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ABSTRACT

High-temperature superconductors are some of nature’s most enigmatic

materials. Besides carrying a supercurrent, these materials manifest a range

of electronic and structural orders. A state of modulated superconductivity,

called a pair-density wave (PDW), has been suggested to occur in copper-

based (cuprate) high-temperature superconductors, with the possibility of

explaining these various orders, and perhaps even superconductivity itself.

This thesis is based upon four appended papers and concerns the nature of

the PDW state and the cuprate superconductors.

In the first two papers, we consider a so-called pair-hopping interaction

that can stabilize a (mean-field) PDW state. In the first paper, we use this

interaction to study the supercurrent carried by a PDW state, which, due to

it being a multiple-component order, can lead to phase-separation and ad-

ditional symmetry breaking. In the second paper, we study the competition

between a PDW state and an ordinary uniform superconducting state in the

context of a BCS-BEC crossover. We find a suppressed superfluid stiffness

in the vicinity of a PDW instability, with implications on the nature of the

underdoped cuprates.

The third paper includes an experimental study on thin films of

La

2�x Srx CuO

4

, which above Tc develops a highly anisotropic resistive re-

sponse, especially pronounced for underdoped samples, pointing towards

an exotic pseudogap phase in the underdoped cuprates with quasi-1D phase

superfluid stiffness. We interpret these results in terms of nematic order

manifested in the superconducting fluctuations. In the last paper of this

thesis, we consider a scenario where the cuprate pseudogap phase consists of

a thermally disorder PDW state with vestigial order. We show that a vestigial

PDW nematic order coexisting with a uniform superconducting order yields

an anisotropic superconductor on a form consistent with the fluctuations

seen in La

2�x Srx CuO

4

.

Finally, in addition to providing background for the appended papers,

this thesis contains an introduction to the general phenomenology of the

cuprate superconductors.





SAMMANFATTNING

Högtemperatursupraledare är några av naturens mest gåtfulla material. Föru-

tom att leda en superström så uppvisar dessa material en rad olika elektro-

niska och strukturella ordningar. En så kallad pardensitetsvåg (PDW), ett

tillstånd av modulerad supraledning, har föreslagits som en möjlig förklar-

ing till olika observerade ordningar i kopparbaserade supraledare (kallade

kuprater). Denna avhandling är baserad på fyra artiklar som behandlar olika

aspekter av ett PDW-tillstånd, samt dess möjliga förekomst i kuprater.

I de två första artiklarna betraktas en parhoppningsinteraktion som kan

stabilisera ett PDW-tillstånd. I första artikeln används denna växelverkan till

att studera hur en superström leds i ett PDW-tillstånd. På grund av tillstån-

dets flerkomponentskaraktär så kan en ström ge upphov till fasseparation,

samt ytterligare symmetribrott. I den andra artikeln avhandlas tävlan mellan

ett PDW-tillstånd och ett homogent supraledande tillstånd. I närheten av

en PDW-instabilitet så undertrycks den supraledande fasstyvheten. Detta

medför en ny möjlig tolkning av den enigmatiska underdopade delen av

kupratfasdiagrammet.

Den tredje artikeln innefattar en experimentell studie av La

2�x Srx CuO

4

som över Tc uppvisar en högst anisotrop resistivitet. Denna anisotropi

är mest framträdande i underdopade kuprater vilket tyder på en exotisk

pseudogap-fas. Dessa resultat tolkas i termer av en nematisk ordning i de

supraledande fluktuationerna. I avhandlingens fjärde och sista artikeln be-

traktas ett scenario där pseudogap-fasen består av ett termiskt oordnat PDW-

tillstånd. Detta tillstånd kan uppvisa en rudimentär ordning med brutna

kristallsymmetrier, trots avsaknad av supraledande ordning. Det visar sig att

en rudimentär nematisk PDW-ordning som samexisterar med en homogen

supraledande ordning kan ge upphov till den typ av anisotropt supraledande

tillstånd som observerats i La

2�x Srx CuO

4

.

Denna avhandling innehåller, förutom bakgrund till de bifogade artik-

larna, även en introduktion till kopparbaserade högtemperatursupraledare.
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PART I

INTRODUCTION

A system consisting of a large number of particles can not simply be under-

stood from studying its single-particle components. Instead, the manifested

phenomena are typically emergent from the vast number of degrees of free-

doms in a way that is fundamentally different from any microscopic descrip-

tion of its constituents. In the words of P. W. Anderson, “More is different”

[1]. Perhaps one of the most enchanting emergent phenomena of a many-

body system is the superconducting state where a persistent flow, or current,

can exist without decay. It is safe to say that the understanding of super-

conductivity in conventional metals is one of the greatest achievements of

modern physics. Nevertheless, ever since the discovery of high-temperature

superconductivity in La

2�x Bax CuO

4

[2] in 1986, the general understanding

of superconductivity has remained one of the most daunting problems in

physics to this date.

In this thesis, we are interested in ceramic compounds based on layers of

oxygen and copper, so-called cuprates. These materials have turned out to be

a monumental challenge for the theoretician. Not only are cuprates strongly

coupled, manifested by superconductivity developing from a correlated

insulator, but they also show a range of different orders. Best demonstrating

this diversity is the complexity of the cuprate phase diagram, including (but

not limited to) charge and spin-order, as well as electronic nematic orders.

A cornerstone in the phase diagram is the pseudogap phase, a mysterious

phase which seems to correlate with the onset of various electronic orders

and unique spectroscopic features.

It is not well understood to what extent superconductivity in cuprates is

dependent on the various other phases and orders present [3, 4, 5, 6, 7, 8].
Thus, it is perhaps not surprising that the general problem about the nature

of high-temperature superconductivity still, even after more than 30 years

after its discovery, remains largely an open problem.



2 INTRODUCTION

1.1 What is this thesis about?

One major question about the cuprate superconductor is the nature of the

pseudogap state and its relation to different electronic orders, including su-

perconductivity. An exciting possibility is that of a parent state with the possi-

bility of setting up subleading orders through partial melting and disordering,

generally referred to as vestigial orders. A suggestion for such a “mother state”

is a state with a spatially modulated superconducting order around a mean

of zero, called a pair-density wave (PDW) state [9, 10, 11, 12]. Originally

in the context of cuprates, PDW was suggested to account for the anoma-

lous suppression of superconductivity at x = 1/8 doping in La

2�x Bax CuO

4

[13, 6, 14, 11]. However, recently there have been more direct experimen-

tal findings [15, 16], and the relevance of the PDW state has become more

apparent.

This thesis will focus on questions concerning the nature of the suggested

PDW state. We consider the stability of a PDW state, and its competition with

a homogeneous superconducting state, from a specific form of interaction,

coined a pair-hopping interaction. Also, we consider the superconducting

properties of a PDW state through the study of the supercurrent.

Regardless of microscopic origin, quite a lot can be said about a PDW

order, as well as other orders, using phenomenological Ginzburg-Landau

theories. Such models have been used extensively in the study of the phe-

nomenology of electronic orders in the cuprate system [17, 18, 19, 20, 21, 22].
Specific implications of an underlying PDW state has also been explored in

some detail [17, 18, 19]. This thesis continues the exploration of the PDW as

a possible “mother state” of the cuprate system. Specifically, we consider a

PDW with broken time-reversal symmetry with the possibility of setting up

magnetoelectric (ME) loop-current (LC) orders, as well as nematic orders,

suggested to occur in cuprates. These theories are extended to include a

homogeneous superconducting order, showing the emergence of an effec-

tively anisotropic superconductor in the presence of vestigial nematic PDW

order. Included in this thesis is a study on thin films of La

2�x Srx CuO

4

, which

develops a transverse resistivity [23] consistent with an electronic nematic

order of the form described by the above-mentioned effective anisotropic

superconducting action.
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1.2 Structure of the thesis

The main work of this thesis is contained in four appended papers A-D. The

body of the thesis aims to provide a background to, commenting on, and

developing some of the ideas presented in the papers further.

The thesis is divided into five parts. Part I gives an introduction to some

of the basic aspects of superconductivity in general, as well as cuprate su-

perconductors in particular. Part II contains the main body of the thesis

and includes both theoretical background and considerations of the work

in the appended papers. Part III contains an outlook and conclusions of

the presented work. Part IV contains an Appendix with additional, more

technical notes in order to unburden the main text. Finally, Part V contains

the appended papers.



4 SUPERCONDUCTIVITY

2 Superconductivity

Being the first to liquefy Helium successfully, Kamerlingh Onnes observed

that below 4.2 K mercury transitions into a state where electricity flows with-

out any resistance [24]. This was the discovery of superconductivity and

the starting point for one of the most significant scientific inquires ever un-

dertaken, which continues to this very day. Following Onnes pioneering

work was the discovery of the Meissner effect, where a magnetic field gets

expelled from a superconductor [25], an effect later explained by London

who suggested that the quantum mechanical many-body wave-function of

the superconducting state somehow acquire a rigidity against an applied

field [26]. In 1957, 46 years later than the original discovery, Bardeen, Cooper,

and Schrieffer (BCS) finally put forward a successful microscopic theory of

superconductivity [27].
In 1986 superconductivity was discovered in the cuprate La

2�x Bax CuO

4

(LBCO) [2]with a substantially higher transition temperature, of 35K, than

the old “conventional” superconducting metals. This discovery of high-

temperature superconductivity (HTC) marked a new era in condensed mat-

ter physics and since then numerous other compounds with even higher

transition temperatures have been discovered (e.g. HgBa

2

Ca

2

Cu

3

O

8

with

Tc = 134K [28]). These compounds have proven to be immensely hard to

understand theoretically. Even though the basic features of the supercon-

ducting state can be classified in terms of a Bardeen Cooper Schrieffer (BCS)

type ground state, there is, unlike for conventional metals, no successful the-

ory able to describe the cause of superconductivity or to predict the transition

temperature in these materials.

2.1 The superconducting state

The basic idea of a superconducting state is to consider the emergence of a

macroscopic wave function, describing a condensate, the superconducting

entity of a superconductor. This idea dates back to London [26] and was put

forth in a more complete form by Ginzburg and Landau [29] who consid-

ered a free energy-functional of a complex-valued superconducting order
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parameter, �, in the presence of a magnetic field B=r⇥A

F = FN +
Z

x

1

2m⇤ |(�i~hr� e ⇤A)�(x)|2+ r |�(x)|2+ u
2

|�(x)|4+ B 2

2µ
0

, (2.1)

here with gauge field A, mass m⇤, charge e ⇤, and the normal state free en-

ergy FN . The parameter r is a function of temperature, r = r
0

(T �Tc ), and

u > 0 describes a repulsive interaction

1

. For T > Tc the free energy (2.1) is

minimized by a zero superconducting order parameter, � = 0, describing

the normal, non-superconducting state. For T < T
c

, r < 0, the free energy

minimum is given by a finite (uniform) superconducting order, �=�
0

e i�
,

�
0

= |r |u where� is an arbitrary phase, signaling broken U (1) gauge symmetry.

The current is found

2

by minimizing (2.1) with regard to A

J=
e ⇤~h
m⇤ |�0

|2(r�� e ⇤
~h A) . (2.2)

Thus, a finite expectation values of the superconducting order, �
0

6= 0, im-

plies a supercurrent on the form considered by London.

The microscopic realization of a condensate is in principle given by a

Bose-Einstein condensate, which describes the macroscopic occupation of

the lowest energy state of bosonic particles. In order to get electrons, which

are fermions, to condense they have to pair-up into a bosonic entity. BCS

theory was founded on the realization by Cooper that a pair of electrons,

subsequently called a Cooper pair, will form a bound state on top of a filled

Fermi sea for an arbitrarily weak electron-electron attraction [30]. By adding

more Cooper pairs the Fermi surface (FS) gets destabilized. The BCS ground

state can be considered a coherent state of such bound states |G S i= e ˆ�† |0i
where

ˆ�† =
R

r,r0 �(r, r0) ˆ †

"(r) ˆ †

#(r0), with �(r, r0) being the Cooper pair-wave

function [31]. This state acquire an anomalous expectation value

hG S | ˆ "(r) ˆ #(r0)|G S i/�(r, r0) , (2.3)

1

We will use the notation

R
x
=
R

d

d x, where d is the spatial dimension. Henceforth we will

set the reduced Planck’s and Boltzmann’s constant to one, ~h = k
B

= 1. For other conventions,

see Appendix A.

2

The current is identified from the Ampère-Maxwell formulaµ
0

J=r⇥B. The contribution

to the current from FN is not included in (2.2).
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and we identify the coherent state of paired-up electrons with the develop-

ment of the phenomenological condensate � ⇠ �. Dropping conversion

factors, we write the condensate order parameter as a 2e charged field

�(r, r0) = h ˆ "(r) ˆ #(r0)i= f (r� r0)�(R) (2.4)

where R= r+r0
2

is the center of mass coordinate and f (r� r0) the symmetry

function describing the relative coordinate of the electrons. Here we have

assumed that the Cooper pairs form a singlet state, pairing one spin up and

one spin down electron. Since fermions are antisymmetric under exchange

f (r� r0)must be an even function

3

. Conventional superconductors have an

s-wave symmetry function, meaning that the wave function is even under

a 90 degree rotation. Unconventional superconductors, like cuprates, are

d-wave, with an order parameter that changes sign under 90 degree rotation.

After Fourier transforming (2.4) into momentum space we find

h ˆc",k+Q/2 ˆc#,�k+Q/2i= f (k)�Q . (2.5)

Ordinary BCS theory considers a uniform condensate Q= 0, where electrons

of opposite momenta pair together. But in general, we can expand�(R) into

a series of modes

�(R) =�
0

+�Qe i Q·R+��Qe �i Q·R+ ... (2.6)

with �
0

6= 0,�±Q = 0... being the ordinary homogeneous superconductor. In

this work, we are interested in exploring the consequences and the signatures

of a superconducting state with finite-momentum modes.

2.1.1 Type I and II superconductors

From the Ginzburg-Landau (GL) theory (2.1) two length scales can be formed,

the correlation length, and the penetration depth

⇠=

vut ~h 2

2m⇤|r | = ⇠0

Å
1� T

Tc

ã�1/2

, �=
vt m⇤
(e ⇤)2|�

0

|2µ . (2.7)

3

A singlet state is odd under spin exchange | "i| #i � | #i| "i, while a triplet state form a

multicomponent order parameter that is symmetric under spin exchange | "i| "i, | "i| #i+ | #
i| "i, | #i| #i.
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Here⇠
0

is the coherence length, e ⇤ = 2e , and m⇤ the effective pair mass

4

. The

correlation length sets the length over which the condensate is anticipated to

vary, while the penetration depth sets the scale for electromagnetic variation.

The relative size of these length-scales implies two important kinds of super-

conductors, type I for ⇠¶� and type II for �¶ ⇠. In the presence of a strong

enough magnetic field, it is energetically favorable for a type II superconduc-

tor to let the magnetic field penetrate in the form of vortices. This defines

the lower critical field B
c1

, where the Meissner state

5

is destroyed. However,

the superconducting state is first destroyed at the upper critical field B
c2

. For

a type I superconductor, such vortex penetration is unfavorable, and there is

only one critical field strength given by the destruction of the condensate.

2.2 Homogeneous and finite-momentum superconduc-

tivity, the FFLO/PDW-state

Perhaps the biggest surprise about the BCS theory is that it predicts a weak-

coupling instability of the Fermi surface (FS). For any finite attraction, the

Fermi sea will succumb to a BCS ground state at low enough temperatures;

this is the essence of the Cooper instability. This instability can be seen as

a result of pairing up electrons with opposite momenta and spin such that

the FS is perfectly nested, yielding a divergent susceptibility (see section 6.2).

Therefore, a state of finite-momentum superconducting, which will not nest

the FS, is expected to be unfavorable compared to the zero-momentum state.

This is the basic reason why ordinary BCS theory only considers the zero

momentum mode in (2.6).

Nevertheless, in the presence of a time-reversal breaking magnetic (Zee-

man) field, the spin up and down FSs are split, and the perfect nesting is

destroyed regardless of the momentum of the order parameter. It was real-

ized more or less simultaneously by Fulde, Ferrell [33], and Larkin, Ovchin-

nikov [34] that in this case, a finite-momentum condensate would better

match the two FSs (see Figure 2.1). Fulde-Ferrell and Larkin-Ovchinnikov

considered two different versions of the jointly called FFLO state: The Larkin-

Ovchinnikov (LO) state [34], having two pair-fields �Q = ��Q, such that

�(R) = 2�Q cos(Q·R), breaking translational symmetry while preserving time-

4

For the GL free energy functional the normalization of effective mass is arbitrary [32].
5

The state where a magnetic field is fully repelled out of the superconductor.
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k + Q

k0 + Q

�k0

�k

k

k0

�k0

�k

a b

Figure 2.1: Nesting of a spherical Fermi surface (FS). a For an equal spin-up

and spin-down occupation, a zero momenta condensate, Q= 0, perfectly nests

the two FSs. b For an unequal spin-up and spin-down occupation, the perfect

nesting is inevitably lost. However, a finite Q 6= 0 leads to a better match.

reversal, and the Fulde-Ferrell (FF) state [33], with one pair-field ��Q = 0,

such that �(R) =�Qe i Q·R
, breaking time-reversal and parity but preserving

translational invariance.

A similar state of finite-momentum superconductivity is suggested to ap-

pear cuprates (see Section 3.4.1). Here there is no explicit time-reversal sym-

metry breaking with an unbalanced population of spins, so the mechanism

is not that of the FFLO state. Instead, for cuprates, the finite-momentum

superconducting state is referred to as a pair-density wave (PDW). How-

ever, it is convenient to use the notation FF and LO to refer to the different

possible symmetries of the state. Since a PDW state does not result from a

weak-coupling instability, it makes sense to assume that both homogeneous

and modulated superconducting orders are admissible in a strongly-coupled

system. This motivates the study of the PDW state as a part of the general

phenomenology of a strongly-coupled superconductor.

3 Cuprate superconductors

The BCS theory has proven successful in describing the superconducting

state of a conventional superconductor, a pure metals with a Fermi liquid

normal state. The source of attraction in metals is due to phonons, in the form
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of the Bardeen-Pines effective interaction [35]. This attraction overcomes the

(instantaneous) Coulomb repulsion by being heavily retarded; the electron

leaves a distortion in the underlying crystal, which attracts another electron

at later times. However, in principle, any attraction can be set-up within the

BCS framework.

Several key features distinguishing the cuprates from the conventional

superconductors were realized shortly after their discovery [36, 37]. The

cuprates are quasi-two-dimensional, made up of CuO

2

planes with weak

inter-planar coupling, and the interaction between electrons is not believed

to be phonon mediated. But, establishing the source of attraction only solves

half the problem (or less) of cuprate superconductivity. The BCS theory is

based on the assumption of weak interaction, while cuprates show strongly-

coupled behavior and large fluctuations. Thus, there are many reasons to

believe that the BCS framework is inherently inapt for describing the su-

perconductivity of cuprates. However, BCS theory might still provide some

valuable insights.

3.1 The cuprate compound

Of particular importance for this work and serving as a generic cuprate, we

consider the lanthanum (La) based compounds with the chemical compo-

sition La

2

CuO

4

in its un-doped form (see Figure 3.1a). The electrons are

distributed into La

3+
, Cu

2+
and O

2�
ions. Other cuprate families do differ in

the specific structure, but they all share the CuO

2

planes where supercon-

ductivity is believed to emerge [38, 39]. Electrons in the CuO

2

layers belongs

to the 3d orbitals of Cu

2+
and 2p orbitals of O

2�
. Modeling of cuprates often

focuses on these layers alone, with only a small inter-plane coupling. In the

simplest, one-band model, one could consider hopping between localized d

orbitals of the Cu

2+
ions. Band-theory predicts metallic behavior, with one

electron per site (half-filling). However, in order to conduct current, two elec-

trons must be able to reside on the same site. Due to strong on-site Coulomb

repulsion, U , an insulating (correlation) gap opens up in the d-band, and

the system becomes insulating. A well-studied model describing this is the

Hubbard model [40]. The Hubbard model is hypothesized to capture the

basic physics of HTC compounds in general, and cuprates in particular. At

half-filling, even though pairs cannot reside on the same site, a virtual ex-
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Pseudogap

CDW

Strange metal

Fermi liquid

SC

AF

x = 1/8 Hole doping

T

a b

SC Fermi liquidPseudogapc

Cu O

La

Figure 3.1: a Crystal structure of the cuprate parent compound La

2

CuO

4

with

La (green), Cu (blue) and O (red). One CuO

2

plane is marked in gray. b A

conceptual phase diagram of the cuprate-family with anti-ferromagnetic (AF),

charge-density wave (CDW), and superconducting (SC) order. The dashed line

in the SC dome corresponds to the enhanced suppression at x = 1/8 observed

in LBCO. c Schematic Fermi surface in different states of the cuprate phase

diagram.

change, called super-exchange, between neighboring sites is allowed [41].
Super-exchange leads to an effective coupling between neighboring spins

J = 4t 2/U (where t is the hopping parameter). The exchange favors an

anti-ferromagnetic (AF) ground state, a state which is indeed observed in

all cuprates. In order for a cuprate to become superconducting, it has to be

chemically doped away from half-filling. Substituting La with, for instance,

Sr, which has two valence electrons instead of three, introduces a hole in the

copper-oxide layer [39]. Away from half-filling, including hopping, yields the

well-studied t � J model, which can be considered a low energy effective

model of the Hubbard model [42].
Early after the discovery of superconductivity in cuprates, Anderson [37]

put forward a quite compelling theory of superconductivity based on the
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emergence of superconductivity from a Mott insulator. The idea, known as

resonating valence bond (RVB), is that the ground state is a superposition

of states where neighboring pairs forms a singlet similar to the Cooper pair.

When moving away from half-filling, these pairs should be able to move,

and superconductivity would emerge. This state would constitute a spin

liquid. However, after investigations by, e.g., neutron spectroscopy, a com-

mensurate AF (Néel order) pattern was observed even for finite doping [36].
This state has gapless spin excitations not consistent with the RVB scenario.

Nevertheless, pairing from local singlet correlations in a more general sense

is considered as a possible pairing mechanism [3].

3.2 Phase diagram

The complicated nature of the cuprates is perhaps best described by its

phase diagram as a function of temperature and doping (see Figure 3.1b).

At zero doping, we have a correlated insulator with AF order, which gets

gradually suppressed as doping increases and eventually substituted for the

superconducting (SC) “dome”. Overarching these two phases is the enigmatic

pseduogap phase, ending near the optimum doped superconductor state (the

state with maximum Tc ). On the underdoped side of the superconducting

dome, the pseudogap constitutes the normal state of the superconductor.

At the same time, at higher doping, it is believed to be Fermi liquid like

1

.

Fanning out between the pseudogap and Fermi liquid is the strange metal

phase with linear in temperature resistivity, ⇢/ T [44, 45].
The defining feature of the pseudogap is its incomplete FS, which is

gapped at the anti-nodal point but with so-called Fermi arcs present at the

nodal points (see Figure 3.1c). This structure remains at temperatures signif-

icantly higher than the superconducting transition temperature. The nature

of the pseudogap is highly debated [3], and since it constitutes the phase

from which superconductivity emerges, it is essential for understanding the

cuprate superconductivity itself. For instance, the incomplete FS implies

deviation from Fermi liquid theory upon which BCS theory is based. Addi-

tionally, the pseudogap phase contains a range of anomalous correlations

and signs of broken symmetries [44], including charge- and spin-density

1

There is, however, evidence that even overdoped cuprates show signs of non-Fermi liquid

like behavior [43].
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Figure 3.2: Development of the effective band structure when increasing dop-

ing. Adapted from [53]. The dashed line indicate the Fermi level.

waves [3], time-reversal breaking [46], diamagnetic response [47], nematic

order [48, 49, 23] and quantum oscillations [50, 51]. It seems evident that the

inter-dependency between these electronic orders and superconductivity is

essential to sort out [52, 49].

3.3 Band structure, Fermi surface and pseudogap

A complementary view to the phase diagram is the evolution of the band

structure, and FS as doping is increased. It turns out that the insulation

gap of the CuO

2

planes is not directly associated with a d

n
i d

n
j ! d

n�1

i d

n+1

j
excitation of the Cu-atoms (i , j are neighboring sites, n the electron occu-

pation), suggested by the one-band Hubbard model. Instead, the p bands

of the oxygen ions will reside within the gap [53] (see Figure 3.2). The gap

should therefore be considered a charge-transfer gap [54], associated with the

d

n
i p

n
k !d

n+1

i p

n�1

k excitation between neighboring O and Cu (k a neighboring

bond)

2

.

At zero doping, the Fermi level lies in the correlated gap, moving down into

2

Accounting for the hybridization of the p and d orbitals is referred to as the p-d model, or

Emery model [55]. To justify taking only the Cu-site into account, as is done in the Hubbard

model, when it is rather the O-sites that contribute with a hole [56, 57], one can consider the

formation of a bound state with the Cu

2+
site, known as a Zhang-Rice singlet [58].
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the p-band for finite doping. We expect that the numbers of hole carriers

equal the chemical doping p = x , a picture which agrees with transport

measurements of Hall conductivity [59] (see also [38] and references therein)

for underdoped samples. However, for overdoped samples we eventually end

up at a Fermi liquid like metal [53]with n ⇠ 1�x . This implies a quite complex

development of the spectral weight, including a vanishing correlated gap,

which is mirrored in the evolution of the FS.

Starting in the superconducting state, the order parameter is known to

have d-wave symmetry [60], �(k) =�
0

(cos(a kx ) + cos(a ky )) (where k is the

relative momenta of Cooper pairs and a the lattice spacing) with a super-

conducting gap closing at the four nodal points of the FS (see Figure 3.1c).

Raising the temperature on the overdoped side, we end up in a Fermi liq-

uid state with a closed FS. However, on the underdoped side, after raising

the temperature, we end up in the pseudogap phase with only a partial FS,

which remains gapped at the anti-nodal points but with Fermi arcs left at

the nodal points. Again, we see that the pseudogap is key to understanding

the evolution of a correlated insulator into a Fermi liquid, as well as into a

superconductor.

3.4 Stripes

A common feature of models considering doped Mott insulators, like the

Hubbard model and t � J models, is that holes tend to be repelled from re-

gions of AF order, setting up incommensurate unidirectional charge-density

wave (CDW) and spin-density wave (SDW) orders [61, 62, 3]
Such combined spin and charge order, often called stripes [63], has been

found in La

2�x Bax CuO

4

and related compounds [6, 64, 38]. Neutron diffrac-

tion experiments reveal a Bragg peak QB = 2⇡
a (n , m ), with n , m 2Z, and the

Néel peak Q= 2⇡
a (±1/2,±1/2) in the AF undoped case. Upon doping, these

peaks start to split. The Bragg peak splits into QB ±2d because of CDW order,

and the Néel peak split into Q±d (|d|⇡ 2⇡
a x ) [64]. These results can be under-

stood from introducing holes in a striped pattern on an AF background (see

Figure 3.3)) [6]. Putting one hole for every two sites in the charged stripes

results in a stripe period of a/2x . If the charged stripes act as anti-phase

boundaries the spin-order period would be twice that, a/x , consistent with

the observed SDW and CDW. These stripe patterns are particularly enhanced
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at and around x = 1/8 [65].

|�| �|�|

Figure 3.3: Stripe ordering at x = 1/8. Arrows indicate spin, while the filled

circles indicate electron occupation. The SDW with period 8a which is twice

that of the CDW period of 4a . The superconducting order is non-vanishing at

the charge stripes, but with alternating sign, yielding a PDW with period 8a .

3.4.1 PDW and stripes

At x = 1/8 doping in La

2�x Bax CuO

4

(LBCO), where stripes are pronounced,

there is a significant suppression of the superconducting critical tempera-

ture down to Tc ⇡ 4K [13] (see Figure 3.1b), known as the “1/8-anomaly”.

Thus, stripes seem to compete with superconductivity [65]; however, the full

scenario turns out to be more complicated than that [14]. Transport and

magnetic susceptibility measurements suggest that the superconducting

correlations are highly two-dimensional [14, 66], and the emerging scenario

is that the stripe order decouples the CuO

2

layers [9, 11]. In 2D, long-range

order cannot be established due to the proliferation of fluctuations; this is

known as the Mermin-Wagner theorem [67]. Instead, a state of quasi-long-

range order (with algebraically decaying correlations) is established, which

goes through a topological Kosterlitz-Thouless (KT) transition to the disor-

dered state [68]. The 2D superconducting state does not show a full Meissner

effect but has a residual diamagnetic response. Further, the in-plane resis-

tance is finite below the KT-transition [69], vanishing only for zero current.

These signatures are consistent with the stripe phase of LBCO, which sets in

at TK T ⇡ 16 K. It is only the full 3D Meisner state that is suppressed down to

Tc ⇡ 4 K [14, 11].
In explaining the emergent 2D superconductivity at the onset of stripe
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order, the existence of a striped superconducting state was proposed in

the form of a spatially modulated superconducting order without any ho-

mogeneous superconducting component. This state shares the symmetry

properties of the FFLO state discussed in the presence of a spin-population

imbalance due to a Zeeman field. However, in cuprates, where no such

symmetry breaking field exist, this state is referred to as a pair-density wave

(PDW) state [9, 11, 10]. The superconducting order is imagined to live on

the charged stripes, but with an alternating sign and zero weight at the spin-

stripes (see Figure 3.3). Due to the alternating direction of stripes in the

layers of LBCO, the Josephson-coupling between layers vanishes, causing

the observed 2D superconducting state [11].

3.5 PDW, vestigial orders, and the pseudogap

The phenomenology of stripes can be fitted into the larger scheme of elec-

tronic liquid crystal phases developed in analogy to classical liquid crystalline

phases [52, 3]. A smectic phase, which breaks translational symmetry in one

direction, corresponding to CDW, can melt into a nematic phase which only

breaks lattice rotational symmetry, but with restored translational invari-

ance [52, 3]. Indeed, nematic order is a ubiquitous phenomena in cuprates

[70, 71, 72], as well as in related compounds [3, 49]. Correspondingly CDW

has also shown to be an omnipresent order in cuprates; most notably, it has

been detected in YBa

2

Cu

3

O

6+x (YBCO) [73, 74], that is outside the lanthanum

cuprate family.

The establishment of the stripe phenomenology throughout the cuprate

family (although somewhat revised) has motivated suggestions of PDW as

a general feature of the cuprate superconductors [10, 3], most notably as

the pseudogap itself [12]. PDW has the possibility of unifying many of the

features seen in the pseudogap state, as well as the abundance of orders.

The reason for these possibilities are the transformation properties of PDW

under symmetry

U(1) gauge : �Q!�Qe i�

Translation: �Q!�Qe i Q·R
Parity: �Q!��Q

Time-reversal: �Q!�⇤�Q
Point-group, e.g. ⇡/2 rotation: �Q!±�Q .

(3.1)
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The last row is meant to illustrate general transformation under lattice sym-

metries, which depends on what point-group is realized. Here we exemplified

with a ⇡/2 rotation in a tetragonal symmetry where Q and Q is related by the

transformation. The difference in sign corresponds to an s-wave or d-wave

symmetry of the PDW order. Many features of superconductivity are the

direct result of an order parameter transforming under U(1) gauge symmetry.

This includes the Meisner effect, zero-resistance, flux quantization as well as

the occurrence of a supercurrent. (It should be noted, however, that PDW is

sensitive to disorder [10].) Thus we expect many of these properties in a state

of long-range PDW order h�Qi 6= 0. Indeed there are signs of residual super-

conductivity in the pseudogap, like the prevalence of diamagnetic response

[47]. Also, the quasiparticles of a PDW state quite naturally give rise to Fermi

arcs [75, 12] (see Figure 6.3). Further, PDW may be able to account for the

anomalous quantum oscillations seen at large magnetic fields [50, 51].

3.5.1 Vestigial orders

Perhaps more interesting is the possibility of setting composite orders trans-

forming only under a subset of the operations in (3.1). Assuming the exis-

tence of a homogeneous superconducting order, �
0

, as well as four PDW

orders

~�= (�Qx
,��Qx

,�Qy
,��Qy

)we find, in a tetragonal symmetry,

2Q CDW : ⇢
2Qi
=�Qi

�⇤�Qi

Q CDW : ⇢Qi
=�

0

�⇤�Qi

4e SC : �
4e ,i =�Qi

�⇤Qi

Nematic: N = |�Qx
|2+ |��Qx

|2� |�Qy
|2� |��Qy

|2
Loop-current:

~l = (|�Qx
|2� |��Qx

|2, |�Qy
|2� |��Qy

|2) .
(3.2)

A state of long-range PDW order

~� 6= 0 will naturally have expectation val-

ues on the composite orders in (3.2) (according to the broken symmetry).

However, there are situations under which the PDW melts such that not all

broken symmetries are restored simultaneously [17, 19, 3, 20]. In this way

a PDW can, for instance, generate a CDW phase with h ~�i = 0, h�
0

i = 0 but

h⇢
2Qi
i 6= 0, and similarly for other phases. This is in general referred to as

vestigial ordering [76].
The last order in (3.2) represents a so called loop-current (LC) order which

is odd under parity and time-reversal, but invariant under the product. Clas-

sically such an order can be imagined as a result of circulating currents
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L/ R dr M⇥ r, with M/ r⇥p the magnetic moment [77]. Originally such

order was considered by Varma as a proposal for the pseudogap [78, 79].
Evidence of time-reversal breaking intra-unit cell magnetic order present

in the pseudogap phase [80, 81, 82, 83, 84, 85] has further spurred the sug-

gestion of different ME orders, specifically the above mentioned LC orders

[86, 87, 88, 89]. An LC order arising from underlying (ME) PDW of the form

presented in (3.2) was suggested in [20]. Clearly there is much to explore

about the plethora of orders possibly set up by PDW.

3.5.2 Evidence for PDW

Besides the suggestion for PDW in LBCO, there are more direct measurements

made in Bi

2

Sr

2

CaCu

2

O

8+x (BSCCO). Through the use of a Josephson STM tip,

a 4a PDW was observed [15]. However, as we just have seen, in the presence of

homogeneous superconducting order, �
0

, there is out of necessity a (trivial)

PDW of period 4a if there is an underlying 4a CDW (the periodicity results

from the x = 1/8 stripe pattern). Instead, following the striped scenario in

Figure 3.3, the non-trivial PDW state would be of period 8a . Intriguingly

such an 8a PDW state was indirectly observed in vortex halos of BSCCO

[16] through the detection of an additional 8a CDW (which in the presence

of homogeneous superconducting order indicates an 8a PDW). There is

a notable difference between the PDW seen in BSCCO compared to the

one suggested for LBCO. In LBCO, the homogeneous SC is subleading to

PDW, prevailing only under 4K, whereas in BSCCO, PDW is subleading to

superconducting (SC), first visible when SC is sufficiently suppressed, like in

the presence of a vortex core.

4 Outlook — My work

We have described some of the most fundamental problems concerning

cuprate superconductivity as well as the experimental status. There are

several questions to be answered about the PDW. The most fundamental

ones regard the mechanism of such a state. What drives the pairing? And

what are the observable consequences of a PDW state? The work of this thesis,

contained in the appended Paper A-D, considers aspects of these questions.

In this chapter, I would like to introduce the reader to some key points about
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the work before embarking on the full theoretical development. Let us start

by discussing the methods used and other theoretical considerations worth

keeping in mind.

4.1 Methods and considerations

One way to interpret the question of cuprate superconductivity is to ask what

happens when doping a Mott insulator [90]. This question has turned out to

be a very hard one, and so far, progress has only been made in a limited set

of systems (see [3]). However, it is highly probable that cuprates are more

than just doped Mott insulators. Therefore, an important complementary

view is a phenomenological approach, which is taken in this thesis. The goal

here is to try to sort out what phenomena encountered in experiments are

connected and which ones are (more or less) independent. Essentially, this is

the appealing possibility of the proposed PDW order; it has the possibility of

explaining the occurrence of many features seen in cuprates. An important

task is to sort out to what extent this holds true.

The way we will go about modeling cuprates is to start with a Hamiltonian

describing the interaction between electrons and then expand the action in

collective degrees of freedom (Chapter 5). Our underlying assumption here

is that a PDW state, i.e., an expansion of superconducting correlations with

multiple modes, will constitute the most important set of freedoms

1

. We will

consider two formulations. The first one, which is BCS theory (Chapter 6), is

to assume there is a well condensed superconducting mode (generically with

a finite momentum) and study the fermionic (Bogoliubov) quasiparticles.

The second formulation is Ginzburg-Landau (GL) theory (Chapter 5). Here

the action is expressed solely in terms of the bosonic superconducting free-

doms by integrating out the electrons. The GL theory is an expansion in the

superconducting order parameter, which means that the theory will hold if

we are close to the transition temperatures of the orders involved. The upside

is that this assumption holds regardless of the strength of the interaction.

The downside is that we cannot study physics deep within an ordered state,

in contrast to BCS theory. Nevertheless, the often overwhelming importance

of symmetry makes these theories interesting to study more generally.

1

Anti-ferromagnetic ordering is likely an instability of its own.
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4.1.1 Fluctuations and vestigial orders

BCS theory assumes a constant static superconducting order parameter. It

is a mean-field theory, expected to hold when fluctuations of the order pa-

rameter are small. For conventional superconductor this assumption holds

extremely well (see Section 10.1). In cuprates however, the fluctuations are

important which can be seen by comparing coherence lengths, which in

conventional superconductors are on the order of ⇠
0

⇠ 1000 nm (1600 nm for

aluminum [91]) while much shorter in cuprates ⇠
0

⇠ 1 nm [92]. Also, the su-

perconducting transition temperature for underdoped cuprates are believed

to be determined by fluctuations [93] rather than the BCS instability. The

existence of fluctuating superconductivity is perhaps most clear above the

superconducting transition, where fluctuations lead to a residual supercon-

ducting response. For instance, there will be a contribution to conductivity

above the critical temperature, called paraconductivity. We will study this in

Chapter 8.

GL theories are well suited to take fluctuations into account. The break-

down of mean-field theory and the presence of fluctuations alters the physics

of symmetry breaking fundamentally. One is the possibility of vestigial orders,

i.e., splitting of a (mean-field) transition where a composite order parameter

form before the primary one. We will discuss this in Chapter 10 and 11.

4.1.2 Weak and strong-coupled superconductors — BCS to BEC

crossover

A superconducting state can be associated with an emergent boson undergo-

ing condensation. Before BCS, a heavily discussed topic was that of electrons

pairing into hardbound bosons

2

forming a Bose-Einstein condensate (BEC)

[95, 96, 97]. This pairing idea might seem similar to that of BCS theory; how-

ever, the concept is, in fact, quite distinct.

In the BEC picture, the bosons are in a tightly bound state of fermions,

where the pair size is typically much smaller than the average distance be-

tween particles (⇠
pair

⌧ k�1

F ). This idea hinges on there being a two-particle

bound state, which (in 3D) requires a finite interaction strength. BCS, on the

other hand, is a weak-coupling scenario that relies on the Cooper instabil-

ity; pairs keep together because of the underlying Fermi sea, and the pair

2

For a historical review see [94].
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Figure 4.1: The BCS-BEC crossover with loosely bound and overlapping pairs

on the BCS side and tightly bound non-overlapping pairs on the BEC side. The

normal state of the condensate evolves from a Fermi liquid in the BCS limit to

a Bose liquid in the BEC limit.

size is typically much bigger than the average distance between particles

(⇠
pair

� k�1

F ). The difference in physics is perhaps most easily understood

in terms of the low energy excitations. For the loosely bound, highly over-

lapping Cooper pairs, the low energy excitations are fermionic and come

from breaking the pairs while the condensate stiffness is comparably high.

Contrary to this, in the BEC scenario, the bosons are tightly bound, and the

breaking of pairs can be considered a frozen out high-energy excitation. In-

stead, the non-overlapping pairs lead to a small condensate stiffness, and

the collective bosonic excitations make up the low energy physics.

From this picture, we understand that both the density and the interaction

strength are important parameters to control the nature of the condensate.

Perhaps surprising, the ground state of both the BCS case and the BEC case

is qualitatively the same [96, 97], and one talks about a BCS-BEC crossover

rather than a transition (see Figure 4.1). When it was discovered that cuprates

had a very short coherence length, which can be roughly identified with the

size of the Cooper pair, suggestions were made that these compounds might

be more of a BEC than conventional superconductors, and the BCS-BEC

scenario was revisited [98, 99, 100, 101]. An intriguing property of the BEC

limit is that the critical temperature, Tc , is set by the condensation of bosons,
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while the dissociation of pairs does not occur until higher temperatures,

T
pair

> Tc . This leads to a state made up of pre-formed pairs, which has been

discussed as a candidate for the pseudogap state.

We will consider the BCS-BEC crossover for a finite-momentum conden-

sate in Chapter 7. We will formulate it in terms of a GL theory, which in

principle holds both for strong and weak coupling, and study the propaga-

tor of pairs. In the weak-coupling limit, where BCS theory is expected to

hold, the propagator will describe a damped propagation of pairs, due to

them breaking up into electrons. In the opposite strong-coupling limit, the

pair propagator will describe a coherent propagation, since the pairs are

essentially a robust entity.

4.2 Key results

I find it useful to describe the main findings of the work contained in Paper

A–D already at this point. Both as an aid to understanding the development

of the thesis and to comment on how the papers are related.

• Stabilizing a PDW. A critical question regarding the PDW state is to

what extent it is a good superconductor. In order to study the supercur-

rent of a PDW state, we considered a pair-hopping interaction, which

we introduced in Paper A. In Paper B, we continued the exploration

of this interaction and its relation to homogeneous superconductivity.

We find that a homogeneous superconducting component becomes

unstable towards a PDW state either through a Lifshitz point, where the

superconducting stiffness vanishes and the pairing momenta develops

from zero, or through a metastable PDW state occurring at finite paring

momenta. This simple phenomenology was also used as a starting

point in Paper D.

– Bloch’s theorem on vanishing ground state current. According

to a theorem attributed to Bloch, a ground state cannot carry a

finite current. This theorem has implications on the stability of

a single PDW mode �Q, which in general is expected to carry a

finite current since it breaks time-reversal symmetry. The pair-

hopping interaction circumvents this by inducing an anomalous
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pair-hopping current, similar to a Josephson current. This is

discussed in Paper A.

• PDW as the pseudogap. In Paper D, we continue to explore the possi-

bility of PDW as the source for the pseudogap by focusing on a ME-PDW

exploring its preemptive transitions into phases with loop-current (LC)

as well as nematic order. Here we find the possibility for an LC state

which decouples from the underlying lattice yielding approximate ro-

tational freedom. Relation to the cuprate phase diagram is discussed.

• Nematic superconducting fluctuations in LSCO. Paper C is the result

of a collaboration with Ivan Božovi

´

c’s group at Brookhaven National

Laboratory. Based on previous transport measurements on thin films

of La

2�x Srx CuO

4

(LSCO) [23] indicating the presence of electronic ne-

matic order, we show that this can be attributed to a highly anisotropic

fluctuating response. At the same time, the normal component re-

mains more or less isotropic—additional measurements were done

under the influence of a magnetic field, showing the expected suppres-

sion of the fluctuating response.

• The single-component nematic superconductor. Paper D also con-

tains a theory for the superconducting state observed in Paper C. Ne-

maticity is known to develop in, e.g., triplet superconductors through

vestigial ordering, with a corresponding nematic response in

fluctuations [102]. A surprising aspect of the findings in Paper C is that

a nematic response shows up in a single-component (d-wave) super-

conductor. Vestigial ordering relies on composite orders transforming

under a subgroup of symmetry operations of the primary order. For a

single component, in the trivial representation, such ordering is not

possible. In Paper D, we show instead that the rotational symmetry

can be broken in the dynamical response of a single-component su-

perconductor if it couples to a PDW, which develops nematic order.

Interestingly for the scenario of the PDW in cuprates, we show that the

homogeneous to PDW instability, described in Paper A and Paper B,

implies high susceptibility towards such nematic fluctuating supercon-

ductivity. Thus the observation in Paper C would be consistent with

an underlying PDW instability in the cuprate system.
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PART II

FLUCTUATING SUPERCONDUCTIVITY

AND PAIR-DENSITY WAVE ORDER IN THE

CUPRATE SUPERCONDUCTORS

5 Effective theory for finite-momentum super-

conductivity

In this chapter, we will describe the derivation of an effective theory in terms

of a finite-momentum superconducting order parameter. We will start by

describing the fermionic Hamiltonian and then go on to expand in the col-

lective superconducting degrees of freedom, which will lead us both to a

formulation of a finite-momentum BCS theory, as well as a finite-momentum

Ginzburg-Landau theory. (For conventions, see Appendix A.)

5.1 Fermionic Hamiltonian

A valuable, yet highly simplified, microscopic description for cuprate super-

conductivity is to study a one-band tight-binding Hamiltonian on a square

lattice

ˆH =
X

k

"(k) ˆc †

k ˆck+ ˆH
int

(5.1)

with an attractive interaction described by

ˆH
int

. A common interaction to

study which gives rise to d-wave superconductivity is a nearest-neighbor



24 EFFECTIVE THEORY FOR FINITE-MOMENTUM SUPERCONDUCTIVITY

interaction

1

ˆH
int

=�g
0

X

hi j i,�,�0
ˆc †

�,i ˆc�,i ˆc †

�0, j ˆc�0, j . (5.2)

This interaction can be seen as a limit of the more general attractive interac-

tion which respects translational invariance

ˆH
int

=�g
0

X

i j k l

X

�,�0
T (r+i j �r

+
k l )t (r

�
i j ,r�k l ) ˆc

†

�,i ˆc †

�0, j ˆc�0,l ˆc�,k , (5.3)

where r±i j = (ri ± r j )/2. Here t (r�i j ,r�k l ) describes the electron-electron at-

traction and T (r+i j �r
+
k l ) represents the possibility of a correlated jump of an

electron pair. The form (5.2), which only contains density-density interac-

tion, is obtained for T (r
1

� r
2

) = �(r
1

� r
2

) and t (r�i j ,r�k l ) = t (r�i j ,r�i j )�r�i j ,r�k l

where t (r�i j ,r�i j ) =�r�i j ,

ˆx/2+ ( ˆx !� ˆx ,± ˆy ) is the nearest-neighbor interaction.

5.1.1 Pair-hopping interaction

A weak-coupling scenario is not expected to generate a PDW. It is still un-

expected for a finite-momentum superconducting state to be energetically

preferable over a zero-momentum state for stronger coupling, since portions

of the FS will be ungapped. However, for an interaction that promotes d-wave

pairing, the nodal points of the FS are already ungapped. Thus, one might

imagine that a reduced nodal gap could conspire with a finite-momentum

condensate to form an effectively less gapped FS. Such a result was reported

by Loder et al. [103], who found that for sufficiently strong nearest-neighbor

attraction, finite-momentum pairing triumphs over zero-momentum (with

d-wave symmetry). When trying to use this result in order to explore the

depairing current in a PDW state (Paper A), we found that a substantially

higher interaction strength than previously reported was needed (g
0

¶ 6t
where t is the hopping strength)

2

. Instead, we considered a finite range

1

These attractive interactions should be viewed as low-energy effective Hamiltonians. In

general, one can consider different sources for attractive interactions; however, the repulsive

Coulomb repulsion has to be overcome. In the BCS model, the total interaction can become

attractive due to the highly retarded phonon-mediated attraction. Relevant for the cuprates

is a nearest-neighbor attraction that can be realized by a residual AF interaction, which in the

d-wave channel is orthogonal to an on-site Coulomb repulsion [31].
2

See Appendix A of Paper A. Here V is used to indicate interaction strength, not g
0

.
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pair-hopping term of the form

T (r+i j � r+k l ) =
yx

2⇡
e
�P
µ
2

µ

(r+i j ,µ�r+k l ,µ )
2

2

cos

2⇡

�
(r +i j ,x �r

+
k l ,x ) (5.4)

(still with a nearest neighbor attraction t (r�i j ,r�k l ) = �r�i j ,

ˆx/2�r�k l ,

ˆx/2 + ( ˆx !
� ˆx ,± ˆy )). Here µ,µ= x , y sets the range of the hopping and for x ,y !1
(5.4) reduces to an ordinary nearest-neighbor interaction. In order to have a

negligible zero-momentum pairing the modulation needs to be well resolved

by the hopping range, thus

3 x Æ 2

� . Using this interaction we were able

to find stable PDW solutions for a significantly smaller interaction strength

g
0

¶ 1.5t .

In Paper B we wanted to generalize the assumptions and instead consid-

ered a continuous field theory

ˆH
int

=�g
0

2

X

�,�0

Z

r
1

,r
2

T (r
1

�r
2

) ˆ †

�(r1

) ˆ †

�0 (r1

) ˆ �0 (r2

) ˆ �(r2

) (5.5)

with local attraction t (r�i j ,r�k l ) = �r�i j ,0

�r�k l ,0

, and repulsive pair-hopping of

the form

T (r
1

�r
2

) =�(r
1

�r
2

)�↵�
✓

r
1

�r
2

±
⇢

ˆx
ˆy

�
�

2

◆
(5.6)

with ↵> 0 and hopping length �. Simultaneously having a pair at position x
and x +� is energetically unfavorable, which leads to a staggered distribution

of pairs. This effect is perhaps most easily understood in the reciprocal space

where T (p) = 1�2↵cos(�
2

px )�2↵cos(�
2

py ) can be thought of as the dispersion

of the pairs. The reason for considering two different kinds of pair-hopping

is that in Paper A we were interested in a strong tendency towards forming a

PDW (small  in (5.4)). In Paper B we rather wanted to explore what happens

for a very weak pair-hopping modulations (↵⌧ 1 in (5.6)). Alternatively (5.4)

can be considered a smoothened version of (5.6).

Similar sorts of pair-hopping interactions have been suggested to arise

from off-diagonal terms of the microscopic Coulomb interaction [40, 104,

105, 106]. The original idea of PDW arising from stripe order is that the stripe

domains act as Josephson ⇡-junction, yielding an alternating sign of the

3

We also included a possible finite hopping range along the y -direction.
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+

-

-

Figure 5.1: Sketch of the interaction (5.6) and (5.4) with local attraction and

longer range pair-hopping. Solid (dashed) rings indicate positive (negative)

pair-amplitudes of a commensurate PDW. This depicts a d-wave order, relevant

for Paper A.

superconducting order [10](see Figure 3.3). The pair-hopping presented

here can be considered a microscopic version of the same idea.

There are other possible sources for a PDW state as well. The original

suggestion of PDW comes from a variational Monte Carlo study of the 2D

t-t’-J model [9]. Suggested from tensor networks, a striped PDW is near-

degenerate with the uniform d-wave superconductor [107]. However, from

DMRG studies on t-J ladders, clear evidence for a PDW order is lacking [108].
Interestingly, in Paper B, we find that even a small pair-hopping can stabilize

a PDW state.

5.2 Path-integral formulation

To derive both the BCS formulation and the Ginzburg-Landau effective action

of a PDW state we will consider the coherent state path-integral formulation

of the many-body Hamiltonian. A coherent state is defined as an eigenstate of

the annihilation operator,

ˆ ±(x )| ±i= ±(x )| ±i, | ±i= e ±
R

dx ±(x ) ˆ †±(x )|0i
where we use +,� to refer to bosons and fermions respectively. We can label

the coherent state by the field ±, which is then no longer an operator. For

bosons these fields are ordinary commuting numbers, but for fermions they

are the anti-commuting Grassmann numbers.

We can express the many-body partition function for a fermionic Hamil-

tonian ( =  �) in terms of a functional integral over all coherent states

Z = Tr e �� ( ˆH�µ ˆN ) =
Z
D ⇤D e � ⇤ h� |e �� ( ˆH�µ ˆN )| i . (5.7)
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(With � = 1/T .) We want to utilize that acting with a normal ordered opera-

tor

4

on a coherent state replaces the

ˆ operators with their Grassman number

equivalents . To do this, we split up the argument of the exponential in N
small slices of width�⌧=�/N , which then becomes normal-ordered to first

order in �⌧. Inserting the resolution of identity for every slice we obtain

5

[31]

Z =
Z
D e �S ( )

, S ( ) =

�Z

0

d⌧

Z

k

 ⇤k@⌧ k+H (⌧)�µN (⌧) , (5.8)

where ⌧ is a continuous label of each slice. We can use this partition function

to calculate imaginary time-ordered Greens functions

G (⌧,⌧0) =�hT ˆ (⌧) ˆ †(⌧0)i=� 1

Z
Tr

⇥
e �� (H�µN )T ˆ (⌧) ˆ †(⌧0)

⇤
(5.9)

using

hT ˆ (⌧) ˆ †(⌧0)i= h (⌧) ⇤(⌧0)i= 1

Z

Z
D  (⌧) ⇤(⌧0)e �S (⌧)

, (5.10)

where

ˆ (⌧) = e ⌧ ˆH
ˆ e �⌧ ˆH

are Heisenberg operators in imaginary time ⌧= i t .

Considering the s -wave pairing interaction in (5.5) the action can be

written as

S ( ) =

�Z

0

d⌧

Z

k

 †

k@⌧ k+H (⌧)�µN (⌧) , (5.11)

in reciprocal space with

H =
Z

k

 †

k "(⌧3

k)⌧
3

 k� g
0

Z

k,k0,p

T (p) †

k+ p
2

⌧+ k� p
2

 †

k0� p
2

⌧� k0+ p
2

,

(5.12)

where T (p) = 1�2↵cos(�
2

px )�2↵cos(�
2

py ). We have introduced the Nambu-

spinors  †

k = [ 
⇤",k #,�k] and ⌧± = ⌧1

±i⌧
2

2

, where ⌧i are the Pauli-matrices

6

.

4

An operator with all creation operators to the left of annihilation operators.

5

We will useD as a short-hand notation forD D ⇤.
6

⌧
1

=

0 1

1 0

�
⌧

2

=

0 �i
i 0

�
⌧

3

=

1 0

0 �1

�
. (5.13)
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5.2.1 Hubbard-Stratonovich transformation

The action (5.11) describes an interacting system. In order to treat the in-

teraction, we will utilize the Hubbard-Stratonovich (HS) transformation to

decouple the interaction in (5.12) in the superconducting channel. Formally

we do this by the replacement

7

� g
0

Z

k,k0,p

T (p) †

k+ p
2

⌧+ k� p
2

 †

k0� p
2

⌧� k0+ p
2

�! 1

g
0

Z

p

�⇤(p,⌧)T �1(p)�(p,⌧)

�
Z

k,p

�(p,⌧) †

k+ p
2

⌧+ k� p
2

�
Z

k,p

�⇤(p,⌧) †

k� p
2

⌧� k+ p
2

(5.15)

in (5.12). Simultaneously the partition function should be evaluated over all

configurations of the bosonic (superconducting) field �

Z =
Z
D D�e �S ( ,�)

. (5.16)

The HS transformation is central to this thesis and some more technical

aspects are discussed in Appendix B. In reciprocal space the action takes the

form

S ( ,�) =
Z

k ,k 0

 †

kG�1

k ,k 0 k 0 +
1

g
0

Z

p

|�(p )|2T �1(p) ,

G�1

k ,k 0 =G�1

0,k�k�k 0 �⌃k ,k 0 , G�1

0,k =�i!+⌧
3

⇠(⌧
3

k) ,

⌃k ,k 0 =�(k �k 0)⌧+ +�⇤(�k +k 0)⌧� ,

(5.17)

where ⇠(k) = "(k)� µ and k = (k, i!) and p = (p, i⌦) for the bosonic and

fermionic modes respectively. ⌦ = 2n⇡
� ,! = (2n+1)⇡

� are the bosonic and

fermionic Matsubara frequencies (corresponding to a periodic and an anti-

periodic Greens function) and �k�k 0 =�(k�k0)��n ,n 0 .

7

The HS transformation utilizes the identity

Z
dz dz ⇤e �z ⇤M z+ j ⇤z+z ⇤ j = constant e j ⇤M �1 j

(5.14)

where we identify j ⇠ †

k� p
2

⌧� k+ p
2

= #,k� p
2

 ",k+ p
2

and z ⇠� (see Appendix B).
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Figure 5.2: Illustration of the HS transformation in terms of Feynman diagrams.

a The interaction is decoupled by the introduction of a new (propagating) field

�, and a vertex. b BCS theory is obtained by letting � acquire an expecta-

tion value. c Dressing L
0

with loops of electrons introduces dynamics and is

equivalent to the RPA approximation.

A nice physical way to understand the HS transformation is to appeal to

the corresponding Feynman diagrams of the interaction described by the left

and right-hand side of (5.15); this is illustrated in Figure 5.2. The left-hand

side describes a theory with an interaction term equal to�g
0

T (p). In contrast,

the right-hand side, after the HS transformation, replaces this interaction

with an additional field,�, with the bare propagator L
0

=�h��⇤i=�g
0

T (p),
and a vertex (see Figure 5.2a). Diagrams with only external fermionic legs

will be given by the same expression in both representations.

The theory with the bosonic superconducting field has several advantages

as a starting point for approximations. Since the theory is quadratic in the

electronic field, we can evaluate it for specific field configurations of �. If

a finite expectation value well approximates �, we can write down a corre-

sponding mean-field theory and study the fermionic excitations; this will be

the BCS theory (see Figure 5.2b). Furthermore, we can also study dynamics

of � by including screening by the electron fields. Note that dressing the

superconducting propagator (one-loop correction) will equal the random

phase approximation (RPA) of the electron-electron interaction; this is the

starting point for considering fluctuations of the superconducting field (see

Figure 5.2c).

We find the effective action in terms of the superconducting order param-
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eter by integrating over the fermionic degrees of freedom

8

Z =
Z
D D�e �S =
Z
D�e

� 1

g
0

R
p
|�(p )|2T �1(p)

Det(G�1

k ,k 0 ) (5.18)

where the Grassmann integral yields the functional determinant spanning

over all fermionic degrees of freedom [42]. After re-exponentiating the func-

tional determinant by using ln(Det) = Tr(ln), we find

Z =
Z
D�e �S

eff

(�)

S
eff

(�) =�Tr lnG�1+
1

g
0

Z

p

|�(p )|2T �1(p) .
(5.19)

5.3 BCS mean-field theory as a saddle-point approxima-

tion

BCS theory utilizes that we can calculate the fermionic spectra of S ( ,�) for

specific configuration of the superconducting field �. The configuration

that best approximates the partition function is given by the configuration

at the saddle-point �=�
0

that fulfills �S
eff

/��= 0

Z ⇡ Z
BCS

= e �S
eff

(�
0

) =
Z
D e �S ( ,�

0

)
. (5.20)

The saddle-point equation implies

h �S
��
i

BCS

= 0)�(q ) = g
0

T (q)
Z

k

h #,�k+q/2 ",k+q/2i (5.21)

where the average is taken with respect to Z
BCS

. This gives the well-known

BCS self-consistency equation after evaluating the anomalous Greens func-

tion in (5.21). We will continue to discuss the mean-field in Section 6.2, where

we develop the mean-field theory from a slightly different perspective, more

suitable for introducing a supercurrent.

8

Here we asserted the overall normalization factor 1, which can be confirmed by taking

the free-electron limit G�1

k ,k 0 !G�1

0,k�k ,k 0 where G�1

0,k =�i!+⌧
3

⇠(k).
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5.4 Superconducting effective action

To make some headway with the effective action (5.19) we will assume that

we are close to an ordering transition and expand the order parameter around

�= 0 (or ⌃= 0)

�Tr ln�G�1 =�Tr ln�G�1

0

+
X

n

1

n
Tr (G

0

⌃)n
(5.22)

and truncate to some finite order

9

. For weak enough ordering it suffices to

truncate the series to fourth order in � for which the partition function can

be written

Z ⇡ Z
0

Z
GL

, Z
GL

=
Z
D�e ��F (�)

, (5.23)

with Z
0

=Det(�G�1

0

) being the free electron contribution and

F =
1

�

0
@ 1

g
0

Z

p

|�(p )|2T �1(p) +
1

2

Tr (G
0

⌃)2+
1

4

Tr (G
0

⌃)4

1
A

(5.24)

the Ginzburg-Landau energy functional. Here we used that the series in

(5.22) only involves pairs of � and �⇤ since tr(⌧±) = 0,⌧2± = 0.

Studying weak ordering implies T ⇡ Tc , which is a limitation that does

not arise in the BCS mean-field theory treatment. In contrast, the mean-

field treatment is limited to consider weak interaction. The form of the GL

theory, in principle, allows for arbitrary strong interaction, and we will use

this formulation to study the BCS-BEC crossover in Chapter 7.

5.4.1 Multiple superconducting orders

The effective action (5.19) is formally exact, and the fluctuating bosonic field

� takes all correlation effects into account. However, when expanding in

�, many correlation effects are lost. We could have considered another de-

composition of the interaction by, for instance, letting CDW or SDW mediate

the interaction. Ideally, we would like to include many possible orders si-

multaneously. While this is easy to do phenomenologically, by considering

9

Tr indicates trace over all degrees of freedom while we let tr indicate trace over freedoms

in “matrix” representation, like the Pauli matrices.



32 EFFECTIVE THEORY FOR FINITE-MOMENTUM SUPERCONDUCTIVITY

the appropriate symmetry respecting terms, an expansion as outlined above

would, in general, lead to double-counting degrees of freedoms [109]. Our

hypothesis for the cuprate system is, however, that the superconducting in-

stability dominates, but with the possibility of developing finite-momentum

orders. This hypothesis motivates us to consider the GL functional (5.24),

where we expand in finite-momentum orders. This was the scenario consid-

ered in Paper B.

In the presence of a finite-momentum instability we include an expansion

in anticipated modes

10

�(x) =��Q(x)e �i Q·x+�
0

(x) +�Q(x)e i Q·x
(5.25)

in Z
GL

(5.23). The functional measure should be written

D�(x ) =Y
p

d�p = ˜D��Q(x ) ˜D�
0

(x ) ˜D�Q(x ) (5.26)

where

˜D indicates that the function should only vary over lengths bigger

than 2/|Q| in order not to result in double counting of degrees of freedom.

To clarify, terms like �
0

(Q+q) should be identified with �Q(q) in order not

to take the same mode into account twice. Eventually, we are interested in

a gradient expansion of the action, considering slow variations of �. With

2/|Q| typically on the order of a few lattice constants, this constraint will

be automatically enforced, and the distinction between

˜D and D can be

dropped. The expansion (5.25) implies that ⌃ in (5.17) splits into three parts

⌃=⌃�Q+⌃0

+⌃Q (5.27)

where

⌃q(k, k0, i!� i!0) =
�q(k�k0 �q, i!� i!0)⌧+ +�⇤q(�k+k0 �q,�i!+ i!0)⌧� .

(5.28)

Inserting this into (5.24) we can find the second and fourth-order terms for a

theory with multiple modes of superconducting order.

10

Here we only included three anticipated modes along one axis, possibly describing a

unidirectional PDW. In Paper D and Chapter 11 we include a (more) complete set of ordering

momenta, consistent with a tetragonal symmetry.
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1

L

�1(p, i�) =

�k + p/2

k + p/2

, �i!

, i! + i�

�

Figure 5.3: Diagrammatic representation of (5.31).

5.4.2 Second-order terms and the pair propagator

The second-order term in (5.24) takes the form

1

2

Tr(G
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Tr(G
0

⌃Q)2 (5.29)

where cross terms vanishes because of the restriction from double counting

11

,

similar for

1

g
0

R
p
|�(p )|2T �1(p). The zero-order momentum term yields

1

2

TrG
0

⌃
0

G
0

⌃
0

=

1

2

Z
trG

0

(p, i!)⌃
0

(p, p0, i!� i!0)G
0

(p0, i!0)⌃
0

(p0, p, i!0 � i!) .
(5.30)

Performing the trace in Nambu space yields a factor of two and we find for

the second order term of the free energy (5.24)

�
Z

p

L�1(p, i⌦)|�(p, i⌦)|2 ,

L�1(p, i⌦) =
Z

k

G
0

(k+
p

2

, i!+i⌦)G
0

(�k+
p

2

,�i!)� T �1(p)
g

0

(5.31)

where G
0

(k, i!) = (i!�⇠(k))�1

. Here we have defined the pair susceptibility,

or pair propagator L (p, i⌦), diagrammatically shown in Figure 5.3. The other

terms in (5.29) are formally similar and can be obtained by shifting L�1(p, i⌦)

11

Alternatively, the cancellation of cross terms can be seen as a result of averaging over

highly oscillatory terms like �Q�
⇤�Qe 2Q·R

.
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to L�1(p±Q, i⌦). The analytic structure of L (p, z ) contains information about

the excitation spectra of the pairs and is needed to determined the occupa-

tion number of bosonic excitations, which we will come back to in Section

7.2.

Figure 5.4: Diagrammatic representation of (5.35). A factor 2 arises for uQ

because of charge conjugation (CC). For the mixed term we get a factor of 4

from the cyclic property of the trace as well as a factor of 2 from CC for �Q
1

,Q
2

.

(�
0,Q,�Q is not invariant under CC which leads to two terms in (5.34).)

5.4.3 Fourth-order terms

Expanding the fourth-order terms around the different momenta yields
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(5.32)

where we used the non-double counting restriction and the cyclic property

of the trace

12

. Explicitly in terms of � the un-mixed fourth order finite-

12

One might have guessed that terms in the second row of (5.32) should come with a

factor of 6/4 in front, however the two terms (related by cyclic transformation) of the form

�Q
1

�⇤Q
2

�Q
1

�⇤Q
2

leads to double counting and only four terms of the form �Q
1

�⇤Q
1

�Q
2

�⇤Q
2
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momentum term takes the form
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where we have only kept the q = (q, i⌦) independent part of u
0

= u (0,0,0),
yielding a local term in real space and time (see Figure 5.4). This is in contrast

to how we treated the second-order term, where the momentum dependence

in L was kept, see (5.31). This is a valid assumption if the time-dependence

and spatial dependence of � are of much longer scale than the coherence

time and coherence length of the pairs themselves (see discussion around

(7.16) and (7.17)). Similar terms arise for finite-momentum orders with

uQ = u (Q, Q, Q)where we again assume small dependence of u on additional

variation of momentum. Similarly, we find from (5.32) the mixed terms

�
0,Q|�0

|2|�Q|2 , �Q
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(5.35)

The diagrammatic representation of these terms is shown in Figure 5.4. The

mixed terms determine how the superconducting orders interact.

remains. This, as well as the formation of the last term in (5.32), is most easily seen from the

diagrammatic representation shown in Figure 5.4.
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5.5 Ginzburg-Landau theory

For an effective Ginzburg-Landau (GL) free energy functional one usually

neglects the Matsubara frequency dependence

13

and considers an expansion

to second order in momenta �L�1(p,0) = r + a
2

p 2

with a describing the

stiffness to deformation. The onset of ordering occurs when the the uniform

static susceptibility 1/r diverges and one typically finds r / T �Tc , with Tc

the ordering temperature

14

.

In the presence of pair-hopping, ↵> 0, we do expect that a finite momen-

tum superconducting mode can be stable as well as the zero momentum

one. The general expansion of L�1(p, 0) around a finite momentum takes the

form

� L�1(Q+p, 0) = rQ+a 0i ,Qpi +
ai ,Q

2

p 2

i . (5.36)

where we, in general, have the possibility of the linear term a 0i ,Q, this term

does, however, indicate that the finite-momentum Q solution is unstable

(since a shift of momentum can decrease the energy). Usually, when writing

down phenomenological GL theories, this term is just assumed to be zero.

However, the cancellation of this term for finite momenta is a subtle thing

and is likely to put constraints on any model giving rise to finite-momentum

superconductivity. For the pair-hopping interaction, this term will cancel

due to the existence of a back-propagating Josephson like current arising

since the interaction couples to the gauge field (see (6.13)). Importantly, note

that the cancellation of the a 0i ,Q term is a necessity for the stability of both FF,

�Q 6= 0,�Q = 0, and LO, �Q =�Q 6= 0, type state. Assuming a 0i ,Q = 0 we write

down the full GL energy functional (F = S/� )
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(5.37)

13

This can be considered a classical limit with T !1.

14

For strong coupling r is not determined by the temperature, but by the chemical potential,

µ (see Section 7.1).
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This is the basis of many phenomenological approaches and we will discuss

this further in Paper D and Chapter 10.

5.6 The PDW instability

One of the results presented in Paper B is that (5.31) takes on a rather simple

structure and that the GL theory can be characterized by a sixth order poly-

nomial in Q= (Qx ,Qy ). I.e. for a given (T , µ, g , ↵) L�1(Q, 0) can be described

by

15

A(Q) = r +
a
2

Q 2+ bQ 2

+Q 2

� +
c
4

(Q 2

+ +Q 2

� )
2+

1

6

Q 6

(5.38)

such that the GL free energy for a finite-momentum mode

16

is given by

FM = A(Q)|�Q|2+ uQ

2

|�Q|4 (5.39)

where Q± =
Qx±Qy

2

. (The exact form of L�1(Q, 0) is given, for a few examples,

in Figure 4 in Appendix A of Paper B, which illustrates this behavior). Here

the Q+$Q� symmetry is given by the specific form of T (p), which ensures

b > 0. We anticipate that an explicit band-structure with a high density of

states directions along px and py may change the sign of b (as a function

of interaction strength) with b < 0 implying a “lattice-aligned” FF state.

(This possibility is considered in Paper D.) Further u > 0, which results from

the residual repulsive interaction between pairs due to the Pauli principle.

However, it turns out that r, a , c can have either sign, leading to a rather

intricate phase diagram (see Figure 7.3a).

5.6.1 Lifshitz point

We recognize a transition from ordinary homogeneous SC to a modulated

FF state through a so-called Lifshitz point [110], when a changes sign and

c > 0. In this case, the pairing momenta, Q+ evolves continuously from zero.

However, for c < 0, there is a region of coexisting minima at Q+ = 0 and

15

The term proportional to c differs from what is erroneously reported in Paper B (5).

16

Here we let GL free energy functional denote the situation where spatial modulations are

included and GL free energy only considering uniform solutions.
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Q+ =±Q
0

. The critical surfaces of these solutions meet at a line of bicritical

17

points r = A(Q
0

) = 0 where Q+ jumps.

5.6.2 Super-Lifshitz point

One key finding in Paper B is the possibility of a new kind of critical point,

a point we call a super-Lifshitz point. This point occurs at the intersection

between the bicritical line and the line of Lifshitz point, a = c = 0. The name

of super Lifshitz (SL) refers to the simultaneous cancellation of higher orders

in the dispersion, which leads to distinct mean-field exponents with even

softer modes, " ⇠ q 6

. The correlation length mean-field exponents change

from ⌫= 1/4 to ⌫= 1/6 when going from a Lifshitz point to a super-Lifshitz

point. Correspondingly the critical exponent associated with Q , Q ⇠ |a |�k
is

given by �k = 1/2 for a Lifshitz point, and �k = 1/4 for the SL point [111].

17

To conclude the bicritical nature (instead of a possible tetracritical transition), one needs

to consider the interaction between the homogeneous SC and finite-momentum FF solution.

In general we expect a repulsive interaction between SC and FF, indicated by �(Q,0) > 0.

It turns out that the rise in interaction energy is higher than the sum of the condensation

energies of the two orders (�(Q,0) >
p

u (Q)u (0)). Thus there will be a first-order, bicritical

transition. For details, see supplemental note of Paper B.
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6 BCS theory and supercurrent

The defining feature of a superconductor is its ability to conduct a super-

current, that is, a current without resistance. An important question when

considering the possibility of more exotic superconducting states, like PDW,

is how such a state would affect the overall phenomenology of superconduct-

ing properties. This was one main subject of Paper A.

The physics of supercurrents is a quite tricky subject with various limits

and effects to take into consideration. Practically the critical current, Jc , is

the most definitive measure of a superconductor’s ability to superconduct.

The critical current is the highest current a superconducting device can

withstand without developing a voltage drop. However, this quantity is often

dependent on the specific geometry of the device and resistance can develop

in a device which is still formally a superconductor, meaning that it is still in

a superconducting state (this can happen through, for instance, phase-slips

and vortex drifts [92]). Furthermore, since a current induces a magnetic field,

one, in general, has to consider the superconductor’s resilience to a magnetic

field in order to calculate the critical current. (For a discussion see Appendix

D.)

A more robust quantity is the so-called depairing current, Jd . This is the

current above which the condensate ceases to exist, i.e., the superconductor

is forced into the normal state. Naturally, the critical current can never exceed

the depairing current Jc  Jd , and we can consider it an upper estimate of the

critical current. In general, we anticipate residual superconducting behavior

for Jc < J < Jd since local pairing correlations prevail.

6.1 Supercurrent and depairing current

The standard uniform current is given by the operator

ˆJ=
X

k

vk ˆnk , vk =rk"(k) . (6.1)

where vk is the velocity of the electrons and

ˆnk =
P
� ˆc †

�,k ˆc�,k the occupa-

tion operator. In a superconductor the electronic freedoms generally di-

vide into a quasiparticle part and a condensate part, usually described by
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the anomalous expectation value h ˆc#,k ˆc",�ki. With a condensate evenly dis-

tributed around zero momentum, the current will be zero. However, if the

condensate acquires a finite velocity, the system will carry a supercurrent. In

practice we study this by imposing a momentum shift, qs , of the condensate,

h ˆc#,k ˆc",�ki ! h ˆc#,k+ qs
2

ˆc",�k+ qs
2

i, and calculate the quasiparticle spectra

1

. In

general, we find a (Doppler) shifted dispersion, describing a spontaneous

quasiparticle excitation current, Je , counter-propagating to the the conden-

sate current, Jc o , such that the total current is given by J = Jc o � Je . The

existence of a finite supercurrent is a consequence of the condensate current

being a quantity protected by a gap, while the quasiparticles are free to relax

2

.

Increasing qs eventually leads to the destruction of the supercurrent due to

two separate effects; the increase of the counter-propagating quasiparticle

current Je , and the depletion of the condensate, resulting in a smaller Jc o .

The function J(qs ) will therefore have a maximum, which one identifies with

the depairing current Jd [113, 114].

6.2 BCS mean-field theory for finite-momentum super-

conductivity

Clearly, in order both to describe a supercurrent carrying homogeneous

superconductor as well as PDW state, we need to be able to describe a finite-

momentum state in BCS theory. To describe the propagation of electrons in

the presence of a condensate is it useful to define the imaginary-time Nambu

Gorkov Greens function

G (k, q,⌧) =�hT ˆ k,q(⌧) ˆ 
†

k,q(0)i=
�
ñ hT ˆc",k+q/2(⌧) ˆc

†

",k+q/2(0)i hT ˆc",k+q/2(⌧) ˆc#,�k+q/2(0)i
hT ˆc †

#,�k+q/2(⌧) ˆc
†

",k+q/2(0)i hT ˆc †

#,k+q/2(⌧) ˆc#,k+q/2(0)i
ô

(6.2)

where we introduced the finite-momentum Nambu-spinors

ˆ †

k,q(⌧) = [ ˆc
†

",k+q/2 ˆc#,�k+q/2] . (6.3)

1

The current-carrying state of the superconductor is a metastable state. However, it would

require a total reconstruction of the condensate to reach the ground state. This is what

prevents the decay of current [112].
2

In an ordinary metal, there is distinction between Jc o and Je . Imposing a supercurrent is

like boosting a limited part of the FS, which simply relax back to the ordinary configuration

with zero current.
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Assuming that � acquires a single finite expectation value for a mode with

momentum q, �(p,⌧) =�q�(p�q), i.e. an FF state or homogeneous super-

conducting state with current, we found the mean-field BCS action (5.20) as

S ( ,�q) =

�Z

0

d⌧

ÇX

k

 †

k@⌧ k+H
MF

+
V

g
0

T (q)
|�q|2
å

(6.4)

with the mean-field Hamiltonian

ˆH
MF

=
X

k�

⇠(k) ˆc †

k� ˆck� �
X

k

�q ˆc †

"k+q/2 ˆc †

#�k+q/2+
X

k

�⇤q ˆc#�k+q/2 ˆc"k+q/2

=
X

k

ˆ †

k,qhk,q ˆ k,q

(6.5)

where ⇠(k) = "(k)�µ and hk,q = ⌧3

⇠(⌧
3

k+q/2)��q⌧+��⇤q⌧�. (Decompo-

sition in finite-momentum Bogoliubov quasiparticles is shown i Appendix

C.) Since the Hamiltonian is quadratic we can solve for the Nambu-Gorkov

Greens-function exactly G (k, q,⌧) =�(@⌧+hk,q)�1

,

G �1(k, q, i!) =

i!�⇠(k+q/2) �q

�⇤q i!+⇠(k�q/2)

�
. (6.6)

We write down the (non-trivial) gap-equation (5.21) as

1=
g

0

T (q)
V �

X

k,i!

tanh(�E (�)k /2) + tanh(�E (+)k /2)
4Ek

, (6.7)

where, introducing ✏±(k) = (⇠(k+q/2)±⇠(k�q/2))/2,

E (±)k = Ek±✏�(k) , Ek =
q|�q|+✏+(k)2 (6.8)

are the Doppler-shifted quasiparticle energies. After solving (6.7) for �q, all

electron correlators of the system can be written in terms of G .

A finite interaction (6.7) admits solutions for a range of q, however it is

only for q= 0 that solutions exists for arbitrarily small g
0

. This can be seen

from the summand in (6.7) which diverges for k at the FS when �q=0

! 0,

since ✏+(k) = ⇠(k) = 0 for q= 0. We refer to the latter as perfect nesting. This is

the Cooper instability and yields a logarithmic divergence of the sum. Clearly

perfect nesting is destroyed for q 6= 0 and we need a finite g
0

to fulfill (6.7).



42 BCS THEORY AND SUPERCURRENT

k

y

= �3.07 k

y

= �2.26 k

y

= �3.07 k

y

= �2.26

k

x

k

x

k

x

k

x

k

y

k

y

!

!

nk nk

k

x

k

x

ba

c d

Figure 6.1: Electron occupation for the normal a and the superconducting

state b at T = 0 and n = 0.8. The spectral function is shown in c (normal) and

d (superconducting) where the latter shows a gap opening. We use the tight-

binding dispersion ⇠(k) = �2t (cos(kx ) + cos(ky )� 4t 0 cos(kx )cos(ky )�µ, t 0 =
�0.3t , t = 1. The gray lines in b and d shows the bare dispersions ⇠(k) and

�⇠(�k).

6.2.1 Generalized mean-field treatment

We have seen how to construct a BCS mean-field theory for a single-component

superconducting order parameter as a saddle-point approximation of the

effective superconducting action. However, the construction of a mean-field

Hamiltonian can be considered more generally as a treatment to find ap-

proximate solutions to an interacting system. This view helps address the

stability of the LO state (which has two order parameters) as well as imposing

supercurrent in such state.

In order to find solutions to a given full interacting Hamiltonian, H , we

choose to address another non-interacting mean-field (MF) Hamiltonian.
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Figure 6.2: Electronic occupation and spectral-weight for superconducting

state with finite current (T = 0, n = 0.8). Panels a,b (c,d) correspond to a

condensate momentum shift qs = 0.15(qs = 0.195) in positive x direction. In a
the electronic occupation, nk, is shifted, yielding a finite current and b shows

the corresponding shift in spectral function. In c, d the shift is higher and the

bands touch the FS (see Figure 6.3b). This leads to quasiparticle excitations

where particles are transfered to the trailing edge of the electronic occupation

distribution in c. The gray lines in b and d shows the bare dispersions ⇠(k) and

�⇠(k�q).

This MF Hamiltonian can be written as

H
MF

=
X

i

µi Ai (6.9)

where Ai are a set of normal and anomalous quadratic (fermion) operators,

and µi are variational parameters [110]. Ai can be picked in whatever way

is most suitable for the problem at hand. The procedure is then to pick

the variational parameters in order to minimize the free energy of the full

Hamiltonian

F
MF

= hH i
MF

�T S
MF

(6.10)
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where h...i
MF

indicates averages with regard to the density matrix of the MF

Hamiltonian. This method relies on a theorem (see for instance [110]) that

states that expectation values taken with regard to any density matrix ⇢ will

overestimate the exact free energy, F
exact

 F⇢ . Thus, we pick ⇢ =⇢
MF

, which

is always possible to solve. To minimize (6.10) the variational parameters

should satisfy

µi =
@ hH i

MF

@ hAi iMF

. (6.11)

For the mean-field treatment of the BCS Hamiltonian, this leads to the self-

consistent gap equation, where � is a variational parameter. Importantly,

stationarity implies that the full set of quadratic operators Ai , generated by

a complete Wick decomposition of hH i
MF

, should be included in the MF

Hamiltonian. For example, since the LO state implies the existence of a CDW,

the mean-field solutions will acquire non-vanishing expectation values of

terms like h ˆc †

k+q ˆcki, and a self-consistent solution must then include CDW

terms in H
MF

.

We want to consider a fixed particle number. However, we minimize

the grand canonical potential, ⌦ = F �µN , with fixed chemical potential

µ, which yields a fluctuating particle number N . Nevertheless, in standard

fashion, the variance of the particle number vanishes in the thermodynamic

limit, and this approach becomes exact. Since we want to consider solutions

with the same particle number it is vital that we use F and not ⌦ when we

compare MF Hamiltonians that may require different µ for the same particle

number

3

.

The construction of a shifted condensate to study a supercurrent can be

seen as a generalized mean-field treatment. We let the above-mentioned qs

be some parametrization of mean-field Hamiltonians, which yields some

current, we then minimize F among those solutions.

6.3 Homogeneous superconductor without/with super-

current

It is instructive to study the spectral function of a superconductor since its

quasiparticles are split up into hole and electron like excitations. The spec-

3

This was the error detected in [103] that led to an underestimation of the coupling strength

needed to generate a stable PDW from an ordinary nearest-neighbor interaction.
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Figure 6.3: Spectral weight at the FS for the normal state (a) and superconduct-

ing state (b) with condensate momentum qs = 0.195 (see also Figure 6.2b,d).

The FS for the superconducting state with lower momentum is vanishing. (Note

the similarities with the pseudogap in Figure 3.1bf c. These are indeed very

“arc-like”, however they are closed pockets, with low spectral weight on one

side. The FF state is very similar to the current carrying state considered in this

section.)

tral function is given by the imaginary part of the retarded Greens function

A(k,!) = �2ImG R (k,!) where G R = G
11

(!+ i 0

+). In Figure 6.1 we show

some cuts of the spectral function for an (on-site s-wave) homogeneous

superconductor�q=0

alongside the occupation number nk =
R

d!
2⇡

A(k,!)
e �!+1

(per

spin). We also included the normal state for reference.

In Figure 6.2 we show the same properties for a state with finite super-

current �qs
using two shifts, qs = 0.15

ˆx and qs = 0.195

ˆx (in inverse lattice

length). In Figure 6.2a, we see a shift of the occupation, indicating a current

running in the positive x direction, accompanied by a Doppler-shifted dis-

persion, shown in panel c. Note, however, that the spectral function does

not cross the Fermi level. In contrast, for qs = 0.195, shown in panel b and

d, the spectral function does cross the Fermi level and quasiparticle states

are occupied, clearly visible as unpaired electrons in b. (This corresponds to

exceeding the Landau critical velocity, see Appendix D.) This does not destroy

the condensate, but leads to a trailing edge of electrons in the occupation

(c), constituting a back-propagating current. This effect can also be seen by

studying the occupation near the Fermi surface, shown in Figure 6.3 for the
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normal state (Figure 6.3a) and current-carrying superconducting state with

qs = 0.195 (Figure 6.3b), corresponding to Figure 6.2b,d.

6.4 The FF state and Bloch’s theorem on the ground state

current

From the above it is clear that formally there is no difference between a

supercurrent - carrying condensate with momentum q and a single-

component finite-momentum FF state. Both are describe by a mean-field

Hamiltonian with the anomalous expectation value �q = h ˆc#,k+ q
2

ˆc",�k+ q
2

i,
thus from a symmetry perspective they are the same. Therefore Figure 6.2

and 6.3 also represents the spectral signatures of an FF state. The important

difference is of course that the FF should be stable ground state, compared

to the supercurrent carrying state which is only metastable. To conclude

which state is the stable ground state we need to compare absolute energies

of the states (6.5), since (6.7) only ensures locally stable �q solutions.

An obvious question then arises regarding the possibility of a FF ground

state: does it carry current? Since it breaks both time-reversal and parity, it

is in general expected that such a state should carry a current

4

. However,

there is a theorem attributed to Bloch

5

, stating that a ground state current

cannot exist

6

. So in order for a stable FF state, we must make sure it does

not infer a current. In the context of a Zeeman split population of spins,

time-reversal symmetry is already broken, and the FF state is not current-

carrying due to the unpaired quasiparticle current [33]. However, the FF-PDW

spontaneously breaks time-reversal symmetry; thus, there are no trivially

occurring unpaired electrons on the FS. From (6.1), the only remedy seems to

be that in a crystalline system, vk is periodic and we anticipate to find a zero

current solution for momentum on the order of the Brillouin zone boundary.

While this could be an approach worth exploring further, it will require fine-

4

This is in contrast to the LO state�q =��q, which preserves parity and time-reversal, but

breaks translational invariance.

5

This theorem is sometimes confusingly called “Bloch’s theorem” and should not be

confused with Bloch’s theorem on the particle wave-function in a periodic potential.

6

The simplest way to understand this is to consider minimizing the energy with regard

to the gauge potential, which requires

@H
@ A = 0. This coincides with the definition of current,

which then must be zero. Bloch’s version of the theorem is apparently unpublished. The

reader is instead referred to [115].
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tuning. Furthermore, this would not yield a small momentum instability

7

.

Because of this it came as a surprise when studying the Hamiltonian

ˆH =
X

k,�

"(k) ˆc †

�,k ˆc�,k+
1

N

X

k,k0,q
U (k, k0, q) ˆc †

"k+q/2 ˆc †

#�k+q/2 ˆc#�k0+q/2 ˆc"k0+q/2

(6.12)

in Paper A that the stable ground state turned out to be an FF state (d-

wave) with a finite momentum q=Q. (Here, using (5.3) yields U (k, k0, q) =
�g

0

T (q)[gd (k)gd (k0) + gs (k)gs (k0)], in the singlet channel, with the d-wave

and extended s-wave structure factor gd (k) = cos(kx ) � cos(ky ), gs (k) =
cos(kx )+ cos(ky ) respectively.) How come this state do not carry a current?

The answer lies in that the interaction T (q) couples to the gauge-field (or

similarly does not commute with the density operator

8

) leading to a current

operator of the form

ˆJ=
X

k,�

vk ˆnk,� +
1

N

X

k,k0,q
2

�rqU (k, k0, q)
�

ˆc †

",k+ q
2

ˆc †

#,�k+ q
2

ˆc#,�k0+ q
2

ˆc",k0+ q
2

.

Here, in addition to the ordinary single particle term (6.1), we find an anoma-

lous pair-hopping current that allows for the cancellation of current in the FF

state (see Section III of Paper A). Note that this term is similar to a Josephson

current, a current carried by pairs rather than electrons.

To study the supercurrent of an FF state then involves shifting the mo-

mentum away from the stable momentum q =Q+qs . However, studying

the supercurrent of a two-component LO superconducting state �Q =��Q

turned out to be trickier.

6.5 The LO state

In dealing with only one superconducting mode, we found the exact Gorkov

Greens functions in (6.6). However when considering a mean-field Hamilto-

7

Since the function J(q) generally is expected to be concave, with a maximum at the

depairing current, one could imagine solutions J(q) = 0 for q > q
d

where J(q
d

) =maxqJ(q).
However, these solutions will be unstable.

8

A uniform current J= Jq=0

can either be found from the continuity equation limq!0

q ·Jq =
[H ,⇢q]where ⇢q =

P
k,�

c †

�,kc�,k+q or from J= dH
dA |A=0

where the gauge field A can be introduced

through the Peierls substitution.
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nian

ˆH
MF

=
X

k

("(k)�µ) ˆnk+
X

q=Q
1

,Q
2

Ä
�⇤q(k) ˆc#,�k+ q

2

ˆc",k+ q
2

+h .c .

ä
, (6.13)

with two superconducting modes �Q
1

,�Q
2

the system is no longer diago-

nalizable, unless we consider commensurate ordering vectors. Since we

induce a supercurrent by shifting the momenta, we need to study general (in-

commensurate) periods. Thus, we need to truncate the matrix Hamiltonian.

Also, the existence of two anomalous expectation values h ˆc#,�k+Q
1

2

ˆc",k+Q
1

2

i,
h ˆc#,�k+Q

2

2

ˆc",k+Q2
2

i induce CDW fields,

ˆ⇢Q
CDW

=
P
k,�

ˆc †

�,k ˆc�,k+Q
CDW

, where Q
CDW

=

n (Q
1

�Q
2

), n 2 Z, as well as higher order superconducting modes, which

should be included in (6.13).

In order to make approximations in a controllable way, we solved the

Gorkov Greens functions, treating the � dependent part of (6.13) as a per-

turbation. In Paper A we used the notation Gk,k0 (⌧) =�hT ˆc�,k(⌧) ˆc
†

�,k0 (0)i for

the single particle Greens function andFk,k0 (⌧) =�hT ˆc#,�k(⌧) ˆc",k0 (0)i for the

anomalous one. This sets up a system of Dyson like equations including both

off-diagonal Gk,k0 (⌧) and shifted Fk,k0 (⌧), consistent with CDW order and

higher superconducting modes. Motivated by the small energy contribution

from CDW order when using the pair-hopping interaction (see Appendix B

Paper A) we neglected all off-diagonalGk,k0 (⌧) as well as the explicit inclusion

of CDW order in (6.13) (an approximation introduced in [103]).

6.5.1 Current induced phase-separation and mirror-symmetry break-

ing

To appreciate the difference between a two-component condensate and a

single component condensate, we can imagine an LO state where the two

components are traveling in the opposite direction, creating a standing wave

pattern. One can drive current by either making one of the condensates have

higher phase velocity or by making them unequal in magnitude. This gives

rise to twice the amount of freedom when describing currents in the LO state,

compared to the single-component superconductor.

In Paper A we considered a range of mean-field Hamiltonians given by

(6.13) parametrized by Q
1

=Q
0

+q
1

, Q
2

=�Q
0

+q
2

, i.e. shifted from the LO-

PDW ground state given by momenta Q
0

. This yields a degenerate mapping
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q
1

, q
2

! J, i.e., a mapping from a specific mean-field Hamiltonian to a state of

a certain current. The procedure is in principle straightforward: we minimize

the free energy over a subset of q
1

, q
2

, which corresponds to one specific

current J. In this work, we took a direct approach of simply solving for a

large range of different q
1

, q
2

, and picking the state with the lowest energy

corresponding to a certain current. This method gave Figure 6 in Paper A.

We found two new conceptual possibilities as a consequence of driving

current in a superconductor with multiple orders. First, the current can

induce a phase-separation between an LO current-carrying state and an FF

current-carrying state (Section IV.A in Paper A). Second, a cusp can occur

in the depairing current at ✓ = 0, where ✓ is the angle from one crystal axis

(see Section IV.B in Paper A). This cusp results from a crossing of two mirror-

symmetric solutions, which are degenerate for currents running along said

crystal axis. Furthermore, if the current is increased slightly, the system will

spontaneously pick one of the branches, and a current will flow along one

of the two transverse directions. This would imply that if the system were

put on a cylindrical geometry (aligned with the crystal axis), a spontaneous

current would flow along the circular direction.
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7 Pair dynamics and the BCS-BEC crossover

Quite early after the discovery of BCS theory, it was understood that the BCS

ground state provides a qualitatively correct ground state even for stronger

coupling, but with the difference that the chemical potential, µ, should be

solved for self-consistently [96, 97] in order to account for the increasing

number of fluctuating pairs. For strong enough coupling the FS will vanish,

µ < 0, and Tc will be determined by the condensation of a Bose-Einstein

condensate (BEC) [116, 99, 100]. The 2D case has been explored in the context

of cuprate superconductivity using a functional integral technique [99, 101,

117], which is the method used here. Advances in optical lattices, where

interaction can be tuned by utilizing the Feshbach resonance, has spurred

additional theoretical investigations of the BSC-BEC crossover in recent years

[118, 119].
In Section 5.5, we expressed the GL theory in terms of integrals over

Greens function, explicitly assuming that we expand around an instability.

The Thouless criterion gives the criterion for an instability

min

p
� L�1(p, 0) = 0 (7.1)

here including the possibility of a minimum at finite momentum p. Usually,

tuning the system to the transition point only requires changing T . Typically,

one does need to consider that the condition on the chemical potential µ
alters as the transition is approached. The chemical potential is determined

by the condition of constant particle number

n =
1

�V
@ ln Z
@ µ

= n
F

+n
B

, (7.2)

where

n
F

=
1

�V
@ ln Z

0

@ µ
= 2

Z

k

1

e �⇠(k) +1

, n
B

=
1

�V
@ ln Z

GL

@ µ
. (7.3)

In Paper B we took n
B

into account by considering the Gaussian fluctuations

from the expansion of the pair propagators L (p, i⌦) in (5.31) for zero and

finite-momentum components respectively. To determine n
B

, we need to

understand the analytic structure of L , which we will discuss in Section 7.2.
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7.1 Superconducting instability in the BCS and BEC limit

To better understand the BCS-BEC crossover, we will consider the instability

condition (7.1) in these two limits. The BCS limit corresponds to µ> 0, while

the BEC limit corresponds to µ < 0. Focusing on zero momentum pairing

and performing the Matsubara sum of (5.31) we find

L�1(0, 0) = d

"⇤�
2

� µ�
2Z

�µ�
2

dx
tanh(x )

2x
� 1

g
= 0 (7.4)

where we introduced g = g
0

(1� 4↵) and d = m
2⇡ as the 2D density of states.

This integral is logarithmically divergent, and we introduced a cut-off "⇤
as the greatest energy scale. One way to interpret the need for this cut-off

is to look at the corresponding scattering problem, which shows the same

divergence. It turns out that we can re-express the bare coupling constant g
in the scattering length. In 2D there exists a bound state for arbitrarily small

interactions and we can infer [120]

1

d g
=

1

2

ln

Å
2"⇤
Eb

ã
(7.5)

where Eb is the binding energy. We can use this result to express the deep
BEC limit µ� !�1 of (7.4) as

BEC: L�1(0, 0)!�d
2

ln

Å
2|µ|
Eb

ã
. (7.6)

Thus, the instability sets in for

µ=�Eb

2

(7.7)

meaning that the binding energy of the pair has to be overcome to create

fermionic excitations. This is consistent with interpreting the normal state

of the BEC limit as being made up of pre-formed bosonic pairs. Further,

the condition (7.7) is not temperature-dependent. Instead, the transition
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temperature will be determined by the condition (7.2), which describe Bose-

Einstein condensation of the pre-formed pairs.

Turning to the deep BCS limit, µ� !1, we instead find

BCS: L�1(0, 0)!�d ln (T /T
MF

) (7.8)

with

1

T
MF

=
2e �

⇡

∆
⇠⇤|µ|e � 1

d g
, (7.9)

where ⇠⇤ = "⇤�µ and �⇡ 0.577 the Euler Mascheroni constant ("⇤ > |µ|).

7.2 Pair occupation and dynamics

The (imaginary time) pair propagator L is given by

L�1(p, i⌦) =
Z

k

tanh(�⇠+(k)/2) + tanh(�⇠�(k)/2)
2(⇠+(k) +⇠�(k)� i⌦)

� 1

g
0

T (p)
(7.10)

where we introduced ⇠±(k) = ⇠(k ± p
2

). We have already considered the

momentum dependent part L (p, i⌦) in Section 5.6 and seen that it can de-

velop local minima for finite momentum. Here we are interested in calcu-

lating the bosonic occupation number n
B

. The spectral function is given

by �Im(L R (p,!)), where we find the retarded propagator L R
by evaluating

L (p, z ) just above the real axis L R (p,!) = L (p,!+ i 0

+). The typical spec-

tral density for µ > 0 and µ < 0 respectively, are shown in Figure 7.1. As-

suming a stable finite momentum Q mode, L (p, z ) in general has a pole at

p = ±Q, i⌦ = 0, corresponding to the lowest energy bound state. For mo-

menta away from Q, the pole moves to finite ⌦. There is also a continuum

of excitations given by a branch-cut for i⌦ > �2µ+ (Q+�p)2
4m . In the weak-

coupling BCS limit (µ > 0), this structure overlaps with the pole, which is

damped out and loses its particle character. However, for strong coupling,

µ< 0, the branch cut and pole are separated (for small enough momenta).

1

Ordinarily, in the BCS limit, the interaction is limited around the FS by the Debye fre-

quency,!D , which is typically smaller thanµ. In this case it would have been!D that occurred

in the limits of (7.4) implying that we should replace

p
⇠⇤|µ|!!D in (7.9). However, turning

on the interaction, µwill inevitably become small, and the cut-off must be kept. Therefore,

we use "⇤ as the greatest energy scale.
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Figure 7.1: c, d Spectral density (in arbitrary units, lighter color correspond-

ing to higher values) as a function of frequency and momenta for the (zero-

momenta) BEC (µ = �1) and BCS (µ = 1)limit respectively. a (b) shows the

spectral weight along the dotted line in c (d), �p= 1. (Energies are measured in

units of (ml 2)�1

and momentum in l �1

, where l is some inverse length.)

In the deep BEC limit, where µ=�Eb /2, the onset of the excitation con-

tinuum can be identified with the breaking of pairs. As the binding energy

increases, the branch cut becomes more separated from the pole, given by

p=±Q+�p, i⌦= �p2

4m , and the low energy physics is well described by only

keeping the freely propagating bound state. Considering ↵ = 0,Q = 0, the

pair propagator can be expressed as

L�1(p, i⌦)⇡ i⌦� (r + a
0

2

p 2) , (7.11)

where  2R. Using (7.3) we evaluate the bosonic occupation number
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n
B

=�Tr

@
@ µ ln(�L�1) as

n
B

= 2

Z

q

1

exp

Ä
q 2

2m
p

ä�1

. (7.12)

Here we used that � 1


@ r
@ µ = 2 (in the strong coupling limit) and introduced

m
p

= 
a

0

as the bosonic pair mass, reflecting the curvature at the saddle point.

(A more rigors derivation of (7.12) is presented in Appendix E.) The evolution

of m
p

is shown in Figure 7.2b where it approaches the limiting value 2m in

the strong coupling limit.

In evaluating (7.12), we do, however, run into an expected problem; there

is no long-range order superconductivity in 2D. This is apparent since the

integral in (7.12) diverges in 2D. However, we know there should be a transi-

tion in the Kosterlitz-Thouless (KT) sense, where the low energy state is one

with quasi long-range order and a finite superfluid density. The physics of

the KT-transition is lost by resorting to the Gaussian approximation. Instead,

we choose to emulate the KT transition by regularizing the divergent integral

by allowing the bosons to move out in the third dimension, the z�direction.

A way to do this is by substituting

q 2

i
2m

p,i
! q 2

2m
p

+ q 2

z
2m

p,z
,

R
d

2q
(2⇡)2 ! 2⇡phq 2

z i
R

d

3q
(2⇡)3 ,

where hq 2

z i= 2m
p,z T is the thermal expectation value of the momenta in the

z�direction [101, 117]. With this substitution we find

n
B

3D�!
reg.

⇣(3/2)p
⇡

T m
p

. (7.13)

Even though this expression was derived in the strong coupling limit, we

use it for all coupling strengths since it yields a vanishing contribution to the

particle number in the weak-coupling limit, consistent with the exact form.

This is due to the vanishing of the effective mass in the weak-coupling limit

(see Figure 7.2b), meaning that the pre-formed pairs become unimportant.

However, at intermediate coupling when µ⇠ 0 and n
B

⇠ nF , there should be

a substantial contribution from scattering states [121]which is not accounted

for correctly in this approach. Nevertheless, since the bound state exists for

all interactions in 2D (in contrast to the 3D case), there are reasons to believe

that (7.13) might still give the qualitatively correct result [101].
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Figure 7.2: Evolution of the transition temperature ,T , (a) effective mass, m
p

,

(b) bosonic occupation, n
B

, (c) and chemical potential, µ, (d) across the BCS-

BEC crossover for zero and finite pair-hopping ↵= 0, 0.005,0.01, 0.05. Panel e
shows the evolution of the stable momenta (Q+ = (Qx +Qy )/2). The onset of

stable momenta (evolving from zero) occurs where the pair mass diverge (b)

and Tc suppressed to zero (a). For ↵= 0.05 the stable solutions occur at finite

momenta, Qx > 0, (dashed red and marked with a black dot in e) and there

is a coexistence region with the Qx = 0 solution (solid red). The mean-field

transition temperatures is plotted in dotted black in a for ↵= 0 and should be

compared with the qualitative phase diagram in Figure 4.1. This plot is also

shown in Figure 7.3. (Plotted for "⇤ = 80"F .)

7.3 The BCS-BEC crossover

We can now study the BCS to BEC crossover by simultaneously solving (7.4)

and (7.2) for different interaction strengths. This is shown in Figure 7.2 where

we plot µ, n
B

, m
p

and Tc (for ↵= 0). For weak interaction we recover the BCS

results with n = nF , n
B

= 0,µ = "F and vanishingly small pair mass m
p

.

When increasing the interaction strength, pre-formed pairs become more

important, corresponding to a higher m
p

. This leads to the occupation of

bosonic modes n
B

, which in turn renormalizes µ to lower values. Increasing
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the coupling further, the chemical potential becomes negative, µ< 0 and the

fermionic freedoms freeze out. At this point n = n
B

, and the effective pair

mass saturates at m
p

= 2m .

Alongside the transition temperature, we plotted the mean-field transition

temperature, T
MF

, given by (7.9). Often T
MF

is interpreted as the temperature

where local correlations develop, i.e., pre-formed pairs. These pairs condense

first below Tc , where the superconducting state forms. In the BCS limit,

we see that pair-formation and condensation occur simultaneously, but

in the BEC, these are well separated, leading to an emergent Bose-liquid.

Conceptually we can depict it as in Figure 4.1.

We should also comment on a principle difference between the 2D and

3D case for the crossover. The Cooper instability tells us that we need a finite

density of states in order for a bound state to occur at an arbitrarily weak

coupling. In 3D this implies the need of a FS in order to have a bound state

at an arbitrary weak coupling, but a single pair of electrons do not need to

form a bound state. However, in 2D, where the density of states is constant,

there is always a bound state [98]. Put differently, the scattering length in

2D is always positive (a
2D > 0), while in 3D it is negative (a

3D < 0) for small

interaction and a bound state (a
3D > 0) is formed only for higher interaction

strengths. Therefore there exists a unitary point [122] in 3D, where the bound

state forms |a
3D |= 0, whereas in 2D no such point exists.

7.3.1 Time-dependent Ginzburg-Landau functional for the BCS and

BEC limit

After considering the dynamical effects, we can include time-dependence

in the GL functional and consider the time-dependent Ginzburg-Landau

(TDGL) functional for the limiting cases BCS and BEC. These forms highlight

a few key differences between both limits. Expanding L�1(p,! + i 0

+) in

frequency and momenta in the BCS limit we find

L R (p,!) =
1

d
1

(⌧
0

� i⌧0
0

)i!� (✏+⇠2

0

p2)
(7.14)

where

⇠
0

=

vt
7⇣(3)
32⇡2

vF

Tc
, ⌧

0

=
⇡

8Tc
, ⌧0

0

=
1

4"F
, d =

m
2⇡

, ✏= ln(T /Tc ) , (7.15)
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here ⇠
0

,⌧
0

are the BCS coherence length and time (see also [123]). Trans-

forming back to real time and space and including the fourth order term we

find the BCS TDGL-functional S =
R

x,t
L

BCS

L
BCS

= d


✏|�|2+⌧

0

�⇤@t�� i⌧0
0

�⇤@t�+⇠2

0

|r�|2+ 3⇠2

0

v 2

F

|�|4
�

. (7.16)

This is an expansion in!⌧
0

,!⌧0
0

and ⇠
0

|p|, thus it is applicable for frequen-

cies!⌧min(Tc , |µ|) and spatial modulation |p|⌧ Tc /vF .

In the BEC limit

L
BEC

=
d

4|µ|

2|µ| ln
Å

2|µ|
Eb

ã
|�|2� i�⇤@t�+

1

2m
p

|r�|2+ 1

4|µ| |�|
4

�

µ< 0, m
p

= 2m ,

(7.17)

which is a valid expansion if ! ⌧ Eb and |p| ⌧ pm Eb . This expansion

becomes increasingly better when Eb !1, i.e. when the coupling strength

increases.

The BCS limit and BEC limit describe fundamentally different physics.

The BCS limit describes a damped mode since the loosely bound pairs break

up into electrons, yielding dissipation. In the BEC limit the pairs are instead

tightly bound, yielding the coherent propagating mode.

Coupling to gauge field

For most parts we do not consider the electromagnetic interactions in this

work. Instead, we consider the limit of an extreme type II superconductor

with the penetration depth taken to infinity �!1. In this limit all electro-

magnetic screening can be neglected and the charged and uncharged super-

fluid becomes indistinguishable. However, for completeness we note that the

electromagnetic interaction can be added by including the electrostatic and

vector potential A and � through the minimal coupling �ir!�ir� 2e
~h A

and i@t ! i@t � 2e
~h � where B =r⇥A and E = �@t A�r�. We also need to

include the electromagnetic field energy

1

2µ
0

Ä
B 2� � Ec
�

2

ä
.
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7.4 Finite-momentum BCS to BEC crossover

In Paper B, we studied the influence a finite pair-hopping ↵ has on the BCS-

BEC scenario. By using the same methods as described above, we solved

for the coefficients, and T ,µ,Q , as a function of the interaction strength, d g ,

and the pair-hopping strength, ↵. These results are shown alongside the

↵= 0 situation in Figure 7.2 and 7.3 (Figure 1 and 3 in Paper B). This included

considering the expansion of L (p, i⌦) around a finite-momentum mode

� L�1(Q+q, i⌦) = rQ+a 00i ,Qqi i⌦ +
ai ,Q

2

q 2

i , (7.18)

instead of (7.11) when evaluating n
B

(for details, see Appendix of Paper B).

For this work, the term a 00i ,Q can be neglected. The occurrence of this term

should, however, be interesting to study in the context of electromagnetic

response, since it couples electric and magnetic fields.

As described in Section 5.6 the instability towards finite-momentum state

can be understood through a sixth-order polynomial in pairing momenta

(5.38), where a finite-momentum state develops as a metastable solution,

or the momenta develops from zero, corresponding to a Lifshits point. A

nice way of summarizing the result of the BCS-BEC calculation is to identify

a ⇠ constant�d g and c ⇠↵
SL

�↵, i.e., tuning the interaction corresponds

to changing a , while changing the pair-hopping, ↵, alters c . This is shown in

Figure 7.3.

7.4.1 Diverging pair mass

When approaching the Lifshitz point, a = 0, the second derivative of the

dispersion vanishes, which is equivalent to a diverging mass (see (5.38)).

This inflection of the dispersion causes fluctuation to proliferate and drives

the critical temperature to zero, Tc = 0, which is evident from (7.13). This

is the significant finding in Paper B, and the corresponding phase diagram

Figure 7.3 clearly shows the suppression of Tc near the Lifshitz point. The

divergence of mass is shown in Figure 7.2b, which also shows that the Lifshitz

transition occurs on the strong coupling side (Figure 7.2d) with µ < 0. In

contrast, the transition to the metastable solution with finite momentum, in

general, occurs on weak-coupling side (e.g. ↵= 0.05)

2

.

2

Even if the finite-momentum solutions lose their support by becoming a saddle-point

the mass only diverges in one direction implying a finite Tc . See Appendix of Paper B.
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↵

SL

↵

dg

a

c

T/"

F

a b

Figure 7.3: Finite momentum BCS-BEC crossover. a A simplified phase dia-

gram based on (5.38) (for b > 0) which is “topological” equivalent to the full

phase diagram in b. b ↵
SL

marks the super-Lifshitz point (a = c = 0) where the

zero and finite-momentum instability coincides. For ↵<↵
SL

(c > 0) the transi-

tion will be through a Lifshitz-point (blue line). For ↵>↵
SL

the Lifshitz-point

(dashed blue) is preceded by a finite-momentum transition (c < 0). Note that

there always exists a transition for any finite ↵.

The vanishing of bosonic pair mass, together with the suppression of

Tc , makes it possible to find an analytical expression for the location of the

Lifshitz point. This line is plotted in blue (dashed blue for solutions hidden

under a finite-momentum transition) in Figure 7.3. Interestingly it turns

out that for all ↵ > 0, there exists a Lifshitz point at high enough coupling

strength d g (see (9) in Paper B). This establishes the possibility of a small

momentum instability in a strong coupling system. It also has the more

technical implication that the BCS-BEC crossover is not a crossover for ↵> 0

since it necessarily contains a transition from zero to finite-momentum

superconductivity

3

.

3

For a homogeneous s-wave superconductor, there is no phase-transition when moving

between weak and strong coupling. For non-zero angular momenta, however, there seems

to exist a transition between ungapped and fully gapped FSs [97, 124]. For spin-unbalanced

Fermi gases, there is a region in the BCS limit which allows for the FFLO phase, and there is a

transition to a homogeneous gas in BEC limit [125].
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7.5 Discussion

We have seen how a finite-momentum instability should be signaled by

suppression of Tc . That is, we approach a Lifshitz point where the mass is

enhanced, leading to proliferating fluctuations (see (7.13)). The relevance

of the Lifshitz point in cuprates is not immediately evident. One problem is

that the Lifshitz point is an inherently strongly coupled point, i.e., the system

is a BEC at the transition. Cuprates, even though they are highly correlated,

do not seem to be a pure BEC since they do have a FS.

On the other hand, the bicritical line (for ↵>↵
SL

, see Figure 7.3) might be

more interesting since it can occur on the weakly coupled side. Nevertheless,

the Lifshitz point might still be of relevance. A long-standing problem in

cuprate superconductivity is the low Tc for underdoped samples. From our

results, it is natural to speculate that the suppression of Tc might result from

the proximity in parameter space to a Lifshitz point, even if the system does

not develop a finite-momentum condensate.

For ↵ > ↵
SL

, we predict a dome-like phase diagram as a function of in-

teraction where, on one side, SC exists with sub-dominant PDW and, on

the other side, we have PDW with sub-dominant SC order (see Figure 7.3).

There is evidence for both of these regimes in cuprates. PDW order near

vortex cores in BSCCO suggesting that suppression of SC enhances PDW

order [126, 16, 21], which would be consistent with sub-dominant PDW or-

der. At 1/8 doping in LBCO, evidence points to a 2D superconducting state,

attributed to interlayer frustrated PDW [11, 14], which only at very low tem-

peratures yields a 3D Meissner state with homogeneous SC, consistent with

subdominant SC order.



61

8 Anisotropic paraconductivity

Wu et al. [23] reported a surprisingly large transverse resistivity in transport

measurements on La

2�x Srx CuO

4

(LSCO), which was highly peaked just above

Tc . The purpose of Paper C is to show how these measurements are consistent

with the development of a highly anisotropic paraconductivity and to discuss

the influence of a magnetic field. A direct discussion of the results and

considerations of Paper C is left for Chapter 9. In this chapter, we will instead

discuss the theory of paraconductivity, or fluctuating superconductivity. Of

special interest is to derive the generalized expression for Aslamasov-Larkin

expression of paraconductivity to the situation of anisotropic dynamics of

the Cooper pairs m
p,x 6=m

p,y .

8.1 Phenomenology of paraconductivity

Above Tc , we expect some residual effect on conductivity from the supercon-

ducting state. A current is carried by excitations of the system, and as the

temperature is lowered towards Tc , the Cooper pairs will constitute progres-

sively lower-lying excited states. Thus, in addition to the normal conductivity

channel, a Cooper pair channel will open up. This contribution is referred to

as paraconductivity.

The paraconductivity is determined by the life-time of the pairs, the time

before they break up into electrons. We calculated this in Section 7.3.1 from

microscopic theory and found ⌧
GL

= ⌧
0

/✏/ ~h
kB (T�Tc )

. In light of the com-

mon Drude-expression for conductivity, �D =
nq 2⌧

m , we understand that

the diverging life-time will account for a progressively higher conductivity

when approaching Tc . Indeed, in two dimensions the Aslamasov-Larkin

contribution to paraconductivity [127] takes the form

1

�
p

=
e 2

16~h
T

c

T �T
c

. (8.2)

1

The universal form of the Aslamasov-Larkin is special to 2D. In 3D it is dependent on the

correlation length [128],

�3D

p

=
e 2

32⇠

vt Tc

T �Tc
(8.1)

(for the isotropic case).
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The paraconductivity has been observed in cuprates [129, 130, 131]. In the

pseudogap part of the cuprate phase diagram, where fluctuations abound

over Tc , there are indications of nematic order, which breaks the D
4h sym-

metry of the crystal. Thus, the paraconductivity is an ideal property to study

anisotropic behavior in the Cooper-pair dynamics and investigating the

relationship between nematicity and superconductivity.

8.2 Contributions to conductivity

The general relation between a current and an external gauge potential is

given by

Ji (q,⌫) =�Q R
i j (q,⌫)A j (q,⌫) , (8.3)

where Q R
is the retarded (real frequency) London response kernel. The

conductivity can be written as

2

�i j (q,⌫) =
1

�i⌫
Q R

i j (q,⌫) . (8.4)

The kernel Q contains contributions from both normal conductivity and

fluctuating conductivity. From linear response theory the Kubo formula

gives an expression for Q (see for instance [132])

Q R
i j (q,⌫) =

ne 2

m
�i j �⇧R

i j (q,⌫) , (8.5)

where n is the particle density and ⇧R
i j (q,⌫) is the retarded current-current

correlator. We can find contributions to Q by taking second momentum-

derivatives of the free-energy [128]. This can be understood from noting that

momentum derivatives on the greens functions introduces velocity vertex

d

dqG (q) =G (q)v(q)G (q), generating current-current correlators.

To zeroth order in fluctuations, F
0

=�T ln Z
0

(see (5.23)), and including

impurity scattering, we find the normal (Drude) conductivity. Including

second-order terms in � from the superconducting action, F
GL

=�T ln Z
GL

(see (5.23)), we find

3

the three terms shown in Figure 8.1a,b and c.

2

Assuming a gauge without an electrostatic potential, E=�@t A.

3

Here we must remember that the pair propagator is dressed and that internal electron-

propagators must be differentiated as well.
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The first term, in Figure 8.1a, is the Aslamasov-Larkin (AL) expression

which accounts for the contribution to conductivity from fluctuating Cooper

pairs due to their direct coupling to the electromagnetic field through a veloc-

ity vertex � dL�1

dq . This vertex is mediated by electrons, which can been seen

from considering the momentum derivative on the one-loop contribution

to the pair propagator L , illustrated in Figure 8.1d and e.

�AL = = , = d

dq
=

d

2

dq2� = = d

2

dq2

h i
+ +...

=

�MT

+

�DOS

+

�AL

a b c

d e
1 PARA

3

1 PARA

3

1 PARA

3

4

4

4

5

5

5

6

1 PARA

3

q

q

q

q

�k

k + q

k + q

k + q �k

Figure 8.1: One-loop contribution to fluctuating conductivity. Solid lines

correspond to electron propagators and wavy lines to pair propagators. The

second derivative on the free energy gives the full contribution to fluctuating

conductivity, which yields the AL (a), the DOS (b), and MT (c) contribution. d
The AL contribution (considered in text) where the velocity vertex (shaded dot)

is mediated by electrons. d The velocity vertex can be formed by considering a

derivative on the electron-loop contribution to the pair propagator.

In addition to the AL contribution, we find the so-called density of state

contribution (DOS) and the Maki-Thompson (MT) contribution, shown

in Figure 8.1b and c, respectively. The DOS contribution is the intuitively

most clear one; it accounts for the reduction of conductivity from the single-

particle contribution. Paired-up electrons carrying charge cannot simulta-

neously conduct as a single-particle excitation. Thus, this contribution will

be�
DOS

=� 2n
B

e 2⌧
m , where n

B

is the number of fluctuating Cooper pairs. This

contribution turns out to be less singular in✏= T�Tc
Tc

than the AL contribution

[128] (ln(✏�1), rather than 1/✏) and is therefore often neglected.
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The MT diagram, first considered by Maki [133], has caused some confu-

sion in the literature since it was found that its contribution in 2D diverges.

Thompson [134] resolved this problem by pointing out that the presence of

a finite phase-breaking time introduces an IR cut-off in the diagram. The

sensitivity to phase-breaking can be understood from its analogy to weak-

localization, where instead of coherent scattering from impurities, the MT

contribution comes from a coherent (Andreev) scattering of the same fluc-

tuating Cooper pair. In HTC compounds, pair-breaking is quite high and

gets suppressed by the d-wave character [135]. For cuprates, it is therefore

almost always enough to only consider the AL contribution to the fluctuating

conductivity when comparing to experiments [128, 129].

8.3 Anisotropic paraconductivity in magnetic field

In this section, we will walk through the derivation of the Aslamasov-Larkin

contribution to conductivity

4

. The reason for this more detailed exposé

is two-fold. First of all, we want to consider the generalized case with an

anisotropic pair mass

1

2m
p

|(�i~hr� e ⇤A)�(x)|2! 1

2m
p,i
|(�i~hri � e ⇤Ai )�(x)|2 , (8.6)

which is used in Paper C. To the author’s knowledge, no previous derivation

of the case could be found in the literature. Second, the derivation contains

some information about the underlying microscopic state, which is essential

when exploring possible deviations from BCS predictions.

We calculate the AL contribution to the retarded current-current correla-

tor in (8.5) by analytically continuing the imaginary-frequency expression

⇧i j (q, i⌫m ) =
1

V �
hJi (q, i⌫m )J j (�q,�i⌫m )i (8.7)

where i⌫m = i 2⇡m/� (we will use i⌫ for short) is a bosonic Matsubara

frequency. The current Ji , refers to the unperturbed state

Ji (r, t ) =
e ⇤

2mp ,i
( †(r, t ) ˆ⇡i (r, t ) + ( ˆ⇡i (r, t ))† (r, t ))

(8.8)

4

The derivation follows the development in [128].
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with the kinematic momenta

ˆ⇡= ˆpi�e ⇤Ai , where Ai is the equilibrium gauge

potential.

We are interested in the direct current (DC) and will consider the q!
0,⌫! 0 limit. We set q= 0 and drop the momentum label. The DC current

must be finite in a non-superconducting state. This means that the total

contribution to Q (8.4) must vanish for ⌫! 0. Thus, we can write the AL

contribution to the DC conductivity as

�i j = lim

⌫!0

1

i⌫

Ä
⇧R

i j (⌫)�⇧R
i j (0)
ä

. (8.9)

Moreover, we are interested in the case with an equilibrium magnetic field

pointing out of the x y -plane (using the gauge A = (0, B x ,0)). The basis

functions to this system take the form of quantized cyclotron orbits, so-

called Landau orbits. These functions are discussed in Appendix F. The q= 0

current in the Landau-basis is given by the expression

Ji (i⌫) =
e ⇤

m
p,i

1

�

X

i!,k¯

X

n 0n
hn | ˆ⇡i |n 0ic †

n ,k¯
(i!+ i⌫)cn 0,k¯ (i!) (8.10)

where |ni= c †

n ,k¯
|0i is the normalized basis state for the nth Landau level and

k¯ = (ky , kz ). The current-current correlator takes the form (the correspond-

ing diagram is shown in Figure 8.1a)

⇧i j (i⌫) =
4e 2

m
p,i m

p, j

1

V �

X

i!,k¯

X

n ,n 0
⇡nn 0

i ⇡n 0n
j Ln ,kz

(i!+ i⌫)Ln 0,kz
(i!)

(8.11)

where we introduced the shorthand notation⇡nn 0
i = hn | ˆ⇡i |n 0i and Ln ,kz

(i!n )
is the pair propagator

ˆL in the Landau basis. We can find the retarded propa-

gator as in Section 7.3.1 and we write it as

ˆL R (!) = (�i!� ˆH )�1

, where � is in

general complex and the anisotropic Hamiltonian is given by

ˆH =⌘✏+
ˆ⇡2

i

2m
p,i

, (8.12)

where the constant ⌘ carries unit energy

5

. This operator is diagonal in

the Landau basis and we find

6 L R
n ,kz
(!) = (�i! � "n (kz ))�1

with "n (kz ) =

5

Following the derivation in Section 7.3.1 ⌘ = 1

d a 2

, i.e. the inverse density of states per

unit-cell. However, this constant drops out of the calculation.

6

We introduce a third z direction as a regularization of the two-dimensional calculation.

The two-dimensional limit will be taken in the end of the calculation.
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⌘✏+ k 2

z
2m

p,z

+!c (n +1/2). These energies are independent of ky , with N
Lan.

=
L x L y e |B |

⇡ degenerate states (see Appendix F).

z

z � i⌫

z

z � i⌫

C

Figure 8.2: Deformation of the contour C used to calculate the Matsubara sum

in (8.13). Poles of fB (z ) is marked with a black dot and non-analytic regions of

Ln (z + i⌫)Ln 0 (z ) is marked in red. Note that the i!= 0 term in the sum of (8.13)

cancel the pole occurring on the real axis of fB (z ). We marked this by removing

the pole at z = 0.

The Matsubara sum in (8.11) can be evaluated by the following integral

(dropping the kz index)

Inn 0 (i⌫) =
1

2⇡i

I

C

dz fB (z )Ln (z + i⌫)Ln 0 (z )

=
1

�

X

i!

Ln (i!+ i⌫)Ln 0 (i!)
(8.13)

where the contour C (depicted in Figure 8.2) encloses all poles of fB (z ) =
1

e � z�1

along the imaginary axis. The propagator Ln (z ), at first defined for the

Bosonic Matsubara frequencies, is non-analytic along the real line. We can

analytically continue Ln (z ) to the upper and lower half plane, which will be

the retarded and advanced propagator, L R
n (z ), L A

n (z ), respectively. At the real

axis these two can be related by complex conjugation L A
n (!) = (L

R
n (!))

⇤
. We

therefore deform the contour according to Figure 8.2. Following Jordan’s

Lemma the circular part of the contour tends to zero as |z | !1. Using

the corresponding analytic function in each designated part of the complex
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plane, the integral takes the form

Inn 0 (i⌫) =
1

2⇡i

Z 1

�1
d! fB (!)L R

n (!+ i⌫)(L R
n 0 (!)� L A

n 0 (!))

+
1

2⇡i

Z 1

�1
d! fB (!)L A

n 0 (!� i⌫)(L R
n (!)� L A

n (!)) .
(8.14)

Here we shifted the variable with i⌫, using the periodicity of fB (z ), in the last

integral. It is convenient to symmetrize and anti-symmetrize the indices in

the current-current correlator. As will be discussed in Section 9.1, the anti-

symmetric component is related to the rotational invariant Hall response.

Since the mass tensor is a symmetric object, the introduction of anisotropy

does not alter the Hall response, and we leave out the treatment of this

part and refer to other works [128]. Here we proceed with the symmetric

component, using the notation (i j ) = (i j + j i )/2. Analytically continuing to

the upper half plane we find

⇧R
(i j )(⌫) =

4e 2

m
p,i m

p, j

1

V

X

k¯

X

n ,n 0
⇡nn 0

i ⇡n 0n
j I R

(nn 0)(⌫) , (8.15)

I R
(nn 0)(⌫) =

1

4⇡i

1Z

�1
d! fB (!)(L R

n (!+⌫) + L A
n (!�⌫))(L R

n 0 (!)� L A
n 0 (!))

+ (n$ n 0) ,

(8.16)

where the i j index symmetrization has moved to the Landau index, nn 0, in

the Matsubara integral. Focusing on i j = x x and using L R
n (!)� L A

n (!) =
2i Im(L R

n (!))we can express (8.9) by expanding (8.16) for small ⌫

�x x =

i
8e 2

m 2

p,x

1

V

X

k¯

X

nn 0
⇡nn 0

x ⇡n 0n
x

1

2⇡i

1Z

�1
d! fB (!)

d

d!

�
Im(L R

n 0 (!))Im(L
R
n (!))
�

(8.17)

where the ⌫= 0 term has canceled. The integral can be simplified further by

partial integration, moving the derivative to fB (!). So far no approximations
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have been made. However, to proceed we note that the most important con-

tributions are the one which are most singular in ✏= T�Tc
Tc

, which comes from

parts of the integral where!⇠ T �Tc . Thus, near Tc , where (T �Tc )/T is small,

we expand

d

d! fB (!) for small �!. Using Im(L R
n (!)) =�Re(�)!L R

n (!)L
A
n (!)

�x x = i
Re(�)2

�

8e 2

m 2

p,x

1

V

X

k¯

X

nn 0
⇡nn 0

x ⇡n 0n
x ⇥

1

2⇡i

1Z

�1
d!L R

n (!)L
R
n 0 (!)L

A
n (!)L

A
n 0 (!) .

(8.18)

To solve the integral we can close the contour in the upper half plan, where

L A
n (z ) has poles at zn = i"n/�

⇤

�x x =
Re(�)|�|2
�

4e 2

m 2

p,x

1

V

X

k¯

X

nn 0

⇡nn 0
x ⇡n 0n

x ("n + "n 0 )
"n"n 0 |�"n +�⇤"n 0 |2 (8.19)

following a symmetrization in the sum. Using the matrix elements of the

Landau levels we find (see Appendix (F.4))

�x x =
Re(�)|�|2
�

4e 2!c

m
p,x

1

V

X

k¯

X

n=0

(n +1)("n+1

+ "n )
"n"n+1

|�"n +�⇤"n+1

|2 .

(8.20)

Since the energy is independent of ky the sum results in N
Lan.

. Regarding

the kz sum we have not used any information about the dispersion in the

z -direction yet. For cuprates it is natural to consider a layered structure,

and appeal to a Lawrence-Doniach model [92]. Here the dispersion in the z -

direction takes the form of r (1�cos(kz s )), where r sets the coupling strength,

and s is the distance between each layer. Considering very weakly coupled

layers r ! 0, corresponding to a 2D limit, no dependence on kz remains,

and we replace

1

Lz

P
kz
=
R ⇡/s
�⇡/s

dkz
2⇡ ! 1/s

�x x =
Re(�)|�|2
�

2e 2!2

c

⇡s

vtm
p,y

m
p,x

X

n=0

(n +1)("n+1

+ "n )
"n"n+1

|�"n +�⇤"n+1

|2 .

(8.21)

Usually, when performing the Landau-sum, one assumes that the dynamics is

completely relaxational, and � is taken to be real. This can be motivated from
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the BCS values �= �0+ i�00 =⌘
Ä

⇡
8kB Tc
� i 1

4"F

ä
, thus |�00/�0|= 2Tc /⇡TF , which

is very small for any conventional superconductor. However, in the interest

of discussing a non-BCS like scenario, with the possibility of anomalous

relaxation dynamics, we will expand in � = �00/�0. Evaluating the sum to

second order in � (see Appendix F.1) and reinserting factors of ~h , we find

�x x =
e 2

2~h
1

s✏

vtm
p,y

m
p,x

⇣
F

1

⇣ ✏
2b

⌘
��2F

2

⇣ ✏
2b

⌘⌘ �0(1+�2)
�

BCS

+O (�4)

F
1

(x ) = x 2

Å
 
Å

x +
1

2

ã
� (x )� 1

2x

ã

F
2

(x ) = F
1
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8

(8.22)

and �y y = �x x
m

p,x
m

p,y
. Here b = ~h!c

2⌘ = B/Bc 2

with Bc 2

= ~h
2e⇠

0,x⇠0,y
,⇠

0,(x ,y ) =
~h 2

2m
p,(x ,y )⌘

is the upper critical field,  (z ) is the Digamma function(F.7), and

we introduced �
BCS

= ⌘⇡
8kB Tc

. To unravel the result we note that the last factor,

�0(1+�2)/�
BCS

! 1 for �! �
BCS

, i.e. in the BCS limit. In the zero field limit

b ! 0) x !1we have F
1

(x )! 1/8 and F
2

(x )! 0. Further F
1

(x )! x/2 for

x ! 0. Thus, in the zero-field (h = 0) BCS limit

�x x =
e 2

16~h s
1

✏

vtm
p,y

m
p,x

�y y =
e 2

16~h s
1

✏

vtm
p,x

m
p,y

.

(8.23)

The high-field limit expression takes the form

�x x ! e 2

4~h s
1

b

vtm
p,y

m
p,x

, b � ✏ .

(8.24)

In the isotropic case m
p,x = m

p,y (8.23) coincides with the already stated

Aslamasov-Larkin expression (8.2). The inclusion of anisotropy, which is

key to the work in Paper C, takes a very simple form, only dependent on the

quotient of masses.

8.3.1 Magnetoresistivity

The inclusion of a magnetic field has two distinct effects on the conductivity.

First and foremost it induces a shift in Tc . This can be seen from the removal
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of the zero-field divergence at✏= 0 since

1

x F
1

(x ) and

1

x F
2

(x ) in (8.22) are finite

for x = 0. Instead the divergence occur at x =�1/2, yielding an exponential

suppression of Tc from the zero field value to

Tc (B ) = Tc (B = 0)e �B/Bc 2

. (8.25)

Physically, this is all very sound and expected from the general competition

of superconductivity and magnetic field. However, it is quite fascinating to

see this effect enter at this level of analysis. In writing the GL functional, the

divergence of superconducting susceptibility is included explicitly, with no

additional information on the underlying origin of Tc . Still, a correction is

added to this seemingly robust model, where one singularity is removed and

another is added.

The second effect is that of magnetoresistivity. In the presence of a mag-

netic field, the resistivity is generally expected to increase. This can be seen

as an effect of the tendency for circulating currents, which effectively local-

izes the particles. Including the first non-vanishing contribution to magne-

toresistivity from �00, corresponding to the F
2

(x ) term, leads to additional

suppression of conductivity (even though the overall conductivity increases

due to �00). This is consistent with the physical picture of �00 describing a

coherent propagation. The pairs tend to get stuck in the Landau orbits.

8.3.2 2D limits

We treated the sum over kz in the limit of uncoupled layers; this led to the

expression in (8.21), which is essentially 2D but normalized with the layer

thickness s . Note that this limit is also approached for a bulk sample of a lay-

ered material, meaning that the layers carry the current individually. Another

2D limit is given by considering increasingly thinner films, Lz ! 0, which

is not necessarily layered internally. As the sample becomes progressively

thinner, the energies associated with higher modes (kz =⇡n/Lz ) increase

and become well separated. Thus, only the n = 0 mode contribute in this

limit and we replace

1

Lz

P
kz
! 1

Lz
, i.e. s in (8.21) is replaced with Lz . Physi-

cally the situation is clear; we either consider one layer, or a stack of layers in

parallel, with the latter leading to higher conductivity.

The validity of these two limits depends on the coherence length in the

z -direction ⇠z , which sets the smallest length scale over which the wave-

function varies. The 2D layered limit holds if ⇠z ⌧ s , which implies uncorre-
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lated layers. Close to Tc , where ⇠z diverges, this condition is violated, and a

crossover to a 3D expression is anticipated (see [129]). However, for a finite

sample, the bulk 2D limit, ⇠z � Lz , is eventually encountered sufficiently

close to the transition. Thus, for thin samples made up of a small number

of layers, the 3D limit is likely not observed. In Paper C, we considered thin,

20 layers (Lz = 20s ) of LSCO and we used the layered expression (8.23) (with

s = 13.2 Å) and found no significant deviation, even though a crossover from

s ! Lz is anticipated close enough to the transition.
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9 LSCO — The nematic fluctuating supercon-

ductor

Paper C is based on transports experiments on La

2�x Srx CuO

4

(LSCO) done

by the Božovi

´

c group at Brookhaven National Laboratory, following a pre-

vious study by Wu et al. [23]. The experiments are set up as a sunflower

configuration of Hall bars with different orientation to the crystallographic

axes (see Figure 9.1a). The bars were manufactured out of the same thin film

of LSCO and display a transverse resistance that depends on the orientation,

in a way nominally consistent with the in-plane response of an orthorhombic

crystal (see (9.2) below). However, a tetragonal substrate constrains the crys-

tal, and the anisotropy is instead attributed to the development of electronic

nematic order.

The transverse resistivity is highly peaked just above Tc , indicating that

the nematicity is connected to superconductivity (see Figure 9.1). In Paper

C, we show that the signal in the transverse response can be accounted

for by the onset of anisotropic paraconductivity, consistent with the form

presented in (8.23). In order to quantitatively account for the measured

response, the paraconductivity must be highly anisotropic, in contrast to

the normal conductivity, which remains substantially isotropic. Also, Paper

C includes transport measurements done in the presence of a magnetic

field, showing suppression of the transverse resistivity, consistent which a

superconducting origin.

Paper C contains a quite detailed discussion about how anisotropy can

be extracted from fitting a model to experimental data. The same model was

used to show consistent behavior with measurements in magnetic fields. In

this chapter, we discuss a more tractable and simplified model that quali-

tatively accounts for the effects. Furthermore, we include a discussion of

the nematic state seen in LSCO. In particular, one bewildering observation

in this study is that the nematic director of the electronic order seems to

be unpinned and unrelated to the crystal axis, varying both with doping

and temperature (see Figure 9.1) [23]. In Paper C, this was attributed to two

Ising nematic fields, x y and x 2� y 2

. In general, this leads to a normal and

superconducting conductivity component with a director not aligned with

the crystal axis nor each other. The two nematic fields can also account for

the twist of the total conductivity director as a function of temperature. The
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Figure 9.1: a Experimental setup of Wu et. al [23] and Paper C. Etched out “Hall

bars” of LSCO (blue) with gold contacts (yellow). b–f Longitudinal (blue dots)

and transverse resistance (red dots) for various dopings, recreated from [23].
Each sample is measured along the angle� to the crystal axes (a).

system is tuned from being dominated by the superconductor near Tc , to

that of the normal state at higher temperatures. Here we will comment on

this proposal and discuss the origin of nematicity leading up (and including

some) of the work of Paper D.

9.1 Conductivity in 2D

A general in-plane conductivity takes the form of a 2⇥2 tensor, which can

be decomposed according to its transformation under rotation,

�=�
0

I + i�H⌧2

+�S =

�

0

+�S
1

�H +�S
2��H +�S

2

�
0

��S
1

�
(9.1)
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Figure 9.2: a,(b) Fit of measured transverse resistivity on x = 0.21 (x = 0.16)

sample as a function of angle, (9.2), for T = 295K and just above Tc . c Critical

temperature extracted from Figure 9.1. d The nematic director, ↵, at T = 295 K

T = Tc , fitted from the angular fit in a, b.

where the trace�
0

= �x x+�y y
2

and the Hall part�H =
�x y��y x

2

are left invari-

ant under rotation, while �S = �S
1

⌧
3

+�S
2

⌧
1

, �S
1

= �x x��y y
2

,�S
2

= �x y+�y x
2

transforms as a traceless symmetric tensor. Here ⌧i , i = 1, 2, 3 and I are the

Pauli matrices and the identity matrix respectively. Driving a current J will

in general induce a voltage drop both in the longitudinal, and transverse

direction. Defining the longitudinal and transverse resistivity as⇢
L

= E ·J/|J|2,

⇢
T

= ẑ ·E⇥ J/|J|2, we find

⇢
L

(�) =
�

0

+
p|det(�S )|cos(2(��↵))
(�H )2+�2

0

+det(�S )
,

⇢
T

(�) =
�H +
p|det(�S )|sin(2(��↵))
(�H )2+�2

0

+det(�S )
,

(9.2)

where� is the angle between the current and x -axis, and↵= 1

2

arctan

�
�S

2

/�S
1

�

is the angle of the principal axis, for which�S
is diagonal. The longitudinal

component is finite (for all non-superconducting systems) since it contains

the rotational invariant trace�
0

. The transverse resistivity can occur for two
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reasons. One, a finite antisymmetric component �H due to the presence

of a magnetic field, which is the famous Hall effect. Two, the appearance

of a traceless symmetric component �S
, which is only finite in a system

with x � y anisotropy. Thus, a clear signature of an x � y asymmetry is the

development of a transverse resistivity. Even in the presence of a magnetic

field, the effect is distinguishable from a finite�H since this is rotationally

invariant and tunable with a magnetic field, while�S
is not

1

.

9.2 Nematic order

In Figure 9.2 the transverse resistivity data of Wu et. al [23] is shown. These

measurements are consistent with a conductivity described by (9.2) (in ab-

sence of a magnetic field, �H = 0), with ⇢T (�)/ sin(2(� � ↵)). The an-

gle is measured with respect to one of the crystallographic axes. In an

orthorhombic crystal, the principal axes should lie along the diagonals

↵ = ±0,±⇡/4,±⇡/2. Here, however, ↵ is changing with temperature and

doping, seemingly unrelated to the crystal frame (see Figure 9.1).

Let us consider the symmetry of a nematic order associated with (9.2).

Nematic order is in general described by a traceless symmetric tensor [49].
From (9.1) we identify conductivity-nematic order N with�S

N =

N

11

N
12

N
12

�N
11

�
=

�S

1

�S
2

�S
2

��S
1

�
. (9.3)

Under continuous rotational symmetry, O(2), the nematic tensor N trans-

forms according to

N ! R (�)N R T (�) , R (�) =

cos(�) �sin(�)
sin(�) cos(�)

�
(9.4)

or in a “vector”-like notation as


N

11

N
12

�
!

cos(2�) �sin(2�)
sin(2�) cos(2�)

�
N

11

N
12

�
. (9.5)

1

A rotationally dependent component will also be induced in the longitudinal resistivity,

but since�
0

is likely dominating, the effect will be small.
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Thus N is a 2D irreducible representation

2

and we are left with a residual

rotational freedom of the director (a headless arrow along one principal axis),

i.e. ↵ = 1

2

arctan (N
12

/N
11

) can take any value. This is called an XY nematic

order [49].
If we on the other hand consider a tetragonal symmetry C

4

(or D
4h for the

highest tetragonal symmetry) the rotational symmetry is constrained to 90

�
rotations. With� = 90

�
(9.5) reduces to


N

11

N
12

�
!
�1 0

0 �1

�
N

11

N
12

�
(9.6)

implying that N reduces to two 1D representations. Due to their transfor-

mation under the rest of the point-group symmetries N
11

and N
12

can be

identified with an x 2� y 2

(B
1g ) and an x y (B

2g ) nematic order respectively.

These orders are in general referred to Ising nematic orders. The nematic

director ↵= 1

2

arctan (N
12

/N
11

) is not associated with any rotational freedom,

it just quantifies the relative strength of the two Ising nematic orders

3

. With

only x 2� y 2

(x y ) nematic order the director will lie along either axis (diago-

nal).

The seemingly unpinned director of the nematic director, ↵, in LSCO,

can be interpreted in two ways. One is to say that ↵ is pinned by a random

symmetry breaking field, i.e., appealing to some emergent rotational sym-

metry and an XY nematic order. While this is likely not the case since the

director is robust under thermal cycling

4

, such an enhancement of symmetry

turns out to be possible in principle; this is discussed in Paper D. The other

interpretation is to appeal to the appearance of two Ising nematic order and

that the evolution of ↵ as a function of doping and temperature mirrors the

evolution of these two nematic components. This view was taken in Paper C

with the added flavor that the temperature dependence of� is explained by

a two-fluid model consisting of a normal and a superconducting part, which

couples independently to two fixed nematic fields.

2

If N allows for complex values we can reduce it further into N
11

± i N
12

transforming in

the m =±2 representation (e i m�
) under rotation.

3

In a tetragonal symmetry ↵ is really a senseless characteristic of nematic order since N
11

and N
12

have arbitrary normalizations. It will depend on what quantity is measured (in this

case, conductivity).

4

Private correspondence with authors of [23].
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9.3 A two-fluid model for anisotropic conductivity

To explain the peak in the transverse resistivity near Tc we need to model the

conductivity-nematic order. We consider a full conductivity tensor made up

by a normal and a paraconducting part

�=�
n

+�
p

, �
n

= ne 2⌧m�1

n

, �
p

=�
p,0

T
c

T �T
c

q
det(m

p

)m�1

p

(9.7)

where �
n

is the normal anisotropic Drude-resistivity with relaxation time

⌧, and�
p

the anisotropic paraconductivity (8.23) with�
p,0

= e 2

16~h s . Instead

of directly identifying the conductivity tensor � with the development of

nematic order we consider the inverse effective masses

m�1

p

=m�1

p,0

+S , m�1

n

=m�1

n,0

+S 0 (9.8)

where the traceless symmetric part S and S 0 couples to two Ising nematic

orders in distinct ways

5

S
11

= �SC�1

Nx 2�y 2

, S
12

= �SC�2

Nx y ,

S 0
11

= �N�1

Nx 2�y 2

, S 0
12

= �N�2

Nx y .

(9.10)

We can identify the conductivity-nematic order (9.3) as

N
11

=�S
1

= ne 2⌧S 0
11

+S
11

�
p,0q

m�2

p,0

�S 2

11

�S 2

12

T
c

T �T
c

/Nx 2�y 2

N
12

=�S
2

= ne 2⌧S 0
12

+S
12

�
p,0q

m�2

p,0

�S 2

11

�S 2

12

T
c

T �T
c

/Nx y .

(9.11)

Due to the divergence of paraconductivity the conductivity-nematicity is

naturally enhanced near T = Tc . The main finding in Paper C is that this

simple temperature dependence is enough to explain the peak in measured

transverse resistivity, leaving the Ising-nematic orders N
1g , N

2g temperature-

independent. Furthermore, this accounts for the twist of the conductivity-

nematic director ↵= 1

2

arctan (N
12

/N
11

) as function of temperature.

5

We define

S =

S

11

S
12

S
12

�S
11

�
. (9.9)
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Figure 9.3: The transverse (solid) and longitudinal (dashed) resistivity (see

(9.2)) from a fluctuating anisotropic superconductor assuming a constant

(temperature-independent) normal resistivity component. In panel a and

b three different superconducting mass anisotropies � are shown for two differ-

ent realizations of�
p,0

/�
n

, without normal mass anisotropy, �
n

= 1. In panel c,

with a normal mass anisotropy �
n

= 0.9. In panel d different realization for �
n

for fixed�
p,0

/�
n

and � is shown.

Just above Tc , N is dominated by the paraconductivity and

↵(Tc ) = 1

2

arctan (S
12

/S
11

), while for higher temperatures N is given by the

normal component and ↵(T =1) = 1

2

arctan

�
S 0

12

/S 0
11

�
. In Paper C we simply

align S and S 0 with the measured ↵ at Tc and T = 295K, assuming that the

coupling factors �SC�1,2

,�N�1,2

account for the difference in orientation.

Due to different dependence on the mass tensor of the normal and para-

conductivity component in (9.7) there is a residual dependence on the trace

of the mass tensor for paraconductivity term in (9.11). This yields an addi-

tional divergence as a function of mass. We will argue that this is the key

reason for such a high anisotropy in the paraconductivity channel, while the

normal conductivity remains more or less isotropic.
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9.4 Simplified model for resistivity in LSCO

To give a simplified model, we here consider the situation where the principal

axes of S and S 0 coincide. Aligning with the principal frame, referred to as

x 0y 0, we find a diagonal conductivity

�=�
n

+�
p

=

�

n,x 0 +�p,x 0 0

0 �
n,y 0 +�p,y 0

�
, (9.12)

with

�
p,x 0 =�p,0

T
c

T �T
c

� , �
p,y 0 =�p,0

T
c

T �T
c

��1

,

�
n,x 0 =�n

�
n

, �
n,y 0 =��1

n

�
n

.

(9.13)

Here we introduced

�=
vtm

p,y 0
m

p,x 0
=

vuutm�1

p,0

+
∆

S 2

11

+S 2

12

m�1

p,0

�∆S 2

11

+S 2

12

(9.14)

and �
n

=
∆

m
n,y 0/mn,x 0 analogously. In the BCS limit�

p,0

= e 2

16~h s , however

in fitting to data, we can treat�
p,0

as a free parameter and explore how well it

agrees with the theoretical value. The longitudinal and transverse response

along� = 0 takes the form (9.2)

⇢
T

=
�y 0 ��x 0
2�x 0�y 0

, ⇢
L

=
�y 0 +�x 0
2�x 0�y 0

, (9.15)

which is shown in Figure 9.3 for a few realizations assuming�
p,0

⌧�
n,0

(the

experimentally relevant regime) and�y >�x (such that �,�
n

 1). Also, we

assumed a T -independent conductance of the normal component�
n

(T ) =
�

n,0

.

The contribution to the longitudinal resistivity from the paraconductivity

is small except very close to T
c

, where it gives a rapid drop in resistivity. Fur-

thermore, ⇢
L

is very insensitive to the both mass anisotropies �,�
n

. For the

transverse resistivity, which directly measures the nematicity, the situation is

very different. With a finite superconducting anisotropy, �< 1, the response

is peaked near T
c

, reflecting the dominating paraconductivity as the singu-

larity is approached. A normal component anisotropy, �
n

< 1 enhances the
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p � �
p,0

Ä
e 2

16~h s

ä

0.10 0.24 4.46

0.12 0.57 2.97

0.16 0.69 3.18

0.18 0.80 4.21

0.21 0.81 14.99

Table 9.1: In the upper panel values from fitting to the peak is shown for

dopings p = 0.10,0.12,0.16,0.18,0.21. As a measure of normal component

resistivity ⇢n = 283,200,111,60,31µ⌦cm was used. (Here ⇢n = 1/�
n,0

is the

extrapolated longitudinal response at T
c

using a fit from 2T
c

to 295K and s =
13.2 Å.)

high-temperature tail of the transverse response but suppresses the peak.

In fact, the existence of a peak requires �<�2

n

, thus the mere existence of a

peak in the transverse data of Figure 9.1 indicates a high superconducting

anisotropy compared to the normal component

6

.

9.4.1 Extracting parameters

The model is in good qualitative agreement with the experimental measured

resitivities in Figure 9.1. As a rough estimate we can extract the superconduct-

ing anisotropy, �, and paraconductivity strength,�
p,0

, by fitting to the peak

in the transverse response, which is given by ⇢T ,peak

= 1

2�
n,0

(1��)/(1+�) lo-

cated at T
peak

= T
c

�
1+�

p,0

/�
n,0

�
assuming�

n

= 1, i.e. no normal component

anisotropy

7

. The results are presented in Table 9.1.

In Paper C, we used a more sophisticated fitting procedure accounting

for a temperature-dependent anisotropic normal conductivity, spread in

Tc , as well as different principal frames of the paraconductivity and normal

conductivity; which makes it possible to account for the variation of ↵with

temperature. However, the anisotropic measures obtain in Table 9.1 are

consistent with the ones obtained in Paper C. The major difference is that

6

For �> 1 the requirement for a peak reads �2

n

<�.

7

Normal conductivity anisotropy mainly affects the tail of the transverse response. As an

estimate of T
c

we use the temperature where the resistance dropped to 1% of the value at the

peak.
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�
p,0

better agrees with the BCS value, using the fits in Paper C

8

.

9.5 Effect in magnetic field

Paper C includes a study of the effect in a magnetic field. Due to the com-

petition with superconductivity, we anticipate a suppression of the peak in

the presence of a magnetic field. Also, if the variation of ↵ arises due to a

difference in the principal axis of�n and�p we expect the twist to disappear.

Indeed these effects were observed in strong support of our model. Paper C

includes a model of this behavior.

As discussed in Section 9.1, a magnetic field induces a Hall resistivity,

both from the normal Drude conductivity and paraconductivity. This yields

a rotational invariant part of the transverse response, which is easy to extract

from data. Moreover, the Hall term contributes to the overall determinant of

the conductivity, contributing to the magnetoresistivity. However, this term

was estimated to be small, and the Hall conductance was excluded from the

model altogether. More important was to include is the suppression of Tc as

described in Section 8.3.1.

However, the most pronounced effect when studying the resistive tran-

sition of a type II superconductor in the presence of a magnetic field is a

broadening, or fanning out, of the transition, due to vortex-motion. Instead

of embarking on a more complicated model, we used a qualitative result

by Tinkham [136] stating that the broadening of the transition is given by

�T / B 2/3
. This relation was found to be in good agreement with mea-

surements. Thus to model the vortex motion, we added this additional

broadening of Tc as a Gaussian distribution of samples with different Tc .

9.6 Discussion

After concluding that substantial anisotropic superconducting fluctuations

can explain the resistivity measurements in LSCO, one pertinent question is

why such a dramatic electronic nematicity has not been previously observed?

8

In fact, due to sensitivity in fitting�
p,0

= e 2

16~h s was used in Paper C with consistent results.

Thus no significant deviation from the BCS expression could be detected.
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9.6.1 Macroscopic alignment of nematicity

Nematicity is inherently sensitive to disorder. In the presence of quenched

disorder, no long-range nematic order can exist in 2D, and we anticipate do-

mains

9

. Indeed, such domains of electronic nematicity have previously been

observed in cuprate compounds [70]. The macroscopic manifestation of

nematicity in LSCO, independent of interpretation, implies that the domains

must be aligned.

Transport measurements on macroscopic samples have many non-ideal

features, ranging from impurities to contact effects, which might scatter cur-

rents, leading to unexpected results. Some local probe of nematicity should

probably be of aid to sort out the details of what is happening. Neverthe-

less, we believe that the study made in [23] as well as that in Paper C shows

convincing evidence for this enigmatic nematic order being an intrinsic

property of the system. For instance, impurities and contact effects are not

a likely source of transverse resistivity since the different Hall bars in the

sunflower configured sample shows the same macroscopic alignment of

the nematic director. Instead, this suggests that there is some macroscopic

symmetry-breaking field aligning the Hall bars, strong enough to overcome

impurity effects, which would otherwise show up as a difference between

samples. Thus, we ascribe this previous lack of observation of nematicity to

the exceptional nature of the mesoscale thin-film LSCO structures.

Our interpretation is that the symmetry-breaking field arises from the sub-

strate. Supporting this interpretation is the alignment of the nematic director

with the crystal axis for an orthorhombic substrate [23]. Here the transverse

signal remains in the same order of magnitude as for the tetragonal sample,

suggesting that the symmetry-breaking field present is of similar strength

as the one imposed by strain in the orthorhombic sample. One scenario

would be that the tetragonal substrates resolve the four-fold degeneracy of

the Nx 2�y 2

, Nx y nematic state, while not strong enough to cause the actual

ordering.

9

XY nematic order cannot exist for d < 4 and Ising nematic for d  2 in the presence of a

random symmetry breaking field [49].
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9.6.2 Origin of nematicity

The asserted Ising nematic fields Nx 2�y 2

, Nx y should in principle couple

to all physical properties, like an anisotropic penetration depth, depairing

current, vortex dynamics, gap structure, etc. First of all, we note an appar-

ent discrepancy already occurring in the observations made above. The

superconducting conductivity fluctuations become highly anisotropic, while

the normal state remains essentially isotropic. One possible reason lies in

the structure of (9.11), as well as (9.14). The contribution to the nematic

signal in conductivity can become divergent if the isotropic pair mass ful-

fills m�2

p,0

= S 2

11

+S 2

12

, which means that the superconductor becomes highly

susceptible to anisotropic distortions. Typically we expect m�2

p,0

> S 2

11

+S 2

12

,

however, we have seen how the effective pair mass of a superconductor can

become divergent, m
p,0

!1, when approaching a Lifshitz-point due to a

PDW instability. In fact, which is the main topic of Paper D, and discussed in

Chapter 11, PDW can give rise to the nematic order itself through a vestigial

ordering N = (|�Qx
|2+ |��Qx

|2)� (|�Qy
|2+ |��Qy

|2). Thus a PDW instability

can provide both the sensitivity to nematicity and nematicity itself. The

former would distinguish this proposal of PDW as the source for nematicity

from, e.g., a vestigial CDW nematic order.

We should also stress the nature of the nematic superconductivity we

study here. We refer to anisotropy in the pair mass. Thus, it is really that the

superconductor’s dynamical response becomes anisotropic. This implies

that the constituent electrons do not necessarily share this property. For

instance, it is not related to a Pomeranchuk instability of the FS, and the FS

can remain essentially rotational invariant. Since we are studying a single-

component superconductor, this is the only way to relate nematicity to it

10

. In

contrast, for triplet superconductors, the order parameter itself can develop

nematic order (see, e.g., [102]).

10

An induced s-wave superconducting order would, however, yield a nematic gap �s�d .
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10 Fluctuations and vestigial orders

We have seen how an effective (time-dependent) Ginzburg-Landau free en-

ergy functional can be obtained as an effective theory of the superconducting

condensate. We found the pair propagator, L , accounting for the dynamics

of the pairs, which we used to understand the fluctuating conductivity, the

paraconductivity.

BCS theory is often considered the “solution” to the problem of con-

ventional superconductivity since it provides a microscopic origin and ex-

plains the emergence of the gaped single-particle spectrum [128]. Never-

theless, many properties of traditional superconductors are captured by

the Ginzburg-Landau (GL) theory. Historically the (phenomenological) GL

theory preceded the BCS theory but was put on firmer footing when it was

derived from the microscopic BCS theory by Gorkov [137]. BCS theory is

essentially a mean-field theory, only taking into account a static condensate

and not its fluctuations, while GL theories are useful in describing fluctua-

tions.

While the singe-particle spectra of a superconductor is a defining feature,

the fluctuations are more universal, as is emphasized by the generic form of

the GL theory, which is simply an expansion in order parameters with the

microscopic physics hidden in the coefficients. Many different microscopic

theories have similar-looking effective theories, depending only on the sym-

metry and dimensionality. Indeed, many phenomena observed in nature,

like phase transitions, turn out to be universal. From a practical standpoint,

this gives us the possibility of writing down models from mere symmetry

principles, without any knowledge about the microscopic details, and study

the possible phenomena this theory can generate.

One universal piece of physics induced by fluctuations is that of vestigial

ordering [76]. Often we consider systems with orders and phases that break

many symmetries simultaneously. A common feature of such systems is that

the transition may split up, with additional (vestigial) phases in which only a

subset of symmetries are broken. This effect can be understood as a result of

proliferating fluctuations that partially disorder the broken symmetry phase.

This chapter will serve as an introduction to these fluctuation concepts

1

.

1

Inspiration to this chapter is taken from Chaikin et. al [110] and lecture notes by Schmalian

[138].
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10.1 Breakdown of mean-field theory

Mean-field theory is valid when fluctuations around the mean-field value are

less than the mean-field value h( � 
0

)2i⌧ 2

0

which leads to the Ginzburg
criterion Å |T �Tc |

Tc

ã(4�d )/2
� kB

8�cV ⇠
d
0

(10.1)

for fluctuations to be unimportant (here �cV is the change in specific heat

at the transition, and ⇠
0

the coherence length) [139]. The dimension d =
4 defines what is called the upper critical dimension du . For d > 4, the

left-hand side diverges as Tc is approached. Thus the inequality is fulfilled,

and mean-field theory will hold. For d < 4 the Ginzburg criterion will be

violated for temperatures within the so-called Ginzburg region |T � Tc | <
Tc

⇣
kB

8�cV ⇠
d
0

⌘
2/(4�d )

. There is also a lower critical dimension dl , under which

no order can be present. The lower critical dimension will, for continuously

broken symmetries, be determined by the Mermin-Wagner theorem, which

tells us that no order can exist in dimensions below 2, i.e., dl = 2.

In the case of conventional clean bulk superconductors, the Ginzburg

region is very narrow (⇠ 10

�12

K) and virtually inaccessible to experiments

[128]. This is the fundamental reason for the success of the BCS treatment for

conventional superconductivity. As discussed in Section 4.1.1 fluctuations

are much more important in cuprates and we have studied the fluctuat-

ing contribution to conductivity in Chapters 8 and 9. In this chapter, we

concentrate on the influence of fluctuations on the ordering transition.

10.2 The self-consistent field approximation

In this section we will explore the basic methods of treating fluctuations

of a GL functional used in Paper D. We will start by considering a single-

component superconductor which is invariant under point-group symme-

tries

Z =
Z
D�e �S (�)

S (�) =
Z

x

r |�(x)|2+|r�(x)|2+ u
2

|�(x)|4 .

(10.2)
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Here S = �F is the action

2

and r = a (T � T
MF

), with T
MF

the predicted

mean-field transition temperature. We will concentrate on the normal state

where r > 0 and therefore assert h�(x)i = 0. As the critical temperature

is approaches r ! 0, we expect fluctuations h|�(x)|2i to increase. In this

case the interaction term becomes important and we will employ the HS

transformation to decouple this term,

u
2

|�(x)|4!� (x)2
2u

+ (x)|�(x)|2 , (10.3)

yielding

Z =
Z
D�D e �S

eff

(�, )

S
eff

=
Z

x

(r + (x))|�(x)|2+|r�(x)|2�  (x)2
2u

,

(10.4)

where we introduced (x) as a real field (with white-noise correlations), to

mediate the interaction between the � fields

3

. We proceed by substituting

 (x) for its mean-field value, given by the saddle-point equation

�S ( )
� = 0.

Since (10.4) is quadratic in�we integrate over all field-configuration yielding

an action only in terms of . Going over to momentum space, setting (q) =
 �(q) (preparing for finding the homogeneous mean-field solution), and

using the identity ln Det(A) = Tr ln(A)we find

Z ( ) =
1

Det(r + +q 2)
e

R
x

 2

2u
=
Z
D e

R
q

 2

2u �V ln(r+ +q 2)
(10.5)

where V is the system volume, and the full partition function is given by

Z =
R D Z ( ). The saddle -point approximation to Z , or equally, optimizing

the free energy F ( ) =� ln(Z ( ))/� , yields

 = u

Z

q

1

r + +q 2

.

(10.6)

2

A factor of � is included in the coefficients of (10.2).

3 is taken along an imaginary contour since we assume u > 0, for a stable action (see

Appendix B).
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This is a self-consistent equation for , whose solutions we will discuss in the

next section. Before that, we will comment on the meaning of , acquiring

an expectation value. By identifying Z ( ) in (10.4) we see that a stationary

point in the action with regard to implies

0=
�S
� (x)

= h|�(x)|2i� (x)/u . (10.7)

Thus, an expectation value for (x) implies fluctuations of the field h|�(x)|2i.
By accounting for a on a mean-field level is the same thing as replacing

u
2

|�(x)|4! uh|�(x)|i|�(x)|2, i.e accounting for interaction between the field

and its average value.

10.2.1 Lower and upper critical dimension

The transition to the ordered state is given by the point where the static

susceptibility � (q= 0) diverges. From (10.4) we read of the susceptibility as

� (q= 0) = r 0�1

, where r 0 = r + is the renormalized inverse bare susceptibil-

ity. From (10.6) we write

r 0 = r +u

Z

q

1

r 0+q 2

.

(10.8)

The transition to the ordered state occurs for r = rc , which fulfills r 0 = 0. For

d > 2 we find

rc =�u Kd

Z 1

0

dq
q d�1

q 2

=�u Kd
⇤d�2

(d �2)
(10.9)

where Kd = ⌦d /(2⇡)d and ⌦d is the solid angle in d dimensions and ⇤ a

momentum cut-off

4

. The new critical temperature Tc , renormalized by fluc-

tuations, can be expressed as r � rc = a (T � Tc ). For d  2 the integral in

(10.8) is divergent for small momenta (a so-called infrared (IR) divergence)

as r 0 ! 0. Thus the onset of transition is never reached and Tc = 0 for d = 2.

This determines the lower critical dimension dl = 2.

4

Typically taken as the inverse coherence length ⇠�1

0

= (/a Tc )�1/2
.
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To explore the upper critical dimension we will consider the critical be-

haviour of the susceptibilities. The mean-field uniform static susceptibility

is given by

�
MF

(q = 0) =
1

r
/ (T �T

MF

)�1

(10.10)

(here we can defined the so-called critical exponent �= 1). To find the form

of the renormalized susceptibility, given by � (q= 0) = (r 0)�1

, we must solve

for the temperature dependence of r 0. Using r �rc = a (T �Tc )we write (10.8)

as

r 0 = r � rc +u

Z

q

1

r 0+q 2

� 1

q 2

)

r 0 = r � rc

1+ u Kd


⇤R
0

dq q d�3

r 0+q 2

.

(10.11)

Here the integral in the denominator is convergent for r 0 ! 0 if d > 4 and

just as in the mean-field case we find

� (q= 0) =
1

r 0 / (r � rc )�1/ (T �Tc )�1

, d > 4 . (10.12)

However, for d < 4 the integral in (10.11) is IR divergent. Absorbing the

divergence we can write

r 0 = r � rc

1+ u Kd
d /2 r 0(d�4)/2Id (⇤

p
/r 0)

, Id (y ) =

yZ

0

dx
x d�3

1+ x 2

(10.13)

where Id (y ) is convergent for y !1 (and d < 4). If r � rc � 1 the one in

the denominator dominates and we again find the mean-field behaviour

(consistent with the Ginzburg region). For r 0 ! 0, however, the second term

in the denominator diverges and we find

� (q= 0)/ (T �Tc )�2/(d�2)
, d < 4 . (10.14)

Indeed we have found what was stated above. Above d > 4 we find mean-

field behaviour, however with renormalized transition temperature T
MF

!
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Tc and pre-factors of the susceptibilities. For d < 4, we found a general

correction to the mean-field behavior close to the transition (with an altered

critical exponent). We also found the lower critical dimension to be dl = 2,

under which no ordering takes place.

10.2.2 Comments

Approximating by its saddle-point value in (10.4) implies accounting for

an average background self consistently (as can be seen from (10.6)) and

this is sometimes called the self-consistent field approximation [110]. This

approximation can be formalized by the so-called large N expansion where

one introduces N replicas of the same field, proceeded by expanding in

factors of 1/N . The first term in such expansion will be the saddle-point

approximation, thus for N !1, the self-consistent field approximation

becomes exact. Even though this expansion is only a formality, it gives some

insights into what kind of approximations are made, and how they can be

corrected. For one, we concluded that dl = 2 was the lower critical field.

However, from the Mermin-Wagner theorem, we know that this should only

be true for continuously broken symmetries. For the discrete symmetry Ising-

model, the lower critical field is known to be d = 1, but formally the above

procedure can be applied to the 2D Ising model as well. The breakdown of

the estimate for the lower critical field for the Ising model can be understood

as a consequence of the Ising model belonging to the N = 1, case, poorly

captured by the N !1 limit.

10.3 Vestigial ordering

We have seen how fluctuations can drastically alter the mean-field behavior

below the upper critical dimension. We will now continue to see how the

mean-field behavior of an order parameter that breaks more than one sym-

metry gets altered by fluctuations. As an example, let us consider the action

S ( ~�) = S
Dyn.

( ~�) +
Z

x

r (|�X (x)|2+ |�Y (x)|2) + u
2

(|�X (x)|2+ |�Y (x)|2)2

� g
2

(|�X (x)|2� |�Y (x)|2)2
(10.15)
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where we introduced two order parameters

~� = (�X (x),�Y (x)) that trans-

forms as the coordinates (x , y ) under tetragonal symmetry. The action is

constructed to be invariant under these symmetry transformations

5

where

we left out the dynamical piece for the time being. (Stability of the action

requires u > g .) The superconducting order sets in for r < 0 with h ~�i 6= 0.

For g < 0 we will have a tetragonal symmetric ground state with

~�=
Ä |r |

2u ,

|r |
2u

ä
.

For g > 0 the mean-field ground state will instead be

~�=
Å |r |

u � g
, 0

ã
or

Å
0,

|r |
u � g

ã
, (10.16)

breaking the tetragonal symmetry, differentiating between x and y . This

is an example of a nematic state, where rotational symmetry is broken, but

translational symmetry is maintained.

According to the mean-field calculation, both nematic order and super-

conductivity sets in simultaneously. However, we have seen that including

fluctuations changes the structure of the transition. In particular, we con-

cluded that even if h�i= 0 we will in general have finite fluctuations h|�|2i> 0.

This opens up the possibility of measuring an expectation value of nematic

order in the form of h|�X |2� |�Y |2i 6= 0, even though h ~�i= 0. This indicates

a state where fluctuations of an order parameter, not yet condensed, breaks

the rotational symmetry of the system.

10.3.1 Decoupling the action

We proceed as in (10.4) by rewriting the interaction using the HS transforma-

tion. We decouple the two interaction terms in (10.15) using two independent

fields , N . The former for the isotropic component |�X |2+ |�Y |2 and the

latter for the nematic component |�X |2� |�Y |2. The partition function takes

5

A possible realization of this order parameter could be a triplet superconductor with

d-vector ẑ (�X sin(kx ) +�Y sin(kx )).
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the form

Z =
Z
D ~�D DN e �S

eff

(�, ,N )
,

S
eff

(�, , N ) =
Z

q

(r + +N ++(q))|�X (q)|2+ (r + �N +�(q))|�Y (q)|2

+
Z

x

N 2

2g
�  2

2u

(10.17)

where we included the uniform part N (q) =N�(q), (q) = �(q). We intro-

duced ±(q) = (1

±
2

)q 2

x +(1

⌥
2

)q 2

y +z q 2

z ,
1

⌥
2

> 0 (neglecting the last

term in 2D), from the dynamical part of the action

S
Dyn.

( ~�) =
Z

x


1

(|rx�X (x)|2+ |rx�Y (x)|2+ |ry�X (x)|2+ |ry�Y (x)|2)

+
2

(|rx�X (x)|2� |rx�Y (x)|2� |ry�X (x)|2+ |ry�Y (x)|2)
+z (|rz�X (x)|2+ |rz�Y (x)|2) .

(10.18)

Again, assuming an unordered superconducting state h ~�i= 0, we proceed

by integrating out the superconducting order parameters in the now quadric

action (10.17), yielding

S
eff

( , N ) =
Z

x

N 2

2g
�  2

2u
+V

Z

q

ln(r + +N +q 2)(r + �N +q 2)

(10.19)

where we assumed = + = � for simplicity. Proceeding to the mean-field

equations

�S
eff

� = 0,

�S
eff

�N = 0

N = 2g

Z

q

N
(r 0+q 2)2�N 2

, r 0 = r +2u

Z

q

r 0+q 2

(r 0+q 2)2�N 2

(10.20)
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with r 0 = r + as before

6

. The first equation always admits N = 0 solutions.

However, a non-trivial solution is possible when

��1

N =1�2g

Z

q

1

(r 0+q 2)2
= 1�2g Kd

Z ⇤

0

q d�1

dq
(r 0+q 2)2

= 0

(10.21)

where we introduced �N as the susceptibility for nematic order. For d > 4,

the integral is finite for all values of r 0, meaning that as r 0 is decreased, there

is no guarantee this condition will hold. However, for d < 4 the integral

becomes divergent for r 0 = 0. Extracting the singular behavior, we write

��1

N =1� 2g Kd

d /2(r 0)(4�d )/2 Jd (⇤
p
/r 0) , Jd (y ) =

yZ

0

x d�1

(1+ x 2)2
dx , (10.22)

where J (y ) is convergent for y !1. Thus, as r 0 ! 0, the nematic suscepti-

bility is bound to diverge for some finite r 0 > 0 (when g > 0).

10.3.2 Vestigial order and dimensions

What we just discovered is quite remarkable. Remembering that the super-

conducting order h ~�i 6= 0 sets in for r 0 = 0, we see that the nematic order

necessarily develops before the onset of superconductivity for d < 4. Further-

more, in 2D, for which superconducting long-range order can never develop,

and r 0 > 0, we can still find nematic order.

Note that this is consistent with the Mermin-Wagner theorem. For 2D, no

long-range broken continuous symmetry can exist. However, the vestigial

nematic order discussed here is of Ising type, i.e., the ground state has a

Z
2

degeneracy. In 2D, long-range discrete symmetry breaking is at finite

temperature, which is indeed what we have found.

We see how fluctuations drastically change the phase diagram by the

generic occurrence of vestigial order. Note that this phenomenology ex-

plains why various orders might seem parasitically joined. The possibility of

vestigial orders describes how various orders, arising from the same underly-

ing fields, are dependent on each other. This phenomenology is not naturally

6

The second equation reduces to (10.8) in the limit N ! 0. The extra factor of 2 is accounted

for by the definition of as the fluctuation of two fields.
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recreated from a mean-field calculation since it would require fine-tuning of

transition temperatures and competing order terms.

10.3.3 Susceptibilities in the nematic phase

From (10.17) we find the susceptibilities for �X and �Y as

�X (q ) =
1

r 0+N +q 2

, �Y (q ) =
1

r 0 �N +q 2

(10.23)

with the corresponding correlations lengths given by ⇠X ,Y =
∆


r 0±N . Be-

fore entering the nematic phase, N = 0, the correlation length will be equal

⇠X = ⇠Y = ⇠=
∆

r 0 . However, in the nematic phase, N > 0, the correlation

lengths will differ, and one will diverge before the other, with superconduct-

ing ordering setting in at r 0 �N = 0. In this sense, a preemptive transition in

the form of the vestigial nematic phase increases the ordering temperature.

The calculation outlined above only holds in the normal state of the

superconductor. At r 0 �N = 0 the susceptibility will diverge for ordering

of �X (N > 0). When this happens, we have to expand (10.15) around the

expectation value of�X (see for instance [140]). In Paper D, we are interested

in the unordered state of a PDW. Specifically, we will consider calculations

for the 2D case only.
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11 Vestigial PDW phases and the anisotropic

superconductor

The various possible vestigial orders in a system are made up of bilinears

of some primary order parameter and can be classified by the irreducible

representations of the symmetry group

1

. Just as outlined in the previous

chapter, the interaction terms can be decomposed into these bilinears, which

then will be used to decouple the action using the HS transformation. In

Paper D, we consider an effective theory for a PDW state and its possible

vestigial orders in order to explore the scenario of PDW as the “mother state”

of cuprates. Of particular interest is the exploration of vestigial LC orders,

which are naturally generated by a PDW primary order. The other topic of

Paper D is to explore how the vestigial ordering of a PDW state might affect a

coexisting homogeneous superconducting order. In particular, we show how

the traceless symmetric inverse pair mass tensor S in (9.8) can arise from the

coupling between a homogeneous superconducting order and PDW order,

that develops vestigial nematic orders.

In Section 5.4 and 5.5 we discussed how an effective theory for a PDW state,

�q, with q=±Q could be obtained from microscopic considerations. In Pa-

per D we consider a more complete set of PDW fields in a tetragonal symme-

try, D
4h . Motivated by the phenomenological finite-momentum instability

found in Paper B we used the ordering momenta q 2 {0,±Qx ,±Qy ,±Q+,±Q�},
describing the possible local minima of the dispersion (5.38). Here Qx ,y are

aligned with the x , y axis and Q± are aligned with the diagonals. As a simpli-

fication we will only consider q=Qx ,y here

2

. The inclusion of homogeneous

superconducting order is left for Section 11.4.

1

This chapter assumes some knowledge of point-group symmetries and group theory (see,

for instance, [141]). For an excellent web-tool for character and multiplication tables, see

[142].
2

Since Qx ,y and Q± do not transform into each other under tetragonal symmetry the

corresponding orders do not mix in second order terms, motivating the division into sector A

and B, discussed in Paper D.
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11.1 Symmetry decomposition

The order parameter we will be considering is � = [�Qx
,��Qx

,�Qy
,��Qy

].
In addition to the point group symmetry, the action will be invariant under

U (1) symmetry, translational symmetry and time-reversal symmetry. Under

these symmetries the order parameters transform as �Q
U (1)��!�Qe i✓

, �Q
T�!

�Qe i T·Q
, and �Q

T�!�⇤�Q. The full tetragonal point-group symmetry is given

by D
4h . We will only use ordering vectors that lie within the x � y plane, thus

we consider the subgroup C
4v which is generated by {C

4

,�v }, where C
4

is a

four-fold rotation about the z -axis, and �v reflection in the x z (y z ) plane.

Under these generators the order parameter transforms as

{�Qx
,��Qx

,�Qy
,��Qy

} C
4�! {�Qy

,��Qy
,��Qx

,�Qx
}

�v�! {�Qx
,��Qx

,��Qy
,�Qy
}

. (11.1)

The full symmetry group is given by U (1)⌦ T ⌦T ⌦D
4h

, we are however

mostly interested in phases that break the point-group symmetries, and not

U (1) or T . We, therefore, consider the following set of bilinears

� (2) = [|�Qx
|2, |��Qx

|2, |�Qy
|2, |��Qy

|2] (11.2)

which transforms in the trivial representation for U (1) and T . A system-

atic way of finding the irreducible representations of � (2) is to calculate the

characters

3 �� (2) = (4,0,0,0,2,2,0,0) and compare to the character table of

C
4v (see Table 11.1). We then project

4

the characters on each irreducible

representation (�� (2) ,�A
1g
) = 1, (�� (2) ,�A

2g
) = 0, (�� (2) ,�B

1g
) = 1, (�� (2) ,�B

2g
) = 0

and (�� (2) ,�Eu
) = 1, which yields � (2) = A

1g �B
1g �Eu .

3

The character can be found as the trace of the matrix that realizes the symmetry operation.

4

Utilizing the grand-orthogonality theorem in group theory [141]

(�i ,� j ) =
1

|G |
X

g2G
�i (g )� j (g ) =�i j (11.3)

where i , j labels the irreducible representations of the group.
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E 2C

4

C

2

2�v 2�d

A

1g 1 1 1 1 1

A

2g 1 1 1 -1 -1

B

1g 1 -1 1 1 -1

B

2g 1 -1 1 -1 1

Eu 2 0 -2 0 0

Table 11.1: Character table for the irreducible representations of C
4v (the

relevant subgroup of D
4h for (11.2)). The irreducible representations are listed

to the left and their character of each and every symmetry operation. The size

of the group |G |= 8.

Explicitly, the decomposition takes the form

A
1g :  � = |�Qx

|2+ |��Qx
|2+ |�Qy

|2+ |��Qy
|2

B
1g : N� = |�Qx

|2+ |��Qx
|2� |�Qy

|2� |��Qy
|2

Eu :

~l� =
|�Qx

|2� |��Qx
|2

|�Qy
|2� |��Qy

|2
�

.

(11.4)

All these bilinears can acquire a finite expectation value while the underlying

order parameters remain unordered, h�Qi= 0, indicating vestigial ordering.

Note that �, N�,

~l� are not the actual quantities we identify with the vesti-

gial order parameters. First after promoting these to independent fluctuating

fields, using the HS transformation, we will call them order parameters. (The

subscript � indicates the direct dependence on the PDW fields.) Further-

more, it should also be noted that a finite expectation value of � does not

indicate order, but only fluctuations.

11.2 Action

The most general action can be found by writing down all terms that are

invariant under the full symmetry group. Starting with the stationary part of

the action we see that second order terms in � can only be formed by �,

which transforms in the trivial representation. To fourth order in fields we

can construct terms by products of � (2), i.e. � (2) ⌦ � (2) = (A
1g � B

1g � Eu )⌦
(A

1g �B
1g �Eu ) = 3A

1g �A
2g �3B

1g �B
2g �4Eu . (Products of two irreducible

representation can be constructed by multiplying their character for each
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group element and then decompose it as before

5

). We find three possible

fourth order terms that transforms in the trivial A
1g representation. Two

of them are the products 2

�, N 2

� (A
1g ⌦A

1g = A
1g , B

1g ⌦B
1g = A

1g ) and the

third comes from the product of two

~l� (Eu ⌦ Eu = A
1g � A

2g � B
1g � B

2g ).

Thus, to fourth order in fields

S
Stat.

(�) =
Z

x

r �(x) +
u

0

2

 �(x)2+
u

1

2

N�(x)2+
u

2

2

~l�(x)2 .

(11.5)

To find all possible terms including derivatives we consider forming products

between

~D = (Dx , Dy ) = �ir� e ⇤A, transforming as Eu , and the bilinears

� (2) = A
1g �B

1g �Eu . To first order in derivatives we can only form invariants

by multiplying

~D ⌦ ~l� = A
1g � ... where we find

�⇤Qx
(Dx�Qx

)��⇤�Qx
(Dx��Qx

)+�⇤Qy
(Dy�Qy

)��⇤�Qy
(Dy��Qy

)+ c .c . (11.6)

However, the existence of such a term implies that the action is not minimized

with regard to the momentum of the PDW fields. Thus, by the assumption

of stability, this term is left out. To second order in derivatives

~D ⌦ ~D =
A

1g�A
2g�B

1g�B
2g , multiplying these objects with � (2)we find two symmetry

invariant terms

S
Dyn.

(�) =
Z

x

X

q=±Qx ,±Qy


1

Ä
(Dx�q)⇤(Dx�q) + (Dy�q)⇤(Dy�q)

ä

+
X

q=±Qx


2

Ä
(Dx�q)⇤(Dx�q)� (Dy�q)⇤(Dy�q)

ä

� X
q=±Qy


2

Ä
(Dx�q)⇤(Dx�q)� (Dy�q)⇤(Dy�q)

ä
.

(11.7)

Finally, we decouple the fourth-order terms in (11.5) using the HS trans-

formation by introducing the auxiliary fields , N and

~l

S
Stat.

(�, , N ,

~l ) =
Z

x

r �(x) + (x) �(x) +N (x)N�(x) + ~l (x) · ~l�(x)

�  (x)2
2u

0

� N (x)2

2u
1

� ~l (x)2
2u

2

.

(11.8)

5

This is a property of the trace of a Kronecker product Tr(A⌦B ) = Tr(A)Tr(B ).
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The total action S
Stat.

(�, , N ,

~l ) + S
Dyn.

(�) is quadratic in � which can be

integrated out analogously to what we did before; yielding an effective action

S
eff

( , N ,

~l ), only dependent on the vestigial orders.

11.3 High and low temperature vestigial phase from PDW

Whether or not a preemptive transition in reality occurs can seem a bit

clouded from the final action S
eff

( , N ,

~l ). However, since fluctuations gen-

erally act to disorder, not order, we anticipate that a certain vestigial phase

only occurs if there is a stable mean-field state breaking the corresponding

symmetry.

Consider the PDW action in (11.5). Stability of the action requires u
0

> 0,

while mean-field order occur for r < 0. With u
1

, u
2

> 0 the development

of B
1g and Eu order cost energy, thus the mean-field ground state will be

tetragonally symmetric

6

. For u
1

< 0 developing nematic order will be advan-

tageous. Similarly for u
2

< 0, developing

~l order is energetically favorable.

Furthermore, Eu order implies a subleading nematic order l 2

x � l 2

y , lx l y . This

means that we, in general, should anticipate a finite nematic order, N 6= 0, for

u
2

< 0, u
1

> 0 as well

7

. Put together, we anticipate to find a nematic vestigial

phase (with �= 0) for u
1

< 0, and a vestigial LC phase for u
2

< 0. Indeed this

turns out to be the case.

However, as discussed in Paper D, within the region u
2

< 0, u
1

> 0 a

special exception to this “rule” occurs. With a mean-field state given by

[�Qx
,��Qx

,�Qy
,��Qy

] = [�, 0,�, 0], i.e., a state with LC and subleading B
2g

nematic order lx l y , the vestigial phase turned out to be split into two differ-

ent phases. One low-temperature vestigial phase, with lx = l y , consistent

with the mean-field ground state, but also one high-temperature vestigial

phase with lx 6= 0, l y = 0, breaking another symmetry of the point-group. To

reconcile this result with the mean-field calculation, we note that the first

excited mean-field state is of the form [�Qx
,��Qx

,�Qy
,��Qy

] = [�, 0,�0,�0],
having LC and subleading B

1g nematic order. Thus, the interpretation is that

fluctuations induce a transition between the would-be mean-field ground

6�Qx
=�Qy

=��Qx
=��Qy

.

7

In Paper D we refer to N ⇠ |�Qx
|2 +��Qx

|2 � |�Qy
|2 ���Qy

|2 as a primary B
1g nematic

order to distinguish it from the subleading (B
1g , B

2g ) nematic orders l 2

x � l 2

y , lx l y . Note that

there is no support for a primary B
2g nematic order outline here.
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state, and the first excited state.

11.3.1 Emergent rotational symmetry

The occurrence of a high and low-temperature vestigial phase, both with LC

order, but with different subleading nematic orders, lx = 0, l y 6= 0; lx = l y ,

implies an enhanced symmetry at the transition, C
4

!C
8

. It turns out that

for a specific set of parameters, this symmetry is enhanced even further,

to rotational symmetry, C
8

! C1. At this point, the LC order becomes

rotational symmetric,

~l = |~l |(cos(�), sin(�)), with arbitrary �. Thus, the

subleading nematic orders define an XY nematic order

2
4

l 2

x�l 2

y
2

lx l y

lx l y
l 2

y�l 2

x
2

3
5

, (11.9)

instead of two Ising nematic orders. While this is indeed a result of fine-

tuning we see that in vicinity of this transition, B
1g and B

2g nematic orders

would be near degenerate and easily influenced by an external field.

11.4 Coupling to a homogeneous superconductivity —

the nematic superconductor

The other major theme of Paper D was to investigate the influence of the

PDW action on a homogeneous superconducting field. Since a homoge-

neous superconducting field, �
0

transforms in the trivial representation un-

der point-group symmetries, it does not couple to any static PDW field term

in any other way besides a pure “competition” term, |�
0

|2|�Q|2. However,

allowing for derivatives

~D , transforming as Eu , acting on �
0

, we can form

terms transforming as B
1g and B

2g to second order in

~D and�
0

. These terms

will couple to the PDW bilinears Nx 2�y 2

⇠ (|�Qx
|2+ |��Qx

|2� |�Qy
|2� |��Qy

|2)
and Nx y ⇠ (|�Q+ |2+ |��Q+ |2� |�Q� |2� |��Q� |2). Thus assuming the develop-

ment of vestigial nematic order we can write an effective superconducting
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action as

SSC (�0

) =
Z

x

r 0
0

|�
0

(x)|2+
✓

1

2m
p

◆

i j

(Di�0

(x))(Dj�0

(x))⇤

1

m
p

=
I

m
+S , S =

2
4
�

1

u
1

Nx 2�y 2

�0
1

u 0
1

Nx y
�0

1

u 0
1

Nx y � �1

u
1

Nx 2�y 2

3
5

(11.10)

where we find S on the same form as in (9.10)

8

.

Terms to fourth order in fields and second order in derivatives are usually

not included in GL theory since they are less significant compared to deriva-

tive terms arising to second order in fields. Here we assume that this is still

true for PDW fields, but for the homogeneous superconducting field near

the Lifshitz point, we know that the dispersion for second-order terms in �
becomes flat. Thus, in this case, derivative terms occurring to fourth order

in fields will become important.

8

Here� is the coupling constant for the term�
1

(|Dx�0

|2�|Dy�0

|2)(|�Qx
|2+|��Qx

|2�|�Qy
|2�

|��Qy
|2). The prime

0
refers to the ± coordinates..
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PART III

CONCLUSION AND OUTLOOK

An underlying pair-density wave (PDW) instability in the cuprate system is

an intriguing proposal with the possibility of unifying many features seen

in the pseudogap. In this thesis, we discussed both the nature of the PDW

instability and the observable consequences of a PDW state.

In Paper A, we identify the unnatural occurrence of a PDW state based

on weak-coupling scenarios from ordinary density-density like interactions.

While others have used methods taking stronger correlations into account

[9, 107]we decided to study a more general type of interaction, including the

so-called pair-hopping interaction. The pair-hopping interaction is likely to

be relevant only as an effective emergent interaction, arising due to strong

correlation

9

. However, this interaction emphasizes the uniqueness of having

a stable PDW state. Since an FF-PDW state breaks time-reversal, in addition

to violating U(1) symmetry, we expect a finite supercurrent. However, a

true ground state can not have a finite current. Through the emergence of

an anomalous Josephson-like current term, the pair-hopping interaction

provides at least one possible explanation of how such a current can cancel.

In Paper B, we continued the investigation of the pair-hopping interaction

but in a milder form, considering only a small tendency of pairs to jump.

From this, we saw how a pair-hopping interaction naturally generates a su-

perconducting dispersion with the possibility of developing minima at finite

momentum. Indeed this form is expected as a (long-wavelength) effective

(field) theory of a PDW instability, and the microscopic form of the pair-

hoping interaction is irrelevant; we simply view it as one possibility of many

microscopic realizations of the same effective theory. However, when using

the BCS-BEC crossover framework, we found that a finite pair-hopping term

always gives rise to finite momentum instability for strong enough interac-

tion. Thus, even a small microscopic pair-hopping term could explain the

occurrence of a PDW instability in a strong-coupling system.

9

It should, however, be noted that a finite pair-hopping term should be generated even

from a microscopic interaction [40].
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In Paper C, we digressed from the possibility of a PDW, focusing on the

homogeneous superconducting state instead. We showed that transport

measurements on thin films of LSCO are consistent with a highly anisotropic

fluctuating superconducting state. This observation is puzzling since a single-

component d-wave superconducting order can not be decomposed into a

nematic order. Instead, we asserted the development of nematic order in the

dynamical response of the superconducting state, the effective mass.

While Paper C did not assume any origin of the nematic response in Paper

D, we considered a scenario of a vestigial PDW phase. In contrast to the

single-component SC order, a multi-component PDW has the possibility of

setting up nematic phases. Other multi-component order could just as well

be considered to generate a nematic phase, like CDW. However, as discussed,

a PDW instability can explain the high susceptibility towards anisotropic

fluctuations of the superconductor through a renormalization of the pair

mass.

Furthermore, in Paper D, we explored the possibility of a ME PDW state,

a state with LC order, as a contestant for the pseudogap state. We showed

that the vestigial phase set up by a LC state has the possibility of developing

an emergent rotational symmetric state. We discussed this as an origin for

a soft nematic state, a state where the nematic director easily gets pinned

along an arbitrary direction.

12 The PDW instability — a possible scenario

for the cuprates

As a way to summarize the findings in this thesis, as well as connect it to

the experimental status of the cuprates, we consider the phenomenologi-

cal phase diagram in Figure 12.1, where the pseudogap state consists of a

fluctuating PDW state. Inspired by the results of Paper B and D, we roughly

identify the increase of doping with increased interaction (Figure 7.3).

At low doping and temperature, we have a mean-field PDW state, possibly

disordered (by fluctuations or impurities). When the doping increases, the

SC dome develops, in general, with the possibility of a coexistence phase.

The PDW state yields several possible vestigial phases at higher temperatures,

including loop-current (LC) and nematic order. At the intersection between
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T

SC
PDW

+
PDW

SC

Nematic

Vestigial PDWphases
Anisotropic
fluctuations

LC

(disordered)

Lifshitz point Hole doping (⇠ dg)
x

2�
y

2

x

y

Figure 12.1: A suggestive phase diagram based on the PDW instability, dis-

cussed in this thesis. The pseudogap is imagined to consist of a fluctuating

PDW state with possible vestigial orders, including loop-current (LC) and ne-

matic order. Above the transition temperature on the underdoped side, we

expect to find anisotropic fluctuations. Included here is also the scenario of

Paper D where the PDW vestigial phase is split into a low-temperature x y and

high-temperature x 2� y 2

nematic phase. The intersection between the two

phases, a soft nematic state is anticipated to occur, marked by a dashed line.

the nematic phase and the superconducting phase, we find anisotropic super-

conducting fluctuations. We also identify the possibility of a splitting of the

vestigial phase into a low-temperature, x y nematic, and a high-temperature

x 2 � y 2

nematic phase, separated by a first-order transition (indicated by

a dashed line). According to the result in Paper D, this can give rise to an

emergent rotational symmetry and a soft nematic state.

The phenomenological discussion of the PDW instability in Paper B gave

rise to two distinct possibilities. One where the PDW develops from zero mo-

mentum through a Lifshitz point, with a diverging pair mass, and one where

the momenta develop at a finite value. In Figure 12.1, we considered the

latter case, with the Lifshitz point hidden under the transition. This situation

seems to agree best with the “1/8 anomaly” in LBCO, where the PDW mo-

menta are given by stripes Q ⇡ 2⇡/8a [11]. In this case, the superconducting

state at x = 1/8 should be identified with a PDW, possibly with subleading

SC. However, the experimental findings of PDW in vortex halos in BSCCO are
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of the opposite type, with leading SC and subleading PDW, since the PDW

only occur after the SC component been suppressed by a magnetic field [16].
The study of anisotropic fluctuating nematicity in LSCO, presented in

Paper C and interpreted in Paper D, also belongs to the assumption of a

subleading PDW with leading SC. However, here we identified the need for

a rather strong mass renormalization, suggesting proximity to the Lifshitz

point. This also accounts for the decreasing Tc on the underdoped side of the

superconducting dome. Usually, this effect is attributed to the small number

of carriers [93]. However, it is really the phase stiffness,⇢s = ~h
2n

2m
p

that matters,

which can become small either from low number of carriers, n , or a large

mass m
p

, or both.

There is also some experimental evidence for a soft nematic state in the

cuprate system. In Paper C, we assumed the occurrence of two constant

coexisting x y and x 2� y 2

nematic orders. The evolution of the nematic

director resulted from the temperature dependence of the paraconductivity

and the normal component conductivity. However, one could imagine a twist

of the nematic director itself due to a soft nematic state. Especially, we note

that the rapid evolution of the nematic director as a function of temperature

is confined near optimum doping. A soft nematic state is also expected to be

sensitive to quenched disorder, which could explain the vanishing nematic

domains in BSSCO [71], again near optimum doping. Thus, both the nematic

order in LSCO and BSCCO might be explained by a soft nematic state, with

the difference that the nematicity is pinned in LSCO while left to disorder in

BSCCO.

13 Outlook

The picture in Figure 12.1 is a crudely painted one. In particular, one crucial

feature of the cuprate system missing is the anti-ferromagnetic (AF) state.

Also, the pair-hopping interaction does not take the lattice into account. A

more complete scenario could be to consider a PDW instability, possibly

generated by pair-hopping, pinned by stripes, which in turn arise from an

AF instability. Superimposing the scenario of Figure 12.1 with that of an AF

and stripe instability might yield a phase diagram more reminiscent of the

cuprate phase diagram.
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In Paper B, we found that the pair-hoping interaction leads to the existence

of a new critical point, the super-Lifshitz point, where second and fourth-

order derivative terms cancel simultaneously. Exploration of the critical

behavior of this point could be worth pursuing in order to find fingerprints

of the pair-hopping interaction.

Intermediate coupling strengths are seemingly the most relevant for the

cuprate system. In this regime, fermionic and bosonic excitations are of equal

importance, and our considerations of the weak and strong coupling limits

receive corrections. In particular, it would be interesting to consider more

exact approaches to treat the pair-hopping interaction, like exact diagonal-

ization and density-matrix renormalization group. A more direct extension

on the work done on vestigial orders in Paper D is to consider the fate of the

fermionic excitations in these phases.

The high anisotropic fluctuations seen in LSCO remain, to some extent, a

puzzling observation, and more experimental work is needed to unravel the

workings of this material. Most important is to look for signs of anisotropy

in other experimental probes. A direct extension to the transport measure-

ments considered in Paper C is to look at the supercurrent as well as vortex

dynamics.
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“But, why?”

- Ryan Reynolds

Harold and Kumar Go To White Castle
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PART IV

APPENDIX

A Conventions

In this thesis we consider both the unit-less lattice operators

ˆci (with lattice-

site i ) and the field-operator

ˆ (r), where

ˆ †(r)|0i= |ri. These operators are

related by

ˆ (ri ) = ˆci /a d /2
where a is the length of the unit-cell and d the

dimensionality. The momentum-space representation reads

ˆci =
1p
N

X

k

e i kri
ˆck ,

ˆ (r) =
1

V

X

k

e i kr
ˆ k (A.1)

where V =N a d
is the system volume and N the number of unit cells. This

definition also implies

ˆ k =
p

V ˆck. Time-dependent operators is given

by

ˆc (t ) = e i H t
ˆc e �i H t

. In imaginary time t = �i⌧ we use the Matsubara

decomposition

ˆ (⌧) =
1

�

X

n

e �i!n⌧
ˆ i!n

(A.2)

with fermionic,!n =
(2n+1)⇡
� , and bosonic!n = 2n⇡

� Matsubara frequencies

respectively. We will move between the discrete sum by using

1

V

X

k

=
Z

d

d k

(2⇡)d
=
Z

k

,

1

�

X

n

=
Z

i!n

. (A.3)

It is also convenient to define the collective notation k = (k, i!n ). Corre-

spondingly we infer �k�k 0 =�(k�k0)�i!n�i!n 0 , �i!n�i!n 0 =��n ,n 0 �(k�k0) =
V �k,k0 .

A.1 Functional determinants

Gaussian integrals over bosonic degrees of freedoms (c+) takes the conven-

tional form Z
Dc ⇤+Dc+ e �(c ⇤+M c+)� j ⇤c+�c+ j =

e j ⇤M �1 j

det M
(A.4)
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whereas an integral over fermionic degrees of freedoms (c�) yields

Z
Dc ⇤�Dc� e �(c ⇤�M c�)� j ⇤c��c� j = det M e j ⇤M �1 j

(A.5)

due to the anti-commuting property of the Grassman numbers c�.

B Hubbard-Stratonovich transformation

The Hubbard-Stratonovich transformation utilizes the identities (A.4). With

j being a second order in field (bosonic) term the left-hand side of (A.4)

represents a decoupled action, which is second order in the field and readily

diagonalizable in c+.

Care must be taken when the sign of M in (A.4) is negative, i.e. for repul-

sive interaction. In this case the integral is no longer convergent and we have

to deform the contour for c+ along the imaginary axis. That is, instead of

utilizing the identity

e
a x 2

2 =

vt
1

2⇡a

Z 1

�1
e �

y 2

2a �x y
dy (B.1)

we have to use

e � a x 2

2 =�i

vt
1

2⇡a

Z i1

�i1
e

y 2

2a �x y
dy . (B.2)

Considering fluctuations in Chapter 10 (see footnote after (10.4)) we en-

countered a repulsive term. Optimizing the value of the action using the

mean-field equation (10.7) implies a minimum of the action along the imag-

inary axis. However, for an analytic action, the mean-field solutions will be a

maximum of the action with regard to real displacements of .
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C Bogoliubov quasiparticles for a finite-momentum state

The mean-field Hamiltonian in (6.5) can be written

ˆH
MF

=
X

k�

⇠(k) ˆc †

k� ˆck� �
X

k

�q ˆc †

"k+q/2 ˆc †

#�k+q/2+

X

k

�⇤q ˆc#�k+q/2 ˆc"k+q/2

=
X

k

E (�)k ˆ�†

#�k ˆ�#�k+E (+)k ˆ�†

"k ˆ�"k+ constant .

(C.1)

For notation see (6.8) and above. The fermionic operators � are the Bogoli-

ubov quasiparticles for which


ˆ�†

#�k
ˆ�"k

�
=


vk uk

uk �vk

�
ˆc"k+q/2

ˆc †

#�k+q/2

�
, (C.2)

where

vk =
1p
2

vt
1� ✏+(k)

Ek
, uk =

1p
2

vt
1+
✏+(k)

Ek
. (C.3)

Note that for �! 0, q! 0

ˆ�†

"k!
⇢

ˆc †

"k for k > kF

� ˆc#�k for k < kF
ˆ�†

#�k!
⇢

ˆc †

#�k for k > kF

ˆc"k for k < kF
(C.4)

which means that the Bogoliubov quasiparticles behave as particles over

the Fermi level, but as holes below, which explains why they are always

associated with positive energy (relative to the ground state). The mean field

ground state can be written

|G S i=Y
k

(uk+ vk ˆc †

"k+q/2 ˆc †

#�k+q/2)|0i=
Y

k

ˆ�"k ˆ�#�k|0i , (C.5)

consistent with interpreting

ˆ�†

as excitations.
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D Supercurrent and superflow

Dissipation is the result of a conversion of fluid kinetic energy to excitations.

These excitations will, in turn, equilibrate with the surroundings (the lattice

in the case of a superconductor), yielding a zero equilibrium flow.

In order to have a superflow, it is sufficient to require that no excitations

occur spontaneously for some finite velocity v . This condition is referred to

as the Landau criterion [143] which states that we have a stable superflow

for velocities v < vc where vc is the Landau critical velocity defined by b

vc =minp "(p)/p (D.1)

where ✏(p) is the excitation spectra. One example which yields a finite vc is

the roton-dispersion of Helium. For a fermionic system, superconductivity

can remain above the critical velocity. This is due to the Pauli principle,

which limits the available excitations. Thus for a superconductor, the current

will be made up of two parts: one superfluid part and one back-propagating

quasiparticle part.

D.1 Supercurrents in superconductors, some phenomenology

In a charged superfluid, know as a superconductor, the above description

(which describes the depairing current) is complemented with the fact that a

magnetic field, which is generated by the current, suppresses the condensate.

Therefore we expect that a charged superfluid could behave fundamentally

differently. To quantify, in the charged superfluid, we have two lengths scales,

the coherence length ⇠ and the penetration depth �, whereas we only have

the coherence length for the uncharged fluid. The physics of the critical

current will depend on the size of the sample l , compared to these two

length-scales. Here we will consider some limiting behavior, assuming a type

II superconductors, for which �¶ ⇠.

For small samples, l ⌧ ⇠ Æ �, where l is the typical sample size the

critical current will be given by the depairing current. l ⌧ � implies that the

dynamics of the vector potential is frozen out,rA= 0, that is the sample is

totally un-screened. Further ⇠� l means that magnitude variation of � is

not favorable. From (2.2) we can then solve for the depairing current [92]

Jd =
�

0

3

p
3⇡µ�2⇠

(D.2)
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where�
0

= h
2e is the flux quantum.

For large samples, �⌧ l , the critical current will be determined by the

induced magnetic field, which will penetrate the superconductor in the

form of vortices. These vortices will drift, leading to dissipation (due to the

interaction between the current and the magnetic field trapped in the vortex),

unless they are pinned [92]. The critical current for a cylinder of radius l
equals the current that induces the lower critical field

1

, Bc 1

, on the edge of

the conductor [92]

Bc 1

=µ
Jc 1

l
2

. (D.3)

For intermediate-sized samples ⇠⌧ l ⌧�, the superconductor is sensi-

tive to the formation of a vortex; however, it is still completely un-screened.

It turns out that for ⇠⌧ dw ⌧�P , dt ⇠ ⇠ (with dw , dt being the sample width

and thickness) the onset of resistivity due to vortices is only slightly lower

than the depairing current [145]

Jc = 0.83Jd (D.4)

and is caused by crossing of a single vortex.

For thin samples, dt ⌧ �, the penetration depth � should be replaced

with the Pearl length �P = 2�2

dt
[146]. This results from constraining the cur-

rent into a plane, while the electromagnetic field lives in 3D, which impedes

the screening. In a pure 2D system, superconductivity only exits in a quasi

long-range order sense, which is lost above the Kosterlitz–Thouless transition

temperature, T > TK T . This is due to the unbinding of vortex anti-vortex

pairs. In these systems, resistivity occurs at any finite current [69].
Thus, even though the depairing current does not always yield the onset

of resistance, it is still an essential property of a superconducting system, and

it can be considered an upper estimate of the critical current. Further, for

Jc < J < Jd , we expect superconducting correlations to exist still. In general,

we expect the resistivity to increase above Jc , only to reach normal values at

Jd .

1

The vortex-interaction with the edges (zero current through surface yields attracting

anti-vortex) delays the penetration of a vortex due to the so-called Bean-Livingston barrier

[144], Bb > Bc 1

.
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E Bosonic occupation number

The bosonic occupation number can be written as

n
B

=�Tr K K (z ) =
@

@ µ
ln(�L (z )) . (E.1)

Since L is non-analytic (in z ) along extended parts of the real axis we utilize

the contour shown in Figure 1 to perform the Matsubara sum part of the

Trace in (E.1)

1

�

X

i⌦

K (i⌦) =
K (0)
�
+

1

2⇡i

Z

C
1

+C
2

+�
1

+�
2

fB (z )K (z )
(E.2)

where fB (z ) = 1

e � z�1

is the Bose-Einstein distribution. (K (z ) is continuous

at z = 0, which is guaranteed by the stability constraint: Re(�L�1(k,0)) >
0, Im(L�1(k,0)) = 0 [116, 147].) The contour does not include i⌦ = 0 so we

have included it explicitly. After remembering the convergence factor

2 e i⌦0

+

we conclude that the contours C
1

, C
2

vanish. We proceed with calculating

�
1,2

by evaluating the integrand just above and below the real axis

1

�

X

i⌦

K (i⌦) =
K (0)
�
+

1

2⇡i

1Z

�1
dx
�
fB (x + i⌘)K (x + i⌘)� fB (x � i⌘)K (x � i⌘)

�
.

(E.3)

Further, fB (z ) is analytic across the real axis besides at z = 0 where the integral

picks up a residue, which cancels the leading K (0)/� term

1

�

X

i⌦

K (i⌦) =
P

2⇡i

1Z

�1
d! fB (!)
�
K (!+ i 0

+)�K (!� i 0

+)
�

.

(E.4)

The imaginary part of L�1

jumps across the non-analytic regions of the real

2

This can be seen as a residual factor coming from the time-ordering of the repeated

insertion of the resolution of identity at different times in the coherent state path-integral.

Basically, this corresponds to the normal ordering of operators, meaning that we are counting

the number of particles, rather than antiparticles.
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C1

�2
C2

�1

Figure 1: Contour used to evaluate (E.2).

axis, which yields a rather complicated behavior of K + �K �. In the weak-

coupling limit,µ= "F this quantity is small because of the vanishing effective

mass m
p

. However, in the strong coupling limit, µ!�Eb /2, the branch cut

and pole become increasingly separated. Thus, the low energy physics is

well described by only keeping the, now freely propagating, bound state and

(E.1) takes the form (see (7.11))

n
B

=� 1



@ r
@ µ

Z

q

1

exp

Ä
q 2

2m
p

ä�1

= 2

Z

q

1

exp

Ä
q 2

2m
p

ä�1

(E.5)

which is the stated expression in (7.12).

F Landau quantization — cyclotron orbits

Aligning a magnetic field in the (out-of plane) z -direction, particles follows

the Landau solutions for cyclotron orbits. Using the Landau gauge A =
(0, B x ,0) the Hamiltonian in (8.12) can be diagonalized using 'ky ,kz ,n (x) =
e i kz z e i ky y fn (x ), for which the eigenvalue equation reads

"n (ky , kz ) fn (x ) =

Ç
a✏+

ñ
~h 2k 2

z

2m
p,z
+
~h 2

2m
p,x

Ç
�@ 2

x +
m 2

p,x!
2

c

~h 2

( ˆx � x
0

)2
åôå

fn (x ) .

(F.1)
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Here we introduced x
0

= ~hky
e ⇤B , and the cyclotron frequency!c =

|e ⇤B |p
m

p,x m
p,y

.

The residual part of the eigenfunctions, fn (x ), are Hermite polynomials with

eigenvalues ~h!c (n +1/2). Thus,

"n (ky , kz ) =⌘✏+
~h 2k 2

z

2m
p,z
+~h!c (n +1/2) . (F.2)

The energies are degenerate in ky =m 2⇡
L y

where m = 0,±1,±2... Thus �ky =
2⇡
L y

and �x
0

= ~he ⇤B �ky . The number of states that fits in L x is therefore

N
Lan.

=
L x

�x
0

=
L x L y |e B |
⇡~h . (F.3)

To express the current operator in the Landau basis we need the matrix

elements of the kinetic momenta

ˆ⇡x = ~h ˆkx and

ˆ⇡y = ~h ˆky � e ⇤B ˆx , which are

diagonal in ky , kz , but off-diagonal in the Landau basis. Using the ladder

operators

ˆx � x
0

=
r

~h
2!c m

p,x
(a †+a ),~h ˆkx = i

«
~h!c m

p,x
2

(a †�a )we find

hn 0| ˆ⇡i |ni=
(

i
«
~hm

p,x!c
2

(
p

n +1�n 0,n+1

�pn�n 0,n�1

) i = x

sign(B )
«
~hm

p,y!c
2

(
p

n +1�n 0,n+1

+
p

n�n 0,n�1

) i = y .

(F.4)

F.1 Landau-sums and the Digamma function

In (8.22) we considered the sum

X

n=0

(n +1)("n+1

+ "n )
"n"n+1

|�"n +�⇤"n+1

|2 (F.5)

by expanding in the imaginary part of �= �0+ i�00

("n+1

+ "n )
"n"n+1

|�"n +�⇤"n+1

|2 =
1

�02
1

"n"n+1

("n + "n+1

)

� �002
�04

("n � "n+1

)2

"n✏n+1

("n + "n+1

)3
+O (�004/�04) .

(F.6)

The sum (F.5) can be evaluated in terms of the Digamma function, , defined

as the logarithmic derivative of the Gamma function. Expressed as an infinite

sum

 (z ) =��E M +
X

n=0

z �1

(n +1)(n + z )
, (F.7)
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where �E M is the Euler–Mascheroni constant. This definition, together with

the recurrence-relation (1+ z ) = (z ) + 1/z , can be used to perform the

sum

X

n=0

(n +1)("n+1

+ "n )
"n"n+1

|�"n +�⇤"n+1

|2 =
2

�02~h 2!2

c⌘✏

⇣
F

1

⇣ ✏
2b

⌘
��2F

2

⇣ ✏
2b

⌘⌘
+O (�4)

F
1

(x ) = x 2

Å
 
Å

x +
1

2

ã
� (x )� 1

2x

ã

F
2

(x ) = F
1

(x )� 2x 0(x ) + x 2 00(x ))
8

(F.8)

where�= �00/�0, b = ~h!c
2⌘ = B/Bc 2

with the upper critical field Bc 2

= ~h
2e⇠

0,x⇠0,y
,

⇠
0,(x ,y ) = ~h 2

2m
p,(x ,y )⌘

.
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