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Abstract

In this thesis, to build a multi-modal system for language generation and
understanding, we study grounded neural language models. Literature in
psychology informs us that spatial cognition involves different aspects of
knowledge that include visual perception and human interaction with the
world. This makes spatial descriptions a compelling case for the study of
how spatial language is grounded in different kinds of knowledge. In seven
studies, we investigate what and how neural language models (NLM) encode
spatial knowledge.

In the first study, we explore the traces of functional-geometric distinction
of spatial relations in uni-modal NLM. This distinction is essential since
the knowledge about object-specific relations is not grounded in the visible
situation. Following that, in the second study, we inspect representations
of spatial relations in a uni-modal NLM to understand how they capture
the concept of space from the corpus. The predictability of grounding
spatial relations from contextual embeddings is vital for the evaluation
of grounding in multi-modal language models. On the argument for the
geometric meaning, in the third study, we inspect the spectrum of bounding
box annotations on image descriptions. We show that less geometrically
biased spatial relations are more likely to deviate from the norm of their
bounding box features. In the fourth study, we try to evaluate the degree of
grounding in language and vision with adaptive attention. In the fifth study,
we use adaptive attention to understand if and how additional bounding
box geometric information could improve the generation of relational image
descriptions. In the sixth study, we ask if the language model has an ability of
systematic generalisation to learn the grounding on the unseen composition
of representations. Then in the seventh study, we show the potentials in
using uni-modal knowledge for detecting metaphors in adjective-nouns
compositions.

The primary argument of the thesis is built on the fact that spatial expressions
in natural language are not always grounded in direct interpretations of the
locations. We argue that distributional knowledge from corpora of language
use and their association with visual features constitute grounding with
neural language models. Therefore, in a joint model of vision and language,
the neural language model provides spatial knowledge that is contextualising
the visual representations about locations.
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Sammanfattning (Abstract)

I denna avhandling, for att bygga ett multimodalt system for sprikgenerering
och forstéelse, studerar vi forankrade neurala sprdkmodeller. Litteratur i
psykologi informerar oss om att rumslig kognition involverar olika aspekter
av kunskap som inkluderar visuell uppfattning och ménsklig interaktion
med vérlden. Detta gor att rumsliga beskrivningar ar ett bra fall for att
studera hur rumsligt sprak &r forankrat i olika typer av kunskap. I sju studier
undersoker vi hur neurala sprakmodeller (NLM) kodar rumslig kunskap, och
vad de kodar.

I den forsta studien undersoker vi sparen av den funktionella-geometriska
distinktion av rumsliga relationer i unimodala NLM. Denna distinktion ar
vasentlig eftersom kunskapen om objektspecifika relationer inte &r baserad
i den synliga situationen. Darefter, i den andra studien, inspekterar vi rep-
resentationer av rumsliga relationer i unimodala NLM for att forsta hur de
representerar begreppet rymd frén en korpus. Forutsdgbarheten av grundlég-
gande rumsliga relationer fran kontextuella representationer dr avgérande
for utvirderingen av férankring i multimodala sprakmodeller. I den tredje
studien undersoker vi argument for den geometriska betydelsen genom att in-
spektera spektrumet av avgransningsruteannoteringar for bildbeskrivningar.
Vi visar att geometriska relationer med en mindre grad av rumslighet ar
mer benigna att avvika frin normen av avgransningsfunktionens sédrdrag.
I den fjarde studien forsoker vi utvirdera graden av forankring i sprék och
syn med adaptiv uppmérksamhet. I den femte studien anvénder vi adaptiv
uppmarksamhet for att forstd om och hur ytterligare geometrisk informa-
tion om avgrénsningsrutorna kan forbattra generationen av relationella
bildbeskrivningar. I den sjitte studien fragar vi om sprakmodeller har en
systematisk generaliseringsférmaga att lira sig forankring av osedda sam-
mansédttningen av representationer. Sedan i den sjunde studien visar vi
att unimodal kunskap har potential for att upptdcka metaforer i adjektiv-
substantivkompositioner.

Avhandlingens huvudargument bygger pa det faktum att rumsliga uttryck
i naturligt spréak inte alltid &r baserade pa direkta tolkningar av platser. Vi
hévdar att distributionell kunskap fran korpusar om sprakbruk och deras
associering med visuella funktioner utgor forankring for neurala sprdkmod-
eller. Ddrmed, en modell som anviander bade visuell information och sprék,



tillhandahaller neurala sprakmodeller rumslig kunskap som kontextualiserar
visuella representationer av platser.
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Introduction

The success of a class of machine learning algorithms in a wide variety of
computer vision tasks led to the emergence of the deep learning paradigm
over the past decade. This transformation in computer vision has affected
the design and application of perceptual systems in other domains, such as
human-robot interactions and computational linguistics. Designing a system
based on a data-driven module, such as a neural network classifier, would be
challenging without a proper explanation of how the system would reason in
situated environments. The potential applications of deep neural networks
and questions about different models and how to apply them initiated and
motivated this research. In this chapter, we describe the aims of the thesis,
the research questions and the objectives. Then, we briefly address the con-
tributions and findings of the studies within this thesis. In the next chapters,
we provide more detailed background information.

1.1 Aims

The main objective of this thesis is to pave the way for the development of
language generation and language understanding systems with deep neural
networks that are grounded in both linguistic and visual inputs. Several
use cases of such systems involve spatial language, including automatically
describing the location of objects or locating objects based on a description
of their whereabouts. These use cases have guided this research to focus
on spatial language as an original puzzle in the domain of computational
linguistics.

Our goal of building such systems yielded several challenges and fundamen-
tal questions about learning representations using deep neural networks.
Therefore, the primary aims of the thesis are to assess and investigate
the application of neural networks in automatically learning multi-modal
representations and the grounding of linguistic units in such representa-
tions.
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1.2 Research questions

Q1: What spatial knowledge is learned in neural language models?
A fundamental question about the representation of modalities is whether
these modalities are sufficient for solving the relevant tasks. Language
modelling yields several other questions about the encoding of knowledge.
Is the knowledge encoded in these modalities extractable using specific
learning algorithms and models? In the context of spatial language, is there
appropriate geometric knowledge in representations that can be learned with
neural models (such as convolutional neural networks)? Is the geometric
knowledge in relevant modalities enough to understand or generate a spatial
description of a situation?

Q2 How are spatial descriptions associated with spatial knowledge?
The measure of success in a data-driven inference cannot be just the accuracy
of correct predictions. To have a valid data-driven procedure, there must be
an explanation of which evidence is used to conclude the decision. Therefore,
we ask the following questions. How do different modalities contribute to
a grounded neural language model? How much do visual inputs affect the
results in comparison to language inputs? What is the balance between the
contributions of different modalities? Why do different modalities contribute
differently to the performance of the model?

Q3 Is there a systematic generalisation? The assessment of learning
with neural networks cannot be limited to the ability of the system to per-
form specific tasks in specific examples. This question is often asked in
the form of learned compositionality. We investigate the generalisability
of learning outcomes by looking at learned representations. To what de-
gree are the expected structures, compositions and relations in linguistic
and visual-cognitive representations learned with neural networks? If unex-
pected relations within neural representations emerge from learning distant
tasks, such as language modelling, we need to show if the learned represen-
tations imposed from the data are transferable knowledge or if the relations
are intrinsic to the neural structures and can be generalised. If there are
intrinsic neural structures that capture the compositional relations in neural
representations, we ask if these structures are aligned with expected struc-
tures. For example, if a two-arity relation is not symmetric, is the order

Chapter 1



of arguments preserved in learned representations? Is the order in neural
structures aligned with the expected order?

1.3 Contributions and findings

Our findings are distributed over seven studies. In the first three studies
(Dobnik et al., 2018; Ghanimifard and Dobnik, 2019a; Dobnik and Ghanimi-
fard, 2020), we inspect unimodal neural language models and the geometric
features of bounding boxes to see what latent knowledge on spatial relations
is encoded in the models and data (Q1).

Then, in studies 4 and 5 (Ghanimifard and Dobnik, 2018, 2019b), we
examine the contributions of visual features and contextual embeddings
from a language model in generating image descriptions. We show that
the contributions of visual features in producing spatial relations are lower
than nominal parts of speech. We also show that top-down localisation
has the highest contribution to performance compared to any other top-
down feature representation (Q2). In study 5, the question about top-down
representations in neural networks resolves whether the intrinsic structures
in neural networks affect learning (Q3).

The last two studies Ghanimifard and Dobnik (2017); Bizzoni et al. (2017),
focus on the capability of neural language models to learn compositional
knowledge. We show that, when using neural networks as the composition
function, the models can generalise from limited samples of language use to
new word compositions (Q3). In study 6, we found that composing unseen
word sequences and decomposing unseen single word representations are
possible if the neural language model is trained with enough coverage of
vocabulary. However, this is dependent on combinatorial properties and
the complexity of compositional meaning (Q2). In study 7, we found that
distributional knowledge from neural language models, abstracted from
visual/sensory grounding, can recognise metaphors. This finding is consistent
with our findings in study 2 —that unimodal language models can capture
spatial knowledge in distributional patterns (Q1).

1.3
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1.4 The thesis frame

This dissertation consists of two parts, the thesis frame and the studies. The
first part comprises a synthesis of ideas, background case studies, concepts, a
summary of studies and the conclusions of the thesis (chapters 1 to 5). The
second part comprises the seven articles of the research project (chapters 6
to 12).

In chapter 2, we briefly explore the background of spatial language in image
descriptions. In chapter 3, we extensively discuss the concept of modelling
meaning representations with neural networks. chapter 4 summarises the
seven studies in connection with the research questions and their findings.
Finally, chapter 5 provides the final summary and discussion of the thesis
findings and its connection to the published studies.

Chapter 1



Spatial Expressions In Im-
age Descriptions

The importance of spatial language is embedded in fundamental domain
questions about parsing visual sensory inputs into meaningful representa-
tions. In its purest form, the individuation of objects would be a spatial
cognition task; to recognise where objects begin and where they end in
space, how their parts are spatially composed and how the spatial properties
(including shapes and locations) interact with each other. In chapter 1, we
stated that the use cases of grounded language generation and understand-
ing brought us to the study of spatial language. In a large body of work on
referring expression generation (Dale and Reiter, 1995; Krahmer and van
Deemter, 2011) with applications that describe scenes (Viethen and Dale,
2008) and images (Mitchell et al., 2012; Elliott and Keller, 2013), describe
visible objects (Mitchell et al., 2013) and engage in human-robot dialogue
(Kelleher and Kruijff, 2006; Dobnik, 2009), spatial grounding language is
inseparable from the tasks. In this chapter, we discuss the relevant topics and
concepts regarding how human language can describe the space, the location
of objects and the relation between them in an image.

2.1 Spatial expressions

There are many ways to describe a situation and convey information about
the location of important matters. The most direct form of denoting the
location of objects in natural language is to use locative expressions. The
simplest type of locative expression is composed of three constituents —a
locative preposition and two noun phrases. One of the noun phrases is
the subject of the preposition and the other is the object. For example, in
‘the frog next to the pond’ the preposition ‘next to’ describes the location of
the subject ‘the frog’ with respect to the object ‘the pond’. The subject/object
are also known by different names, such as referent/relatum (Miller and
Johnson-Laird, 1976), figure/ground (Talmy, 1983) or located object/reference
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The frog next to the pond.
The frog is next to the pond.
There is a frog next to the pond.

The frog next to the pond is watching us.

9The drawing from Grimm’s Fairy
Tales by Grimm and Andre (1899)

Figure. 2.1: Describing the location of target and landmark —( frog,next to,pond).

object (Herskovits, 1986; Gapp, 1994a; Dobnik, 2009). In this work, we refer
to them as TARGET/LANDMARK. When referring to a situation with the struc-
ture (TARGET, RELATION, LANDMARK), the expression may be combined with
a copulative verb, an existential quantifier or other additional information
(Figure 2.1).

In English, there are a small class of words with meanings that denote spatial
relations between targets and landmarks. This includes simple words (on,
in, over, under) and compound phrases (on top of, to the left of, to the right
of, in front of, and etc.) Some of these relations are compositional, which
means they can be combined to produce new relations (above and far from).
Based on the list of prepositions in (Landau and Jackendoff, 1993) and
alternative compositional and compound relations discussed in (Herskovits,
1986, p. 156), we created a dictionary of 75 spatial relations. Considering
their alternative forms, with a minor difference in their spatial sense, they
constitute 1,194 entries! (Table 2.1). For example, ‘to the left of’ could
be one form of several possible alternative multi-words with close spatial

meaning:

* {at/on/in/to/by} the left {{hand} side} of — to the left of.

IThe source code to generate the collection of multi-words expressions is available in
the online repository of published studies including https://github.com/GU-CLASP/
functional-geometric-1m.

Chapter 2 Spatial Expressions In Image Descriptions
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about above across after afterward
against ago along alongside amid
among apart around at away
back backward  before behind below
beneath beside between bottom by

down downstairs downward during east

from front here in inside
into inward left near nearby
next north off on onto

out outside outward over parallel
perpendicular right side sideways since
south there through throughout to
together top toward under underneath
until up upon upstairs upward
via west with within without

Table. 2.1: The vocabulary of 75 spatial relations from Landau and Jackendoff
(1993) and Herskovits (1986).

2.2 Functional/geometric meaning

Expressing location and describing space is not limited to the prepositional
relations in spatial expressions. Other verbs in referring expressions can
indicate the relative location between subject and object. With different
degrees, these relations might have a strong or weak association with the
location of the subject and object. For example, ‘ride’ entails a specific spatial
configuration between the subject and the object, depending on their shape.
Other relations, such as ‘touch’, ‘sit on’, and ‘jump over’ indicate a specific
spatial configuration of subject and object. Nevertheless, their direct meaning
is not just the location of objects; it indicates other kinds of relations, which
consequently entail specific spatial arrangements.

In the same way, the meaning of spatial prepositions is not purely geomet-
rical; it entails other relations and associations between subject and object
that are functional. The relation ‘over’ does not just describe a geometric
location; it also indicates a function —the subject provides protection or
shelter for the object/s. The functional sense of relations includes specific
interactive relations between entities that are not dependent on the location
and spatial configurations.

2.2
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A simple representation of the geometric sense of relations is based on the
acceptability ratings of individual locations with respect to the landmark. Lo-
gan and Sadler (1996) suggest that the mental representation of a geometric
meaning could be a template projection of locations on a map, where the
landmark is in the middle and each location has its degree of acceptability for
the target object. A study on location acceptabilities for different prepositions
shows that each spatial preposition has a different degree of dependency
on object-specific relations (Coventry et al., 2001). The meaning of each
relation is an interplay between the functional and geometric relations of
two objects. For instance, ‘above’ has both geometric locational meaning
and functional sense. When it is used in different context it can have dif-
ferent degree of functional and geometric acceptability. Spatial relations
in natural language have a spectrum of geometricity, with different degree
of favouring geometric bias or functional bias. Another way to study the
object-specific sense of relations is to consider the distributional dependency
between relations and objects in image descriptions (Dobnik and Kelleher,
2013, 2014). In our studies, we consider these aspects of by examining
language models.

2.3 Image descriptions

In a simple show-and-tell task, when provided an image, the agent must gen-
erate a description of the image. Since the early works on human-robot inter-
actions, this task became the centre of interests for natural language ground-
ing (Roy, 2002). In recent years, several large datasets have been developed,
in which crowd-sourced human annotators describe images from freely avail-
able datasets of photographed scenes over the Internet.

Datasets Common datasets of image caption tasks, such as MSCOCO (Lin
et al., 2014) with more than 300,000 images and Flickr30k (Young et al.,
2014) with 30,000 images, each provide five alternative descriptions per
image. However, the variation and number of geometric spatial relations in
the dataset is limited; ‘to the left of’ and ‘to the right of” are rarely used in
the dataset. On the other hand, the Visual Genome (Krishna et al., 2017)
provides 50 region descriptions and triplet annotations per image, for a total
of over 108,000 images. The annotation schema, in this case, was slightly
different from captioning, as it asks annotators to describe specific parts of
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the images or the relation between two object areas in the images. In this
dataset, description and relation annotations are associated with relevant
bounding boxes in the image.

Grounding spatial descriptions Both generating and understanding a
spatial description with three components —TARGET, RELATION, LANDMARK
—Trequires several types of knowledge: (1) object identification, (2) compre-
hension of geometric configuration, (3) capturing object-specific relations
between objects and (4) a frame of reference for projective relations ‘to the
right of’ and ‘below’. When people describe image contents, they commonly
use spatial expressions. A scene can be described correctly using any spatial
relation fitting the same objects depending on the intent of the speaker. How-
ever, the image description task may use the knowledge about the scene in a
specific way.Precisely, object identification and the capture of object-specific
relations in the picture might be enough to describe an image with spatial
expressions.

2.4 Summary

In this chapter, we described the concept of locative expressions and its
connection with image descriptions. Spatial relations denote locations in
scenes. However, their meaning, to some extent, is also dependent on
object-specific relations. In our studies on grounding spatial descriptions,
we will use datasets of images with descriptions, including MSCOCO(Lin
et al., 2014), Flickr30k(Young et al., 2014) and Visual Genome (Krishna
et al., 2017).

2.4
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Modelling And Meaning
Representation

In this chapter, we address the concepts and the theoretical framework for
modelling meaning with uncertainty and grounding natural language in
multi-modal representations.

3.1 Terminology of modelling

Whenever we need to make a systematic prediction based on observations
and evidence, we use a set of assumptions. A model is the encoding of these
assumptions in the form of a function. This function takes given evidence as
input and produces the prediction as an output. Formally, modelling y based
on x with the function f would be as follows:

y = fo(x) (3.1)

where fg is called the model function, which is parametrised with ©.

The parameters are part of the assumption about the model function. For
example, by assuming the rules of physics, the position of a falling object
at a specific time in the future can be modelled given the current evident
position of the object. However, the formula of the location still requires the

important parameters of velocity and acceleration of the object in the model.

More often, determined prediction of an outcome is not enough. We need to
associate each prediction with an uncertainty measure. Such a model is a
probabilistic model. Instead of modelling the predictable outcome, a measure
of uncertainty for any possible outcome is modelled; the density of possible
outcomes is conditioned with the observable evidence.

Pr(Y =y|X =) = fo(y,) (3.2)
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where fo is the model function, which assigns a degree of uncertainty
for predicting y grounded on an observable x. To simplify the probability
annotations, we do not write the complete propositions (Y = y); instead, we
use shorthand —Pr(y|z). Commonly, the probability distributions used in
this work are categorical, in which Y is a bounded discrete vector of the items.
Therefore, the common implementation of function fg is conducted using a
module with a vectorised output the same size as Y:

fe(y,r) =modules(z)[y] (3.3)

where y is a category in distribution, the output of modules(.) is a vector
with the size of all possible categories and the square bracket annotation [y]
indicates a lookup operation to select the value for y-key.

Representing assumptions about the future in a function requires a framework
of modelling to acquire the model function. A constructive proof, a search
algorithm over a class of functions or its parameters, is the path to building
the model function from these assumptions. When a set of data points drives
the search algorithm, the process of fitting a function according to these data
points is called learning or training the model.

3.2 Modelling in deep neural networks

In this work, we study the framework of artificial neural networks to en-
code and build the model function. Deep learning (DL) and artificial neural
networks (ANN) refer to a modelling framework in which a composition
of differentiable functions form the model function. The learning occurs
through parameters of the function with the backpropagation algorithm.
The backpropagation algorithm is a data-driven optimisation algorithm that
uses a measure of error loss over the training data to gradually update
the model parameters toward lower error. The differentiability of the loss
enables this method to apply the chain rule of derivatives to aim the pa-
rameter updates toward reducing errors for the training data. In a nutshell,
the critical assumptions needed to build a deep learning model are the
assumed model function (the composition of modules or the neural net-
work architecture), the assumption that the training dataset has relevant
knowledge for the task and the assumption about the error function (the
loss function).
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There are several learning paradigms, such as supervised and unsupervised
learning. These distinctions mainly concern the difference in annotation
on the training data, the error function and how they are related to the
predictable variable of the model. The most common paradigm is supervised
learning, in which the training dataset is a set of annotated inputs and the
predicted output of the model D = {(y;,z;)}. Unsupervised learning, on the
other hand, uses an unlabelled training dataset D = {x;}. The error function
in these cases provides additional assumptions about how data points are
internally connected. Any internal data structures that indirectly relate to
the predictable outcome of the model could be the basis for an error function
in unsupervised learning, such as unsupervised clustering of data points for
a classification task without supervised data.

The most common loss function for deep learning models is the surprisal
of the training data. The surprisal of a random variable (X = z) is defined
as: Ix(z) = —log(Pr(X = z)). With a given dataset, such as D = {(y;,z;)}
and a model function f, an ideal search algorithm for finds the best fitting
parameters that minimise the loss:

Jo(f, D)= > —log(fo(yiz:)) 3.4
(yi,z;) €D
O = argminJg(f, D) (3.5)
e

while the search algorithm looks for the best fitting parameters ©, there
is usually more than one answer or there is no converging path to an
acceptable error level with backpropagation. In the most straightforward
form —backpropagation in a gradient descent algorithm —the gradient of
the error function with a pre-defined learning rate updates all parameters
iteratively until the error converges to an acceptable threshold. To overcome
technical difficulties in processing large datasets and parameter space, other
variations of this algorithm may process data in batches, using stochastic
gradient descent and the momentum of past updates. For simplicity, each
step of mini-batch training can be formulated as an updating operation for
© parameters as follows:

©=0-n-VoJo(f;Dyatch)

where 7 is a hyper-parameter for the learning rate and Vg, is a notation for a
stochastic deferential operation over every parameter in ©.

3.2
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The concept of indirect learning from a function different from the goal pre-
diction of the model is also related to the concept of multi-task learning and
transfer learning in neural networks (Goodfellow et al., 2016, Chapter 15).
In summary, the parameters of a model function learned from a different
dataset or a different goal or a different task encode relevant assumptions
needed to make our intended prediction model. Therefore, the pre-trained
modules can be reused or composed into the model function in the neu-
ral network. The final training steps with much less training data is then
known as fine-tuning or in some context referred to as domain adaptation
phase.

3.3 Grounding in representations

So far, we have identified that modelling is a way to represent assumptions
about the world in the form of the parameters of a predicting function and
that DL models encode assumptions inferred from data as a representation
space. The goal of understanding and comprehension is to connect two types
of representations —sensory representations and abstract concepts. A model
that provides the link between two representations is a model of grounded
meaning. A probabilistic model of representations can potentially formulate
such links. However, the question remains about the generalisability of the
learning (see section 3.4).

By definition, the model represents the uncertainty of connecting observables
to their representation; therefore, it can be used as a model of grounded
representations. Within the paradigms of DL, instead of having a given
strict symbolic representation for concepts and their internal associations,
these representations must be learned. The architectural design of the
neural networks and the training datasets impose restrictions on how these
representations are interconnected. In the machine learning community,
this has become a field of study called representation learning (Bengio et al.,
2013).

When modelling conversational agents, linguistic expressions are grounded
in internal representations of the agent. There are at least two proba-
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bilistic models of meaning for (1) generating and (2) understanding utter-
ances:

Speaker model :Pr(u|r) = fo,(u,r) (3.6)
Listener model :Pr(r|u) = fo,(u,r) 3.7

Pr(u|r) is the measure of uncertainty in choosing the utterance u, referring
to the given representation r. Pr(r|u) is the measure of uncertainty in inter-
preting the given utterance v as if it meant representation r for the listener.
In other words, the grounded meaning of each natural language utterance is
what it denotes in the representation space according to the model. Without
any probabilistic sampling in composition of modules in neural networks,
there is unambiguous mapping of sensory representations onto grounded
representation space. However, the link between grounded representations
and natural language utterances is uncertain, with a linking degree of un-
certainty on all possible outcomes. The learning process establishes the
degree of certainty of the link between utterances and representation space
and builds the fitting map between the agent’s primitive sensory and motor
representations and grounded representation space.

Later, in section 3.5, we provide additional discussion about the link between
meaning and representations in the speaker model. In a speaker model, to
express what is in an image, the sensory data for the situation is first mapped
onto the representation space (£ = v). Then, the speaker model assigns a
measure of goodness to the utterance predictions:

Pr(“there is a frog”|v) = fo,([“there”, “is”, “a”, “frog”],v)

In other words, the model of grounded meaning is also a model for con-
necting utterances to sensory evidence. The internal representations are
not directly connected to external references. They are interpretations of
the sensory readings internal to the agent. The mapping function between
visual sensory inputs and internal agent representations could be modelled
with a pre-trained convolutional network enriched with other contextual
information about the situation. The model establishes uncertain links be-
tween primitive sensory readings and utterances of natural language, for
that reason it functions as a model of grounding. In section 3.6, we describe
some properties of this representation space and how sensory features would
be mapped onto this representation space.

3.3
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3.4 Modelling compositionality

One of the challenges of a model of grounding is formulated as Harnad’s
symbol grounding problem (Harnad, 1990). The argument is that the capac-
ity of learning from limited data is problematic when it is expected to impose
new links to potentially unlimited compositions in a symbolic representation
system. The challenge is to infer grounded meanings for new representations
(e.g. ‘ZEBRA’) from known bottom-up representations learned from images
(e.g. ‘HORSE’ and ‘STRIPES’) when a symbolic link between them (‘ZEBRA
and a composition of two others) is established in natural language (‘ZEBRA
= ‘HORSE’ + ‘STRIPES’). In other words, compositionality as an ability to
construct new representations linked to both sensory and abstract linguistic
representations creates a generalisation problem for bottom-up learning.
The underlying premise of Harnad’s formulation of the problem is that hu-
man language is symbolic; therefore, when human behaviour shows the
capability of learning from language input, the establishment of such links
came from new symbolic rules imposed by new statements of the natural
language.

Without this explicit premise about the nature of language, the recent lit-
erature of language modelling stretches the notion of compositionality. In
one account, any function in a semantic vector space is a model of compo-
sitionality (Mitchell and Lapata, 2010). In another direction, the semantic
parse trees of linguistic expressions are used for composing neural network
modules (Andreas et al., 2016).

The notion of compositionality in natural language that we use in this thesis
is simply the extent of generalisation in bottom-up training. The grounding
of known representations is the learned link between natural language
utterances and their internal neural representations. The representation
space imposes the compositional and structural links (‘ZEBRA’ = ‘HORSE’ +
‘STRIPES’), which are either learnable without intrinsic structures in space
from data or learnable with extended structural or top-down control or
design of the intrinsic properties’ representation units.
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3.5 Generative language model

When the target of predictions in Equation 3.2 is a linguistic unit, the model
is what we call a probabilistic language model —predicting the next word
given previous sequences of words.

Pr(wis1|wit) = fo(wir1,wit) (3.8)

where w1.; represents the given sequence of words at time step ¢ and the
random variable is the target token at time ¢+ 1, here represented with a
shorthand annotation for the probability of w; 1. The sampling process from
this model can potentially be part of a model designed to generate sequences

of any length:
T—1

Pr(wy.r) = [ ] Pr(wisa]wi) (3.9)
t=1
when coupled with a search algorithm, such as beam search, can be used for
language generation. When the model function is based on recurrent neural
networks, we call it a recurrent generative language model, shortened to a
recurrent language model:

Pr(wiy1|wie) = fo(wiyr, he) (3.10)
hy = rong, (hi—1,w;) (3.11)
f@ (’wt+1 R ht) = softmax(gg2 (ht)) ['wt+1] (3.12)

where h; represents the recurrent state at time ¢. This could also be in-
terpreted as an agent representation in Equation 3.6 for generating each
token. Two important modules of the language model are rnny,, the re-
current module, and g, the top module, often a multi-layer perceptron,
the output of which is a vector with the size of the vocabulary. In the
end, softmax is the final activation function over all possible tokens in the

vocabulary:
e(E

[W]xev

x'eV

softmax(V) = (3.13)

where V represents a vector of vocabulary size. After activation with
softmax, the output resembles a categorical probability distribution of the
vocabulary. The notation softmax(-)[w] represents the predicted probability

3.5
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for w at the output vector. The unfolded representation of the model function
would be as follows:

Pr(w¢41|wi:t) = fo(wiy1,rnng, (rnng, (...rnng, (ho,w1)...,ws—1),wy))

The parameter set of the model, ©, is comprised of two partitions, 61,65,
from the two main modules of the model. The most common recurrent
neural network we will use in this thesis is long-short term memory (LSTM)
(Hochreiter and Schmidhuber, 1997). We often add a trainable embedding
layer in addition to the recurrent neural network to learn token representa-
tions. When a generated utterance is supposed to describe the content of
an image or other situation, the generative language model in Equation 3.8
and 3.9 could be written as a conditional probability similar to the speaker
model in Equation 3.6:

Pr(wt+1|w1:t7c) = f@(’LUt+1,ht,C) (314)
T—1

Pr(wy.rlc) = H Pr(wgy1|wi.t,c) (3.15)
t=1

where ¢ represents the encoding of the situation —visual features and the
fusion of two representations, h;. c¢ is the agent’s grounded representation
in the speaker model in Equation 3.6.

In these models, the uncertainty measures of the language model could also
be interpreted as the degree of acceptability of linguistic units. With the
speaker rationality assumption, the distribution of utterances in training
data should not be very different from the acceptability judgment rank-
ings. The generative language model learned from this data is also a
model of acceptability judgments. If the language model can accurately
predict acceptability judgments, it can be considered a model of syntax.
It has been argued that such a language model is also an implementation
of syntax without underlying categorical syntactic rules (Lau et al., 2017,
Section 3).

On the other hand, predicting the categorical distribution of tokens in their
positions is, in fact, a model for the substitutability of words (i.e. Equa-
tion 3.14). Such a model loosely simulates substitutability of tokens. There-
fore, the vector representations learned for tokens and words in these models
loosely posses the attributes for lexical-semantic representations. This notion
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of meaning representation is consistent with the grounded representation
discussed in section 3.3. Based on these two arguments, a neural language
model must be able to encode knowledge about syntax and semantics in the
form of the neural network modules’ structure and parameterised represen-
tations. To predict the model outputs, parameters such as embeddings and
intermediate representations of modules (contextualised embeddings) en-
code relevant knowledge learned from the training data.

3.6 Modelling convolutional neural networks

In section 3.3, we mentioned the possibility of using a function such as
convolutional networks to map visual inputs onto a representation space for
language grounding. Here we discuss two aspects of using convolutional
neural networks as a feature extraction function:

(1) How do convolutional neural networks process images?
(2) What types of knowledge are encoded in convolutional representa-
tions?

The role of convolutional networks (ConvNets) as a mapping function is
to take basic two-dimensional pixel representation of images from a colour
feature space, then project it onto another feature space that can discriminate
images based on their content. The most basic form of visual understanding
is to recognise objects and entities in images. A set of features that can
distinguish visual differences between objects would be enough for most
tasks. For this reason, the most common way to use ConvNets in a variety
of visual processing tasks is to train it as a module in an object recognition
model, then use it as feature extraction module in other tasks and models.
The success of ConvNets in an object recognition task (Krizhevsky et al.,
2012) with a large ImageNet dataset (Deng et al., 2009) was the landmark
deep learning success in computer vision.

Conceptually, an object recognition model has the following modular de-

sign:
Pr(category|I) = fo(category,I) (3.16)
V1 = ConvNetg, (I) (3.17)
fe(category,I) = softmax(mlpy, (flatten(Vy)))[category] (3.18)

3.6
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where f is the uncertainty model for recognising a category of the object
given the image /. The model has two modules —ConvNety, , the convolu-
tional network for feature extraction and mlp,,, the multi-layer perceptron
for classification based on convoluted features. The most important property
of ConvNets is that it can transfer object recognition knowledge to find
patterns of local structures (LeCun et al., 2010).

For recognising objects, we need a feature representation that would be, to
some extent, invariant to spatial transformations. Geometric transformations
such as shifting, rotating and rescaling have limited effects on recognising
an object. Notable image representations such as the scale-invariant feature
transform (SIFT) (Lowe, 2004) and the histogram of oriented gradients
(HOG) (Dalal and Triggs, 2005) were motivated by this requirement. How-
ever, object recognition is not strictly invariant to geometric transformations.
Spatial compositions at a global level can change the interpretation of smaller
patterns. For these reasons, ConvNets was designed with the prior knowl-
edge that identifying local patterns in different scales is essential. Then, for
all possible regions of the image, as pre-defined granularities, their receptive
fields would be mapped onto a new feature space. The feature mapper (or
the kernel function) with input as small as 3x3 pixels interprets local regions
into a new representation space. The term convolutional network refers to
multiple stages of feature mapping followed by spatial sub-sampling, which
finally produces a representation with a coarser space but richer represen-
tations. After stacking the modules of feature mapping with sub-sampling,
each broader region is mapped to a vector representation.

Although prior knowledge about the task led to its design and the popularity
of ConvNets in several tasks, there is limited theoretical understanding about
how and what geometric features are encoded in convoluted representations.
Based on one account, these features are useful for localisation and object
detection tasks, without an algorithmic search (Lenc and Vedaldi, 2015a; Ren
et al., 2015). In another account, the recognition tasks are sensitive to local
geometric transformations' and ConvNets relax the geometric knowledge;
therefore, geometric relationships between local parts in lower layers decay
when reaching the higher layers (Hinton et al., 2011; Lenc and Vedaldi,
2015b; Kelleher and Dobnik, 2017).

IThe recognition of a face depends on the spatial relationships between eyes and nose (Hinton
et al., 2011)
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Based on these two accounts:

(1) The geometric features in convolutional representations are a contin-
uum of relational features among smaller regions and larger super-
pixels;

(2) These are locally relaxed at the final layers to the extent that convolu-
tional representation may have lost its geometric knowledge. This is
an important consideration when we want to ground spatial relations
in natural language on these visual representations.

3.7 Conclusion

We explained that any modelling requires a set of assumptions; modelling
with neural networks encodes these assumptions into the model architecture,
training datasets and objectives. We addressed the neural network modelling
for grounded representations, compositionality and language generation. All
these models correspond to challenges in meaning representations. In the
next chapter, we summarise our studies on spatial knowledge encoded in
the language models.

3.7
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Summary Of Studies

In this chapter, we summarise the questions, methods and findings of six stud-
ies and discuss their relevance to the main aims of the thesis.

4.1 Study 1: Functional/geometric bias in
neural language models

Simon Dobnik, Mehdi Ghanimifard, and John Kelleher. Exploring the Func-
tional and Geometric Bias of Spatial Relations Using Neural Language Mod-
els. In Proceedings of the First International Workshop on Spatial Language
Understanding, pp. 1-11. 2018.

Understanding spatial language is fundamental to human-robot interactions.
The meaning of spatial relations in scene descriptions is grounded in the
geometry of the scene and the functional relationship between objects. We
used a neural language model on a large corpus of image descriptions to
investigate the earlier observations about functional bias in spatial relation-
ships. We contributed to understanding that are encoded in unimodal neural
language models.

4.1.1 Questions

Does the performance of trained neural language models on relational
descriptions in the Visual Genome dataset (Krishna et al., 2017) account for
the expectation that more functional spatial relations are more predictable
based on the objects they describe?

We propose two hypotheses:

* Descriptions with functional relations (in contrast with geometric re-
lationships) have lower perplexity in their language model over the
held-out test suite (more likely gold-standard descriptions) because
they describe a functionally common situation. The target/landmark
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object pairs in the dataset are more specific to functional relations
compared to geometric relations.

* When modifying spatial relations with any alternatives, the phrases
with the initial choice of functional relations gain increased perplexity
because they are more contextually dependent on targets and land-
marks compared to geometric relations.

4.1.2 Method

We trained the neural language model on image descriptions in Visual
Genome. Then, we measured the perplexity of the model on held-out de-
scriptions based on their spatial relations. In our experiments, we examined
the hypothesis on both natural occurring descriptions in the dataset and the
down-sampled balanced dataset.

4.1.3 Findings and conclusions

We observed from the perplexity of the language model that functionally-
biased spatial relationships are more predictable when the model was trained
on the dataset with a naturally occurring frequency of descriptions. However,
training the model on a down-sampled dataset did not result in the expected
outcome of perplexities for each test group.We reported a more detailed
examination of sensitivity of the language model. Our observation showed
that the degree of sensitivity for target and landmark is not the same in
the two groups of spatial relations. A possible explanation for different
sensitivity for targets and landmarks is the misalignment between word
order, semantic structure of relations and the cognitive process of choosing
related objects as landmark and target. Misalignment of word order and
the underlying semantic structure of spatial expressions explains why the
forward and backward direction language models have different levels of
perplexity.

The second category of the hypothesis was only partially confirmed. Only
a few spatial relations confirmed the hypothesis. While some geometric
relations, such as ‘above’ tend to see a high degree of change in perplex-
ity when replaced with other spatial relations, the dependency of geo-
metric relations on the textual context leaves interesting open questions
about the world knowledge and spatial knowledge in neural language mod-
els.
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Author contributions Mehdi Ghanimifard had the main responsibility
for implementing the model, conducting the experiments and reporting
it. Simon Dobnik and John Kelleher had shared responsibility for the re-
maining aspects of this research. All authors read and approved the final
manuscript.

4.2 Study 2: Representation of spatial re-
lations in neural language models

Mehdi Ghanimifard and Simon Dobnik. What a neural language model
tells us about spatial relations. In Proceedings of the Combined Workshop on
Spatial Language Understanding (SpLU) and Grounded Communication for
Robotics (RoboNLP), pp. 71-81. 2019.

We followed up the question about possible encoded knowledge in section 4.1
about spatial relations in unimodal neural language models. In this work,
we extend the method to inspect the knowledge of spatial relations in
generative language models. One of the methods for measuring lexical
knowledge in distributional semantics is analogical reasoning tasks. The
knowledge of spatial relations in the image description task may be different
from the visual-cognitive knowledge required for human judgment on spatial
relations, so we also examined if learned representations are transferable to
other tasks.

4.2.1 Questions

* What should we expect from a contextualised model of spatial relations
based on textual features in terms of their functional and geometric
bias?

* How can we inspect these in a generative language model?

* How do the learned representations from the generative model com-
pare with representations from human judgments?

4.2.2 Method

We trained a generative LSTM language model on region descriptions. Then,
we inspected how the language model encodes descriptions of spatial rela-

4.2
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tions in swapped contexts of target and landmark objects in terms of perplex-
ity. We proposed a method in which word-context vectors are produced based
on augmented datasets, swapping spatial relations in the context of other
spatial relations. Perplexities of these generated word-context examples built
perplexity-based vector space for spatial relations.

We ran analogical tests on these vectors and other textual embeddings to
inspect how these representations differed from each other. Finally, we com-
pared them with vector representations of human acceptability judgments
and relatedness judgments.

4.2.3 Findings and Conclusions

In the absence of the image, we expected contextual representations to
learn object-specific knowledge (functional knowledge). However, the
learned representations showed high performance in solving analogical
tasks that required also some sense of geometry. Our analysis is that func-
tional knowledge must be complementary to geometric knowledge, which
is why language models can partly solve these puzzles. These finding were
also confirmed with qualitative inspections, for example the representations
of left’ and ‘Tright’ were similar to each other and different from ‘above’ and
‘over’.

The task of judging acceptabilities, the task of generating descriptions and
annotations, and the task of finding related words are three different tasks,
perhaps using different kinds of spatial knowledge. The last experiment
comparing the similarities of representations in the image description task,
acceptability judgments and relatedness experiments hinted that spatial
relations in the image description task might use different types of knowledge
about space and spatial relations.

The findings of this study raise questions that links this study to study four
and five. Knowing that textual context provides discriminative features for
identifying spatial relations, we argue that, in language generation tasks,
one can ground the word choices in textual evidence. Generative neural
language models can encode task-specific knowledge of space, including
functional and geometric bias, when describing the relation between two ob-
jects. With this insight, the consequence of memorised knowledge is an open
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question for multimodal language models —how does a multimodal lan-
guage model balance the attention to knowledge of the scene and linguistic
representations in the task?

Author contributions Mehdi Ghanimifard had the main responsibility
for implementing the model, conducting the experiments and reporting it.
Mehdi Ghanimifard and Simon Dobnik had shared responsibility for the
remaining aspects of this research. Both authors read and approved the final
manuscript.

4.3 Study 3: Functional/geometric spec-
trum in bounding boxes

Simon Dobnik and Mehdi Ghanimifard. Spatial descriptions on a functional-
geometric spectrum: the location of objects. Preprint - 2020.

In the previous two studies, we investigated the distributional properties
of spatial relations in language. We argued that functional knowledge and
geometric knowledge are encoded in distributional representation, which
can be captured to some extent with neural language models. To complement
this study on the grounding of spatial relations for image descriptions, we
extended the investigation on the distributional properties of bounding boxes
for the spatial relations that describe them. More specifically, in this study, we
used bounding boxes to extract the basic geometric features of the relations
between two objects. Then, we inspected the geometric feature distribution
of each spatial relation.

4.3.1 Questions

* Are the bounding box features extracted from annotated images reli-
able descriptors for spatial relations; do the extracted features corre-
spond to other geometric representations, such as spatial templates?

* Are geometrically biased spatial relationsobtained in constrained exper-
imental settings reflected in more predictable locations of objects? Can
they be mapped into fewer variations of their related object locations?

4.3
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4.3.2 Methods

For each relation, we collected the pairs of bounding boxes from the relation-
ship dataset in the Visual Genome (Krishna et al., 2017). After standardising
the bounding boxes, each pair of objects produced several feature vectors
[z,y,d]. Inspired by the Attentional Vector Sum (AVS) model Regier and
Carlson (2001), the bounded boxes were converted to feature vectors that
expressed the geometric relations between individual locations of objects.
The expected feature vectors for each spatial relation are comparable with
spatial templates. Then, we inspected the variations and skewness of the
feature vector distributions from their centroid to determine if thisaccounts
for geometric bias. The lower the variation, the more geometrically biased is
the relation.

4.3.3 Findings and conclusion

We found that the bounding box features represented as the weighted sum
vectors from acceptability scores in spatial templates for projective rela-
tions. We found that the feature vectors for geometrically biased relations
diverge less from the average vectors compared to their more functionally
biased equivalent relations. The distribution of feature vector divergence
from the average vector is more skewed toward zero when they describe
a geometrical relation. We also inspected the properties of some verbal
relations with spatial content. These spatial features indicate spatial reg-
ularities in the image description dataset. Practically, the findings of this
study would be helpful when designing models for image captioning, as
it demonstrates the representations that are relevant for different types of
descriptions.

Author contributions Mehdi Ghanimifard had the main responsibility
for implementing the model, conducting the experiments and reporting it.
Simon Dobnik and Mehdi Ghanimifard had shared responsibility for the
remaining aspects of this research. Both authors read and approved the final
manuscript.
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4.4 Study 4: Evaluating generation of spa-
tial descriptions with adaptive atten-
tion

Mehdi Ghanimifard and Simon Dobnik. Knowing When to Look for What
and Where: Evaluating Generation of Spatial Descriptions with Adaptive
Attention. The European Conference on Computer Vision (ECCV) Workshops,
pp. 153-161. Springer, Cham, 2018.

The neural network model in (Lu et al., 2017) provides an attention mecha-
nism that expands the domain of attention from spatial attention on visual
features to hidden states in the language model. In sections 4.1 and 4.2
we explored the possibility of memorising specific spatial knowledge in a
unimodal language model, including functional and task-specific spatial
relations between objects. In this study, we wanted to determine how a
multimodal language model uses it in a language generation task. The
attention on linguistic features when knowledge from different sources gen-
erating different parts of speech and, more specifically, on spatial relations
can explain the grounding of the generation model in multimodal infor-
mation, including the contextual representations in the language model
memory.

4.41 Questions

* How does the attention on visual features and linguistic features
change for different parts of speech?

* Is there any difference in the magnitude of attention on visual features
between targets and in landmarks?

* Are spatial relations grounded in visual features?

4.4.2 Method

The adaptive attention between visual features and linguistic features com-
pete with each other. The magnitude of attention on linguistic features is
a sign of dependence on language and context instead of a grounding in
visual features. In this study, we inspected adaptive attention as a source of
explanation for grounding. The average of attention on linguistic features
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for each part of speech and, for each semantic role in spatial descriptions
(target, relation, landmark) is interpreted as an indication for a lack of
visual grounding. We compared the ranking of attentions with the rankings
of accuracy rates of a uni-modal language model predicting a mismatch,
whether a part of speech has been replaced in the FOIL captions (Shekhar
et al., 2017). We also qualitatively examine the average spatial attentions of
descriptions containing each spatial relation; the spatial attention on target,
landmark and spatial relation.

4.4.3 Findings and conclusion

The degree of attention on linguistic features varies depending on the part
of speech. In particular, we found that the attention on visual features
drops when predicting spatial relations compared to the average attention
on noun phrases. The average visual attention on parts of speech partially
reflected the results from the FOIL task. For example, nouns are highly
visually attended but difficult to predict by the language model, the adposi-
tions (prepositions and postpositions) were ranked among the least visually
attended parts of speeach while there were moderately predicatable in the
FOIL task.

There are three possible explanations for these results:

(1) Spatial relations are more functional and object dependent in these
tasks. Therefore, object-specific spatial features (spatial affordances of
objects) encoded in language models are more likely to be predictive
of spatial relations than visual clues in the image.

(2) CNNs do not have represent geometric locational information required
for grounding spatial relations. As they are trained for object identifi-
cation, there is some degree of spatial invariance in these features.

(3) Using softmax for modelling attention is a disadvantage in cases where
spatial attention is distributed over several objects and their relation.
Spatial relations depend on target, landmark and locational features;
therefore, the softmax model of attention is noisier when it attends to
multiple locations for predicting spatial relations.

Author contributions Mehdi Ghanimifard had the main responsibility
for implementing the model, conducting the experiments and reporting it.

Mehdi Ghanimifard and Simon Dobnik had shared responsibility for the
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remaining aspects of this research. Both authors read and approved the final
manuscript.

4.5 Study 5: Generating descriptions with
top-down spatial knowledge

Mehdi Ghanimifard, and Simon Dobnik. What Goes Into A Word: Gener-
ating Image Descriptions With Top-Down Spatial Knowledge. In Proceed-
ings of the 12th International Conference on Natural Language Generation.
2019.

As we continued to question how the neural language model learns spatial
knowledge, we investigated the effects of top-down knowledge on space
in generating relational image descriptions. As seen in section 4.4, the
attention mechanism for the generative recurrent language model can control
and explain how different modalities contribute to generation tasks. In
this study, we integrated specific geometric and non-geometric features
that are considered relevant in top-down computational models of spatial
descriptions into the design of the attention model. We compared the effects
of three types of top-down spatial knowledge:

(1) Where objects are obtained with a separate localisation procedure;

(2) Which object is the target, and which is the landmark, with prior role
assignment;

(3) How they are geometrically related in images by representing their
spatial configuration.

451 Questions

(1) Which types of top-down spatial knowledge improve language genera-
tion?

(2) How does each category of features contribute to generating image
descriptions?

4.5.2 Method

We experimented on a relationships dataset from the Visual Genome Krishna
et al. (2017), training several comparable neural network designs with
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different spatial modules and different types of top-down knowledge about
spatial relations. We changed the attention module in these models to be
able to attend over language model features, visual features and geometric
features and enriched the input representations with the additional geometric
features representing the spatial configurations of objects. In addition to
comparing the performance loss on unseen examples, we inspected the
attention module to determine what features had a dominant effect on
generating descriptions.

4.5.3 Findings and conclusions

We observed that the overall performance improved with the additional
top-down knowledge of space. However, the results showed a substantial
contribution of the language model representations in generating descrip-
tions. Among added spatial knowledge localisation had the strongest effect,
while the effects of role assignment and geometric spatial features were
mixed. The reasons behind this outcome may be the bias in two kinds of
regularities in data —the spatial composition of objects in photos in this
dataset (location of objects are meaningful from the perspective of the pho-
tographer) and the task of describing object relations may have neglected
the application of certain geometric relations (‘to the left of’, ‘to the right
of”) but preferring general, less specific spatial relations such as ‘close’ and
‘with’.

Author contributions Mehdi Ghanimifard had the main responsibility
for implementing the model, conducting the experiments and reporting it.
Mehdi Ghanimifard and Simon Dobnik had shared responsibility for the
remaining aspects of this research. Both authors read and approved the final
manuscript.

4.6 Study 6: Learning to compose grounded
spatial relations

Mehdi Ghanimifard and Simon Dobnik. Learning to Compose Spatial Rela-
tions with Grounded Neural Language Models. In IWCS 2017-12th Interna-
tional Conference on Computational Semantics-Long papers. 2017.
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A basic definition of grounding linguistic units in visual perception is to
associate words and phrases with visual features. Learning these associa-
tions must generalise from limited examples to novel unseen compositions.
Compositionality in language imposes a systematic generalisation to the
grounding of words and phrases. Due to the broad application of recurrent
neural language models in vision and language tasks, this study investigated
the capability of a recurrent language model in learning these compositional
generalisations in the grounded language.

4.6.1 Questions

* To what extent is the language model trained on single examples can
retrieve acceptability representations about the scene?

* Is the recurrent language model capable of generalising from word
compositions to phrase compositions and how does it perform over
previously unseen word compositions?

4.6.2 Method

Simple spatial relations are composable and can be used to construct new
relations, such as ‘above and to the right of’, which denotes a relation con-
structed from two simple relations ‘above’ and ‘to the right of’. We constructed
artificially composed spatial templates based on their acceptability scores
of the individual the spatial templates (Logan and Sadler, 1996) using
known compositional operations. Then, from these templates we generated
synthetic examples of individual situations and descriptions based on the
aggregated acceptability scores. We tested different learning scenarios by
controlling for unseen descriptions. In each experiment, we reconstructed
the spatial templates of unseen descriptions based on the model scores
over the unfolded predictions of words. Qualitatively, we measured the
mismatches between the reconstructed templates and templates that were
used to generate the artificial training data.

4.6.3 Findings and conclusions

We found that a grounded neural recurrent language model is capable of gen-
eralising when composing and decomposing word sequences both across the
language and the perceptual domain.. We investigated the effects of three
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factors on the success of the task and found that the degree to which the
training data was impoverished had the most substantial effect, the type of
composition is an essential factor in learning compositionality, and the pres-
ence of ungrounded distractor words had a small effect.

These observations leave an open question —is the performance for certain
compositions reliant on intrinsic structures of recurrent neural networks
for learning specific functions or the frequency and variation of data due
to the semantic and combinatorial properties of compositions? Negation
has fewer possible variations compared to ‘OR’ phrases and ‘AND’ phrases;
therefore, it produces fewer instances and fewer variations in the training
data for the negation marker. Distribution of the training data affects the
final learned embeddings for the tokens of ‘AND’, ‘OR’ and ‘NOT’. Learning
to encode negation as a function in the recurrent unit might be harder than
encoding other functions.

In summary, the combinatorial properties and semantics of different compo-
sitions affect the frequency and distribution of all tokens in language. While
the distributional effects have potentially challenging consequences for the
uniform learning of compositions, it can signal the difference between them.
This is why, despite the imbalance in the number of compositions, the model
could learn not ground distractor tokens.

Author contributions Mehdi Ghanimifard had the main responsibility
for implementing the model, conducting the experiments and reporting it.
Mehdi Ghanimifard and Simon Dobnik had shared responsibility for the
remaining aspects of this research. Both authors read and approved the final
manuscript.

4.7 Study 7: Metaphoricity of compositions
with distributional representations

Yuri Bizzoni, Stergios Chatzikyriakidis and Mehdi Ghanimifard. “Deep”
Learning: Detecting Metaphoricity in Adjective-Noun Pairs. In Proceedings of
the Workshop on Stylistic Variation, pp. 43-52. 2017.

Recognising metaphoric use of language requires an understanding of the
situation, context and how expressions refer to extra-linguistic knowledge
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about the world. On the other hand, distributional knowledge in unimodal
language models encodes word-context associations. Even without the pres-
ence of extra-linguistic knowledge of situations, distributional knowledge
might be able to determine metaphorical adjective-nouns. In this study,
we proposed that knowledge of the compositionality of adjective-nouns is
encoded in the pre-trained word embeddings of textual corpora and a simple
neural network can transfer this knowledge to metaphor recognition tasks.
We used methods of vector composition in a neural network design to predict
the metaphoricity of adjective-noun compositions.

4.7.1 Questions

* Is it possible to detect metaphoric adjective-noun compositions using
pre-trained word embeddings in a shallow neural network?

* Are there any differences in performance between design choices and
language model types, including word2vec (Mikolov et al., 2013),
GloVe (Pennington et al., 2014), and dependency-based embeddings
(Levy and Goldberg, 2014)?

4.7.2 Method

We compared different methods of vector composition in a neural net-
work design, similar to Mitchell and Lapata (2010), and used different
pre-trained word embeddings. We examined the performance of these mod-
els with cross-validation on unseen adjectives and unseen adjective-noun
pairs.

4.7.3 Findings and Conclusions

We found that pre-trained word embeddings with simple neural network
designs performed better than previous approaches without using word
embeddings. This study raises a question if similar designs could expand
metaphoricity judgments to other part-of-speech compositions. The high
performance of the textual word embeddings up to 93% accuracy confirms
that unimodal language models can encode some knowledge of the referen-
tial meaning to real situations. However, questions concerning the type of
knowledge and it are left for subsequent studies.
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Author contributions Mehdi Ghanimifard had the main responsibility for
writing the model section of the manuscript. Mehdi Ghanimifard and Yuri
Bizzoni had shared responsibility on running the experiments and reporting
it. Yuri Bizzoni and Stergios Chatzikyriakidis had shared responsibility for
the remaining aspects of this research. All authors read and approved the
final manuscript.

4.8 Summary

In the first three studies, we focused on latent extra-linguistic knowledge
of spatial relations in unimodal neural recurrent language models and on
geometric features as represented by bounding boxes.

In studies 4 and 5, we examined the contribution of visual features, geometric
features, and the contextual embeddings of a neural language model when
generating image descriptions. We showed that, in training generative
neural language models, the spatial knowledge used in the task is also
learned latently in language models.

In the last two studies, the focus of the research was on the capability of
neural language models to learn compositional knowledge and generalise
from limited samples to new word compositions.
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Final Discussions

5.1 From aims to findings

This thesis aimed to build and examine systems capable of generating and
understanding situated language. Using deep neural networks, we may
be able to build language models to imitate natural language. However,
explanations are required regarding what knowledge is encoded in the
models, how the models encode relevant knowledge and if such data-driven
methods satisfy the systematic generalisations required for going beyond
limited data sets. The recent success of deep learning methods in vision and
language tasks are promising and challenge theoretical discussions about
language grounding and explainability.

A study on spatial expressions in image descriptions provides challenges and
broad applications of a vision and language model for situated language
processing. The challenge is to understand how a model should and would
ground language in spatial knowledge. Spatial knowledge could include the
geometry of a scene and the location of objects; alternatively, it could include
causality in physics and the functional affordance of objects in relation to
each other. The grounding of linguistic categories in these two types of
knowledge presents a challenge for disentangling the representation of two
types of knowledge. In the context of deep learning methods, we asked three
research questions:

(Q1) What type of spatial knowledge is encoded in language models?
(Q2) How does the model encode semantic knowledge?
(Q3) Is there systematic generalisation of the knowledge?

In seven studies, we contributed to the discussion on grounding and an-
swered the questions regarding the use of neural language models. The
first (Dobnik et al., 2018) and the second (Ghanimifard and Dobnik, 2019a)
studies focused on unimodal language models for spatial descriptions. The
corpus data suggests a statistical dependency between semantic components
of a spatial description (TARGET, RELATION, LANDMARK). This explained
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with the functional meaning of spatial relations. The fact that spatial de-
scriptions of object pairs are predictable is mostly because of their functional
relationship. The overlap between the functional and geometric sense in
linguistic categories of spatial relations contributes to the encoding of knowl-
edge about geometry in word distributions as well. On the other hand, both
studies suggest the possibility that, in an image description task, spatial
expressions tend to explain what the objects are in the picture instead of
where they are. Therefore, the non-geometric sense of spatial descriptions
has a strong effect in these corpora.

With a focus on spatial grounding in the spectrum of functional/geometric
sense of relations, in our third study, we looked at the geometric properties of
bounding box annotations in images and their distributions for different spa-
tial expressions. We found that the variation in the relative location of objects
in geometrically biased expressions is lower than in the functionally biased
relations. This finding is consistent with the predictability of functional
relations from linguistic evidence rather than geometric features. This con-
clusion has implications for the evaluation of multi-modal language models,
which brought us to the fourth and the fifth studies.

The fourth study (Ghanimifard and Dobnik, 2018) examined the possibility
of evaluating grounding based on adaptive attention. We found that pre-
trained convolutional visual features contributed more to the generation
of nouns compared to other parts of speech. Some spatial relations are
more dependent on contextual language embeddings. This is consistent
with our view that spatial relations in image descriptions are less dependent
on the location of objects. Due to the opaque representation of space in
convolutional features, further studies are required how these contribute to
spatial expressions and whether such representations can be improved with
feature engineering.

In the fifth study (Ghanimifard and Dobnik, 2019b), we extended the adap-
tive attention to enrich the visual features with locational information. We
found that top-down algorithmic localisation has the most positive effect on
language generation among the different methods for enriching visual fea-
tures. The effect of both a top-down semantic role assignment and geometric
feature vectors is positive, but much less than expected. This observation is
consistent with our findings in the third and fourth studies on unimodal lan-
guage models, which indicated that reliable predictability of object relations
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without visual features varies depending on the kind of spatial relations in
the absence of adequate geometric descriptions. These observations demand
further studies, especially beyond image description tasks, for example in
visual question answering.

In the sixth study (Ghanimifard and Dobnik, 2017), weexamined the degree
of generalisationa recurrent language model learned compositional descrip-
tions. We found that the generalisation depends on both the combinatorial
and semantic properties of the compositions. The combinatorial properties
of compositions change the variations and frequencies of possible phrases
(unary vs binary compositions). The semantics of the compositions shape the
acceptable space. , for example conjunction and disjunction result in differ-
ent frequencies. Both combinatorial and semantic properties of compositions
contribute to token distributions in language.

In the seventh study (Bizzoni et al., 2017), we examined if the knowledge
from a unimodal language model could recognise the metaphoricity of
adjective-noun compositions. This contributed to an understanding of the
type of knowledge that could be encoded in the language model. Distribution
of tokens, as seen in the first study, could affect the generalisation in language
grounding. According to this study, it contributes to encoding of deeper
non-perceptible knowledge, such as metaphors.

5.2 Knowledge and grounding

One of the central claims of this thesis is that some spatial knowledge is
encoded in neural language models. Then, despite the fact that represen-
tations in language are not linked to primitive sensory representations, we
used the term grounding for spatial descriptions that are explainable with
a language model instead of perceptual inputs. This argument requires
a more in-depth discussion about the definition of spatial knowledge and
grounding.

Spatial knowledge In this thesis, the term knowledge was extensively
used to describe language grounding in (1) spatial knowledge, (2) geomet-
ric knowledge, (3) functional knowledge and (4) distributional knowledge or
knowledge in language models. The main argument of the thesis is that spatial
language projects onto the representations in language models. Therefore,
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distributional knowledge of spatial relations encodes the spatial knowledge
(findings of studies 1, 2, 4 and 5 concerning Q1). Nevertheless, the distinc-
tion between functional and geometric knowledge implies that there are two
different types of spatial expressions. Geometric knowledge is a literal sense
of space and functional knowledge is an abstraction of non-spatial relations
between objects. We expect that, by capturing regularity in language use,
distributional knowledge captures functional knowledge (study 1 concerning
Q1). However, the distributional distinction between functional and geomet-
ric use is entangled in datasets. Therefore, distributional knowledge captures
regularities that seem more geometric than functional.

This distributional property is an artefact of the entangled concept of space.
The skewness of spatial relations in datasets is a result of this entanglement.
For example, the reason the functional sense of the relation ‘over’ as a shel-
tering relation is possible is because of its geometric properties and the rules
of physics. Similarly, the reason why some objects are functionally related
is because of their geometric shapes and their geometric capacity of being
in that position. The entangled relation between functional and geometric
meaning calls for a better understanding of spatial knowledge. Without spa-
tial reasoning, the functional meaning of the relations is not possible. In this,
we argued that language models capture spatial knowledge, but also that
there are different types of spatial knowledge and what their implications are
for descriptions in different contexts. The evaluation of the relation between
the knowledge kinds in different contexts in which spatial descriptions are
made should be addressed in future work.

Grounding The conclusion of this thesis with regard to grounding is that
any prediction based on the available evidence is a form of grounding. The
representation of this evidence varies in models. Predictions of a show-
and-tell system are grounded in both situated features and the modelling
assumptions, such as the function and design of the model (composition
of modules), its training data (sufficient data for model convergence) and
its learning goals. Therefore, when the system makes predictions without
relying on situated features or with minimal attention to these situated
features, there are two explanations of this performance:

(1) Some assumptions used building the model are erroneous, such as the
assumption around what training data provides sufficient knowledge
for constructing the model.
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The situated features do not contain independent encoding of knowl-
edge required for the task. In other words, the task relies on other
information, such as world knowledge. This kind of missing informa-
tion could be included as different representations of the model. This
can be done by:
(i) a module that fuses language and vision to exploit the fusion of
the situated features with other representations, or
(i) exclusively encoding some knowledge about the task in modules,
such as language models, that provide distributional evidence.

In the case of generating spatial descriptions, the predictability of relations

from textual evidence or with minimal contribution from visual features has
two explanations:

€Y)

(2

There might be mistakes in the model design, feature representations or
the assumption that training data has appropriate information for the
task. For example, knowledge about embodied actions and interactions
between objects may be missing from show-and-tell datasets.

Some spatial knowledge is encoded in the distributional knowledge of
language, in addition to situated visual knowledge, such as functional
knowledge and frame of reference. The neural language model encodes
this knowledge in its parameters. The composition of the visual module
and the language module contextualises the representations based on
the training data.

With this conclusion about grounding, we can examine the future improve-
ments of vision and language models.

5.3 Future work

The discussion of grounding and learning representations with deep learning
methods opens several directions for future research:

The current model designs use simple tools of modality fusion, such
as embedding representations, attention mechanisms and simple vec-
tor manipulations, including concatenation or multiplication. More
research on modality fusion is required in future studies.

Our attempts to understand what is learned in neural language models
can be expanded with additional methods of explainability and probing
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representations. The question of what representations are learned
and what are the effect of parameters is beneficial for improving the
algorithms.

In addition to investigating explainability and developing better mod-
ules, more rigorous testing of models is required to measure their
success. Such a study would lead to development of better learning
goals and loss functions for the model. Instead of language modelling
with token level loss, new loss functions related to task problem-solving,
such as spatial navigation, may be able to learn different aspects of
meaning in language models.

This requires a better understanding of the data. We found two types
of bias in image description datasets:

(i) The bias in the task constrains the words to specific senses. In
the image description task, spatial relations have a strong bias
towards relating what is in the picture, instead of relating where
objects are in respect to each other.

(i) The bias in the visual composition of images. The images in image
captioning datasets are focused on objects in regions of interest.
This suggests that other datasets should also be examined, such
as those collected from ego centric robotic sensory and imaging
data, which lack such a focus of attention on objects as a property
of image compositions.
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Functional/Geometric Bias
In Neural Language Mod-
els

Simon Dobnik, Mehdi Ghanimifard and John Kelleher.
Exploring the functional and geometric bias of spatial relations
using neural language models, In Proceedings of the First
International Workshop on Spatial Language Understanding, pp.
1-11. 2018.

Abstract The challenge for computational models of spatial descriptions
for situated dialogue systems is the integration of information from different
modalities. The semantics of spatial descriptions are grounded in at least
two sources of information: (i) a geometric representation of space and (ii)
the functional interaction of related objects that. We train several neural
language models on descriptions of scenes from a dataset of image captions
and examine whether the functional or geometric bias of spatial descriptions
reported in the literature is reflected in the estimated perplexity of these
models. The results of these experiments have implications for the creation
of models of spatial lexical semantics for human-robot dialogue systems. Fur-
thermore, they also provide an insight into the kinds of the semantic knowl-
edge captured by neural language models trained on spatial descriptions,
which has implications for image captioning systems.

6.1 Introduction

Spatial language understanding is fundamental requirement for human-robot
interaction through dialogue. A natural task for a human to request a robot to
fulfil is to retrieve or replace an object for them. Consequently, a particularly
frequent form of spatial description within human-robot interaction is a
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locative expression. A locative expression is a noun phrase that describes
the location of one object (the target object) relative to another object (the
landmark). The relative location of the target object is specified through a
prepositional phrase:

Bring me the big red book on the table .
~—— ————’ SN——

Target Landmark

~——————

Prepositional
Phrase

Locative Expression

In order to understand these forms of spatial descriptions a robot must be
equipped with computational models of the spatial semantics of prepositions
that enable them to ground the semantics of the locative expression relative
to the context of the situated dialogue.

A natural approach to developing these computational models is to define
them in terms of scene geometry. And, indeed, there is a tradition of research
that follows this path, see for example Logan and Sadler (1996); Kelleher
and Costello (2005, 2009). However, there is also a body of experimental
and computational research that has highlighted that the semantics of spatial
descriptions are dependent on several sources of information beyond scene
geometry, including functional semantics (which encompasses a range of fac-
tors such as world knowledge about the typical interactions between objects,
and object affordances) Coventry and Garrod (2004). We can illustrate this
distinction between geometric and functionally defined semantics using a
number of examples. To illustrate a geometric semantics: assuming a spatial
meaning, anything can be described as to left of anything else so long the
spatial configuration of the two objects is geometrically correct. However, as
Coventry et al. (2001) has shown the spatial description the umbrella is over
the man is sensitive to the protective affordances of the umbrella to stop rain,
and is appropriate in contexts where, the umbrella is not in a geometrically
prototypical position above the man, so long as the umbrella is protecting
the man from the rain.

A further complication with regard to modelling the semantics of spatial
descriptions is that experimental results indicate that the contribution of
geometrical and functional factors is not the same for every spatial relation
(Garrod et al., 1999; Coventry et al., 2001). This experimental work shows
that there is an interplay between function and geometry in the definition of
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spatial semantics and therefore the spatial meaning of given spatial relation
is neither fully functional nor fully geometric. Rather, spatial terms can
be ordered on a spectrum based on the sensitivity of their semantics to
geometric or functional factors.

Given the distinction between geometric and functional factors in shap-
ing spatial semantics, a useful analysis that would inform the design and
creation of computational models of spatial semantics is to identify the par-
ticular semantic bias (geometric/functional) that each spatial term evinces.
However, such an analysis is difficult. Native speakers do not have strong
intuitions about the bias of prepositions and such bias had to be established
experimentally Coventry et al. (2001); Garrod et al. (1999) or through lin-
guistic analysis (Herskovits, 1986, p.55).! Reviewing the literature on this
experimental and analytic work reveals that prepositions such as in, on, at,
over, under have been identified as being functionally biased, whereas above,
below, left of and right of are geometrically biased. Other spatial relations
may be somewhere in between. In this paper we will use these relations
as ground-truth pointers against which our methods will be evaluated. If
the method is successful, then we are able to make predictions about those
relations that have not been verified for their bias experimentally. Knowing
the bias of a spatial relation is useful both theoretically and practically. Theo-
retically, it informs us about the complexity of grounded semantics of spatial
relations. In particular, it engages with the “what” and “where” debate where
it has been argued that spatial relations are not only spatial (i.e. geomet-
ric) Landau and Jackendoff (1993); Coventry and Garrod (2004); Landau
(2016). Practically, the procedure to estimate the bias is useful for natural
language generation systems, for example in situated robotic applications
that cannot be trained end-to-end. Given that a particular pair of objects
can be described geometrically with several spatial relations, the knowledge
of functional bias may be used as a filter, prioritising those relations that
are more likely for a particular pair of objects, thereby incorporating func-
tional knowledge. This approach to generation of spatial descriptions is
therefore similar to the approach that introduces a cognitive load based hier-
archy of spatial relations Kelleher and Kruijff (2006) or a classification-based
approach that combines geometric (related to the bounding box), textual

IThe discussion of Herskovits focuses on interaction of objects conceptualised as geometric
shapes, for example on: contiguity with line or surface. The fact that the interacting objects
can be conceptualised as different geometric shapes points and therefore related by a
particular prepositions points to their functional nature as discussed here.

6.1
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(word2vec embeddings) and visual features (final layer of a convolutional
network) Ramisa et al. (2015). The functional geometric bias of spatial
relations could also be used to inform semantic parsing, for example in
prepositional phrase attachment resolution Christie et al. (2016); Delecraz
et al. (2017).

Previous work has investigated metrics of the semantic bias of spatial prepo-
sitions, see Dobnik and Kelleher (2013, 2014). (Dobnik and Kelleher, 2013)
uses (i) normalised entropy of target-landmark pairs to estimate variation
of targets and landmarks per relation and (ii) log likelihood ratio to predict
the strength of association of target-landmark pairs with a spatial relation
and presents ranked lists of relations by the degree of argument variation
or strength of the association respectively. The approach hypothesises that
functionally biased relations are more selective in the kind of targets and
landmarks they co-occur with. The reasoning behind this is that geometri-
cally it is possible to relate a wider range of objects than in the case where
additional functional constrains between objects are also applied. Dobnik
and Kelleher (2014) generalises over landmarks and targets in WordNet
hierarchy and estimates the generality of the types of landmark. Again,
the work hypothesises that functional relations are more restricted in their
choice of target and landmark objects and therefore are generally more
specific in terms of the WordNet hierarchy. Both papers present results
compatible with the hypotheses where the functional or geometric nature of
prepositions is predicted in line with the experimental studies Garrod et al.
(1999); Coventry et al. (2001).

Sensitive to the fact that relations such as in and on not only have spa-
tial usage but also usages that may be considered metaphoric Steen et al.
(2010), both Dobnik and Kelleher (2013) and Dobnik and Kelleher (2014)
were based on an analysis of a corpus of image captions. The idea being
that descriptions of images are more likely to contain spatial descriptions
grounded in the image. For similar reasons, we also employ a corpus of
image descriptions (larger than in the previous work).

This paper adopts a similar research hypothesis to Dobnik and Kelleher (2014,
2013), namely that: it is possible to distinguish between functionally biased
and geometrically biased spatial relations by examining the diversity of the
contexts in which they occur. Defining the concept of context in terms of the
target and landmark object pairs that a relation occurs within, the rationale
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of this hypothesis is that: geometrically biased relations are more likely
to be observed in a more diverse set of contexts, compared to functionally
biased relations, because the use of a geometrically biased relation only
presupposes the appropriate geometric configuration whereas the use of
a functionally biased relation is also constrained by object affordances or
typical interactions.

However, the work presented in this paper provides a more general analytical
technique based on a neural language model Bengio et al. (2003); Mikolov
et al. (2010) which is applied to a larger dataset of spatial descriptions. We
use neural language models as the basic tool for our analysis because they
are already commonly used to learn the syntax and semantics of words in an
unsupervised way. The contribution of this paper in relation to (i) the previ-
ous analyses of geometric and functional aspects of spatial relations is that it
examines whether similar predictions can be made using these more general
tools of representing meaning of words and phrases; the contribution to (ii)
deep learning of language and vision is that it examines to what extent highly
specific world-knowledge can be extracted from a neural language model.
The paper proceeds as follows: in Section 6.2 we describe the datasets and
their processing, in Section 6.3 we describe the basics behind language
models and the notion of perplexity, in Section 6.4 and 6.5 we present and
discuss our results. We conclude in Section 6.6.

The code that was used to produce the datasets and results discussed in this
paper can be found at:
https://github.com/GU-CLASP/functional-geometric-1m.

6.2 Datasets

The Amsterdam Metaphor Corpus Steen et al. (2010) which is based on a
subsection of a BNC reveals that the spatial sense of prepositions are very rare
in genres such as news, fiction and academic texts. For example, below only
has two instances that are not labelled as a metaphor and more than 60% of
fragments with in, on, and over are not used in their spatial sense. For this
reason Dobnik and Kelleher (2013) use two image description corpora (IAPR
TC-12 Grubinger et al. (2006) and Flickr8k Rashtchian et al. (2010)) where
spatial uses of prepositions are common. They apply a dependency parser
and a set of post-processing rules to extract spatial relations, target and

6.2

63


https://github.com/GU-CLASP/functional-geometric-lm

64

landmark object triplets. The size of this extracted dataset is 96,749 instances
and is relatively small for training a neural language model. Kordjamshidi
et al. (2017) released CLEF 2017 multimodal spatial role labelling dataset
(mSpRL) which is a human annotated subset of the IAPR TC-12 Benchmark
corpus for spatial relations, targets and landmarks Kordjamshidi et al. (2011)
containing 613 text files and 1,213 sentences. While this dataset could not
be used to train a language model directly, a spatial role labelling classifier
could be trained on it to identify spatial relations and arguments which
would then be used to produce a bootstrapped dataset for training a neural
language model.

Recently, Visual Genome Krishna et al. (2017) has been released which
is a crowd-source annotated corpus of 108K images which also includes
annotations of relationships between (previously annotated) bounding boxes.
Relationships are predicates that relate objects which include spatial relations
(2404639, “cup on table”), verbs (2367163, “girl holding on to bear”) as well
as combinations of verbs and spatial relations (2317920, “woman standing
on snow”) and others. We use this dataset in the work reported here. Its
advantage is that it contains a large number of annotated relationships but
the disadvantage is that these are collected in a crowd-sourced setting and are
therefore sometimes noisy but we assume these are still of better quality than
those from a bootstrapped machine annotated dataset.

To extract spatial relations from the annotated relationships, we created a dic-
tionary of their syntactic forms based on the lists of English spatial relations
in Landau (1996) and Herskovits (1986). For the training data we preserve
all items annotated as relationships as single tokens (“jumping over”) and
we simplify some of the composite spatial relations based on our dictionary,
e.g. “left of” and “to the left of” become “left” to increase the frequency of
instances. This choice could have affected our results if done without careful
consideration. While compound variants of spatial relations have slightly
different meanings, we only collapsed those relations for which we assumed
this would not affect their geometric or functional bias. Furthermore, Dobnik
and Kelleher (2013) show that compound relations cluster with their non-
compound variants using normalised entropy of target-landmark pairs as a
metric. Finally, some variation was due to the shorthand notation used by the
annotators, e.g. “to left of”. The reason behind keeping all relation(ships)
in the training set is to train the language model on as many targets and
landmarks as possible and to learn paradigmatic relations between them.
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We normalise all words to lowercase and remove the duplicate descriptions
per image (created by different annotators). We also check for and remove
instances where a spatial relation is used as an object, e.g. “chair on left”. We
remove instances where one of the words has fewer than 100 occurrences in
the whole dataset which reduces the dataset size by 10%. We add start and
end tokens to the triplets ((s) target relation landmark (/s)) as required
for training and testing a language model. The dataset is shuffled and split
into 10 folds that are later used in cross-validation. In the evaluation, we
take 20 samples per spatial relation from the held out data of those relations
that are members of the dictionary created previously. This way the average
perplexity is always calculated on the same number of samples per each
relation.?

6.3 Language model and perplexity

6.3.1 Language model

Probabilistic language models capture the sequential properties of lan-
guage or paradigmatic relations between sequences of words. Using the
chain rules of probabilities they estimate the likelihood of a sequence of
words:

P(wir) =Y P(wiii|wi) (6.1)

t=1

Neural language models estimate probabilities by optimising parameters of a
function represented in a neural architecture Bengio et al. (2003):

A

P(wig1|wiy = vky,,) = f(vt-1;0) = §¢ (6.2)

where © represents parameters of the model, f being the composition
of functions within the neural network architecture, and vy,,, the words
up to time ¢ in the sequence. The output of the function is §; € R", a
vector of probabilities, with each dimension representing the probability of
a word in the vocabulary. The loss of a recurrent language model is the

2The reason we use 20 sample is that this is also the size of the 10% test folds in the down-
sampled dataset described later. In selecting 20 items for the test-set we also ensure that it
contains the vocabulary in the down-sampled training folds.
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average surprisal for each batch of data Graves et al. (2013); Mikolov et al.
(2010):

I
loss(S ZZ 08 (e Ukt“ (6.3)

s€St=0 |S|

Note that our architecture is deliberately simple as we apply it in an experi-
mental setting with constrained descriptions®. We use a Keras implementa-
tion Chollet et al. (2015), and fit the model parameters with Adam Kingma
and Ba (2014) with a batch size of 32 and iterations of 20 epochs. On each
iteration the language model is optimised on the loss which is related to
perplexity as described in the following section.

6.3.2 Perplexity

Instead of calculating the averages of likelihoods from Equation 6.1, which
might get very low on long sequences of text, we use perplexity which is an
exponential measure for average negative log likelihoods of the model. This
solves the representation problem with floating points and large samples of
data.

Perplexity(S, P) = 2Fsl=log2(P(wir))] 6.4

where wy.7 is an instance in a sample collection S. Perplexity is often used
for evaluating language models on test sets. Since language models are
optimised for low perplexities*, the perplexity of a trained model can be
used as a measure of fit of the model with the samples.

6.4 Varying targets and landmarks

6.4.1 Hypotheses

As a language model encodes semantic relations between words in a se-
quence we therefore expect that the distinction between functional and
geometric spatial relations will also be captured by it. As functionally biased
spatial relations are used in different situational contexts than geometrically
biased spatial relations, we expect that a language model will capture this

3For more details on the architecture see Section 6.7 in the supplementary material, in
particular Figure 6.6 and Equation 6.5.

4Equation 6.4 is related to Equation 6.3 as perplexity is 21°% given a neural model as the
likelihood model.
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bias in different distributions of target and landmark objects in the forms
of the perplexity of phrases. Our weak hypothesis is that the perplexity of
phrases on the test set reflects the functional-geometric bias of a spatial
relation (Hypothesis 1). We take the assumption that functionally-biased
relations are more selective in terms of their target and landmark choice
(Section 6.1) and consequently sequences such as <s> target relation
landmark </s> with functional relations have a higher predictability in the
dataset resulting in a lower perplexity in the language model (Hypothesis
2). Related to this hypothesis, there is a stronger hypothesis that target and
landmark are predictable with a given functional spatial relation (Hypothesis
3).

6.4.2 Method

We train two language models as described in Section 6.3.1. For training and
evaluation 10-fold cross-validation is used and average results are reported.
We ensure that the evaluation sets contain no vocabulary not seen during the
training. The language model 1 (LM1) is trained on unrestricted frequencies
of instances. In training the language model 2 (LM2) we down-sample
relations so that they are represented with equal frequencies. The dataset
to train LM2 contains 200 instances of each possible relations while the
evaluation set contains 20 instances for each spatial relation. Note that
using this method some targeted spatial relations might disappear from the
evaluation set as their frequency in the held-out data is too low. In addition
to the requirement that the evaluation set contains no out-of-vocabulary
items, the target and landmarks are included without restriction on their
frequency, as they occur with these spatial relations.

6.4.3 Results

Figure 6.1 shows the estimated average perplexities of a subset of spatial
relations, those that satisfy the sampling frequency requirement described
in Section 6.4.2. Functionally and geometrically biased spatial relations as
identified experimentally in the literature (Section 6.1) are represented with
orange and blue bars respectively. There is a tendency that functionally
biased relations lead to lower mean perplexity of phrases (Hypothesis 2
is confirmed) and also that there is a tendency that spatial relations of
a particular bias cluster together (Hypothesis 1 is also confirmed). We
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Figure. 6.1: Mean perplexities of spatial descriptions of LM1 (orange: functionally
biased, blue: geometrically biased relations).
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Figure. 6.2: Mean perplexities of LM2 by spatial relation (orange: functionally
biased, blue: geometrically biased).

report results both on the training set and the test set which show the same
tendencies. This means that our model generalises well on the test set and
that the latter is representative.

However, in the language model the perplexities are biased by the frequency
of individual words: more frequent words are more likely and therefore they
are associated with lower LM perplexity. The results show high Spearman’s
rank correlation coefficient p = 0.90 between frequencies of spatial relation
in the dataset and the perplexity of the model on the test set: on (329,529)
> in (108,880) > under (11,631) > above (8,952) > over (5,714) > at
(4,890) > below (2,290) > across (1,230) > left (996) > right (891).

Chapter 6 Functional/Geometric Bias In Neural Language Models



For the purposes of our investigation in predictability of target-landmark
pairs (Hypothesis 3) we should avoid the bias in the training set. In order
to exclude the bias of frequencies of relations, we evaluate LM2 where
spatial relations are presented with equal frequencies in training. Figure 6.2
shows the ranking of spatial relations by the perplexities when the language
model was trained with balanced frequencies. The two kinds of spatial
relations are less clearly separable as the colours overlap (Hypothesis 3 is not
confirmed). In comparison to Figure 6.1 there is an observable trend that all
instances lead to lower perplexities in the training set which is the effect of
down-sampling on vocabulary size. Figure 6.2 also shows that phrases with
geometrically biased spatial relations have a higher change towards lower
perplexities.

Noting that the frequency of using functionally-biased spatial relations are
higher in English, this bias and our strong hypothesis for predictability of
target-landmark pairs can be expressed with simple joint probabilities which
we are estimating with the language model:

P(target, relation, landmark) = P(relation) P(target, landmark|relation)

It is possible that targets and landmarks that occur with these relations are
very specific to these relations but infrequent with other relations. When
we remove their frequency support provided by the frequency of relations
these targets and landmarks become infrequent in the dataset and therefore
less probable which on overall results in higher perplexities of phrases with
functionally-biased relations. Specificity of targets and landmarks can be a
source of these results.

To provide (some) evidence for this assumption, Figure 6.3 shows the av-
erage ratios of unique types over total types of targets and landmarks in
the balanced dataset over 10-folds on which LM2 was trained. There is a
very clear division between functionally and geometrically biased spatial
relations in terms of the uniqueness of targets, functionally-biased relations
are occurring with more unique ones which contributes to higher perplexity
of LM2. There is less clear distinction between the two kinds of spatial rela-
tions in terms of uniqueness of landmarks. Some functional relations such as
on occur with fewer unique landmarks than targets (from .11 to .06), some
geometric relations such as right occur with more unique landmarks than
targets (from .07 to .11). The asymmetry between targets and landmarks
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Figure. 6.3: Ratio between unique types and all types per spatial relation in the
balanced dataset for LM2.

is expected since the choice of landmarks in the image description task is
restricted by the choice of the targets (as well as other contextual factors
such as visual salience). They have to be “good landmarks” to relate the
targets to. A functional relation-landmark pair is more related to the target
through the landmark’s affordances whereas a geometric relation-landmark
pair is more related to the target through geometry. This might explain
for example, why on has fewer, but right has more unique landmarks than
targets. On the other hand there are also relations where the ratio of unique
targets and landmarks is very similar, for example at (.14 and .14). Overall,
it appears that if uniqueness of objects is contributing to the perplexity of
the language model of phrases which functionally-biased relations (which in
this balanced dataset is the case) then this is more contributed by targets
rather than the landmarks.

To further explore the idea of asymmetry between targets and landmarks we
re-arranged the targets and landmarks in the descriptions from the balanced
dataset that LM2 was trained to <s> landmark relation target </s>
and trained LM2'. The average perplexities over 10-folds of cross-validation
are shown in Figure 6.4. Comparing Figure 6.4 with Figure 6.2 we first
observe that the perplexity of LM2' on the descriptions is overall several
magnitudes lower than the perplexity of LM2 (max 0.06, max 140). Secondly,
we observe that the perplexities of phrases containing different relations
are very similar and that there is no separation of phrases by perplexity
depending on the relation bias. The results are in line with our argument
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above. Knowing the landmark, it is much easier for the language model to
predict the relation (of either kinds) and the target.

balanced plain perplexity average in 10 folds
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Figure. 6.4: Mean perplexities of LM2' by spatial relation (orange: functionally
biased, blue: geometrically biased)

In conclusion, the explanation why descriptions with functionally-biased
relations have a higher perplexity than descriptions with geometrically-
biased descriptions appears to be twofold: (i) functionally-biased relations
are more selective of their targets as expressed by the uniqueness counts,
and (ii) functional relations are also more selective of their landmarks but
this fact works against the performance of the language model. As it is
trained on the sequence left to right, it has to learn to predict relations only
on the basis of targets which in the case of functionally-biased relations are
represented by more unique tokens than geometrically-biased relations. The
more informative words, the landmarks, that would enable the language
model to predict a functional relation, comes last, after the relation has
already been seen. The possible reason why geometrically-biased relations
lead to lower perplexities of a language model on descriptions is because
they have fewer unique targets. Hence, our Hypothesis 1 which linked
selectivity of functionally-biased relations to low perplexity of phrases can
be refuted. In spatial relations the order of the semantic interpretation of
tokens (that we want to capture in these experiments) is different from the
linear syntactic order of order which can be captured by the language model.
When this order is changed as in LM2’ our predictions come closer to the
hypothesis (Figure 6.4).°

5Modulo that landmarks are, as discussed above, well-predictive of relations of both kinds.
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By removing the frequency bias on spatial relations in LM2 we fix the
distribution of spatial relations and examine the effect of distribution of
targets and landmarks on perplexities of phrases (spatial relation as fixed
context). In the following section, we fix the distributions of targets and
landmarks of each spatial relation and examine the perplexity of phrases
when another spatial relation is projected in this context (targets-landmarks
as fixed context).

6.5 Varying spatial relations

6.5.1 Hypotheses

Given a particular spatial relation, the distribution of targets and landmarks
that occur with it creates a particular signature of targets and landmarks,
the target-landmark context of a spatial relation. In this experiment, we
investigate the effect on perplexity of phrases when another spatial relation
is projected in such a target-landmark context. Given different selectiv-
ity of functionally- and geometrically-biased spatial relations, namely the
functionally-based spatial relations are more selective of their targets and
landmarks and therefore create more specific contexts, we should observe dif-
ferences in perplexities of phrases when other spatial relations are projected
in these contexts. In particular, we hypothesise that geometrically-biased
spatial relations are more easily swappable than functionally-biased spatial
relations as measured by the perplexity of a language model trained on the
original, non-swapped phrases (Hypothesis 4).

6.5.2 Method

We use LM2 from Section 6.4 (trained on the balanced frequencies of spatial
relations) with no additional training from the previous experiment. We
group descriptions in the evaluation set by spatial relation. For each phrase
containing a particular spatial relation, we replace it with every other spatial
relation and estimate the perplexity of the resulting phrase using a language
model. Finally, we calculate the mean of perplexities over all phrases.
We use 10-fold cross-validation and report the final means across the 10
folds.
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6.5.3 Results

balanced swapped perplexity average in 10 folds
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Figure. 6.5: %-increase in perplexities of LM2 shown per context of the original
preposition when swapped with another one.

Figure 6.5 shows a %-increase in mean complexities from those in Figure 6.2
when LM2 is applied on phrases with swapped relations in the contexts of
the original relations. Hence, the column “at” shows the %-increase in per-
plexities of phrases that originally contained at in the validation dataset but
this was replaced by all other spatial relations. Comparing with Figure 6.2
the estimated perplexities are higher across all cases which is predictable.
There is a weak tendency that replacing functionally-biased relations with
other relations leads to higher perplexities of spatial descriptions than re-
placing geometrically-biased relations, but the distinction is not clear cut
(Hypothesis 4 partially confirmed). The lack of a clear distinction between
two classes of descriptions confirms our previous observations about land-
marks and targets: the LM has learned particular contexts for both kinds of
descriptions.

6.6 Discussion and conclusion

We explored the degree that the functional and geometric character of
spatial relations can be identified by a neural language model by focusing on
spatial descriptions of controlled length and containing normalised relations.
Our first question was about the implications of using a neural language
model for this task. The previous research Dobnik and Kelleher (2013)
used normalised entropy of target-landmarks per relation and log likelihood

6.6

73



74

ratio between target-landmarks and relations to test this. These are focused
measures that estimate the variation and the strength of association of words
in a corpus. On the other hand, a language model provides a more general
probabilistic representation of the entire description. As such it captures
any kind of associations between words in a sequence. The other important
observation is that it captures sequential relations in the direction left to right
and as we have seen the sequential nature of the language model does not
correspond precisely with the order in which semantic arguments of spatial
relations are interpreted. However, nonetheless we can say that language
models are able to capture a distinction between functional and geometric
spatial relations (plus other semantic distinctions) to a similar degree of
success as previously reported measures. Our initial hypothesis about the
greater selectivity of spatial relations for its arguments is correct but it is
exemplified in a greater perplexity of a language model in the context of
balanced spatial relations. We argued that this has to do with the fact that
the targets are more unique to these relations (which is consequence of a
greater specificity for arguments of functionally biased relations) and is also
related to the way a sequential language model works. In the unbalanced
dataset, the perplexity of the language model is reversed (it is lower with
functionally biased relations) because the specificity of targets to relations
is boosted with greater frequency of functionally-biased relations. The fact
that functionally-biased relations are more frequent is probably related to
the fact that such descriptions are more informative than purely geometric
ones if available for a particular pair of objects.

We can only report tendencies based on the perplexities of our language
models as our conclusions. This is because the functional-geometric bias is
graded, because the predictions are highly dependent on the quality and
the size of the dataset, and because other semantic relations might also
be expressed by this measure. We chose a large contemporary dataset of
image descriptions because we hope that it contains a high proportion of
prepositions used as spatial relations. However, there is no guarantee that
all prepositions in this dataset are used this way. We observe that there
is considerable variation of obtained values across the 10-folds of cross-
validation and we report the mean values over all folds. As an illustration,
in the supplementary material (Section 6.7) we give an example of graphs
from two intermediary folds.
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Using a language model in this task we have also learned new insights about
the way language models encode spatial relations in image descriptions.
It has been pointed out (cf. Kelleher and Dobnik (2017) among others)
that convolutional neural networks with an attention model are designed to
detect objects whereas spatial relations between objects are likely to be pre-
dicted by the language model. In this work we show that language models
are not only predicting the relation (which is expected) but are able to dis-
tinguish between different classes of relations thus encoding finer semantic
distinctions. This tells us that language models are able to encode a surpris-
ing amount of information about world knowledge with a usual caveat that it
is difficult to separate several strands of this knowledge.

The work can be extended in several ways. One way is to study dataset
effects on the predicted results. Datasets with descriptions of robotic actions
and instructions may be particularly promising as they focus on spatial
uses. Different normalisations of spatial relations have a significant effect
on the results. In this work composite spatial relations such on the left side
of are normalised to simple spatial relations such as left. However, these
could be treated as separate relations as difference between may exist. A
more systematic examination of clusters of spatial relations would eventually
tell us what other spatial relations not yet identified as functionally or
geometrically biased have similar properties to those that have identified as
such experimentally.
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6.7 Appendix: Supplementary material

Language Model Architecture

P(Wer = Vi, [Wou = Vi) = %V, )

Figure. 6.6: The recurrent language model diagram with LSTM recurrent unit.

The neural language model architecture with the Long-Short Terms Memory
(LSTM) function and its parameters, similar to tied weights in Gal and
Ghahramani (2016):

e W, € R™*? for word embeddings,
e Wrsrm € R?¥44 for parameters of the Long-Short Term Memory

function,
* Wrinai € R¥™™ of the final dense layer with softmax.

where n is the vocabulary size for V = {v1,v2,...,u,} and d is both the
embeddings size and the memory size in LSTM. For mini-batches from
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training data, these parameters are being updated using a stochastic gradient
descent to minimise the loss.

Tt = Oy, - We (6.5)
i o
f g Xt
= “Wrsta (6.6)
(0] o ht—l
g tanh
¢t =foci_1+iog (6.7)
ht = ootanh(c;) (6.8)
¢ = softmax(hy - W finqr +b) (6.9)

where Jvy, TEpresents the one-hot encoding of the ¢-th word in the sequence.
The z; is the word embedding for this word, and two vectors ¢; and h;
represent the states of the recurrent unit. Figure 6.6 illustrates the same
equation.
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Figure. 6.7: Mean perplexities of LM2 by spatial relation for (a) folds 1 and (b) 2
(orange: functionally biased, blue: geometrically biased).
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71-81. 2019.

Abstract Understanding and generating spatial descriptions requires knowl-
edge about what objects are related, their functional interactions, and where
the objects are geometrically located. Different spatial relations have dif-
ferent functional and geometric bias. The wide usage of neural language
models in different areas including generation of image description motivates
the study of what kind of knowledge is encoded in neural language models
about individual spatial relations. With the premise that the functional bias
of relations is expressed in their word distributions, we construct multi-word
distributional vector representations and show that these representations per-
form well on intrinsic semantic reasoning tasks, thus confirming our premise.
A comparison of our vector representations to human semantic judgments
indicates that different bias (functional or geometric) is captured in different
data collection tasks which suggests that the contribution of the two meaning
modalities is dynamic, related to the context of the task.

7.1 Introduction

Spatial descriptions such as “the chair is to the left of the table” contain
spatial relations “to the left of” the semantic representations of which must
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be grounded in visual representations in terms of geometry Harnad (1990).
The apprehension of spatial relations in terms of scene geometry has been
investigated through acceptability scores of human judges over possible
locations of objects Logan and Sadler (1996). In addition, other research has
pointed out that there is an interplay between geometry and object-specific
function in the apprehension of spatial relations Coventry et al. (2001).
Therefore, spatial descriptions must be grounded in two kinds of knowledge
Landau and Jackendoff (1993); Coventry et al. (2001); Coventry and Garrod
(2004); Landau (2016). One kind of knowledge is referential meaning,
expressed in the geometry of scenes (geometric knowledge or where objects
are) while the other kind of knowledge is higher- level conceptual world
knowledge about interactions between objects which is not directly grounded
in perceivable situations but is learned through our experience of situations in
the world (functional knowledge or what objects are related). Furthermore,
Coventry et al. (2001) argue that individual relations have a particular
geometric and functional bias and “under" and “over" are more functionally-
biased than “below" and “above". For instance, when describing the relation
between a person and an umbrella in a scene with a textual context such
as “an umbrella ___ a person', “above" is associated with stricter geometric
properties compared to “over" which covers a more object-specific extra-
geometric sense between the target and the landmark (i.e. covering or
protecting in this case). Of course, there will be several configurations of
objects that could be described either with “over" or “above" which indicates
that the choice of a description is determined by the speaker, in particular
what aspect of meaning they want to emphasise. Coventry et al. (2001)
consider this bias for prepositions that are geometrically similar and therefore
the functional knowledge is reflected in different preferences for objects
that are related. However, such functional differences also exist between
geometrically different relations.

This poses two interesting research questions for computational modelling
of spatial language. The first one is how both kinds of knowledge interact
with individual spatial relations and how models of spatial language can be
constructed and learned within end-to-end deep learning paradigm. Ramisa
et al. (2015) compare the performance of classifiers using different multi-
modal features (visual, geometric and textual) to predict a spatial preposition.
Schwering (2007) applies semantic similarity metrics of spatial relations on
geographical data retrieval. Collell et al. (2018) show that word embeddings
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can be used as predictive features for common sense knowledge about
location of objects in 2D images. The second question is related to the
extraction of functional knowledge for applications such as generation of
spatial descriptions in a robot scenario. Typically, a robot will not be able to
observe all object interactions as in (Coventry et al., 2004) to learn about
the interaction of objects and choose the appropriate relation. Following the
intuition that the functional bias of spatial relations is reflected in a greater
selectivity for their target and landmark objects, Dobnik and Kelleher (2013,
2014) propose that the degree of association between relations and objects in
the corpus of image descriptions can be used as filters for selecting the most
applicable relation for a pair of objects. They also demonstrate that entropy-
based analysis of the targets and landmarks can identify the functional and
geometric bias of spatial relations. They use descriptions from a corpus of
image descriptions because here the prepositions in spatial relations are
used mainly in the spatial sense. The same investigation of textual corpora
such as BNC Consortium et al. (2007) does not yield such results as there
prepositions are used mainly in their non-spatial sense.! Similarly, Dobnik
et al. (2018) inspect the perplexity of recurrent language models for different
descriptions containing spatial relations in the Visual Genome dataset of
image captions Krishna et al. (2017) in order to investigate their bias for
objects.

In this paper, we follow this line of work and (i) further investigate what
semantics about spatial relations are captured from descriptions of images
by generative recurrent neural language models, and (ii) whether such
knowledge can be extracted, for example as vector representations, and
evaluated in tests. The neural embeddings are opaque to interpretations per
se. The benefit of using recurrent language models is that they allow us to
(i) deal with spatial relations as multi-word expressions and (ii) they learn
their representations within their contexts:

(a) a cat on a mat
(b) a cat on the top of a mat

(©) a mat under a cat

In (a) and (b), the textual contexts are the same “a cat __ a mat" but the
meaning of the spatial relations, one of which is a multi-word expression,

'We may call this metaphoric or highly functional usage which is completely absent of the
geometric dimension.
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are slightly different. In (c) the context is made different through word
order.

The question of what knowledge (functional or geometric) should be repre-
sented in the models can be explained in information-theoretic terms. The
low surprisal of a textual language model on a new text corpora is an indica-
tion that the model has encoded the same information content as the text.
In the absence of the geometric knowledge during the training of the model,
this means that a language model encodes the relevant functional knowledge.
We will show that the degree to which each spatial description containing
a spatial relation encodes functional knowledge in different contexts can
be used as source for building distributional representations. We evaluate
these representations intrinsically in reasoning tests and extrinsically against
human performance and human judgment.

The contributions of this paper are:

1. It is an investigation of the semantic knowledge about spatial relations
learned from textual features in recurrent language models with intrin-
sic and extrinsic methods of evaluation on internal representations.

2. It proposes a method of inspecting contextual performance of genera-
tive neural language models over a wide categories of contexts.

This paper is organised as follows: in Section 7.2 we describe how we
create distributional representations with recurrent neural language models,
in Section 7.3 we describe our computational implementations that build
these representations, and in Section 7.4 we provide their evaluation. In
Section 7.5 we give our final remarks.

7.2 Neural representations of spatial rela-
tions

Distributional semantic models produce vector representations which cap-
ture latent meanings hidden in association of words in documents Church
and Hanks (1990); Turney and Pantel (2010). The neural word embeddings
were initially introduced as a component of neural language models Ben-
gio et al. (2003). However, subsequently neural language models such as
word2vec Mikolov et al. (2013) and GloVe Pennington et al. (2014) have
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become used to specifically learn word embeddings from large corpora.
The word embeddings trained by these models capture world-knowledge
regularities expressed in language by learning from the distribution of con-
text words which can be used for analogical reasoning®. Moreover, sense
embeddings Neelakantan et al. (2014) and contextual embeddings Peters
et al. (2018) have shown to provide fine-grained representation which can
discriminate between different word senses or contexts, for example in sub-
stituting synonym words and multi-words in sentences McCarthy and Navigli
(2007).

However, meaning is also captured by generative recurrent neural language
models used to generate text rather than predict word similarity. The focus of
our work is to investigate what semantics about spatial relations is captured
by these models. Generative language models use the chain rule of proba-
bility for step-by-step prediction of the next word in a sequence. In these
models, the probability of a sequence of words (or sometimes characters) is
defined as the multiplication of conditional probabilities of each word given
the previous context in a sequence:

T-1

P(wy.r) = H Pwig1|wize) (7.1)
t=1

where T is the length of the word sequence. The language model estimates
the probability of a sequence in Equation (7.1) by optimising parameters of a
neural network trained over sufficient data. The internal learned parameters
includes embeddings for each word token which can be used as word level
representations directly.

An alternative way of extracting semantic prediction from a generative
neural language model which we are going to explore in this paper is to
measure the fidelity of the model’s output predictions against a new ground
truth sequence of words. This is expressed in the measure of Perplexity as

follows: o

PP(S) = (] Plwi:e = 5))T (7.2)
sES

2For example, “a is to a* as b is to b*” can be queried with simple vector arithmetic king —
man + woman =~ queen. More specifically, with a search over vocabulary with cosine
similarity:  argmaz  cos(b*,a* —a+b)
b*eV/{a*,b,a}
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where S is a collection of ground truth sentences. Perplexity is a measure of
the difficulty of a generation task which is based on the information theoretic
concept of entropy Bahl et al. (1983). It is based on cross-entropy which
takes into account the probability of a sequence of words in ground truth
sentences and the probability of a language model generating that sequence.
It is often used for intrinsic evaluation of word- error rates in NLP tasks
Chen et al. (1998). However, in this paper we use perplexity as a measure
of fit of a pre-trained generative neural language model to a collection of
sentences.

Our proposal is as follows. We start with the hypothesis that in spatial
descriptions some spatial relations (those that we call functional) are more
predictable from the associated word contexts of targets and landmarks than
their grounding in the visual features. Hence, this will be reflected in a
perplexity of a (text-based) generative language model trained on spatial
descriptions. Descriptions with functionally-biased spatial relations will be
easier to predict by this language model than geometrically-biased spatial
descriptions and will therefore have lower perplexity. If two sequences
of words where only the spatial relations differ (but target and landmark
contexts as well as other words are the same) have similar perplexity, it
means that such spatial relations have similar selectional requirements and
are therefore similar in terms of functional and geometric bias. We can
exploit this to create vector representations for spatial relations as follows.
Using a dictionary of spatial relations, we extract collections of sentences
containing a particular spatial relation from a held-out dataset not used in
training of the language model. The collection of sentences with a particular
spatial relation are our context templates. More specifically, for our list of
spatial relations {ry,72,...,7r}, we replace the original relation r; with a
target relation r; in its collection of sentences, e.g. we replace to the right
of; with in front of ;. The outcome is a collection of artificial sentences 5;_, ;
that are identical to the human-generated sentences except that they contain
a substituted spatial relation. The perplexity of the language model on these
sentences represents the association between the original spatial relation
and the context in which this has been projected:

1

PP(S,L*U) == PPZ‘J' = P(reli,crelj)j\” (73)
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where Crel; is the context of rel;, and PP, ; is the perplexity of the neural
language model on the sentence collection where relation rel; is artificially
placed in the contexts of relation rel;. If rel; and rel; are associated with
similar contexts, then we expect low perplexity for S;_,;, otherwise the
perplexity will be high. Finally, the perplexity of rel; against each collection
Crel; is computed and normalised within each collection (Equation 7.4) and
the resulting vector per rel; over all contexts is represented as a unit vector
(Equation 7.5).

PP; ;
k
Zi’:l PPi’,j

v = (M4 1, eymig) (7.5)

7.4)

mij =

Vi

il

A

U

where 9; is the vector representation of the relation rel;. These vectors create
a matrix. In a particular cell of some row and some column, high perplexity
means that the spatial relation in that row is less swappable with the context
in the column, while a low perplexity means that the spatial relation is highly
swappable with that context. This provides a measure similar to mutual
information (PPMI) in traditional distributional vectors Church and Hanks
(1990).

In conclusion, representing multi-word spatial relations in a perplexity ma-
trix of different contexts allows us to capture their semantics based on
the predictions and the discriminatory power of the language model. If
all spatial relations are equally predictable from the language model such
vector representations will be identical and vector space norms will not
be able to discriminate between different spatial relations. In the follow-
ing sections we report on the practical details how we build the matrix
(Section 7.3) and evaluate it on some typical semantic tasks (Section 7.4).
The implementation and evaluation code: https://github.com/GU-CLASP/

what_nlm_srels

7.3 Dataset and models

7.3.1 Corpus and pre-processing

We use Visual Genome region description corpus Krishna et al. (2017). This
corpus contains 5.4 million descriptions of 108 thousand images, collected
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from different annotators who described specific regions of each image. As
stated earlier, the reason why we use a dataset of image descriptions is
because we want to have spatial usages of prepositions. Other image caption-
ing datasets such as MSCOCO Lin et al. (2014) and Flickr30k Plummer et al.
(2015) could also be used. However, our investigation has shown that since
the task in these datasets in not to describe directly the relation between
selected regions, common geometric spatial relations are almost missing in
them: there are less then 30 examples for “left of" and “right of" in these
datasets.

After word tokenisation with the space operator, we apply pre-processing
which removes repeated descriptions per-image and also descriptions that
include uncommon words with frequency less than 100° Then we split
the sentences into 90%-10% portions. The 90% is used for training the
language model (Section 7.3.2), and 10% is used for generating the per-
plexity vectors by extracting sentences with spatial relations that represent
our context bins (Section 7.3.3). The context bins are used for generating
artificial descriptions S;_,; on which the language model is evaluated for

perplexity.

7.3.2 Language model and GloVe embeddings

We train a generative neural language model on the 90% of the extracted
corpus (Section 7.3.1) which amounts to 4,537,836 descriptions of maximum
length of 29 and 4,985 words in the vocabulary. We implement a recurrent
language model with LSTM Hochreiter and Schmidhuber (1997) and a word
embeddings layer similar to Gal and Ghahramani (2016) in Keras Chollet
et al. (2015) with TensorFlow Abadi et al. (2015) as back-end. The Adam
optimiser Kingma and Ba (2014) is used for fitting the parameters. The
model is set up with 300 dimensions both for the embedding- and the LSTM
units. It is trained for 20 epochs with a batch size of 1024.

In addition to the generative LSTM language model, we also train on the
same corpus GloVe (VG) embeddings with 300 dimensions and a context-

3The pre-processing leaves 5,042,039 descriptions in the corpus with maximum 31 tokens per
sentence. The relatively high threshold of 100 tokens is chosen to insure sufficient support
in the 10% of held-out data for bucketing. We did not use OOV tokens because the goal of
the evaluation is to capture object-specific properties about spatial relations and OOV tokens
would interfere with this.
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window of 5 words. Finally, we also use pre-trained GloVe embeddings on
the Common Crawl (CC) dataset with 42B tokens?.

7.3.3 Perplexity vectors

Based on the lists of spatial prepositions in (Landau, 1996) and (Herskovits,
1986), we have created a dictionary of spatial relations which include single
word relations as well as all of their possible multi-word variants. This
dictionary was applied on the 10% held-out dataset where we found 67
single- and multi-word spatial relation types in total. As their frequency may
have fallen below 100 words due to the dataset split, we further remove all
relations below this threshold which gives us 57 relations. We also create
another list of relations where composite variants such as “to the left of”
and “on the left of” are grouped together as “left” which contains 44 broad
relations. We group the sentences by the relation they are containing to our
context bins using simple pattern matching on strings. Table 7.1 contains
some examples of our context bins. The bins are used for artificial sentence
generation as explained in the previous section.

Relation (rel;) | Context bin (¢,.,)
above | scissors the pen
tall building the bridge
below | penis scissors
bench the green trees
next to | a ball-pen the scissors
car the water

Table. 7.1: Examples of context bins based on extracted descriptions from Visual
Genome. The images that belong to these descriptions are shown in
Appendix B.

For each of the 67 spatial relations extracted from the larger corpus, there
are 57 collections of sentences (=the number of relations in the smaller
corpus). Hence, there are 3,819(= 67 x 57) possible projections S;_, ;, where
a relation ¢ is placed in the context j, including the case where there is no
swapping of relations when j = i. The process is shown in Figure 7.1. The

“http://nlp.stanford.edu/data/glove.42B.300d.zip
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Figure. 7.1: Generating perplexity-based vectors for each spatial relation.

vector of resulting perplexities in different contexts is normalised according
to Equation 7.5 which gives us perplexity vectors (P-vectors) as shown in
Figure 7.2.

In addition to the P-vectors we also create representations learned by the
word embedding layer in the generative language model that we train.
For each of the 44 broad single-word spatial relations we extract a 300-
dimensional embedding vector from the pre-trained recurrent language
model (LM-vectors). In order to produce LM-vectors for the multi-word
spatial relations, we simply sum the embeddings of the individual words. For
example the embedding vector for “to the left of” is vy + Vipe +Vieft + Vo -
The same method is also used for the GloVe embeddings.

7.3.4 Human judgments

In order to evaluate our word representations we compare them to three
sources of human judgments. The first one are judgments about the the fit of
each spatial relation over different geometric locations of a target object in
relation to a landmark which can be represented as spatial templates Logan
and Sadler (1996). The second are 88,000 word association judgments by
English speakers from De Deyne et al. (2018). In each instance participants
were presented a stimulus word and were asked to provide 3 other words.
The dataset contains 4 million responses on 12,000 cues. Based on the col-
lective performance of annotators, the dataset provides association strengths
between words (which contain any kind of words, not just spatial words) as
a measure of their semantic relatedness. Finally, we collected a new dataset
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Figure. 7.2: A matrix of perplexity vectors for 28 spatial relations and 26 contexts.
For the full 67 x 57 matrix see Appendix C. The rows represent spatial
relations and columns represent the normalised average perplexity of a
language model when this relation is swapped in that context.

of word similarity judgments using Amazon Mechanical Turk. Here, the
participants were presented with a pair of spatial relations at a time. Their
task was to use a slider bar with a numerical indicator to express how similar
the pair of words are. The experiment is similar to the one described in
Logan and Sadler (1996) except that in our case participants only saw one
pair of relations at a time rather than the entire list. The shared vocabulary
between these three datasets covers left, right, above, over, below, under,
near, next, away.

7.4 Evaluation

As stated in Section 7.2 the P-vectors we have built are intended to capture
the discriminatory power of a generative language model to encode and

7.4 Evaluation
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1. to

2. on

3. away 18. up; down; off

4. here 19. with; without

5. into 20. together; out

6. from 21. outside; inside

7. during 22. near; beside; by

8. back of 23. top; front; bottom

9. through 24. in between; between
10. alongside 25. along; at; across; around
11. along side 26. beneath; below; under; behind
12. underneath 27. right; back; left; side; there
13. in; against 28. to the left of; to the right of; next to
14. in front of 29. in back of; in the back of; on the back of; at the top of
15. above; over 30. on the top of; on side of; on the bottom of; on left side
16. to the side of; on top of; on the front of; on back of; on the side
17. onto; toward of; on front of; on bottom of

Table. 7.2: K-means clusters of spatial relations based on their P-vectors.

discriminate different spatial relations, their functional bias. In this section
we evaluate the P-vectors on several common intrinsic and extrinsic tests for
vectors. If successful, this demonstrates that such knowledge has indeed been
captured by the language model. We evaluate both single- and multi-word
relations.

7.4.1 Clustering

Method Figure 7.2 and its complete version in Appendix C show that dif-
ferent spatial relations have different context fingerprints. To find similar
relations in this matrix we can use K-means clustering. K-mean is a non-
convex problem: different random initialisation may lead to different local
minima. We apply the clustering on 67 P-vectors for multi-word spatial rela-
tions and qualitatively examine them for various sizes k. The optimal number
of clusters is not so relevant here, only that for each k& we get reasonable
associations that follow our semantic intuitions.

Results As shown in Table 7.2, with k = 30, the clustering of perplexity
vectors shows acceptable semantics of each cluster. There are clusters with
synonymous terms such as (15. above, over) or (26. below, under). Some
clusters have variants of multi-word antonymous such as (30. on the top of,
on the bottom of). Other clusters have a mixture of such relations, e.g. (27.
right, back, left, side, and there).
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Figure. 7.3: The P-vectors of two clusters.

Discussion The inspection of the perplexities of two of these clusters in
Figure 7.3 shows that the language model has learned different selectional
properties of spatial relations: above and over are generally more selective
of their own contexts, while to the left of and to the right of show a higher
degree of confusion with a variety of the P-vector contexts. High degree of
confusion in left and right is consistent with the observation in Dobnik and
Kelleher (2013) that these relations are less dependent on the functional
relation between particular objects and therefore have a higher geometric
bias. On the other hand, above and over seem to be more selective of their
contexts. The functional distinction between above and over is mildly visible:
the shades of blue in above are slightly darker than over.

7.4.2 Analogical reasoning with relations

The intrinsic properties of vector representations (the degree to which they
capture functional associations between relations and their objects) can
be tested with their performance in analogical reasoning tasks. We com-
pare the performance of the P-vectors (Section 7.3.3), the embeddings of
the language model used to create the P-vectors and GloVe embeddings
(Section 7.3.2) in two analogical tasks which require both geometric and
functional reasoning.

Predicting analogical words

Method The task is similar to the analogy test Mikolov et al. (2013); Levy
et al. (2015) where two pairs of words are compared in terms of some
relation “a is to a’ as b is to b’". We manually grouped spatial relations that
are opposite in one geometric dimension to 6 groups. These are: Group

7.4 Evaluation
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Single word | Multi-words
GloVe (CC) 0.56 0.36
GloVe (VG) 0.43 0.29
LM 0.86 0.45
P-vectors 0.62 0.47
Random 0.11 0.05

Table. 7.3: The accuracies of different representations on the word analogy test.

1: left, right; Group 2: above, below; Group 3: front, back; Group 4:
with, without; Group 5: in, out; and Group 6: up, down. We generate
all possible permutations of these words for the analogical reasoning task
which gives us 120 permutations. We expand these combinations to include
multi-word variants. This dataset has 85,744 possible analogical questions
such as (above :: below, to the left of :: ?). We accept all variants of a
particular relation (e.g. to the right side of and to the right of) as the correct
answer.

Results As shown in in Table 7.3, on the single-word test suite, the LM-
embeddings perform better than other models. On multi-word test suite
the P-vectors perform slightly better. On both test suites, GloVe trained
on Common Crawl performs better than GloVe trained on Visual Genome.
However, its performance on multi-word relations is considerably lower. We
simulated random answers as a baseline to estimate the difficulty of the task.
Although the multi-word test suite has ~ 700 times more questions than the
test suite with single-word relations, it is only approximately 2-times more
difficult to predict the correct answer in the multi-word dataset compared to
the single-word dataset.

Discussion The perplexity of the language model on complete context
phrases (Multi-words) is as good indicator of semantic relatedness as the
word embeddings of the underlying language model and much better than
GloVe embeddings. The good performance of the P-vectors explains the errors
of the language model in generating spatial descriptions. The confusion
between in front of and on the back of is similar to the confusion between to
the left of and to the right of in terms of their distribution over functional
contexts. Hence, a similar lack of strong functional associations allows the
vectors to make inference about geometrically related word-pairs. This
indicates that functional and geometric bias of words are complementary.
There are two possible explanations why P-vectors perform better than
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LM-embeddings on multi-word vectors: (i) low-dimensions of P-vectors
(57D) intensify the contribution of spatial contexts for analogical reasoning
compared to high-dimensional LM-embeddings (300D); (ii) summing the
vectors of the LM-embeddings for multi-words reduces their discriminatory
effect.

Odd-one-out

Method Based on the semantic relatedness of words, the goal of this task
is to find the odd member of the three. The ground truth for this test are
the following five categories of spatial relations, again primarily based on
geometric criteria: X-axis: left, right; Y-axis: above, over, under, below;
Z-axis: front, back; Containment: in, out; and Proximity: near, away. Only
the Y-axis contains words that are geometrically similar but functionally
different, e.g. above/over. In total there are 528 possible instances with
3,456 multi-word variations. The difficulty of the task is the same for both
single- and multi-word expressions as the choice is always between three
words. Hence, the random baseline is 0.33.

Results Table 7.4 shows the accuracy in predicting the odd relation out
of the three. We also add a comparison to fully geometric representations
captured by spatial templates Logan and Sadler (1996). Ghanimifard and
Dobnik (2017) show that spatial templates can be compared with Spearman’s
rank correlation coefficient px y and therefore we also include this similarity
measure. Since our groups of relations contain those that are geometric
opposites in each dimension, we take the absolute value of |px y|. Spatial
templates are not able to recognise relatedness without the right distance
measure, |px,y|. LM-embeddings perform better than other vectors in both
tests, but P-vectors follow closely. All models have a low performance on
the multi-word test suite. When using |px y| all vectors other than P-vectors
produce better results. While we do not have an explanation for this, it
is interesting to observe that |px y| is a better measure of similarity than
cosine.

Discussion The results demonstrate that using functional representations
based on associations of words can predict considerable information about
geometric distinctions between relations, e.g. distinguishing to the right of
and above, and this is also true for P-vectors. As stated earlier, our explanation
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Single word Multi-words
l—cos |p| | 1—cos |p|
Glove (CC) | 0.62 0.68 | 0.52 0.58
Glove (VG) | 0.61 0.61 | 0.58 0.59
LM | 087 090| 0.82 0.88
P-vectors | 0.72 0.70 | 0.64 0.52
Sp Templates | 0.22 1.0 - -

Table. 7.4: The accuracies in odd-one-out tests.

for this is that functional and geometric knowledge is in complementary
distribution. This has positive and negative implications for joint vision and
language models used in generating spatial descriptions. In the absence of
geometric information, language models provide strong discriminative power
in terms of functional contexts, but even if geometric latent information is
expressed in them, an image captioning system still needs to ground each
description in the scene geometry.

7.4.3 Similarity with human judgments

We compare the cosine similarity between words in LM- and P-vector spaces
with similarities from (i) word association judgments De Deyne et al. (2018),
(i) our word similarity judgments from AMT, and (iii) spatial templates
(Section 7.3.4). We take the maximum subset of shared vocabulary between
them, including on, in only shared between (i) and (ii). Since (i) is an
association test, unrelated relations do not have association strengths. There
are 55 total possible pairs of 11 words, while only 28 pairs are present in (i)
as shown in Figure 7.4.

Method We take the average of the two way association strengths if the
association exists and for (i) we assign a zero association for unrelated pairs
such as left and above. Spearman’s rank correlation coefficient px y is used
to compare the calculated similarities.

Results Table 7.5 shows ranked correlations of different similarity mea-
sures. Spatial templates do not correlate with (WA) word associations and
(WS) word similarities. On 28 pairs there is a weak negative correlation
between spatial templates and WS. The correlation of similarities of two
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Figure. 7.4: (i) Word association judgments and (ii) word similarity judgments

different human judgments is positive but weak (p = 0.33). The similari-
ties predicted by LM-vectors and P-vectors correlate better with WA than
WS.

55 pairs 28 pairs
WA WS WA WS
SpTemp | —0.02 | —0.08 0.06 —0.35

LM | 0.48*** | 0.15 0.59*** | 0.08
P | 0.48** | 0.19 0.40** | —0.08
p-values: x < 0.01, *x < 0.01, *x* < 0.001

Table. 7.5: Spearman’s p between pairwise lists of similarities. WA are similarities
based on word associations and WS are direct word similarities from
human judgments.

Discussion The low correlation between the two similarities from human
judgments is surprising. Our explanation is that this is because of different
priming to functional and geometric dimension of meaning in the data
collection task. In the WA task participants are not primed with the spatial
domain but they are providing general word associations, hence functional
associations. On the other hand, in the WS task participants are presented
with two spatial relations, e.g. left of and right of, and therefore the geometric
dimension of meaning is more explicitly attended. We also notice that
judgments are not always unison, the same pair may be judged as similar
and dissimilar which further confirms that participants are selecting between
two different dimensions of meaning. This observation is consistent with
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our argument that LM-vectors and P-vectors encode functional knowledge.
Both representations correlate better with WA than with WS. Finally, Logan
and Sadler (1996) demonstrate that WS judgments can be decomposed to
dimensions that correlate with the dimensions of the spatial templates. We
leave this investigation for our future work.

7.5 Conclusion and future work

In the preceding discussion, we have examined what semantic knowledge
about spatial relations is captured in representations of a generative neural
language model. In particular, we are interested if the language model is
able to encode a distinction between functional and geometric bias of spatial
relations and how the two dimensions of meaning interact. The idea is based
on earlier work that demonstrates that this bias can be recovered from the
selectivity of spatial relations for target and landmark objects. In particular,
(i) we test the difference between multi-word spatial relations at two levels:
the word embeddings which are a form of internal semantic representations
in a language model and the perplexity-based P-vectors which are external
semantic representations based on the language model performance; (ii) we
project spatial relations in the contexts of other relations and we measure the
fit of the language model to these contexts using perplexity (P-vectors); (iii)
we use these contexts to build a distributional model of multi-word spatial
relations; (iv) in the evaluation on standard semantic similarity tasks, we
demonstrate that these vectors capture fine semantic distinctions between
spatial relations; (v) we also demonstrate that these representations based
on word-context associations latently capture geometric knowledge that
allows analogical reasoning about space; this suggests that functional and
geometric components of meaning are complementary: (vi) doing so we
also demonstrated that generation of spatial descriptions is also dependent
on textual features, even if the system has no access to the visual features of
the scene. This has implications for baselines for image captioning and how
we evaluate visual grounding of spatial relations.

Our work could be extended in several ways, including by (i) using the
knowledge about the bias of spatial relations to evaluate captioning tasks
with spatial word substitutions Shekhar et al. (2017a,b); (ii) examining how
functional knowledge is complemented with visual knowledge in language
generation Christie et al. (2016); Delecraz et al. (2017) (iii) using different
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contextual embeddings such as ELMo Peters et al. (2018) and BERT Devlin
et al. (2018) for the embedding layer of the generative language model
rather than our specifically-trained word embeddings; note that P-vectors
are representations of collections of context based on the performance of
the decoder language model while ELMo and BERT are representations
of specific context based on the encoder language model; (iv) comparing
language models for spatial descriptions from different pragmatic tasks. As
the focus of image captioning is to best describe the image and not for
example, spatially locate a particular object, the pragmatic context of image
descriptions is biased towards the functional sense of spatial relations. Our
analysis should be extended to different kinds of corpora, for example those
for visual question answering, human-robot interaction, and navigation
instructions where we expect that precise geometric locating of objects
receives more focus. Therefore, we expect to find a stronger geometric bias
across all descriptions and a lower performance of our representations on
analogical reasoning.
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7.6 Appendix: Perplexity

The perplexity in the paper is formulated as follows:

1

PP(S) = ([] Pwie =) (7.2)
SES

By definition, the perplexity of a model ¢ on a test suit S is defined as
follows:
PP(S) =2H(@9) (7.6)
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where H is cross entropy, and p is the likelihood of each possible sample in
the test suit. The definition of cross entropy is as follows:

H(p,q) == p(X =x)log2(¢(X = z)) (7.7)
zeS

where X is a random variable, and x is a possible value of the random
variable. In a forward generative language model, the random variable is
conditioned on the previous words. With test suite being a sequence of
words S = wy.7, the likelihood of each word in the sequence is p(w;) = %,
and the cross entropy of the model on the samples is:

T
H(p,q) ==Y _ p(wi)loga(q(wi|wip 1)) (7.8)
t=1
L T
=7 > loga(q(wi|wi:t—1)) (7.9)
=1

where w; is a token at a time ¢, in a sequence with maximum 7" tokens,
w14 = wy,ws,...,ws. Therefore the perplexity is:

PP(S) :2*% ZtT:ll092(Q(wt|w1:t—l)) (7.10)
L 1
= ([ a(welwi:e—1)"7 (7.11)
t=1

Equation 7.11 is often used as definition of perplexity in language models
Goodman (2001) and Equation 7.10 is its numeric computation to avoid
underflow due to adding logits.

There are two ways to extend the definition to the case when perplexity is
calculated for a collection of sentences. (i) We can treat the corpus as a
long sequence of tokens and use the previous equations. (ii) We can use
Equation 7.7 with a change to the model definition, from a token model
to a sentence model. The benefit of this method is that it assigns the same
likelihood for each sentence regardless of its length. In this case, the chain
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rule is used for the sentence model. The likelihood f each sentence is one
over the number of sentences in the test suite, p(s) = ﬁ

= " p(s)loga(P(s)) (7.12)
seS
= —ﬁ > "loga(P(s)) (7.13)
seS

Based on the chain rule, the sentence model can be calculated as fol-
lows:

P(wyi.r = 5) Hq welwie—1) (7.14)

logg( w1, = S) Zlogg (wi|wy:p—1)) (7.15)

Perplexity in this case is defined as in Equation 7.2 here repeated as Equa-
tion7.16:

—1

PP(S) = (H P(wy.p, = 5))T (7.16)

which instead of using the product is computed as a sum of logits from
Equation 7.12 and 7.15.

7.7 Appendix: Examples of images from
Visual Genome

Figure 7.5 and Figure 7.6 are the examples from VisualGenome which their
region descriptions are used in the paper as examples of relation-context
substitution table.
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<5s

Figure. 7.5: image id = 2367586
tall building above the bridge
bench below the green trees
car next to the water

Figure. 7.6: image id = 2320485
scissors above the pen
the pen is below scissors
a ball-pen next to the scissorts

7.8 Appendix: Complete P-vectors

Figure 7.7 is the full presentation of P-vectors.
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Figure. 7.7: Perplexity vectors for 67 spatial relations on 57 context bins.

7.9 Appendix: Similarity Judgment Dataset

In total 66 worker in Amazon Mechanical Turk annotated the word similarity.
For each word pair, we collected 10 judgments. The word pairs vertically in
random order were presented to annotators to judge their similarity. The
input form was a slider in the web interface which they could freely adjust
the indicator position between dissimilar and similar rating (Figure 7.8). In
order to identify the bad annotators, we randomly asked the annotators to
judge similarity between “green" and one of the spatial relations, we also
asked similarity judgment between a spatial relation and itself. If the answer
to similarity with green was higher than %60, or the answer for self similarity
was lower than %90, all contributions of that worker were taken out from

7.9 Appendix: Similarity Judgment Dataset 105
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the dataset. This cleaning technique removed 9 workers in total, which left
us about 7 annotation on each word pair.

Instructions (Click to collapse)

Each time you will see pairs of words. Your task is to indicate how similar these words are in their
meaning by adjusting the slider somewhere between the two extremes: extremely similar to the right, and
completely dissimilar to the left. If the words are neither similar or dissimilar, leave the slider in the

middle.
${rel2}
${rel1}
dissimilar O similar

Figure. 7.8: The layout which presents the similarity judgment question.
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Functional/Geometric
Spectrum In Bounding
Boxes

Simon Dobnik and Mehdi Ghanimifard. Spatial descriptions
on a functional-geometric spectrum: the location of objects.
Preprint - Under review 2020.

Abstract Experimental research on spatial descriptions shows that their
semantics are dependent on several modalities, among others (i) a geometric
representation of space (“where”, geometric knowledge) and (ii) dynamic
kinematic routines between objects that are related (“what”, functional
knowledge). In this paper we examine whether geometric and functional
bias of spatial relations is also reflected in large corpora of images and their
corresponding descriptions. In particular, we examine whether the variation
in object locations in the usage of a relation is a predictor of that relation’s
functional or geometric bias. Previous experimental psycho-linguistic work
has examined the bias of some spatial relations, however our corpus-based
computational analysis allows us to examine the bias of spatial relations and
verbs beyond those that have been tested experimentally. Our findings have
also implications for building computational image descriptions systems as
we demonstrate what kind of representational knowledge is required to
model spatial relations contained in them.

8.1 Introduction

The work on spatial relations such as “the chair is to the left of the table”
and “the bicycle near the door” shows that the semantics of spatial relations
is complex, drawing on several different modalities which include among
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others (i) scene geometry, (ii) functional interactions between objects, and
(iii) dialogue interaction between conversational partners. For example,
Landau and Jackendoff (1993) argue that language encodes objects and
places differently and this may be a reflection of different cognitive pro-
cesses in the visual system: “what” and “where”. Further, a number of
papers Coventry et al. (2001); Coventry and Garrod (2004); Coventry et al.
(2005); Horberg (2008) show experimentally that different spatial relations
have different bias in terms of functional (“what”) and geometric (“where”)
knowledge. Similarly, Landau (2016) argues that two classes of spatial
relations have different developmental trajectories and may be rooted in
different neural representations. Dobnik and Astbom (2017) argues that
the bias to function and geometry of a particular relation is contextual and
task-dependent.

For this reason, computational modelling of descriptions of spatial relations
is challenging. Firstly, it requires information from each of these modali-
ties to be present in the dataset. For example, it is hard to collect a large
enough dataset of functional interactions between objects and represent
these interactions as computationally useful representations. Secondly, there
is a challenge of information fusion which needs to be attuned for differ-
ent words in different contexts. Recently, deep neural networks modelling
language and vision as perceptually grounded language models have demon-
strated a lot of success Xu et al. (2015); Lu et al. (2017). An interesting
research question therefore is what information such networks can capture
in their representations from the available modalities and whether such
representations correspond to the representations that have been argued for
in linguistic and psychological literature.

For example, Dobnik and Kelleher (2013, 2014); Dobnik et al. (2018) explore
whether functional and geometric bias can be recovered from the information
encoded in a language model, the semantic associations encoded in the
sequences of words. Language models together with word embeddings
Bengio et al. (2003) are widely used to represent linguistic meaning in
computational semantics and they are based on the premise known as
the distributional hypothesis Firth (1957) that words occuring in similar
contexts, represented by other words, will have similar meanings Turney
et al. (2010). If we relate the distributional hypothesis to grounding in
perception, this is because words co-occuring together will refer to identical
situations and therefore the contexts of words become proxies for accessing
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the underlying situations. It follows that information encoded in language
models about spatial descriptions should encode some relevant semantics
about dynamic kinematic routines between the objects that are related, albeit
very indirectly. Hence, Dobnik and Kelleher (2013, 2014); Dobnik et al.
(2018) demonstrate that the functional-geometric bias of expressions that
have been tested experimentally in Coventry et al. (2001) is reflected in the
degree to which target and landmark objects are associated with a relation in
spatial descriptions extracted from a corpus of image descriptions. They start
with the idea that while any two (abstract) objects can be related in geometric
space, functional relations between the objects and relation are more specific,
defined by the possible functional interaction between the objects. They
demonstrate that this is expressed in the variability and generality of the
target and landmark objects. Since a geometrically-biased spatial relation
can relate any kind of objects that can be placed in a particular space, the
objects used with such a relation will be more variable than the objects that
occur with functionally-biased relations that also encode the nature of object
interaction. They also show that usage of descriptions of an image corpus
is crucial in this task since in a general corpus, a wider range of situations
is reflected in the word contexts that may include metaphoric usages of the
spatial words in other domains. We may consider such metaphorical usage
of spatial relations in other domains as highly functional.

The experiments based on Coventry et al. (2001) show that spatial relations
have functional or geometric bias which means that both components are
relevant for the semantics of a description, just not the same degree. For
example, a functionally-biased relation such as over is also sensitive to
geometry to some extent, it appears that a presence of a function skews the
regions of acceptability for the target object of that relation. The deviation
in geometry can be explained by the fact that under a consideration of a
functional relation different parts of the target and landmark object will
become attended Coventry et al. (2005); Carlson et al. (2006). This results
in a situation where the centroids of bounding boxes of target and landmark
objects are displaced from the locations where we would expect to find
them based on the geometric constraints alone. For example, in the case
of a “teapot over a cup” it must be ensured that the spout of the teapot is
located in such a way so that the liquid will be poured into a cup. In a scene
described by a description “the toothpaste is over a toothbrush” the shape of
the bounding boxes will be different from the previous scene as well as the
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location of the attended areas. In the case of an “apple in a bowl” the bowl
or its contents must constrain the movement of the apple (so that it does
not fall out of the bowl) and hence locations of apples that are outside the
bounding box of the bowl are also acceptable, for example where an apple
is on the top of other apples. These examples suggest that over all contexts
of target-landmark objects, the variation in locations of objects represented
as bounding boxes will be much higher with functionally-biased spatial
relations than geometrically-biased ones which will be closer to the axes
of the geometric space. The latter is confirmed by the spatial templates of
Logan and Sadler (1996) where in the absence of the functional knowledge,
when an abstract shapes are used as targets and landmarks, both geometric
and functional relations such as “over” and “above” give very similar axis-
centred spatial templates. Hence, in this work, we explore whether we can
detect a difference in the variability of the target objects in relation to the
landmark objects for spatial relations of either geometric or functional bias in
terms of representations of objects as visual features in images from a large
corpus of images and descriptions and for relations that go beyond the ones
that were tested experimentally. We expect that this variability will be the
opposite of the variability that has been previously shown for textual data.
Functional information can be recovered from the textual information about
what objects are interacting, while geometric information can be recovered
from where the visual features of objects are. Hence, we expect that relations
that were experimentally found to have a functional bias will be less variable
in their choice of target and landmark objects but more variable in terms
of where these objects are in relation to the prototypical axes from the
landmark. On the other hand, relations that were experimentally found to
have a geometric bias, are expected show a higher variation in terms of the
object kinds they relate but these will be geometrically less variable from the
axes based on the landmark.

The experimental work on functional and geometric bias of spatial relations
focuses on abstract images where the type of objects, their location and
the nature of functional interaction is carefully controlled. This gives us
accurate judgements about the applicability of descriptions but since the
task focuses on abstract scenes this gives us different judgements to those
we would have hoped to have obtained in real-life situations simply because
of the perceptual and linguistic context is different from real-life situations
Dobnik and Astbom (2017). Ideally, we would need a corpus of interactions
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between real objects and their spatial descriptions that on the perceptual
side would be represented as 3-dimensional temporal model. Collecting such
a corpus on a large scale would be a very challenging endeavour, although
important work in this area has recently been done in route instructions
in a virtual environments Thomason et al. (2019). On the other hand,
there exist several large corpora of image descriptions, e.g. Krishna et al.
(2017) which contain spatial descriptions and a large variety of interacting
objects in real-life situations. For this reason they are, in our opinion, an
attractive test-bed for examining the meaning of geometrically-biased and
functionally-biased spatial relations. The down-side of image corpora is
that the visual representations scenes are skewed, depending on the angle
and the focus/scale at which an image was taken which means that an
object such as a chair may have a different shape and size in respect to the
image from one image to another. There is also no information about object
depth and the dynamic interaction of objects. To counter this variation in
objects we will introduce some normalisation steps. Of course, there will
also be some noise in the scene representation’s we obtain but we hope this
noise will be uniform across different images and kinds of descriptions and
therefore a relative comparison of descriptions of different bias will still give
us a valid result.

Why is identification of functional and geometric bias of spatial relations
relevant? Theoretically, the experiments give us more insights into the way
spatial cognition is reflected in language. Showing that there is a distinction
between these two classes of spatial relations on a large scale dataset of
image descriptions gives a further support to the experimental evidence
that has been obtained in carefully designed experiments. Knowing that
there are different classes of spatial relations can help us in the task of
generating image descriptions, for example in a robotic scenario. Following
our observation, in an image description task functional relations are more
informative than geometric relations as in addition to geometric component
they also say something about the relation between the objects.! In a given
scene a target object can be described and related to the landmark with
several spatial relations based on geometric considerations alone. However,
these descriptions could be filtered by considering those relations that are
functionally more likely. The investigation also has implication for end-to-end

INotice, however, that there are tasks where geometric information may be more informative,
for example in locating a named object in a visual scene when answering a question.
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image captioning systems build with deep learning architectures. Knowing
that different spatial relations have a different bias for visual and textual
modality would allow us a better comparison and evaluation of such systems.
For example, there is a significant discussion in the vision and language
community that end-to-end image captioning systems and visual question
answering systems are relying too much on the information from language
models Agrawal et al. (2018) rather than grounding words in an image,
particularly when it comes to describing relations between objects. Knowing
that not all spatial relations are equally geometrically spatial has important
implications for evaluating such systems: (i) it shows that provided there
is a balanced dataset reliance of a spatial relation on a language model is
not necessarily a shortcoming but rather that is in fact the dimension that
determines their meaning and there is a gradience in the way a description
is grounded in visual vs textual features; (ii) it gives us insights into how
we should build such systems in the future so that both (or even more)
modalities are appropriately represented.

This paper is organised as follows: in Section 8.2 we describe the dataset
of images and descriptions used in our studies; in Section 8.3 we describe
how we represent geometric information from image annotations for spatial
relations and how such representations can be compared for functional and
geometric bias; in Section 8.4 we introduce a more sophisticated compar-
ison in terms of the variation in our feature representations for different
spatial relations from a representative representation; and we conclude in
Section 8.5.

8.2 Dataset

We base our investigations on the Visual Genome dataset Krishna et al.
(2017) which is a crowd-sourced annotations of 108,007 images. The dataset
comprises several types of annotations including the region descriptions
(phrases and sentences referring to one bounding box), objects (annotated
as bounding boxes), attributes for each object annotation, and relationships
between them (triplet of subject, predicate, object). Most object names,
attributes and predicate of relationships are also mapped to WordNet synsets.
The predicates in relationships include spatial relations such as “above",
“under", “on", “in" but also verbs describing events such as “holding" and
“wearing", or a combination of both such as “sitting on".
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Without any data cleaning, the total number of possible forms of relation
tokens is 36,550. Since spatial relations are multi-word expressions, we
create a dictionary of relations capturing different variations of their syntactic
form (e.g. “to the left of”, “on the left”, “left”, etc.) based on the lists of
English spatial relation constructions in Landau (1996) and Herskovits
(1986). Out of 235 spatial relations, we only found 78 types. Some variation
in writing of relationships may be simply due to the annotator shorthand
notation, e.g. “to left of”. We combine the compound variants of spatial
relations to a lower-cased single variant in cases where we can be reasonably
sure that this will not affect their semantics in terms of functional and
geometric bias. Duplicate descriptions per image which are created by
different annotators are removed, as well as those descriptions where the
extracted spatial relations are not used in a complete locative description
involving a target object, relation and a landmark, e.g. “chair on left”. At the
end, we only kept those relations which have more than 30 instances in the
dataset.

In addition to spatial relations, we also added a few verbal relations which
possibly have spatial content. Including the verbs which Collell et al. (2018)
showed to have strong predictability of object on the y-axis. The dictionary of
all relations examined in this study is given in Table 8.1.

Table. 8.1: The list of spatial relations captured and additional verbs with spatial
content.

over, above, below, under, left of, right of, on, in, inside, outside, far
from, away from, next to, near to, across, at, with, beneath, underneath,
through, alongside, against, off, between, from, beside, to, by, along,
around, behind, bottom, top, front of, back of, side of,

flying, kicking, cutting, catching, riding, seeing, looking, floating, finding,
pulling, removing, having, wearing, containing, holding, supporting,
sitting, touching.

8.3 Representing locations as dense geo-
metric vectors

Each bounding box in Visual Genome is represented with 4 numerical values:
the x-, y- coordinates relative to the image frame, the bounding box width
and height. In order to compare the geometric arrangements of objects
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represented as bounding boxes between different spatial relations, as well
as to compare this data with the data from spatial templates from Logan
and Sadler (1996), we convert both representations to 3-dimensional dense
vectors [z,y,d] where = and y represent directions in the 2-dimensional
space and d is a Euclidean distance between z and y. Hence, we separate
directionality (represented by = and y) from the distance. The intuition
behind this comes from a distinction between directionals (“to the left of”
and “above”) and topological relations (“close” and “far”) where the former
are dependent on both directionality and distance but the latter are only
dependent on distance. The 3-dimensional vectors (the x and y dimension)
are inspired by vectors introduced in the Attentional Vector Sum Model
(AVS) Regier and Carlson (2001). However, as we will describe below
they are used quite differently. Rather then modelling the attention for a
particular pair of bounding boxes in the AVS model we use them to estimate
attention between all bounding boxes that are related by a particular spatial
relation. In other words, we use them to estimate the likelihood that for
a particular spatial relation a particular location is occupied by an object.
Therefore, the representations are similar to the notion of spatial templates.
Here, other representations of bounding boxes could also be used (see for
example Sadeghi et al. (2015); Nikolaus et al. (2019). We opt for low-level
features that have been experimentally shown to be directly relevant for the
(geometric) semantics of spatial relations and which are also available in
spatial templates.

We derive the dense features as follows. First, as shown in Figure 8.1a, we
segment images into 7 x 7 locations. Then, for every pair of points in the
locations matrix, we define a dense vector as:

ig—11
. . p1=(i1,J1) N lIp1p3]l2
for two points on image o JUpype = Y| = H;—ll_p,ﬁ
p2 = (i2,j2) d aliin
sgn - |[p1ps||2

where ), ,, represents the dense geometric relation features between two
points, which p; is a point on landmark and ps is on the target, the Euclidean
distance between them is ||p1p3|l2 = +/(iz—41)2 + (j2— j1)2, and sgn is a
sign value which is —1 if ps is also a point on the landmark bounding box,

otherwise +1.
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landmark

target

\I<\

(a) Bounding boxes in an image (b) Spatial template

Figure. 8.1: (a) Images are segmented to a fixed set of locations and relation vectors
are calculated for every pair of locations occupied by the bounding
boxes of target and landmark. (b) In spatial templates a vector is
calculated for every location of the template originating in the location
of the landmark.

For each relation REL, this gives us a collection of vectors. For bounding
boxes annotated with relations in the images of Visual Genome, we build the
collection of dense vectors of all points connecting targets and landmarks
related by each particular relation in the dataset (V}f};’Lg )). Formally, this set

is represented as follows:

(vg) _ ) =
VREL = 4 Up1,p2 ( (TRG,REL,LND)EImages (8.1)
p1Ebboxinp

p2 €Ebboxrre
where bboxre and bboxyp are the collection of points in bounding boxes
of target TRG and landmark LND.?

Similarly, we use this method on spatial templates from Logan and Sadler
(1996) to build all possible dense vectors. As shown in Figure 8.1b, we
create a dense vector originating in the central location of the landmark
and ending at every possible location of target in the spatial template. Each
vector from a spatial template is associated with the acceptability score of
the target location.

Ve = {ﬁ<3,3>,<i7j>}ie{l,..,?}’SREL N {gi’j}ie{l""” o
je{1,..,7} je{1,..,7}

2For computational convenience, instead of including all possible annotations in this set, we
randomly sampled a maximum of 1000 triplets from the relationship dataset.
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=(vg) (st)

. (st
Figure. 8.2: Examples of v, and gy,
mostly similar but the scale and sign of distances are different.

among the examples, x-y features are

where Sgg; represents the collection of normalised acceptabilities in spatial
template of the relation REL.

These vectors in each collection are then projected to a single vector repre-
sentation using the following methods. For the collection of vectors from a
spatial template, the representative vector is the weighted sum of all possible
vectors with acceptability scores:

Tl = > sigia i) (8.3)
ie€{1,..,7}
je{1,..,7}

For the collection of vectors from the Visual Genome bounding boxes, the
representative vector is the expected 3-feature vector:

— U v 1 —
'Ur(zﬁf) = E[VR(ELg)] = S (09), Z v 8.4
‘VREL | 176\/(”9)

where \VR(SLQ )| is the number of vectors. Adding vectors with contradicting
features will cancel each other and remaining vector points at a direction with

least opposite directions. More importantly, ﬁéﬁf ) resulted from bounding box

. . . . . . (st .
annotations in visual genome is similar vf{ZL) resulted from compressing the

spatial templates into a three dimensional feature vectors.

To compare the projected dense vectors we have obtained from the images
with those from the spatial templates we use cosine similarity or distance
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Figure. 8.3: A comparison of dense vector representations from images 17,27;5)

—(st)

and those from spatial templates o,;,’ with the cosine distance:
~(vg) ﬂ(st))

1 — cosine(Ugg;” > Uggy.

as shown in Figure 8.3 where the horizontal axis represents the vectors

from spatial templates Ué;? and the vertical axis represents the vectors

from images ﬁé}jf’. The results indicate that the 3-dimensional vectors
from the two datasets are very similar except in the case of “away from”.
Except for this case the lowest cosine distance is on the diagonal. The
results also indicate that pairs of geometrically or functionally biased spatial
relations such as “over” and “above” and “under” and “below” have similar
overall directions and distances. Projective relations have clearly defined
opposites alongside one axis but topological relations are overlapping with
the projective relations. “next to,;” is similar to “next to,,”, “away from,,,”,
“near to,,” and “far from,,” and “away from,;” is dissimilar to all. This has
possibly to do with the way distance is represented in images. Humans are
able to estimate distance between two focused objects not on their actual size

but the size they know from their background knowledge.

The comparison of dense vectors here indicates that similar dense vectors
are obtained from both datasets. However, it does not distinguish functional
and geometric bias of different relations. For example, “over,;” is equally
similar to “over,,” and “above,,” while we were expecting that since “over,;”
is used in the geometric context it will more similar to “above,,”. This is
because cosine similarity/distance takes into account all three dimensions
z, y and z of the dense vectors. However, we expect that “over,” will be
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similar to “over,,” in y and d dimensions but different in the 2 dimension
which distinguishes its geometric and functional use.

In the following section we examine the 3-dimensional feature space of the
dense vectors in terms of the variation in the distribution of features. There-
fore, we need to look for a measure that captures variation in distribution of
features.

8.4 Variation of features within dense vec-
tors

We argued in Section 8.1 that we expect that functionally-biased relations
will be associated with more variable locations of target and landmark objects
as these will also be dependent on the functional relations between individual
object pairs. In the previous section we represented the locations between
targets and landmarks as dense vectors which were then projected to one
representative vector for each spatial relation. The degree of divergence
from the representative vectors can be considered as an indication for non-
geometrical use of spatial relations. In order to test this, for each spatial
relation, we calculate a deviation of individual target-landmark vectors
from the representative 3-dimensional dense vector Uf({gf ). As a metric of
deviation we use cosine distance:

Distances = {1 - cosine(ﬁgf),ﬁ)} (8.5)
Fev, 09

REL

We expect that on average, cosine distances in geometrically-bias relations
are closer to O (there is a clearer central tendency), and the overall distribu-
tion of cosine distances is positively skewed: the mode of cosine distances
is close to zero while the mean and the tail of differences is skewed to the
right.® In Figure 8.4, we select a set of geometrically- (blue) and functionally-
biased (orange) relations as reported in psycho-linguistic experiments and
plot (a) their average cosine distances of dense vectors from their represen-
tative vector and (b) the skewness of cosine differences. We also include
relations the bias of which has not been tested experimentally (grey) but

3To calculate skewness we use an implementation of the Fisher-Pearson coefficient (Kokoska
and Zwillinger, 2000, s.2.2.24.1) in scipy.stats.skew.
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Figure. 8.4: (a) The average cosine distance of dense vectors [z,y,d] from the ex-
pected dense vector of each spatial relation. (b) The skewness in
distribution of distances.

we expect that this is demonstrated by their position in the graph between
the key-points determined experimentally. Finally, we also include some
verbs describing events and situations involving interacting objects in space
that are also annotated as relationships in the Visual Genome (green), e.g.
“boy, feeds, giraffe”. We are particularly interested in the verbs that are
reported in Collel et al. Collell et al. (2018) for which the location of the
(target) object is most strongly predictable from the y dimension (“flying”,

o«

“kicking”,

” o«

cutting”, “catching” and “riding”) (dark green in Figure 8.4) and

those for which the y dimensions is the least predictable in respect to the
location of the object (“see”, “float”, “finding”, “pulled” and “removes”) (light
green) listed in their Table 3, p.6770. However, here Collell et al. (2018) do
not consider the z-dimension which may be a relevant dimension for the
verbs in the picture. A quick comparison of the two lists gives an impression
that the former contains descriptions of events involving object relations
that more strongly grounded in the image representations (e.g. “riding”)
and are therefore similar to geometrically-biased spatial relations, while the
second list contains descriptions of events that are less strongly grounded in
the image representations (e.g. “sees”) and would require a simulation of
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dynamic kinematic routines between the objects which makes them similar
to functionally-biased spatial relations.

Examining the average cosine distances from the representation vector of
each spatial relation in Figure 8.4a we can see that relations that have been
identified as geometrically-biased (blue) tend to have a lower average cosine
distance from the representation’s dense vector than those that have been
identified as functionally-biased (orange). The same tends also to be the case
for verbs identified in Collell et al. (2018) for which the objects are more
dependent on the y (dark green) compared to verbs for which the objects are
less dependent on the y dimension (light green). Note that in this comparison
a deviation of the entire 3-dimensional vector [x,y,d] was taken into account
and therefore a deviation can be in any of these dimensions. Examining the
skewness of cosine distances from the representation vector of each spatial
relation in Figure 8.4b we can see that geometrically-biased verbs and verbs
that are more strongly grounded show a tendency towards a higher skewness
of distribution, they are more biased towards the representational vectors.
Overall, the results indicate support for our hypothesis in Section8.1 that
bounding boxes are predictors of the functional and geometric bias as well
as they indicate that the same bias is also present in verbal descriptions of
scenes.

In Figure 8.5 we examine the histograms of deviations from the represen-
tational vectors of “on”, “in”, “over”, “above”, “right of” and “left of”. To
plot these histograms we use Kernel Density Estimation (KDE)* Scott (2015)
which indicates the density of samples in the range of [0, 2] of the cosine
distance (Equation 8.5). We also give examples of target-landmark pairs
which have the highest (orange) and the lowest (blue) average distances
from the representational vectors. These examples indicate that functionally
biased relations (“on”, “in” and “over”) can be and are used in contexts where
the geometric constraint is also satisfied and this is represented in the image
while they can also be used in the contexts where there is a deviation from
the geometric constraint, just as predicted by experiments in Coventry et al.
(2001). Interestingly, among the cases that show high deviation from the
representational vectors we also find examples that are typically considered
to involve more complex geometric conceptualisation, for example “bracelet
on wrist”, “woman in dress”, “trees over rocks”. However, the relations
that we consider to be geometrically-biased we also find examples of high

4We use an implementation based on scipy.stats.gaussian_kde
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Figure. 8.5: Using the KDE method we plot a histogram of cosine distances of indi-
vidual examples from the representational vector of each relation which
shows skewness to zero for geometrically-biased usages of relations.
For the projective relations “right of” and “left of” the examples with
landmarks with tendency for enforcing intrinsic frame of reference (ani-
mate objects, objects with clearly defined front and back) are negatively
skewed which represents maximum cosine distance.
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over

cutting

Figure. 8.6: The individual features of dense vectors [z, y,d] have different distribu-
tions for each relation.

deviation from the representational vectors. The examples for “above” seem
to to correspond to usages where there is an element of covering/protection
that has been argued to be the functional component of “over”: e.g. “clouds
above/over pasture” and “mirror above/over bench” or cases that require
complex geometric conceptualisation of the scene “tree above ground”.”> We
are intrigued by the examples that deviate from the representational vectors
for “left of” and “right of”. They frequently contain animate beings (people)
or objects with clear orientation. Our assumption is that these examples
are a reflection of changes of the perspective from the relative frame of
reference of the observer of the image to the intrinsic frame of reference of
the landmark.

As stated earlier, the dense vector representations including their cosine
distances aggregate three features [z, y,d] and therefore the previous com-

51t could be argued that these cases require functional representation since one needs to know
how to geometrically conceptualise the scene involving that particular pair of objects in
order the geometric relation can be established.
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parisons do not take into account the role of each individual feature for
spatial relations. In Figure 8.6 we plot the distribution of all features over all
vectors of V") for some individual relations.® The individual histograms for
the = (centre top), y (centre right) and d feature (on the right side) indicate
the density of their values and the mixture density graph for z,y (centre)
shows how these features interact. This graph demonstrates that “over” and
“cutting” have more freedom of variation in the z dimension as well as the
negative y dimension (which indicates overlap of objects) than “above”. As
discussed earlier, there is also considerable overlap between all three graphs
which is due to the fact that functionally-biased relations are also used in
situations when geometric constraints are satisfied. While “cutting” is more
similar to “over” than “above” in terms of the xy dimensions, it has a different
distance histogram with far fewer overlapping cases.

8.5 Conclusion

In this paper we have demonstrated and discussed how the functional and
geometric bias of spatial relations can be identified from geometric annota-
tions of objects as bounding boxes connected by spatial relations in a corpus
of images and associated descriptions. The bounding boxes are converted to
3-dimensional dense vectors that contain information about the «x, y and d
dimension. These vectors can be then converged to a single representational
vector for each spatial relation. Vectors from different relations can then
be compared with cosine similarity. To increase the granularity of compari-
son we examine how individual examples of annotated situations diverge
from the representational vectors and what are the distributions of these
divergences, also at the level of individual features. Our results indicate
that functional and geometric bias of spatial relations can be identified from
the geometric spatial information corpus of images and descriptions and
also that this distinction can be carried over to verbs describing situations
involving objects. In terms of semantics of spatial relations our study shows
that to a certain degree information that was previously determined experi-
mentally can be uncovered from a large corpus of image descriptions and
for a large number of relations including verbs. Practically, such information
is extremely useful for building end-to-end deep neural models of image

6These relations were found to be strongly dependent on the y feature in Collell et al. (2018)
who did not investigate the contribution of other features.
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captioning as it demonstrates what kind of representations are relevant for
different kinds of descriptions which has also been the focus of our other
studies. Another question that we find relevant to explore in our future
work is the observation that the context in which the dataset was created
may have a general bias on the degree to which function and geometry is
considered to be relevant. For example, is the goal of the image description
task to describe what is happening with the objects or to locate where the
objects are. Finally, different classes of verbs would also deserve a more
focused study.
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Abstract We examine and evaluate adaptive attention Lu et al. (2017)
(which balances the focus on visual features and focus on textual features)
in generating image captions in end-to-end neural networks, in particular
how adaptive attention is informative for generating spatial relations. We
show that the model generates spatial relations more on the basis of textual
rather than visual features and therefore confirm the previous observations
that the learned visual features are missing information about geometric
relations between objects.

9.1 Introduction

End-to-end neural networks are commonly used in image description tasks
Vinyals et al. (2015); Xu et al. (2015); Lu et al. (2017). Typically, a pre-
trained convolutional neural network is used as an encoder which produces
visual features, and a neural language model is used as a decoder that
generates descriptions of scenes. The underlying idea in this representation
learning scenario Bengio et al. (2013) is that hidden features are learned
from the observable data with minimum engineering effort of background
knowledge. For example in word sequence generation only some general
properties of a sequence structure Sutskever et al. (2014) are given to the
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learner while the learner learns from the observed data what word to choose
in a sequence together with a representation of features. Recent models
such as Xu et al. (2015); Lu et al. (2017) also add to the neural language
model a model of visual attention over visual features which is inspired
by the attention mechanism for alignment in neural machine translation
Bahdanau et al. (2014). It may be argued that the attention mechanism
introduces modularity to representation learning in the sense of inception
modules Szegedy et al. (2015) and neural module networks Andreas et al.
(2016). The visual attention is intended to detect the salient features of the
image and align them with words predicted by the decoder. In particular, it
creates a sum of the weighted final visual features at different regions of an
image:

k
o = Zativi 9.1
i=1

where at time ¢, ¢; represents the pooled visual features, i corresponds to
k different regions of image, v; is the visual representation of a particular
region, and «y; represent the amount of attention on the specific region
of the image. This representation provides the features for grounding the
prediction of next word:

logPr(wit1 = Yir1|wie = y1:6,d = vik) = f(Y1:e,¢t) (9.2)

where f represents the end-to-end neural network for approximating the
prediction of the next word in sentence.

However, not all words in natural language descriptions are directly grounded
in visual features which leads Lu et al. (2017) to extend the attention model
Xu et al. (2015) with an adaptive attention mechanism which learns to bal-
ance between the contribution of the visual signal and the language signal
when generating a sequence of words.

¢ = Pise+ (1= Be)ey (9.3)

where at time ¢, ¢; is a combined representation of language features and
visual features in addition to ¢; of the visual features from Equation 9.2. s;
is obtained from the memory state of the language model, and j3; ranging
between [0, 1] is the adaptive attention balancing the combination of vision
and language features.
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The performance of the image captioning systems when evaluated on the
acceptability of the generated descriptions is impressive. However, in order
to evaluate the success of learning we also need to understand better what
the system has learned especially because good overall results may be due to
the dataset artefacts or the system is simply learning from one modality only,
ignoring the other Agrawal et al. (2018). Understanding the representations
that have been learned also gives us an insight into building better systems
for image captioning, especially since we do not have a clear understanding
of the features in the domain. An example of work in this area is Liu et al.
(2017) which evaluates visual attention on objects localisation. Shekhar
et al. (2017b) developed the FOIL dataset as a diagnostic tool to investigate
if models look at images in caption generation. In Shekhar et al. (2017a)
they examine the FOIL diagnostic for different parts-of-speech and conclude
that the state of the art models can locate objects but their language models
do not perform well on other parts-of-speech.

The current paper focuses on generation of spatial descriptions, in particular
locative expressions such as “the chair to the left of the sofa” or “people close
to the statue in the square”. Spatial relations relate a target (“people”) and
landmark objects (“the statue”) with a spatial relation (“close to”). They
depend on several contextual sources of information such as scene geometry
(“where” objects are in relation to each other), properties or function of
objects and their interaction (“what” is related) as well as the interaction
between conversational participants Herskovits (1986); Landau and Jack-
endoff (1993); Regier (1996); Coventry and Garrod (2004); Dobnik and
Kelleher (2017). The features that are relevant in computational modelling
of spatial language are difficult to determine simply by manually considering
individual examples and they are normally identified through experimental
work. The representation learning models are therefore particularly suited
for their computational modelling.

However, the end-to-end vision and language models with attention are
implemented in a way to recognise objects and localise their area in an
image Ba et al. (2014); Mnih et al. (2014). To generate spatial relations,
Ramisa et al. (2015) propose a combination of visual representations from
convolutional neural networks and manually designed geometric represen-
tation of targets and landmarks. On quick examination, the representation
of attention over images as in Xu et al. (2015) gives an impression that
attention captures both “what” and “where”, especially because the atten-
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tion graphs resemble spatial templates Logan and Sadler (1996). However,
Kelleher and Dobnik (2017) argue that due to the design properties of image
captioning networks, attention does not capture “where” as these models
are built to identify objects but not geometric relations between them which
they examine at the level of qualitative evaluation of attention on spatial
relations.

In this paper we quantitatively evaluate the model of adaptive attention of
Lu et al. (2017) in predicting spatial relations in image descriptions. The
resources used in our evaluation are described in Section 9.2. In Section 9.3
we examine the grounding of different parts-of-speech in visual and textual
part of attention. Furthermore, in Section 9.4 we investigate the attention
on spatial relations, targets and landmarks. We conclude by providing the
possible directions for future studies and improvements.

9.2 Datasets and Pre-trained Models

As a part of their implementation Lu et al. (2017) provide two different
pre-trained image captioning models: Flickr30K Young et al. (2014) and MS-
COCO Lin et al. (2014).! We base our experiments on spatial descriptions of
40,736 images in the MS-COCO test corpus.

9.3 Visual Attention and Word Categories

Hypothesis Our hypothesis is that visual attention in the end-to-end image
captioning systems works as an object detector similar to Ba et al. (2014);
Mnih et al. (2014). Therefore, we expect the adaptive attention to prefer
to attend to visual features rather than the language model features when
predicting categories of words found in noun phrases that refer to objects, in
particular head nouns. We expect that both scores will be reversed: more
predictable words by the language model in the blind test receive less visual
attention.

Method We use the pre-trained model of adaptive attention ? to generate
a description for each of the 40,736 images in the MS-COCO-2014 test. All

Ihttps://filebox.ece.vt.edu/~jiasenlu/codeRelease/AdaptiveAttention.
2https://filebox.ece.vt.edu/~jiasenlu/codeRelease/AdaptiveAttention/model/
C0CO/coco_challenge/model_idl_34.t7
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the attention values are logged (a,3). We apply universal part-of-speech
tagger from NLTK Bird et al. (2009) on the generated sentences and report
the average visual attentions on each part-of-speech. We match our results
with results on the degree of predictability of each part-of-speech from the
language model without looking at the image from the blind test of Shekhar
et al. (2017a). Note that we do not investigate the overall quality of the
model on the test set (this has already been evaluated by its authors) but
what kind of attention this model gives to vision and language features used
to generate a word of each category. The evaluaiton code:
https://github.com/GU-CLASP/eccv18-sivl-attention

Results Table 9.1 indicates that the highest degree of visual attentions
is on numbers (NUM), nouns (NOUN), adjectives (ADJ) and determiners
(DET) respectively. Pronouns (PRON) and particles (PRT) receive the lowest
degree of visual attention. Verbs (VERB) and adverbs (ADV) are placed in
the middle of this sorted list. Spatial relations which are mainly annotated
as prepositions/adpositions (ADP) receive the second lowest visual attention,
higher only than pronouns (PRON) and particles (PRT). Our results are
different from the accuracy scores of detecting mismatch descriptions in
the FOIL classification task Shekhar et al. (2017a). For example, the model
assigns predicts the mismatch on ADJ easier than mismatch on ADV. As
hypothesised, the part-of-speech that make up noun phrases receive the
highest visual attention (and the lowest language model attention). The
results also indicate that the text is never generated by a single attention
alone but a combination of visual and language model attentions. Since
some spatial relations are often annotated as adjectives (e.g. “front”), a more
detailed comparison on spatial terms is required.

9.4 Visual Attention when Grounding Spa-
tial Descriptions

In generation of a sequence of words that make up a spatial description,
which type of features or evidence is taken into consideration by the model
as the description unfolds?

Hypothesis In Section 9.3, we argued that the generation of spatial rela-
tions (prepositions/adpositions) is less dependent on visual features com-
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POS Count | Mean+std | Blind test

NUM 1882 | 0.81£0.08 | -
NOUN | 134332 | 0.78+0.12 | 0.23
ADJ 23670 | 0.77+£0.14 | 0.76
DET 96641 | 0.73+0.12

VERB 38381 | 0.70+0.11 | 0.57
CONJ 6755 | 0.70£0.13 | -
ADV 184 | 0.69+£0.12 | 0.18

ADP 64332 | 0.62+£0.15 | 0.54
PRON 2347 | 0.53+0.14 | -
PRT 6462 | 0.52+0.21 | -

Table. 9.1: The average visual attention (1 — ) for predicting words on each part-of-
speech. The scores from the blind test indicate the accuracy of detecting
a mismatch description in the FOIL-classification task Shekhar et al.
(2017a).

pared to noun phrases due to the fact that the learned visual features are
used for object recognition and not recognition of geometric spatial relations
between objects. Moreover, the visual clues that would predict the choice of
spatial relation are not in one specific region of an image; this is dependent
on the location of the target, the landmark and the configuration of the
environment as a whole. Therefore, our hypothesis is that when generating
spatial relations the visual attention is more spread over possible regions
rather than being focused on a specific object.

Method The corpus tagged with POS from the previous section was used.
In order to examine the attention on spatial relations, a list of keywords
from Herskovits (1986); Landau and Jackendoff (1993) was used to identify
them, provided that they have a sufficient frequency in the corpus. The
average adaptive visual attention for each word can be compared with
the scores in Table 9.1 for different parts-of-speech. In each sentence, the
nouns before the spatial relation and the nouns after the spatial relations
are taken as the most likely targets and landmarks respectively. The average
adaptive visual attention on targets, landmarks and and spatial relations is
recorded.

Results In Table 9.2 we report for each spatial relation and its targets and
landmarks the average adaptive visual attention. The adaptive attentions
for triplets are comparable with the figures for each part-of-speech in Ta-
ble 9.1. In the current table, the variance of visual attentions is reported
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with the max — min measure which is the difference between maximum and
minimum attentions on a 7x7 plane representing the visual regions in the
model. Lower values indicate either a low attention or a wider spread of
attended area, hence less visual focus. Higher values indicate that there
there is more visual focus. For each spatial relation, the triplets must be
compared with each other. In all cases, our hypothesis is confirmed: (1)
the adaptive visual attention is lower on predicting spatial relations which
means that they receive overall less visual attention, (2) with the exception
of “under”, the difference between maximum and minimum visual attentions
are lower with spatial relations which means that the attention is spread
more over the 7x7 plane. Figure 9.1 shows a visualisation of these results
for “under” and “over”. The results also show that landmarks in most cases
receive less visual attention in comparison to targets. This indicates that
after providing a target and a spatial relation, the landmark is more pre-
dictable from the language model (for a similar observation see Dobnik et al.
(2018)).

Descriptions Average (1— ;) | Average (max(d;) —min(dy))
Spatial Relations | TRG, REL, LND TRG, REL, LND
under 0.84, 0.73, 0.79 0.0252, 0.0151, 0.0139
front 0.83, 0.70, 0.82 0.0230, 0.0136, 0.0154
next 0.82, 0.68, 0.78 0.0224, 0.0136, 0.0138
back 0.85, 0.68, 0.84 0.0332, 0.0186, 0.0272
in 0.82, 0.68, 0.77 0.0250, 0.0149, 0.0164
on 0.81, 0.68, 0.75 0.0249, 0.0154, 0.0175
near 0.80, 0.67, 0.76 0.0221, 0.0133, 0.0169
over 0.77, 0.62, 0.75 0.0205, 0.0133, 0.0193
above 0.73, 0.64, 0.77 0.0167, 0.0134, 0.0231

Table. 9.2: The average score of adaptive visual attention for target (TRG) relation
(REL) landmark (LND) triplets per each relation in the first column and
the average difference between the highest and the lowest value of visual
attention for the same items in the second column.

9.5 Discussion and Conclusion

In this paper we explored to what degree adaptive attention is grounding
spatial relations. We have shown that adaptive visual attention is more
important for grounding objects but less important for grounding spatial
relations which are not directly represented with visual features. As a result
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Figure. 9.1: Each square in a box in the first row represents an averaged attention
for a location in the 7x7 grid over all n generated samples (&). The
colours fade to white with lower values. The bottom graphs show their
average over the entire plane, indicating the degree of adaptive visual
attention (1 — ), also reported in Table 9.2.

the visual attention is diffused over a larger space. The cause for a wider
attended area can be due to high degree of noise in visual features or lack of
evidence for visual grounding.

This is a clear shortcoming of the image captioning model, as it is not able to
discriminate spatial relations on the basis of geometric relations between the
objects, for example between relations such as “left” and “right”. The future
work on generating image descriptions therefore requires models where
visual geometry between objects is explicitly represented as in Coventry
et al. (2005). The study also shows that when generating spatial relations, a
significant part of the information is predicted by the language model. This
is not necessarily a disadvantage. The success of distributional semantics
shows that language models with word embeddings can learn a surprising
amount of semantic information without access to visual grounding. As
mentioned in the introduction, spatial relations do not depend only on
geometric arrangement of objects but also functional properties of objects.
For example, Dobnik et al. (2018) demonstrate that neural language models
encode such functional information about objects when predicting spatial
relations. Since, each spatial relation has different degree of functional
and geometric bias Coventry and Garrod (2004), the adaptive attention
considering visual features and textual features is also reflective of this
aspect.

Models for explaining language model predictions such as Park et al. (2016)
are also related to this study and its future work.
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Our study focused on the adaptive attention in Lu et al. (2017) which explic-
itly models attention as a focus on visual and language features. However,
further investigations of other types of models of attention could be made
and this will be the focus of our future work. We expect that different models
of attention will behave similarly in terms of attending visual features on
spatial relations because the way visual features are represented: they favour
detection of objects and not their relative geometric arrangement. Our future
work we will therefore focus on how to formulate a model to be able to
learn such geometric information in an end-to-end fashion. Methodologies
such as Ribeiro et al. (2016) and Selvaraju et al. (2017) which investigate
the degree of effectiveness of features without attention are also possible
directions of the future studies.
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Generating Descriptions
With Top-Down Spatial
Knowledge

Mehdi Ghanimifard and Simon Dobnik. What Goes Into A
Word: Generating Image Descriptions With Top-Down Spatial
Knowledge. In Proceedings of the 12th International Conference on
Natural Language Generation. 2019.

Abstract Generating grounded image descriptions requires associating
linguistic units with their corresponding visual clues. A common method is
to train a decoder language model with attention mechanism over convolu-
tional visual features. Attention weights align the stratified visual features
arranged by their location with tokens, most commonly words, in the target
description. However, words such as spatial relations (e.g. next to and under)
are not directly referring to geometric arrangements of pixels but to complex
geometric and conceptual representations. The aim of this paper is to evalu-
ate what representations facilitate generating image descriptions with spatial
relations and lead to better grounded language generation. In particular, we
investigate the contribution of four different representational modalities in
generating relational referring expressions: (i) (pre-trained) convolutional
visual features, (ii) spatial attention over visual features, (iii) top-down
geometric relational knowledge between objects, and (iv) world knowledge
captured by contextual embeddings in language models.

10.1 Introduction

Spatial recognition and reasoning are essential bases for visual understand-
ing. Automatically generating descriptions of scenes involves both recognis-
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ing objects and their spatial configuration. This project follows up on recent
attempts to improve language generation and understanding in terms of
using spatial modules in the fusion of vision and language Xu et al. (2015);
Johnson et al. (2016); Lu et al. (2017); Hu et al. (2017); Anderson et al.
(2018) (see also Section 10.6).

Generating spatial descriptions is an important part of the image description
task which requires several types of knowledge obtained from different
modalities: (i) invariant visual clues for object identification, (ii) geometric
configuration of the scene representing relations between objects relative
to the size of the environment (iii) object-specific functional relations that
capture interaction between them and are formed by our knowledge of
the world for example an umbrella is over a man is true if the referring
umbrella serves its function, protecting the man from the rain Coventry et al.
(2001), and (iv) for projective relations (e.g. “to the left of” and “above”)
but not topological relations (e.g. “close” and “at”), the frame of reference
which can be influenced from other modalities such as scene attention and
dialogue interaction Dobnik et al. (2015). Work in cognitive psychology
Logan (1994, 1995) argues that while object identification may be pre-
attentive, identification of spatial relations is not and is accomplished by a
top-down mechanisms of attention after the objects have been identified. It
is also the case that we do not identify all possible relations between objects
but only those that are attended by such top-down mechanisms considering
different kinds of high-level knowledge.

Experiments on training neural recurrent language models in a bottom-
up fashion from data' demonstrated that spatial relations are frequently
not learned to be grounded in visual inputs Lu et al. (2017); Tanti et al.
(2018a); Ghanimifard and Dobnik (2018) which has been attributed to
the design choices of these models that primarily focus on identification
of objects Kelleher and Dobnik (2017). Therefore, targeted integration of
different modalities is required to capture the properties from (i) to (iv).
We can do this top-down Anderson et al. (2018); Hu et al. (2017); Liu
et al. (2017). However, it is not immediately obvious what kind of top-
down spatial knowledge will benefit the bottom-up models most. Therefore,
in this paper we investigate the integration of different kind of top-down

LA bottom-up learning acquires higher level representations from examples of local features
rather than using an external procedure to extract them. See also Section 10.6.
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spatial knowledge beyond object localisation represented as features with
the bottom-up neural language model.

The paper is organised as follows. In Section 10.2, we discuss how spatial
descriptions are constructed and what components are required to generate
descriptions. In Section 10.3, the neural networks’ design is explained.
In Section 10.4, we explain what dataset is used for this study, what pre-
processing was applied on it and how the models are trained. Then the
experiments and evaluation results are presented in Section 10.5. The related
work in relation to our methods and findings is discussed in Section 10.6.
The conclusion is given in Section 10.7.

10.2 Generating Spatial Descriptions

When describing a scene, there are several ways to construct spatial descrip-
tions referring to objects and places and their relation with each other. A
spatial description has three parts: a TARGET and a LANDMARK referring to
objects or places and a RELATION denoting the location of the target in rela-
tion to the landmark Logan and Sadler (1996).? These are in the example in
Figure 10.1 as follows:

There is a teddy bear partially under a go cart.

TARGET RELATION LANDMARK

Therefore generating such description requires (a) identification of objects
and their locations: the target is what we want to describe and the landmark
is what we will relate the target to; the salience of the landmark is important
for the hearer. (b) Grounding of the relation in geometric space: the spatial
relation is expressed relative to the landmark which grounds a 3-dimensional
coordinate system; furthermore, for projective relations, the coordinate
system is aligned with the orientation of the external viewpoint which
determines the frame of reference Maillat (2003). (Viewpoint may also be
the landmark object itself in which case the coordinate system is oriented in
the same way as the landmark). (c¢) Grounding in function: a spatial relation
may be selected also based on the functional properties between target and

2Sometimes these are also known as referent and relatum Miller and Johnson-Laird (1976),
figure and ground Talmy (1983) or the located object and the reference object Herskovits
(1986); Gapp (1994); Dobnik (2009).
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M) Target

"o«

( “teddy bear", “partially under", “go cart")

Figure. 10.1: (TARGET, RELATION, LANDMARK) annotation of bounding boxes in
VisualGenome 2318741

9RaSeLaSeD _Il_Pinguino (2008): CC BY-SA 2.0.

landmark objects, e.g. the difference between “the teapot is over the cup" and
“the teapot is above the cup" Coventry et al. (2001).

Generating spatial descriptions requires knowing the intended target object
and how we want to convey its location to the listener. The bottom-up
approach in image captioning is focused on learning the salience of objects
and events to generate captions expressed in the dataset (e.g. Xu et al.
(2015)). The combination of bottom-up and top-down approaches for gen-
erating descriptions use modularisation in order to improve the generation
of descriptions of different kind (e.g. You et al. (2016)). However, as we
have seen in the preceding discussion, the generation of spatial descriptions
requires a highly specific geometric knowledge. How is this knowledge ap-
proximated by the bottom-up models? To what degree can we integrate this
knowledge with the top-down models? In this paper, we investigate these
questions in a language generation task by comparing different variations of
included top-down spatial knowledge. More specifically, for each image, we
generate a description for every pair of objects that are localised in the image.
We consider a variety of top-down spatial knowledge representations about
objects as inputs to the model: (a) explicit object localisation and extrac-
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tion of visual features; (b) explicit identification of the target-landmark by
specifying their order in the feature vector; and (c) explicit geometric repre-
sentation of objects in a 2D image. We investigate the contribution of each of

these sets of features to generation of image descriptions.

10.3 Neural Network Design

Our method is to add step-by-step modules and configurations to the net-
work providing different kind of top-down knowledge in Section 10.2 and
investigating the performance of such configurations. There are several
design choices with small effects on the performance but costly in terms
of parameter size Tanti et al. (2018b). Therefore, if there is no research
question related to that choice, we take the simplest choice as reported in
the previous work such as Lu et al. (2017); Anderson et al. (2018). We use
the following configurations:

AN e

features).

Simple bottom-up encoder-decoder;
Bottom-up object localisation with attention;
Top-down object annotated localisation;
Top-down target and landmark assignment;
Two methods of top-down representation of geometric features (s-

These five configurations give us 10 variations of the model design as shown
in Table 10.1. A detailed definition of each module is given in the Ap-

Model name Regions Of Interest TARGET-LANDMARK s-features Architecture
simple - - - Figure 10.3a
bu49 Bottom-up (7x7 grid) | Bottom-up attention | - Figure 10.3b
bud9 + mask Bottom-up (7x7 grid) | Bottom-up attention | Multi-hot 98 | Figure 10.3¢
bud9+ VisKE Bottom-up (7x7 grid) Bottom-up attention | Dense 11 Figure 10.3c
td Top-down (2 bbox) Bottom-up attention | - Figure 10.3d
td+ mask Top-down (2 bbox) Bottom-up attention | Multi-hot 98 | Figure 10.3e
td+VisKE Top-down (2 bbox) Bottom-up attention | Dense 11 Figure 10.3e
td order Top-down (2 bbox) Top-down assign. - Figure 10.3d
td order + mask Top-down (2 bbox) Top-down assign. Multi-hot 98 | Figure 10.3e
td order + VisKE | Top-down (2 bbox) Top-down assign. Dense 11 Figure 10.3e

Table. 10.1: The 10 variations of the neural network model after incrementally
adding modules and features.

pendix 10.8 in the supplementary material.
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Generative language model We use a simple forward recurrent neural
model with cross-entropy loss in all model configurations.

Simple encoder-decoder An encoder-decoder architecture without spa-
tial attention shown in Figure 10.3a and similar to Vinyals et al. (2015) is the
simplest baseline for fusing vision and language. The input to the model is an
image and the start symbol < s > of a description and the output is produced
by the language model decoder. The embeddings are randomly initialised
and learned as a parameter set of the model. The visual vectors are produced
by a pre-trained ResNet50 He et al. (2016). A multi-layer perceptron module
(F, in Figure 10.2) is used to fine-tune the visual features.

ResNet50

224 x 224 X 3 ————> 49 x 2048 —> 49 x 100

Figure. 10.2: Visual features are obtained from the pre-trained ResNet50, then
translated to a low dimensional vector with a dense layer F,.

Bottom-up localisation With visual feature representing all regions of the
image as in Figure 10.2, the attention mechanism is used as a localisation
module. We generalised the adaptive attention introduced in Lu et al.
(2017) to be able to fuse the modalities. As shown in Figure 10.3b, the
interaction between the attention mechanism and the language model is
more similar to Anderson et al. (2018): two layers of stacked LSTM, the
first stack (LSTM,) to produce the features for the attention model and the
second stack (LSTM;) to produce contextualised linguistic features which
are fused with the attended visual features. This design is easier to extend
with additional top-down vectors.

Top-down localisation Unlike the bottom-up unsupervised localisation,
the top-down method includes a provision of a list regions of interest (ROI)
from external procedures. For example, the region proposals can come from
another bottom-up task as in Anderson et al. (2018); Johnson et al. (2016)
which use a Faster R-CNN Ren et al. (2015) to extract possible regions
of interest from the ConvNets regions in Figure 10.2. Here, as shown in
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Figure. 10.3: Five architectures: (a) simple encoder-decoder (simple). (b) bottom-
up localisation with adaptive attention on 49 regions (bud9). (c)
bottom-up localisation with explicit spatial vectors of the bounding
boxes bud9 + mask/bud9 + VisKE. (d) top-down localisation with
attentions on two bounding boxes (¢td). (e) top-down localisation
augmented with explicit spatial vectors of the bounding boxes (td +
mask/td+VisKE).

Figure 10.4 we use the bounding box annotations of objects in images as the
top-down localisation knowledge and then extract ResNet50 visual features
from these regions. In the first stage the top-down visual representation
only proposes visual vectors of the two objects in a random order without
their spatial role as targets and landmarks in the descriptions. The model is
shown in Figure 10.3d.

ResNet50
\ Avg /
ol
\4
<
=)
<

ResNet50
Avg
-
\4
<
)
&
S

224 x 224 x 3 —> 2048 —— 100

Figure. 10.4: Top-down localisation of objects with bounding boxes whose visual
features are extracted and translated to lower dimensions with F.

Top-down target-landmark assignment In the second iteration of the
top-down localisation module we assign semantic roles to regions as targets
and landmarks. This is directly related to localisation as spatial relations are

10.3 Neural Network Design
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asymmetric. We encode this top-down knowledge by fixing the order of the
regions in the feature vector. The first object is the target and the second
object is the landmark. Otherwise, the model is the same as in the previous
iteration shown in Figure 10.3d.

Top-down geometric features The localisation procedure of objects dis-
cussed previously does not provide any geometric information about the
relation between the two regions. However, top-down geometric features
are required for grounding spatial relations where the location of the target
object is expressed relative to the landmark. For example, a simple (but by
no means sufficient) geometric relation between two bounding boxes can
be represented by an arrow from the centre of one bounding box to the
centre of the other and by ordering the information about bounding boxes
in the feature vector as in the previous model to encode target-landmark
asymmetry. The network architecture of the model with top-down geometric
features expressing relations between the objects is shown in Figure 10.3e.
We consider two different representations of the top-down geometric features
shown in Figure 10.5: Multi-hot mask over 49 vectors independently for
target and landmark (Mask) over 49 locations (Figure 10.5a) and VisKFE
Sadeghi et al. (2015) dense representations with 11 geometric features
(Figure 10.5b) where dz,dy are changes in the coordinates of the centres,
ov,ov1,0v9 the overlapping areas (total, relative to the first, and the sec-
ond bounding box), h1,ho heights, wi,w, widths and a1,a- areas. Note
that Mask features provide geometric information about the size and the
location of objects relative to the picture frame and VisK F feature provide
more detailed geometric information that expresses the relation between
the objects. The latter therefore more closely match the features that were
identified in spatial cognitive models. A feed-forward network with two
layers (Fs) is used to project geometric features into a vector with the same
dimensionality as the F, outputs so that different modalities are comparable
in weighted sum model of attention.

10.4 Dataset and Training

We use the relationship dataset in Visual Genome Krishna et al. (2017) which
is a collection of referring expressions represented as triplets (subject, predicate, object)
on 108K images. Unlike image captioning datasets such as MSCOCO Chen
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Figure. 10.5: (a) Each bounding box is converted to a mask of multi-hot vector on
49 regions. (b) The geometric relation between the two bounding
boxes are represented with features from Sadeghi et al. (2015).

et al. (2015) and Flickr30K Plummer et al. (2015) where only 5 captions
are given for each image, each image in this dataset is annotated with 50
phrases. The annotators were asked to annotate relations between two given
bounding boxes of subject and object by freely writing the text for each of
the three parts of the annotation. The bounding boxes produced by another
annotation procedure which detected objects in the images. In total, there
are 2,316,104 annotations of 664,805 unique triplets, 35,744 unique labels
of subjects and 21,299 unique labels of objects most of which consist of
multiple tokens. We omit all repetitions of triplets on each image, this leaves
total 1,614,055 annotations.>

Spatial relations Based on the lists of spatial prepositions in (Landau,
1996) and (Herskovits, 1986), we have created a dictionary of spatial re-
lations and their possible multi-word variants including their composite
forms. This dictionary contains 7,122 entries of 235 relations (e.g. right to
represent both on the right hand side of and to the right of). Of these only 202
are found in Visual Genome dataset covering 79 spatial relations. 328,966
unique triplets in Visual Genome are based on exactly one of these terms
which covers 49.4% of all possible relationships.*

3The repetitions include reflexive expressions (e.g. horse next to horse), annotations of several
objects of the same type (e.g. cup on table), and repetitions due to several bounding box
annotations of the same objects with different sizes.

4Other triplets in Visual Genome also have spatial content. Some of them include modifiers
such as partially under as in Figure 10.1 and some of them are descriptions of an event or
an action such as sitting on and jumping over. Some annotated relationships are verbs such
as flying with less obvious spatial denotation. The spatial bias in the dataset was studied in
Collell et al. (2018). The most frequent spatial relation in the dataset is “on" (over 450K
instances), the second place is “in" (150K instances), then “with", variations of “behind",
“near", “top", “next", “under", “front", and “by" (less than 10K instances each).

10.4
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Bounding boxes Each bounding box is a tuple of 4 numbers (z,y,w,h).
We normalise the numbers to the range of (0,1) relative to the image size
to create geometric feature vectors (Section 10.3). The image is split into a
grid with 7x7 cells to which bounding boxes are mapped, one bounding box
potentially covering more than one cell. With this bounding box granularity,
there are exactly 308,330 possible bounding boxes. However, only 151,974
are observed in the relationships dataset. The spatial distribution of paired
objects reflects how natural pictures are framed and how related objects are
understood by annotators.

Pre-processing We first removed duplicate triplets describing the same
image. Then we converted each triplet into a word sequence by concate-
nating the strings and de-tokenising them with the white space separator.
This produced a corpus with a vocabulary of 26,530 types with a maximum
sequence length of 16 tokens and on average 15 referring expressions per
image. We use 95% of the descriptions for training and 5% for validation
and testing (5,230 images with 80,231 triplets).

Training We use Keras Chollet et al. (2015) with TensorFlow backend
Abadi et al. (2015) to implement and train all of the neural network archi-
tectures in Section 10.3. The models are trained with the Adam optimiser
Kingma and Ba (2014) («=0.001, 81 = 0.9, 52 = 0.999) with a batch size of
128 and 15 epochs.

10.5 Evaluation

All implementations are available online®.

10.5.1 Qualitative Examples

Figure 10.6 shows generated descriptions for two examples of unseen pic-
tures from the test dataset by five models. The generated word sequence is
that with the lowest loss using beam search with k£ = 5. The first example
shows exactly how top-down localisation of objects is important especially if
the goal is to refer to specific objects in the scene. In the second example,
the visual features inside the bounding box are confusing for all 5 models.
More examples are in Figure 10.13 in the Appendix.

Shttps://gu-clasp.github.io/generate_spatial_descriptions/

Chapter 10


https://gu-clasp.github.io/generate_spatial_descriptions/

( “bat", “over", “shoulder")

simple player

bud9 man wearing shirt
td bat in hand

td order bat in hand

td order +VisKE batin hand

Target Relation
I

{ “hood", “above", “oven")

simple window

bu4d9 pot on stove

td oven has door
td order vent above sink

td order +VisKE cabinet has door

Figure. 10.6: From VisualGenome: 2412051° 24132827

10.5.2 Overall Model Performance

Hypothesis Top-down spatial knowledge improves the model performance.

We consider three categories of top-down spatial knowledge: (i) top-down lo-
calisation of regions of interest; (ii) top-down assignment of semantic roles to
regions; and (iii) two kinds of geometric feature vectors.

10.5 Evaluation
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Method After training the models we evaluate them by calculating the
average word level cross-entropy loss on held out instances in the test
set®. We also calculate the loss on descriptions containing specific spatial
relations for qualitative understanding of the effects of each type of top-down
knowledge.

Results The overall loss of each model on the unseen descriptions of im-
ages is shown in Figure 10.7. The fully bottom-up model with no spatial
attention (simple) has the highest loss. The loss in the variations of the
model with bottom-up localisation in bu49 is higher than the one in the
models with top-down localisation. The models with the top-down assign-
ment of TARGET-LANDMARK achieves the best results. The effect of top-down
geometric features is not significant.

<Overall>

1.24
114
1.04
0.9 1

loss

0.8 1
0.7 1
0.6

0.5+

simple

bu49
bu49+mask
bu49+VisKE

td

td+mask
td+VisKE

td order

td order+mask
td order+VisKE

Figure. 10.7: Cross-entropy loss of different model configurations on evaluation
data.

Figure 10.8 shows the performance of the models on a selection spatial
relations.

Discussion The top-down localisation (¢d) certainly improves the per-
formance of the language models compared to purely bottom-up represen-
tations. However, additional top-down assignment of TARGET-LANDMARK
(td order) and their additional geometric arrangement of bounding box fea-
tures (mask and VisKe) has a small positive effect on overall performance.
The overall performance is not a representative of how these configurations
effect the grounding of spatial relations. More specifically, the imbalance
of certain groups of relations (especially a generally lower proportion of

8Equivalent to log-perplexity of the language model.
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near inside

td

simple
bu49+mask
bu49+VisKE
td+mask
td+VisKE

td order
td+mask
td+VisKE

td order+mask
td order+VisKE
bud9+mask
bu49+VisKE
td order+mask
td order+VisKE

above below

bu49+mask
bu49+VisKE
td+mask
td+ViskKE

td order

td order+mask
td order+ViskKE
bu49+mask
bu49+VisKE

td

td+mask
td+VisKE

td order+mask
td order+ViskKE

left right

bu49+mask
bu49+ViskE
td+mask
td+ViskKE

td order

td order+mask
td order+VisKE
bud9+mask
bu49+VisKE
td+mask
td+VisKE

td order+mask
td order+VisKE

Figure. 10.8: Cross-entropy loss of different model configurations on 40 descriptions
for each relation: near, inside, above and below.

geometrically biased relations such as “left” and “right” in this dataset and
the presence of relations with a minimum spatial content such as has, wear-
ing) makes it harder to make conclusions about overall performance of the
models. We further examine two groups of some frequent spatial relations.
The relations such as inside and near represent one group and above and
below represent the other. Some top-down knowledge (as represented by
our features) is less informative for the first group but is informative for the
second group. For example near does not require the assignment of TAR-
GET-LANDMARK roles. We observe that td order is not performing better than
td. On the other hand, inside is sensitive to TARGET-LANDMARK assignment.
However, since the relation is also restricted by a choice of objects (only

10.5 Evaluation
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certain objects can be inside others) their TARGET-LANDMARK assignment
may already be inferred without such top-down knowledge from a language
model. For the second group, the top-down knowledge about the semantic
role of objects is important. However, left and right are among the least
frequent relations in the dataset which is demonstrated by the fact that their
descriptions have a higher loss than above and below. For these relations the
loss of the simple model is much higher than other configurations. It can be
seen that td is performing better than bu and td order is contributing over td
but geometric features have a lesser effect than identification of semantic
roles (td order).

10.5.3 Grounding in features

Hypotheses With the aim to evaluate what top-down information con-
tributed to grounding of words we examine the following hypotheses:

H1 s-features contribute to predicting spatial relation words.

H2 Without top-down TARGET-LANDMARK role assignments to each region,
attention is uniformly distributed over region choices at the beginning
of a sequence generation.

Method In order to check the contribution of each feature from different
modalities in prediction of each word, we look at the adaptive attention on
each feature at the point of predicting the word®. Since feature vectors are
not normalised against the number of features of each modality, we first
multiply each attention measure with the magnitude of the feature vector,
and then we normalised it to sum to 1 again:

at g [ fill

= 10.1
Pt = 5 1] (10-1

where ¢t refers to the time in the word sequence, and f; is the feature the
attention of which o 7, is applied to it. We report the average j3, j, over the
instances in the validation dataset.

Figure 10.9 shows § on two examples in three models. For each word, the
bar chart is divided between four features (in Figure 10.3e): (1) target v,pj,

9In this experiment, we do not check if the estimated likelihood for the correct word is
the highest predicted score. The generated descriptions may still be acceptable with an
alternative spatial relation. Furthermore, in the following analysis we report the attention
over semantic roles and not individual words.
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(2) landmark v, (3) s-features for bounding boxes (4) contextualized
embeddings h'.

{45\

elephant next to
1
0
1
O
elephant next rocks

[ target A /andmark [ spatial xa Ianguage]

— G=0.58

knife to rlght of plate

knlfe right plate

[0 target A /andmark [ spatial X1 Ianguage]

Figure. 10.9: 3 is plotted in bar charts for each word. (a) td order + VisKE (b)
td+ VisKE (c) td. The values of 3 for each word that constitute
description referring to each bounding box region is given in images.

After measuring the normalised attention on each feature according to
Equation 10.1, we report the average of attentions on each token at that
time step of the word sequence. We also group the tokens based on their
semantic role in the triplets and report the average 8 on these tokens for a
given role.

Results The average of attentions over triplets of tokens is plotted in
Figure 10.10. The behaviour of attentions on word sequences in the four
models in given in Figure 10.11.

Discussion The comparison of 6 models in Figure 10.10 shows that ge-
ometric mask s-features are not contributing as well as dense VisKE s-
features. In the models without top-down semantic role assignment only

10.5 Evaluation
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Figure. 10.10: The overall average of 3 on tokens of each semantic role (target, re-
lation, landmark) on all examples of the test dataset, for 6 variations
of the top-down knowledge about regions of interest (ROI): location
of objects and their order as target and landmark.

the model with +VisK FE features has the expected attention on target and
landmark, but there is no attention on the s-features. In the models with
top-down semantic role assignment, the model with VisK E s-features has
higher attention on s-features when predicting a relation word (H1). A
similar situation is observable over word sequences in Figure 10.11. Without
prior semantic role assignment the model is more confused how to attend
target or landmark (H2). Finally, note that geometric VisKE s-features
help predicting the TARGET-LANDMARK roles when these are not assigned
top-down.

10.6 Related Work

Generating referring expressions Generating locative expressions is
part of the general field of generating referring expressions Dale and Re-
iter (1995); Krahmer and van Deemter (2011) with applications such as
describing scenes Viethen and Dale (2008) and images Mitchell et al. (2012).
The research on describing visible objects Mitchell et al. (2013) and human-
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Figure. 10.11: The average of 3 attentions of top-down models over sequences of
words 1...11 (a) comparing td and td + VisK E and (b) comparing
td order and td order + VisKE.

robot dialogue Kelleher and Kruijff (2006) raised question about grounding
relations in hierarchical representation of context. Application of neural lan-
guage models and using convolutional neural networks for encoding visual
features is an open question in interactive GRE tasks.

Encoder-decoder models with attention Recently several methods fo-
cused on finding better neural architectures for generating image descriptions
based on pre-trained convolutional neural networks have been introduced.
Karpathy and Fei-Fei (2015) align descriptions with images. Vinyals et al.
(2015) introduce an encoder-decoder framework. Xu et al. (2015) improve
this approach with spatial attention. Lu et al. (2017) introduce adaptive
attention that balances language and visual embeddings. The attention
measure provides an explanation of encoder-decoder architectures on how
each modality contributes to language generation. Based on the attended
features the performance of these models can be examined Liu et al. (2017);
Ghanimifard and Dobnik (2018). In our paper, we develop a model similar
to the adaptive attention which exploits its expressive aspects as a degree of
grounding in different features.

10.6 Related Work
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Outputs of external models as top-down features In another line of
work, the output of the bottom-up visual understanding is used as top-
down features for language generation. For example, an object detection
pipeline is combined explicitly with language generation. This procedure
was previously used in template-based language generation Elliott and Keller
(2013); Elliott and de Vries (2015). There have been attempts to combine
this process with neural language models with attention. For example, You
et al. (2016) extract candidate semantic attributes from images (e.g. a list of
objects in the scene), then the attention mechanism is used to learn to attend
on them when generating tokens of image descriptions. Instead of semantic
attributes, Anderson et al. (2018) use a region proposal network from a
pre-trained object detection model to extract the generated bounding box
regions as possible locations of visual clues. Then, the attention model learns
to attend on the visual features associated with these regions. The idea of
using an object detection module is also used in Johnson et al. (2016) where
Faster R-CNN Ren et al. (2015) is used to find regions of interest. Instead
of assigning one object class to each region, a full description is generated
for each proposed region. In all of these models, an image understanding
module extracts some proposed representations and then this knowledge
is used as a top-down representation of the scene to generate an image
description. In this paper, we investigate the extent to which different spatial
information is facilitating as a top-down knowledge to generate descriptions
of scenes with neural language models.

Modular design Our paper examines strategies that can demonstrate
language grounding within a neural architecture. The studies of neural
architectures such as Tanti et al. (2018b) provide analytical insight on
differences between multimodal architectures for language generation. The
modular design is mostly used in language parsing tasks such as Hu et al.
(2017) where object recognition, localisation and relation recognition are
separate modules for grounding different parts of image descriptions in
images in order to solve tasks such as visual question answering. In our
paper, the modularity of the neural architecture is not focused on parsing text
but used to incrementally demonstrate the contribution of each introduced
modality to language generation.

Multimodal embeddings There are related studies on learning multi-
modal embeddings Kiros et al. (2014); Lazaridou et al. (2015) to represent
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vision and language in the same semantic space. The focus of our paper
is to investigate how these different modalities complement each other in
neural language generation. In our models, the semantic representations
of spatial relations are considered as a separate modality extending both
the language and visual embeddings. There are related studies on encoding
spatial knowledge in feature space in order to predict spatial prepositions
Ramisa et al. (2015) or on prepositional embeddings which can predict
regions in space Collell and Moens (2018). In our paper, we investigate the
degree in which each embedding contributes to language generation within
the neural language model.

10.7 Conclusions

We explored the effects of encoding top-down spatial knowledge in a bottom-
up trained generative neural language model for the image description task.
The findings of the experiments in this paper are as follows:

(1) Overall, integration of top-down knowledge has a positive effect on
grounded neural language models for this task. (2) When combining bottom-
up language grounding with top-down knowledge representation as different
features, different types of top-down knowledge have different contribution
to grounded language models. The general picture is further complicated
by the fact that different spatial relations have different bias to different
knowledge. (3) The performance gain from the geometric features extracted
from bounding boxes (s-features) is smaller than initially expected, with
two possible explanations related to the nature of the corpora of image
descriptions: (i) The corpus contains images of typical scenes where the
relation of objects with each other is predictable from the description and
therefore is captured in the language model; (ii) As annotators are focused
on describing “what is in the image” rather “where things are spatially in
relation to each other”, descriptions of geometric spatial relations which
refer to the locational information are rare in the corpus. (4) The majority
of attention is placed on the language model which demonstrates that this
provides significant information when generating spatial descriptions. While
this may be a confounding factor if the visual features are ignored, the
language model also encodes useful information about spatial information as
discussed in Kulkarni et al. (2011); Dobnik et al. (2018).
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The results open several questions about grounded language models. Firstly,
the degree to which the system is using each modality can be affected by
dataset biases and this should be taken into account in the forthcoming work.
Given this bias, learning a single common language model for descriptions
of spatial scenes is insufficient as different kinds of knowledge may come
to focus in different interactional scenarios. This further supports the idea
that top-down integration of knowledge is required where we hope that
the models will learn to attend to the appropriate features. Secondly, our
investigation leaves open the question whether the representations both
visual and geometric that we use are good representations for learning
spatial relations. Further work will include a focused investigation of what
kind of geometric relations they encode.
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10.8 Appendix: Model Details

Generative language model We use a simple forward recurrent neural
model with cross-entropy loss in all model variations:

P(wiy1|wo:t,c) = §y11 = Fwot, c;0) (10.2)

T
loss(ki.t,0) = — Y _log(dx, - Gt (10.3)
t=0

where F represents the neural network function with parameters 6, inputs
wo.+ the sequence of words with wy the sentence marker ‘(s)’, and ¢ to repre-
sent the image or with additional top-down knowledge. §;;1 € [0,1]/V]is a
categorical distribution over the choices in vocabulary V' for the conditional
probability of the next word. The loss is calculated for each sample of word
sequence [Vy,,Vk, »---, Vky ), Which k; € {1,...|V[} refers to the word index in
the vocabulary, and dy, is its one-hot encoding.
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Simple encoder-decoder An encoder-decoder architecture without spa-
tial attention, similar to Vinyals et al. (2015), is the most simple baseline for
setting up the experiments and designing the foundation for fusing vision
and language. The input to the model is an image and the start symbol
< s > for the language model decoder. The word embeddings e; are con-
catenated with the scene visual features (v). The embeddings are randomly
initialised and learned as a parameter set for the model. The visual vectors
are produced by a pre-trained ResNet50 He et al. (2016). Then, v is made
by a dense layer translating the visual vector to a unified tensor size for
computational convenience. This layers also helps fine-tuning the visual
features.

F,(x) = ReLU(W, -z +by)
i1 Fo(v)

U= =%

where F), the function in Figure 10.2, v € R29® with ResNet50 dimensions,
W, € R100x2048 and p, € R190 are parameters to be learned as fine-tuning.
The resulting vector is concatenated to a word embedding and fed to the
Long-Short Term Memory (LSTM) network Hochreiter and Schmidhuber
(1997) and its output to a multi-layer perceptron (MLP) with a softmax layer
which predicts the next word, as it was described earlier in Equation 10.2.
This function would be:

§411 = softmax(MLP(LSTM([e; 4], hy—1))) (10.4)

where e; and h; respectively represent the word embedding and the hidden
unit in recurrent cell at time ¢ of the word sequence (Figure 10.3a). Ideally,
the spatial features must be learned bottom-up in v as other visual features
in the deep layers of convolutions in ResNet.

Adaptive attention The simple encoder-decoder architecture relies on
bottom-up learning of visual features and geometric arrangement of objects.
However, it has been shown in recent image captioning models that a spatial
attention mechanism to localise each word improves the language generation
Xu et al. (2015). Moreover, the attentions can be learned as an adaptation
of modalities. Based on this assumption we will use the adaptive attention
similar to Lu et al. (2017). In generalisation of adaptive attention, the feature
vectors including visual features from different locations as well as the
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contextual language features and other modalities = [f1, f2,.., fn] are fused
with weighted sum according to their attention weight &.

e=> aifi (10.5)
i=1

where ¢; represents the fused vector after applying adaptive attention on
n feature vectors. Knowing which features in what degree contribute to
prediction of the next word is decided in a multi-layer perceptron (M LP,)
with softmax as & in Figure 10.12. This module is formalised in a sequential
process as follows:

ze = W2tanh(W! . f,)
& = softmax(zy).
where &; = [oy.1,04,2,...,a4 ] is the output of the module in time ¢, and

WL, W? are the parameters of the module which will be trained in the
model.

31\!+1
<
Attention
N
a
f={fi.fr..., fn}

Figure. 10.12: The generalised adaptive attention module.

Bottom-up localisation With visual feature representing each region of
the image as in Figure 10.2, attention mechanism is going to work as lo-
calisation model. We designed the interaction between the attention mech-
anism and the language model more similar to Anderson et al. (2018):
two layers of stacked LSTM, the first stack (LSTM,) to produce features
for attention model, then the second stack (LSTM;) to produce contex-
tualised linguistic features to be fused with attended visual features (Fig-
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ure 10.3b). This design makes it easier to be extended with top-down visual

vectors.
49

Ct = Z Qi Vi + Oét75ohi (10.6)
=1
where each v, is a visual feature referring to one of the 49 locations in Fig-
ure 10.2, and h! is the contextualised language feature from LSTM;.

Top-down localisation Unlike the bottom-up localisation, the top-down
method has a list of regions of interest pre-processed from other procedures.
The process of region proposals can be part of a bottom-up process as in
Anderson et al. (2018) or Johnson et al. (2016) which instead of the grids of
regions in ConvNets in Figure 10.2 a Faster R-CNN Ren et al. (2015) is used
to extract all possible regions of interest. In this paper, we use the bounding
box annotations on images as the top-down localisation knowledge, then we
use ResNet50 to extract visual features from these regions Figure 10.4. At this
stage the top-down visual representation only proposes visual vectors of two
objects in random order without their spatial role in intended descriptions
shown in Figure 10.3d.

~ l
Ct = Qi 1Vobj, + O, 2Vobjy + 0t 3Ry (10.7)

where each v,,;, and v, are the visual features referring to two re-
gions in Figure 10.4, and h! is the contextualised language feature from
LSTM;.

Top-down target-landmark assignment Another top-down information
is the assignment of one region as the target and another region as the
landmark. This top-down knowledge is encoded as the order in the list of
two object, first object is the target and the second object is the landmark in
Equation 10.7.

PN l
Ct = Ot 1VTARGET + Ot 2VLANDMARK T Olt,?)ht (10.8)

where each vpareer and vianpmark are the visual features referring to two re-
gions in Figure 10.4 and their semantic role is defined top-down.

Top-down geometric features With top-down localisation we may lose
the relative location of two objects since they are processed separately in
two disconnected convolutional neural networks. Therefore, the top-down
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geometric features are required for grounding of denotation of the locational
words. Additionally, representing geometric knowledge can encode the
frame of reference. For example, a simple geometric relation between two
bounding boxes can be an arrow from the centre of one bounding box to the
centre of the other, however the choice between the order of objects depends
on the frame of reference (i.e. obj; — objs or 0bj1 < obj2). We represent the
geometric features by considering the top-down target-landmark assignment
(i.e. TARGET — LANDMARK). Therefore with these feature vectors we encode
the top-down frame of reference as well. This creates different variations of
feature fusions (Table 10.2).

Model name Visual features Attention
- 79 T
bud9 [v1,...,v40] &t = E i Qt,ivitagsohy
N 5 !
bud9 + mask [v1,...,v40] Ct = E i, @iV F ot 50hy + 518
. N 9
bud9+VisKE [V1,...,v40] &y = E ; 1(xt,i1),-+at,50hi+at‘5ls
i=
-~ T
td [Uobjlavobjz] Ct = @t.lvTARGET+0¢t,2ULANDMARK+at,3ht
P 1
td + mask [Vobjy s Vobjs] Ct = Qt,1Vobjy + Qt,2Vobjy + 0t 3y +vp a8
. A L
td+ VisKE [Vobjy s Vobjs] &t = Q¢,1Vobjy + O, 2Vobjg + Xt,3R; + it as
= T
td (Orde”‘) [’UTARGETu 'ULANDMARK] Ct = Qt,1VtaRGET T Ot ,2ViaNDMARK T Xt 3 ht
- l
td+ mask (OTdET’) [’UTARGETy 'ULANDMARK] Ct = Qt,1VtaRGET T Ut ,2VLaNDMARK T Xt 3 ht +at a8
. A l
td+VisKE (OTde’l") [’UTARGETy 'ULANDMARK] Ct = Q¢ 1 UTARGET + Qg 2 VianpMARK T Q.3 ht + Qt, 48

Table. 10.2: The visual features and their attention

In order to find the best encoding of top-down geometric features, we con-
sidered two different vectorisation strategies to represent relation between
two bounding boxes Figure 10.5.

* (mask) a concatenation of two mask vectors in 49 locations (Fig-
ure 10.5a).

* (VisKE) a dense representation with 11 geometric features according
to Sadeghi et al. (2015) (Figure 10.5b): where dx,dy are changes in
coordinates of the centres, ov,ov1,0v2 the overlapping areas (total,
relative to the first, and the second bounding box), hi,hs heights,
w1, wo widths and a1, ao areas.

Then, a feed-forward network with two layers (F;) is used to project ge-
ometric features into a 100-dimension vector to become comparable with
other modalities.
Fy(z) =W2tanh(W} 2 +b})
5= Fy(s)
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where s represents the transformed geometric spatial features, and W2 ¢
R100x100 7l ¢ R100x11 (). R100X98) gre the set parameters regarding this
module to be learned in the model.

10.9 Examples of generated descriptions

More examples of generated descriptions with beam search of depth 5 are
shown in Figure 10.13.

( “keyboard", “in front of", “computer")

stmple computer

bud9 keyboard on desk

td computer on top of desk
td order keyboard on computer

td order +VisKE keyboard on computer

" <

( “mirror”, “in side of", “semi")

stmple truck

bud9 truck has door
td door on truck
td order light on road

td order +VisKE mirror on truck

( “lanyard", “around", “neck")

simple tie

bud9 man has hair
td tie around neck
td order tie around neck

td order +VisKE tie around neck

Figure. 10.13: From VisualGenome: 2413204% 2417890° 2413371¢

2Schmidt (2010): CC BY-NC-SA 2.0.
byap (2008): CC BY-NC 2.0.
¢Coghlan (2011): CC BY-SA 2.0.
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Learning To Compose
Grounded Spatial Rela-
tions

Mehdi Ghanimifard and Simon Dobnik. Learning to Compose
Spatial Relations with Grounded Neural Language Models. In
Proceedings of 12th International Conference on Computational
Semantics (IWCS)-Long papers. 2017.

Abstract Language is compositional: we can generate and interpret novel
sentences by having a notion of meaning of their individual parts. Spatial
descriptions are grounded in perceptional representations but their meaning
is also defined by what neighbouring words they co-occur with. In this paper
we examine how language models conditioned on perceptual features can
capture the semantics of composed phrases as well as of individual words.
We generate a synthetic dataset of spatial descriptions referring to perceptual
scenes and examine how grounded language models built with deep neural
networks can account for compositionality of descriptions — by evaluating
how the learned language models can deal with novel grounded composed
descriptions and novel grounded decomposed descriptions, constituents
previously not seen in isolation.

11.1 Introduction

Representing and reasoning with linguistic meaning is a central task in
computational linguistics. Here two kinds of meaning representations are
used: (i) probabilistic language models and (ii) meaning representations
grounded in other, typically perceptual information. Recently, there have been
several approaches in deep learning that deal with both, either independently
or together.
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The main goal of probabilistic language models is to estimate a probability dis-
tribution of sequences of words based on observable samples from language
production, typically by estimating conditional probabilities of words with a
categorical distribution. This gives language models means for representing
words as sequences with a measure of likelihood for each sequence. Neural
language models perform this objective by parametrising a probability den-
sity function with parametric representations of words and functions which
compose words into phrases Bengio et al. (2003); Mnih and Hinton (2007);
Mikolov et al. (2010). The gradient based learning in neural networks turns
the modelling problem into an optimisation problem, minimising the error
or distance between a model prediction and an observable data over a list of
parameters:

1. parameters representing words with feature vectors known as word
embeddings;

2. parameters of functions composing word features into a structure;

3. parameters of projections from final composed representations to cat-
egorical probabilities which in sequential models are the next word
predictions.

There have been many attempts to show that the learned word embeddings
in vector spaces are good representations of meaning. Basing the argu-
ment on the distributional hypothesis, if a probabilistic model of words is
conditioned on their context words (i.e. skip-grams or bag-of-words), the
word embeddings must encode semantic information by having learned
distances in vector spaces which correspond to semantic similarity scores
obtained through relatedness tests performed by native speakers. These
representations were extended to word compositions by considering differ-
ent compositional functions as vector manipulations Mitchell and Lapata
(2010); Coecke et al. (2010); Baroni et al. (2014). Our notion of com-
position in a language model is broader than this: it involves (1) distri-
butional models of words estimated from word sequences as well as (2)
their grounding into representations of physical space. This extends the
Montague’s notion of compositionality. Lexical representations and their
compositions are not dependent on meaning postulates and lexicalised con-
straints but rather perceptual evidence which is (probabilistically) associated
with them.
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Harnad (1990); Roy (2005) define language grounding as a process of re-
lating words with an agent’s perception. The ambiguity and vagueness of
grounded meanings as well as of syntactic structures suggest that the connec-
tion between language and perception is gradient and therefore probabilistic.
The main approaches to probabilistic models of grounded language are prob-
abilistic learning of grounded language and grammar Roy and Mukherjee
(2005); Matuszek et al. (2012), classifiers Dobnik (2009), and feature repre-
sentations in perceptual space such as colour McMahan and Stone (2015).
Our proposal is in line with all three approaches.

A grounded language model is a language model conditioned by perceptual
representations that it refers to. Ideally, the model should capture how each
constituent in the composed phrase relates to some perceptual represen-
tations. For example, in an image captioning task, a grounded language
model estimates a conditional probability of a word sequence wi.p given
some image feature ¢ that the words refers to. A general way to model
word sequences is to use the chain rule as follows. The model can gen-
erate phrases and sentences step-by-step by predicting the next word in a
sequence:

T
Pr(wy.rle) = HPr(wt|w1:t,c) (11.1)
t=1
The parametrisation of vision and language is often done by combining word-
embeddings with multimodal embeddings Kiros et al. (2014); Socher et al.
(2014). In the state of the art models for image captioning with encoder-
decoder architecture, the encoder module is trained under the assumption
that grounded words only denote features in subareas of an image, e.g
bounding boxes Karpathy and Fei-Fei (2015) and pixel-wise mapping with
attention models Xu et al. (2015); Lu et al. (2017). Another example of a
visually grounded language model is a model that is used to demonstrate
the compositionality of colour descriptions in Monroe et al. (2016) where
linguistic descriptions are associated with areas of the colour space. Similar
to McMahan and Stone (2015), each observed instance is a colour term
paired with a colour code but instead of considering each description as
a lexical entry, phrases are captured by a grounded language model as in
Equation 11.1. The qualitative human evaluation of how newly composed
colour words by this model refer to the colour space suggest that language
models can capture compositionality through gradient learning used with
neural networks.
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In this paper, we follow up and extend the work of Monroe et al. (2016).
We focus on recurrent neural language models of sequences of words con-
ditioned by encoded locations that these words refer to in visual scenes.
Hence, we are interested in grounded semantic composition that is not only
captured by probabilistic models of words given their context words, but
also by models of their relatedness to perceptual representations. An im-
portant and novel question we investigate is what these models are learning:
to what degree the representations of meaning (both collocational from
vector spaces and grounded in perception) are interpretable and therefore
compositional in the sense of Montague (1974). We focus on one domain of
grounded meaning: spatial descriptions of various length and their ground-
ing in spatial templates of Logan and Sadler (1996). In particular we try
to answer the following questions: (1) To what extent are the language
models that have been learned grounded in spatial representations? (2) Is
it possible to generate new, previously unseen grounded composed spatial
descriptions from observing their words only in other grounded composed
phrases?

This paper is organised as follows. In Section 11.2 we describe the creation
of an artificial dataset of composed spatial templates and the associated
descriptions based on the experimental work of Logan and Sadler (1996).
In Section 11.3 we describe our neural network model which we use for
training our grounded language model. Section 11.4 describes an evaluation
of the learned representations compared to the original representations the
system was learning from. Finally, Section 11.5 points to conclusions and
further work. The code and results are available at https://github.com/
GU-CLASP/spatial-composition.

11.2 The dataset

In order to train a grounded language model we require samples of language
use paired with locations they are referring to. Considering the rationality
of speakers and their observers Grice (1975), the frequency of each co-
occurring utterance-location corresponds to the appropriateness of such
utterance as a description of that location. One complication of judging the
appropriateness of spatial terms this way is that they are not only depended
on the location they describe but also on other properties of the situation
such as the agreed frame of reference, object shape, and the function of the
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landmark and the target objects involved, etc. Herskovits (1986); Dobnik
and Cooper (2017). However, these properties will not be considered in the
present study.

Logan and Sadler (1996) performed several psychological experiments re-
lated to the geometric apprehension of spatial relations. For example, they
collected acceptability ratings (1-9) for a set of spatial relations per different
locations of the target object in a 7 x 7 grid relative to the landmark object in
the centre (3,3). The acceptability scores were collected from 32 informants
through random presentation and then averaged per location. The matrix of
average acceptability scores per description is called a spatial template and
represents the appropriateness of each location in the process of interpreting
that spatial relation Logan and Sadler (1996). They collect spatial templates
for the following spatial relations: right of, left_of, below, under, over, above,
near_to, next_to, far_from, and away_from which we also apply in our work.
Furthermore, in order to be able to explore the limits of the language models
for learning compositions, we extend this vocabulary with a few additional
words. We describe how we used them to synthesise the composed spatial
templates for our training data in the following section.

11.2.1 Spatial templates as probabilities

As stated earlier, the spatial templates of Logan and Sadler (1996) give us the
average acceptability scores on the scale 1-9 for each of 7 x 7— 1 locations.
In the process of grounding a description (wi.7 = wiws...wr), a vector
of scores representing its spatial template is used to rank the description’s
acceptability across all possible locations:

Tw,.p = {Score(wr.r,l) }ier (11.2)

Our goal is to find such representation for any composed phrase wy.7. We
introduce the following assumption to convert the acceptability scores to
probabilities. The acceptability scores are an indicator of a degree of belief
Ramsey (1931) that a rational speaker would use a particular description
(w1.7) to describe the landmark object at a certain location (c € L). We
therefore expect:

Score(wy.,c) < Pr(wy.p,c) (11.3)
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where the Pr(wj.r,c) is the probability of observing a co-occurrence of
a phrase wy.r and a location c¢. In order to be able to compare spatial
templates generated by the learned neural language models and the original
acceptability scores which were used to generate the training data, we
assume that all locations are equally accessible, then:

Pr(wy.r,c) = Pr(wy.r|c)Pr(c)

11.4
= Scorewy.T,c) o< Pr(wi.r|c) ( )

We compare the generated probability scores by our neural language model,
a vector of probabilities over all locations, for a particular description with
its expected spatial template. We use a correlation coefficient to quantify
the difference between a predicted and the “real” spatial template. A spatial
template gives us information about the applicability of each location. When
choosing a location given a description we would consider the ranking of
locations by their applicability score. Hence, since we are not interested in
the actual scores but their ranking, Spearman’s rank correlation coefficient
is a suitable measure for comparing spatial templates.

Twy.p = {Scorew, itier
Ty = {Pr(wrrlc)hicr (11.5)
P(Twyps Twy.pr) Spearman’s rank correlation coefficient

11.2.2 Synthesised data

Considering the assumptions from the previous section, using a simple min-
max normalisation, the list of scores in a spatial template can be translated
to a Bernoulli probability of events:

Score(wy.,c)—1

1 (11.6)

P’I“(’LU();T,C) ~ Swy.p,e =

Using these probabilities, we synthesise instance events of locations and de-
scriptions that make our training dataset using the same method as Coventry
et al. (2004). Having normalised acceptability ratings as probabilities, we
can generate samples with a frequency corresponding to these probabili-
ties.

freq(wg.r,c) =nx Pr(wg.,c) (11.7)
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For example, by choosing n = 5, for a location with normalised scores 0.58
for right_of, 0.15 for left of and 0.91 for next to, we generate 2, 0, 4
instances for each respective description.

Logan and Sadler (1996) present acceptability scores for spatial descriptions
obtained experimentally only for single-word spatial descriptions such as
left and above. However, in our task we need their composed representa-
tions. We take the assumption that all spatial templates compose with some
known function. For example for two spatial descriptions conjoined with
an intersective and “{spatial term1} and {spatial term2}”, Gapp (1994)
discusses (but not experimentally evaluates) five compositional functions for
grounding spatial templates. More recently, Dobnik and Astbom (2017) show
that taking a geometric mean over acceptability scores per location give highly
correlated compositions with spatial templates of composed descriptions
obtained experimentally. Another study on representing binary beliefs with
beta distributions Jgsang and McAnally (2005), shows that the product of
scores has the best approximation for conjoined opinions. We also take this
as our compositional function to generate spatial templates for composite
descriptions as in Figure 11.1, here further defined as:

gn + (v,v5) = [vg,“and”, vj] (11.8)

N

Sg/\(’Ui,’Uj),C S'Uiyc X S'Uj7c

Where g, is a grammar rule for conjoined composition. Similarly, following
Jpsang and McAnally (2005), logical OR-composition can be defined with
co-multiplication:

gv  (v5,v5) — [“either”,v;, “or”, vj]

(11.9)

Sgv(vivj),e =  Svje + Suj,c — Sus,e X Suj ¢

For negation “not {spatial_term}” we take a complement of the acceptability
scores as shown in Figure 11.1.
g- : v—[“not”,v] (11.10)

Sga(w)e = 1=Sve

The resulting compositions are shown in Figure 11.1. One might object to
the usage of such synthetic data. It is important to note that the prime goal
of this work is not to learn grounded models of spatial language that would
best approximate human intuitions but to test to what degree grounded

11.2
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Figure. 11.1: Spatial templates in a 7 x 7 grid: (a) and (b) are spatial templates
for “above” and “right” from Logan and Sadler (1996) collected from
human judgements. (c-h) are their synthetic compositions. (c) and
(d) are intersective-AND compositions of two spatial templates using
point-wise multiplication. (e) and (f) represent the negation of (a) and
(b) using a complement operation. (g) and (h) are logical-OR compo-
sitions of two spatial templates using a point-wise co-multiplication.

neural language models are capable of capturing grounded compositionality
expressed as compositional functions of various complexities which have
been confirmed in the previous literature to work well. Hence, we are
interested in testing to what extent new machine learning models are capable
of learning these functions.

We create two datasets. In the first dataset all descriptions are grounded in
spatial templates as described above. In the second dataset additional words
were added which we assume have no grounding in perception to test if the
neural language model is able to distinguish them from the words sensitive
to grounding. For example: “{the object | it | the ball} is {spatial phrase}
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{the object | it | the box}”. The following additional grammar rules were
applied during the generation of the second dataset:

gt (R o]

g2 ¢ (k) = [“it?,“is7 v¥]

gz (vk) = [“it7,“is”, vk, “the” , “box”] (11.11)
g4 (vx) = [“the”,“ball”,“is” v, “the” , “box"|

gs (vx) — [“the”,“object”,“is” ,vx, “the” , “box" |

In the generated descriptions, words such as and, not, the, box, ball, it, object,

Algorithm 1 Synthetic generator

1: n=5
2 Jcompositional = {ghgﬂag/\vg\/}

3! Gtextual = {gla927g3ag4vg5}
4: procedure SYNTHETICGENERATOR (v, ¢, )

5 Jreq < nxX3gs).c

6 for 1 to freq do

7: syntax < choose_random(gieptual)
8 text < syntax(g(vx))

9 Generate(tert, c)

and is are not grounded in locations individually but the phrases they occur
in refer to locations on the map.

11.3 Neural network architecture

We use the Recurrent Neural Network (RNN) architecture for a language
model Graves (2013) with Long-Short Term Memory (LSTM) Hochreiter
and Schmidhuber (1997) and a decoder architecture from Cho et al. (2014)
which concatenates word-embeddings of each input word with an encoded

location:
yi = Pr(wfwii—1,c)
hy = folew, ;¢ hi—1) (11.12)
¥+ = softmax(Wh;+Db)

where §; is the expected categorical probability at time ¢, f is a recur-
rent cell with parameters 6, e, is an embedding vector for a word w,
and c is an encoded location as a one-hot vector as shown in Figure 11.2.
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P(Wi = Vi | Wo-1 ,€) P(w; =not| <s>,¢) P(w, =below| <s>,not,c) P(w; =</s>|<s>not,below,c) ...P(w =<pad> [Wp.;.c)...

vi above above above above above

A R below . below . below below . below

<pad> <pad> <pad> <pad> <pad>

<s> not below </s> < pad >

Figure. 11.2: The diagram on the left illustrates the architecture of the model at
word/time-step ¢ using a vocabulary size n. On the right, there is
an unfolded example how a phrase like “not below” is paired with a
location c as in (wy.7,c) and fed as input to the LSTM decoder. In this
setup, similar to Graves (2013), we train the model to predict the next
word in a sequence and the chain of output probabilities is taken to
estimate the final probability. The sequence can be cut before reaching
the end tag < /s >.

The training set in a batch are pairs of word sequences and their correspond-
ing location codes: {(w(i)l,T,c(i))}ie p where D is our training dataset. The
loss function used is the cross entropy distance between predicted distribu-
tion and targeted distribution or log-loss. The observed true output y( Vs
represented with one-hot encodings. The training process can be sumrnarlsed
as follows: A
vt 0,00
L (@) Z?“ Ty >1og< ) (11.13)
ST logls) )

We train the network parameters with Adam stochastic gradient descent

Kingma and Ba (2014) with batch normalisation implemented as an op-
timiser in Keras Chollet (2015). On each mini-batch update as (O, +
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Op_1+ AdamSGD(VeL)) the following parameters of the model (©) are
updated:

{ew}wey Embedding vectors for all words
0 Parameters of the RNN cell, composed feature vectors

Wb Parameters of the final dense layer
(11.14)

11.3.1 Implementation

We implemented our model in Keras Chollet (2015) with TensorFlow Abadi
et al. (2015) as a back-end. All parameters were initialised randomly with
Keras recommendations. In the current implementation, the size of the hy,
the hidden unit of LSTM, is 15, and the parameters of the RNN cell have a
dropout of 0.1. The dropout on embeddings is set to 0.3.

We left-padded descriptions wq.7» with a starting token wy =< s > and
right-padded them with a finishing token w1 =< /s > while the rest was
padded with < pad > up to the maximum description length of 7'+ 1 as
illustrated in Figure 11.2. The final yp11 can be either < pad > or < /s >.
The length of the RNN chain has to be of the fixed size T'+ 1, the length
of the longest possible sentence, in order to be used with Keras and its
implementation on graphic cards.

During each experiment, we trained the model until it reached an over-fitting
point with equal training and validation loss.

11.3.2 From the outputs of the RNN to probabili-
ties of composed descriptions

The decoder architecture of RNNs is normally used as a generator which
produces sequences of words or characters from an encoded sequence,
e.g. Cho et al. (2014); Graves (2013). This can be achieved by applying
Equation 11.1. The decoder predicts the most likely next word in a chain
of softmax productions y;. The unfolded RNN in Figure 11.2 shows how
for a sequence of words as input vectors, ¥, are predicted which represent
categorical probabilities for all possible following words at a time step t.

11.3
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For a given sequence, wi.7 = v, .x,, wWe estimate the probabilities using
Equation 11.1 as follows:

Pr(wg = v, |wiii—1 =V ky,0) = Fie(vk,)

) (11.15)
PT(’UJl;T = vkl:kT |C) = Hf:l Yt ('Ukt)

The estimated probability is then used to generate spatial templates as in
Equation 11.5. The probabilities over all possible locations on the map L for a
given composition of words can be aggregated as follows:

Topyg, = AP (WL = Opy by |)}eer (11.16)

11.4 Evaluation

We evaluate the learning of composed grounded phrases by examining to
what degree the spatial templates produced by the learned model correspond
to the original spatial templates that were used in generating the training
data, how successful is the learning with different kinds of compositions,
and what is the effect of adding distractor words. We ran two experiments,
(1) on a simple synthetic dataset containing short phrases where all words
are grounded in locations, and (2) on a synthetic dataset generated with
five additional grammar rules from Equation 11.11, introducing words
without spatial grounding or distractor words. We test the learning of
compositional phrases by training a language model on phrases produced
by individual composition types as well as all composition types in both
synthetic datasets. A comparison of the predicted spatial templates with
the original spatial templates with Spearman’s rank correlation coefficient
(Equation 11.5) in Table 11.1 shows that there is high correlation between
them. We report the average Spearman’s p and their median p-values for
statistical significance.

For both Experiment 1 and 2 we created two variations: (1) learning of
novel grounded compositions, where different proportions of AND-phrases
and OR-phrases are omitted from the dataset and therefore hidden from
the learner; (2) learning of novel single words from grounded compositions,
where proportions of single-word instances are omitted from the dataset and
their representations can only be learned from their occurrence in composed
phrases with other words.
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Simple phrases ~ With distractors  Untrained

AND-phrases 0.87 0.85 -0.00
NEG-phrases 0.72 0.82 0.03
OR-phrases 0.79 0.80 -0.03
SINGLE-word 0.92 091 -0.05
All previous 0.83 0.83 -0.01
All previous + distractors NaN 0.84 -0.03

Table. 11.1: For each type of compositional phrases we calculate the average Spear-
man’s rank correlation coefficient (p) between the predicted spatial
templates and the templates used to generate the training data. The me-
dian p-value of p of all trained models is < 0.001. The column Untrained
indicates the performance of the model with a random initialisation of
weights.

In all experiments we hold out 10% of the dataset for validation. In Ex-
periment 1 we iterated the training over 64 epochs using a batch size 8.
In Experiment 2, using a batch size 256, we stopped learning iterations
before 1024 epochs if the validation loss became equal to the training
loss.

11.4.1 Experiment 1: Learning composition of short
phrases

In this experiment the training data is generated for single spatial words,
AND-compositions, OR-compositions, and negated phrases without addi-

o«

tional distractor words save “and”, “either”, “or”, and “not”.

Learning of novel grounded compositions

The training data contains synthesised samples of all single words and their
negations. However, different proportions of AND-phrases and OR-phrases
are removed from the training set to test if the model can learn unseen
composed phrases. Table 11.2 shows the average of Spearman’s p correlation
coefficient for different portions of held-out phrases. Figure 11.3 illustrates
some predicted novel grounded compositions where 50% of complex phrases
were held out. The p scores lower than 0.6 may not be trustworthy, e.g.
“above and left of” with p = 0.5 in Figure 11.3.
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Proportions

of 90 combi- 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
nations

AND-phrases 0.84 0.8 0.78 0.76 0.71 0.67 0.64 0.53 0.45 0.29
OR-phrases 0.74 0.73 0.69 0.67 0.56 0.57 0.54 0.38 0.23 -0.23

Table. 11.2: Spearman’s p for held-out proportions of phrases. up to 80% have a
median p-value < 0.001 and p-value > 0.05 for higher proportions.

above and left_of next_to and above either far_from or next_to below and right_of

S T B B~ B B F < P B - T

above and left_of next_to and above either far_from or next_to below and right_of

e e o - - - | [ - ... e0e 00000
® e 0 + - . . « e e ® o000 0o -
e o @ + o+ .+ . c s 00 0 o o IEEEXEX)
- N R N eooleee B - -
. .o . 000000 s e 0 0
® o 0o 0 0 00 - o 0 0
® 0000 00 s - o 00
p=0.50 p=0.91 p=—0.05 p=0.80

Figure. 11.3: The predicted spatial templates are shown on the top and the original
spatial templates in the bottom.
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The results indicate that the model can produce spatial templates for novel
compositions. However, the learning of composed phrases is dependent
on the size and the variety of training instances. Some phrases are more
difficult to train than others. For example, OR phrases correspond to regions
that are more spread out across the 48 locations which makes them more
difficult to learn, e.g. an extreme case such as “either far from or next

”

to

Learning of novel single words from grounded compositions

In this experiment we omit identical proportions of all description types,
thus also single word descriptions and negated descriptions. In this case, the
predicted novel spatial templates are learned solely based on observing these
words in combination with other words. As before, we conduct the test with
different sizes of held-out data. The results are shown in Table 11.3. When
omitting up to 4 single descriptions (right_of, over, far_from and under) the
average p on grounded SINGLE-word descriptions decreases only by 0.05
(from 0.92, Table 11.1). This means that their grounding is successfully
learned from grounded composed expressions. Figure 11.4 shows a novel
learned spatial template for “above”.

10% 20% 30% 40%
AND-phrases  0.86 0.8 0.77 0.81
NEG-phrases 0.83 0.64 0.59 0.43
OR-phrases 0.73 0.78 0.68 0.69
SINGLE-word 0.9 0.9 0.84 0.87

Table. 11.3: The average Spearman’s p for different proportions of unseen examples.

above above
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Figure. 11.4: The predicted and the original spatial template.
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Qualitative observations

A qualitative examination of the predicted spatial templates shows that spa-
tial templates with the lowest p are those with no points in space (“right_of
and left of”) or those with a uniform spread of points across space (“either
far from or next to”) which in our scenario includes a number of training
instances as rules from Section 11.2.2 were applied to all combinations of
spatial templates. We get the highest p with compositions such as “over and
above”, possibly because the two spatial templates overlap and result in a
simplified composed representation.

11.4.2 Experiment 2: Adding distractor words with
no spatial grounding

In Experiment 2 we train and measure the performance of the model on
grounded descriptions which also include non-grounded distractor words,
for example: “the ball is not left_of the box” or “it is above and right _of the
object”. The words such as “ball”, “object”, “box”, “it” and “is” provide no
contribution to the grounded meaning (location). In this dataset the number
of possible composed phrases increases from 200 to 1,000. Algorithm 1 in
Section 11.2.2 ensures that in the 1,000 possible phrases the same number of
instances is generated as before, now per each of the five permutation rules
introducing distractors. The held-out proportions of spatial descriptions are
created before Algorithm 1 is applied so permutations including these are
not generated.

Learning of novel grounded compositions
Although now the training data includes longer sequences and several dis-
tractors which make these compositions harder to learn, the results are only

slightly weaker than in Experiment 1 as shown by a comparison of Table 11.4
with Table 11.2.

Learning of novel single words from grounded compositions

The results of this task on the dataset from Experiment 2 are shown in
Table 11.5. The p are nearly identical or only slightly lower for SINGLE-words
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Proportions

of 90 combi- 10% 20% 30% 40% 50% 60% 70% 80%
nations

AND-phrases 0.82 0.79 0.75 0.78 0.73 0.69 0.66 0.45
OR-phrases 0.78 0.69 0.67 0.66 0.59 0.59 0.44 0.33

Table. 11.4: The average Spearman’s p with the median p-value of < 0.001. After
80% of held-out phrase types the p values are not statistically signifi-
cant.

10% 20% 30% 40%
AND-phrases 0.82 0.60 0.71 0.81
NEG-phrases 0.75 0.66 0.45 0.30
OR-phrases 0.76 0.76 0.71 0.64
SINGLE-word 0.88 0.43 0.73 0.84

Table. 11.5: The average Spearman’s correlations decomposition task Experiment 2.

compared to Experiment 1 (Table 11.3). There is an unusual drop in p at 20%
of held-out descriptions which requires further investigation. Overall, we
can conclude that the system successfully learned omitted single words from
their grounded compositions even with distractor words.

11.4.3 Experiment 3: How much grounding?

In Experiment 3, we examine how the amount of training corresponds to the
groundedness of expressions in spatial templates. In particular, we examine
the learning curve across several epochs at which more of the same data
is presented incrementally to the learner and how well does the currently

—— Training loss
12 Walidation loss
Spatial template o

epochs

Figure. 11.5: The learning curve for Experiment 3.
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learned model corresponds to the target spatial templates. Typically, the
performance of the learner at each epoch is estimated by a loss function,
here the cross-entropy (log-loss). We compare the loss at each epoch with
the average Spearman’s p between the predicted templates and the original
templates for 110 possible combinations of descriptions from Experiment
1 (excluding OR-phrases). Here, we only run the experiment with 20%
omission of the dataset. Figure 11.5 shows how average p corresponds
to the learning progress. The figure shows that even after the training
and the validation loss are only slightly decreasing between epochs the
groundedness is increasing at a higher rate. This can be explained by the
fact that the network is not only predicting locations but also sequences of
descriptions which adds a further complexity to learning which is reflected
in the loss.

11.5 Conclusion and future work

We have presented a grounded language model with recurrent deep neural
networks. The objective of our task was to examine to what extent our neural
network architecture can learn a grounded language model that generated
the training data and whether a word that is grounded as a part of a phrase
can “carry over” its grounding to another phrase not observed in the training
data. In our view this is the ultimate test that grounding is compositional.
We conduct two learning experiments. In the first experiment we learn a
grounded language model where all descriptions in a sequence are grounded.
In the subsequent sub-experiments we test the success of the grounded
language models where some word compositions are omitted from training.
We show that the model is capable of grounding novel compositions and also
predicting grounding of single words while only learning from compositions.
However, the degree of success, while on overall high, is dependent on the
amount of the absent information and the coverage of the training instances.
In the second experiment, we add words to our grounded language model
that have no grounding and test whether the system is able to learn different
grounding sensitivities of different words. We show that our language model
is capable of recognising the contribution of each constituent to the meaning
of the entire grounded composition. Finally, in the third experiment we
examine grounding related to the log-loss success rate of learning. Overall,
we conclude that our deep neural architecture successfully learns grounded
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spatial descriptions in a way that the learned functions are similar to the
ones that generated the data. This is a useful result which points towards
the fact that language is compositional both at the level of word sequences
and the portions of scenes that they refer to, thus confirming the result in
Dobnik and Astbom (2017). In the future work we will focus on the effects
of the varying dataset sizes on the rate of learning and test the learning
setup on more complex perceptual representations (in terms of the expected
irregularities) such as images.
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Metaphoricity Of Compo-
sitions With Distributional
Representations

Yuri Bizzoni, Stergios Chatzikyriakidis and Mehdi
Ghanimifard. “Deep” Learning: Detecting Metaphoricity in
Adjective-Noun Pairs. In Proceedings of the Workshop on Stylistic
Variation, pp. 43-52. 2017.

Abstract Metaphor is one of the most studied and widespread figures
of speech and an essential element of individual style. In this paper we
look at metaphor identification in Adjective-Noun pairs. We show that
using a single neural network combined with pre-trained vector embeddings
can outperform the state of the art in terms of accuracy. In specific, the
approach presented in this paper is based on two ideas: a) transfer learning
via using pre-trained vectors representing adjective noun pairs, and b) a
neural network as a model of composition that predicts a metaphoricity
score as output. We present several different architectures for our system
and evaluate their performances. Variations on dataset size and on the kinds
of embeddings are also investigated. We show considerable improvement
over the previous approaches both in terms of accuracy and w.r.t the size of
annotated training data.

12.1 Introduction

The importance of metaphor to characterize both individual and genre-
related style has been underlined in several works (Leech and Short, 2007,
Simpson, 2004; Goodman, 1975). Studying the kinds of metaphors used
in a text can contribute to differentiate between poetic and prosaic style,
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etc. In literary studies, metaphor analysis is often undertaken on a stylistic
perspective: "after all, metaphor in literature is a stylistic device and its
forms, meanings and use all fall within the remit of stylistics" Steen (2014).
Metaphor is thus often taken into consideration qualitative stylistic analyses
(Fahnestock, 2009). Nonetheless, it is still very difficult to take metaphors
into account in computational stylistics due to the complexity of automatic
metaphor identification (Neuman et al., 2013; Beigman Klebanov et al.,
2015), which is the task of identifying metaphorical usages of text, sentences
or subsentential fragments.

This paper’s focus of interest is the automatic detection of adjective-noun
(AN) pairs like the following:

* Clean floor / clean performance
* Bright painting / bright idea
* Heavy table / heavy feeling

The above examples illustrate that adjectives “normally" used to describe
physical characteristics, e.g. a feature that can be perceived through senses
like size or weight, are reused to describe more abstract properties. Thus,
both a painting and an idea can be bright, both a table and a feeling can
be heavy. We will not provide a mean to retrieve AN metaphors in uncon-
strained texts (e.g. we won’t focus on segmentation) but we will study ways
to detect metaphoricity in given pairs. Theoretical work on metaphor in the
linguistics literature goes back a long way and spans different theoretical
paradigms. One of the earliest and most influential works is Conceptual
Metaphor Theory (CMT) Lakoff and Johnson (2008) (originally published
in 1981) and subsequently elaborated in a couple of papers Lakoff (1989,
1993). According to CMT, metaphors in natural language can be seen as
instances of conceptual metaphors. A conceptual metaphor roughly corre-
sponds to understanding a concept or an idea via association or relation
with another idea or concept. Other influential linguistic approaches to
metaphor include pragmatic approaches cast within frameworks like rele-
vance theory Romero and Soria (2014); Wilson (2011), and also approaches
where some sort of formal semantics is used Vogel (2001). The common
denominator in all these approaches is the recognition that there is system-
aticity in the way metaphorical meanings arise and also that the process of
metaphor construction is extremely productive. Thus, given these proper-
ties, one would expect metaphors to be quite common in Natural Language
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(NL). Evidence from corpus linguistics seems to support this claim Cameron
(2003).

Metaphor detection in statistical NLP has been attempted through several
different frames, such as topic modeling Li and Sporleder (2010b), seman-
tic similarity graphs (Li and Sporleder, 2010a), distributional clustering
(Shutova et al., 2010), vector space based learning Gutiérrez et al. (2016)
and, most of all, feature-based classifiers Tsvetkov et al. (2014). In the latter
case, the challenge consists in selecting the right features to annotate the
training data with, and to review their "importance" or weight based on
machine learning results.

In this paper we show how using a single-layered neural network combined
with pre-trained distributional embeddings can outperform the state of the
art in an AN metaphor detection task.

More specifically, this paper’s contributions are the following:

* We introduce a system to predict AN metaphoricity and test it on the
corpus introduced by Gutiérrez et al. (2016), showing a significant
improvement in accuracy.

* We explore different variations of this model based on ideas found in
the literature for composing distributional meaning and we evaluate
them under different constraints.

The paper is structured as follows: in Section 2 we present the background
on AN metaphor detection and we detail the dataset we use to train our
model. In Section 3 we describe our approach, giving a general overview
and further describing three alternative architectures on the same model.
In Section 4 we present several evaluations of our model. Table 12.1 and
Table 12.2 synthesize some of our findings. In Section 5 we discuss our
findings and possible future applications of the work described in this pa-
per.

12.2 Background

In the specific task of detecting metaphoricity for AN pairs we find four
relevant works that seem to represent the main stages in figurative language
detection until now.

12.2
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Turney et al. (2011) 0.79 | Yes | 100 LSA
Tsvetkov et al. (2014) | 0.85 | Yes | 200 -
Gutiérrez et al. (2016) | 0.81 | No | 8592 DSM
Our model 0.91 | No | 8592 | Word2Vec

Table. 12.1: The reported accuracy from previous words on AN metaphor detection.
The first two studies used different datasets. We are using larger pre-
trained vectors than Gutiérrez et al. (2016); at the same time, we
don’t need a parsed corpus to build our vectors and we don’t use
adjectival matrices. Given these differences, this comparison should
not be considered a “competition”.

The oldest work of the series, Krishnakumaran and Zhu (2007), strongly
relies on external resources. They adopt a WordNet based approach to
recognize Noun-Noun (NN), Noun-Verb (NV) and AN metaphors. Their work
is mainly based on qualitative analyses of specific examples and shows that,
while they can be useful in such a task, hyponym/hypernym relations are not
enough to distinguish metaphors from literal expressions.

More recently, Turney et al. (2011) adopt a two-stage machine learning
approach. They first try to learn the words’ degree of concreteness and then
use this knowledge to detect whether an AN couple is metaphorical or not.
They measure their performance on 100 phrases involving 5 adjectives and
reach an accuracy of 0.79. It is worth noting that this choice is not random:
the authors select the abstract/concrete polarity based on psycholinguistic
findings that seem to validate the hypothesis that some kinds of metaphorical
expressions are processed as abstract elements.!

These results were outperformed by Tsvetkov et al. (2014) through a random
forest classifier using DSM vectors, WordNet senses and several accurately
selected features, such as abstractness. They also introduce a new set of 200
phrases, on which they declare an F-score of 0.85.

1For a more recent study on this issue see Forgacs et al. (2015).
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Random W | Trained W
cat-linear 0.8973 0.9153
cat-relu 0.8763 0.9228
sum-linear 0.8815 0.9068
sum-relu 0.8597 0.9150
mul-linear 0.7858 0.8066
mul-relu 0.7795 0.8186

Table. 12.2: The accuracy results after training the model based on each architec-
ture. In all setups, we trained on 500 samples in 20 epochs. Using a
random W is equivalent to preventing our network from learning any
form of compositionality (we could consider it as a baseline for models
with trained W). As we discuss in the paper, the difference in accuracies
with the “baseline" (not training W) shows that training W is helpful.

Finally, Gutiérrez et al. (2016) train a distributional model on a corpus
of 4.58 billion tokens and test it on an annotated dataset they introduce
consisting of 8592 AN phrases. This is the same dataset we are using in this
paper and the largest available to date.

They first train distributional vectors for the words in the dataset using
positive pointwise mutual information. Then, for each adjective present in
the dataset, they divide the literal phrases the adjective occurs in from the
metaphorical phrases the same adjective appears in. Then, three different
adjective matrices are trained: one to model the adjective’s literal sense,
one to model its metaphorical sense, and one trained on all the phrases
containing this adjective, both literal and metaphorical. They then develop a
system to “decide" whether a particular occurrence of an adjective is more
likely to relate to the “literal matrix" or the “metaphorical matrix". It is
shown that, although such matrices are trained on relatively few examples,
they can reach an accuracy of over 0.78.

12.2.1 Corpus/Experimental Data

The dataset we are using comes from Gutiérrez et al. (2016). 2 It contains
8592 annotated AN pairs, 3991 being literal and 4601 being metaphori-
cal. The dataset focuses on a set of 23 adjectives that: a) can potentially
have both metaphorical and literal meanings, and b) are fairly produc-
tive.

2The dataset is publicly available here: http://bit.ly/1TQ5czN
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The choice of adjectives was based on the test set of Tsvetkov et al. (2014)
and focuses on 23 adjectives.

In details, all adjectives belong to one of the following categories:

temperature adjectives (e.g. cold)
light adjectives (e.g. bright)
texture adjectives (e.g. rough)
substance adjectives (e.g. dense)
clarity adjectives (e.g. clean)
taste adjectives (e.g. bitter)
strength adjectives (e.g. strong)
depth adjectives (e.g. deep)

© N RN

The corpus was carefully built in order to avoid non-ambiguous elements: all
the AN phrases present in this dataset were extracted from large corpora and
all phrases that seemed to require a larger context for their interpretation
were filtered out in order to eliminate potentially ambiguous idiomatic
expressions such as bright side.

In other terms, the corpus was designed to contain elements whose metaphoric-
ity could be deduced by a human annotator without the need of a larger

context.

More details about the construction of the dataset and annotation methodol-
ogy can be found in Gutiérrez et al. (2016).

12.3 Describing our approach

12.3.1 The model framework
Our objective is to build a classifier that disambiguates between metaphoric
and literal AN compositions by providing a probability measure between 0

and 1. We based the framework of the model on the following ideas:

1. Transfer learning: we use pre-trained word-vectors to represent AN
pairs as input.
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2. A neural network as a model of composition for the AN phrase: our
model represents phrases with vectors, then based on this representa-
tion predicts a metaphoricity score as output. Although we are going
to present several variations of this framework, it’s important to re-
member that the basic model is always a standard NN with a single
fully connected hidden layer we will call p.

Our approach is thus based on the idea that well-trained distributional
vectors contain more valuable information than their reciprocal similarity
and, furthermore, that it is possible to treasure such information through
machine learning in different tasks. We use 300-dimensional word vectors
trained on different corpora (see Evaluation for more details) . Our approach
can be considered as a way of transferring the learned representation from
one task to another. Although it is not possible to point out an explicit
mapping between the word-vector learning task (e.g. Word2Vec model) and
our metaphoricity task, as it is pointed out by Torrey and Shavlik 2009, we
use neural networks which automatically learn how to adapt the feature
representations between two tasks Bengio et al. (2013). In this way we
stretch the original embeddings, trained in order to learn lexical similarity,
to identify AN metaphors.

Our neural network, being a parameterized function, follows the generalized
architecture of word-vector composition similar to Mitchell and Lapata
(2010):

p= f(u,v;0) (12.1)

where u and v are two word vector representations to be composed, while p
is the vector representation of their composition with the same dimensions.
The function f in our model is parameterized by 6, a list of parameters to be
learned as part of our neural network architecture.

Based on the argument by Mitchell and Lapata (2010), parameters such as ¢
are encoded knowledge required by the compositional process. In our case,
the gradient based learning in neural networks will find these parameters
as an optimization problem where p is just an intermediate representation
in the pipeline of the neural network, which ends with a prediction of a
metaphoricity score.

In other words, in order to predict the degree of metaphoricity, we end up
learning a specific semantic space for phrase representations p and a vector
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q which actually does not represent a phrase itself, but rather the maximal
possible level of metaphoricity given our training set.

The degree of metaphoricity of a phrase can thus be directly computed as co-
sine similarity between this vector and the phrase vector. However, in the net-
work we used a sigmoid function to produce the measure:

1

Trepator (12.2)

g=o(p-q+bi)=
where q and b; are parameters of the final layer and work as metaphoricity
indicators, while ¢ is the predicted score (metaphoric or literal) for the
composition p. Given a dataset of D = {(+,yt) }se{1,..., 1}, the composition
p can be formalized as a model for Bernoulli distribution:

yt = Pr(z; being metaphorical| D) € {0,1}
Ut o(pt-q+b1) (12.3)
Pr(x being metaphorical) €(0,1)

Q

where each z; is an AN pair in the training dataset labeled with a binary
value y; (0 or 1). Given the labels in D, we interpret y; as a categorical
probability score: the probability of a given phrase being metaphorical. Then,
for each pair of words in x;, we use pre-trained word-vector representations
such as uy and vy in the Equation 12.1 to produce p; and, consequently, the
score ;.

In this formulation, the objective is to minimize the binary cross entropy
distance between the estimated §; and the given annotation y;. Adding
q and b; in the list of parameters O, we fit all parameters with a small
annotated data size T":

x = (x1,..x7)
y = (y1,--yr) (12.4)
0 = (97q7b1)

LOxy) = =3 (s log(i)+

12.5
(=3 log(1— 1)) (125

where, on each iteration, we update the parameters in © using Adam stochas-
tic gradient descent Kingma and Ba (2014), with a fixed number of iterations
over x and y to minimize L.

Chapter 12



In this paper, we describe three alternative architectures to implement this
framework. All three, with small variations, show a robust ability to general-
ize on the dataset and perform correct predictions.

12.3.2 First Architecture

One possible formulation of this frame is similar to additive composition as
described in Mitchell and Lapata (2010), but instead of performing a scalar
modification of each vector, a weight matrix modifies all feature dimensions

at once:
p=Wlu+Wo,,, v+b (12.6)
w=| Wed (12.7)
Wnoun

where the composition function in equation (12.1) now has § = (W,b).

This formulation is very similar to the composition model in Socher et al.
(2011) without the syntactic tree parametrization. As such, instead of the
non-linearity function we have linear identity:

p=fo(u,v)=WT [ . (12.8)
Vv

In practice, this approach represents a simple merging through concatena-
tion: given two words’ vectors, we concatenate them before feeding them to
a single-layered, fully connected Neural Network.

As a consequence, the network learns a weight matrix that represents lin-
early the AN combination. To visualize this concept, we could say that,
since our pairs always hold the same internal structure (adjective in first
position and noun in second position), the first half of the weight matrix is
trained on adjectives and the second half of the weight matrix is trained on
nouns.

By using 300 dimension pre-trained word vectors, the parameter space
for this composition function will be as following: W e IR3°9%%% and b e
R300.
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12.3.3 Second architecture

The second architecture we describe has the advantage of training a smaller
set of parameters with respect to the first. In this model, the weight matrix
is shared between the noun and the adjective:

p=fo(u,v) =WTa+WTv b (12.9)

Notice that in the case of comparing the vector representations of two
different AN phrases, b will be essentially redundant. An advantage of this
model is that the learned composition function f can also map all words’
vectors, regardless of the part of speech these words belong to, in the new
vector space without losing accuracy in the original task. In this new vector
space, a simple addition operator composes two vectors:

' =wTu (12.10)
v =wTy (12.11)
p=u+v (12.12)

Compared to the first architecture, in this architecture we don’t assume the
need of distinguishing the weight matrix for the adjectives from the weight
matrix for the nouns.

It is rather interesting, then, that this architecture doesn’t present significant
differences in performance with respect to the first one. The number of pa-
rameters, however, is smaller: W € IR30°%3%0 and p € IR3%°,

12.3.4 Third Architecture

The third architecture, similarly to the second, features a shared composition
matrix of weights between the noun and the adjective, but we perform
elementwise multiplication between the two vectors:

p=fo(u,v)=(uxv)W+b (12.13)

The number of parameters in this case is similar to previous architecture:
W e IR399%390 and b e IR0,
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12.3.5 Other Architectures

In all three previous architectures we saw that a weight matrix W can be
learned as part of the composing function. Throughout our exploration, we
found that W can be a random and a constant uniform matrix (not trained
in the network) and still being able to learn q unless we use a non-linear
activation functions over the AN compositions.

p=9(fo(u,v)) (12.14)

An intuition is to take W as an identity matrix in Second architecture, the
network will take the sum of pre-trained vectors to as features and learn how
to predict metaphoricity. A fixed uniform W basically keeps the information
in input vectors. For a short overview of all these alternative architectures
see Table 12.2.

12.4 Evaluation

Our classifier achieved 91.5% accuracy trained on 500 labeled AN-phrases
out of 8592 in the corpus and tested on the rest. Training on 8000 and
testing on the rest gave us accuracy of 98.5%.°

We tested several combinations of the architectures we described in the
paper. For each of the three architectures, we also tested the Rectified
linear unit (ReL.U) as the non-linearity mentioned in Section 3.5. Our test
also shows that a random constant matrix W is enough to train the rest of
the parameters (reported in Table 12.2). In general, the best performing
combinations involve the use of concatenation (the first architecture), while
multiplication led to the lowest results. In any case, all experiments returned
accuracies above 75% 4.

To test the robustness of our approach, we have evaluated our model’s
performance under several constraints:

3These results are based on the first architecture, the performance of other architectures are

not very different in this simple test. The sample code is available on https://gu-clasp.

github.io/anvec-metaphor/

4The number of parameters in case of using concatenation (as in first architecture) is 180 601
and other compositions, including addition and multiplication, number of parameters is
almost the half: 90 601.
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* Total separation of vocabulary in train and test sets (Table 12.3) in
case of out of vocabulary words.

* Use of different pretrained word embeddings (Figure 12.3).

* Cross validation (Figure 12.1).

* Qualitative selection of the training data based on the semantic cate-
gories of adjectives (Figure 12.2).

Finally, we will provide some qualitative insights on how the model works.

Our model is based on the idea of transfer learning: using the learned
representation for a new task, in this case the metaphor detection. Our
model should generalize very fast with a small set of samples as training
data. In order to test this matter, we have to train and test on totally different
samples so vocabulary doesn’t overlap. The splitting of the 8592 labeled
phrases based on vocabulary gives us uneven sizes of training and test
phrases®. In Table 12.3 using the pretrained Word2Vec embeddings trained
on Google News Mikolov et al. (2013) we examined the accuracy, precision
and recall of the our trained classifier.

We have used three different word embeddings: Word2Vec embeddings
trained on Google News Mikolov et al. (2013), GloVe embeddings Pen-
nington et al. (2014) and Levy-Goldberg embeddings Levy and Goldberg
(2014).

These embeddings are not up-dated during the training process. Thus,
the classification task is always performed by learning weights for the pre-
existing vectors.

The results of our experiment can be seen in Figure 12.3. All these embed-
dings have returned similar accuracies both when trained on scarce data (100
phrases) and when trained on half of the dataset (4000 phrases).

Training on 100 phrases indicates the ability of our model to learn from
scarce data. One way of checking the consistency of our model under data
scarcity is to perform flipped cross-validation: this is a cross-validation where,
instead of training our model on 90% of the data and testing it on the
remaining 10%, we flipped the sizes train it on 10% of the data and test it
on the remaining 90%. Results for both classic cross-validation and flipped
cross-validation can be seen in Figure 12.1. Training on 10% of the data

5We chose the vocabulary splitting points for every 10% from 10% to 90%, then we applied
the splitting separately on nouns and adjective
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proved to consistently achieve accuracies not much lower than 90%. In other
terms, a model trained on 90% of the data does not do much better than a
model trained on 10%.

Finally, we tried training our model on only one of the semantic categories
we introduced at the beginning of the paper and testing it on the rest of the
dataset. Results can be seen in Figure 12.2.

We can wonder “why" our system is working: with respect to more traditional
machine learning approaches, there is no direct way to evaluate which
features mostly contribute to the success of our system. One way to have an
idea of what is happening in the model is to use the “metaphoricity vector"
we discussed in Section 3. Such vector represents what is learned by our
model and can help making it less opaque for us.

If we compute the cosine similarity between all the nouns in our dataset
and this learned vector, we can see that nouns tend to polarize on an
abstract/concrete axis: abstract nouns tend to be more similar to the learned
vector than concrete nouns.

It is likely that our model is learning nouns’ level of abstractness as a
mean to determine phrase metaphoricity. In Table 4 we show the 10 most
similar and the 10 least similar nouns obtained with this approach. As
can be seen, a concrete-abstract polarity is apparently learned in train-
ing.

This factor was amply noted and even used in some feature-based metaphor
classifiers, as we discussed in the beginning: the advantage of using con-
tinuous semantic spaces probably relies on the possibility of having a more
nuanced and complex polarization of nouns along the concrete/abstract axes
than using hand-annotated resources.

12.5 Discussion and future work

In this paper we have presented an approach for detecting metaphoricity in
AN pairs that out-performs the state of the art without using human anno-
tated data or external resources beyond pre-trained word embeddings. We
treasured the information captured by Word2Vec vectors through a fully con-
nected neural network able to filter out the "noise" of the original semantic
space. We have presented a series of alternative variations of this approach
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Figure. 12.1: Accuracies for each fold over two complementary approaches: cross-
validation (CV) and flipped cross-validation (“flipped-CV"). Flipped
cross-validation takes 90% of our dataset for training. The graph
shows that both methods yield good results: in other words training
on just 10% of the dataset yields results that are just few points lower
than normal cross-validation.

and evaluated its performance under several conditions - different word
embeddings, different training data and different training sizes - showing
that our model can generalize efficiently and obtain solid results over scarce
training data. We think that this is one of the central findings in this paper,
since many semantic phenomena similar to metaphor (for example other
figures of speech) are under-represented in current NLP resources and their
study through supervised classifiers would require systems able to work on
small datasets.

The possibility of detecting metaphors and assigning a degree of “metaphoric-
ity" to a snippet of text is essential to automatic stylistic programs designed
to go beyond “shallow features" such as sentence length, functional word
counting etc. While such metrics have already allowed powerful studies,
the lack of tools to quantify more complex stylistic phenomena is evident
(Hughes et al., 2012; Gibbs Jr, 2017). Naturally, this work is intended as a
first step: the “metaphoricity”" degree our system is learning would mirror
the kinds of combination present in this specific dataset, which represents a
very specific type of metaphor.

It can be argued that we are not really learning the defining ambiguities of
an adjective (e.g. the double meaning of “bright") but that we are probably
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Figure. 12.2: Accuracy training on different categories of adjectives. In this exper-
iment, we train on just one category of the dataset and test on all
the others. In general, training on just one category (e.g.temperature)
and testing on all other categories still yields high accuracy. While the
power of generalization of our model is still unclear, we can see that it
can detect similar semantic mechanisms even without any vocabulary
overlap. The category taste is a partial exception: this category seems
to be a relative “outlier".

side-learning nouns’ degree of abstraction. This would be in harmony with
psycholinguistic findings, since detecting nouns’ abstraction seems to be
one of the main mechanisms we recur to, when we have to judge the
metaphoricity of an expression Forgdcs et al. (2015) and is used as a main
feature in traditional Machine Learning approaches to this problem. In other
terms, our system seems to detect when the same adjective is used with
different categories of words (abstract or concrete) and generalize over this
distinction; a behavior that might not be too far from the way a human
learns to distinguish different senses of a word.

An issue that we would like to further test in the future is metaphoricity
detection on different datasets, to explore the ability of generalization of our
models. Researching on different datasets could also help us gaining a better
insight about the model’s learning.

An obvious option is to test verb-adverb pairs (VA, e.g. think deeply) using
the same approach discussed in this paper. It would then be interesting
to see whether having a common training set for both the AN and the
VA pairs will allow the model to generalize for both cases or different
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Figure. 12.3: Accuracy on different kinds of embeddings, both training on 100
phrases and 4000 phrases.

Test Train | Accuracy Precision Recall
6929 72 0.83 0.89 0.77
5561 299 0.89 0.86 0.93
4406 643 0.91 0.92 0.90
3239 1203 0.90 0.91 0.88
2253 1961 0.91 0.92 0.92
1568 2763 0.89 0.90 0.90
707 4291 0.91 0.94 0.91
313 5494 0.93 0.92 0.95
148 6282 0.93 0.94 0.92

Table. 12.3: This table shows consistent results in accuracy, precision and recall of
the classifier trained with different split points of vocabulary instead
of phrases. Splitting the vocabulary creates different sizes of training
phrases and test phrases.

training on two training sets, one for AN and one for VA, will be needed.
Other cases to test include N-N compounds or proposition/sentence level
pairs.

Another way such an approach can be extended, is to investigate whether
reasoning tasks typically associated with different classes of adjectives can be
performed. One task might be to distinguish adjectives that are intersective,
subsective or none of the two. In the first case, from A N x one should
infer that x is both an A and an N (something that is a black table is both
black and a table), in the second case one should infer that x is N only (for
example someone who is a skillful surgeon is only a surgeon but we do not
know if s/he is skillful in general), and in the third case neither of the two
should be inferred. However, this task is not as simple as giving a training
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Top ten reluctance, reprisal, resignation,
response, rivalry, satisfaction, sto-
rytelling, supporter, surveillance,
vigilance

Bottom ten | saucepan, flour, skillet, chimney,
jar, tub, fuselage, pellet, pouch,
cupboard

Table. 12.4: 10 most similar and 10 least similar terms with respect to the
“metaphoricity vector", concatenated using an all-zeros vector for the ad-
jective. In practice, this is a way to explore which semantic dimensions
are particularly useful to the classifier. A concrete/abstract polarity on
the nouns was apparently derived

set with instances of AN pairs, to recognize where novel instances of AN
pairs belong to. Going beyond logical approaches by having the ability to
recognize different uses of an adjective requires a richer notion of context
which extends way beyond the AN-pairs.

A further idea we want to pursue in the future is the development of more
fine grained datasets, where metaphoricity is not represented as a binary
feature but as a gradient property. This means that a classifier should have
the ability to predict a degree of metaphoricity and thus allow more fine-
grained distinctions to be captured. This is a theoretically interesting side
and definitely something that has to be tested since not much literature is
available (if at all) on gradient metaphoricity. It seems to us that similar
approaches, quantifying a text’s metaphoricity and framing it as a supervised
learning task, could help having a clear view on the influence of metaphor
on style.
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When we describe the location of objects in an image, we
relate them by their physical location and by the nature of
their interaction. This thesis examines how artificial neural
networks learn what information is relevant to spatial
descriptions. Favouring “the frog is outside the pond”
rather than “the pond is outside the frog" is possible by
considering the knowledge about the world and human
interactions in language models. The findings of this thesis
benefit the design of systems that automatically generate
iImage descriptions and search engines and lead to a more
natural human-robot interaction.
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