

5.1 Method . . . . . .
5.1.1 ABC-MCMC and DA-ABC-MCMC Algorithms . . . . .. ..
5.1.2  Comparison of the Algorithms . . . . . . . ... .. ... ...

5.2 Results. . . . . ..

5.3 Analysis and Discussion . . . . . .. ...

11
11
11
12
12
12
13
14

15
16
16
18
22
24

25
26
26
28
32
34

1X



Contents

6 Conclusion and Discussion
6.1 Further Research . . . . . . . . . . . ...

Bibliography



1

Introduction

1.1 Background

Approximate Bayesian computation (ABC) today is a big research area due to its
increasing popularity. This is because ABC provides using Bayesian inference when
the likelihood is intractable. The likelihood is often intractable when the model
is complex, which is often the case in real data application. Even if ABC comes
around targeting the posterior distribution without the use of the likelihood func-
tion, it can be computationally very inefficient. The aim of this thesis is to introduce
a more computationally efficient ABC method, called Delayed acceptance approx-
imate Bayesian computation (DA-ABC). The main purpose of using DA-ABC is
when ABC methods are computationally heavy.

ABC methods have been used in several application areas e.g. the first works
were in population genetics by [1] and [2]. More examples are in astronomy by
[3], ecology by [4], systems biology by [5] and finance by [6]. More specifically, this
thesis is focusing on Approximate Bayesian computation Markov chain Monte Carlo
(ABC-MCMC), which is using the Metropolis-Hastings sampler. Due to the fact of
not using the likelihood function in ABC-MCMC methods, it will not be able to
target the exact posterior distribution, but will instead provide an approximation
of it. Let xo be observed data believed to come from the model p(z|6), where 6 is
an unknown parameter vector. Then ABC can provide draws approximately from
the posterior distribution, 7(f|z). This is done by proposing a parameter vector 0*
via e.g. a transition kernel, then generate a data-set with this proposed parameter
vector, z* ~ p(z|0*). Continue by calculating the distance between the generated
data-set and the observed data-set, p(x*, zq) for some distance function p. If this
distance is smaller than a pre-defined threshold e, 6* is accepted as a sample of the
posterior distribution with probability «. The acceptance rate of the proposed 6*
is low, and is in best case scenarios around 1%. This can result in computationally
heavy simulations if the model p is complex. Due to this low acceptance rate, we
introduce the Delayed acceptance ABC-MCMC which will instead use a surrogate
model, which will at a first step evaluate whether 6* is a good proposal. Only if 6*
seems as a good proposal, a data-set will be generated from the model p. In this
manner, we hope to avoid simulating from the model unnecessarily i.e. when 6* is
likely to be rejected. It is important that the surrogate model is cheaper to evaluate
than the real model p.
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1.2 Outcome

This thesis is divided into sections. In section 2, the theory behind the first ABC
method is described, namely Approximate Bayesian computation rejection, and then
followed by the theory behind ABC-MCMC. Further in the section is the theory be-
hind the delayed acceptance approach and how it is merging with ABC-MCMC. In
this section, also a pseudo code for DA-ABC-MCMC will be introduced. Moreover,
section 3 contains some implementation used in the algorithms for both ABC-MCMC
and DA-ABC-MCMC, which will be taken for granted in the next following sections.
The section will also give an introduction of diagnostic plots and why the interpre-
tation and analysing of them is important for the aim of this thesis. Section 4 is the
implementation of DA-ABC-MCMC for Gaussian distribution, which is considered
as a simple case. This is just a first step of interpretation, if DA-ABC-MCMC is
a suitable method for computationally efficiency purpose, before moving on to a
more complex case. Section 5 contains the implementation of DA-ABC-MCMC for
a more complex case, namely of g-and-k distribution. Finally, section 6 will contain
a discussion and conclusion around the implementation and interpretation. Also, a
discussion about further research is included.



2
Theory

2.1 Approximate Bayesian Computation, ABC

Exact Bayesian makes use of the fact that the posterior distribution is proportional
to the prior distribution multiplied with the likelihood function. This means we have
the prior function 7(6) for each parameter in the parameter vector € ©. Thereafter
we have observed data xq € X, believed to come from a model having likelihood
p(z|f). We update the prior 7(f) via the likelihood function p(z]f) and the poste-
rior can be expressed as 7(6|z) o< m(0)p(x|d). Now, the posterior can be used for
Bayesian inference of #. This method encounter problems if the likelihood function
is analytically or computationally intractable, which is often the case, especially if
the model is complex. The model is often very complex in real-data applications,
due to the high interest of finding a posterior without needing a likelihood func-
tion. Approximate Bayesian computation (ABC), also called likelihood-free compu-
tation, provides a way to simulate draws from the posterior when the likelihood is
intractable.

2.1.1 ABC-Rej Algorithm

What lays ground to the concept of ABC methods is the ABC-rejection algorithm,
which was first introduced by [1]. It is also the simplest method and works basi-
cally; propose a candidate parameter vector 8* via a proposal function, usually the
prior 7(#), and simulate a synthetic data-set from the model given the proposed
parameters z* ~ p(z|0*). If 2* ~ x(, assume 0* are parameters which could describe
the observed data and 6* is kept and accepted as a part of the posterior distribu-
tion. Reversely, if * do not seemed to describe the observed data xg, 8* is rejected.
The parameter vectors which are accepted due to the observed data can be consid-
ered as draws from the approximate posterior distribution. Algorithm 1 shows this
simulation in pseudo code.
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Algortihm 1: ABC-Rej

1. 6* ~ 7(0), propose a parameter vector.

2. a* ~ p(x|0*), generate a synthetic data-set from the model, given the proposed
parameters.

3. If * =~ xq accept 6* as a part of the posterior distribution.

There is a lot of different methods how to decide whether z* ~ x4 or not. [1]
defined it as: if a distance d between the generated data and the observed data
is smaller than a pre-defined threshold e then accept 6*. The distance function
p(z*, x) can for instance be euclidean, but there are other used distances e.g. [7].
Later, [2]| introduced a way of calculating the distance d between summery statistics
instead, d = p(S(x*), S(xg)), which is now the most used approach, especially since
it is more efficient when the observed data have a high sample size or the model is
complex. Including this distance, we are not able to find the exact posterior, but
we are able to find an approximation of the marginal posterior, defined as

7(0]p(S(2*), S(x0)) < €) o 7(0) /X 1(p(S("), S(x0)) < )p(al) da,

where 1 is the indicator function. Depending on which value ¢ is set to, the posterior
is more or less precise approximated.

2.1.2 ABC-MCMC Algorithm

The ABC-rejection algorithm is simple but ineffective. The acceptance rate is very
low and can even be zero. There are several ABC algorithms which have been shown
more effective, but they are build from the same principle. One of the most used
one is the ABC-MCMC algorithm, which uses Metropolis-Hastings sampler to tar-
get the posterior distribution w(0|p(S(z*), S(xg)) < ). MCMC stands for Markov
chain Monte Carlo and was first introduced in ABC methods by [§8]. ABC-MCMC
algorithm starts with sampling a proposal parameter vector 8* from a proposal func-
tion ¢, where ¢ is acting as a transition kernel. One uses 6* to generate a data-set
x* from the model, z* ~ p(z|0*). Retain 6* as part of the posterior distribution
by Metropolis-Hasting approach i.e. in short terms, this means accepting 6* with
probability a where

a:min{ L, L(p(S(z"), S(x)) Sa)%} (2.1)

For details to this conclusion of how to calculate the probability a, see [9]. The
pseudocode for ABC-MCMC algorithm is shown in algorithm 2.
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Algorithm 2: ABC-MCMC

1. 61,7 =1, set starting values.
2. 0* ~ q(0|6;), propose a new parameter vector via a proposal function.

3. x* ~ p(x|0*), generate a synthetic data-set from the model given the proposed
parameter vector.

4. With probability,

o m{ L 1(p(S(2"), S(xo)) < >%}

let ;.1 = 6%, otherwise let 6;,1 = 0.

5. i =141, go back to step 1. Stop after desired N iterations.

By looking at both ABC-Rej and ABC-MCMC algorithms at the step where 6*
is proposed, ABC-MCMC compared to ABC-Rej is proposing via a transition kernel
q. This is of benefit for ABC-MCMC since the next proposal parameter vector 6*
is based on the last accepted 6, and will be more likely to explore in the higher
probability areas of the distribution and less likely to spend time in the low proba-
bility areas of the distribution. In this manner, ABC-MCMC saves time compared
to ABC-Rej. Altough this can come with difficulties, e.g. it encounter problems
when it gets stuck in areas and are not able to capture the whole distribution. For
ABC-MCMC, there is in need of setting a starting value 6, which can be a sensitive
choice for the algorithm.

2.2 Delayed acceptance, Approximate Bayesian com-
putation, DA-ABC

Here we introduce a delayed acceptance approach in ABC-MCMC algorithms. The
idea with delayed acceptance is to postpone the evaluation of the computationally
expensive model p(z) and obtain faster ABC-MCMC simulation.

2.2.1 Introducing Delayed Acceptance for Metropolis Hast-
ings Algorithm

The Metropolis-Hastings algorithm is a tool used for producing samples where di-
rect sampling from a model p(z) is difficult or impossible and is a common sampling
method in MCMC algorithms. The model p(z) is not necessarily the likelihood in
Bayesian inference, but we will in this section consider sampling from a generic dis-
tribution with density p(z).
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The Metropolis-Hastings algorithm works, as you propose a move x* and then ac-
cepting or rejecting the move with probability . You propose the move x* via a
transition kernel ¢(z*|x), given the last accepted move. The accepted moves creates
a Markov chain with p(x) as the stationary distribution. In a simulation point of
view, imagine we are at iteration 7. Then the following steps are done:

e Sample x* ~ q(z|x;), from the proposal distribution.

e (Calculate the acceptance probability

a:min{l,w} (2.2)

p(xi)q(e*|a;)

e With probability «, set x;11 = z*, otherwise set ;11 = x;.

This means it is of interest sampling from the distribution p(z) in every move, both
accepted and rejected. Assume the evaluation of p(z) is computationally expensive,
e.g. because the data-set x is big, then this sampling will be inefficient. The DA
approach wants to come around sampling from p(x) in every iteration and only
when the proposed z* is a good candidate and in that way save computational time.
DA suggests splitting the acceptance probability stage « into two stages, a; and
as. A proposed move is only accepted if it goes through both acceptance stages
in chronological order. In the first stage, we only evaluate a surrogate model p*(z)
which can be deterministic or stochastic and cheaper to evaluate than p(x). Again,
assume we are at iteration i. The DA approach together with Metropolis-Hastings
would in a step-wise manner be done as:

e Sample z* ~ q(z|x;), from the proposal distribution.
e (Calculate the acceptance probability at stage 1,

ap = min{ 1, w} (2.3)

p*(zi)q(a*|z;)

e With probability a;, move to stage 2, otherwise set x;.1 = x; and start over.
@y = ming 1, M (2.4)
plai)p*(z¥)

e With probability as, set x;,; = x*, otherwise set x;11 = x;.

Only if the proposed x* gets accepted at aq, it is evaluated on the computational
heavy function p(x) and it is first when x* gets accepted at stage 2, it is really
accepted. In this manner, we hope to avoiding to evaluate the possibly expensive
p(z), when the proposed z* is not a good candidate. And since the surrogate model
will target the intended distribution p(z) exactly, the Markov Chain will still have
p(z) as stationary distribution.
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This way of splitting the acceptance probability into two stages has been intro-
duced in [10]. Note that oy in (2.3) is exactly as «a in (2.2), except for using the
surrogate models p® ratio instead of the model p. Also, since the transition kernels
ratio is already used in oy, there are no need to include it in the second acceptance
stage ao.

2.2.2 Introducing Delayed Acceptance for ABC-MCMC, DA-
ABC-MCMC

The theory for the DA approach seems as a good strategy for saving computational
time as long as the surrogate model p® is of good choice. In this thesis, we want to
learn a specific surrogate model for each case in ABC inference. Before moving on
in detail how this will be accomplished, we first take a look how the DA approach
will look as step-wise in ABC-MCMC inference by combining the ABC-MCMC
algorithm with the DA approach for Metropolis-Hastings algorithm. Let p(z) in
section 2.2.1 be the model in Algorithm 2. By just combining the DA approach
in Metropolis Hastings algorithm, explained in the previous section 2.2.1, together
with Algorithm 2 and assume we are at iteration i, the goal is to accomplish the
following steps:

1. 6% ~ q(0]6;), propose a new parameter vector via a proposal function.

2. &* ~ p*(x|0%), generate a synthetic data-set from the surrogate model given
the proposed parameter vector.

3. With probability,

a; = min{ 1, 1(p(S(z"),S(x0)) < 8)%} (2.5)

go to next step, otherwise set 0,1 = 6; and start over.

4. x* ~ p(x|0*), generate a synthetic data-set from the true model given the
proposed parameter vector.

5. With probability

ay = min{ 1, L(p(S(z"), S(xg)) < 5)} (2.6)

let ;.1 = 6%, otherwise let 6;,, = 0.

Notice that the synthetic data-set simulated by the surrogate model in step 2 is
only used in calculating the distance d = p(S(2*), S(x¢)). Instead of finding a surro-
gate model which can simulate a whole data set similar to the real model, this thesis
introduce using the surrogate model to predict the distance d = p(S(2*), S(z0))
given the proposal parameter vector 6* instead. Hence, this imply it is important
that p®(z) covers the support of p(z), otherwise this approach would fail. The pre-
diction of the distance can be done by for example using regression analysis, as long
as it is cheap to evaluate. In this thesis, let the surrogate model described by a

7



2. Theory

regression model be denoted as pf(S(7¢)|f), since it is depending on the originate
summery statistics S(zo) and the parameters of interest are the parameter vector
0. ¢ denotes the corresponding regression model parameters. For example, if the
regression model is linear regression, then the distance could be predicted by the
following formula:

di = p(S(x0), S(xi)) = Bo + Bi0ix + ... + Byl + 0,
for i=1,..,M and & ~ N(0,0?%).

¢ = (Bo, b1, ---, Pp) are the regression parameters and ¢ is the error term. Once QAS
is obtained, we can denote d; as the following:

021‘ = Bo + 3191‘,1 + .+ Bbei,b-

Using regression analysis requires some training data of size M. Imagine using the
regular ABC-MCMC (algorithm 2) to collect training data with response variable
{d,,}¥_, and with the corresponding covariates {0, }*_,. Recall, 6, consists of
the parameters of model p. When the training data D = (d,,, 6,,)_, is collected,
train the surrogate model on D to obtain gzg Note that the collected training data is
based on both rejected and accepted proposal parameters, 8*. Once the surrogate
model p3 is trained, the simulation of the posterior 7(0|p(S(x),S(xo)) < €) ,via
DA-ABC-MCMC, can begin. Then for each simulation, as usual, propose a new
candidate vector 6* via a proposal function ¢ given the previous accepted parameter
vector. Continue with predicting a distance d given the proposed 6* with the trained
surrogate model pj}(S (20)]0*). Then use this distance in calculating the acceptance

probability at the first stage oy in (2.5) at step 3, i.e. use d instead of p(S(2*), S(xq)).
Then continue from step 4. This results in DA-ABC-MCMC algorithm explained in
algorithm 3.
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Algorithm 3: DA-ABC-MCMC

1. Input: z¢-observed data, 6; - initialize parameter vector for the collection of
training data, € - initialize the threshold when collecting the training data,
M- number of data-points for training the surrogate model, N- number of
simulations to obtain the posterior distribution, D = {0}.

2.form=1: M
2.1 60m) ~ q(0~|0m), propose a new parameter vector via a proposal function.

2.2 z(m ~ p(x\é(m)), simulate a data set from the model given the proposed
parameter vector.

2.3 d™ = p(S(z(™), S(x)), calculate the distance and store D = D | J(6™), d(™)
2.4 With probability a(&) (2.1) let 0,,41 = 8™, otherwise let 6,11 = Op,.
end

3. Train surrogate model p3(S(70)|#) on D to obtain ¢. 0y - initialize parameter
vector. ¢ - initialize the threshold.

4. fori=1: N
4:1 0* ~ q(010;), propose a new parameter vector via a proposal function.

4:2 d = pz(S(:co)](?*), predict the distance given the proposed parameter
vector.

4:3 With probability,

m(0)q(6+10)

go to next step 4:4, otherwise set 6;,1; = 6; and start over from step 4.

ap = min{ 1,1(d < S)W}

4:4 x* ~ p(z|0*) generate a synthetic data set from the model given the
parameter vector.

4:5 With probability

g = min{ 1,1(p(S(a), S(x0)) < 5)}

let 0,1 = 6%, otherwise let 6,1 = 0;.
end

5. Output: N draws from the posterior 7(0|p(S(z*), S(z0)) < €).

Recall that the purpose of the thesis is to make ABC-MCMC (algorithm 2) more
computationally efficient. If algorithm 3 would work for this purpose, it is important

9
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that M << N, since step 2 in the algorithm is basically the steps in algorithm 2
(ABC-MCMC) and we only use this step to collect training data for the surrogate
model pg. Since this step is computationally inefficient, assuming the simulation of
a model p is computationally heavy, we want M as small as possible. At the same
time, we would find a regression model, which predictions of the distance d makes
the ratio A, = as/a; between the acceptance stages as high as possible, where
A4 € 10,1]. This is an indication of how many of the proposed parameter vector 6*
that survives the first acceptance stage ay, which also survives acceptance stage 2
ay. (Note that this will not indicate how many of the proposed parameter vector
we reject at the first stage which would have survived the second stage).

A common term in MCMC simulations is the so called burn-in period, which is the
beginning of a MCMC run that is eliminated and are not included in the output.
An example of the burn-in period is shown in the left plot of figure 3.1, where the
burn-in period is from iteration 1 to around 25000. The right plot is the correspond-
ing histogram of the trace plot after the burn-in period. Due to using ABC-MCMC
method in step 2 in algorithm 3, we want to avoid redo the burn-in period at step
4, where the DA approach is introduced, by using the information obtained of the
ABC-MCMC simulation in step 2 when collecting training data, by initializing the
starting values in step 3 for 6; and ¢.

10



3

Implementation and Interpretation

In the ABC framework there is constantly introducing techniques which makes it
more efficient. Here we will go through which teqniques are used in this thesis and
how it will be performed in a simulation point view. This also includes diagnostics
about how to interpret the result of the approximated posterior distribution.

3.1 Implementation Details

By looking at the presented Algorithms, there are some parts that needs to be
specified. Here, we will go through how the unclear steps will be performed in this
thesis.

3.1.1 Mahalanobis Distance

First of all, we need to introduce a suitable distance function p for the algorithms
presented in section 2. Recall, the distance is calculated between the originate
summary statistics S(zp) and the summary statistics of the synthetic data set S(z*)
simulated from the model given the proposed parameter vector 6*. Number of
summary statistics varies depending on which model the data set is believed to
come from. Often, the more complex a model is, the more summary statistics it
has. For example, consider euclidean distance for S = (51, ..., S,),

p(S(wo), S(x)) = V/(S1(w0) — Si1())? + -+ + (Su(x0) — Su(2))?.

The euclidean distance is very sensitive to the possibly different magnitudes of the
several summary statistics, where components of the S vector that are highly vari-
able will dominate the components that vary less. And hence the ABC distance will
be more dependent on the former than on the latter, which is something we need to
mitigate.

The distance has an important role in ABC methods, since the distance d has
an high impact of whether 6* gets accepted or not and since the distance d is the
response variable in the trained model in the DA-ABC-MCMC algorithm. Maha-
lanobis is a distance that will make all variables have the same influence by including
their empirical covariance matrix C'. The Mahalanobis distance is calculated as

p(S(20), S(x)) = V/(S(x0) — S(x))T C (S(xo) — S(2)). (3.1)

11



3. Implementation and Interpretation

3.1.2 Threshold, ¢

Recall section 2.1.1, the posterior distribution 7(6|p(S(z), S(zg)) < €) is more or
less approximated depending on the size of the threshold, . It is desired to have
a small threshold and by setting a fixed value on ¢ from the beginning of the sim-
ulation can imply difficulties of targeting the posterior distribution and result in
zero acceptance rate. This is a common problem in ABC-algorithms. Due to this,
several methods have been introduced to come around this problem. Many of these
methods starts with a high € and then let it decrease to the desired threshold. For
example, ABC-SMC (Approximate Bayesian Computation-Sequential Monte Carlo)
is based on this concept and [11] have also introduced a way.

We want the threshold to decrease in a "smooth" way and in that way avoid high
rejection but still targeting the posterior distribution. In this thesis, we use the
following method to decrease the threshold e, see for example [12]. Set a starting
value on the threshold €,—;, then for every h (e.g. h = 1000) iterations update ¢; in
the following way:

g; = min{e;_p,, quantile, (d;_py1, di—pr2, -, dio1)}- (3.2)

v is a chosen probability value for the quantile of the calculated distances d between
iteration ¢ — h and i. Keep lowering the threshold until a functional acceptance rate
is obtained. For example in this thesis, a functional acceptance rate is at least 5%.
This is also of benefit since it finds the optimal threshold, compared to setting one
fixed from the beginning. Slightly different way of decreasing the threshold in ABC
methods by also using quantiles is seen in these papers: [13| and [14].

3.2 Diagnostic Plots

Diagnostic plots, in this case, are interpreting tools of how simulations is performing
and resulting in. For example, how the posterior is converging to the "right" answer,
the densities of the posteriors and how other important parameters in the algorithm
behaves during the simulation.

3.2.1 Trace Plot and Histogram

Trace plots illustrate all values a parameter 6 has been assigned and accepted, from
its starting value and then its journey of values converging, and hopefully, to the
"right" value. This is basically a plot where the x-axis is the timeline of the iterations
i = 1,..., N plotted against the collected parameter values, {6;}~ . In figure 3.1,
the left plot shows a trace plot performing well, i.e. it finds the underlying searched
value 1. The right plot is the corresponding histogram of the parameter 6. The
histogram is an illustration of the approximate posterior distribution of 6.

12
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Posterior distribution
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0 25000 50000 75000 100000 13 14 15 16 17 18
lteration Parameter
Figure 3.1: Left figure: Example of a trace plot. Right figure: Corresponding
histogram without the burn-in period.

Note, the histogram is without the burn-in period i.e. after approximately iter-
ation 25000, shown in the trace plot. It is only the accepted parameters where the
acceptance rate is at a desired level which are of interest as a result of the posterior
distribution.

3.2.2 Acceptance Rate Plot

The threshold is decreasing during the simulation presented in sec 3.1.2. This is
done to avoid zero acceptance rate. This implies that the acceptance rate is going
to decrease during the simulation as well, since the higher the threshold ¢ is, the
more parameter § with a wider value range will be accepted. By keeping track of
how the acceptance rate are behaving together with the trace plots and histogram
during the simulation, you get an good idea of how "smooth" the converging is. It is
also a tool of regulating the decreasing of the tolerance level. When the acceptance
rate has decreased to a desired level a®”, we can stop decreasing the threshold. How
to decide the current acceptance rate at iteration ¢, choose a value k, (e.g. k = 1000)
and set a" to
_ Nr.of accepted 0" between iteration [i — k, 1]

q,T — . 3.3
o ; (33)

An example of how an acceptance rate plot could look is shown in figure 3.2.
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3. Implementation and Interpretation

0.6-

o
b

Acceptance rate

o
I

0.0-

0 25000 50000 75000 100000
[teration

Figure 3.2: Plot of the acceptance rates during a simulation.

Since we are only interested in the obtained parameters after the burn-in period,
the acceptance plot is a good tool to see from which iteration ¢ we should start to
consider the parameter vector as a sample from the posterior distribution.

3.2.3 Distance Analysis

A key part of this thesis is to predict a distance d by a regression model P (S(0)|0)
and then evaluate whether it is worth calculating the real distance d = p(S(x*), S(z¢)) <
g) or not, explained in section 2.2.2. In other words, if d in Algorithm 3 gets ac-
cepted at acceptance stage 1 (step 4:3) then distance d is evaluated. Then there
is of interest to compare these two distances. This can be done by simply plotting
them against each other and see if their scatter plot looks as a straight line with
gradient 1. There is also interesting to analyze if the ratio A\, = o2 increase when

the predicted distances d has a better prediction. Also, this comparison can tell how
robust the algorithm is to the prediction of d.

14



4

Case 1, Gaussian Distribution

The first case is based on a data-set xg believed to come from a Gaussian distribution.
This example may not be of benefit using the DA-ABC-MCMC approach on. This
is an example where we can obtain the exact posterior and we can get an idea of how
good DA method works on a simple model before testing it on more complex models.

Assume the data-set x( is a sample of a populations IQ levels of sample size n.
o is assumed to come from a Gaussian distribution with parameters 6 = (u,0). In
this case, sample a synthetic data-set o ~ N(u = 100,06 = 15). Pretend that we
don’t know € and want to find the posterior distribution 7 (#|z). Then in this case,
let the prior distribution for the parameters be the following:

~ N(100, 15
m(0) : ( 2)89 17
o ~ Gamma(=>, %)
where the Normal distribution has parameters mean and standard deviation and the
gamma distribution has shape and rate parameters. The likelihood for this model
is known and is the following:

" 1 —(zl 2
1V 27TU2

It is possible to target the posterior distribution with regular Metropolis-Hastings
method explained in sec 2.2.1, and will be referred as MCMC simulation. I use
the results from MCMC simulation as reference when comparing with ABC-MCMC
and DA-ABC-MCMC. For example, if n = 500, we want to target the posterior
distributions in figure 4.1.
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4. Case 1, Gaussian Distribution

Posterior distribution Posterior distribution
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Figure 4.1: Exact posterior distribution for § = (u, o) via MCMC sampling, with
sample size n = 500.

4.1 Method

First of all, we need an ABC-MCMC algorithm that works well, since it is a key
component in the comparison in time efficiency between ABC-MCMC and DA-
ABC-MCMC algorithms, which are one of the main interest in this thesis. Also,
the ABC-MCMC is used when collecting training data in the DA-ABC-MCMC
algorithm.

4.1.1 ABC-MCMC Algorithm

Recall Algorithm 2 for simulation with ABC-MCMC. Given a data set z( of size n,
set the starting values to 6, = (%, Su,), Where 2y is the sample mean and s, is the
sample standard deviation. In step 2 in the algorithm, the proposal function ¢(6*|0)
is set to the normal density function with fixed standard deviation. In our case, we
propose 0* = (u*,0*) in the following way:

o* ~ N(ov,2),

at iteration ¢. Using normal distribution as proposal function is a common choice in
MCMC methods since it allows local and symmetric moves around the last accepted
value. It is also a convenience choice when calculating the acceptance probability «
in step 4, since the normal density function is symmetric which makes the division

q(0;16%)/q(6%|0;) = 1 for any values of #* and 6,.

Moving on to step 4 in Algorithm 2, we need to specify the threshold . Start
by setting ¢ = oo. Then, update e every 1000 iteration according to (3.2) in sec.
3.1.2 by specifying h = 1000 and v = 0.85. Continue to update ¢ until a desirable
threshold is obtained, which means until the acceptance rate, a®", defined in (3.3),
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4. Case 1, Gaussian Distribution

is around 5%. Also, if a®" < 0.03 then the previous threshold is tried again.

Further, I used Mahalanobis distance, defined in (3.1), as distance function when
calculating the distance between the summery statistics, p(S(zg), S(z)). Since the
model is Gaussian, it is natural to set the summery statistics to the sample mean
and sample standard deviation, S(x) = (Si(z) = z, Sa(z) = s.).

With these specifications for Algorithm 2 and setting n = 500 (sample size of the
observed data xy) and N = 100000 (number of MCMC iterations), the following
posterior distributions are obtained, shown in figure 4.2.

Posterior distribution Posterior distribution

0.6

Method 0501

ABC-MCMC
MCMC

Method
ABC-MCMC
MCMC

Density
Density

0.21 0.25-

0.0 0.00-

98 100 102 13 14 15 16 17
[ c

Figure 4.2: The posterior distributions via ABC-MCMC simulation compared with
MCMC-simulation, with sample size n = 500.

140 25-

120-
20

100
80

60 0 25000 50000 75000 100000 0 25000 50000 75000 100000

lteration lteration

Figure 4.3: Trace plots of the parameters mean and standard deviation from the
ABC-MCMC simulation, with sample size n = 500.

Figure 4.3 is the corresponding trace plot to the histograms in figure 4.2 of
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4. Case 1, Gaussian Distribution

ABC-MCMC, thus with the burn-in period. The histogram are only based on the
chain obtained after the burn-in period i.e. around iteration 25000. By compar-
ing the posterior distribution obtained via ABC-MCMC simulation with MCMC
simulation, ABC-MCMUC inflates the true variability of the posterior distribution.
Notice in particular the heavier tails for the ABC-MCMC case. This is not ex-
pected since stopping the decreasing of the threshold e after an acceptance rate
around 5% is obtained and remember from section 2.1.1 that the posterior distri-
bution 7 (0|p(S(x*),S(xy)) < €) is more or less approximated depending on the
threshold. When interpreting figure 4.4, there is clearly a connection between the
threshold and the acceptance rate. The acceptance rate is defined according to (3.3)
with & = 1000. Also, the posterior distribution obtained via ABC-MCMC simula-
tion is based on the summary statistics, which is not as explainable as the whole
data-set used in the likelihood function (4) used in the MCMC simulation.

Keep in mind that the posterior distribution will have a more informative shape
when n increase, since the variance will decrease and will require a smaller thresh-
old to be targeted.

0.6
20-

)
IS

Acceptance rate
varepsilon

o
v

0.0

0 25000 50000 75000 100000 0 25000 50000 75000 100000
lteration Iteration

Figure 4.4: Acceptance rate a® and threshold values € for ABC-MCMC.

4.1.2 DA-ABC-MCMC Algorithm

Recall algorithm 3 for simulation of DA-ABC-MCMC. In step 2, the collection of
training data are simulated, using the ABC-MCMC approach with the same specifi-
cations as in the previous subsection 4.1.1. Simulations are performed until R data
points are obtained after the burn-in period.

Moving on to step 3, and since the burn-in period already has been simulated
when collecting the training data, we want to make use of that information as
much as possible to save computational time. This can be done by using the in-
formation obtained in step 2 by setting the following starting values at step 3:
0, = mean(éM_R:M) and let € be set to the mean of the thresholds used in iterations
m = M — R : M. The choice of starting value of ¢ is based on, to not start with an
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4. Case 1, Gaussian Distribution

unnecessary big value and not a too small.

In step 3, there is in need of defining a suitable surrogate model. Since it is of
extra interest of good prediction after the burn-in period, two surrogate models are
trained. Let D be the training data collected in step 2 in algorithm 3. The first one
is trained on {D(d™ < 3)}M_, and used when € < 3. Then, also a "back-up" surro-
gate model are trained on Dy.); in case the threshold € > 3 which is outside the first
models range to predict. This means we train pg (S(xo)|¢) on {D(d™ < 3)}M_,
to obtain (51 and train pf¢2(S(x0)]9) on Dj.; to obtain (52. Both surrogate models
in this case are defined to the linear regression model in (4.1.2) and are trained on

standardized data.
d= Bo + BIN + 320 + 33,“2 + /3402 + B5M3 + 3603 + B?MU.

This gives adj-R? = 0.48 for p;, and adj-R? = 0.8929 for p;, and the corresponding
residual plots in figure 4.5.
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Figure 4.5: Residual plot of pjgz and pgl, respectively .

Although the adj-R? is better for pZQ and the residuals are centered around zero

(except for some few residuals), we see in the scatter plot in figure 4.6 between the
response variable and the covariate (mean parameter) that the covariete is very ex-
plainable in the left figure, due to the high adj-R? for p‘;Q. Thus the absolute majority
of accepted parameters are the ones around value 100 on the x-axis and as long as
the distance d is higher than the threshold , it will never be accepted as a sample of
the posterior distribution, due to the indicator function 1(p(S(z*),S(xg)) < €) in
9.
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Figure 4.6: Scatter plot of d and p from the training data for pj52 and pfin’ respec-
tively.

Moreover, at step 4 in algorithm 3. The specifications are the same as for ABC-
MCMC. When updating the threshold, v = 0.85 and A = 1000 and the acceptance
rate a®" are defined with £ = 1000. Everything is specified in algorithm 3 and the
following posterior distributions are obtained and shown in figure 4.7.
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Figure 4.7: Posterior distribution for 6 = (u, o) for n = 500.
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4. Case 1, Gaussian Distribution
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Figure 4.8: Trace plot of # = (i, o) of the DA-ABC-MCMC simulation for n = 500
in step 4 in algorithm 3 for iterations 1 : N. (Note, the burn-in period for DA-ABC-
MCMC is done in the collection of training data D in step 2).

The posterior distributions from algorithm 3 is shown in figure 4.7 and it seems
as a good result in targeting the posterior distribution obtained via ABC-MCMC
simulation. Further, when interpreting the results from the surrogate model p‘;, by
looking at the distances accepted at the first acceptance probability «; compared
with the corresponding distances d = 1(p(S(z*), S(xp)) < €) seen in a scatter plot
in figure 4.9, the surrogate model seems to have a hard time predicting distances
close to zero, which we can get a hint from in figure 4.6, the right figure. Even
though, DA-ABC-MCMC seems to capture the simulation from ABC-MCMC good
and the ratio A, = 0.74.
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4. Case 1, Gaussian Distribution
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Figure 4.9: Scatter plot of d and d.
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Figure 4.10: Acceptance rate a® plot and threshold ¢ from simulation of DA-
ABC-MCMC for n = 500 and iterations 1:N=100000.

4.2 Results

The DA-ABC-MCMC seems to capture the posterior distribution as the ABC-
MCMUC generates rather good. In figure 4.11 the results of the computational time
for both methods are shown, where the number of iteration is N = 100000, respec-
tively. The plot shows the DA-ABC-MCMC method is more and more computa-
tional efficient when the sample size increase.
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4. Case 1, Gaussian Distribution
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Figure 4.11: The running-time for ABC-MCMC and DA-ABC-MCMC for itera-
tion 1 to N in algorithm 2 and 3, respectively.

Thus, comparing both methods trace plots (figure 4.3 and 4.8), the burn-in
period seems shorter for DA-ABC-MCMC than for ABC-MCMC. This is because the
burn-in period for DA-ABC-MCMC has already been obtained in step 2 (algorithm
3), when collecting the training data. This means that the approximate posterior
distribution for DA-ABC-MCMC can be based on a longer Markov chain, than for
ABC-MCMC, when comparing algorithm 2 and 3 for iterations 1 : (N = 100000).
A common way to measure the "quality" of a MCMC simulation is to calculate
the effective sample size (ESS). Due in applications where it is desirable to draw
an independent random sample from a probability distribution, in our case from
the posterior distribution on parameters. The problem with samples generated
from MCMC is that the samples are dependent. Due to the interest of ESS which
provides a more fair value of how good an MCMC simulation actually is. Figure
4.12 shows the different ESS for the two parameters respectively.
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4. Case 1, Gaussian Distribution
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Figure 4.12: Effective sample size (ESS) of the posterior distribution of 6 = (, o).

The ESS is calculated after the burn-in period for both methods and clearly
the DA-ABC-MCMC provides a higher ESS. The time difference and ESS should
both be taken into account when interpreting the computational efficacy of the both
methods. Even if the ESS is a good measure tool for the quality of a Markov chain,
it can still be unfair for this specific case due to the threshold. Since the threshold is
defined according to (3.2), the value can be different for ABC-MCMC and DA-ABC-
MCMC, where a lower threshold is influencing the ESS to lower values. Though the
threshold value for the two different methods are similar, where the threshold for
ABC-MCMC is slightly higher which can be seen when comparing the different
thresholds in the right plots in figure 4.4 and 4.10.

4.3 Analysis and Discussion

The DA-ABC-MCMC seems to perform almost as good as ABC-MCMC, even if the
prediction is not perfect. The main concerns are the problems of predicting values
close to zero, which can be suspected as a problem when it is desirable of targeting
the posterior distribution with a lower threshold.

Again, remember that this model is not complex and a lot of tuning parameters
needs to be set e.g. the decreasing of the threshold e, the decision of a suitable
surrogate model. Thus, it seems to work sufficiently good to consider the DA-ABC-
MCMC method on more complex models.
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Case 2, G-and-k Distribution

G-and-k distribution is extraordinary in the way of describing such complex data
with only 5 parameters and the form of the distribution used here were first pre-
sented by [15]. Due to few parameters, g-and-k has been a common distribution to
test the reliability in Approximate Bayesian computation methods e.g. in [16].

If Z ~ N(0,1) then a random variable X from the g-and-k distribution is described
as
X =A+BG(Z)H(Z)

where G(z) = 1+ ctanh(gz/2) which adds asymmetry to the distribution and where
H(z) = 2z(1 + 2?)* extends the tails. The g-and-k distribution has 5 parameters:
0 = (A,B,g,k,c = 0.8). The parameter ¢ = 0.8 is fixed and we are interested in
finding the posterior m(#|x) for the other parameters § = (A, B, g, k). The param-
eters can be described as; A is the location parameter, B is the scale parameter, g
is a shape parameter affecting mainly the skewness and k is also a shape parameter
but affects mainly the kurtosis.

As in Case 1, sample a synthetic data set g ~ gk(A = 3,B = 1,9 = 2,k = 0.5)
of size n. Then pretending not knowing the parameters ¢, one wants to target the
posterior distribution m(#|x), by using the following prior distributions:

A ~ Uni(~10, 10)
B ~ Uni(0, 10)
g ~ Uni(0, 10)
k ~ Uni(0, 10).

7(0)

For the g-and-k distribution, it is not as straight forward to obtain the likelihood and
from that target the posterior distribution via MCMC sampling, as it is in Case 1.
Thus, there is a package named gk, from [17], where there is a built in function mcme
which makes it possible to target the posterior distribution via MCMC sampling.
The same paper explains the theory behind the built-in functions in the gk-package,
and includes the details how it is manageable to do MCMC sampling with g-and-k
distribution. The mcmc function is computationally heavy but it gives a reference
to compare the results from ABC-MCMC and DA-ABC-MCMC algorithms. For
example, if n = 5000 then we want to target the following posterior distributions:
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5. Case 2, G-and-k Distribution
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Figure 5.1: Posterior distribution for each parameter in 6 = (A, B, g, k), for sample
size n = 5000.

5.1 Method

The method procedure for case 2 is very similar to case 1. Thus, in case 1, there
were a simple model with less uninformative prior distributions and where a first
step to see whether the DA-approach seems workable. Due to this case with a more
complex model and with uninformative flat prior distributions, the specifications are

more carefully considered.

5.1.1 ABC-MCMC and DA-ABC-MCMC Algorithms

The proposal function used in both algorithms 2 and 3 is again the normal density
function with fixed variance, due to the same reasons as in case 1. Assume the
simulation is at iteration 7. Then the following proposal functions are used to propose

0* = (A*, B*, g*, k*):
A* ~ N(A;,0.25)
B* ~ N(B,,0.1)
g" ~ N(g;,0.25)
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5. Case 2, G-and-k Distribution

Due to a more complex model, the summary statistics are not as easy to obtain as in
case 1. The ones used in this case were presented by [16] and are called  the robust
estimates of the moment based on the octiles’. Let Ey, E, ..., E7; be the octiles of
the data zp. Then the summary statistics S(z) = (Sa(z), Sp(z), Sy(z), Sk(x)) are
obtained in the following way:

SA = E47 SB = EG - E27
Sg:(E6+E2—2E4)/SB, Sk:<E7—E5—|-E3—E1)/SB.

The acceptance rate a® are defined with & = 1000 for both algorithms. The
starting value for the threshold in ABC-MCMC (algorithm 2) is set to ¢ = 10 and
then letting it decrease with A = 1000 and v = 0.85 until the burn-in period has
ended. Then, one uses 7 = 0.5 to try to capture an even smaller threshold. Though
if a®” < 0.01 then try the previous €. This is also the settings for step 2 in algorithm
3, when collecting the training data.

Regarding the collected data, a suitable surrogate model p} needs to be defined.
Since it is of extra interest of good prediction after the burn-in period, two surro-
gate models are trained, as in case 1. By looking at the scatter plots of the training
data D shown in figure 5.5, the covariates are not as explainable as in case 1. As
shown in figure 4.6, there is not as easy to just splitting up the data D as we did
in case 1. Instead relying it on the acceptance rate a®". The first one is trained
on Dy_p.y and are used after the burn-in period until R = 5000 data points are
obtained. Then, also a "back-up" surrogate model are trained on Dy.); in case the
simulation are outside the "5% acceptance area", which is outside the first models
range to predict. Let L be the iteration when the acceptance rate reaches a®" = 0.2.
As can be seen in case 1, the burn-in period does not repeat in the simulation step
(step 4, algorithm 3) and are unnecessary to base the prediction model on the whole
burn-in period. This means we train p?, (S(z0)|0) on Dy g to obtain ¢1 and train
5, (S(20)[0) on Dy to obtain ¢». Both surrogate models in this case are defined
as the linear regression model

Czpred = Bo+ A+ B+ 339 + Bk + Bs A%+ B B2 + 3792 + Bsk*By Bl + Blogk (5.1)

and are trained on standardized data. As said, the covariates are not as explainable
as in case 1. Even for a simple model as in case 1, it was hard to predict the distances
close to zero, which will be necessary if a lowered threshold is desired. Since it is of
interest to mimic the ABC-MCMC simulation, we instead use to predict a point of
the data set of distances. One way of doing this is to use the predicted dpred = ygﬁ
and from that point generate a new value,

d = yo3 + 0o ~ N(ysB, > (1 + yo(Y'Y) "'9))), (5.2)
where yg = (1, 6*) and use 3 as an estimator for 8 = (Bo, ---, Bp) and let

2 _ Hdps _dps ?
n—(b+1)
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5. Case 2, G-and-k Distribution

be an unbiased estimator of 12, where v? is the variance of the error term § for
the linear regression model (5.1). Y is the design matrix for the linear regression
model (5.1). d,- are the collected distances from the training data and dps are the
corresponding predicted distances. b + 1 = 11 is the number of parameters in the
regression model in this case.

Now, one uses d as the distance in the indicator function for calculating the ac-
ceptance probability a; at step 4:3 in algorithm 3. In this manner, it is possible
to predict a point from the data set of distances and for a given set of parameter
0* be able to capture the distances close to zero as well, rather than predicting the
expected distance (according to (5.1)) for a given set of parameters.

One uses the training run to set starting values before the simulation in step 4.
Set the parameters 6, to the mean of the corresponding parameters in Dy;_g.p; and
let the threshold € be the mean of the thresholds used between iteration M — R : M.
Then, since we really seem to get use of the burn-in period in the training run, let
the threshold be updated with v = 0.5 and h = 1000 for the simulation at step 4.

5.1.2 Comparison of the Algorithms

With the specifications of algorithm 2 and 3 for the g-and-k distribution in the
previous section 5.1.1, let N = 100000 and n = 5000. The following posterior

distributions are obtained from the methods respectively for the four parameters
A,B,g and k, shown in figure 5.2.
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5. Case 2, G-and-k Distribution
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Figure 5.2: Posterior distribution for each parameter in 0 = (A, B, g, k) without
the burn-in period. Corresponding trace plots with the burn-in i.e. iteration 1:N in
algortihms 2 and 3 for n = 5000. (Note, the burn-in period for DA-ABC-MCMC is
done in the collection of training data D in step 2) in algorithm 3. -



5. Case 2, G-and-k Distribution

Note that the histograms in figure 5.2 are only based on after the burn-in pe-
riod, i.e. after around 75000 iterations for ABC-MCMC and after around 10000
iterations for DA-ABC-MCMC. Recall that why the burn-in period is lower for DA-
ABC-MCMC because the burn-in period is simulated when collecting the training
data for the surrogate model pj i.e. at step 2 in algorithm 3. The DA-ABC-MCMC
algorithm seems to capture the posterior distribution almost as good as ABC-MCMC
for parameter B and k, but troubles a little for parameter A and g. Note also that
this can due on the threshold, shown in figure 5.3, where ABC-MCMC has a lower
threshold and also a little bit lower acceptance rate which can imply reaching the
posterior more exact.

Compared to case 1, the burn-in period for ABC-MCMC is much longer in case
2 and there is a big difference between the burn-in period between ABC-MCMC
and DA-ABC-MCMC when comparing iteration 1 to N for both algorithms, which
can be seen in the trace plots in figure 5.2 and in the acceptance rate figure 5.3.

1.00

0.75-

Method

ABC-MCMC
DA-ABC-MCMC

Method

ABC-MCMC
DA-ABC-MCMC

Acceptance rate
3
<
Threshold, €
o
°

°
N
&

0 25000 50000 75000 100000 0 25000 50000 75000 100000
lteration lteration

Figure 5.3: Acceptance rate a®" and threshold ¢ for n = 5000 for iteration 1 : N
in algorithms 2 and 3.

Looking at the residuals (figure 5.4) from the regression model (5.2) used for the
two surrogate models, both is centered around zero, though p‘;l has less spread. The

adj-R* for p, and p;, are adj-R? = 0.8849 and adj-R* = 0.8693 respectively. Even
though the adj-R? are high and the residuals looks good, the scatter plots of the
covariates (figure 5.5) shows that they are not so much explainable and especially

not around zero at the y-axis. The cause of this is due to using d (5.2) as predicted
distance.
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5. Case 2, G-and-k Distribution
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Figure 5.4: Residuals from the regression model for pj;l and p22, respectively.
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Figure 5.5: Scatter plot of d and for each parameter A, B, g and k from the training
data for p3)2.

Figure 5.6 is a scatter plot between the predicted distances d and the real dis-
tances d. This is only the times when d have got accepted at a;. A good correlation
is not expected since the predicted distance (fpredg is stochastic in this case. But
what is important is that it predicts distances close to zero.
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5. Case 2, G-and-k Distribution
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Figure 5.6: Scatter plot between d and d (only when d survived aq).

Further, when looking at the ratio A, = 0.54 it does not perform as good as in
case 1. Though when looking for different sizes of n in figure 5.7 of A\, it increases

to around 0.6 when n increases.

0.6- —_—

0.5- |

|
Method
+ DA-ABC-MCMC

ratio,,

0.4-

0.3-

0e+00 1e+05 26405 3e+05 4e+05 5e+05

Sample size, n

Figure 5.7: A, for different sample size n.

5.2 Results

The results in terms of capturing the posterior with the DA-ABC-MCMC algorithm
may not be perfect but still performs good. When it comes to the results of time
efficiency of the two models when N = 100000, as shown in figure 5.8, it is similar.
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5. Case 2, G-and-k Distribution

Though remember how long burn-in period ABC-MCMC has in this case compared
to ABC-MCMC in case 1. Thus, the burn-in period for ABC-MCMC affects the
time in DA-ABC-MCMC as well since we simulate from the same procedure when
collecting the training data. This means DA-ABC-MCMC are dependent time-wice
of the burn-in period of ABC-MCMC and it is the time after that which will be
of benefit for DA-ABC-MCMC. To demonstrate this a little bit clearer, table 5.1
shows how long time it takes to simulate 1000 iterations after the burn-in period for
ABC-MCMC and DA-ABC-MCMC respectively for different sample sizes n.

Moreover, it is interesting to compare ESS which is shown in figure 5.9, and is
based on after the burn-in period for iterations 1 to N for algorithm 2 and 3, where
DA-ABC-MCMC is more or less twice as efficient than ABC-MCMC. As in case 1,
the result of ESS can differ depending on which value it is on the threshold €. By
looking at the right plot in figure 5.3, the threshold for ABC-MCMC is slightly lower
than for DA-ABC-MCMC which should take into consideration when interpreting
the result of ESS in figure 5.9.

Time plot
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ABC-MCMG
DA-ABC-MCMC

Time (sec)

5000-

0-

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05
Sample size, n

Figure 5.8: The running-time for ABC-MCMC and DA-ABC-MCMC for iteration
1 to N in algorithm 2 and 3, respectively.
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n ABC-MCMC | DA-ABC-MCMC | A

100 0.82 0.88 0.93
500 0.92 0.95 0.97
1000 1.09 0.97 1.12
10000 3.78 1.46 2.59
20000 6.88 1.61 4.27
50000 16.25 1.75 9.29
100000 31.42 2.75 11.43
500000 162.49 7.75 20.97

Table 5.1: Table of running time (in sec) for 1000 iteration after the burn-in period
for ABC-MCMC and DA-ABC-MCMC. A is the ratio of the running time between
ABC-MCMC and DA-ABC-MCMC.
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Figure 5.9: Effective sample size (ESS) of § = (A, B, g, k) after the burn-in period

for iteration 1 to N.

5.3 Analysis and Discussion

First of all, what should be mentioned is that simulation of ABC-MCMC and DA-
ABC-MCMC both converges good against the right value, but are not as informative
as the exact posterior distribution. This is something ABC-MCMC have trouble
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with in general, to capture the posterior when it is dissimilar to the prior. As
mentioned in case 1, this is due to using summary statistics instead of the whole
data set in the acceptance stage and using a threshold in ABC methods, which will
result in less informative result. When n increases, the posterior distribution will
get more and more informative, which implies more difficulties for ABC-MCMC to
target the exact posterior.

Posterior distribution Posterior distribution

Method z Method
ABC-MCMC ~ § ABC-MCMC
MCMC a MCMC

2.90 2.95 3.00 3.05 3.10 0.9 1.0 11

Posterior distribution Posterior distribution

7.5

Method

2 2 Method
2 ABCMCMC &
8 MCMC 8

ABC-MCMC
MCMC

Figure 5.10: The posterior distributions via ABC-MCMC simulation compared
with MCMC-simulation, with sample size n = 5000.

What made a big improvement in case 2 was adding the step in the prediction
of the distance d according to (5.2). One problematic thing before was that the
simulation of DA-ABC-MCMC algorithm did not converge every time, due to lack
of predictions close to zero. The times when the simulation did converge, the ratio
A, where approximately 0.15 or lower, depending on n.
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Conclusion and Discussion

What still makes the DA-ABC-MCMC algorithm problematic is that it is dependent
of the burn-in period from the ABC-MCMC algorithm since the collection of data to
the surrogate model is from simulation of ABC-MCMC until desired data points af-
ter the burn-in period are simulated. Then it depends on how many draws from the
posterior distribution are desired which will decide whether the DA-ABC-MCMC
are worth using. Clearly, DA-ABC-MCMC is more computationally efficient than
ABC-MCMC for simulation after the burn-in period and when the sample size is
high, when interpreting table 5.1.

The DA concept for ABC-MCMC is at best use when the model p is complex
and/or the sample size n is big such that the generation of x* is very computation-
ally inefficient. Notations from these two cases is that the explanatory variables for
p° are more and more explainable when n increase. This will benefit the training of
p®, which is seen in figure 5.7. But on the other hand, it is depending more on a
good surrogate model to even be working.

6.1 Further Research

For further research in this field, I would investigate prediction methods and try to
find a prediction method which is better on gimmick data. What is special in this
case is that we are very interested of good prediction of the distances d close to zero,
which will only be accepted if the real d is close to zero depending on the choice
of . But on the other hand, we will also predict the distances which will not be
accepted at the acceptance probability, which is in our cases around 95% which in
best case scenario would be closer to 99%.
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