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Abstract

This thesis consists of four papers dealing with phase transitions in various
models of continuum percolation. These models exhibit complicated dependen-
cies and are generated by different Poisson processes. For each such process
there is a parameter, known as the intensity, governing its behavior. By varying
the value of this parameter, the geometrical and topological properties of these
models may undergo dramatic and rapid changes. This phenomenon is called
a phase transition and the value at which the change occur is called a critical
value.

In Paper I, we study the topic of visibility in the vacant set of the Brownian
interlacements in Euclidean space and the Brownian excursions process in the
unit disc. For the vacant set of the Brownian interlacements we obtain upper
and lower bounds of the probability of having visibility in some direction to a
distance r in terms of the probability of having visibility in a fized direction
of distance r. For the vacant set of the Brownian excursions we prove a phase
transition in terms of visibility to infinity (with respect to the hyperbolic metric).
We also determine the critical value and show that at the critical value there is
no visibility to infinity.

In Paper IT we compute the critical value for percolation in the vacant set of
the Brownian excursions process. We also show that the Brownian excursions
process is a hyperbolic analogue of the Brownian interlacements.

In Paper III, we study the vacant set of a semi scale invariant version of the
Poisson cylinder model. In this model it turns out that the vacant set is a fractal.
We determine the critical value for the so-called existence phase transition and
what happens at the critical value. We also compute the Hausdorff dimension of
the fractal whenever it exists. Furthermore, we prove that the fractal exhibits a
nontrivial connectivity phase transition for d > 4 and that the fractal is totally
disconnected for d = 2. In the case d = 3 we prove a partial result showing that
the fractal restricted to a plane is totally disconnected with probability one.
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In Paper IV we study a continuum percolation process, the random ellipsoid
model, generated by taking the intersection of a Poisson cylinder model in R?
and a subspace of dimension k. For k € {2,3,...,d — 2}, we show that there is a
non-trivial phase transition concerning the expected number of ellipsoids in the
cluster of the origin. When k& = d — 1 this critical value is zero. We compare
these results with results obtained for the classical Poisson Boolean model.

Keywords: continuum percolation, Brownian interlacements, Brownian excur-
sions, Poisson cylinder model, fractal percolation.



Sammanfattning

Denna avhandling bestar av fyra artiklar som behandlar fasévergangar i olika
kontinuumperkolationsmodeller. Dessa modeller har komplicerade spatiala
beroenden och genereras av olika sorters poissonprocesser. Till varje sddan
process finns det en parameter som styr dess beteende. Genom att variera
viardet pa denna parameter kan dessa modellers geometriska och topologiska
egenskaper genomga dramatiska och snabba férédndringar. Detta fenomen kallas
for en fasovergang och virdet dar denna fasovergang sker kallas for det kritiska
vardet.

I forsta artikeln studeras visibilitet i den vakanta delen av molnet av brown-
ska sammanflatningar samt molnet av brownska exkursioner. Dessa modeller
beskrivs med slumpméssiga upprikneliga méngder (moln) av brownska rorelser,
varav den forsta definieras i euklidisk geometri medan den andra definieras i
hyperbolisk geometri. I den férsta modellen uppskattas sannolikheten att man
har visibilitet till ett avstand r i en godtycklig riktning i termer av sannolikheten
att man har visibilitet till ett avstand r i en fiz riktning. Fér den andra mod-
ellen uppstar istillet en fasévergang for obegriansad visibilitet. Det kritiska
viardet for denna fasévergang bestdms och det visas att pa det kritiska vardet
ar sannolikheten for obegriansad visibilitet noll.

I den andra artikeln berdknas det kritiska vérdet for perkolation i den vakanta
delen av molnet av brownska exkursioner. I samma artikel visas dven att
molnet av brownska exkursioner &r en hyperbol analog till molnet av brownska
sammanfldtningar.

Den tredje artikeln behandlar en fraktal version av Poisson cylindermodellen.
Det kritiska virdet for nar fraktalen gar fran att vara icke-tom till tom beréknas.
Dessutom visas det att fraktalen dr tom pa det kritiska virdet. Néar fraktalen ar
icke-tom bestdms dven Hausdorffdimensionen. Vidare sa studeras det kritiska
vardet for ndr fraktalen dr sammanhéngande. I fyra dimensioner och hogre
etableras en icke-trivial faséverang. I tva dimensioner visar det sig att frak-
talen alltid &ar fullstindigt osammanhédngande. I tre dimensioner ar fraktalen
fullstdndigt osammanhéngande da den begrénsas till ett plan.

I den fjarde och sista artikeln studeras en kontinuumperkolationsmodell som fés
genom att ta skiirningen av en Poisson cylindermodell i R? med ett underrum
av dimension k € {2,3,...,d — 1}. Detta ger upphov till ett moln av ellipsoider
i k dimensioner. For k € {2,3,...,d — 2} uppvisar denna modell en icke-trivial
fasévergang for det forvintade antalet ellipsoider som ligger i den sammanhén-
gande komponenten som innehéller origo. Om k = d — 1 sa ar detta kritiska
varde noll. Dessa resultat jamfors darefter med liknande resultat for klassiska
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kontinuumperkolationsmodeller.
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1 Introduction

The theme of this thesis can roughly be summarized as geometrical and per-
colative properties of spatially correlated percolation models. These models
describe random sets with complicated dependence structures. Conceptually,
these are quite far from the classical percolation models such as the Bernoulli
percolation model, see [BH57] and [Gri99], in which one often is able to exploit
the fact that there are essentially no dependencies in the model. Models with
weak dependencies can often be analyzed with similar techniques as in the
models with no dependencies, but as soon as the dependencies get stronger the
same type of arguments are not as easy to adapt. Thus, new type of arguments
and techniques are needed to analyze these models.

The topics studied in this thesis are mainly percolation, visibility and random
fractals. These subjects are studied in the context of several models of continuum
percolation: Brownian interlacements, Brownian excursions, Poisson cylinders
and the random ellipsoid model. In the following chapters we introduce these
topics and models.

The structure of the introductory chapters is as follows. In Chapter [2| we
introduce the basic theory needed to understand the appended papers. This
amounts to short discussions on fractal geometry, some theory concerning
hyperbolic geometry, various stochastic processes such as Poisson point processes
and Brownian motion, and conformally invariant processes and the theory of
conformal restriction measures. Moving on to Chapter [3]| we discuss various well
known models of percolation. We begin with the two simplest models, namely
the Bernoulli percolation model and the Poisson Boolean model. We then move
on to discussing the Mandelbrot fractal percolation model and the fractal ball
model. Chapter [] describes the models considered in the appended papers on a
rather informal level. The results of the papers are then summarized Chapter

The purpose of these chapters is not to give a complete historical or comprehen-
sive background of the field, but to rather give some motivation and context of
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the problems studied within this thesis.



2 Theory

This chapter covers the necessary theory needed to understand the appended
papers. This amounts to rather brief discussions on various mathematical
areas, such as Hausdorff dimensions, point processes and their connection with
stochastic geometry, Brownian motion and its potential theory, as well as some
basic theory of SLE processes and conformal restriction measures.

2.1 Notation

Throughout this thesis numerous probabilistic objects will be discussed. These
will be defined on various spaces and to avoid introducing unnecessary notation,
all of the probability measures will be denotes by P. If they depend on some
parameter, say x, we shall make this explicit by writing P, when needed.

We denote by Bg(z,7),r > 0 the closed ball of radius 7 in R? centered at
x € R, and we write By(r) = Ba(o,7) to be the ball centered at the origin. If
G = (V, E) is a graph, we denote by Bg(v,n) the ball of radius n € N in the
graph metric, centered at v € V.

We write Leby, for the k-dimensional Lebesgue measure.

For a set A € R? we let
Al = A+ By(o,t),

be the closed t-neighborhood of A.

The volume of a set A C R? will be denoted by Vol (A).

3



4 2. Theory

2.2 Fractal geometry

The notion of fractals and self similarity is believed to have started sometime
during the 17th century with Leibniz and his ilk. The first classical examples of
fractals, such as the Cantor set and the Koch snowflake, appeared during the
end of the 19th century and the beginning of the 20th century. The term fractal
on the other hand first appeared in 1975 and was coined by Benoit Mandelbrot
in his essay Les objets fractals: forme, hasard et dimension, see [Man75] as well
as [Man82| for the revised and enlarged English version. For a more complete
treatment on the subject of fractals we refer to [BP17, [Fall4].

The easiest fractals to describe are typically generated via some iterative proce-
dure. As introductory examples, let us consider the Cantor set and the Koch
snowflake.

The Cantor set is perhaps the easiest fractal to describe. Starting with the unit
interval [0, 1], one deletes the open middle third (%, %) leaving the union of two
disjoint line segments: [O, %] U [%, 1}. Continue by deleting the open middle
third of each line segment one obtains the union of four disjoint line segments:
[07 %] U [%7 %} U [%, g] U [%, 1]. Proceeding in this manner one obtains, in the
limit, the classical Cantor set, C.

Worth noting is that C is self-similar (since C = 1C U (3C+ 2) ). Also the
length of C is zero, but as we shall see there is a more sophisticated way of
measuring its size.

Figure 2.1: The first 5 iterations of the Cantor set

We point out, for future reference, that C is totally disconnected, meaning that
all connected components are singletons.

Let us now describe the second example, the Koch snowflake. The procedure is
similar to the Cantor set but instead of removing parts from a preexisting shape
we now add parts to it. The construction is as follows. Start with an equilateral
triangle. Replace the middle third of each side by a smaller equilateral triangle,
see Figure [2.2] Repeating this procedure for each new side indefinitely one
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obtains the Koch snowflake.

RN

Figure 2.2: The three first iterations of the Koch snowflake

Interestingly enough, the perimeter of the Koch snowflake is infinite but the
area is finite.

These two examples indicate that we ought to be a bit more careful when
studying these types of objects. In particular it is of interest to study the
dimension of these types of sets. In this thesis we consider the so-called
Hausdorff dimension which we now define. For a subset F' C R?, we define the
s-dimensional Hausdorff measure of F' to be

H(F) = ;i_r% inf {Z diam (U;)® : {U; }i>1 is a d-cover of F} )

i=1
where {U; };>1 is a é-cover of F if diam (U;) < 6 forevery i > 1 and F C |J;2, U;.
Next, the Hausdorff dimension of the set F' is defined to be

dimy (F) :=inf{s > 0: H*(F) = 0} = sup{s > 0: H°(F) = oo}.

The Hausdorff dimension is a natural extension to the classical notion of
dimension in the sense that points have Hausdorff dimension 0, lines have
Hausdorff dimension 1, and in general any k-dimensional subspace S C R¢ has
Hausdorff dimension k.

Referring back to the examples, the Cantor set has Hausdorff dimension
log(2)/ log(3) while the boundary of the Koch snowflake has dimension log(4)/log(3).
Observe that the Cantor set has Hausdorff dimension strictly greater than 0
even though it is totally disconnected.

With these definitions and examples in mind one might ask what the precise
definition of a fractal is. It turns out that there is no satisfactory definition
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of a fractal. In fact Mandelbrots original definition (a set is a fractal if its
Hausdorfl dimension is strictly greater than its topological dimension) turns
out to exclude ”a number of sets that clearly ought to be regarded as fractals”,
[Falld]. Falconer provides a less precise but a more philosophical definition of a
fractal.

A set F'is a fractal if it has the following properties

1. F has a fine structure, i.e. detail on arbitrarily small scales.

2. F'is too irregular to be described in traditional geometrical language,
locally and globally.

3. F often exhibits some type of self-similarity.

4. Usually, the “fractal dimension” of F' (defined in some way) is greater
than its topological dimension

2.3 The hyperbolic plane

The hyperbolic plane is essentially the two-dimensional manifold of negative
constant curvature. In the context of percolation theory, the hyperbolic plane is
often used as a stepping stone for considering classical models in a non-euclidean
setting.

There are various "models” of hyperbolic geometry, but all of them are in fact
isometrical to each other. The two most well known models are the Poincaré half
plane model, and the Poincaré disc model. For different models and additional
facts regarding hyperbolic geometry we refer to [CFKP97).

The disc model is defined by equipping the unit disc D = {z =z + iy : |2| < 1}
with the hyperbolic metric

ds? = da? 4 dy?),

o
(1—12*)?
and the corresponding volume measure is given by

4

7(1 — |Z‘2)2dxdy.

dp =

We refer to D equipped with the metric ds? as the hyperbolic plane. The
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isometry group of (D,ds?) is given by the family of functions

—a

z
Ta = AT 5
Az) =X az —1

A =1,la| <1, (2.1)

and coincides with the group of conformal automorphisms on D.
The hyperbolic distance between two points p(u,v),u,v € D is given by
A0l 1
p(u,v) := inf 2/ ————dt:ye C",y(0) =u,y(1) =v o,
o 1—|(t)]
and is known to be equal to

p(u,v) = 2tanh ™t | — Y

1—av

The curve that minimizes the distance is called the geodesic joining u and v.
Geometrically, the geodesics corresponds to circle-segments which intersect the
boundary of 0D at right angles.

Figure 2.3: The hyperbolic geodesic between the points w and v in the Poincaré disc
model.

Remark 2.3.1. As a remark we describe a different model of the hyperbolic
plane, the Poincaré half plane model. This model is defined by equipping the
upper half plane H = {z € C: Im z > 0} with the metric

_ da? + dy?

2,
ds” : 7
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These are seen to be isometric by applying either of the Mébius transformations

¢:H—-D, 2 =%, (2.2)

. itz
¢Y:D—=H, z— 5.

2.4 Poisson point processes and stochastic ge-
ometry

Poisson processes of various types are commonly used in percolation models and
we shall see several examples of these appearing throughout the thesis. Poisson
processes have numerous nice properties which make them tractable to analysis.

For further background on Poisson processes we refer to [SWO0S].

Definition 2.4.1. Let X be a locally compact space and let B(X) denote the
Borel o-algebra on X.

Consider the space of locally finite counting measures

Q:=<Kw= Zéw tw(A) < 0o,VA € B(X) : A compact
i>1
Let P be a probability measure on Q such that

n

PweQ:w(d)=kii=1..,n}]=]]

i=1

plAl~

e HlAd]
k;! ’

where {A;}1, € M is any collection of measurable disjoint sets and k; € N,Vi €
{1,2,...,n}. The random element w € Q with law P is said to be a Poisson
process on X with intensity measure (.

Remark 2.4.1. Alternatively, we say that a random element w € Q) is a Poisson
point process on X if for any sequence of disjoint sets A;,1 < i < n the random
variables (W(A;))i<;<, ore independent and Poisson distributed with parameter

1(A;).

Let us now discuss some examples of some classical Poisson point processes.

Example 2.4.1. The standard Poisson point process on R? is obtained by
letting X = R? and taking the intensity measure to be the Lebesque measure,
= A-Lebg, A > 0.
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Remark 2.4.2. The Poisson point process in R? can locally be described
as follows. Let A € R? be a compact subset with non-empty interior. Let
N4 = w(A) be the number of points contained in A. Conditioned on N4, the
pPoints 1, ..., T, € supp (w) are then i.i.d with distribution

_ Lebg(BN A)
P(z; € B) = 7Lgbd o

Figure 2.4: A simulation of the Poisson point process in RZ.

A different example that will be of use when defining the Poisson cylinder
process is the Poisson line process.

Example 2.4.2. Let A(2,1) be the space of affine lines on R? and let vy be the
unique (up to scaling) measure on A(2,1) which is invariant under translations
and rotations. The Poisson line process is a Poisson point process on the space
A(2,1) with intensity measure vs.

If we parametrize a line L € A(2,1) in two dimensions by
L(a,p) = {(a, )t + (p,0) }ycr »a,p € R.

Then vy is given by

1
dva(p,a) = 1+ a2)3/2
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N\
N

FORONG

Figure 2.5: A simulation of the Poisson line process in R?. Different colors represent
different lines.

It might clear from Figures [2:4] and [2.5] that the Poisson processes in these
examples can be viewed as random sets in some sense. The precise definition is
as follows.

Definition 2.4.2. Let ¥ be the family of closed sets in RY. Let F be the
o-algebra generated by the families

Fx ={FeX:FNK#0}, K compact.

A random closed set is a X-valued random variable.

Remark 2.4.3. We now describe how the Poisson line process on A(2,1)
induces a random closed set (see Example . The union of the lines
contained in the support supp (w) defines a random closed set in R? by

S(w) = U L, (2.3)

Lesupp (w)
see Figure[2:5 Moreover, the law of S is determined by

P[SNK =0 = Plw(Lk) = 0] = e 72(£x) (2.4)
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where

Lx={LeA@21):LNK #0}

is the set of all lines that intersect K. A similar but easier construction holds
for the Poisson point process in Example[2.].3

In Chapters[3]and [4] we will see more examples of how Poisson processes generate
random sets.

2.5 Brownian motion

Brownian motion or the Wiener process is the canonical mathematical model
describing diffusion. There are numerous ways of characterizing Brownian
motion, for instance as a scaling limit of the simple random walk, or as the
Markov process with semi-group defined by the solution to the heat equation or
even as the Gaussian process (W;);>¢ with covariance Cov(W;, W) =t As. For
a more in depth discussion concerning these topics we refer to [MP10, [Szn98§].

The standard definition of the one-dimensional Brownian motion is as follows.
First recall that a random variable X is normally distributed with mean p and
variance o2 if its distribution function is given by

1 v (t — p)?
< = — _ . .
P,o X <z — /_Oo exp { 572 dt,Vz € R (2.5)

The definition of Brownian motion is given below.

Definition 2.5.1. A stochastic process {W(t) : ¢t > 0} is a one-dimensional
Brownian motion started at x € R if W(0) = z and

o For all times 0 < t; < ty.... < t, the increments W (tj11) — W(t;),5 =
1,2,...,n — 1 are independent random variables, and are normally dis-
tributed with mean 0 and variance t; —t;_1.

e The function t — W (t) is almost surely continuous.
If Wi, Ws, ..., Wy are independent Brownian motions started at
W1(0) = z1, Wa(0) = 29, ..., Wg(0) = x4,
respectively, we then say that the vector

W(t) := (W1i(t), ..., Wa(t))
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is a d-dimensional Brownian motion started at x = (1, ...,24) € R%.

The fact that Brownian motion exists is a highly non-trivial fact and the
first proof of this fact is attributed to Norbert Wiener, see [Wie23|, and a
contemporary proof can be found in [MP10].

Figure 2.6: A simulation of the Brownian motion in R®. The color gradient (starting
from blue and ending at red) describes the evolution of the Brownian motion.

Remark 2.5.1. In the context of the Brownian interlacements and the Brow-
nian excursions process (which we will encounter in later chapters) we will
mainly be considering the graphs of Brownian motions rather than the random
curves evolving in time.

We shall now introduce some notions from potential theory. In order to do so
we shall need some preliminary definitions. The transition density, p(t, x,y), of
Brownian motion is defined by the equation

P, [W(t) € A] 1= P[W(t) € AW(0) = 2] / pltz,y)dy, ACRY (2.6)
A

and since W (t) is a normally distributed variable it follows that p(¢,x,y) is
given by

1 1 )
p(t,x,y):@m)dﬂexp{—% T —y| } (2.7)
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The Greens function, whenever it exists, is defined by

I(d/2—1) d+2

[Tt aygyat = { e =y T, d 23, N
G(z,y) A p(t,2,y) { - Q-1 (2.8)

The hitting time of a set K C R? is the first time that the Brownian motion
hits K
Hg:=if{t>0:W({) € K}, (2.9)

and the last exit time of a set K is defined by
Lg :=sup{t>0: W(t) e K}. (2.10)
Note that Hyx < oo if and only if Lg > 0.

Remark 2.5.2. The fact that G(z,y) = oo, Va,y if d < 2 is due to the fact
that Brownian motion is recurrent for d < 2.

We are now ready to discuss the potential theoretic framework needed. For a
set K we let

Ex(\) = /K  GlepAd)A)

denote the Newtonian energy of a probability measure \ supported on the set
K. The capacity is defined by the inverse of the minimal Newtonian energy

-1
K)= inf  FEx(A . 2.11
cap(K) {xﬁﬁplld)} (2.11)
The minimizer, when it exists, is denoted by ex and is called the equilibrium
measure of K. It can be shown that ey is supported on the boundary 0K and
that ex (K) = cap(K).

Example 2.5.1. If K = By(x,r) then the normalized equilibrium measure,
ex = mel(, s given by )
€K = Op,

where o, is the uniform probability measure on dBg(z,r). Moreover,

7d/2
cap(By(z,r)) = I‘(2 =2, (2.12)

21"

It is a classical fact, due to Kakutani [Kak44], that cap(K) > 0 if and only if
P, [Hx < 00| >0, Vx € R?. Moreover, the equilibrium measure is related to
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the hitting time and last exit time by

exe,(dy) = / P, [W(Hg) € dy, Hi < o0]ex,(da), K1 C Ko, (2.13)
P, [W(Lk) € dy, Lg > 0] = G(z,y)ex (dy). (2.14)
In particular, Equation (2.13]) implies that if W (0) is a started according to
€K, = me K, then the probability of hitting K is simply given by
. cap(K1)
P, [H de) = ———= 2.15
[ Bl < ocler (da) = SR (215)

2.6 A brief discussion on the theory of confor-
mal restrictions and SLE

This section contains a brief discussion on the theory of conformal restriction
and SLE processes. For a more in depth discussion concerning these topics we
refer to [Wulb], [Wer05], [LSWO03] and Chapter 9 in [Law(05].

Schramm-Loewner evolution, introduced by Oded Schramm in [Sch00], describes
a conformally invariant random growth process of a set K¢,¢ > 0 in a simply
connected domain D C C. To be precise, suppose that D = H is the half plane
and let £(t) := W(kt),k > 0, where W is a one-dimensional Brownian motion
with W(0) = 0. The SLE(k) process is then defined as follows.

For z € H\ {0}, let g;(z) be the solution to the ODE

Orgn(2) = —— 0(2) = (2.16)

gi(z) = &(t
and note that this is well defined up to the time

T(z) := sup {t >0: min |gs(z) —&(t)| > 0} .
s€0,t]

Let K; :={z € H: T(z) < t} and let H; be the unbounded component of H\ K.
It is known that K; is bounded and that g; is a conformal map from H; onto H.
The collection of conformal maps (g;);>o is then called the chordal SLE(k).

The SLE(k) curve is then defined by

y(t) = lim g7 ((1) + iy).

yd
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It should be noted that for x € (0, 4] the random curve «(t) in fact is a simple
curve, see [RS05]. Moreover, the almost sure Hausdorff dimension of «(¢) is
min (1 + £,2), [Bef0g].

Figure 2.7: A simulation of the SLE(8/3) curve. The curve was generated using the
code by [Fos19] which is based on the algorithm developed in [FLM19] .

For an arbitrary simply connected domain D with points x,y € 9D, the chordal
SLE(k) from z to y in D can be defined in the following manner. Let ¢ : H — D
be any conformal map such that ¢(0) = xz, $(c0) = y, then the chordal SLE(k)
in D is defined as the image of the chordal SLE(«) in H from 0 to oo under ¢.

It is worth commenting that the SLE(x) curves are in fact the only random
curves satisfying the following properties:

1. Conformal Invariance: If v is an SLE curve in D from z to y and
¢ : D+~ D' is a conformal map, then ¢(7) has the same distribution as
an SLE curve in D’ from ¢(z) to ¢(y).

2. Domain Markov Property: If v is an SLE curve in a domain D.
Then given ([0, t]) the remaining curve ([t, oo]) is an SLE(x) curve in
D\ ~([0,1]).

We shall need a variant of the standard SLE(x) process called the SLE(k, p)
introduced in Section 8 of [LSWO03]. Suppose p > —2 and let W, be a standard
one-dimensional Brownian motion. Let Z; denote the solution of the stochastic
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differential equation

2
dZt:p; dt +/RdW,, Zog =2 >0,
t
and let
)
Ot:_/o -du. 00 =0,

We remark that Z; 4 VKY; where Y; is a so-called d-dimensional Bessel process
with

2 2
d:l_i_M.
K

By letting £(t) = Z; + O; the resulting solution to Equation is the
SLE(k, p) process in H started from (0, z). The point z is referred to as a
force point and p is thought of as a charge or weight that is associated with z.
Conceptually, p describes the attraction (p < 0) and repulsion (p > 0) to and
from the boundary.

We now move on to discussing the theory of restriction measures. As is standard,
we shall give the definition on the upper half plane H. Before we can give the
full definition we shall need some additional concepts.

Let A. be the collection of all bounded closed subsets A C H such that
0¢ A,A=ANH, and H\ 4 is simply connected.
and let Q1 denote the family of closed sets K C H such that
KNR = (-00,0], K and H\ K is connected .

Moreover, let AT ={A € A.: ANR C (0,00)}. We equip Q1 with the o-field
generated by the sets [K € Q1 : KN A = (] where A € A}, c.f Definition m

Let @4 : H\ A — H be the conformal map such that

D4(0) =0, Py(o0) =00, lim Py(z)/z=1

Z— 00

Definition 2.6.1. A random element K on QT has the right-sided restriction
property if

1. )\Kinorany)\>0
2. For any A € A}, the conditional law of ®4(K) on the event KNA=10
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coincides with K.

Any probability measure satisfying the conditions is called a one-sided restriction
measure.

Remark 2.6.1. The second item of this definition should be understood in
terms of the pushforward of the measure corresponding to the law of the random
set K. That is

P[@N(K) e ] =P[K € [KNAH#

It turns out that these two conditions are very restrictive. In fact for any
one-sided restriction measure there exists a a > 0 such that

P[KNA#0) =40 (2.17)

Hence the family of one-sided restriction measures corresponds to a one-
parameter family of measures P,. We point out that since the events KN A # ()
generate the o-algebra, Equation (2.17) determines any such P, uniquely.

We comment that there is a two-sided analogy to the one-sided restriction
measures (which are often just referred to as conformal restriction measures).
In particular the law of an SLE(8/3) coincides with the restriction measure
with exponent o = 5/8, see Theorem 6.1 in [LSWO03].

Example 2.6.1. An example that is of great importance to Paper II is that the
right-side boundary of a one-sided restriction measure with exponent B coincides
with the law of a SLE(8/3, p) where p and j3 is related via the equation

p(B) = % (—8 + 2245 + 1) . (2.18)
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3 Percolation

Let us begin with two seemingly distinct questions

e Suppose that a porous stone is submerged in water. How likely is it that
the water reaches the center of the stone?

e Given some type of wireless communication system, how can we quantify
the coverage and connectivity of this system?

The unifying theme of these questions is that they both can be analyzed with
methods in percolation theory.

The first question is perhaps the one that initialized the entire mathematical
field of percolation. The first concrete model is is due to Hammersley and
Broadbent [BH57] and is commonly referred to as the Bernoulli percolation
model. The second question led E.N Gilbert to introduce the classical Poisson
Boolean model, [Gil61], [Gil65], as a simple model for spatial networks.

Despite being motivated by questions in physics and communications theory, the
applications to other areas of science are manifold, see for instance [Bal87] [Sah94]
and the references therein.

3.1 Bernoulli percolation

The first and perhaps the most fundamental model of percolation is the Bernoulli
percolation model. Since its inception, the Bernoulli percolation model has
received a great deal of attention within the probabilistic community and has
inspired the creation of similar models such as first-passage percolation and
bootstrap percolation, see [HW65], [CLR79]. For a more complete treatment of
the Bernoulli percolation model we refer to the books [Gri99, [BRO6].

19
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First we describe the model informally. Consider the hexagonal lattice in Figure
[BI For each face of the lattice, flip a coin. If it turns up heads color the face
red, and otherwise color the face white.

/

Figure 3.1: A slice of the hexagonal lattice

Proceeding in this manner typically three different pictures or phases emerge.
These naturally depend on the probability that the coin shows heads, denoted by
p, as well as on the geometry of the underlying graph. What characterizes these
phases are three distinct topological behaviors. In the language of percolation
theory these phases are referred to as the subcritical phase, critical phase and,
the supercritical phase.

R A TR 0
Py
S et SN :J.

N pf-’,:‘ -3

o' A
R0 "‘ Yy

Figure 3.2: Bernoulli percolation on the faces of the hexagonal lattice. From left to
right: Subecritical, critical, supercritical.

In the subcritical phase the connected components of red vertices are finite
almost surely and the cluster radius distribution has an exponential tail. In
the supercritical phase (in this example) there is one unique system-spanning
cluster and the probability that one can find a self-avoiding path of infinite
length from a given vertex consisting of red vertices is strictly positive. In the
critical phase not much is known beyond the two-dimensional world and the
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high-dimensional world (d > 11), see for instance [Wer(09] and [HS90, HvdH17]
respectively.

We now rigorously define the model. The Bernoulli site percolation model on a
given graph G = (V, E) is defined by the probability measure P, on the space
of configurations Q¢ = {0,1}" where

P, = [ por + (1 = p)do. (3.1)
veV

For a configuration w € Q¢ we say that a site is open if w(v) = 1 and closed if
w(v) = 0. For two sets A, B C V we write A <& B to mean the event that there
is a nearest neighbour path in V' only using open vertices in w.

Given a graph G = (V, E) and a vertex o € V, we denote by
C’O(w)z{UEV:O@U},

the set of all vertices v € V' that can be reached from o using a nearest neighbor
path consisting of open sites. For simplicity, we shall assume that the graph is
transitive, which essentially means that the vertices are indistinguishable from
one another. The percolation probability, 8(p), can then be defined by

O(p) =Py (w e Q:|Ch(w)] = 0). (3.2)

Remark 3.1.1. There is a natural coupling in the Bernoulli percolation model
between different values of p. Let Uy, v € V, be a family of independent uniformly
distributed random variables on [0,1] and define the configuration

L, fU,<p
P .__ ’ v
wb = {O, else | (3.3)

for allv e V. Then wP has the same distribution as a Bernoulli percolation
model with parameter p and if p < q then wP < wl for all v € V. Using this
coupling it is clear that 0(p) is increasing in p.

The perhaps most fundamental question in percolation theory is to establish
the presence of a critical value p. € [0, 1] such that

0(p) = 0,p < pe, (3.4)
6(p) > 0,p > pe. (3.5)
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Mathematically, p. is defined by
pe :=sup{p € [0,1] : 6(p) = 0} .

The remainder of this section will be devoted to site percolation on the triangular
lattice, which is equivalent to percolation on the faces of the hexagonal lattice.
Many of the results mentioned here holds in far greater generality and we refer
to [Gri99, [BRO6] for more of these facts. For the triangular lattice we have the
following result.

Theorem 3.1.1. p. =1/2

The first theorem of this type is due to Kesten in [Kes80] and was proven for
the bond percolation model on Z?2. In general the quantity p. is not known
other than in some two-dimensional cases and typically there is nothing special
to be inferred from the specific value. It is often more interesting to understand
the different qualitative and quantitative behaviors of the specific phases. As

an example we define 6,,(p) :=P, (0 & 0Bg (o, n)), then we have the following
known result, see [Kes80, Men&6].

Theorem 3.1.2. Consider Bernoulli percolation on the triangular lattice. Then

c

O, (p) < e P p < p.,

-
O(p.) = 0.

Moreover, for p > p. the infinite cluster is unique.

We point out that the statement 6(p.) = 0 is a consequence of planarity and it
is not known, though conjectured, whether the same holds in a more general
setting. In particular, it is longstanding question whether 6(p.) = 0 holds for
the hypercubic lattice Z3. Whenever this is true however, the phase transition
is said to be continuous. The statement that the infinite cluster is unique is a
consequence of the classical Burton-Keane argument, [BK89).

In the field of percolation one is often interested in other quantities than (p).
Two frequently appearing are

X(p) = By [ICo@)I], 0n(p) = By | Ba(o,n) & Ba(o,2n)7) .

Note that if p > p. then x(p) = oo since with strictly positive probability
|Co| = co. Similarly, if p > p. then 0,,(p) > 0 since we trivially have

O2n, (p) < én (p) .
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In analogy with p. one can ask if there exist critical values py, pcross defined by

pn =sup {p € [0,1] : x(p) < oo}, (3.6)
Deross := SUp {p e[0,1]: lilglzi%lf én(p) = O} ) (3.7)

A rather remarkable fact about the Bernoulli percolation model is that all of
the critical values above coincide, see [DCT16] for a short proof of this fact.

Theorem 3.1.3.
Pc = PN = Pcross

Whenever this type of phenomenon occurs, the phase transition is said to be
sharp.

3.2 Boolean percolation

The Poisson Boolean percolation model, sometimes referred to as the Gilbert
disc model, is the simplest percolation model defined on a continuous space.
Similar to the Bernoulli percolation model, this model also exhibits three phases,
though they are far less understood.

The Poisson Boolean model is defined as a Poisson point process on
Qg =Qw= 26(%“) tw(K xRy) < 00, VK C R? compact p,  (3.8)
i>1

where the first coordinate represents the center of a ball and the second corre-
sponds to the random radius of a ball.

The intensity measure for a given A > 0 is given by
uw=X\-Lebg X p,

where p is a probability measure on R;. The random structures one wants to
study is the occupied set, O, and the vacant set, V, defined by

0 =0(w):= U By(z,7),V :=R%\ 0. (3.9)

(z,7)Esupp (w)
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It is well known, see Proposition 7.3 in [MR96], that
PO = Rd] =1 @/ rdp(dr) = oo.
0
Hence for the model to be non-trivial one must assume that

/OO r?p(dr) < oo. (3.10)
0

Observe that this quantity corresponds to the expected volume of a ball with
radius distributed according to p.

Furthermore, using the definition of a random closed set, we see that the law of
the occupied and vacant set is determined by the quantity
Py[ONK =0] =Py [K CV] =Py [w((z,7) : Ba(z,7) N K # 0) = 0]
=exp {—X(Lebg x u) [(z,7) : Ba(z,7) N K # 0]} (3.11)

.
.
.
.
.

Figure 3.3: Boolean percolation in R? with centers in the square [—100, 100]? and
intensities A = 0.01 and A = 0.2 respectively. Different colors represents different
clusters. The balls represent the occupied set and the white part corresponds to the

vacant set.

One main conceptual difference between the Bernoulli percolation and the
Boolean percolation is that the occupied and vacant sets are qualitatively
different. This is not the case if one compares the open and closed sites of a
Bernoulli percolation model.



3.2. Boolean percolation 25

Figure 3.4: Boolean percolation in R*® with centers in the box [—10,10]* and
intensities A = 0.025 and A = 0.05 respectively. Different colors represent different
clusters. The balls represent the occupied clusters and the white part corresponds to
the vacant set.

For A, B C R? define A B (and A & B) to be the event that there exists a
path contained in O (respectively in V) connecting the sets A and B. Moreover,
we define

{0 “ oo} = Np>1 {0 “ aBd(n)} .
In analogy with the Bernoulli model we define the two quantities
o
O(A) := Py [0 & oo} , (3.12)
0" (\) := Py [o A oo] . (3.13)
We comment that using a similar coupling to that of the Bernoulli percolation
model one can show that #()\) is increasing while 8*()) is decreasing in A. In

this setting the first question to address is the presence of the critical values
Aes Af € [0, 00] defined by

Ae =sup{A>0:60(\) =0}, (3.14)
Af=inf{A > 0:0()) = 0}. (3.15)

Remark 3.2.1. It should be relatively clear that since radius of the spheres in
the Boolean model can be arbitrarily large the spatial dependencies are much
stronger than in the Bernoulli percolation model. In fact a short computation
shows that the probability that the origin o € R? is connected to the boundary of
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the ball 0B4(R) can be bounded from below by:
P [o 8 aBd(R)} > Py [w(z,7) : 0 € Ba(z,r),r > 2R] > 1]
=1—exp {—)\/I{o € By(z,7),r > 2R} dzdp(r)}

=1—exp {—)\ /TZ2R Vol (Bd(r))dp(r)}

> cA / rddp(r).
r>2R

In particular as R — oo this quantity can under assumption (3.10) decay
arbitrarily slow.

These types of dependencies indicates that the approach to proving the presence
of a non-trivial phase transition concerning percolation can be conceptually
different for the Boolean percolation model when compared to the Bernoulli
percolation model.

The techniques for proving the non-triviality of A\, and A} relies on introducing
values similar to py and peross. Thus we first define

Co:{meRdzogx}
the occupied cluster containing the origin. The analogue of py is then given by
An =sup{A > 0: Ey [#Co] < o0}, (3.16)

where #C, denotes the cardinality of the set {(z,r) € w: By(z,7) C Co(w)}.
The first result concerning this threshold was due to Hall who established the
equivalence

An € (0,00) <:>/ r2dp(dr) < oo,
0
in [Hal85].
Analogous to peross one also needs to consider the following critical values

Aerose = inf {)\ >0: inf Py [Bd(r) 8 Bd(2r)c} > 0} : (3.17)

*
)\CYOSS

— inf {/\ >0 inf P [Bd(r) 4 Bd(Qr)C} > 0} . (3.18)

For the reader well-versed in percolation theory, the reason why these quantities
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are introduced is that they enables one to initialize renormalization schemes.

It was not until 2008 that A. > 0 was established by Gouéré in [Gou08] under
the minimal assumption (3.10]). To establish A} > 0 it took roughly another 10
years and the result is due to Ahlberg, Tassion and Teixeira in [ATT18a].

The sharpness phenomenon in the Boolean percolation model is much less
understood than in the Bernoulli case. In the bounded radii case it is known
that A = Across = A, see [Ziel§| for a contemporary proof. In the unbounded
radii case, Duminil-Copin, Raoufi and Tassion established the following result
in [DRT1S].

Theorem 3.2.1. If
/ 5473 p(dr) < oo
0

then Across = Ae-

For d = 2 Ahlberg, Tassion, and Teixeira established in [ATTI8b] a result
similar to what is known for the Bernoulli percolation model.

Theorem 3.2.2. If
oo
/ r?p(dr) < oo
0
then A, = A%,

For d > 3 the equality does not hold, see [Sar97]. In fact for d > 3 there
is a non-empty open interval of intensities in which both the vacant and the
occupied set percolate. A similar result holds for Bernoulli percolation as well,
see [CRS85].

We now turn to a short discussion that highlights some of the differences that
appear in the Boolean percolation model on R and H? respectively.

The unit radius version of the Poisson Boolean model in H? is defined by first
considering a Poisson point process on H? with intensity measure Ay where
pm is the volume measure on H2. At each Poisson point one places a ball of
unit radius (in the hyperbolic metric). The occupied set Oy is then defined
analogously as the union of all such balls while the vacant is the complement of
Op.

For the purpose of this discussion, let us introduce the following critical values.
The first is whether the occupied and vacant set contains a unique connected
component. Let Np and Ny denote the number of unbounded connected
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components contained within Oy and Vi respectively. Define
Ay :=inf {A>0:Py[Np =1] =1}, (3.19)

Let A., A% denote the critical values for percolation in the vacant and occupied
set. Note that for A > A; (and A < A\%) we have that No > 0 ( Ny, > 0 ) occurs
with probability one.

In R? it is a well known fact that \, coincides with the standard critical value
for percolation, but in hyperbolic geometry a different behavior occurs. The
following theorem is due to Tykesson and can be found as Theorem 4.2 in
[Tyk07].

Theorem 3.2.3. For the Poisson Boolean model in H? we have
0< A < Ay <00,

Moreover, with probability one the following holds.

1. For any A < A\., we have No =0, Ny =1
2. For any X € (A¢, \y), we have No = Ny = 00
3. For any A > A\, we have No =1, Ny = 0.

This type phenomenon has received a great deal of attention in the context
of Bernoulli percolation on so-called non-amenable graphs. It is one of the
longstanding conjectures in percolation theory to establish that there is a
non-uniqueness phase for Bernoulli percolation on transitive non-amenable
graphs.

The second critical value we consider here is the presence of infinite geodesics
emanating from a fixed point. For a random set S in H?, let Vis(S) denote the
event that there is an infinite geodesic ray emanating from o contained in S.
The critical values are then defined by

A yis i=sup {A > 0: Py [Vis(Oy)] = 0}, (3.20)
N i=Inf {A > 0: Py [Vis(Vg)] = 0} (3.21)
In the Euclidean setting it is known that Ayis = 00, A}, = 0 but for the
hyperbolic plane we have the following theorem which is due to Benjamini,
Jonasson, Schramm and Tykesson, [BJST09).

Theorem 3.2.4. It is the case that 0 < Ayis, A

is < 00 and at the respective
critical values there are no infinite geodesics.
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Theorem says that for A € (0, Ayis), with positive probability there exists
a random direction from o in which one can move forever without hitting Op.
This is somewhat surprising since in any fixed direction one will hit Oy with
probability one.

3.3 Fractal percolation models

Fractal percolation models are in a sense scale-invariant versions of classical
percolation models. They provide interesting examples of random fractals that
are (relatively speaking) easy to analyze and that exhibit several interesting
phenomena. A random fractal is a random set whose law is statistically self-
similar in the sense that an enlargement of a small piece has the same distribution
as the original set.

In this section we shall discuss the two most simple fractal percolation models,
the Mandelbrot fractal percolation model and the fractal ball model.

(a) The Mandelbrot percolation model. (b) The fractal ball model.

The Mandelbrot percolation model was introduced by its namesake in [Man74]
as a model for turbulence. The first mathematical treatment of this model is
due to Chayes, Chayes and Durrett, [CCD88]. They considered the model in
the unit square, [0,1]2, but the model generalizes easily to higher dimensions.
For the sake of presentation, we shall restrict ourselves to the two-dimensional
case.

Informally, the model is obtained by first dividing the unit square [0, 1] into N2
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equal squares for some integer N > 2 and then flipping a coin independently for
each of the squares. If the coin shows heads we keep the square and otherwise
we discard it. This produces a random set M;. For every square in My, we
further subdivide it into N2 subsquares and repeat the coin flipping procedure
yielding a new random set My. This process is then repeated indefinitely for
each new square, dividing it into N2 new squares and then flipping a coin for
each such square.

The mathematical definition of the model is as follows. Let N > 2 be an integer
and let eﬁj, 1 <4,7 < N" n>1bean iid sequence of Bernoulli random
variables with

Ple);] =pe(0,1),

no o li—1 1 j—1 3
Bivj |:Nn ’Nn:| ><|:Z\]n ’Nn:|’

to be the square with lower left corner (%2, JN;"I) and sidelength 1/N™.

and define

Let

,_ 1
Mi= | B
1<ij<N
1
€=l

and proceed inductively to define M,,,n > 2 by

M,=M,in| |J By
1<i,j<N™
;=1

Since M,, is a decreasing sequence of compact sets Cantor’s Intersection Theorem
implies that the limiting set M = N,,>1M,, whenever M,, # (,Vn > 1.

Remark 3.3.1. Note that if €'; = 0 then all subsquares contained within
B}, are trivially discarded. It is not hard to see that there is a one-to-one
correspondence between a Galton Watson tree on an N? regular tree and the
Mandelbrot percolation model.

Now that the mathematical framework is up and running let us discuss what
immediate questions come to mind regarding the limiting set M. The first basic
question is whether

Py,[M=0]=1,Ype[0,1,N >2.
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Fortunately this is not the case. In [CCD88] the following elementary result
was established.

Lemma 3.3.1. For p < 1/N? we have
PnpM=0]=1,
while for p > 1/N? we have
Py, M #£ 0] > 0.

Rephrased in terms of critical values, this theorem states that if we let p. be
the critical value

pe(N) =sup{p € [0,1] : Py, [M=0] =1}
then p.(N) = 1/N? and Py 1 /n2 [M = 0] = 0.

Though peripheral to their purpose in [CCD88], they also established the almost
sure Hausdorff dimension of M.

Theorem 3.3.1. If p > 1/N?, then the Hausdorff dimension of M with param-

eters p and N is 2 + lfgg((f\],)).

It is a classical fact, see Proposition 3.5 on p.51 in [Fall4], that if the Hausdorff
dimension of a set is strictly less than one, then the set is totally disconnected. A
little algebra shows that if p < 1/N then M is totally disconnected. The converse
of this statement is not true, in fact M is known to be totally disconnected for
p < 1/V/N, see item (2) in subsection 1b of [CCDSS].

Hence, the next question that is natural to ask is, what are the topological
properties of M? Does it look like the Cantor set (see Figure ? That is,
is it totally disconnected for all possible values of p, or are there connected
components consisting of more than 1 point?

Phrasing this in terms of a critical value, we define
pe(N) :==sup{p € [0,1] : Px, [M is totally disconnected | = 0}. (3.22)

Worth mentioning is that in the original paper [CCD8§| they initially considered
a different critical value, namely

PL(N) =sup{p € [0,1] : Py, [M has a left-right crossing in [0,1]*] =0} .

Theorem 2 in the same paper shows on the other hand that they coincide in
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the two-dimensional case. The non-triviality of p.(N) was also established in
the same article.

Theorem 3.3.2.
0<p.(N)<1,VN >2.

We can now move on to defining the fractal ball model. This model can be
viewed as a semi-scale invariant version of the Poisson Boolean model.

Similarly to the Boolean model this is a Poisson point process on the following
space of configurations

Q= {w = 2(5(%”) cw (K X [a,b]) < oo,

i>1

K x [a,b] C R? x (0, 1] compact } (3.23)

c.f. with Equation (3.8)). The intensity measure of the fractal ball model is
given by
A-Lebg x {0 < r < 1}~ Ddr X > 0. (3.24)

The object of interest is the vacant set
Ve=R\ ) Baxn). (3.25)
(z,r)€Esupp (w)

Note that a key difference when compared to the Boolean model is that the
number of balls containing a point z € R? is almost surely infinite. In fact, for
any A > 0 we have

Py [z € V4] = 0,Vz € RY,

which by Fubinis theorem implies that the Lebesgue measure of Vy is almost
surely 0. Analogously to the Mandelbrot percolation model this model exhibits
two distinct phase transitions. The existence phase transition, defined by

Ae =inf {A>0:P, [Vf = m =1}, (3.26)
and the connectivity phase transition
Ae = 1inf {A > 0 : Py [Vy is totally disconnected | > 0}. (3.27)

The result for the existence phase transition is as follows.
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Theorem 3.3.3. For any d > 1 we have A\, = d/Vol (Bg4(0,1)) and

Pr (Vr=0)=1

The proof of this result is similar to the proof of Theorem 1.1 in Paper III, and
the result is due to Broman, Jonasson and Tykesson in [BJT17], see also the
paper by Bierme and Estrade [BE12).

Using Theorem 3.6 in [BEI12] we can compute the Hausdorff dimension.

Theorem 3.3.4. For A\ < X, the Hausdorff dimension of Vy is d—Vol (Bg(o,1))\
almost surely.

The result that establishes the non-triviality of the connectivity phase is due to
Broman and Camia in [BC10]. The proof is based on a coupling between the
fractal ball model and the Mandelbrot percolation process.

Theorem 3.3.5. For any d > 2 we have A, € (0,00) and

Py, (Vy is totally disconnected ) = 1.

Compared to the classical percolation models we see that the fractal models
exhibits a discontinuous phase transition concerning the connectivity threshold
Ac. In particular, Corollary 2.6 in [BC10] shows that for any annulus Byg(s) \
By(t),0 <t < s < oo the probability that V¢ contains a connected component
that intersects both 0B4(t) and 0Bg4(s) is discontinuous in A at ..
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4 Continuum percolation mod-
els with infinite range depen-
dencies

In this chapter we introduce the models studied in the appended papers. The
models are the Brownian interlacements, the Brownian excursions, the fractal
Poisson cylinder model and the random ellipsoid model. We aim to give an
understanding of the models from a local point of view and for the complete
technical details we refer to the appended papers.

u=2.500

Figure 4.1: The vacant set left by a random walk on the discrete torus (Z/NZ)?
after [uN 3] steps. The largest cluster is colored red and the second largest is colored
blue. Simulations due to David Windisch, see [Win].
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4.1 Brownian interlacements

The Brownian interlacements is a continuum analogue of the random inter-
lacements model. It was introduced as a means to study scaling limits of
the so-called occupation time measure of the random interlacements model in
[Szn13]. The random interlacements was introduced by Sznitman in [Szn10] and
is a percolation model exhibiting slowly decaying infinite range dependencies.

Informally, the random interlacements model consists of a Poisson process on
the space of doubly-infinite transient nearest-neighbour paths on Z¢,d > 3
modulo time-shifts, which looks like two-sided simple random walks. In this way
one obtains two random sets on Z?, the set of vertices that are covered by the
trace of the Poisson process, the occupied set, and the set of vertices that are
untouched, the vacant set. The development of the model was motivated by the
study of disconnection times of random walks on the discrete torus Z? \ NZ¢
in [BSOS]. In fact, the geometry of the sites in the torus Z¢ \ NZ¢ that are
untouched by the random walk is believed to correspond to that of the vacant
set of the random interlacements as N gets large, see [Win08| [Szn09].

As of now this process has received a great deal of attention with numerous
connections to other models in statistical mechanics such as the Gaussian free
field, see for instance [Lupl6l [Szn12, [RS13], and the wired uniform spanning
forest, [Hutlg§]. The Brownian interlacements process on the other hand is
not as well studied apart from the basic properties concerning percolation and
connectivity, [Lil9]

Similarly to the random interlacements the Brownian interlacements process is
defined as a Poisson process on the space of doubly-infinite transient Brownian
paths on R%, d > 3. To be more precise, we let W* denote the space of bi-infinite
continuous transient curves in R modulo time shifts. On W* there exists a
certain o-finite measure v, see Theorem 2.2 in [Szn13|, which is invariant under
the rotations and translations of R?. The Brownian interlacements process with
intensity « is then defined as a Poisson point process on W* with intensity
measure « - v, > 0. The construction of the measure v is quite intricate and
we refer to [Sznl3] for the details. Vaguely speaking the measure v makes the
trajectories look like double-sided Brownian motion paths. The parameter «
governs the mean number of Brownian paths that intersects a fixed set K and
plays the same role as the intensity A in the Poisson Boolean model.

The occupied set of the Brownian interlacements (denoted by Bl(c, p)) is then
defined as the closed p-neighborhood of the union of the trajectories in the
Brownian interlacements process. The law of the occupied set of the Brownian
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interlacements, Bl(a, p) is then determined by
P [Bl(a, p) N K # (] = e~ cap(K") (4.1)
where cap(K) is the Newtonian capacity defined by ([2.11]).

A different and perhaps more intuitive description of the occupied set is the
following. For simplicity we shall assume that p = 0 and write Bl(«) = Bl(«, 0).
Let » > 0 and let

27Td/2
N, = N,(a) ~ Po | ¢ =172
= et~ Po (o)
be a Poisson random variable. Conditionally on N,(«) let Xi,...,Xn, be
independent uniformly distributed random variables on the sphere 9By(r) and
let W1y, ..., Wy, be independent Brownian motions with W;(0) = X;. Then the
Brownian interlacements satisfies the following distributional equality

N, ()
Bl(a) N Ba(r) = | | [Wi] N Ba(r), (4.2)

i

—

Il
-

where [W;] = U;>oWi;(t) denotes the trajectory of the Brownian motion.

Figure 4.2: Two simulations of the Brownian interlacements in the sphere Bs(100)
with intensities @ = 0.001 and o = 0.015 respectively. Different colors correspond to
the different trajectories [W;] entering the local picture.
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4.2 Brownian excursions

The Brownian excursion process originated as a tool for studying the intersection
exponents of Brownian motion, see [LW00, LW99, [LSWO01]. It is a conformally
invariant process and is intimately linked with the SLE(k, p) curves via the
theory of conformal restriction measures, see [LSWO03]. It has also been shown
that the Brownian excursion measure is the scaling limit of the so called simple
random walk excursion measure, see [Koz06].

Concretely speaking, the Brownian excursions process in the unit disc D is a
Poisson point process on the space of trajectories who spend their life time in D
with endpoints on the boundary 0. The intensity measure, typically referred
to as the Brownian excursion measure, is a o-finite measure and is described
below.

Let W¢ be the set of curves w : [0,T,,] = C where T, € (0,00). Then let Wp
be the set of all w € W¢ such that w(0),w(T,) € ID, w(t) € D,Vt € (0,Ty).

We equip W¢ with the metric d¢ defined by

de(w,w') := Ty — T |+ sup |w(Tys) — w' (Tys)|, w,w € We.
s€[0,1]

It is known that W¢ equipped with d¢ is a complete metric space, see Section
5.1 of [Law05].

For r € (0,1), let o, be the uniform probability measure on 9Bz(r). Let P,
denote the law of a Brownian motion started uniformly on the circle 0Bs(r)
that is killed upon hitting the boundary 0. The Brownian excursion measure
on D is defined as the weak limit (with respect to e.g the induced Prokhorov
metric)

. 2w
= lim —P,, . (4.3)

We remark that p is supported on Wp. The Brownian excursions process is a
Poisson process with intensity measure « - pu, @« > 0. The Brownian excursions
set at level « is given by the union of the trajectories in the aforementioned
Poisson process and is denoted by BE(«). Our main motivation for studying
the Brownian excursion process is the fact that this can be seen as a hyperbolic
analogue of the Brownian interlacements process. Indeed, in Paper II, we
prove that the local picture of the Brownian interlacements and the Brownian
excursions cloud are of similar flavor.

We now describe the local picture of the Brownian excursions set inside a ball.
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Let 7 € (0,1) and let

log(1/r)

be a Poisson random variable. Conditionally on NN, let

N, = Ny(a) ~ Po (a%>

X1, Xn

”

be independent uniformly distributed random variables on the circle 0Bs(r)
and let Wy, ..., Wy, be independent Brownian motions with W;(0) = X; and
that is killed upon hitting the boundary of the unit disc. Then the Brownian
excursions process satisfies the following distributional equality

Ng (o)
BE(a) N Ba(r) = | J [Wil N Ba(r), (4.4)

i=1

where [W;] denotes the trajectory of the Brownian motion.

Figure 4.3: Two simulations of the Brownian excursion process with intensities
a = 0.4 and a = 1.8 respectively. The white part is the vacant set and the black part
is the occupied set.

4.3 The fractal Poisson cylinder process

The fractal cylinder process is the main actor of Paper III. Before we get into
the details we recall some facts and results regarding the standard (non-fractal)
Poisson cylinder process.
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The regular Poisson cylinder process is a continuum percolation process which
can be thought of as the natural geometrical extension of the Poisson Boolean
model in the sense that we replace “points by lines”. Concretely, this means
that the underlying randomness now comes from a Poisson process w on the
space of affine lines on R? denoted by A(d,1). The intensity measure of the
Poisson process is given by A - g, A > 0 where v4 is the Haar measure, that is
vq is the canonical volume measure on on A(d,1). See Example for the
case d = 2. Each line L in w is then taken to be the central axis of a bi-infinite
cylinder of radius 1. The vacant set is then given by is the complement of the
union of the cylinders.

The Poisson cylinder process has been studied in the context of percolation
in [TW12| [HST15, BT16]. In particular, in [TW12, [HST15] it is proven that
the vacant set undergoes a non-trivial phase transition concerning percolation
whenever d > 3. A rather contrasting behavior is proved in [BT16] concerning
the occupied set. There it is proven that for any two cylinders in the Poisson
cylinder model there is a sequence of at most d — 2 other cylinders creating a
connection and that there are cylinders within the model that are not connected
by a sequence of at most d — 3 other cylinders. On the applied side the Poisson
line process has been used in the modeling of various properties of vehicular
networks, see [CD1§].

The Poisson cylinder model on R can locally be generated as follows. Let
B = [-L,L]%! x {0} be a d — 1-dimensional box with side length 2L > 0
embedded in R? and let N, ~ Po (A(2L)?"!) be a Poisson random variable.
Conditionally on Ny, let p*,;1 < i < Ny be i.i.d random variables uniformly
distributed on B. Let a;,1 < i < Ny, be i.i.d random variables on R%~! with
the probability density function, f : R4~ — R, given by

fla) = ———r, (4.5)

(L Jlz)) >

where ¢4 is chosen so that fRd,l f(z)dz = 1. Then if we let
Li = {(al—, 1)t+ (p“O) 1t e R}

we have that the Poisson cylinder model restricted to cylinders with center line
intersecting the box B coincides in law with the union of cylinders

Np
U (zi + Ba(0,1)). (4.6)

i=1
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Figure 4.4: The occupied set of the Poisson cylinder model in R® with intensity
A = 0.003.

The fractal cylinder model is a Poisson process on the augmented space A(d, 1) x
(0, 1] where the second coordinate describes the cylinder radius similar to the
fractal ball model, see Section [3.3] To be precise, we consider a Poisson process

w= Z 5(Li,7‘i)

i>1
on the space A(d, 1) x (0,1] equipped with the intensity measure
g @T{0 <7 < 1}r4dr. (4.7)

The vacant set of the fractal cylinder process is then defined by

V) =R ) (L+Balo,r).
(L,r)€supp (w)
Similar to the fractal ball model, see Section the probability that a fixed

point is in V is zero for any A > 0. In particular, this implies that the Lebesgue
measure of V is almost surely zero.

4.4 The random ellipsoid model

The random ellipsoid model is obtained by considering a Poisson cylinder model
in R%, d > 3 and then intersecting it with a k-dimensional subspace. In this way
one obtains a continuum percolation model depending on the two parameters
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d >3 and k € {2,3,...,d — 1} as well as the intensity A of the underlying
Poisson point process on A(d,1). The random ellipsoid model resembles the
Poisson Boolean model, the key difference being that one replaces the balls with
ellipsoids. It appeared implicitly in one of the proofs in [TW12]. The case k = 2
and d = 3 was already studied in [TU17]. Continuum percolation models with
ellipsoids has been considered within the physics community, see for instance

[GSDT95, [YS04, [XTS8S].

To be precise, the random ellipsoid model is a locally finite Poisson process
on the space R* x Ek,d4, where &, 4 is the space of all k-dimensional ellipsoids
centered at the origin. The intensity measure of the Poisson process is given by
A - Lebg x (iq, A > 0, where (i 4 is a shape measure on ellipsoids derived from
the Poisson cylinder process. Following the same procedure as above, we write

this as
w = Z 6(21,]31)
i>1

and define the occupied set by

Og(w) = U 2+ E.

(z,E)€supp (w)

Figure 4.5: The occupied set (blue) of the random ellipsoid model with k£ = 3 and
d = 4 simulated with centers in the box [—10,10}* and intensity A = 0.05.

The connected component containing the origin is defined by

Co(w)z{xEszoga:},
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and we let #C, denote the cardinality of the set {(z,E) cw:z+ E C C,}.

One easy way of generating the random ellipsoid model is to first sample a
Poisson point process on R% and then to each point generate a sequence of i.i.d
ellipsoids (E;);>1 which follows the distribution specified by Equation (17) in
Paper IV. Even though the distribution has a rather cumbersome expression,
the random ellipsoids are relatively easy to describe, see Lemma 6.1 and 7.7 in
Paper III as well as Section 2.3 in Paper IV.
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5 Summary of results

This chapter provides a summary of the results of the four papers included in
the thesis. Papers I and II as well as IIT and IV are related both chronologically
as well as thematically.

5.1 Paper I

In the first paper [ET19] we studied the topic of visibility in the vacant set
of the Brownian interlacements and the Brownian excursions process. The
problem of visibility in a random set § (with isometry-invariant law) can be
thought of as placing a person at a fixed point o and asking how far this person
can see in some direction within this set, without having the view obstructed
by the complement of S. Heuristically, if this random set is in some sense very
irregular or erratic we should expect a rapid decay of the probability that the
person has visibility to a distance r.

Formally, we say that the visibility from o in S is at least r if there is some
line-segment of length r starting at o contained in S. The probability of this
event is denoted by P,;s(r). The probability that a fixed line-segment of length
r is contained in S is denoted by f(r). In other words, f(r) is the probability
of having visibility to distance at least r in a fized direction Our two main
results concerning the Brownian interlacements and excursions processes are
two rather contrasting behaviours, reflecting the difference between Euclidean
and hyperbolic geometry. Suppose now that S is the vacant set of the Brownian
interlacements model. We obtain estimates on P,;5(r) in terms of f(r).

Theorem 5.1.1 (Theorem 2.2 in [ET19]). There exist constants 0 < ¢ < ¢/ < oo

45
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depending only on d, p and a such that

d
Puis(r) > it f(r),d > 4 (5.2)

for r large enough.

For the Brownian excursion process we obtain a different behavior, showing that
it undergoes a phase transition in terms of visibility to infinity, determining the
critical value and what happens at the critical value. Let V¢ denote the event
that there exists an infinite geodesic ( with respect to the the hyperbolic metric)
from a fixed point, o, contained in the vacant set of the Brownian excursion
process.

Theorem 5.1.2 (Theorem 2.3 in [ET19]). It is the case that

P(VZ) >0, a<m/4, (5.3)
P(VE)=0, a>m/4 (5.4)

5.2 Paper II

Paper II is devoted to computing the critical value concerning percolation in
the vacant set, V = D\ BE(«), of the Brownian excursions process in the unit
disc. Using results on conformal restriction measures and SLE curves we can
determine the critical value and what happens at the critical value.

Let
aC:inf{a>0:Pa {0&)5]@]:0},

be the critical value for the event that the origin is in an unbounded (with
respect to the hyperbolic metric) connected component of V.

Theorem 5.2.1 (Theorem 1.1 in [EVTTY]). The vacant set of the Brownian
excursion process has a non-trivial phase transition concerning percolation and
the critical value of the phase transition is given by

o, =7/3.

Moreover, at o, the component of V containing the origin is almost surely finite.

Combining these results with the results from Paper I we see the following
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e For any a < 7/4, with positive probability there exist infinite geodesics
in V emanating from o.

e For any 7/4 < o < /3, with positive probability V percolates but there
are no infinite geodesics emanating from o.

e For any a > 7/3, all components of V are finite almost surely.

Here, 7infinite” is with respect to the hyperbolic metric on D.

5.3 Paper III

Paper III deals with phase transitions in the fractal Poisson cylinder model
defined in Section Let V denote the vacant set left by the fractal cylinder
model and define the following critical values

Ae :i=inf {A>0:P(V=0)=1}, (5.5)
Ac :=1inf {A > 0:P(V is totally disconnected ) > 0}. (5.6)

Our main results concerning these thresholds are the following two theorems:

Theorem 5.3.1 (Part of Theorem 1.1 and Theorem 1.7 in [BEMT19]). For
any d > 2 we have A = d and the fractal is in the empty phase at criticality.
Moreover for A < d the Hausdorff dimension of V is d — A almost surely.

Theorem 5.3.2 (Theorem 1.3 in [BEMTI9]). For d > 4, we have that A, €
(0,00). For d =3, then V NR? almost surely does not contain any connected
components for any A > 0. For d =2 we have that A\, = 0.

One interesting phenomenon in these fractal models in comparison with the regu-
lar percolation models is that we have three intervals, A < A, A € (Ag, Ae), A >
A with three distinct behaviors:

A< Ae | Ae <A< A [ A> A
There exist connected
components in V con-
taining more than one
point

All  components in | The fractal is in
V are totally discon- | the empty phase, i.e.
nected VY =1.

In the proofs of these results we derive a new continuum percolation model
which we refer to as the random ellipsoid model. This model is essential in
proving the non-triviality of the connectivity phase transition.
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Theorem 5.3.3 (Part of Theorem 1.5 in [BEMT19] ). Consider the Poisson
cylinder model in R® with cylinder radius r. The intersection of this cylinder
process to the subspace RF where k € {1,...,d — 1} is a Poisson process of
ellipsoids with intensity measure

X-Leby, x &p A > 0. (5.7)

Here &, is a finite measure on the space of ellipsoids centered at the origin. In
fact & is the non-normalized version of (i 4 in Section

5.4 Paper IV

Paper IV analyzes the random ellipsoid model which was derived in Paper III.
The main theorem shows a dichotomous behavior for the following thresholds:

Apere(k) = inf {)\ >0: P, [o % oo} > o} : (5.8)
Aeross (k) = inf {A >0 inf Py {Bk(r) % Bk(2r)6} > 0} , (5.9)
An (k) =sup{A > 0: Ey [#C,] < o0} . (5.10)

Theorem 5.4.1 (Theorem 1.1 of [EIi19]). For k € {2,3,...,|d/2]} we have
0 < Acrosss AN < Aperc < 00 (5.11)
while for k € {|d/2] +1,...,d — 2} we have
0 = Across < AN < Aperc < 00. (5.12)

Moreover, A\y(d —1) = 0.
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