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Abstract

When using mathematical models to computationally investigate a
chemical system it is important that the methods used are accurate
enough to account for the relevant properties of the system and at
the same time simple enough to be computationally affordable. This
thesis presents research that so far has resulted in three published
papers and one unpublished manuscript. It concerns the application
and development of computational methods for chemistry, with some
extra emphasis on the calculation of reaction rate constants.

In astrochemistry radiative association is a relevant reaction
mechanism for the formation of molecules. The rate constants for
such reactions are often difficult to obtain though experiments. In the
first published paper of the thesis a rate constant for the formation
of the hydroxyl radical, through the radiative association of atomic
oxygen and hydrogen, is presented. This rate constant was calculated
by a combination of different methods and should be an improvement
over previously available rate constants.

In the the second published paper of this thesis two kinds of
basis functions, for use with a variational principle for the dynamics
of quantum distributions in phase space, i.e. Wigner functions, is
presented. These are tested on model systems and found to have
some appealing properties.

The classical Wigner method is an approximate method of simu-
lation, where an initial quantum distribution is propagated in time
with classical mechanics. In the third published paper of this thesis
a new method of sampling the initial quantum distribution, with
an imaginary time Feynman path integral, is derived and tested on
model systems. In the unpublished manuscript, this new method
is applied to reaction rate constants and tested on two model sys-
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Abstract

tems. The new sampling method shows some promise for future
applications.

vi

Preface

You have guessed right; I have lately been so
deeply engaged in one occupation that I have
not allowed myself sufficient rest, as you see:
but I hope, I sincerely hope, that all these
employments are now at an end, and that I am
at length free.

Victor Frankenstein (Mary Shelley)1

This thesis is a compilation thesis consisting of two main parts.
To start from the back, the second part is a collection of papers that
have been coauthored by the author of the thesis and represent the
research that the thesis is based upon.

The first part of this thesis is the frame, which is an introduction
to and discussion of the papers in the second part. The frame is
itself divided into three parts. First is an introduction where the
general subject of the thesis is presented and put on the scientific
map, with the aim of being accessible to a broader audience than
the rest of this book. Second is a chapter with the theory on which
the work is based. Third, and last in the frame, there is a chapter
describing and discussing the new developments that has come out
of the research. The contents of the third chapter overlaps with the
content of the papers, but the aim is for it to be more pedagogical
than the papers themselves are.
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Come, let us go down and confuse their
language so they will not understand each
other.

Genesis 11:7

Abbreviations
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CMD Centroid molecular dynamics
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FK-LPI Feynman-Kleinert linearized path integral
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LSC-IVR Linearized semi-classical initial value representation

OPCW Open polymer classical Wigner

PIMC Path integral Monte Carlo

PIMD Path integral molecular dynamics
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Chapter 1

Introduction

The underlying physical laws necessary for the
mathematical theory of a large part of physics
and the whole of chemistry are thus completely
known, and the difficulty is only that the exact
application of these laws leads to equations
much too complicated to be soluble. It
therefore becomes desirable that approximate
practical methods of applying quantum
mechanics should be developed, which can lead
to an explanation of the main features of
complex atomic systems without too much
computation.

Paul A. M. Dirac2

Computational chemistry is the craft of calculating, preferably
on a computer, the answers to chemical questions from mathematical
models of how entities in chemistry such as atoms, molecules, fluids,
or even more fundamental entities such as electrons and atomic
nuclei behave. Running calculations on a computer instead of doing
experiments in a laboratory may have the advantage of being faster
and cheaper, and allowing many more things to be tried simulta-
neously. However, the practical experiment in the laboratory has
direct access to the physical reality of the universe and the chemistry
within it, thus potentially giving the “truth”, while the mathematical
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1. Introduction

models used in calculations are inevitably approximations of reality,
thus giving potentially good but nevertheless approximate results.

There is another difference between computational and exper-
imental chemistry, and that is the type of questions that can be
answered. In a simulation the movement of individual atoms, that
are experimentally untrackable, in a chemical reaction can be fol-
lowed over time, scales of time and volume impossible in practical
experimentation can be accessible, and environments, species and
processes of exotic or even alchemical nature can be handled.

When choosing a computational method to answer a given ques-
tion there are many choices to make. One of the common ones
is the choice between quantum mechanics and classical mechanics.
Quantum mechanics is correct but computationally expensive with
its delocalization, tunnelling, zero point energy, and interference
while classical mechanics may be wrong but computationally cheap
with simple trajectories for the motion of a body, just as we as
humans experience things in our daily macroscopic lives. In many
cases classical mechanics is good enough. However, when light atoms
such as hydrogen are involved, temperatures are low such as often
in astrochemistry, or there is significant quantum interference, then
quantum mechanics may be essential to describe chemistry in a
meaningful way. This leads back to Dirac’s quote2 in the beginning
of this chapter:

It therefore becomes desirable that approximate practi-
cal methods of applying quantum mechanics should be
developed, which can lead to an explanation of the main
features of complex atomic systems without too much
computation.

This statement from 1929 is still as valid as it was back then, even as
the limits of what is considered too much computation have changed,
and is a concise description of the mission of the work in this thesis.

Generally, chemistry deals with atomic nuclei, electrons, and
aggregates of such particles. On the lowest level of chemistry, with
electrons and atomic nuclei as separate entities, it is almost always
clearly so that the electrons behave quantum mechanically, but the
question is if the nuclei should be handled with classical or quantum

4

mechanics. Often the Born-Oppenheimer approximation3 is utilized,
meaning that it is assumed that the movement of the electrons and
the movement of the nuclei can be handled separately. Entities
significantly heavier than atomic nuclei, such as colloidal particles,
for all practical purposes move according to classical mechanics even
if the forces between them may be of a quantum mechanical nature.
Some specific examples of when nuclear quantum effects can make
an important difference in computations include:

• The volume of light atoms may become large due to thermal
quantum fluctuations.4

• Resonances in quasi-bound states may make a significant con-
tribution to a reaction rate constant.5

• The delocalization of hydrogen can have a significant impact
on the acidity of an active site in an enzyme.6

The work presented in this thesis concerns methods used to
handle the movements of atomic nuclei, when some measure of
quantum mechanics is desirable. Of course the methods can be
used for any type of particle, not only atomic nuclei, but atomic
nuclei tend to be what chemists in this field of study focus on. A
particular focus for parts of the thesis is the calculation of reaction
rate constants.
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Chapter 2

Background

A man would make but a very sorry chemist if
he attended to that department of human
knowledge alone. If your wish is to become
really a man of science, and not merely a petty
experimentalist, I should advise you to apply
to every branch of natural philosophy,
including mathematics.

Fellow-professor M. Waldman (Mary Shelley)1

Quantum mechanics can be formulated in many ways. The one
that most people are familiar with is probably the wavefunction
formulation, which was published in 1926 by Schrödinger7–12∗. This
formulation uses the Schrödinger equation

i�
∂

∂t
Ψ (x, t) = ĤΨ (x, t) (2.1)

or in bra-ket notation

i�
∂

∂t
|Ψ (t)〉 = Ĥ |Ψ (t)〉 , (2.2)

where i is the imaginary unit (
√
−1 ), � is the reduced Planck’s

constant, t is time, x is a position vector, Ψ (x, t) is the wavefunction

∗The original papers are in German. Schrödinger published a summary in
English in the same year.13
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2. Background

of the system at time t and position x, Ĥ is the Hamiltonian operator,
and |Ψ (t)〉 is the ket representing the state of the system described
by the wavefunction Ψ at time t. This is, however, not always the
most practical formulation to start with when trying to simplify
quantum mechanics.

In this chapter of this thesis two other formulations of quantum
mechanics are presented in sections 2.1 and 2.2, calculations of
reaction rate constants are introduced in section 2.3, and common
methods to use for approximate quantum dynamics can be found in
section 2.4.

8

2.1. Wigner transform and the Wigner phase space

2.1 Wigner transform and the Wigner

phase space

Of the many approaches to the semiclassical
limit from the quantum domain, the Wigner
method is one of the most immediately
appealing.

Eric J. Heller14

A formulation of quantum mechanics ascribed to Wigner15 and
Moyal16 is the phase space formulation. In this formulation one
works with functions that depend on both position and momentum
simultaneously, something that may seem very strange from the
wavefunction point of view, but that allows the equations to look
more like classical mechanics.

The Wigner transform of an arbitrary operator Ω̂ is

[
Ω̂
]
W
(x,p) =

∫
dDη e−iη•p/�

〈
x+

η

2

∣∣∣Ω̂
∣∣∣x− η

2

〉

=

∫
dDλ eix•λ/�

〈
p+

λ

2

∣∣∣∣Ω̂
∣∣∣∣p− λ

2

〉
(2.3)

where p is a momentum vector, η is a vector where the elements
have the dimension of length, D is the number of degrees of freedom
in the system, λ is a vector where the elements have the dimen-

sion of momentum, and the integrals are over all space.
∣∣∣x± η

2

〉

and

∣∣∣∣p± λ

2

〉
are eigenkets of position and momentum respectively,

meaning that 〈x|Ψ〉 = Ψ (x) and 〈p|Ψ〉 = Ψ (p).
The Wigner transform of a product of two operators is

[
Ω̂1Ω̂2

]
W
(x,p)

=
[
Ω̂1

]
W
(x,p) e

− i�
2

( ←
∂
∂p

•
→
∂
∂x

−
←
∂
∂x

•
→
∂
∂p

) [
Ω̂2

]
W
(x,p) (2.4)

where the arrows above the partial derivatives show in which direction
they act.
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2. Background

If taking the Wigner transform of the probability density opera-
tor, 1

(2π�)D
|Ψ〉 〈Ψ |, the so called Wigner function is obtained. This

function is a quasi probability distribution in phase space that has
the property that it can be used to obtain the expectation value of
a physical quantity Ω trough

〈
Ω̂
〉
=

∫∫
dDx dDp

[
1

(2π�)D
|Ψ〉 〈Ψ |

]
W
(x,p)

[
Ω̂
]
W
(x,p)

(2.5)

which looks very similar to classical mechanics

〈Ω〉 =
∫∫

dDx dDp ρ (x,p)Ω (x,p) (2.6)

where ρ (x,p) is the classical probability distribution function in
phase space.

For the interested reader the following section shows how to
derive equation 2.3 and 2.5 from the more common formulation of
quantum mechanics.

Derivation of the phase space formulation from
the wavefunction formulation

To obtain equation 2.5, start with the standard equation
〈
Ω̂
〉
=

∫
dDxΨ ∗ (x) Ω̂Ψ (x) =

〈
Ψ
∣∣∣Ω̂

∣∣∣Ψ
〉
. (2.7)

Introduce two unity operators, 1̂ =

∫
dDx |x〉 〈x|,

〈
Ω̂
〉
=

∫∫
dDx1 dDx2 〈Ψ |x1〉

〈
x1

∣∣∣Ω̂
∣∣∣x2

〉
〈x2|Ψ〉

=

∫∫
dDx1 dDx2 〈x2|Ψ〉 〈Ψ |x1〉

〈
x1

∣∣∣Ω̂
∣∣∣x2

〉
(2.8)

and then introduce two more unity operators, 1̂ =

∫
dDp |p〉 〈p|,

〈
Ω̂
〉
=

∫∫∫∫
dDx1 dDx2 dDp1 dDp2

× 〈x2|p1〉 〈p1|Ψ〉 〈Ψ |p2〉 〈p2|x1〉
〈
x1

∣∣∣Ω̂
∣∣∣x2

〉
. (2.9)
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|x〉 and |p〉 are just a Fourier transform away from each other,

|p〉 = 1

(2π�)
D
2

∫
dDx eix•p/� |x〉 (2.10)

|x〉 = 1

(2π�)
D
2

∫
dDp e−ix•p/� |p〉 , (2.11)

which means that, since 〈x′|x〉 = δ (x′ − x) and 〈p′|p〉 = δ (p′ − p),
where δ (x′ − x) is the Dirac delta function,

〈p|x〉 = 1

(2π�)
D
2

∫
dDx′ e−ix′•p/� 〈x′|x〉

=
1

(2π�)
D
2

∫
dDx′ e−ix′•p/� δ (x′ − x)

=
1

(2π�)
D
2

e−ix•p/� . (2.12)

This leads to

〈
Ω̂
〉
=

1

(2π�)D

∫∫∫∫
dDx1 dDx2 dDp1 dDp2

× eix2•p1/� e−ix1•p2/� 〈p1|Ψ〉 〈Ψ |p2〉
〈
x1

∣∣∣Ω̂
∣∣∣x2

〉
.

(2.13)

The variables of integration can be changed from x1, x2, p1, and
p2 to x=

x1+x2
2

, η = x1 − x2, p=
p1+p2

2
, and λ = p1 − p2. For this

change the absolute value of the determinant of the Jacobian matrix,
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2. Background

simplified because the matrix is block diagonal, becomes

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

det




∂x

∂x1

∂η

∂x1

∂p

∂x1

∂λ

∂x1
∂x

∂x2

∂η

∂x2

∂p

∂x2

∂λ

∂x2
∂x

∂p1

∂η

∂p1

∂p

∂p1

∂λ

∂p1
∂x

∂p2

∂η

∂p2

∂p

∂p2

∂λ

∂p2




∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

det




1

2
1 0 0

1

2
−1 0 0

0 0
1

2
1

0 0
1

2
−1




∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
det



1

2
1

1

2
−1


 det



1

2
1

1

2
−1




∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣


det



1

2
1

1

2
−1







2∣∣∣∣∣∣∣
=

∣∣∣∣∣

(
−1

2
− 1

2

)2
∣∣∣∣∣ = 1. (2.14)

Thus, the equation becomes

〈
Ω̂
〉
=

1

(2π�)D

∫∫∫∫
dDx dDη dDp dDλ

× ei(x−
η
2 )•(p+

λ
2 )/� e−i(x+η

2 )•(p−
λ
2 )/�

×
〈
p+

λ

2

∣∣∣∣Ψ
〉〈

Ψ

∣∣∣∣p− λ

2

〉〈
x+

η

2

∣∣∣Ω̂
∣∣∣x− η

2

〉

=
1

(2π�)D

∫∫∫∫
dDx dDη dDp dDλ

× ei(x•p+
1
2
x•λ− 1

2
η•p− 1

4
η•λ−x•p+ 1

2
x•λ− 1

2
η•p+ 1

4
η•λ)/�

×
〈
p+

λ

2

∣∣∣∣Ψ
〉〈

Ψ

∣∣∣∣p− λ

2

〉〈
x+

η

2

∣∣∣Ω̂
∣∣∣x− η

2

〉

=
1

(2π�)D

∫∫∫∫
dDx dDη dDp dDλ ei(x•λ−η•p)/�

×
〈
p+

λ

2

∣∣∣∣Ψ
〉〈

Ψ

∣∣∣∣p− λ

2

〉〈
x+

η

2

∣∣∣Ω̂
∣∣∣x− η

2

〉
,

(2.15)
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where Wigner transforms can be isolated, giving

〈
Ω̂
〉
=

∫∫
dDx dDp

×
(∫

dDλ eix•λ/�
〈
p+

λ

2

∣∣∣∣ 1

(2π�)D
|Ψ〉 〈Ψ |

∣∣∣∣p− λ

2

〉)

×
(∫

dDη e−iη•p/�
〈
x+

η

2

∣∣∣Ω̂
∣∣∣x− η

2

〉)

=

∫∫
dDx dDp

[
1

(2π�)D
|Ψ〉 〈Ψ |

]
W
(x,p)

[
Ω̂
]
W
(x,p) .

(2.16)

This is equation 2.5.

To prove equation 2.3 two unity operators can be inserted

∫
dDη e−iη•p/�

〈
x+

η

2

∣∣∣Ω̂
∣∣∣x− η

2

〉

=

∫∫∫
dDη dDp1 dDp2 e−iη•p/�

×
〈
x+

η

2

∣∣∣p1

〉〈
p1

∣∣∣Ω̂
∣∣∣p2

〉〈
p2

∣∣∣x− η

2

〉

=
1

(2π�)D

∫∫∫
dDη dDp1 dDp2 e−iη•p/�

× ei(x+
η
2 )•p1/�

〈
p1

∣∣∣Ω̂
∣∣∣p2

〉
e−i(x−η

2 )•p2/�

=
1

(2π�)D

∫∫∫
dDη dDp1 dDp2

× ei(−η•p+x•p1+
1
2
η•p1−x•p2+

1
2
η•p2)/�

〈
p1

∣∣∣Ω̂
∣∣∣p2

〉

=
1

(2π�)D

∫∫∫
dDη dDp1 dDp2

× eiη•(−p+
p1+p2

2 )/� eix•(p1−p2)/�
〈
p1

∣∣∣Ω̂
∣∣∣p2

〉
. (2.17)

Changing the variables in the integration from p1, and p2 to p′=p1+p2
2

,
and λ = p1 − p2, with the absolute value of the determinant of the
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simplified because the matrix is block diagonal, becomes

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

det




∂x

∂x1

∂η

∂x1

∂p

∂x1

∂λ

∂x1
∂x

∂x2

∂η

∂x2

∂p

∂x2

∂λ

∂x2
∂x

∂p1

∂η

∂p1

∂p

∂p1

∂λ

∂p1
∂x

∂p2

∂η

∂p2

∂p

∂p2

∂λ

∂p2




∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

det




1

2
1 0 0

1

2
−1 0 0

0 0
1

2
1

0 0
1

2
−1




∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
det



1

2
1

1

2
−1
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1

2
1

1

2
−1




∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣


det



1

2
1

1

2
−1







2∣∣∣∣∣∣∣
=

∣∣∣∣∣

(
−1

2
− 1

2

)2
∣∣∣∣∣ = 1. (2.14)

Thus, the equation becomes

〈
Ω̂
〉
=

1

(2π�)D

∫∫∫∫
dDx dDη dDp dDλ

× ei(x−
η
2 )•(p+

λ
2 )/� e−i(x+η

2 )•(p−
λ
2 )/�

×
〈
p+

λ

2

∣∣∣∣Ψ
〉〈

Ψ

∣∣∣∣p− λ

2

〉〈
x+

η

2

∣∣∣Ω̂
∣∣∣x− η

2

〉

=
1

(2π�)D

∫∫∫∫
dDx dDη dDp dDλ

× ei(x•p+
1
2
x•λ− 1

2
η•p− 1

4
η•λ−x•p+ 1

2
x•λ− 1

2
η•p+ 1

4
η•λ)/�

×
〈
p+

λ

2

∣∣∣∣Ψ
〉〈

Ψ

∣∣∣∣p− λ

2

〉〈
x+

η

2

∣∣∣Ω̂
∣∣∣x− η

2

〉

=
1

(2π�)D

∫∫∫∫
dDx dDη dDp dDλ ei(x•λ−η•p)/�

×
〈
p+

λ

2

∣∣∣∣Ψ
〉〈

Ψ

∣∣∣∣p− λ

2

〉〈
x+

η

2

∣∣∣Ω̂
∣∣∣x− η

2

〉
,

(2.15)
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where Wigner transforms can be isolated, giving

〈
Ω̂
〉
=

∫∫
dDx dDp
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(∫

dDλ eix•λ/�
〈
p+

λ

2

∣∣∣∣ 1

(2π�)D
|Ψ〉 〈Ψ |

∣∣∣∣p− λ

2

〉)

×
(∫

dDη e−iη•p/�
〈
x+

η

2

∣∣∣Ω̂
∣∣∣x− η

2

〉)

=

∫∫
dDx dDp

[
1

(2π�)D
|Ψ〉 〈Ψ |

]
W
(x,p)

[
Ω̂
]
W
(x,p) .

(2.16)

This is equation 2.5.
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∣∣∣Ω̂
∣∣∣x− η

2

〉

=

∫∫∫
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Changing the variables in the integration from p1, and p2 to p′=p1+p2
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and λ = p1 − p2, with the absolute value of the determinant of the
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Jacobian matrix being

∣∣∣∣∣∣∣
det




∂p′

∂p1

∂λ

∂p1
∂p′

∂p2

∂λ

∂p2




∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
det



1

2
1

1

2
−1




∣∣∣∣∣∣∣
=

∣∣∣∣−
1

2
− 1

2

∣∣∣∣ = 1

(2.18)

the equation becomes

∫
dDη e−iη•p/�

〈
x+

η

2

∣∣∣Ω̂
∣∣∣x− η

2

〉

=
1

(2π�)D

∫∫∫
dDη dDp′ dDλ

× eiη•(p
′−p)/� eix•λ/�

〈
p′ +

λ

2

∣∣∣∣Ω̂
∣∣∣∣p′ − λ

2

〉
. (2.19)

Since the Dirac delta function can be written

δ (ζ) =
1

(2π)D

∫
dDξ eiζ•ξ, (2.20)

where ζ and ξ are just dummy vector variables, and

δ (cζ) =
1

|c|D
δ (ζ) , (2.21)
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where c is a scalar constant, p′ can be integrated out,

∫
dDη e−iη•p/�

〈
x+

η

2

∣∣∣Ω̂
∣∣∣x− η

2

〉

=
1

�D

∫∫
dDp′ dDλ

(
1

(2π)D

∫
dDη eiη•(p

′−p)/�
)

× eix•λ/�
〈
p′ +

λ

2

∣∣∣∣Ω̂
∣∣∣∣p′ − λ

2

〉

=
1

�D

∫∫
dDp′ dDλ δ

(
p′ − p

�

)

× eix•λ/�
〈
p′ +

λ

2

∣∣∣∣Ω̂
∣∣∣∣p′ − λ

2

〉

=

∫∫
dDp′ dDλ δ (p′ − p)

× eix•λ/�
〈
p′ +

λ

2

∣∣∣∣Ω̂
∣∣∣∣p′ − λ

2

〉

=

∫
dDλ eix•λ/�

〈
p+

λ

2

∣∣∣∣Ω̂
∣∣∣∣p− λ

2

〉
. (2.22)

As expected, this is equation 2.3.

The relation between the Wigner transform and
Fourier transform

An interesting, and sometime useful, property of the Wigner trans-
form is that it is the Fourier transform of a matrix element. If in
equation 2.3 〈x+η

2 |Ω̂|x−η
2 〉 is just written as a function of η, f (η),

then it can be easily seen that

[
Ω̂
]
W
(x,p) =

∫
dDη e−iη•p/� f (η) (2.23)

is a Fourier transform. Taking the inverse of this Fourier transform
would give back the original function.

1

(2π)D

∫
dDp

�
eiη•p/�

[
Ω̂
]
W
(x,p) = f (η) (2.24)
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2 〉 is just written as a function of η, f (η),

then it can be easily seen that
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W
(x,p) =

∫
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∫
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�
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W
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More nicely written as

1

(2π�)D

∫
dDp eiη•p/�

[
Ω̂
]
W
(x,p) =

〈
x+

η

2

∣∣∣Ω̂
∣∣∣x− η

2

〉
.

(2.25)

As any pair of positions x1 and x2 can be rewritten as x+η
2
and

x−η
2
through x=

x1+x2
2

and η = x1 −x2, this means that any position
matrix element can be written as

〈
x1

∣∣∣Ω̂
∣∣∣x2

〉
=

1

(2π�)D

∫
dDp ei(x1−x2)•p/�

×
[
Ω̂
]
W

(
x1 + x2

2
,p

)
. (2.26)

The classical Wigner method

Although he did not recommend using the method, Heller14 in 1976
introduced the first version of the classical Wigner method. It was
later, in 1998, introduced in a more general form by Wang, Sun,
and Miller.17 The classical Wigner method approximates quantum
mechanics by propagating a Wigner transformed quantity forward
in time with classical mechanics, i.e.

[
e

iĤt
� Ω̂ e−

iĤt
�

]
W
(x,p) �

[
Ω̂
]
W
(x(t),p(t)) . (2.27)

This gives exact quantum mechanics for a free particle, linear poten-
tial, and harmonic potential. For other kinds of potentials it is an
approximation.14

Wang, Sun, and Miller17 developed the classical Wigner method
as a linearization approximation of the semi-classical initial value
representation (SC-IVR) of Miller18 (well explained by the same
author in a later paper19). Because of the linearization approximation
applied to SC-IVR to obtain the classical Wigner method a common
name for the classical Wigner method is linearized semi-classical
initial value representation (LSC-IVR). The thing that is linearized
is the differences between the positions and momenta in the paths
forward and backward in time. When going from SC-IVR to LSC-
IVR the quantum coherence in real time, that SC-IVR has, is lost.

16

2.1. Wigner transform and the Wigner phase space

Condensed phase and large systems have many degrees of freedom
coupled together that typically can result in rapid decoherence, so for
these kinds of systems the loss of quantum real time coherence is not
necessarily a big problem.20 With the linearization approximation
comes the benefit of less oscillatory integrands which are easier to
evaluate numerically than the ones in ordinary SC-IVR.20

Another, possibly more straightforward, way of deriving the
classical Wigner method is the linearized path integral (LPI) ap-
proach.21,22 The derivation of LPI is shown in the last part of section
2.2. There it is also proven that the classical Wigner method is exact
for constant, linear, and harmonic potentials and sums of these.

The classical Wigner method is exact at the initial time, with
zero point energy and motion, static tunneling , interference and so
on, but the method can not handle such things as dynamic tunneling
and dynamic quantum interference.

An example of successful usage of the classical Wigner method
is calculation of vibrational energy relaxation rate constants,23,24

where a few different systems were tested. Another example is
the calculation of kinetic energy and density fluctuation spectrum
of liquid neon at 27 K.25 A third example is the calculation of a
quantum correction factor for the far IR-spectrum of liquid water at
296 K.26

An instance where the limitations of the classical Wigner method
have a detrimental effect is the simulation of a graphite surface.27

In an anisotropic material, such as graphite, there will be more
zero point energy in some directions than in others, and during the
classical propagation this energy can leak to the directions with
less zero point energy. Another example where the leakage of zero
point energy causes problems for the classical Wigner method is the
calculation of the self diffusion coefficient of liquid water.28
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2. Background

2.2 Feynman path integral formulation

of quantum mechanics

Yes, there is goal and meaning in our path -
but it’s the way that is the labour’s worth.

Karin M. Boye (transl. David McDuff)29

The path integral formulation of quantum mechanics was intro-
duced in 1948 by Feynman.30 It is also explained in the famous book
by Feynman and Hibbs.31 In this formulation of quantum mechanics
one looks at all possible paths from one position to another and
makes a weighted “average” over all the paths, with the weights
being complex numbers that all are equal in magnitude.

Derivation of the path integral formulation

We can start with the position matrix element of the time propagation
operator

〈
xFinal

∣∣∣e− iĤt
�

∣∣∣xInitial

〉
.

Inserting the unit operator N−1 times and at the same time dividing
the time propagation operator into N parts gives

〈
xFinal

∣∣∣e− iĤt
�

∣∣∣xInitial

〉
=

{
N−1∏

j=1

∫
dDxj

}〈
xFinal

∣∣∣e− iĤt
N�

∣∣∣xN−1

〉

. . .
〈
x2

∣∣∣e− iĤt
N�

∣∣∣x1

〉〈
x1

∣∣∣e− iĤt
N�

∣∣∣xInitial

〉
.

(2.28)

For simplicity xInitial will be called x0 and xFinal will be called xN

in the following.
In the limit N → ∞ the Trotter product32 can be used, giving

lim
N→∞

e−
iĤt
N� = lim

N→∞
e−

iT̂ t
N� e−

iV̂ t
N� , (2.29)
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where V̂ is the potential energy operator and T̂ is the kinetic energy
operator. If it is also assumed that the potential only depends on
position, then

〈
xN

∣∣∣e− iĤt
�

∣∣∣x0

〉
= lim

N→∞

{
N−1∏

j=1

∫
dDxj

}

×
〈
xN

∣∣∣e− iT̂ t
N� e−

iV̂ t
N�

∣∣∣xN−1

〉

. . .
〈
x2

∣∣∣e− iT̂ t
N� e−

iV̂ t
N�

∣∣∣x1

〉

×
〈
x1

∣∣∣e− iT̂ t
N� e−

iV̂ t
N�

∣∣∣x0

〉

= lim
N→∞

{
N−1∏

j=1

∫
dDxj

}

×
〈
xN

∣∣∣e− iT̂ t
N�

∣∣∣xN−1

〉
e−

iV (xN−1)t
N�

. . .
〈
x2

∣∣∣e− iT̂ t
N�

∣∣∣x1

〉
e−

iV (x1)t
N�

×
〈
x1

∣∣∣e− iT̂ t
N�

∣∣∣x0

〉
e−

iV (x0)t
N�

= lim
N→∞

{
N−1∏

j=1

∫
dDxj

}〈
xN

∣∣∣e− iT̂ t
N�

∣∣∣xN−1

〉

. . .
〈
x2

∣∣∣e− iT̂ t
N�

∣∣∣x1

〉〈
x1

∣∣∣e− iT̂ t
N�

∣∣∣x0

〉

× e−
it
N�

∑N−1
j=0 V (xj), (2.30)

where V (xj) is the potential energy

The kinetic energy operator is T̂ =
1

2

(
m−1p̂

)
• p̂, where p̂ is the

momentum operator and m is a square diagonal matrix with the
masses for the various degrees of freedom in the diagonal. For each
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Yes, there is goal and meaning in our path -
but it’s the way that is the labour’s worth.

Karin M. Boye (transl. David McDuff)29

The path integral formulation of quantum mechanics was intro-
duced in 1948 by Feynman.30 It is also explained in the famous book
by Feynman and Hibbs.31 In this formulation of quantum mechanics
one looks at all possible paths from one position to another and
makes a weighted “average” over all the paths, with the weights
being complex numbers that all are equal in magnitude.

Derivation of the path integral formulation

We can start with the position matrix element of the time propagation
operator

〈
xFinal

∣∣∣e− iĤt
�

∣∣∣xInitial

〉
.

Inserting the unit operator N−1 times and at the same time dividing
the time propagation operator into N parts gives

〈
xFinal

∣∣∣e− iĤt
�

∣∣∣xInitial

〉
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{
N−1∏

j=1

∫
dDxj

}〈
xFinal

∣∣∣e− iĤt
N�

∣∣∣xN−1

〉

. . .
〈
x2

∣∣∣e− iĤt
N�

∣∣∣x1

〉〈
x1

∣∣∣e− iĤt
N�

∣∣∣xInitial

〉
.

(2.28)

For simplicity xInitial will be called x0 and xFinal will be called xN

in the following.
In the limit N → ∞ the Trotter product32 can be used, giving

lim
N→∞

e−
iĤt
N� = lim

N→∞
e−

iT̂ t
N� e−

iV̂ t
N� , (2.29)
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where V̂ is the potential energy operator and T̂ is the kinetic energy
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N�
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N�
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where V (xj) is the potential energy

The kinetic energy operator is T̂ =
1

2

(
m−1p̂

)
• p̂, where p̂ is the

momentum operator and m is a square diagonal matrix with the
masses for the various degrees of freedom in the diagonal. For each
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2. Background

〈
xj

∣∣∣e− iT̂ t
N�

∣∣∣xj′

〉
in the above equation

〈
xj

∣∣∣e− iT̂ t
N�

∣∣∣xj′

〉
=

〈
xj

∣∣∣∣∣e
−

i 12(m−1p̂)•p̂t
N�

∣∣∣∣∣xj′

〉

=
1

(2π�)D

∫∫
dDpj d

Dpj′ 〈xj|pj〉

×
〈
pj

∣∣∣∣∣e
−

i 12(m−1p̂)•p̂t
N�

∣∣∣∣∣pj′

〉
〈pj′ |xj′〉

=
1

(2π�)D

∫∫
dDpj d

Dpj′ e
ixj•pj

� e−
ixj′ •pj′

�

×
〈
pj

∣∣∣∣∣e
−

i 12(m−1p̂)•p̂t
N�

∣∣∣∣∣pj′

〉

=
1

(2π�)D

∫∫
dDpj d

Dpj′ e
ixj•pj

� e−
ixj′ •pj′

�

× e−
i 12(m−1pj)•pjt

N� 〈pj|pj′〉

=
1

(2π�)D

∫∫
dDpj d

Dpj′ e
ixj•pj

� e−
ixj′ •pj′

�

× e−
i 12(m−1pj)•pjt

N� δ (pj − pj′) . (2.31)
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Integrating over pj′ one acquires

〈
xj

∣∣∣e− iT̂ t
N�

∣∣∣xj′

〉
=

1

(2π�)D

∫
dDpj e

i(xj−xj′)•pj
� e−

i 12(m−1pj)•pjt
N�

=
1

(2π�)D

∫
dDpj e

− it
2N�((m−1pj)•pj− 2N

t (xj−xj′)•pj)

=
1

(2π�)D

∫
dDpj e

− it
2N�

∑D
j′′=1

(
p2
j′′,j
mj′′

− 2N
t (xj′′,j−xj′′,j′)pj′′,j

)

=
1

(2π�)D

∫
dDpj

× e
− it

2N�
∑D

j′′=1

(
1

mj′′

(
p2
j′′,j−

2Nmj′′
t (xj′′,j−xj′′,j′)pj′′,j

))

=
1

(2π�)D

∫
dDpj

× e
− it

2N�
∑D

j′′=1

(
1

mj′′

(
pj′′,j−

Nmj′′
t (xj′′,j−xj′′,j′)

)2
)

× e
it

2N�
∑D

j′′=1

(
N2m2

j′′
mj′′ t2

(xj′′,j−xj′′,j′)
2

)

=
1

(2π�)D
e

i
�
∑D

j′′=1

(
Nmj′′

2t (xj′′,j−xj′′,j′)
2
) ∫

dDpj

× e
− it

2N�
∑D

j′′=1

(
1

mj′′

(
pj′′,j−

Nmj′′
t (xj′′,j−xj′′,j′)

)2
)

, (2.32)

where j′′ denotes a component of x or p. Changing variables of
integration from pj′′,j to
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Integrating over pj′ one acquires

〈
xj

∣∣∣e− iT̂ t
N�
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〉
=

1

(2π�)D
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i(xj−xj′)•pj
� e−

i 12(m−1pj)•pjt
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=
1
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− it
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t (xj−xj′)•pj)

=
1
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− it
2N�

∑D
j′′=1

(
p2
j′′,j
mj′′

− 2N
t (xj′′,j−xj′′,j′)pj′′,j

)

=
1

(2π�)D

∫
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× e
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2N�
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1

mj′′

(
p2
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2Nmj′′
t (xj′′,j−xj′′,j′)pj′′,j

))

=
1

(2π�)D

∫
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× e
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2N�
∑D

j′′=1

(
1

mj′′

(
pj′′,j−

Nmj′′
t (xj′′,j−xj′′,j′)

)2
)

× e
it

2N�
∑D

j′′=1

(
N2m2

j′′
mj′′ t2

(xj′′,j−xj′′,j′)
2

)

=
1

(2π�)D
e

i
�
∑D

j′′=1

(
Nmj′′

2t (xj′′,j−xj′′,j′)
2
) ∫

dDpj

× e
− it

2N�
∑D

j′′=1

(
1

mj′′

(
pj′′,j−

Nmj′′
t (xj′′,j−xj′′,j′)

)2
)

, (2.32)

where j′′ denotes a component of x or p. Changing variables of
integration from pj′′,j to
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2. Background

ζj′′ =

√
t

2Nmj′′�

(
pj′′,j −

Nmj′′

t
(xj′′,j − xj′′,j′)

)
gives

〈
xj

∣∣∣e− iT̂ t
N�

∣∣∣xj′

〉
=

1

(2π�)D
e

i
�
∑D

j′′=1

(
Nmj′′

2t (xj′′,j−xj′′,j′)
2
)

×
(
2N�
t

)D
2

√√√√
D∏

j′′=1

mj′′

∫
dDζ e

−i
∑D

j′′=1 ζ
2
j′′

=
1

(2π�)D
e

iN
2t�(m(xj−xj′))•(xj−xj′)

(
2N�
t

)D
2

×
√
det (m)

∫
dDζ

D∏

j′′=1

(
cos

(
ζ2j′′

)
− i sin

(
ζ2j′′

))

=
1

(2π�)D
e

iN
2t�(m(xj−xj′))•(xj−xj′)

(
2N�
t

)D
2

×
√
det (m)

D∏

j′′=1

(√
π

2
− i

√
π

2

)

=
1

(2π�)D
e

iN
2t�(m(xj−xj′))•(xj−xj′)

(
2πN�
it

)D
2

×
√
det (m)

=

(
N

2πit�

)D
2 √

det (m) e
iN
2t�(m(xj−xj′))•(xj−xj′) . (2.33)
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Putting this result into equation 2.30 gives

〈
xN

∣∣∣e− iĤt
�

∣∣∣x0

〉
= lim

N→∞

{
N−1∏

j=1

∫
dDxj

}

×
((

N

2πit�

)D
2 √

det (m) e
iN
2t� (m(xN−xN−1))•(xN−xN−1)

. . .

(
N

2πit�

)D
2 √

det (m) e
iN
2t� (m(x2−x1))•(x2−x1)

×
(

N

2πit�

)D
2 √

det (m) e
iN
2t� (m(x1−x0))•(x1−x0)

)

× e−
it
N�

∑N−1
j=0 V (xj)

= lim
N→∞

(
N

2πit�

)ND
2

(det (m))
N
2

{
N−1∏

j=1

∫
dDxj

}

× e
iN
2t�

∑N−1
j=0 (m(xj+1−xj))•(xj+1−xj)

× e−
it
N�

∑N−1
j=0 V (xj)

= lim
N→∞

(
N

2πit�

)ND
2

(det (m))
N
2

{
N−1∏

j=1

∫
dDxj

}

× e
it
N�

∑N−1
j=0

(
N2

t2
1
2
(m(xj+1−xj))•(xj+1−xj)−V (xj)

)
. (2.34)

Now, let’s introduce
t

N
= ∆t and rewrite all xj as x (t′), where

t′ = j∆t.

〈
xN

∣∣∣e− iĤt
�

∣∣∣x0

〉
= lim

N→∞

(
det (m)

(2πi∆t�)D

)N
2

{
N−1∏

j=1

∫
dDx (j∆t)

}

× e
i
�∆t

∑N−1
j=0 ( 1

2(m
x((j+1)∆t)−x(j∆t)

∆t )•x((j+1)∆t)−x(j∆t)
∆t )

× e
i
�∆t

∑N−1
j=0 (−V (x(j∆t))) (2.35)

where it can be recognized that as N → ∞ and ∆t → 0

lim
∆t→0

x ((j + 1)∆t)− x (j∆t)

∆t
=

dx (t′)

dt′
= ẋ (t′) . (2.36)
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Putting this result into equation 2.30 gives
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)
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This is the very definition of a derivative and the sum in the exponent
is the Riemann integral over dt′ , so

〈
xN

∣∣∣e− iĤt
�

∣∣∣x0

〉
= lim

N→∞

(
det (m)

(2πi∆t�)D

)N
2

{∏

t′

∫
dDx (t′)

}

× e
i
�
∫ t
0 dt′ ( 1

2
(mẋ(t′))•ẋ(t′)−V (x(t′))) . (2.37)

Here the integrand in the exponent is a Langrangian, and integrating
a Lagrangian over time gives the classical action, Scl (x (t′) , ẋ (t′) , t).{∏

t′

∫
dDx (t′)

}
is an integration over all paths from x (0) to x (t).

(
det (m)

(2πi∆t�)D

)N
2

is a normalization factor, that can be called AN . A

shorter way to write then is

〈
xN

∣∣∣e− iĤt
�

∣∣∣x0

〉
= lim

N→∞
AN

{∏

t′

∫
dDx (t′)

}

× e
i
�Scl(x(t

′),ẋ(t′),t) . (2.38)

This is the path integral formulation. It uses a weighted average
over all paths, with the weights being complex exponentials of the
classical action of the path, all of which have equal magnitude.

The matrix element in equation 2.38 is called a kernel,

K (xN ,x0, t) =
〈
xN

∣∣∣e− iĤt
�

∣∣∣x0

〉
. (2.39)

The kernel can be used to propagate a wave function Ψ (x, 0) a time
t forward in time to Ψ (x, t) through

Ψ (x, t) = 〈x|Ψ(t)〉 =
∫

dDx′ K (x,x′, t) 〈x′|Ψ(0)〉

=

∫
dDx′

〈
x
∣∣∣e− iĤt

�

∣∣∣x′
〉
〈x′|Ψ(0)〉

=
〈
x
∣∣∣e− iĤt

�

∣∣∣Ψ(0)
〉
= e−

iĤt
� 〈x|Ψ(0)〉

= e−
iĤt
� Ψ (x, 0) . (2.40)
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In general equations such as 2.38 and 2.40 are not analytically
solvable and in a numerical approximation, with finite N , it is very
difficult to converge an integral of such a quickly oscillating complex
function as is relevant here. Thus, this formulation may not be very
useful for directly calculating real time propagation, but is rather,
at least from a computational chemist’s point of view, of interest as
a starting point from which approximate models and methods can
be developed.

Imaginary time path integrals

Looking at the Boltzmann operator e−βĤ , or e
− Ĥ

kBT , where β =
1

kBT
, kB is Boltzmann’s constant, and T is absolute temperature,

it looks similar to the time propagation operator e−
iĤt
� . In fact, if

an imaginary time, given as t = −iβ�, would be inserted into the
time propagation operator then the Boltzmann operator would be
obtained.

Using this imaginary time in equation 2.34 gives

〈
xN

∣∣∣e−βĤ
∣∣∣x0

〉
= lim

N→∞

(
N

2πβ�2

)ND
2

(det (m))
N
2

×
{
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−−iβ�
N

is the new ∆t in imaginary time. The kinetic energy terms
N2

2β2�2mj′′(xj′′,j+1−xj′′,j)
2 are of the same form as the potential energy of

harmonic springs with force constant − N2

β2�2mj′′ . These are typically
called “spring terms”. Thus the integrand can be seen as a Boltzmann
factor, at the temperature NT , of the potential energy of a number
of copies of the system, xj, connected by harmonic springs.

Using this imaginary time kernel to calculate the canonical parti-
tion function, Z, one simply has to set x0 = xN and integrate over
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This is the very definition of a derivative and the sum in the exponent
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Here the integrand in the exponent is a Langrangian, and integrating
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This is the path integral formulation. It uses a weighted average
over all paths, with the weights being complex exponentials of the
classical action of the path, all of which have equal magnitude.

The matrix element in equation 2.38 is called a kernel,
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t forward in time to Ψ (x, t) through

Ψ (x, t) = 〈x|Ψ(t)〉 =
∫

dDx′ K (x,x′, t) 〈x′|Ψ(0)〉

=

∫
dDx′

〈
x
∣∣∣e− iĤt
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In general equations such as 2.38 and 2.40 are not analytically
solvable and in a numerical approximation, with finite N , it is very
difficult to converge an integral of such a quickly oscillating complex
function as is relevant here. Thus, this formulation may not be very
useful for directly calculating real time propagation, but is rather,
at least from a computational chemist’s point of view, of interest as
a starting point from which approximate models and methods can
be developed.

Imaginary time path integrals

Looking at the Boltzmann operator e−βĤ , or e
− Ĥ

kBT , where β =
1

kBT
, kB is Boltzmann’s constant, and T is absolute temperature,

it looks similar to the time propagation operator e−
iĤt
� . In fact, if

an imaginary time, given as t = −iβ�, would be inserted into the
time propagation operator then the Boltzmann operator would be
obtained.
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β2�2mj′′ . These are typically
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factor, at the temperature NT , of the potential energy of a number
of copies of the system, xj, connected by harmonic springs.

Using this imaginary time kernel to calculate the canonical parti-
tion function, Z, one simply has to set x0 = xN and integrate over
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2. Background

Figure 2.1: Illustration of a classical particle (1.) and its correspond-
ing imaginary time path integral ring polymer (2.). The zigzag lines
represent the spring terms.

xN

Z = Tr
{
e−βĤ

}
=

∫
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〈
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〉
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∫
dDxj

}

× e
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∑N
j=1

(
N2

2β2�2 (m(x(j mod N)+1−xj))•(x(j mod N)+1−xj)+V (xj)
)
,

(2.42)

where Tr denotes a trace and mod is the modulus operator.

The extended phase space of N copies of the system connected
by harmonic springs is often seen as turning each single particle into
a “polymer” with N monomers. The circular path integral found in
equation 2.42 is then called a “ring polymer”. This is schematically
illustrated in figure 2.1.
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Since the imaginary time kernel is real valued it is much easier
to handle than the real time kernel, that is complex valued. By
simply approximating N to be finite, equations 2.41 and 2.42 become
accessible to numerical integration. Indeed two molecular simulation
methods based immediately upon this is path integral Monte Carlo
(PIMC)33 and path integral molecular dynamics (PIMD)34, which
respectively use Monte Carlo and molecular dynamics to sample the
integrand.

There are also methods for quantum dynamics that use this
imaginary time path integral, such as centroid molecular dynamics
(CMD)35 and ring polymer molecular dynamics (RPMD)36. These
dynamical methods will be explained somewhat in section 2.4.

Linearized path integral

The classical Wigner method can be derived from the real time path
integral. This was first published by Shi and Geva21 and somewhat
later by Poulsen, Nyman, and Rossky.22

Starting with a matrix element of an operator at time t,

〈
x0

∣∣∣Ω̂(t)
∣∣∣x′

0

〉
=

〈
x0

∣∣∣e iĤt
� Ω̂ e−

iĤt
�

∣∣∣x′
0

〉
, (2.43)

and inserting unity operators,

〈
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N
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�
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N
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N
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�

∣∣∣x′
0

〉
, (2.44)

a product of two kernels and a matrix element at time 0 is obtained.
The interesting aspect here is the kernels. Drawing on equation 2.34,

27



2. Background

Figure 2.1: Illustration of a classical particle (1.) and its correspond-
ing imaginary time path integral ring polymer (2.). The zigzag lines
represent the spring terms.
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(2.42)

where Tr denotes a trace and mod is the modulus operator.

The extended phase space of N copies of the system connected
by harmonic springs is often seen as turning each single particle into
a “polymer” with N monomers. The circular path integral found in
equation 2.42 is then called a “ring polymer”. This is schematically
illustrated in figure 2.1.
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2. Background

the product of the kernels can be written
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where it is assumed that the same N is used for both kernels and
t

N
= ∆t. The coordinates can be changed to x̄j =

xj + x′
j

2
and
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∆x = x′
j −xj (The Jacobian can be found in equation 2.14.), giving
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where x̄j′′,j and ∆xj′′,j are the elements of the vectors x̄j and ∆xj.
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the product of the kernels can be written
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where x̄j′′,j and ∆xj′′,j are the elements of the vectors x̄j and ∆xj.
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The kinetic energies can be further expanded and simplified,
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The potential energy can then be Taylor-expanded around ∆xj = 0,

V

(
x̄j −

∆xj

2

)
− V

(
x̄j +

∆xj

2

)

= −
(

dV (x)

dx

)T

x=x̄j

•∆xj

− 1

24

D∑

j′′=1

(
d3V (x)

dx3

)

x=x̄j′′,j

(∆xj′′,j)
3 − . . . . (2.49)

31



2. Background

The kinetic energies can be further expanded and simplified,
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2. Background

T denote the transpose of a vector. ∆xj is the separation between
the path the system will take going forward in time from 0 to t and
when going backward in time from t to 0. In the limit of classical
mechanics the path forward in time and the path backward in time
will be the same, so we are going to approximate ∆xj as being small
and truncate the Taylor expansion after the linear term, i.e.
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The time-derivative ¨̄xj =
x̄j+1−2x̄j+x̄j−1
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Integrating over ∆xj then leads to delta functions,
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Returning to equation 2.44 we have
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2. Background

T denote the transpose of a vector. ∆xj is the separation between
the path the system will take going forward in time from 0 to t and
when going backward in time from t to 0. In the limit of classical
mechanics the path forward in time and the path backward in time
will be the same, so we are going to approximate ∆xj as being small
and truncate the Taylor expansion after the linear term, i.e.
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Integrating over ∆xj then leads to delta functions,
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equation 2.53 can be written as
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Defining the momentum vectors p̄N = m(x̄N−x̄N−1)
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and p̄0 =
m(x̄0−x̄−1)
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and thus also the position x̄−1 at time −∆t, and multiplying both
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sides of the “≈” with e
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Defining the momentum vectors p̄N = m(x̄N−x̄N−1)
∆t

and p̄0 =
m(x̄0−x̄−1)

∆t
,

and thus also the position x̄−1 at time −∆t, and multiplying both
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The delta functions restrict the path from x̄0 at time 0 to x̄N at
time t to m ¨̄xj=−( dV (x)

dx )
T

x=x̄j
. This is Newton’s second law of motion.

The factor
(

det(m)

(∆t)2D

)N

is a normalization to account for the fact that
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the dimensions of dDx̄j and −m ¨̄xj−( dV (x)
dx )

T

x=x̄j
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is the classical Wigner method. The only approximation introduced
in this derivation is the truncation, after the linear term, of the
Taylor expansion of the potential energy in equation 2.49. This
truncation does of course not affect systems with all higher order
derivatives being zero. The classical Wigner method is thus proven
to be exact for e.g. bilinearly coupled harmonic oscillators.

This is a linearization of a path integral and is therefore called
linearized path integral (LPI).

It can be noted that the LPI derivation presented here avoids
the use of lim∆t→0 ∆t( dV (x)

dx )
T

x=x̄0
•∆x0→0 that both Shi and Geva21 and

Poulsen, Nyman, and Rossky22 use. As no other factor of ∆t, in the
derivation, is assumed to be 0 this could be seen as an advantage.
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2. Background

2.3 Chemical kinetics and thermal rate

constants

Kinetics is at the heart of physical
chemistry, [...]

G. Kristin Jonsson
(Lab.-report in kinetics, 2011)

In chemistry a chemical reaction such as

A + B → C + D (2.a)

has a rate of
d[C]

dt
, with the brackets denoting the concentration

of the enclosed species

(
d[C]

dt
=

d[D]

dt
= − d[A]

dt
= − d[B]

dt

)
. For

the simple kind of bimolecular (or more generally bispecies) reaction
shown here the reaction rate can be expressed as

d[C]

dt
= kr(T )[A][B], (2.59)

where kr(T ) is called the reaction rate constant. Miller and cowork-
ers37,38 have shown how to calculate bimolecular reaction rate con-
stants from three different traces:

kr(T )

=
1
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−βĤ e
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−∞
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}
,

(2.62)
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where QR is the canonical partition function of the reactants, x̂r =
xr (x̂) is the reaction coordinate operator, x̂ is the position operator,
s is the position of a dividing surface that separates reactants and
products, F̂ (x) is the probability flux operator, and θ(x) is the
Heaviside step function.

The probability flux operator is

F̂ (x̂− s) =
1

2
m−1 (δ (x̂− s) p̂+ p̂δ (x̂− s)) . (2.63)

To elucidate the physical meaning of the probability flux operator it
can be pointed out that the Wigner transform of the operator is

[
F̂ (x̂− s)

]
W
(x, p) =

p

m
δ(x− s) (2.64)

which simply is the velocity with position fixed in the surface s.
For reaction rate calculations the dividing surface s could be

placed e.g. in the transition state, but this is not a requirement.
The dividing surface can formally be placed anywhere, as long as it
separates reactants and products from each other. Certain choices,
such as placing s in the transition state, may be beneficial for
numerical convergence or even a requirement if approximations to
the exact expressions are used. E.g., in the transition state theory
limit, t → 0, where it is assumed that no recrossings of the dividing
surface occurs it makes a big difference if the dividing surface is
placed on the top of a potential barrier or below it.

The expressions 2.60-2.62 are rather intuitive. The trace in
equation 2.60 is proportional to the probability of being on the
reactant side of the dividing surface at time t = 0 and later on the
product side of the dividing surface at t → ∞.

The trace in equation 2.61 is proportional to the flow of the
probability density thought the dividing surface at time t = 0
multiplied with the probability of ending up on the product side of
the dividing surface at t → ∞.

The trace in equation 2.62 is proportional to the product of the
flow of the probability density thought the dividing surface at the
two times t = 0, or t → −∞, and t → ∞.

A requirement for the validity of equations 2.60-2.62 is that if
following the reaction coordinate far enough away from the dividing
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2. Background

surface there should not be any possibility of reflecting back a
trajectory or wavepacket.

These traces, or more specificly the flux-Heaviside one in equation
2.61, are used for the calculation of reaction rate constants in paper
IV, and section 3.3.

Another, older and more common, formulation for the reaction
rate constant is collision theory. This theory is only valid for bispecies
reactions of ideal gases. It assumes classical mechanics for the
translational movement of chemical species.

kr(T ) =

∫ ∞

0

dE σ(E)vrel(E)2β
3
2

√
E

π
e−βE

=

√
8

πµA,B

β
3
2

∫ ∞

0

dE σ(E)E e−βE, (2.65)

where E is the collision energy, σ(E) is the reaction cross section,

vrel(E) =
√

2E/µ is the relative velocity of the colliding species,

2β
3
2

√
E/π e−βE is the Maxwell-Boltzmann distribution function of

the energy, and µA,B = mAmB
mA+mB

is the reduced mass of the colliding
species with masses mA and mB.

In the situation where the two species can be described as classical
hard spheres, then if species A was trying to get past a stationary B
the collision cross section would be the area that B covers so that
the center of A can not pass through it without colliding with B,
see figure 2.2. For hard spheres the collision cross section is simply
the area of a circle with a radius that is the sum of the radii of
the species. For non-spherical species the area they cover would of
course depend on relative orientation, but the collision cross section
would be an average over all orientations. The reaction cross section
is similar to the collision cross section, but with the addition that a
collision only counts if it leads to a reaction. In reality, it is not well
defined where the borders of a chemical species are, so the species
could be considered to come into proximity of each other, rather
than to collide.

Thus the integral over collision energies in equation 2.65 has
three parts: the Maxwell-Boltzmann distribution function, that takes
account of the probability density of each particular collision energy,
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Figure 2.2: Illustration of the collision cross section of the two
spherical particles A and B. The dashed line shows the area around
particle B that the center of particle A, when moving in from the
left of the figure, can not pass through without the two particles
colliding.

the reaction cross section, that takes account of the probability of
the species colliding and reacting, and the relative velocity, that
determines at what rate collisions can occur.

Collision theory is used for the calculation of the radiative asso-
ciation rate constant in paper I, and section 3.1.
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the species colliding and reacting, and the relative velocity, that
determines at what rate collisions can occur.

Collision theory is used for the calculation of the radiative asso-
ciation rate constant in paper I, and section 3.1.
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2.4 Common methods of approximate

quantum dynamics

It should be stressed that nuclei are heavy
enough that quantum effects are almost
negligible, i.e. they behave to a good
approximation as classical particles. Indeed, if
nuclei showed significant quantum aspects, the
concept of molecular structure (i.e. different
configurations and conformations) would not
have any meaning, since the nuclei would
simply tunnel through barriers and end up in
the global minimum.

Frank Jensen39

The quote that starts this section is from a standard textbook
in computational chemistry. As already stated in chapter 1 of this
thesis, and indeed also acknowledged by Jensen elsewhere in his
book,39 there are however situations in which quantum mechanics is
necessary to accurately describe the behavior of the atomic nuclei.

Apart from the classical Wigner method, that has been exten-
sively described in sections 2.1 and 2.2, there are many methods
for approximate quantum dynamics. A few notable methods with a
relation to the work presented in this thesis will be presented in this
section, so that they can provide a context and serve as a comparison
for some of the new developments that are presented in chapter 3.

Time correlation functions are important to describe the dynam-
ics of physical systems. Examples of such functions can be found in
equations 2.60-2.62. Those correlation functions are used to calculate
reaction rate constants. The more general formulation of a thermal
time correlation function of operator Â at time 0 and operator B̂
at time t is†

〈
ÂB̂(t)

〉
=

1

Z
Tr

{
Â e−βĤ e

iĤt
� B̂ e−

iĤt
�

}
. (2.66)

†An even more general formulation of a time correlation function would have
any number of operators at different times.
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The Boltzmann operator can be placed on either side of Â. This
will only change the sign of the imaginary part,

1

Z
Tr

{
Â e−βĤ e

iĤt
� B̂ e−

iĤt
�

}
=

1

Z
Tr

{
e−βĤ Â e

iĤt
� B̂ e−

iĤt
�

}∗
,

(2.67)

where ∗ denotes complex conjugate.
Some quantum dynamical methods work with Kubo-transformed

time correlation functions,40

〈
ÂB̂(t)

〉
Kubo

=
1

Z
Tr

{
1

β

∫ β

0

dζ e−ζĤ Â e−(β−ζ)Ĥ e
iĤt
� B̂ e−

iĤt
�

}
,

(2.68)

which have the benefit that the quantum correlation functions are
more similar to their classical counterparts than is the case for the
standard “physical” correlation functions.

Another alternative is symmetrized correlation functions,41

〈
ÂB̂(t)

〉
Sym

=
1

Z
Tr

{
e−

β
2
Ĥ Â e−

β
2
Ĥ e

iĤt
� B̂ e−

iĤt
�

}
, (2.69)

which have the benefit that they are real instead of complex quanti-
ties. The correlation functions, or technically just traces, presented
in section 2.3 are of this type.

The standard, Kubo-transformed, and symmetrized versions
of the same correlation function are equivalent in the sense that
they contain the same information. Using the Fourier transform,
[f(t)]F (ω), the different correlation functions are related as:40,41

[〈
ÂB̂(t)

〉]
F
(ω) = e−

β�ω
2

[〈
ÂB̂(t)

〉
Sym

]

F

(ω)

=
β�ω

eβ�ω −1

[〈
ÂB̂(t)

〉
Kubo

]
F
(ω) . (2.70)

These relations are only valid for exact quantum mechanics. If
approximations to quantum mechanics are used, then equation 2.70
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will also be approximate. As mentioned some methods work with
a certain version of the correlation function. Other methods, e.g.
the classical Wigner method, can be used for any of the versions of
the correlation function. If one is not interested in the correlation
function itself, but rather something that is calculated from it, the
different versions may in some cases give the same result. In the
case of equations 2.60-2.62, it is long time values and an integral
that is interesting rather than the correlation functions themselves.
For these equations the ordinary version of the correlation function,
or the Kubo-transformed correlation function, would give the same
result as the symmetrized version. However, as soon as one starts
to approximate the correlation functions this does not necessarily
apply any more.

Semi-classical initial value representation

The semi-classical initial value representation18 (SC-IVR) has already
been mentioned in connection to the classical Wigner method. It
uses the IVR-representation of the time propagation operator:

e−
iĤt
� =

∫∫
dDx0 dDp0

(2πi�)
D
2

√
det

(
∂xt (x0,p0)

∂p0

)

× e
i
�S(x0,p0,t) |xt〉 〈x0| , (2.71)

where the index 0 denotes initial values, xt (x0,p0) is the position
at time t as a function of the initial values, and Scl (x0,p0, t) is the
classical action of the trajectory that connects x0 and xt (x0,p0).
There are some different implementations of SC-IVR. The interested
reader is directed to a paper by Miller.19

Matsubara dynamics

Matsubara dynamics was rather recently (2015) developed by Hele
et al.42 and even more recently (2019) generalized from just single
time correlation functions to multitime correlation functions.43 It
is a method for calculating Kubo-transformed correlation functions.
Matsubara dynamics is based on the discretized imaginary time
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path integral. Every bead in the path integral polymer is given a
momentum and kinetic energy in real time. A normal mode analysis
is made for the path integral polymer, in the limit where the number
of beads goes to infinity, and the normal modes are divided into
two groups. One group contains the so called Matsubara modes,
i.e. the modes with the lowest frequencies, and the other group
contains the non-Matsubara modes, i.e. the higher frequency modes.
The propagation forward in time is made by using the quantum

mechanical propagation operator for phase space distributions, eL̂t,
with the Liouvillian operator (here shown one-dimensional)

L̂ =
p

m

∂

∂x
− 2V (x)

�
sin




←
∂

∂x

�
2

→
∂

∂p


 , (2.72)

but only including derivatives of the Matsubara mode coordinates.
By using this method of propagation the quantum Boltzmann distri-
bution is conserved over time. The intention of this method is to find
a more correct way of combining a quantum Boltzmann distribution
with classical dynamics, compared to the classical Wigner method,
which does not conserve the quantum Boltzmann distribution over
time.

Matsubara dynamics is a fairly accurate method of approximate
quantum dynamics, but it is not practical to use for chemical prob-
lems, as it is too computationally demanding. Approximations to
Matsubara dynamics, to make it less demanding, have been stud-
ied.44 Matsubara dynamics has also been used as a comparison
for the classical Wigner method,42 and as an intermediate point to
derive RPMD and CMD from first principles.45

Centroid molecular dynamics

Centroid molecular dynamics (CMD) was first introduced by Cao
and Voth.35 CMD uses the discretized imaginary time path integral
and gives Kubo-transformed correlation functions. In CMD the
interesting quantities are measured as centroid variables. For the
case of x̂ and p̂ the corresponding centroid variables are just the
average position and momentum, respectively, of all the beads in the
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path integral. A phase space centroid distribution, that gives the
thermal distribution, and a quasi density operator, that is used to
acquire centroid variables and their propagation in time, are defined.

CMD was also derived as a centroid mean-field approximation of
Matsubara dynamics.45

For a harmonic oscillator, and an infinite number of beads in the
polymer, the original CMD method is exact, but only for correlation
functions where at least one of the operators, Â or B̂, is linear,46

Ω̂ = Ω0 +Ω1x̂+Ω2p̂, (2.73)

where the Ω:s are constants. CMD works poorly for non-linear
correlation functions for other potentials.45 The CMD method has
been extended to work better for correlation functions of non-linear
operators,46 but this is much more complicated than standard CMD.

One particular disadvantage of CMD is for vibrational spectra,
where the peaks of a spectrum can be artificially broadened and
shifted in frequency at low temperatures.47 This is an example of
what is called the curvature problem of CMD.

Ring polymer molecular dynamics

Ring polymer molecular dynamics (RPMD) was first introduced
by Craig and Manolopoulos in 2004.36 Just as the previous two
methods, RPMD uses the discretized imaginary time path integral
to calculate Kubo-transformed correlation functions. Contrary to
CMD, the measurables of interest are evaluated at the position of
every bead in the ring polymer and then taken as the mean of these
values. To get a propagation in time every bead in the ring polymer
is propagated according to classical mechanics, with the addition of
the interactions with neighboring beads.

RPMD is restricted to the calculation of position correlation
functions, meaning that correlation functions of operators containing
momentum can not be directly obtained. Momentum correlation
functions can, however, be calculated from time-derivatives of posi-
tion correlation functions.48,49 Thus, momentum correlation func-
tions can be obtained, but for certain operators, such as high powers
of p̂, it may be impractical.
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Hele et al.45 showed that, RPMD can be derived from Matsubara
dynamics by removing part of the Liouvillian operator.

For a harmonic oscillator, and an infinite number of beads in
the polymer, the RPMD method is exact, but only for correlation
functions where at least one of the operators, Â or B̂, is linear. If
the correlation function happens to be 〈x̂x̂(t)〉Kubo, then the RPMD
method using any number of beads gives the exact result.36 RPMD
works worse for correlation functions of non-linear operators than
for correlation functions of linear ones, also for other potentials than
the harmonic oscillator.45

An RPMD correlation function is exact a time 0 and the ensemble
is conserved during propagation.

One particular disadvantage of RPMD, as for CMD, is for vi-
brational spectra. In the case of RPMD, however, new spurious
peaks can appear in a spectrum, and the peaks can be artificially
broadened and split.47 By thermostating the vibrational modes of
the path integral polymer the RPMD method has been found to
become better at handling vibrational spectra.50

RPMD is used as a comparison, for the new method that is
developed, in papers III and IV, and section 3.3.

Dirac-Frenkel

The Dirac-Frenkel variational principle was first introduced by
Dirac51 and Frenkel,52 and later a somewhat different form was
derived by McLachlan.53

〈
δΨ(t)

∣∣∣∣i�
∂

∂t
− Ĥ

∣∣∣∣Ψ(t)
〉

= 0, (2.74)

where δΨ(t) is a variation in the time dependent wavefunction. For
wavefunctions or densities that have been written in a parametrized
form this variational principle allows the derivation of equations of
motion in these parameters, giving an approximate solution to the
time dependent Schrödinger equation.

Among the methods that have been derived using the Dirac-
Frenkel variational principle can be found e.g. the multi-configurational
time dependent Hartree (MCTDH) method,54 which is a very accu-
rate method for time dependent quantum mechanics, but quickly
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becomes computationally expensive as the size of the modeled system
is increased.

A variational principle corresponding to the Dirac-Frenkel one,
but for Wigner distributions in phase space, is used in paper II, and
section 3.2.
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Chapter 3

Developments

The general who wins a battle makes many
calculations in his temple ere the battle is
fought. The general who loses a battle makes
but few calculations beforehand. Thus do
many calculations lead to victory, and few
calculations to defeat: How much more do no
calculation at all pave the way to defeat!

Sun Tzu (transl. L. Giles)55

The new contributions to science from the research presented in
this thesis are a reaction rate constant for a radiative association
reaction and two methods of approximate quantum dynamics. The
reaction rate constant is presented in section 3.1 (paper I). The
two new quantum dynamical methods are presented in sections 3.2
(paper II) and 3.3 (papers III and IV) respectively. In section 3.4
suggestions are made for the direction of future research.
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3. Developments

3.1 Formation of the Hydroxyl Radical

by Radiative Association

In paper I5 new values for the reaction rate constant of the radiative
association reaction

O(3P) + H(2S) → OH(X2Π) + γ , (3.a)

where γ is a photon, is presented for the temperature range 10 K -
30000 K.

The interest in this reaction comes from astrochemistry as the
hydroxyl radical has been observed in the interstellar medium, i.e.
the space between the stars, of the Milky Way56 and two other
galaxies.57Also the reactants of this reaction are the hydrogen atom
and the oxygen atom. Hydrogen is the most abundant element and
oxygen is the third most abundant element in our galaxy so there
should not be a lack of reactants, from an interstellar point of view.

On earth it could be reasonable to believe that the formation
of OH from O and H would happen through a three body collision,
i.e. a third species colliding with the activated complex of O and H
and carrying away some energy. However, the Earths atmosphere
can, through a back-of-the-envelope calculation, be estimated to
have a number density of ∼ 1019 cm−3 at the surface, while what
is considered a dense cloud in the interstellar medium has number
densities of between 103 cm−3 and 106 cm−3.58 It is therefore possible
for reactions that would be completely irrelevant at the surface of
the Earth to be very important in the interstellar medium.

Three body reactions do noticeably occur in the interstellar
medium in the form of reactions between species adsorbed onto dust
grains, but these reactions are not the subject of paper I.

The radiative association reaction can take place through a
number of different pathways. The ones considered in paper I are
the ones starting from the electronic ground states of the atoms.

The ground state atoms O(3P) and H(2S) can form the molecule
in the electronic states OH(X2Π), OH(12Σ−), OH(a4Σ−), and
OH(b4Π). The potential energy for these electronic states can
be seen as a function of internuclear distance, xind, in figure 3.1.
OH(X2Π) is the only one of these electronic states that has bound
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Figure 3.1: Potential energy surfaces for the electronic states X2Π,59

12Σ−,59 A2Σ+,60 a4Σ−,60 and b4Π60 of OH and a Morse potential
for the electronic state X3Σ− of OH+61,62 shifted to account for the
hydrogen ionization energy.63 The crosses show the original data
points and the lines are inter- and extrapolations.

vibrational levels, and these bound levels are the product of the
reaction. The free or quasi-bound vibrational states of OH(X2Π)
will be denoted OH(X2Π)∗.

The two most direct pathways for the reaction are

O(3P) + H(2S) → OH(X2Π)∗ → OH(X2Π) + γ (3.b)

and

O(3P) + H(2S) → OH(12Σ−) → OH(X2Π) + γ . (3.c)

The atoms could also approach each other in any of the electronic
states corresponding to the ground states of the atoms and couple,
through e.g. spin-orbit-interactions, to the state A2Σ+, that can be
seen in figure 3.1. From the quasibound vibrational levels of that
state a radiative transition to a bound vibrational level of X2Π can
happen. This, so called, inverse predissociation adds four possible
pathways for the reaction

51



3. Developments

3.1 Formation of the Hydroxyl Radical

by Radiative Association

In paper I5 new values for the reaction rate constant of the radiative
association reaction

O(3P) + H(2S) → OH(X2Π) + γ , (3.a)

where γ is a photon, is presented for the temperature range 10 K -
30000 K.

The interest in this reaction comes from astrochemistry as the
hydroxyl radical has been observed in the interstellar medium, i.e.
the space between the stars, of the Milky Way56 and two other
galaxies.57Also the reactants of this reaction are the hydrogen atom
and the oxygen atom. Hydrogen is the most abundant element and
oxygen is the third most abundant element in our galaxy so there
should not be a lack of reactants, from an interstellar point of view.

On earth it could be reasonable to believe that the formation
of OH from O and H would happen through a three body collision,
i.e. a third species colliding with the activated complex of O and H
and carrying away some energy. However, the Earths atmosphere
can, through a back-of-the-envelope calculation, be estimated to
have a number density of ∼ 1019 cm−3 at the surface, while what
is considered a dense cloud in the interstellar medium has number
densities of between 103 cm−3 and 106 cm−3.58 It is therefore possible
for reactions that would be completely irrelevant at the surface of
the Earth to be very important in the interstellar medium.

Three body reactions do noticeably occur in the interstellar
medium in the form of reactions between species adsorbed onto dust
grains, but these reactions are not the subject of paper I.

The radiative association reaction can take place through a
number of different pathways. The ones considered in paper I are
the ones starting from the electronic ground states of the atoms.

The ground state atoms O(3P) and H(2S) can form the molecule
in the electronic states OH(X2Π), OH(12Σ−), OH(a4Σ−), and
OH(b4Π). The potential energy for these electronic states can
be seen as a function of internuclear distance, xind, in figure 3.1.
OH(X2Π) is the only one of these electronic states that has bound
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Figure 3.1: Potential energy surfaces for the electronic states X2Π,59

12Σ−,59 A2Σ+,60 a4Σ−,60 and b4Π60 of OH and a Morse potential
for the electronic state X3Σ− of OH+61,62 shifted to account for the
hydrogen ionization energy.63 The crosses show the original data
points and the lines are inter- and extrapolations.

vibrational levels, and these bound levels are the product of the
reaction. The free or quasi-bound vibrational states of OH(X2Π)
will be denoted OH(X2Π)∗.

The two most direct pathways for the reaction are

O(3P) + H(2S) → OH(X2Π)∗ → OH(X2Π) + γ (3.b)

and

O(3P) + H(2S) → OH(12Σ−) → OH(X2Π) + γ . (3.c)

The atoms could also approach each other in any of the electronic
states corresponding to the ground states of the atoms and couple,
through e.g. spin-orbit-interactions, to the state A2Σ+, that can be
seen in figure 3.1. From the quasibound vibrational levels of that
state a radiative transition to a bound vibrational level of X2Π can
happen. This, so called, inverse predissociation adds four possible
pathways for the reaction
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O(3P) + H(2S) → OH(X2Π)∗ → OH(A2Σ+)
→ OH(X2Π) + γ , (3.d)

O(3P) + H(2S) → OH(12Σ−) → OH(A2Σ+)
→ OH(X2Π) + γ , (3.e)

O(3P) + H(2S) → OH(a4Σ−) → OH(A2Σ+)
→ OH(X2Π) + γ , (3.f)

and

O(3P) + H(2S) → OH(b4Π) → OH(A2Σ+)
→ OH(X2Π) + γ . (3.g)

Only single-photon processes are considered, as two-photon processes
are highly unlikely to occur.

Possible competing reactions are the electron detachment reaction

O(3P) + H(2S) → OH(X2Π/12Σ−/a4Σ−/b4Π)
→ OH+(X3Σ−) + e− (3.h)

and the charge transfer reactions

O(3P) + H(2S) → OH(X2Π/12Σ−/a4Σ−/b4Π)
→ O−(2P) + H+ (3.i)

and

O(3P) + H(2S) → OH(X2Π/12Σ−/a4Σ−/b4Π)
→ O+(4S) + H−(1S) . (3.j)

Theory and method

Several methods were used to calculate rate constants in this work.
These used the potential energy surfaces shown in figure 3.1 together
with the dipole moment of the state X2Π and the transition dipole
moment of the transition 12Σ− → X2Π that are shown in figure 3.2.
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Figure 3.2: Electric dipole moment of the electronic state X2Π64

and transition dipole moment for the transition between electronic
states 12Σ− and X2Π,59 of OH. ea0 is the elemental charge times
the Bohr radius. The crosses show the original data points and the
lines are inter- and extrapolations.

Quantum mechanical perturbation theory

To get quantum mechanical reaction cross sections a first order
perturbation theory was used. The perturbation, that is added to
the hamiltonian of the system, is in this case the interaction between
the electric field of the emitted photon and the dipole moment
of the molecular system. This perturbation theory for transition
probabilities is sometimes called “Fermi’s golden rule” or just the
“golden rule”. It is more thoroughly described in e.g. the textbook
by Bransden and Joachain.65 The application of this perturbation
theory to get radiative association cross sections has been described
in e.g. references 66 and 67. This method requires wavefunctions
to be computed for both the unbound and bound states so that the
matrix elements of the dipole moment operator can be obtained.
Here the unbound wavefunctions were calculated with Numerov’s
method68 and the bound wavefunctions were calculated with the
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Quantum mechanical perturbation theory

To get quantum mechanical reaction cross sections a first order
perturbation theory was used. The perturbation, that is added to
the hamiltonian of the system, is in this case the interaction between
the electric field of the emitted photon and the dipole moment
of the molecular system. This perturbation theory for transition
probabilities is sometimes called “Fermi’s golden rule” or just the
“golden rule”. It is more thoroughly described in e.g. the textbook
by Bransden and Joachain.65 The application of this perturbation
theory to get radiative association cross sections has been described
in e.g. references 66 and 67. This method requires wavefunctions
to be computed for both the unbound and bound states so that the
matrix elements of the dipole moment operator can be obtained.
Here the unbound wavefunctions were calculated with Numerov’s
method68 and the bound wavefunctions were calculated with the
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version of the discrete variable representation (DVR) of Colbert and
Miller.69

Since molecules can rotate these calculations need to account for
different rotational states. When rotation is added to the diatomic
system a centrifugal potential, ∝ 1/x2

ind, has to be added to the
potential energy surface. When this, purely repulsive, centrifugal
potential is added to the X2Π potential a barrier is obtained for some
rotational quantum numbers. This barrier can cause quasibound
vibrational states, i.e. states with an energy lower than the barrier
but above the dissociation limit, so tunneling is necessary to enter or
escape. The reaction cross section calculated with this method will
look like a smooth function of energy, but when the collision energy
coincides with the energy of a quasibound state there is a sudden
peak in the function. (These peaks can be seen in figure 3.3.) The
phenomenon is called resonance.

The quasibound states are long lived, compared with a wavepacket
just bouncing off the repulsive part of the potential. Somewhat sim-
plified, the system could be considered as getting stuck inside the
barrier for a while. Thus, for a collision energy with a resonance
there will be much more time for the radiative transition from the
quasibound state to occur, compared to the simple bounce-off situa-
tion. These quasibound states have a finite lifetime, since there is
the possibility of escaping them through tunneling or the emission
of a photon. Due to this, there is a kind of uncertainty relation,

∆Eres =
�
τres

, (3.1)

where τres is the lifetime of the resonance and ∆Eres is the so called
“width” of the resonance. The width is actually related to the width
of the peaks in the reaction cross section.

A drawback of this perturbation theory is, as for all first order
perturbation theories, that the perturbation has to be small. If the
perturbation, in this case the interaction between the photon and the
system, is large enough to significantly affect the bound or unbound
wavefunctions, then this method will not work that well.

Another drawback of this perturbation theory method is that
when putting it into collision theory and calculating the integral
over energy, equation 2.65, that integral has to be done numerically
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and the cross section has to be calculated on a grid of energies. If
there are resonances to account for, the grid has to be fine enough to
properly represent these possibly very thin peaks in the cross section
function. If the grid is too coarse the peaks may be distorted in
shape or may not be found at all.

Semiclassical method

An alternative to perturbation theory when it comes to calculating
quantum mechanical cross sections is the use of an optical potential,

Vopt(xind) = − i�
2
AEinstein(xind), (3.2)

where AEinstein(xind) is the Einstein A coefficient, that is the proba-
bility of transition between two states per unit of time. This optical
potential is added to the standard hamiltonian of the system. When
the system is propagated forward in time the imaginary optical
potential will absorb part of the probability of the unbound states.
This means that there is no need to calculate the wavefunctions for
the bound states, only for the unbound ones.

The method used in paper I is restricted by the Franck-Condon
principle,70–72 which states that during a transition between two
electronic states in a molecule the electrons will move to the ap-
propriate new configuration, but the nuclei are so slow that they
will keep their position and momentum and only adapt after the
transition has already happened. This is a predecessor to the Born-
Oppenheimer approximation.3 This optical potential method only
works for radiative transitions between different electronic states, in
this case reaction 3.c.

In this work the unbound wavefunctions were handled semiclassi-
caly with the Wentzel-Kramers-Brillouin (WKB) approximation.73–75

With the semiclassical approximation, this method can not ac-
count for resonances. But it can give the baseline of the reaction
cross section.
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cross section.
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Classical method

Since the semiclassical method described in the preceding section
only handles transitions between two different electronic states , it
can not be used for reaction 3.b. To get an alternative method to
calculate cross sections for this reaction a purely classical method was
used instead. This classical method was used in the form developed
by Gustafsson.76

This classical method uses the classical equations of motion to
compute the electric dipole moment of the system as a function of
time. The frequency of the changes in dipole moment can be equated
with the frequency of the emitted photon and the intensity of the
emission can be calculated as the Larmor power,77 that depends on
the second time derivative of the dipole moment.

Since this method is based on the classical equations of motion, it
can not account for resonances, but just as the semiclassical method,
it can give the baseline of the reaction cross section.

Breit-Wigner theory and inverse predissociation

Breit-Wigner theory78 allows the calculation of the contribution to
the reaction rate constant that comes from the resonances. A certain
shape is assumed for the resonance-peaks, and the contribution
to the reaction cross section or rate constant from each resonance
can be calculated from the width/lifetime of the resonance. This
contribution is

σres(E) ∝ ∆Eres,rad∆Eres,tun

(E − Eres)
2 + (∆Eres,tot)

2

4

=

1
τres,radτres,tun

(E−Eres)
2

�2 + 1
4τ2res,tot

(3.3)

kr,res(T ) ∝
∆Eres,rad∆Eres,tun

∆Eres,tot

=
�τres,tot

τres,radτres,tun

=
�

τres,rad + τres,tun
, (3.4)

where the relevant energy, E, is the collision energy compared to
the asymptotic potential energy of X2Π, and Eres is the energy
of the quasibound state. The width/lifetime of the resonance has
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been divided into one part for the radiative process of escaping
the quasibound state and one part for the tunneling out of the
quasibound state. The total process of escaping the quasibound state
has ∆Eres,tot = ∆Eres,rad +∆Eres,tun and 1/τres,tot = 1/τres,rad + 1/τres,tun.

As has already been mentioned, the quantum mechanical per-
turbation theory gives the reaction cross section as a function of
energy, and the integral over energy in equation 2.65 has to be
performed numerically. The ability of the perturbation theory to
describe the contribution from the resonance is thus dependent on
that the grid that the integration is conducted upon is fine enough
to capture the position and shape of the very narrow peaks in the
cross section. Breit-Wigner theory instead assumes a peak shape
that is analytically integrable, and therefore does not have the same
problems as the perturbation theory.

Of course computations are needed to find the energies of the
quasibound states and calculate their widths/lifetimes. In this work
the program LEVEL79 was used. The methods to accomplish these
computations will not be further explored here. The Breit-Wigner
theory was used to add a resonance contribution to the cross section
of reaction 3.b when it was calculated with the classical method.

The use of equations 3.3 and 3.4 is not restricted to quasibound
vibrational states caused by tunneling. Reactions 3.d-3.g occur via
quasibound vibrational states in A2Σ+ that can be entered and
exited, not by tunneling through a potential barrier, but rather by
coupling to the electronic states X2Π, 12Σ−, a4Σ−, and b4Π, e.g.
through spin-orbit interactions.

This process is called inverse predissociation. Predissociation is
when a bound molecule absorbs a photon and is excited to this kind
of quasibound state and then changes electronic state and becomes
unbound, dissociating. Inverse predissociation is thus the inverse of
this.

As long as the energies of the quasibound states and the
widths/lifetimes for the radiative process and the coupling between
the electronic states can be obtained, a contribution to the reaction
rate constant can be calculated through equations 3.3 and 3.4. In
paper I these were taken from the literature.
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Electron detachment

For reaction 3.h an upper bound to the reaction cross section was
estimated through a method that has been used for O− + H.80 This
approximate method assumes that, for a certain electronic state all
classical trajectories that reach the point where the potential energy
surface of this electronic state crosses the potential energy surface
of the electronic state with a detached electron, xcross, leads to a
reaction,

σElec.det.(E) ∝





0 if E < V (xcross)

πx2
cross

(
1− V (xcross)

E

)
if E � V (xcross)

.

(3.5)

Since the X2Π potential energy surface was not available at, nor
extrapolated to, the point where it would cross the potential energy of
the X3Σ−-state of OH+ it was not counted in the total cross section.
However, from looking at figure 3.1 it can be safely assumed that
this V (xcross) will not be the crossing of potential energy surfaces
that is lowest in energy, and only the one that is lowest in energy
will determine the energy at which the electron detachment cross
section starts being non-zero. As will be seen in the next section,
only the energy at which the electron detachment may start to occur,
rather than the estimated value of the cross section, is important.
Not accounting for X2Π will thus not affect the end results of this
work.

Results and discussion

In figure 3.3 the reaction cross section for reaction 3.b is shown. The
difference between the cross section calculated with the perturbation
theory and the classical method with the addition of Breit-Wigner
theory can be seen. The baselines of the two approaches are very
similar except at the highest and lowest energies. Thus, the classical
method is a very good approximation for the non-resonant contri-
bution to this cross section. It is visible that Breit-Wigner theory
finds many more resonances than the perturbation theory does, par-
ticularly at high energies, where the perturbation theory does not
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Figure 3.3: Reaction cross section for the reaction OH(X2Π)∗ →
OH(X2Π) + γ (3.b) calculated with the quantum mechanical per-
turbation theory (QM) and the classical method + Breit-Wigner
theory (CL+BW).

find any resonances at all. The axes in the graph are logarithmic.
To get a manageable number of grid points for the energy, the grid
is coarser at higher energies than at lower ones. This can now be
seen, as the perturbation theory is completely dependent on having
a fine enough energy grid for finding the resonances. For the highest
energies, where the grid is the coarsest, the perturbation theory does
not find any resonances at all. Meanwhile the Breit-Wigner theory
have found a lot of resonances, independent of the grid. Since the
perturbation theory misses too many resonances, the cross section
from the classical method with the addition of Breit-Wigner theory
was used for the rate constant calculations, see figure 3.5.

In figure 3.4 the reaction cross section for reaction 3.c is shown.
The difference between the cross section calculated with the pertur-
bation theory and the semiclassical method can be seen. Since the
electronic state 12Σ− is purely repulsive, there are no quasi-bound
vibrational states and thus no resonances. At low energies the pertur-
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However, from looking at figure 3.1 it can be safely assumed that
this V (xcross) will not be the crossing of potential energy surfaces
that is lowest in energy, and only the one that is lowest in energy
will determine the energy at which the electron detachment cross
section starts being non-zero. As will be seen in the next section,
only the energy at which the electron detachment may start to occur,
rather than the estimated value of the cross section, is important.
Not accounting for X2Π will thus not affect the end results of this
work.

Results and discussion

In figure 3.3 the reaction cross section for reaction 3.b is shown. The
difference between the cross section calculated with the perturbation
theory and the classical method with the addition of Breit-Wigner
theory can be seen. The baselines of the two approaches are very
similar except at the highest and lowest energies. Thus, the classical
method is a very good approximation for the non-resonant contri-
bution to this cross section. It is visible that Breit-Wigner theory
finds many more resonances than the perturbation theory does, par-
ticularly at high energies, where the perturbation theory does not
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Figure 3.3: Reaction cross section for the reaction OH(X2Π)∗ →
OH(X2Π) + γ (3.b) calculated with the quantum mechanical per-
turbation theory (QM) and the classical method + Breit-Wigner
theory (CL+BW).

find any resonances at all. The axes in the graph are logarithmic.
To get a manageable number of grid points for the energy, the grid
is coarser at higher energies than at lower ones. This can now be
seen, as the perturbation theory is completely dependent on having
a fine enough energy grid for finding the resonances. For the highest
energies, where the grid is the coarsest, the perturbation theory does
not find any resonances at all. Meanwhile the Breit-Wigner theory
have found a lot of resonances, independent of the grid. Since the
perturbation theory misses too many resonances, the cross section
from the classical method with the addition of Breit-Wigner theory
was used for the rate constant calculations, see figure 3.5.

In figure 3.4 the reaction cross section for reaction 3.c is shown.
The difference between the cross section calculated with the pertur-
bation theory and the semiclassical method can be seen. Since the
electronic state 12Σ− is purely repulsive, there are no quasi-bound
vibrational states and thus no resonances. At low energies the pertur-

59



3. Developments

1E−20

1E−18

1E−16

1E−14

1E−12

1E−10

1E−08

1E−06

1E−05 0.0001 0.001 0.01 0.1 1 10

σ
(E

) 
/ 
Å

2

E / eV

QM
SC

Figure 3.4: Reaction cross section for the reaction OH(12Σ−) →
OH(X2Π) + γ (3.c) calculated with the quantum mechanical per-
turbation theory (QM) and the semiclassical method (SC).

bation theory cross sections are much higher than the semiclassical
ones, due, at least in part, to tunneling into the classically forbidden
short distances. At high energies the semiclassical cross section can
not be calculated because the Franck-Condon principle restricts the
energy of the emitted photon to the difference between the potential
energy surfaces, and if this difference is lower than the collision
energy the bound vibrational states are inaccessible. In figure 3.5
the reaction rate constants calculated from these cross sections are
shown. The noticeable difference between the perturbation theory
and semiclassical reaction rate constants is in the temperature range
200 K - 1000 K, where reaction 3.b dominates. This difference is
thus not a problem.

It is reassuring, for reaction 3.c, that different methods give the
same result for the reaction rate constant. This indicates that the
result should be reliable.

In figure 3.6 the cross sections for reactions 3.b, 3.c, and 3.h has
been gathered in the same graph. It can be seen that at low energies
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Figure 3.5: Reaction rate constant for the reactions OH(X2Π)∗ →
OH(X2Π) + γ (3.b), calculated with the classical method + Breit-
Wigner theory (CL+BW), and OH(12Σ−) → OH(X2Π) + γ (3.c),
calculated with the quantum mechanical perturbation theory (QM)
and the semiclassical method (SC). Additionally a total reaction
rate constant is shown.

the cross section for reaction 3.b is much higher than the cross
section for reaction 3.c. At higher energies the processes have similar
cross sections, and from around ∼1 eV reaction 3.c gets the higher
cross section. This is the same kind of trend as for the reaction rate
constants for the two reactions that become equal around ∼2000 K.

In figure 3.6 the estimate of the cross section for the electron
detachment process, reaction 3.h, can also be seen. This approxi-
mate cross section is supposed to be an upper limit to the real cross
section. The energies at which this reaction could interfere with the
radiative association are the ones for which there is no calculated
semiclassical cross section for reaction 3.c. The perturbation theory
cross section does, however, have finite values at these high collision
energies. The highest collision energies are most important at the
highest temperatures. Since the rate constants calculated from the
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calculated with the quantum mechanical perturbation theory (QM)
and the semiclassical method (SC). Additionally a total reaction
rate constant is shown.

the cross section for reaction 3.b is much higher than the cross
section for reaction 3.c. At higher energies the processes have similar
cross sections, and from around ∼1 eV reaction 3.c gets the higher
cross section. This is the same kind of trend as for the reaction rate
constants for the two reactions that become equal around ∼2000 K.

In figure 3.6 the estimate of the cross section for the electron
detachment process, reaction 3.h, can also be seen. This approxi-
mate cross section is supposed to be an upper limit to the real cross
section. The energies at which this reaction could interfere with the
radiative association are the ones for which there is no calculated
semiclassical cross section for reaction 3.c. The perturbation theory
cross section does, however, have finite values at these high collision
energies. The highest collision energies are most important at the
highest temperatures. Since the rate constants calculated from the
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Figure 3.6: Reaction cross sections for the reactions OH(X2Π)∗

→ OH(X2Π) + γ (3.b) and OH(12Σ−) → OH(X2Π) + γ (3.c),
calculated with the quantum mechanical perturbation theory (QM),
the classical method + Breit-Wigner theory (CL+BW), and the
semiclassical method (SC). Estimate of reaction cross section for
OH(12Σ−/a4Σ−/b4Π) → OH+(X3Σ−) + e− (3.h).

semiclassical and perturbation theory cross sections are indistin-
guishable at the high temperatures in figure 3.5, it can be concluded
that the high collision energies where the two different cross sections
are very different are not important at the temperatures studied
in this work. If these collision energies are unimportant, then the
competing electron detachment process will not affect the reaction
rate constant studied here. Likewise, the charge transfer reactions,
3.i and 3.j, have threshold energies of >12 eV∗, making also them
negligible.

In figure 3.7 the total reaction rate constants for the processes
3.b and 3.c, and the total reaction rate constant for the inverse
predissociation are shown. From around ∼20 K to ∼9000 K inverse

∗These energies are acquired from an addition of ionization energies63,81–83

and electron affinities.84,85
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Figure 3.7: The total reaction rate constants for the radiative asso-
ciation reaction O(3P) + H(2S) → OH(X2Π) + γ (3.a) through the
processes 3.b + 3.c, the inverse predissociation processes (reactions
3.d-3.g), and the total sum of the processes. An older value for the
same reaction rate constant, taken from KIDA,86 is also shown.

predissociation dominates the reaction rate constant. At tempera-
tures above ∼10000 K process 3.c is, however, dominating.

This dominance by the process 3.c at high temperature means
that the temperatures where the inverse predissociation makes a
noticeable contribution to the total reaction rate constant will be
temperatures where the highest collision energies will not matter.
Thus, the high energy processes of electron detachment and charge
transfer should not interfere with the inverse predissociation.

When it comes to possible interference between the processes 3.b
and 3.c and inverse predissociation reactions 3.d-3.g, 3.f and 3.g goes
via electronic states that are not involved with 3.b and 3.c and will
not noticeably affect or be affected by them. 3.f is assumed to be
the dominating process for inverse predissociation for most of the
temperature interval studied.60 Thus, it can also be assumed that
inverse predissociaton will not interfere with 3.b and 3.c for most
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→ OH(X2Π) + γ (3.b) and OH(12Σ−) → OH(X2Π) + γ (3.c),
calculated with the quantum mechanical perturbation theory (QM),
the classical method + Breit-Wigner theory (CL+BW), and the
semiclassical method (SC). Estimate of reaction cross section for
OH(12Σ−/a4Σ−/b4Π) → OH+(X3Σ−) + e− (3.h).

semiclassical and perturbation theory cross sections are indistin-
guishable at the high temperatures in figure 3.5, it can be concluded
that the high collision energies where the two different cross sections
are very different are not important at the temperatures studied
in this work. If these collision energies are unimportant, then the
competing electron detachment process will not affect the reaction
rate constant studied here. Likewise, the charge transfer reactions,
3.i and 3.j, have threshold energies of >12 eV∗, making also them
negligible.

In figure 3.7 the total reaction rate constants for the processes
3.b and 3.c, and the total reaction rate constant for the inverse
predissociation are shown. From around ∼20 K to ∼9000 K inverse

∗These energies are acquired from an addition of ionization energies63,81–83

and electron affinities.84,85
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Figure 3.7: The total reaction rate constants for the radiative asso-
ciation reaction O(3P) + H(2S) → OH(X2Π) + γ (3.a) through the
processes 3.b + 3.c, the inverse predissociation processes (reactions
3.d-3.g), and the total sum of the processes. An older value for the
same reaction rate constant, taken from KIDA,86 is also shown.

predissociation dominates the reaction rate constant. At tempera-
tures above ∼10000 K process 3.c is, however, dominating.

This dominance by the process 3.c at high temperature means
that the temperatures where the inverse predissociation makes a
noticeable contribution to the total reaction rate constant will be
temperatures where the highest collision energies will not matter.
Thus, the high energy processes of electron detachment and charge
transfer should not interfere with the inverse predissociation.

When it comes to possible interference between the processes 3.b
and 3.c and inverse predissociation reactions 3.d-3.g, 3.f and 3.g goes
via electronic states that are not involved with 3.b and 3.c and will
not noticeably affect or be affected by them. 3.f is assumed to be
the dominating process for inverse predissociation for most of the
temperature interval studied.60 Thus, it can also be assumed that
inverse predissociaton will not interfere with 3.b and 3.c for most
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temperatures. A possible problem is that both reactions 3.b and
3.d become important at low temperatures. However, none of the
resonances in the two pathways overlap, so it is unlikely that they
would affect each other.

If looking at collisions between O- and H-atoms that may have
excited electronic states, discarding the excited states of hydrogen
is unproblematic as they are very high in energy, ∼ 10 eV.87–89

The excited states of oxygen may however matter, at the higher
temperatures studied here, as O(1D) is only ∼ 2 eV87,90 above the
ground state. This means that there are additional reaction pathways
that could be significant at high temperatures, possibly increasing
the rate constant.

There is an older value for the radiative association rate con-
stant, shown in figure 3.7. This older value is the one found in
the databases Kinetic Database for Astrochemistry86 (KIDA) and
UMIST database for astrochemistry91 (UDfA). This older value is
very different from the newly calculated one. The old value for the
reaction rate constant is likely just a rough estimate†. With the
above discussion indicating that the newly calculated rate constant
should be relatively trustworthy, it is reasonable to assume that it is
of higher quality than the old rate constant. Additionally, the new
rate constant covers a much larger temperature interval.

†The author has been unsuccessful in locating the original source of the old
reaction rate constant. As of writing this (20 April 2020) KIDA denotes the
method for obtaining it as “estimation”, which, according to KIDA, means that
it is a guess, but possibly an educated one.
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3.2 Dynamics of Gaussian basis

functions

In 2011 Poulsen published a work where the Dirac-Frenkel variational
principle, see section 2.4, was applied to Wigner functions.92 In paper
II93 two new forms of basis functions to construct Wigner functions,
for use with this variational principle are described and tested on
a few model systems. The purpose is to evaluate if this could be a
useful method for approximate quantum dynamics.

Theory and method

The Dirac-Frenkel variational principle for wavefunctions was briefly
presented in section 2.4. The variational principle introduced by
Poulsen92 is the corresponding variational principle for Wigner dis-
tributions in phase space. In analogy with the Dirac-Frenkel varia-
tional principle the Wigner transformed operator can be written in
a parametrized form. Here the parametrized Wigner functions will
be called ΦW (x,p,α(t)), where α(t) is the vector of parameters.
The equation corresponding to equation 2.74 is

∫∫
dDx dDp (δΦW (x,p,α(t)))∗

×
(
L̂− d

dt

)
ΦW (x,p,α(t)) = 0, (3.6)

where δΦW (x,p,α(t)) is a variation in ΦW (x,p,α(t)) corresponding
to the variation δα(t) in α(t). These variations are complex, even
though both the Wigner function, and the parameters, may be real.
L̂ is the Liouvillian operator that was shown in equation 2.72. Since
the time dependence of the Wigner function is contained in the
parameters, the time derivative of the Wigner function is

d

dt
ΦW (x,p,α(t)) = α̇(t) • d

dα(t)
ΦW (x,p,α(t)) , (3.7)
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where α̇(t) is the time derivative of α(t). This means that the
variational principle also can be written

∫∫
dDx dDp (δΦW (x,p,α(t)))∗

×
(
L̂− α̇(t) • d

dα(t)

)
ΦW (x,p,α(t)) = 0. (3.8)

From this, a formula for α̇(t) can be obtained,

α̇(t) =

∫∫
dDx dDp

(
d

dα(t)
ΦW (x,p,α(t))

)∗
L̂ΦW (x,p,α(t))

∫∫
dDx dDp

(
d

dα(t)
ΦW (x,p,α(t))

)∗
• d

dα(t)
ΦW (x,p,α(t))

,

(3.9)

which is an equation of motion for the parameters.
This variational principle can be written as a principle of least

action,92 with an action functional, S (α(t)), that is

S (α(t)) =

∫
dt

∫∫
dDx dDp (ΦW (x,p,α(t)))∗

×
(
L̂− α̇(t) • d

dα(t)

)
ΦW (x,p,α(t)) . (3.10)

Here the principle of least action states that you should find the
path in α(t) that makes S (α(t)) an extremum. This principle of
least action is equivalent to equations 3.6 and 3.8.

In paper II93 two new types of basis functions, φ, are suggested
for building up the parametrized Wigner functions. As in the paper,
the one-dimensional case will be shown here.

ΦW (x, p,α(t)) =
num. of basis func.∑

j=0

wjφj (x, p,αj(t)) , (3.11)

where wj is the weight coefficient of the basis function and αj(t) is
the vector of parameters for each basis function. The basis functions
suggested are a so called thawed real Gaussian function

φj (x, p,αj(t)) = N e
−


x− x0 (t)
p− p0 (t)




T
a (t) c (t)
c (t) b (t)




x− x0 (t)
p− p0 (t)




(3.12)
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and a frozen complex Gaussian function

φj (x, p,αj(t)) = eiξ(t) e
−


x− x0 (t)
p− p0 (t)




T
a 0
0 b




x− x0 (t)
p− p0 (t)



,

(3.13)

where N is a normalization constant, x0 and p0 are the average
position and momentum of the basis function, and a, b, c, and ξ are
other parameters of the basis function. The vectors αj(t) for the
two kinds of basis functions are

αj,Thawed(t) =




x0(t)
p0(t)
a(t)
b(t)
c(t)




(3.14)

αj,Frozen(t) =




x0(t)
p0(t)
a
b

ξ(t)




. (3.15)

While all other parameters are real, the time dependent parameters
for the frozen Gaussian, x0(t), p0(t), and ξ(t), are complex numbers.
Even though the individual frozen Gaussian functions are complex
valued, the total Wigner function, that is the sum of them, should
be real valued. The frozen Gaussian is called “frozen” because a
and b have fixed values that do not change with time, and even
though ξ(t) change with time, it only affects the size and complex
phase of the function. The frozen Gaussian thus preserves its shape,
and only changes its average coordinate in phase space, its size,
and its complex phase, when it evolves in time. In contrast, the
thawed Gaussian is “thawed” (not frozen) because a(t), b(t), and
c(t) change with time. So the thawed Gaussian changes shape and
average coordinate in phase space, but it conserves its size as it
evolves in time.

A Wigner function constructed from one of the types of basis
functions presented in paper II can be propagated in time by prop-
agating the individual basis functions separately. For the thawed
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where α̇(t) is the time derivative of α(t). This means that the
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Here the principle of least action states that you should find the
path in α(t) that makes S (α(t)) an extremum. This principle of
least action is equivalent to equations 3.6 and 3.8.

In paper II93 two new types of basis functions, φ, are suggested
for building up the parametrized Wigner functions. As in the paper,
the one-dimensional case will be shown here.

ΦW (x, p,α(t)) =
num. of basis func.∑

j=0

wjφj (x, p,αj(t)) , (3.11)

where wj is the weight coefficient of the basis function and αj(t) is
the vector of parameters for each basis function. The basis functions
suggested are a so called thawed real Gaussian function

φj (x, p,αj(t)) = N e
−


x− x0 (t)
p− p0 (t)




T
a (t) c (t)
c (t) b (t)




x− x0 (t)
p− p0 (t)




(3.12)
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and a frozen complex Gaussian function

φj (x, p,αj(t)) = eiξ(t) e
−


x− x0 (t)
p− p0 (t)




T
a 0
0 b




x− x0 (t)
p− p0 (t)



,

(3.13)

where N is a normalization constant, x0 and p0 are the average
position and momentum of the basis function, and a, b, c, and ξ are
other parameters of the basis function. The vectors αj(t) for the
two kinds of basis functions are

αj,Thawed(t) =




x0(t)
p0(t)
a(t)
b(t)
c(t)




(3.14)

αj,Frozen(t) =




x0(t)
p0(t)
a
b

ξ(t)




. (3.15)

While all other parameters are real, the time dependent parameters
for the frozen Gaussian, x0(t), p0(t), and ξ(t), are complex numbers.
Even though the individual frozen Gaussian functions are complex
valued, the total Wigner function, that is the sum of them, should
be real valued. The frozen Gaussian is called “frozen” because a
and b have fixed values that do not change with time, and even
though ξ(t) change with time, it only affects the size and complex
phase of the function. The frozen Gaussian thus preserves its shape,
and only changes its average coordinate in phase space, its size,
and its complex phase, when it evolves in time. In contrast, the
thawed Gaussian is “thawed” (not frozen) because a(t), b(t), and
c(t) change with time. So the thawed Gaussian changes shape and
average coordinate in phase space, but it conserves its size as it
evolves in time.

A Wigner function constructed from one of the types of basis
functions presented in paper II can be propagated in time by prop-
agating the individual basis functions separately. For the thawed
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Gaussian, the equations of motion, according to the variational
principle, are

ẋ0(t) =
p0(t)

m
(3.16)

ṗ0(t) = − dVSm (x0(t))

dx0(t)
(3.17)

ȧ(t) = 2c(t)
d2VSm (x0(t))

d (x0(t))
2 (3.18)

ḃ(t) = −2c(t)

m
(3.19)

ċ(t) = b(t)
d2VSm (x0(t))

d (x0(t))
2 − a(t)

m
, (3.20)

where VSm (x0(t)) is a smeared potential defined by

VSm (x0(t)) =
1

�
√
πb′(t)

∫
dη V (η) e

− (x0(t)−η)2

�2b′(t) (3.21)

b′(t) =
b(t)

2

(
1

�2 (a(t)b(t)− c(t)2)
+ 1

)
. (3.22)

a(t)b(t)−c(t)2 is a constant of motion, and for a minimum uncertainty
Wigner function, i.e. corresponding to a single state wavefunction,
a(t)b(t) − c(t)2 = 1/�2, resulting in b′(t) = b(t). In this particular
situation the proposed method is equivalent to methods that have
been used before for Gaussian wavefunctions.94,95

For the frozen Gaussian, the equations of motion, according to
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the variational principle, are

ẋ0,R(t) =
p0,R(t)

m
(3.23)

ẋ0,I(t) =
1

2�2ab
d

dp0,I(t)

(VSm (x0,R(t)−�bp0,I(t)) + VSm (x0,R(t)+�bp0,I(t))) (3.24)

ṗ0,R(t) = −1

2

d

dx0,R(t)

(VSm (x0,R(t)−�bp0,I(t)) + VSm (x0,R(t)+�bp0,I(t))) (3.25)

ṗ0,I(t) = −aẋ0,I(t)

mb
(3.26)

ξ̇R(t) =
1

�
(VSm (x0,R(t)+�bp0,I(t))− VSm (x0,R(t)−�bp0,I(t)))

− p0,I(t)b
d

dx0,R(t)

(VSm (x0,R(t)+�bp0,I(t)) + VSm (x0,R(t)−�bp0,I(t))) (3.27)

ξ̇I(t) = 2ax0,I(t)ẋ0,I(t) + 2bp0,I(t)ṗ0,I(t) (3.28)

ȧ = ḃ = 0, (3.29)

where x0(t), p0(t), and ξ(t) have been divided into their real and
imaginary parts, respectively denoted by R and I. b′(t) for the
smeared potential is for the frozen Gaussian defined as before, but
with c = 0.

Both of the types of basis functions presented are mathematically
complete, i.e. any function of x and p can be exactly expressed as a
sum of such Gaussians. An additional useful property of the frozen
Gaussians is that when summing them up to obtain the total Wigner
function they can in principle account for quantum interference, due
to their complex phase. Another effect of this complex phase is that
the total Wigner function will not keep its normalization. Every
time one wants to use the time evolved Wigner function it has to
be renormalized. The thawed Gaussians will keep their individual
normalization and they are completely positive real-valued, so the
total Wigner function built from them will keep its nomalization
over time, but they can not account for quantum interference.
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ẋ0,R(t) =
p0,R(t)

m
(3.23)
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Figure 3.8: Average position of a particle in the double well potential
as a function of time. Results from the classical Wigner method
(CW), a single thawed Gaussian function (Thawed), and accurate
quantum mechanics (QM).

Both types of basis functions handle harmonic potentials exactly.
For the frozen Gaussian basis functions the complex phase disappears
for harmonic potentials, making the computations simpler. For
potentials close to harmonic the complex phase factor, eiξR(t), will
be small.

Results and discussion

The new basis functions and equations of motion were tested for two
different one-dimensional systems, a quartic double well potential,

V (x) =
m2ω3

10�
x4 − mω2

2
x2, and a quartic potential V (x) =

m2ω3

4�
x4,

where ω is a unit of angular frequency. ω is also the absolute value
of the angular frequency on top of the barrier in the double well.

For a Wigner function corresponding to the ground state of an
oscillation in one of the wells in the double well, the average position
as a function of time is shown in figure 3.8. Here a comparison can
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Figure 3.9: Tunneling periods of double well potentials with different
barrier frequencies, but the same well depth. Results from thawed
Gaussian functions (Thawed) and from accurate quantum mechanics
(QM).

be made between the use of a single thawed Gaussian basis function,
the classical Wigner method, and accurate quantum mechanics. The
classical Wigner method and the exact quantum mechanics are only
used to calculate the dynamics, the initial distribution is still the
Gaussian basis function. It can be seen that the thawed Gaussians,
quite well, account for the tunneling between the potential wells.
The frequency of the oscillation is, however, a bit too slow. The
dynamics of the thawed Gaussian function is a clear improvement
over the classical Wigner method. The classical Wigner function can
be seen to be stuck in the starting well, due to it not being able to
account for dynamic tunneling.

The effect of adjusting the double well potential so that the
frequency of barrier changed, but the depth of the wells stayed the
same, was studied. In figure 3.9 the tunneling periods resulting from
this are shown. The thawed Gaussian basis function gives good
results for the tunneling period, except for the lowest frequency
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the classical Wigner method, and accurate quantum mechanics. The
classical Wigner method and the exact quantum mechanics are only
used to calculate the dynamics, the initial distribution is still the
Gaussian basis function. It can be seen that the thawed Gaussians,
quite well, account for the tunneling between the potential wells.
The frequency of the oscillation is, however, a bit too slow. The
dynamics of the thawed Gaussian function is a clear improvement
over the classical Wigner method. The classical Wigner function can
be seen to be stuck in the starting well, due to it not being able to
account for dynamic tunneling.

The effect of adjusting the double well potential so that the
frequency of barrier changed, but the depth of the wells stayed the
same, was studied. In figure 3.9 the tunneling periods resulting from
this are shown. The thawed Gaussian basis function gives good
results for the tunneling period, except for the lowest frequency
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Figure 3.10: Average position of a particle in the double well potential
as a function of time. Results from the classical Wigner method
(CW), a Wigner function consisting of frozen Gaussian basis functions
(Frozen), and accurate quantum mechanics (QM).

barriers, i.e. the widest ones.

Also, the frozen Gaussian basis functions were tested for the dou-
ble well potential. For the standard double well the average position
as a function of time for a Wigner function starting in one of the
wells is shown in figure 3.10. As for figure 3.8, the classical Wigner
method and the exact quantum mechanics are only used to calculate
the dynamics, the initial distribution is the one described by the
Gaussian basis functions. In contrast to the thawed Gaussian case,
where only a single basis function was used, the Wigner function
is here described by thousands of frozen Gaussian basis functions,
making the variational dynamics much more computationally de-
manding. The frozen Gaussians, as the thawed ones, can be seen
to account quite well for tunneling. For the frozen Gaussians the
frequency of the oscillation is, however, significantly too fast. The
frozen Gaussians definitely account for tunneling better than the
classical Wigner method does, but it does not accurately reproduce
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Figure 3.11: Average position of a particle in a quartic potential as
a function of time. Results from the classical Wigner method (CW),
a Wigner function consisting of frozen Gaussian basis functions
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quantum mechanical results for any time except t = 0.

The average position of a Wigner function, initialized as a Gaus-
sian distribution on one side of the quartic potential, was calculated
with the frozen Gaussian basis functions, and is displayed in figure
3.11. For this situation dynamic tunneling is not nearly as important
as for the double well. For short times, the frozen Gaussian basis
functions describe the accurate dynamics quite well, but worse than
the classical Wigner method. The frequency of the dynamics of the
frozen Gaussian functions is too high, but the correlation function
retains a reasonable amplitude of the oscillation for much longer than
the classical Wigner method does. In paper II it is shown that the
frozen Gaussian basis functions describe the quantum interference
on this quartic potential qualitatively, but not quantitatively.

Using the Feynman-Kleinert approximation96 for the Boltzman
operator, an analytic expression for the initial distribution for
〈x̂x̂(t)〉Kubo, as described in section 2.4, for use with the thawed
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Figure 3.12: Kubo transformed position autocorrelation function
for the quartic potential at β�ω = 8. Results from the classical
Wigner method (CW), thawed Gaussian basis functions (Thawed),
and accurate quantum mechanics (QM).

Gaussian basis functions, could be obtained. This expression was
used to test the thawed Gaussian basis functions. In figures 3.12 and
3.13, 〈x̂x̂(t)〉Kubo for the quartic potential at temperatures β�ω = 8
and β�ω = 1 can be seen. At the lower temperature the thawed
Gaussian basis functions give a good approximation to the quantum
mechanical correlation function. At the higher temperature the
thawed Gaussian basis functions, except for at very short times, fail
to capture either the amplitude or the frequency of the correlation
function. A similar situation for the double well potential is shown in
the paper. That the thawed Gaussian functions from the Feynman-
Kleinert approximation do not work well at high temperatures is
due to that the division into basis functions, at high temperature,
may lead to the propagation of individual basis functions that are
unphysical according to Heisenbergs uncertainty principle, i.e. being
too localized in both position and momentum simultaneously.

In summary the thawed Gaussian basis functions seem to be good
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for the quartic potential at β�ω = 1. Results from the classical
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at describing tunneling, while the frozen Gaussian basis functions can
describe interference. However, the dynamics of the frozen Gaussian
basis functions are too fast.
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3.3 The open polymer classical Wigner

method

A new method of computing initial phase space distributions for
the classical Wigner method, presented in sections 2.1 and 2.2, was
published in paper III.97 In this method a discretized imaginary time
path integral, as presented in section 2.2, is used to sample a thermal
quantum distribution. The new method was given the name “Open
polymer classical Wigner”. As can be surmised from the name, the
polymer corresponding to the imaginary time path integral is not
a closed ring, but have an opening. Paper IV is a manuscript in
which the new variant of the classical Wigner method is applied to
the calculation of reaction rate constants through the flux-Heaviside
trace presented in section 2.3.

Derivation of the open polymer expression

The canonical correlation function
〈
ÂB̂ (t)

〉
can be written

〈
ÂB̂ (t)

〉
=

1

Z
Tr

{
Â e−βĤ e

iĤt
� B̂ e−

iĤt
�

}

=
1

Z

∫
dDx

〈
x
∣∣∣Â e−βĤ e

iĤt
� B̂ e−

iĤt
�

∣∣∣x
〉

=
1

Z

∫
dDx

〈
x
∣∣∣Â e−βĤ B̂(t)

∣∣∣x
〉
. (3.30)

By inserting N − 1 identity operators and dividing the Boltzmann
operator into many parts, as was done in section 2.2, this can be
changed into
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All the matrix elements can now be exchanged for inverse Fourier
transforms of Wigner transforms, with the help of equation 2.26,
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In the limit where N → ∞, or equivalently the high temperature
limit, the Trotter product,32
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(3.34)

where equation 2.4 has been used. These Wigner transforms are
easy to evaluate, as long as the potential is restricted to only depend
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3.3 The open polymer classical Wigner

method

A new method of computing initial phase space distributions for
the classical Wigner method, presented in sections 2.1 and 2.2, was
published in paper III.97 In this method a discretized imaginary time
path integral, as presented in section 2.2, is used to sample a thermal
quantum distribution. The new method was given the name “Open
polymer classical Wigner”. As can be surmised from the name, the
polymer corresponding to the imaginary time path integral is not
a closed ring, but have an opening. Paper IV is a manuscript in
which the new variant of the classical Wigner method is applied to
the calculation of reaction rate constants through the flux-Heaviside
trace presented in section 2.3.
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∣∣∣Â e−βĤ B̂(t)

∣∣∣x
〉
. (3.30)

By inserting N − 1 identity operators and dividing the Boltzmann
operator into many parts, as was done in section 2.2, this can be
changed into

〈
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All the matrix elements can now be exchanged for inverse Fourier
transforms of Wigner transforms, with the help of equation 2.26,
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In the limit where N → ∞, or equivalently the high temperature
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where equation 2.4 has been used. These Wigner transforms are
easy to evaluate, as long as the potential is restricted to only depend
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on the position.
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Putting these results into equation 3.34 and Taylor expanding gives
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where H (x,p) is the classical Hamiltonian. O (β2/N2) shows the
order of the error, using the big O notation. Using this result, the
operator Â can be separated from the Boltzmann operator in its

79



3. Developments

on the position.
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order of the error, using the big O notation. Using this result, the
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Wigner transform,
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The same thing can be done for B̂(t),
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Inserting the simplifications of the Wigner transforms, equations
3.37-3.39, into equation 3.32 gives
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The potential energy has already been assumed to only depend on
position, not momentum, so
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By integrating over the momenta, as in section 2.2 we obtain

〈
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Here p1 and pN have not been integrated out since they occur in[
Â
]
W
(x1+x2
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2
,pN), which are unknown func-

tions. For the method derived here to work, we must restrict Â to
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Ĥ
]
W
(x,p)

= lim
N→∞

[
Â
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Â
]
W
(x,p)

(
1 +O

(
β

N

))
e−

β
N
H(x,p)

= lim
N→∞

[
Â
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ÂB̂ (t)

〉
= lim

N→∞

1

Z

{
N∏

j=1

∫∫
dDxj dDpj

(2π�)D
ei(xj−x(j mod N)+1)•pj/�

}

×
[
Â
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The potential energy has already been assumed to only depend on
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By integrating over the momenta, as in section 2.2 we obtain
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operators whose Wigner transforms are such functions of p1 that
the integral
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is analytically solvable, giving yet another spring term. This is

not such a severe restriction since at least all
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Proving that equation 3.44 can be solved for all polynomials
in p1 can be done by first calculating A′ for a Wigner transform[
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tion or constant and n is a positive integer.
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Here the variable ζj′′ =
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(xj′′,1 − xj′′,2) can be introduced,
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Â
]
W
(x1+x2

2
,p1) = f (x1+x2

2
)∑D

j′′=1p
n
j′′,1, where f (x1+x2

2
) is any func-

82

3.3. The open polymer classical Wigner method

tion or constant and n is a positive integer.

A′
p1,n

(
x1 + x2

2
,x1 − x2

)

=

∫
dDp1 e−

β
N (

1
2(m−1p1)•p1− iN

β� (x1−x2)•p1) f
(
x1+x2

2

)∑D
j′′=1 p

n
j′′,1∫

dDp1 e−
β
N (

1
2
(m−1p1)•p1− iN

β� (x1−x2)•p1)

=
f
(
x1+x2

2

)
(

2πN
β

)D
2 √

det(m) e
− β

N
N2

2β2�2 (m(x1−x2))•(x1−x2)

×
(
−�
i

)n
{

D∑

j′′=1

dn

d(xj′′,1 − xj′′,2)n

}

×
∫

dDp1 e−
β
N (

1
2(m−1p1)•p1− iN

β� (x1−x2)•p1)

=
f
(
x1+x2

2

)
(

2πN
β

)D
2 √

det(m) e
− β

N
N2

2β2�2 (m(x1−x2))•(x1−x2)

× (i�)n
{

D∑

j′′=1

dn

d(xj′′,1 − xj′′,2)n

}

×
(
2πN

β

)D
2 √

det(m) e
− β

N
N2

2β2�2 (m(x1−x2))•(x1−x2)

=
f
(
x1+x2

2

)
(i�)n

e
− β

N
N2

2β2�2 (m(x1−x2))•(x1−x2)

×
{

D∑

j′′=1

dn

d(xj′′,1 − xj′′,2)n

}
e
− β

N
N2

2β2�2 (m(x1−x2))•(x1−x2)

(3.45)

Here the variable ζj′′ =

√
mj′′N

2β

1

�
(xj′′,1 − xj′′,2) can be introduced,

83



3. Developments
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where Hn is the nth order Hermite polynomial. This result can

easily be extended to nth order polynomials in p1,
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Using the the definition of A′ in equation 3.44 equation 3.40 can
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be written as
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[
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2
,pN) is most often much more tricky to calculate

compared to
[
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W
(x1+x2

2
,p1), since it includes propagation in time.

For a general potential there will not be an analytic integral over

pN .
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Some reordering of equation 3.48 can be done, to make it a bit
more readable,
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Figure 3.14: Illustration of a classical particle (1.) and its correspond-
ing imaginary time path integral open polymer (2.). The zigzag lines
represent the spring terms. The dashed line represent the opening
in the polymer, which has a corresponding complex phase factor.

This is an exact expression for a quantum time correlation function.
It is written as a discretized imaginary time path integral, as in
section 2.2, but the usual ring polymer is instead an open polymer,
as the last spring term is missing. Instead of a spring term, the

opening in the polymer has a complex phase factor e
i
� (xN−x1)•pN .

In figure 3.14 the open polymer is illustrated in comparison to a
classical particle. This figure can be compared with the ring polymer
in figure 2.1. Another, minor, difference compared to the imaginary
time path integral in section 2.2 is that there the potential energy
is evaluated at the beads, V (xj), while here it is evaluated at the
midpoint between two beads, V

(
xj+x(j mod N)+1

2

)
. This difference does

not matter when N → ∞, and it is caused by the different handling
of the Boltzmann operators in this section compared to section 2.2.

To make equation 3.49 useful in actual computations two approxi-
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mations are made. The first one is to approximate
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(3.50)

The second approximation is to restrict N to finite numbers. These
two approximations lead to
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(3.51)

where x (xN+x1
2

,pN , t) and p (xN+x1
2

,pN , t) are the positions and mo-
menta of a classical trajectory starting with xN+x1

2
and pN . This is

the open polymer classical Wigner (OPCW) method published in
paper III.97 When N → ∞ the initial distribution converges toward
exact quantum mechanics, and the correlation function converges
toward the exact classical Wigner method.

In papers III and IV the methods used to numerically evaluate
equation 3.51 are Metropolis Monte Carlo98 for the integrals and
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Figure 3.14: Illustration of a classical particle (1.) and its correspond-
ing imaginary time path integral open polymer (2.). The zigzag lines
represent the spring terms. The dashed line represent the opening
in the polymer, which has a corresponding complex phase factor.
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molecular dynamics, using the velocity Verlet algorithm,99,100 for
the time evolution.

As is indicated with the subscript y, the
〈
ÂB̂ (t)

〉
OPCW,y

in

equation 3.51 is only one version of the OPCW method. Another,
slightly different, version was also published in the same paper. This
other version arises from the fact that if all dependence on x̂ in
Â is to the left of all dependence on p̂, then the x̂-parts of Â can
operate on 〈x1| in equation 3.31 and avoid being enclosed in the
Wigner transform in equation 3.32. After that step the derivation
would move on exactly as before, but A′ would of course not depend
on x1+x2

2
anymore. An A′

x (x1,x1 − x2) can be defined to be the
product of the function of x1 and the A′ (x1 − x2) resulting from

the p̂-dependent parts of Â. Then, this version of OPCW can be
written as
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where it can now be understood that the subscript x in
〈
ÂB̂ (t)

〉
OPCW,x

denotes that the function corresponding to operator Â is evaluated

at x1. The y in
〈
ÂB̂ (t)

〉
OPCW,y

denotes that the function corre-

sponding to operator Â is evaluated at y1, which is the symbol used
for x1+x2

2
in paper III.
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For some simple cases it is easy to see what A′
x (x1,x1 − x2) will

be.

• If Â only depends on p̂ and not on x̂, then A′
x (x1,x1 − x2) =

A′ (x1+x2
2

,x1 − x2).

• If Â is only a function of x̂, Â = f (x̂), thenA′
x (x1,x1 − x2) =

f (x1) and A′ (x1+x2
2

,x1 − x2) = f (x1+x2
2

).

• If Â is the product of a function of x̂, f (x̂), and a function

of p̂, g (p̂), such that Â = f (x̂) g (p̂) and A′
g is the A′ when

Â = g (p̂), then A′
x (x1,x1 − x2) = f (x1)A

′
g (
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2

,x1 − x2)
and A′ (x1+x2
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,x1 − x2) = f (x1+x2
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g (
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2
,x1 − x2).

If Â has p̂-dependence to the left of an x̂-dependence, then a rear-
rangement of the expression for Â may possible, such as for

p̂x̂ = x̂p̂+ [p̂, x̂] = x̂p̂+ [p̂, x̂] = x̂p̂− i�. (3.53)

These kind of operators will lead to a more complicated derivation of〈
ÂB̂ (t)

〉
OPCW,x

and a general formula for them will not be given

here. In paper IV the flux-Heaviside trace, equation 2.61, from
section 2.3 is handled, and the flux operator, equation 2.63, needs
the kind of treatment illustrated. The interested reader is directed
to the paper for an example of how a complicated Â can be handled.

In the limit N → ∞ the y-version and the x-version of OPCW
will be equivalent, but in practical numerical calculations they can
behave differently. The OPCW method is interesting for running
the classical Wigner method, because the main difficulty of any
classical Wigner method is to obtain the initial quantum distribution.
Sampling a discretized imaginary path integral should be relatively
cheap, computationally, but the complex phase factor makes the
integrand oscillatory, which makes the sampling more demanding.
For multidimensional systems the complex phase factor becomes
even worse, since each degree of freedom contributes to it. In paper
III it was suggested to describe only the most important, or most
quantum mechanical, degrees of freedom with the open polymer. For
the less important, or less quantum mechanical, degrees of freedom
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molecular dynamics, using the velocity Verlet algorithm,99,100 for
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These kind of operators will lead to a more complicated derivation of〈
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and a general formula for them will not be given

here. In paper IV the flux-Heaviside trace, equation 2.61, from
section 2.3 is handled, and the flux operator, equation 2.63, needs
the kind of treatment illustrated. The interested reader is directed
to the paper for an example of how a complicated Â can be handled.

In the limit N → ∞ the y-version and the x-version of OPCW
will be equivalent, but in practical numerical calculations they can
behave differently. The OPCW method is interesting for running
the classical Wigner method, because the main difficulty of any
classical Wigner method is to obtain the initial quantum distribution.
Sampling a discretized imaginary path integral should be relatively
cheap, computationally, but the complex phase factor makes the
integrand oscillatory, which makes the sampling more demanding.
For multidimensional systems the complex phase factor becomes
even worse, since each degree of freedom contributes to it. In paper
III it was suggested to describe only the most important, or most
quantum mechanical, degrees of freedom with the open polymer. For
the less important, or less quantum mechanical, degrees of freedom
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the polymer would be collapsed into a single classical particle, but
keeping the couplings to all beads in degrees of freedom that still have
a quantum description. This could reduce the computational cost
significantly, but at the cost of correlation functions not converging
toward exact classical Wigner as the number of beads is increased.

Here, the OPCW method is only derived for the standard corre-
lation function. In appendix B of paper III a version of the OPCW
method for Kubo transformed correlation functions is presented.
Paper IV contains derivations for symmetrized correlation functions,
specifically the flux-Heaviside trace, equation 2.61.

It should be noted that the OPCW method is related to an ex-
pression published, but not further explored, by Bose and Makri.101‡

OPCW is also related to a version of a method published by Bonella
et al.102§.

Results and discussion

In paper III OPCW was tested on the same two one-dimensional po-
tentials as was used in paper II, see section 3.2, i.e. a quartic potential,
V (x) = m2ω3

4� x4, and a double well potential, V (x) = m2ω3

10� x4 − mω2

2
x2.

Additionally, OPCW was tested on the same quartic potential, but
bilinearly coupled to a bath of harmonic oscillators.48,104 These
tests were done with position, position-squared, momentum, and
momentum-squared autocorrelation functions.

In paper IV OPCW was tested for a parabolic barrier, V (x) =
−mω2

2
x2, and an Eckart potential, V (x) = 6�ω

π
sech2 (

√
πmω
12� x). These

tests where done with the symmetrized flux-Heaviside trace, equation
2.61, and resulted in rate constants and tunneling factors for the
Eckart potential.

Some illustrative results from both papers III and IV are repro-
duced here to illustrate the conclusions from the papers.

Common methods for approximating the initial distribution for
the classical Wigner model use a harmonic approximation.22,23,105

For comparison a representative from this group of methods is used

‡Equation 2.7 in reference 101.
§The L = 1 version of the method published in reference 102. The relation

is more clear in a later paper by Bonella and Ciccotti, reference 103.
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Figure 3.15: The real part of the position autocorrelation function
for a quartic oscillator calculated at β�ω = 8. Results for classical
mechanics (CM), OPCW, exact classical Wigner (CW), FK-LPI,
RPMD, and exact quantum mechanics (QM).

as a comparison in the graphs. This method is the Feynman-Kleinert
linearized path integral (FK-LPI) method.22 It uses the Feynman-
Kleinert approximation,96 which is a local harmonic approximation,
for the initial quantum distribution.

In both papers III and IV it was found that, as the number of
beads in the polymer is increased, the correlation functions (or trace)
calculated with OPCW converge toward exact quantum mechanics
at time t = 0 and exact classical Wigner correlation functions for all
times. This is as expected from the derivations.

In figures 3.15 and 3.16 Re 〈x̂x̂ (t)〉 for the quartic oscillator at
β�ω = 8 and β�ω = 1 can be seen, respectively. For both these
cases OPCW, as well as FK-LPI, has been converged to very near
the exact classical Wigner correlation function. In this case the y-
and x-versions of OPCW give very similar correlation functions, and
only the y-version is shown in the graph. These OPCW calculations
use 160 beads at β�ω = 8 and 80 beads at β�ω = 1. It was found
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pression published, but not further explored, by Bose and Makri.101‡

OPCW is also related to a version of a method published by Bonella
et al.102§.

Results and discussion
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tentials as was used in paper II, see section 3.2, i.e. a quartic potential,
V (x) = m2ω3

4� x4, and a double well potential, V (x) = m2ω3
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x2.

Additionally, OPCW was tested on the same quartic potential, but
bilinearly coupled to a bath of harmonic oscillators.48,104 These
tests were done with position, position-squared, momentum, and
momentum-squared autocorrelation functions.
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tests where done with the symmetrized flux-Heaviside trace, equation
2.61, and resulted in rate constants and tunneling factors for the
Eckart potential.

Some illustrative results from both papers III and IV are repro-
duced here to illustrate the conclusions from the papers.

Common methods for approximating the initial distribution for
the classical Wigner model use a harmonic approximation.22,23,105

For comparison a representative from this group of methods is used

‡Equation 2.7 in reference 101.
§The L = 1 version of the method published in reference 102. The relation

is more clear in a later paper by Bonella and Ciccotti, reference 103.
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Figure 3.15: The real part of the position autocorrelation function
for a quartic oscillator calculated at β�ω = 8. Results for classical
mechanics (CM), OPCW, exact classical Wigner (CW), FK-LPI,
RPMD, and exact quantum mechanics (QM).

as a comparison in the graphs. This method is the Feynman-Kleinert
linearized path integral (FK-LPI) method.22 It uses the Feynman-
Kleinert approximation,96 which is a local harmonic approximation,
for the initial quantum distribution.

In both papers III and IV it was found that, as the number of
beads in the polymer is increased, the correlation functions (or trace)
calculated with OPCW converge toward exact quantum mechanics
at time t = 0 and exact classical Wigner correlation functions for all
times. This is as expected from the derivations.

In figures 3.15 and 3.16 Re 〈x̂x̂ (t)〉 for the quartic oscillator at
β�ω = 8 and β�ω = 1 can be seen, respectively. For both these
cases OPCW, as well as FK-LPI, has been converged to very near
the exact classical Wigner correlation function. In this case the y-
and x-versions of OPCW give very similar correlation functions, and
only the y-version is shown in the graph. These OPCW calculations
use 160 beads at β�ω = 8 and 80 beads at β�ω = 1. It was found
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Figure 3.16: The real part of the position autocorrelation function
for a quartic oscillator calculated at β�ω = 1. Results for classical
mechanics (CM), OPCW, exact classical Wigner (CW), FK-LPI,
RPMD, and exact quantum mechanics (QM).

in paper III that fewer beads are needed for convergence, of OPCW,
at higher temperatures but that the Monte Carlo integration also
becomes more demanding per bead, for the higher temperature.

In figures 3.17 and 3.18 Re 〈x̂x̂ (t)〉 and Re
〈
x̂2x̂2 (t)

〉
for the

double well potential at β�ω = 8 can be seen. This potential is
interesting to test since it contains some negative curvature. As
before only the y-version of OPCW is shown, in this case using 160
beads. For Re 〈x̂x̂ (t)〉 both OPCW and FK-LPI have more or less
converged to the exact classical Wigner result. For Re

〈
x̂2x̂2 (t)

〉
,

however, OPCW has converged close to the exact classical Wigner
result, but FK-LPI has a significantly different behavior. This
illustrates a possible benefit of OPCW compared to FK-LPI. OPCW
works equally well regardless of the potential energy surface it is
applied to, even if some will be more numerically demanding than
others. Methods, such as FK-LPI, that use approximations for the
potential energy surface will work differently well, depending on how
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Figure 3.17: The real part of the position autocorrelation function for
a double well potential calculated at β�ω = 8. Results for classical
mechanics (CM), OPCW, exact classical Wigner (CW), FK-LPI,
RPMD, and exact quantum mechanics (QM).

kr/(�
1
2ω

1
2m− 1

2 )
β�ω CM OPCW CW RPMD QM
1 5.9084E-2 6.10E-2 6.0986E-2 6.17E-2 6.2856E-2
3 7.4821E-4 1.009E-3 1.0087E-3 1.07E-3 1.1409E-3
6 1.7186E-6 7.391E-6 7.5092E-6 7.55E-6 8.9347E-6

Table 3.1: Rate constant for the Eckart potential at different inverse
temperatures. Values for OPCW, RPMD, classical mechanics (CM),
exact classical Wigner (CW), and exact quantum mechanics (QM).

well the approximation describes the surface. It is however worth
noting that in figure 3.18 both OPCW and FK-LPI follow exact
classical Wigner well for as long as the classical Wigner results follow
exact quantum mechanics. It would thus be misleading to claim that
OPCW describes this double well better than FK-LPI does.

Another potential with a region of negative curvature is the
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Figure 3.16: The real part of the position autocorrelation function
for a quartic oscillator calculated at β�ω = 1. Results for classical
mechanics (CM), OPCW, exact classical Wigner (CW), FK-LPI,
RPMD, and exact quantum mechanics (QM).
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at higher temperatures but that the Monte Carlo integration also
becomes more demanding per bead, for the higher temperature.
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for the
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interesting to test since it contains some negative curvature. As
before only the y-version of OPCW is shown, in this case using 160
beads. For Re 〈x̂x̂ (t)〉 both OPCW and FK-LPI have more or less
converged to the exact classical Wigner result. For Re
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,

however, OPCW has converged close to the exact classical Wigner
result, but FK-LPI has a significantly different behavior. This
illustrates a possible benefit of OPCW compared to FK-LPI. OPCW
works equally well regardless of the potential energy surface it is
applied to, even if some will be more numerically demanding than
others. Methods, such as FK-LPI, that use approximations for the
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Figure 3.17: The real part of the position autocorrelation function for
a double well potential calculated at β�ω = 8. Results for classical
mechanics (CM), OPCW, exact classical Wigner (CW), FK-LPI,
RPMD, and exact quantum mechanics (QM).
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Table 3.1: Rate constant for the Eckart potential at different inverse
temperatures. Values for OPCW, RPMD, classical mechanics (CM),
exact classical Wigner (CW), and exact quantum mechanics (QM).

well the approximation describes the surface. It is however worth
noting that in figure 3.18 both OPCW and FK-LPI follow exact
classical Wigner well for as long as the classical Wigner results follow
exact quantum mechanics. It would thus be misleading to claim that
OPCW describes this double well better than FK-LPI does.

Another potential with a region of negative curvature is the
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Figure 3.18: The real part of the position-squared autocorrelation
function for a double well potential calculated at β�ω = 8. Results
for classical mechanics (CM), OPCW, exact classical Wigner (CW),
FK-LPI, RPMD, and exact quantum mechanics (QM). The increased
thickness of the OPCW line shows the standard deviation.

Eckart potential, studied in paper IV. In table 3.1 rate constants,
taken from the long time values of the flux-Heaviside trace, equation
2.61, for the Eckart barrier at different temperatures can be found.
In this case results from the x-version of OPCW, with 40 beads,
are shown. It can be seen that for these rate constants the OPCW
results are close to the exact classical Wigner value. For β�ω = 1,
as little as 6 beads can be enough to get an accurate classical
Wigner result. The classical Wigner rate constants, as could be
expected, place themselves between the classical and the quantum
mechanical ones. At β�ω = 1 the difference between the classical
and quantum rate constants is only ∼ 6 %, so there is not much
benefit from using the classical Wigner method, which accounts for
half of that difference. At β�ω = 3 and β�ω = 6 the differences
between classical and quantum rate constants are∼ 50 % and a factor
∼ 5, respectively. At these temperatures the classical Wigner rate
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Figure 3.19: The real part of the position-squared autocorrelation
function for a quartic potential bilinearly coupled to a bath of 3
harmonic oscillators, calculated at β�ω = 8. Results for classical
mechanics (CM) and the y-version of OPCW, with different numbers
of beads (N). Exact quantum mechanics (QM) is shown at time
t = 0. The top and bottom lines of each type show the standard
deviation.

constants are significant improvements over pure classical mechanics.
The same thing can be seen for the position autocorrelation function
for the quartic oscillator in figures 3.15 and 3.16, for the higher
temperature the classical Wigner method is hardly an improvement
over classical mechanics, but for the lower temperature it is a clear
improvement.

In figures 3.19 and 3.20 Re
〈
x̂2x̂2 (t)

〉
for the quartic potential

coupled to a bath of 3 harmonic oscillators can be seen. These figures
illustrate the difference in convergence of Re

〈
x̂2x̂2 (t)

〉
OPCW,y

and

Re
〈
x̂2x̂2 (t)

〉
OPCW,x

, as the number of beads used is increased. For

this multidimensional system no exact classical Wigner correlation
function was readily calculable and the exact quantum mechanical
result is only the time 0 value, not the entire correlation function. At
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Figure 3.18: The real part of the position-squared autocorrelation
function for a double well potential calculated at β�ω = 8. Results
for classical mechanics (CM), OPCW, exact classical Wigner (CW),
FK-LPI, RPMD, and exact quantum mechanics (QM). The increased
thickness of the OPCW line shows the standard deviation.

Eckart potential, studied in paper IV. In table 3.1 rate constants,
taken from the long time values of the flux-Heaviside trace, equation
2.61, for the Eckart barrier at different temperatures can be found.
In this case results from the x-version of OPCW, with 40 beads,
are shown. It can be seen that for these rate constants the OPCW
results are close to the exact classical Wigner value. For β�ω = 1,
as little as 6 beads can be enough to get an accurate classical
Wigner result. The classical Wigner rate constants, as could be
expected, place themselves between the classical and the quantum
mechanical ones. At β�ω = 1 the difference between the classical
and quantum rate constants is only ∼ 6 %, so there is not much
benefit from using the classical Wigner method, which accounts for
half of that difference. At β�ω = 3 and β�ω = 6 the differences
between classical and quantum rate constants are∼ 50 % and a factor
∼ 5, respectively. At these temperatures the classical Wigner rate
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Figure 3.19: The real part of the position-squared autocorrelation
function for a quartic potential bilinearly coupled to a bath of 3
harmonic oscillators, calculated at β�ω = 8. Results for classical
mechanics (CM) and the y-version of OPCW, with different numbers
of beads (N). Exact quantum mechanics (QM) is shown at time
t = 0. The top and bottom lines of each type show the standard
deviation.

constants are significant improvements over pure classical mechanics.
The same thing can be seen for the position autocorrelation function
for the quartic oscillator in figures 3.15 and 3.16, for the higher
temperature the classical Wigner method is hardly an improvement
over classical mechanics, but for the lower temperature it is a clear
improvement.

In figures 3.19 and 3.20 Re
〈
x̂2x̂2 (t)

〉
for the quartic potential

coupled to a bath of 3 harmonic oscillators can be seen. These figures
illustrate the difference in convergence of Re

〈
x̂2x̂2 (t)

〉
OPCW,y

and

Re
〈
x̂2x̂2 (t)

〉
OPCW,x

, as the number of beads used is increased. For

this multidimensional system no exact classical Wigner correlation
function was readily calculable and the exact quantum mechanical
result is only the time 0 value, not the entire correlation function. At
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Figure 3.20: The real part of the position-squared autocorrelation
function for a quartic potential bilinearly coupled to a bath of 3
harmonic oscillators, calculated at β�ω = 8. Results for classical
mechanics (CM) and the x-version of OPCW, with different numbers
of beads (N). Exact quantum mechanics (QM) is shown at time
t = 0. The top and bottom lines of each type show the standard
deviation.

time zero the classical Wigner method should however yield the exact
quantum mechanical result, so this is still a useful comparison for
OPCW. As can be seen, Re

〈
x̂2x̂2 (t)

〉
OPCW,x

converges significantly

faster toward the exact quantum result, when the number of beads
is increased, than Re

〈
x̂2x̂2 (t)

〉
OPCW,y

does. That the x-version of

OPCW converges faster toward exact classical Wigner than the
y-version was also observed for all other correlation functions, or
traces, where comparisons were made in papers III and IV. For the
calculations using the same number of beads in figures 3.19 and
3.20 the same number of Monte Carlo steps were used. Thus, the
standard deviations illustrate another point from paper III. That is
that the x-version of OPCW tend to converge better with respect
to the number of Monte Carlo steps used than the y-version does.
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Figure 3.21: The real part of the position-squared autocorrelation
function for a quartic potential bilinearly coupled to a bath of 9
harmonic oscillators, calculated at β�ω = 8. Results for classical
mechanics (CM), OPCW, FK-LPI, and RPMD. The exact quantum
mechanical result (QM) is shown at time t = 0. The OPCW method
is shown for the y-version, the x-version, and the x-version with a
classical bath (CB). The top and bottom lines of each type show the
standard deviation.

Both these observations of course make the x-version seem more
promising as a useful computational method than the y-version, but
there is no guarantee that these convergence behaviors will be the
same for every system and correlation function.

In figure 3.21 Re
〈
x̂2x̂2 (t)

〉
for the quartic oscillator coupled

to a bath of 9 harmonic oscillators can be seen. Due to the de-
manding computations, only results using 5 beads are shown for
Re

〈
x̂2x̂2 (t)

〉
OPCW,y

and Re
〈
x̂2x̂2 (t)

〉
OPCW,x

. It can, as for figures

3.19 and 3.20 be seen that the x-version of OPCW is closer to the
exact result than the y-version is. Both are however far off. Figure
3.21 also shows how much of an improvement it can be to make
the harmonic bath classical and just let the quartic oscillator be
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Figure 3.20: The real part of the position-squared autocorrelation
function for a quartic potential bilinearly coupled to a bath of 3
harmonic oscillators, calculated at β�ω = 8. Results for classical
mechanics (CM) and the x-version of OPCW, with different numbers
of beads (N). Exact quantum mechanics (QM) is shown at time
t = 0. The top and bottom lines of each type show the standard
deviation.
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standard deviations illustrate another point from paper III. That is
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Figure 3.21: The real part of the position-squared autocorrelation
function for a quartic potential bilinearly coupled to a bath of 9
harmonic oscillators, calculated at β�ω = 8. Results for classical
mechanics (CM), OPCW, FK-LPI, and RPMD. The exact quantum
mechanical result (QM) is shown at time t = 0. The OPCW method
is shown for the y-version, the x-version, and the x-version with a
classical bath (CB). The top and bottom lines of each type show the
standard deviation.

Both these observations of course make the x-version seem more
promising as a useful computational method than the y-version, but
there is no guarantee that these convergence behaviors will be the
same for every system and correlation function.
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3.19 and 3.20 be seen that the x-version of OPCW is closer to the
exact result than the y-version is. Both are however far off. Figure
3.21 also shows how much of an improvement it can be to make
the harmonic bath classical and just let the quartic oscillator be
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sampled by an open polymer. In this classical bath calculation it
was feasible to have 320 beads in the polymer in the quartic poten-
tial. The OPCW, with a classical bath, correlation function follows
FK-LPI quite well for the first 3 ω−1. After that the classical bath
result continues toward a different long time value. If assuming
that Re

〈
x̂2x̂2 (t)

〉
OPCW,x

is closer to the exact classical Wigner re-

sult than Re
〈
x̂2x̂2 (t)

〉
OPCW,y

is, then the long time value of the

classical bath calculation should not be close to the exact classical
Wigner value. Since the long time value of Re

〈
x̂2x̂2 (t)

〉
OPCW,x

is

in the neighborhood of well converged FK-LPI results, this is a fair
assumption.

When a classical Wigner calcluation is run, all degrees of freedom
start off with some zero point energy. Since the evolution in time is
classical, this zero point energy leaks between the degrees of freedom,
degrading the results over time. This phenomenon was mentioned in
section 2.1. If only one degree of freedom has zero point energy and
the others do not, then the leakage of zero point energy from that
single degree of freedom should be even bigger and it would only go
one way, making the effect even larger. This is a reason why the long
time values of classical bath OPCW correlation functions should not
necessarily be trusted to converge toward the exact classical Wigner
result. Another observation that can be made in figure 3.21 is that
the OPCW, with classical bath, value at time zero is a bit below the
exact quantum mechanical result. There is no guarantee that any
number of beads in the quartic degree of freedom would make the
OPCW value come any closer, due to the classical bath. In paper
III it it can be seen that the classical bath approximation of OPCW
seems to give a good approximation to exact classical Wigner for
short times, for the quartic potential coupled to a harmonic bath,
and that it is computationally much cheaper than standard OPCW.

In figures 3.15, 3.16, 3.17, 3.18, and 3.21, and table 3.1 the
classical Wigner results can be compared with RPMD. For most of
these cases, and most of the cases in papers III and IV, RPMD gives
results that are better than, or equally good as, the classical Wigner
results. Notable exceptions to this are the correlation functions
from the double well potential, figures 3.17 and 3.18. For short
times the classical bath OPCW method also gives better results
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than RPMD for the position-squared autocorrelation function, for
the quartic potential with a harmonic bath. Since the classical
Wigner method, and OPCW, give better results than RPMD for
the double well potential, and this is also the system where OPCW
shows good potential compared to FK-LPI, the double well potential,
and possibly other potentials with regions of negative curvature, are
interesting for further studies.

99



3. Developments

sampled by an open polymer. In this classical bath calculation it
was feasible to have 320 beads in the polymer in the quartic poten-
tial. The OPCW, with a classical bath, correlation function follows
FK-LPI quite well for the first 3 ω−1. After that the classical bath
result continues toward a different long time value. If assuming
that Re

〈
x̂2x̂2 (t)

〉
OPCW,x

is closer to the exact classical Wigner re-

sult than Re
〈
x̂2x̂2 (t)

〉
OPCW,y

is, then the long time value of the

classical bath calculation should not be close to the exact classical
Wigner value. Since the long time value of Re

〈
x̂2x̂2 (t)

〉
OPCW,x

is

in the neighborhood of well converged FK-LPI results, this is a fair
assumption.

When a classical Wigner calcluation is run, all degrees of freedom
start off with some zero point energy. Since the evolution in time is
classical, this zero point energy leaks between the degrees of freedom,
degrading the results over time. This phenomenon was mentioned in
section 2.1. If only one degree of freedom has zero point energy and
the others do not, then the leakage of zero point energy from that
single degree of freedom should be even bigger and it would only go
one way, making the effect even larger. This is a reason why the long
time values of classical bath OPCW correlation functions should not
necessarily be trusted to converge toward the exact classical Wigner
result. Another observation that can be made in figure 3.21 is that
the OPCW, with classical bath, value at time zero is a bit below the
exact quantum mechanical result. There is no guarantee that any
number of beads in the quartic degree of freedom would make the
OPCW value come any closer, due to the classical bath. In paper
III it it can be seen that the classical bath approximation of OPCW
seems to give a good approximation to exact classical Wigner for
short times, for the quartic potential coupled to a harmonic bath,
and that it is computationally much cheaper than standard OPCW.

In figures 3.15, 3.16, 3.17, 3.18, and 3.21, and table 3.1 the
classical Wigner results can be compared with RPMD. For most of
these cases, and most of the cases in papers III and IV, RPMD gives
results that are better than, or equally good as, the classical Wigner
results. Notable exceptions to this are the correlation functions
from the double well potential, figures 3.17 and 3.18. For short
times the classical bath OPCW method also gives better results

98

3.3. The open polymer classical Wigner method
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3.4 Future outlook

The research presented in this thesis contains a rate constant for the
formation of the hydroxyl radical through radiative association, two
new types of basis functions for use with a variational principle for
the time evolution of Wigner functions, and a method for sampling
the initial distributions in the classical Wigner method. After the
summation of all this research, the question that remain is: Where
to go from here?

The new reaction rate constant was published in 2015, but has
still not¶ been included in any astrochemical database and none
of its citations indicates that it has been used for astrochemical
modeling.

The database KIDA86 has instructions for suggesting new ad-
ditions to their database. It is an oversight by the author that no
such suggestion has been sent. To make this rate constant actually
benefit the astrochemical community, the first thing that has to be
done is to actually suggest that it is included in a database.

The calculation of reaction rate constants for other radiative
association reactions and the development of the methods to conduct
these calculations has continued in the research group, and among
collaborators, of the author since the publication of paper I.106–114

One of the main directions that further research is going toward is the
calculation of radiative association rate constants for systems larger
than diatoms. As radiative association generally becomes more likely
the larger the molecule, due to a more long lived activated complex,
as explained e.g. in the textbook by Tielens,115 this seems to be the
right way to go.

For the Gaussian basis functions for use with a variational princi-
ple for the time propagation of Wigner functions, presented in paper
II, more testing would be needed to know in what situations they
could be a beneficial route to go for calculations. Further testing
could also help to find ways of improving the current methods. Mul-
tidimensional potentials and other correlation functions than the
position autocorrelation function, would be the obvious first steps
in such testing. As was suggested in the paper, a way of improving

¶When writing this, 30 April 2020.
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the dynamics of the frozen Gaussian basis functions could be to give
them a semiclassical prefactor that approximately would account for
coupling between the separate basis functions.

When it comes to the OPCW method published in paper III and
studied for rate constants in paper IV, again, further testing is the
way forward. Since OPCW should be able to converge toward the
exact classical Wigner method, as the number of beads in the path
integral is increased, for any physical potential energy surface, it
would be interesting to try it against other approximate classical
Wigner methods, apart from FK-LPI, to see if the method is an
improvement compared to what is already available. Since negative
curvature of the potential energy surface can be problematic for other
methods, this is of course one kind of system that is extra interesting
to look at. The rate constant calculations should be extended to
multidimensional systems, such as a double well potential with a bath
of harmonic oscillators, as a step of getting closer to real molecular
systems.

Improving the numerical performance of the OPCW method is
also an important aspect to consider, if the method is to be practical
for large systems.
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A. Bergeat, K. Béroff, V. Bierbaum, M. Chabot, A. Dalgarno,
E. F. van Dishoeck, A. Faure, W. Geppert, D. Gerlich, D. Galli,
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Formation of the Hydroxyl Radical by Radiative Association
S. Karl-Mikael Svensson,† Magnus Gustafsson,‡ and Gunnar Nyman*,†

†Department of Chemistry and Molecular Biology, University of Gothenburg, SE-41296 Gothenburg, Sweden
‡Applied Physics, Division of Material Science, Department of Engineering Science and Mathematics, Lulea ̊ University of Technology,
SE-97187 Lulea,̊ Sweden

ABSTRACT: The reaction rate constant for the radiative association of O(3P) and H(2S)
has been calculated by combining a few different methods and taking account of both
direct and resonance-mediated pathways. The latter includes both shape resonances and
Feshbach type inverse predissociation. The reaction rate constant is expressed as a
function of temperature in the interval 10−30000 K. This reaction may be astrochemically
relevant and is expected to be of use in astrochemical networks.

■ INTRODUCTION
The hydroxyl radical (OH) has been observed in the interstellar
medium both in the Milky Way1 and in other galaxies.2 OH is
also thought to have been an important species in the early
universe, when heavy elements were more rare than in present-
day molecular clouds.3

Due to the low density of the interstellar medium (for the
most common element hydrogen it is usually <1 cm−3),4 three-
body collisions essentially do not occur. This allows for two-
body collisions with low reaction probabilities, such as radiative
association, to be important. The atoms needed to form the
hydroxyl radical by this type of reaction are hydrogen (H) and
oxygen (O), which respectively are the atoms of the most and
third most abundant elements in our galaxy and may have
atomic densities of approximately 0.354 and 0.0001 cm−3,
respectively.5 Therefore, it is of interest to see if this type of
reaction could be a possible path for the formation of the
hydroxyl radical.
When the ground state atoms O(3P) and H(2S) collide, the

molecular states that are possible for them to form are
OH(X2Π), OH(12Σ−), OH(a4Σ−), and OH(b4Π), whose
potential energies can be seen in Figure 1. The states X2Π
and 12Σ− can radiate to give OH(X2Π) in a bound rovibrational
energy level. Explicitly written, these reactions are (OH(X2Π)*
denotes a free or quasibound state)

ν+ → Π * → Π + hO( P) H( S) OH(X ) OH(X )3 2 2 2
(I)

and

ν+ → Σ → Π +− hO( P) H( S) OH(1 ) OH(X )3 2 2 2
(II)

Alternatively, the two colliding atoms, in any of the formerly
mentioned states, may undergo a radiationless transition to the
excited quasibound A2Σ+ state of OH from where a radiative
transition to X2Π can be made. This type of radiative
association reaction mechanism is called inverse predissociation
and can occur via any of the pathways

ν

+ → Π * → Σ
→ Π +

+

h

O( P) H( S) OH(X ) OH(A )

OH(X )

3 2 2 2

2 (III)

ν

+ → Σ → Σ
→ Π +

− +

h

O( P) H( S) OH(1 ) OH(A )

OH(X )

3 2 2 2

2 (IV)

Special Issue: Dynamics of Molecular Collisions XXV: Fifty Years of
Chemical Reaction Dynamics
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Figure 1. Potential energies for the X2Π and 12Σ− states of OH from
van Dishoeck et al.,6 the potential energies for the A2Σ+, a4Σ−, and b4Π
from Yarkony,7 and a Morse potential for the potential energy of the
X3Σ− state of OH+ (with parameters from van Lonkhuyzen and de
Lange8 and Huber and Herzberg9) placed one ionization energy of
hydrogen10 above OH. The points are the original data and the lines
(except the Morse potential) are inter- and extrapolations.
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ν

+ → Σ → Σ
→ Π +

− +

h

O( P) H( S) OH(a ) OH(A )

OH(X )

3 2 4 2

2 (V)

or

ν

+ → Π → Σ
→ Π +

+

h

O( P) H( S) OH(b ) OH(A )

OH(X )

3 2 4 2

2 (VI)

The rate constants for formation of OH through inverse
predissociation III−VI have been estimated previously.11,12 The
radiative association reactions I and II have not been studied
prior to this work.
The aim of this study is to compute a reliable reaction rate

constant for OH formation through radiative association that
can be incorporated into chemical models of the interstellar
medium (through, e.g., KIDA13 and the UMIST database for
astrochemistry14). This includes calculations of rate constants
corresponding to reactions I and II, and an improved estimate
of the contribution from the inverse predissociation reactions
III−VI. Attention is also paid to possible influence from
electron detachment and charge transfer processes.

■ THEORETICAL METHODS
For a binary collisional process, such as radiative association
where the orbital electronic angular momentum quantum
number changes from Λ to Λ′, an expression for the thermal
rate constant is

∫πμ
σ= −

Λ→Λ′
∞

Λ→Λ′
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

k T

k T
E E E k T E

( )

8 1
( ) exp( / ) d

1/2

B

3/2

0
B

(1)

where kΛ→Λ′(T) is the thermal rate constant, T is the absolute
temperature, μ is the reduced mass of the colliding particles, kB
is Boltzmann’s constant, E is the kinetic energy of the colliding
particles, and σΛ→Λ′(E) is the cross-section for the process.
There are a few different ways to calculate this cross-section.
Four such approaches were used for reaction pathways I and II
in this work: a quantum mechanical perturbation theory, a
semiclassical method, a classical method, and Breit−Wigner
theory.
Quantum Mechanical Perturbation Theory. The

perturbation theory employed here physically means that we
approximately account for the interaction between the electric
field of the photon produced in the reaction and the electric
dipole moment of the molecule. When the quantum
mechanical perturbation theory is used, a Fermi Golden rule
cross-section is obtained and can be written as (as described by,
e.g., refs 15 and 16)

∑
σ

π
π μ

ν= ℏ
ϵ | |

Λ→Λ′

′ ′
Λ Λ′ ′ ′ Λ →Λ′ ′ Λ Λ′ ′ ′

E

c E
P S M

( )

32
3 (4 )

1

Jv J
E v J J J EJ v J

5 2

0
3

3 2

(2)

where J and J′ are the total angular momentum quantum
numbers before and after the process, respectively, v′ is the
vibrational quantum number for the bound state, ℏ is the
reduced Planck constant, ϵ0 is the permittivity of vacuum, c is
the speed of light, PΛ is a factor for statistical weight, νEΛ′v′J′ is
the frequency of the emitted photon, SΛJ→Λ′J′ is the Hönl−

London factor (rotational line intensity factor),17 and MΛEJΛ′v′J′
is the matrix element of the transition dipole moment operator.
The sum is over all J, v′, and J′. It is assumed in these
calculations that the electronic spin quantum number (S) is
much smaller than J, so that for the operators J − S ≈ J.
MΛEJΛ′v′J′ is defined as

∫= ΨΛ Λ′ ′ ′
∞

Λ ΛΛ′ Λ′ ′ ′M F R D R R R( ) ( ) ( ) dEJ v J EJ v J
0 (3)

where R is the distance between the particles, FΛEJ(R) is the
collision-energy-normalized wave function of the unbound
state, ΨΛ′v′J′(R) is the normalized wave function of the bound
state, and DΛΛ′(R) is the electric dipole moment operator for
the transition between the electronic states of Λ and Λ′. PΛ is
defined as

δ= + −
+ + + +Λ

ΛP
S

L S L S

(2 1)(2 )

(2 1)(2 1)(2 1)(2 1)
0,

A A B B (4)

where δ0,Λ is the Kronecker delta, LA and LB are the electronic
orbital angular momentum quantum numbers of particles A
and B, respectively, and SA and SB are the electronic spin
quantum numbers of particles A and B, respectively.

Semiclassical Method. The semiclassical method can be
seen as the time integral of the transition rate between two
electronic states, as it is given by the Einstein A coefficient.18

This can also be formulated as an integral over internuclear
separation, which is done here. This method only works for
transitions between different electronic states and has a cross-
section according to the formula19,20

∫ ∫
σ

π μ=
− −

Λ→Λ′

Λ
∞ ∞ Λ→Λ′

Λ

E

E
P b

A R
R b

( )

4
2

( )

1
d d

R

Eb

V R
E

b
R

0 ( )c
2

2 (5)

where b is the impact parameter, Rc is the outer classical turning
point, VΛ(R) is the potential energy of the electronic state
characterized by Λ, and AΛ→Λ′

Eb (R) is the probability of
transition between the states characterized by Λ and Λ′,
respectively, per unit of time. AΛ→Λ′

Eb (R) is given by21

=
< −

+ <Λ→Λ′

Λ→Λ′ Λ Λ′

Λ′

⎧

⎨
⎪⎪

⎩
⎪
⎪

A R

A R E V R V R

V R
Eb
R

( )

( ) if ( ) ( ) and

( ) 0

0 otherwise

Eb 2

2

(6)

where VΛ′(R) is the potential energy of the electronic state
characterized by Λ′, and AΛ→Λ′(R) is defined by

π
π

δ
δ

ν= ϵ
−

− ′ ′

Λ→Λ′

Λ+Λ′

Λ
Λ→Λ ΛΛ

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

A R

hc
R D R

( )

64
3 (4 )

2

2
( ) ( )

4

0
3

0,

0,

3 2

(7)

with

ν = −
Λ→Λ′

Λ Λ′R
V R V R

h
( )

max(0, ( ) ( ))
(8)

Classical Method. The classical method only applies to
transitions within one electronic state and therefore comple-
ments the semiclassical method. The method essentially takes
the frequency at which the electric dipole moment of the
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system changes, by using classical mechanics, and equates that
frequency to that of the emitted photon. The intensity of the
emission is given by the Larmor power22 and the radiative
association cross section is given by23

∫ ∫ ∫
σ

π
ω ω= ℏ ϵ

ω

Λ→Λ

Λ
∞ ∞

−∞

∞
E

c
P b b E t t bD

( )

4
3 (4 )

e ( , , ) d d dt
3

0 0 0

3 i
2

(9)

where ω is the angular frequency of the emitted photon, t is
time, and D(b,E,t) is the time-dependent electric dipole
moment vector of the system. D(b,E,t) can be found from
DΛΛ(R) by solving the equations of motion,

μ
= − −Λ

⎛
⎝⎜

⎞
⎠⎟

R
t

E V R
Eb
R

d
d

2
( )

2

2
(10)

θ
μ

=
t

b
R

Ed
d

2
2

(11)

where θ is the polar angle of the system.
Breit−Wigner Theory. Radiative association cross sections

will in many cases have peaks due to resonances and the shape
of these resonances will not always be correct when the
quantum mechanical perturbation theory is used.24 The
semiclassical and classical methods on the contrary cannot
take resonances into account at all, but only give the direct
contribution to the cross-section. Breit−Wigner theory
accounts only for resonances and therefore can work as a
complement to the semiclassical or classical method and, when
combined with either of these, in some cases give better results
than the quantum mechanical perturbation theory.
The Breit−Wigner theory assumes that the rate constant can

be divided into a direct contribution, kΛ→Λ′
direct (T), and a

contribution from resonances, kΛ→Λ′
res (T),

= +Λ→Λ′ Λ→Λ′ Λ→Λ′k T k T k T( ) ( ) ( )direct res
(12)

The resonance contribution to the rate constant is given by25,26

∑

π
μ

= ℏ

× + Γ Γ
Γ + Γ −

Λ→Λ′ Λ

Λ Λ →Λ′

Λ →Λ′ Λ
Λ

⎛
⎝⎜

⎞
⎠⎟k T P

k T

J E k T

( )
2

(2 1) exp( / )
vJ

vJ vJ

vJ vJ
vJ

res 2

B

3/2

tun rad

rad tun B

(13)

where v is the vibrational quantum number of a quasibound
state, EΛvJ is the energy of a quasibound state with quantum
numbers Λ, v, and J, ΓΛvJ→Λ′

rad is the total width of the radiative
decay to any of the bound levels, and ΓΛvJ

tun is the width of
tunnelling out of the quasibound state. An alternate way to
formulate eq 13 for calculating the speed of inverse
predissociation is11

∑

π
μ

= ℏ

× + Γ Γ
Γ −

Λ→Λ′ Λ

Λ →Λ″ Λ″ →Λ′

Λ″ →Λ′ Λ
Λ″

⎛
⎝⎜

⎞
⎠⎟k T P

k T

J E k T

( )
2

(2 1) exp( / )
vJ

J vJ vJ

vJ J
vJ

ip 2

B

3/2

pre rad

or
tot B

(14)

where Λ″ is the orbital electronic angular momentum quantum
number for the predissociatied (quasibound) state, ΓΛ″vJ→Λ′

rad is

the total width of the radiative transition from the
predissociated state with vibrational quantum number v and
rotational quantum number J to any of the bound states,
ΓΛJ→Λ″vJ
pre is the width of escaping the quasibound state by

radiationless transitions to another electronic state, ΓΛ″vJ→Λ′orΛJ
tot

= ΓΛ″vJ→Λ′
rad + ∑ΛΓΛJ→Λ″vJ

pre , and EΛ″vJ is the energy of the
quasibound vibrational state with Λ″, v, and J.

Electron Detachment. A reaction that possibly could
compete with the radiative association processes is electron
detachment,

+ → Σ → Σ +− + − −O( P) H( S) OH(1 ) OH (X ) e3 2 2 3

(VII)

+ → Σ → Σ +− + − −O( P) H( S) OH(a ) OH (X ) e3 2 4 3

(VIII)

and

+ → Π → Σ ++ − −O( P) H( S) OH(b ) OH (X ) e3 2 4 3

(IX)

A method to approximate an upper limit to the cross-section of
electron detachment can be found in an experimental study on
O− + H.27 In this approximation it is assumed that in all cases
when the classical trajectory reaches a point in space where the
potential energy surface of the reactants cross the potential
energy surface of the ground state of the products, the reaction
occurs. According to this approximation the cross-section,
σdetachment(E), is

∑σ π= −
Λ

Λ Λ
× Λ Λ

×⎡
⎣⎢

⎤
⎦⎥E P R

V R
E

( ) ( ) 1
( )

detachment
2

(15)

where RΛ
× is the distance at which the potential energy surface

of the reactant state characterized by Λ and the product state
cross. The sum is over all relevant Λ.

Charge Transfer. Apart from electron detachment, another
reaction that could compete with the radiative association is
charge transfer:

+ → ++ −O H O H (X)

and

+ → +− +O H O H (XI)

The threshold energies for these reactions are 12.863880 and
12.13736 eV, respectively (using electron affinities from Lykke
et al.28 and Neumark et al.29 and ionization energies from
Kramida et al.10).

Computational Details. For the calculations of the cross
sections of reactions I, II, and VII−IX the necessary data were
taken from the literature. Potential energy data points for the
X2Π and 12Σ− states and the electrical transition dipole
moment between X2Π and 12Σ− were taken from van Dishoeck
et al.6 The electrical dipole moment of the X2Π state was taken
from Langhoff et al.30 These data points were splined and
extrapolated. At long distances the potentials were extrapolated
as ∝1/R6. At short distances the potential energy of the X2Π
state was extrapolated as a Morse potential with equilibrium
distance and dissociation energy from Huber and Herzberg.9

The potential energy of the 12Σ− state was at short distances
extrapolated as an exponential function.
The dipole moments were extrapolated as exponential

functions going toward zero at long distances and as second-
order polynomials going toward zero at short distances. The
forms for the extrapolations toward short internuclear distances
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were chosen to be simple forms that behave qualitatively
correct. Different forms were tested, and it was found that the
extrapolation was not important for the resulting reaction rate
constant.31

The potential energy of the X3Σ− state of OH+ was
approximated by a Morse potential (V(R) = De{1 − exp[a(R
− Re)]}

2) with equilibrium distance (Re) and dissociation
energy (De) from van Lonkhuyzen and de Lange8 and a from
Huber and Herzberg.9 The difference in asymptotic energy
between X2Π of OH and X3Σ− of OH+ was taken to be the
ionization energy of hydrogen.10 All the potential energies and
dipole moments used can be seen in Figures 1 and 2.

The widths of the inverse predissociation (reactions III, IV,
V, and VI) were gathered from many different sources.
Vibrational quantum numbers up to 4 and rotational quantum
numbers up to a maximum of 30 were considered. Total,

radiative, and predissociation lifetimes were mostly taken from
Yarkony.7 Total lifetimes not available in that article were taken
from Brzozowski et al.33 and, where available, predissociation
lifetimes were taken from Parlant and Yarkony34 instead. These
lifetimes do not take account of nonradiative coupling between
the continuum of X2Π and A2Σ+, so the predissociation widths
from Julienne and Krauss11 taking account of only that coupling
were added, and for v = 1 they were interpolated. The
contributions from different rovibrational states to the
predissociation widths for vibrational quantum numbers 3
and 4 were taken from the golden rule calculations for
rotational quantum numbers 0 and 14 in Parlant and Yarkony34

and interpolated for the rotational quantum numbers in
between.
Radiative widths were interpolated and a few widths were

found by the use of ΓΛ″vJ→Λ′orΛJ
tot = ΓΛ″vJ→Λ′

rad + ∑ΛΓΛJ→Λ″vJ
pre .

Energies of the quasibound states were calculated with the
spectroscopic constants from Luque and Crosley.35

The cross sections for reactions I and II were calculated with
the quantum mechanical perturbation theory. The bound wave
functions were calculated with discrete variable representation36

and the unbound wave functions were calculated with
Numerov’s method.37

The cross-section for reaction I was also calculated by
combining the classical method with Breit−Wigner theory. The
outer classical turning point, Rc, was found by the bisection
method, the range of time was found by Romberg integration38

of dt/dR from Rc to an outer distance limit. dR/dt and dθ/dt
were integrated with the fourth-order Runge−Kutta method,38

the Fourier transforms were done by fast Fourier transform,38

the integral over ω was made with Simpson’s 1/3 rule,38 and
the integral over b was evaluated with the trapezoidal rule. The
cross-section and reaction rate constant for the resonance
contribution were calculated by using quasibound state
parameters obtained with the program LEVEL, developed by
LeRoy.39

The cross-section for reaction II was additionally calculated
by the semiclassical method. The bisection method was used to

Figure 2. Electric dipole moment of the X2Π state of OH from
Langhoff et al.30 and the electrical transition dipole moment between
the X2Π and 12Σ− states of OH from van Dishoeck et al.6 e is the
elemental charge, and a0 is the Bohr radius. The points are the original
data and the lines are inter- and extrapolations.

Table 1. Hönl−London Factors SΛJΩϵ→Λ′J′Ω′ϵ′ Calculated by the Method of Watson17 for Hund’s Case aa

2S+1Λ Ω ϵ 2S+1Λ′ Ω′ ϵ′ J′ = J − 1 J′ = J J′ = J + 1

1Π 1 ±1 1Π 1 ±1 ≈+ − JJ J
J

( 1)( 1)
0 ≈+

+ JJ J
J
( 2)

1

1Π 1 ±1 1Π 1 ∓1 0 ≈+
+ 0J

J J
2 1
( 1) 0

1Σ− 0 −1 1Π 1 1 0 2J+1≈2J 0
1Σ− 0 −1 1Π 1 −1 J−1≈J 0 J+2≈J
2Π 1/2 ±1 2Π 1/2 ±1 ≈+ − JJ J

J
( 1 / 2)( 1 / 2)

0 ≈+ +
+ JJ J

J
( 3 / 2)( 1 / 2)

1

2Π 1/2 ±1 2Π 1/2 ∓1 0 ≈+
+ 0J

J J
1 / 2

2 ( 1) 0

2Π 3/2 ±1 2Π 3/2 ±1 ≈+ − JJ J
J

( 3 / 2)( 3 / 2)
0 ≈+ −

+ JJ J
J

( 5 / 2)( 1 / 2)
1

2Π 3/2 ±1 2Π 3/2 ∓1 0 ≈+
+ 0J

J J
9( 1 / 2)
2 ( 1)

0

2Σ− 1/2 ±1 2Π 1/2 ±1 ≈+ −J J
J

J( 1 / 2)( 1 / 2)
2 2 0 ≈+ +

+
J J

J
J( 3 / 2)( 1 / 2)

2( 1) 2

2Σ− 1/2 ±1 2Π 1/2 ∓1 0 ≈+
+ JJ

J J
( 1 / 2)

( 1)

3
0

2Σ− 1/2 ±1 2Π 3/2 ±1 ≈− −J J
J

J( 1 / 2)( 3 / 2)
2 2 0 ≈+ +

+
J J

J
J( 5 / 2)( 3 / 2)

2( 1) 2

2Σ− 1/2 ±1 2Π 3/2 ∓1 0 ≈+ + −
+ JJ J J

J J
( 3 / 2)( 1 / 2)( 1 / 2)

( 1)
0

aThe approximations are valid for large J. ϵ is parity and Ω is the quantum number of the projection of the total electronic angular momentum on
the internuclear axis.
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find the classical turning point, the integral over R was
evaluated with the Romberg method,38 and the integral over b
was calculated with the trapezoidal rule.
The direct (nonresonant) contribution to the rate constants

acquired by integration of the cross-section over the energy (eq
1) was calculated with the trapezoidal rule.
The programs used here are available with Hönl−London

factors for singlets. Looking at Table 1, we can see that for the
transitions relevant here this is a good approximation for large J,
except for Σ → Π transitions where an extra factor of 0.5
appears. This factor is, however, accounted for by summation
over Ω′ϵ′. The summation over Ωϵ is not done explicitly in the
calculations of the cross sections, but it is instead taken care of
by multiplication by the factor PΛ. In Table 2 the Hönl-London
factors and PΛ used in the calculations can be seen.

When the cross sections were calculated, they were
considered converged when the corresponding reaction rate
constant at all considered temperatures had converged to
within 0.5% with respect to the individual computational
parameters.

■ RESULTS AND DISCUSSION
The calculated cross sections can be seen in Figure 3. For the
X2Π → X2Π pathway the quantum mechanical perturbation

theory and the combined classical/Breit−Wigner methods for
calculating the cross-section result in very similar baselines,
apart from at high and low energies. With the Breit−Wigner
theory we have, however, found many more resonances than
with the quantum mechanical perturbation theory. This is likely

to be due to the energy resolution of the quantum calculation,
but for the purpose of this work the comparison is satisfactory.
For the 12Σ− → X2Π pathway the semiclassical and quantum

mechanical cross sections are almost identical for a large range
of energies. The semiclassical program could not calculate cross
sections at as high energies as the quantum mechanical program
due to limitations in the semiclassical computational procedure.
The semiclassical cross-section will, however, approach zero
very quickly for the high energies where it is not plotted, due to
the Franck−Condon principle.40,41 It can be seen in Figure 4

that the semiclassical and quantum mechanical rate constants
are nearly indistinguishable, so the differences in cross-section
at high energies do not affect the rate constant at the studied
temperatures. Further the electron detachment reaction only
matters at energies above 9 eV. Also because the charge transfer
reactions X and XI have threshold energies of >12 eV, which is
noticeably higher than the energy where the electron
detachment starts to dominate, they are not important for
our study.
At most temperatures we assume a4Σ− to be the most

important collision state for the inverse predissociation
process,7 and this electronic state is not relevant for the other
radiative association pathways, meaning that even if reactions I
and III, or II and IV would interfere with each other, it would
not affect the total reaction rate noticeably for those
temperatures. For low temperatures both reactions I and III
make noticeable contributions to the total reaction rate.
Because both these reactions occur via the state X2Π they
could possibly affect one another. However, the interference
between the processes will most likely not give a noticeable
difference, because none of the resonances in the different
pathways overlap.
The total reaction rate constant is plotted versus temperature

in Figure 5, where the importance of the inverse predissociation
is seen. The previous estimation for the rate constant for
inverse predissociation12 was obtained up to 400 K and stayed
below 3 × 10−20 cm3 s−1 at those temperatures. The parameters
obtained by fitting the total rate constant to the Kooij
formula,42 which is the form on which this kind of rate
constants are often presented in databases such as KIDA, can
be seen in Table 3. The fit is within 5% of the rate constant. As
shown in Figure 5, the rate constant already present in, for

Table 2. Hönl−London Factors SΛJ→Λ′J′ and Statistical
Weight Factors PΛ Used for the Calculations of the Rate
Constant for Reactions I and II

SΛ J→Λ′J−1 SΛ J→Λ′J SΛ J→Λ′J+1 PΛ

X2Π → X2Π + −J J
J

( 1)( 1) +
+

J
J J
2 1
( 1)

+
+

J J
J
( 2)

1
4/18

12Σ− → X2Π J−1 2J+1 J+2 2/18

Figure 3. Reaction cross sections for reaction I calculated by the
quantum mechanical method (QM) and the classical method with
Breit−Wigner theory added (CL+BW), for reaction II calculated by
the quantum mechanical method (QM) and the semiclassical method
(SC), and for reactions VII−IX by the use of eq 15.

Figure 4. Reaction rate constants for reaction I calculated with the
classical method and Breit−Wigner theory (CL+BW), for reaction II
calculated with the golden rule (QM) and semiclassical method (SC),
and for both reactions summed (Total).
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example, KIDA is larger than the one calculated in this study.43

The rate constant calculated in the present work should be an
improvement over the old one, because this new rate constant
includes all the reactions I−VI and has values for a larger
temperature interval.

■ CONCLUSIONS

The reaction rate constant for the radiative association of
O(3P) and H(2S) into OH(X2Π) has been calculated for the
temperature range 10−30000 K. The calculation includes direct
and shape-resonance-mediated radiative association, as well as
inverse predissociation, and has been conducted by using a few
different methods for the different pathways of the reaction.
This rate constant is expected to be interesting for inclusion in
astrochemical databases, because it has a much larger
temperature interval than the rate constant already available
in for example KIDA13 and the UMIST database for
astrochemistry.14
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By using a time-dependent variational principle formulated for Wigner phase-
space functions, we obtain the optimal time-evolution for two classes of Gaus-
sian Wigner functions, namely those of either thawed real-valued or frozen but
complex Gaussians. It is shown that tunneling effects are approximately included
in both schemes. © 2017 Author(s). All article content, except where other-
wise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5004757

I. INTRODUCTION

Many times, the correct description of processes in molecular systems requires inclusion of quan-
tum statistical effects. An obvious example is that of chemical reactions in small molecular systems
that may be treated accurately (see e.g. Refs. 1 and 2). However, for processes in much larger sys-
tems, quantum effects still may play an important role, but here one must resort to more approximate
methods. Molecular diffusion at low temperature3 is one such example. For such problems, many
approximate schemes have been put forth. Among these we mention the family of path integral-based
approches such as Ring Polymer Molecular Dynamics,4 Centroid Molecular Dynamics5 and Path
Integral Liouville dynamics.6 Also, various implementations of the so-called Classical Wigner model
or Linearized Semi-Classical Initial Value Representation7–10 have been quite successful. Common
for all these methods is that they are exact in the high temperature limit, but also that they are unable to
account for some genuine quantum effects, such as tunneling through barriers. The interested reader
may consult e.g. Ref. 10 where some of these methods were tested on model problems. In this article
we consider a computational method, which is also aimed at modeling dynamical quantum effects
in many-body systems. It adopts a variational principle for minimizing the error between exact and
approximate quantum dynamics. The variational principle is put to work in Wigners phase-space
formulation of quantum mechanics.11,12

The Wigner phase-space formulation of quantum mechanics12 represents an alternative to
path integral methods. This formulation has a mathematical structure which closely resembles that
found in classical statistical mechanics. Indeed, operator averages may instead be computed using
classical-like phase-space averages over so-called Wigner distribution functions, and the dynam-
ics of Wigner functions follow equations of motion which are extensions of those of Newton.
Given these desirable properties, a large body of litterature on Wigners formulation of quantum
mechanics has been published, and we refer to the famous articles collected in the textbook by
Zachos et al.12

In Wigners formulation, the Wigner function representation of the density operator plays a central
role:

[ ρ̂]W (q, p; t)≡
∫ ∞
−∞

dη e−ipη/�
〈
q +
η

2
| ρ̂(t)| q − η

2

〉
. (1)
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The density operator may be time-dependent and its Wigner distribution evolves according to
the Wigner-Moyal equation:12

d
dt

[ ρ̂]W (q, p; t)=L[ ρ̂]W (q, p; t), (2)

where the Liouvillian is given by

L =− p
m
∂

∂q
+ V �(q)

∂

∂p
− �

2

24
V ���(q)

∂3

∂p3
+ .. (3)

This evolution equation is general and applies to all time-dependent Wigner functions. Also,
the important problem of computing quantum correlation functions can be formulated in Wigner
phase-space. To see this, we use the identity,

〈
Â(t)B̂(0)

〉
=

1
Z

Tr
(
eiĤt/�e−Ĥ/kBT Â e−iĤt/� B̂

)

=
1

Z 2π�

∫ ∞
−∞

dpdq [e−Ĥ/kBT Â]W (q, p; t)[B̂]W (q, p). (4)

Thus the calculation of correlation functions is equivalent to the problem of evolving the more
general functions [e−Ĥ/kBT Â]W (q, p; t) in Wigner phase-space. In Ref. 13 we derived a time-dependent
variational principle that enables one to propagate a general parameter-dependent Wigner-function in
an optimal way. This principle can be considered as a generalization of the Dirac-Frenkel variational
principle for wavefunctions.14

In this paper we consider two different classes of Wigner functions that are parameter-dependent.
Using the variational principle, we derive the equations of motion for their variational parameters and
apply the dynamical theory for calculating various time-dependent expectation values for a particle
in a quartic and a double well potential.

This paper is organized as follows: An introduction to the variational principle is presented in
Section II. Sections III and IV apply the theory for calculating the time propagation of two different
forms of Gaussian Wigner functions. Various applications of the theory and comparison to accurate
results are also presented in these Sections. The conclusions are presented in Section V.

II. FORMULATION OF VARIATIONAL PRINCIPLE

Consider the propagation of a Wigner function through Eq.2. We will assume that the Wigner
function is time-dependent through a vector of parameters �θ. Hence, our problem is to find the optimum
time evolution of �θ(t). This was the problem we solved in Ref. 13 by utilizing the time-dependent
variational principle. The principle can be explained by considering the functional

J[�θ, �̇θ]=
∫ t

0
ds

〈
ρ(q, p; �θ(s)), {L − ∂

∂s
}ρ(q, p; �θ(s))

〉

=

∫ t

0
ds
〈
ρ(q, p; �θ(s)), {L − �̇θ · ∇�θ }ρ(q, p; �θ(s))

〉
. (5)

Here, L is the Liouvillian and the general scalar-product between two Wigner functions has been
introduced:

�AW (q, p; t), BW (q, p; t)�=
∫ ∫

dqdp
2π�

A∗W (q, p; t)BW (q, p; t). (6)

The time integration in Eq.5 goes from s = 0 to s = t, which is the time-window of interest. The

action principle states that J[�θ, �̇θ] is stationary with respect to complex variations δ�θ(s) (that vanish
at end-points) if and only if �θ(s) is the optimum “path” in a least squares sense, i.e. so that the error

Error =

〈
{L − ∂

∂s
}ρ(q, p; �θ(s)), {L − ∂

∂s
}ρ(q, p; �θ(s))

〉
(7)

is minimized along the path. To find the path that extremizes the functional, we use the Euler-Lagrange
equations:

∂

∂s
{ ∂
∂θ̇i
}J[�θ, �̇θ]=

∂

∂θi
J[�θ, �̇θ], (8)
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where θ̇i is the time-derivative of the i
�
th entry of the θ vector, θi etc. We notice that the Wigner function

should be an analytic - differentiable - function of its complex variational parameters, otherwise, the
equivalence between Eq.5 and Eq.7 does not hold.

III. VARIATIONAL PRINCIPLE FOR THAWED REAL-VALUED GAUSSIANS

A. Equations of motion

In this Section we consider the following ansatz for the variational “Wigner packet”:

ρ(q, p; t)= ρ(q, p; q0(t), p0(t), α(t), γ(t), β(t))

=N(t) exp{−(
q − q0(t)
p − p0(t)

)T
(
α(t) γ(t)
γ(t) β(t)

)
(
q − q0(t)
p − p0(t)

)}, (9)

where N(t) is a normalization constant. Thus, the variational parameters are α(t), β(t), γ(t), q0(t) and
p0(t). We will be interested in real-valued parameter “trajectories” �θ(s) and, as we will see, a real-
valued initial set of parameters stay real for all times. By substituting Eq.9 into Eq.5 and evaluating
the Euler-Lagrange equations, we derive the equation of motions for the five parameters. We refer
the interested reader to the supplementary material. Here, we simply state the result:

���������
�

q̇0(t)

ṗ0(t)

α̇(t)

γ̇(t)

β̇(t)

���������
�

=

��������������
�

p0(t)/M

− d
dq0

Vsm(q0(t))

2γ(t) ×MΩ2(q0(t))

β(t) ×MΩ2(q0(t)) − α(t)
M

−2
γ(t)
M

��������������
�

, (10)

where the effective frequency Ω(q0) has been defined by:

MΩ2(q0)=
d2

dq2
0

Vsm(q0). (11)

In these equations, the time-dependent smeared potential

Vsm(q0)=
1√

π�2 β�(t)

∫ +∞

−∞
dyV (y) exp

(
− (q0 − y)2

β�(t)�2

)
, (12)

where

β�(t)=
1

2�2

β(t)

α(t)β(t) − γ(t)2
+

1
2
β(t), (13)

has appeared. As is easily shown, the product α(t)β(t) � γ(t)2 is a constant of motion. In the special
case of a minimum uncertainty Wigner-function (which corresponds to a wave-function), we have
α(t)β(t) � γ(t)2 = 1/�2 and then β

�
(t) = β(t). Also, the above solution is exact for quadratic potentials.

We notice that the Dirac-Frenkel principle has been applied for complex Gaussian wavefunctions
in Ref. 16 in the context of photodissociation spectroscopy. Also, see Ref. 17. In the case, α(t)β(t)
� γ(t)2 = 1/�2, these methods and our are equivalent.

B. Kubo position auto correlation function

Here we show that the thawed Gaussians via Eq.9 can be used for calculating so-called Kubo
transformed thermal position auto correlation functions. Because the variational principle is formu-
lated in Wigner phase-space we can solve quantum-statistical problems with no reference to wave
functions. As shown in Appendix A, by adopting the so-called Feynman-Kleinert approximation to
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the Boltzmann-operator, one can derive an approximate expression for the Kubo transformed position
auto correlation function:

�xx(t)�Kubo =
1

ZFK

∫
dxcxc exp(−W1(xc)/kBT )

× 1

(2π�)2

∫ ∫
dqdpq exp(tL)2

√
π2MkBT tanh( �Ω(xc)

2kBT )

α(xc)

× exp(−MΩ(xc)
�α(xc)

(q − xc)2) exp(−
tanh( �Ω(xc)

2kBT )

�MΩ(xc)
p2). (14)

This expression is exact to the extent that the Feynman-Kleinert approximation is. The equation is
evaluated by Monte Carlo sampling using the weight function derived from the centroid potential:
exp(�W1(xc)/kBT ). Clearly, the problem is to propagate the normalized Gaussian Wigner function:

ρxc (q, p)= 2

√
tanh( �Ω(xc)

2kBT )

α(xc)
exp(−MΩ(xc)

�α(xc)
(q − xc)2) exp(−

tanh( �Ω(xc)
2kBT )

�MΩ(xc)
p2), (15)

which is similar to Eq.9 and so can be propagated using Eq.10.

C. Application to double well potential

We first test the method against a model problem where tunneling dynamics is important. We
consider the double well potential V (x) = �0.5x2 + 0.1x4. We adopt natural units: � = kB = m = 1.
First, we will consider a pure state, i.e. the propagation of a Wigner function corresponding to a
wave-function. The initial Wigner function or wave function is chosen as follows. We approximate
the ground state wave function as a sum of two Gaussian wave functions:

ψ(x)=N[exp(−λ
2

(x − x0)2) + exp(−λ
2

(x + x0)2)]. (16)

By minimizing the energy of this wave function with respect to λ and x0 we obtain λ = 1.23 and
x0 = 1.12. We next consider the intial Wigner function to be equivalent to one half of the above
wavefunction, i.e. the Gaussian in the right well. Its Wigner function thus becomes as in Eq.9 with
α = 1.23, β = 1/1.23, γ = 0, q0 = 1.12 and p0 = 0. The time-dependent effective potential is

Vsm(x)=−0.5(x2 +
1
2
β(t)�2) + 0.1x4 + 0.3β(t)�2x2 + 0.1

3
4
β(t)2�4. (17)

In Figure 1, the time-dependent average position of the Wigner function based on the variational
method is shown. Also shown are accurate results as well as the predictions of the so-called classical

FIG. 1. Average position for a particle in the double well starting from a single Gaussian using q0 = 1.12, p0 = γ(0) = 0,
α(0) = 1.23 and β(0) = 1/1.23.
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FIG. 2. Time-development of variational parameters.

Wigner approximation, where the Wigner function is propagated classically assuming (falsely) that
Liouvilles theorem holds: ρ(q, p; t) = ρ(q

�t , p
�t ; 0). While the latter method clearly fails dramatically,

it is seen that the variational method is capable of accounting for tunneling through the barrier. In
Figure 2 is shown the time-development of the variational parameters. We see that β

′
(t) = β(t) grows

in magnitude which in turn lowers the smeared potential barrier thereby making it possible to pass the
barrier. To further investigate the performance of the variational method, we repeated the above test
with different double well potentials on the form V (x) = �ax2 + bx4. Thus a sequence of potentials
were generated, keeping the potential height as above, but using different widths. For each case, the
tunneling period was extracted from accurate and variational dynamics. The results are presented in
Figure 3. We see that the variational method does a good job for narrow potentials but eventually
fails as the barrier widens.

We next consider the calculation of the Kubo-transformed position correlation function of the
double well. We show results from variational theory, accurate calculations as well as the classical
Wigner model. In Figures 4 and 5 are results for an inverse temperature of 8 and 1, respectively. For
1/kBT = 8 it is seen that the variational method is in fairly good agreement with the accurate results.
Again, the classical Wigner model performs badly. At 1/kBT = 1, the variational method actually
performs less well as compared to 1/kBT = 8: It correctly predicts tunneling but roughly twice as fast
as it should be.

FIG. 3. Vibrational period of double well potential as a function of barrier width (imaginary frequency).
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FIG. 4. Kubo double well position correlation function at 1/kBT = 8.

FIG. 5. Kubo double well position correlation function at 1/kBT = 1.

FIG. 6. Kubo quartic position correlation function at 1/kBT = 8.
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FIG. 7. Kubo quartic position correlation function at 1/kBT = 1.

D. Application to quartic potential

We consider the potential V (x) = 0.25x4. We again adopt natural units: � = kB = m = 1. In
Figures 6 and 7 are shown the Kubo-transformed correlation functions obtained from variational
theory, accurate calculations and the classical Wigner model. We observe a good agreement between
accurate and variational methods at 1/kBT = 8, while at 1/kBT = 1 the amplitude given by the
variational method is too large before it dephases.

IV. VARIATIONAL PRINCIPLE FOR COMPLEX-VALUED FROZEN GAUSSIANS

A. Equations of motion

In this Section we consider the following ansatz for the variational “Wigner packet”:

ρ(q, p; t)= ρ(q, p; ξ(t), q0(t), p0(t))= exp{iξ(t)}
× exp{−(

q − q0(t)
p − p0(t)

)T
(
α 0
0 β

)
(
q − q0(t)
p − p0(t)

)}. (18)

The variational parameters are (ξ(t), q0(t), p0(t)). Let us write θ = (ξ, q0, p0), and introduce the
writing: ρ(q, p; t) = ρ(q, p; ξ(t), q0(t), p0(t)) = ρ(q, p; θ(t)). The parameters will be considered
complex and hence we write q0(t) = qr(t) + iqi(t) etc. As shown in the supplementary material, when
substituting Eq.18 into Eq.5 the resulting equations of motion are

�������������
�

q̇r

ṗr

q̇i

ṗi

ξ̇r

ξ̇i

�������������
�

=

���������������������
�

pr/M

− d
dqr

Vsm(qr − �pi β) + Vsm(qr + �pi β)
2

1

αβ�2

d
dpi

Vsm(qr − �pi β) + Vsm(qr + �pi β)
2

− α
βM

qi

Vsm(qr + �pi β) − Vsm(qr − �pi β)
�

− 2β
V �sm(qr − �pi β) + V �sm(qr + �pi β)

2
pi

d
dt
{βp2

i + αq2
i }

���������������������
�

. (19)

Here, V �sm means d
dqr

Vsm. The smeared potential is calculated as in Eq.12 but now with β� = 1
2�2

1
α + 1

2 β.
It is not hard to demonstrate that if q0(t) and p0(t) are allowed to be complex, then the set of Wigner
packets in Eq.18 is mathematically complete, i.e. any function f (q, p) can be expanded in them, using
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the dot product in Eq.6:

f (q, p)=
∫ ∫ ∫ ∫

dqrdqidprdpi

(π�)2
exp(−2αq2

i − 2βp2
i )ρ(q, p; θ) �ρ(q, p; θ), f (q, p)� . (20)

In this expression, the ξ variable in θ is zero. This expansion is a desirable property since all
Wigner functions can then be time-evolved, at least approximately. The complex Wigner packet in
Eq.18 has several interesting properties. First, let us consider dynamics in a harmonic potential. It
turns out that an expansion-propagation scheme based on Eq.19 and Eq.20 is almost exact for a
harmonic potential. More precisely, if we compute (again with ξ = 0):

f (q, p; t)=
∫ ∫ ∫ ∫

dqrdqidprdpi

(π�)2
exp(−2αq2

i − 2βp2
i )ρ(q, p; θ(t)) �ρ(q, p; θ(0)), f (q, p; 0)�

(21)

where the Wigner-packets ρ(q, p; θ(t)) are time-evolved using Eq.19, then the result is exact apart
from an overall scaling factor of the final Wigner function. This is of course easy to fix. It is a
general property of the above expansion-propagation scheme, that the phase-space integral over
the time-evolved Wigner function (“norm”) is not equal to unity, but instead is a function of time.
Hence, the Wigner function always has to be renormalized. A further interesting property is that
since the Wigner-packets include a phase-factor exp(iξr(t)/�), the method can in principle account
for interference effects, see below. From the equations of motion we also notice that this factor
exp(iξr(t)/�) is always unity for a harmonic potential. This means that the method does not have
oscillatory phases that causes problems for near-harmonic systems. This is clearly important if one is
interested in multi-dimensional problems. We finally observe that the variables qi and pi determine
the amount of off-diagonal character of the density operator of ρ(q, p; θ(t)) in the momentum and
position representation, respectively.

B. Application to double well potential

We consider again the double well potential from the previous section. We will consider the
propagation of a Wigner packet with non-complex initial conditions, i.e. qr = 1. and pr = pi = qi

= ξr = ξ i = 0. We further set α = β = 1. We compute its average position as a function of time.
Our Wigner-packet is propagated through Eq.21 using some 45000 functions in the integral. The
result is shown in Figure 8. As opposed to the classical Wigner model, we see that the variational
Wigner-packet indeed tunnels through however a bit too fast. One also sees that the norm of the
Wigner-packet quickly decays to around 0.10. In Figure 9 is shown the propagated Wigner functions
after a time of 2. It is seen that the variational result reproduces the two blue, negative bassins “north”
and “south” of the central positive yellow peak. Indeed, closer inspection shows that both Wigner

FIG. 8. Average position for a particle in the double well starting from a single Gaussian. q0 = 1., p0 = 0 and α = β = 1.
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FIG. 9. Variational and accurate Wigner functions in the double well after a time of t = 2.

FIG. 10. Variational and accurate Wigner functions in the double well after a time of t = 4.

functions have negative values down to some -0.5. Similar results are shown in Figure 10 now for a
time of 4. Here the agreement is less good and while the accurate function has a negative bassin with
a “probability” of about -1., the corresponding variational “dip” only goes down to some -0.5.

C. Application to quartic potential

Here we revisit the quartic potential from the previous section. Again, we study the propagation
of the Wigner packet with the initial conditions, qr = 1., pr = pi = qi = ξr = ξ i = 0. and α = β = 1. In
Figure 11 is shown the average position of the quantum particle. We see a good agreement between

FIG. 11. Average position for a particle in the quartic potential starting from a single Gaussian. q0 = 1., p0 = 0 and α = β = 1.
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FIG. 12. Variational and accurate Wigner functions in the quartic potential after a time of t = 4.

the accurate and variational scheme for short times, but we also note a too fast oscillation predicted in
the variational result. The good thing is that the normalized Wigner function clearly is more coherent
than the classical Wigner result. Again the classical Wigner result erroneously decays on a fast time-
scale. Finally, we show the time-evolved variational Wigner-packet for a time of 4. and compare to the
accurate result in Figure 12. We see that the interference pattern is clearly qualitatively reproduced by
the variational method. Indeed in both plots are clearly seen a black “dip” with probability of some -1.

V. DISCUSSION AND CONCLUSION

Let us first consider the variational method based on thawed Gaussians. It should be clear that this
method is computationally simple and can be generalized to many dimensions. Also, as opposed to
many other practical methods, it does seem to account for tunneling effects which is indeed encourag-
ing. It is interesting to compare this method with Hellers now classic method for propagating thawed
Gaussian wavefunctions.15 His method allows for complex widths of the wavepackets meaning that
the corresponding Wigner function is identical to our thawed Wigner functions, see Eq.9. In his paper,
however, one expands the classical potential to second order around the center of the wavepacket.
Thus the method does not use a smeared potential as in this work. Here, we found it essential to do
so in order to account for tunneling effects through the barrier of the double well. It was observed
that the thawed Gaussian method did not perform well at 1/kBT = 1 when used together with the
Feynman-Kleinert model. Inspection of the equations of motion in Eq.10 and numerical experimen-
tation reveals that the problem is the smeared potential. If β

′
is put equal to 0 then we essentially get

the classical Wigner result, which is not a good result either. So β
′
is somewhat too big. The problem

is as follows: At high temperature, the factor MΩ(xc)
�α(xc) in Eq.15 is initially large, since α(xc) is small.

From Eq.10 it follows that after a transient time, γ turns into a big negative number which again
makes β and thereby β

′
big. Thus after a transient time, the effective potential is lowered and the

particle is tunneling through. To conclude, in the high-temperature limit, we do not obtain dynamics
for q0 and p0 “on” the classical potential if we use the Feynman-Kleinert sampling. At first this seems
counter intuitive but the variational principle is actually acting correctly! To see this, we notice that
a large β value means a very localized Wigner distribution along the momentum direction in phase-
space. It trivially follows that the corresponding density operator has large off-diagonal elements
in the position representation. It is well-known that in such a case, quantum effects are important
when considering the dynamics of the Wigner function. So it is correct that q0 and p0 evolve non-
classically. The classical high-temperature limit is only obtained if we use the variational principle
for time-evolving a distribution function being broad in phase-space both along the q and p directions.
Then both α and β are small all the time and the effective potential will be close to the classical one.
The problem is then the form of the Feynman-Kleinert Gaussian functions that are too localized at
high temperatures. Indeed they are quantum mechanically “illegal” since they violate Heisenbergs
uncertainty relation. We should mention that this discussion is not relevant for harmonic potentials
where the method is always exact: Here the smearing of the potential does not have any effect on the
dynamics.
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Let us next discuss the variational method based on complex frozen Gaussians. It was observed
to keep coherence for a longer time than the classical Wigner model, but unfortunately, also pre-
dicts a somewhat too fast time-dynamics. Also, the propagated Wigner function does not keep its
norm, although this is easily fixed afterwards. We notice that the method we use is a fully uncoupled
approach: We expand a Wigner function in our set of complex Wigner packets which are afterwards
driven forward in time individually. This method could be improved by including a semi-classical
prefactor multiplied onto the Wigner packets. Such a factor accounts for coupling between the evolv-
ing Wigner-packets but it is evaluated in an approximate way. It could be evaluated in a similar
manner as in the derivation of the Herman-Kluk semi-classical initial value representation18–20 used
for propagating wave functions. Here, the prefactor is evaluated by linearizing the dynamics around
the orbit of the coherent state of interest. Such an analysis will be the subject of future research.

SUPPLEMENTARY MATERIAL

See supplementary material for a derivation of the equations of motion of the variational Wigner
functions.
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APPENDIX A

In the following, the symbol β means 1/kBT. We will use the so-called Feynman-Kleinert
approximation to the Boltzmann operator:

exp(−βĤ)≈
∫ ∫

dxcdpcρ(xc, pc)δ̂FK (xc, pc), (A1)

where

ρ(xc, pc)=
1

2π�
exp(−β p2

c

2m
) exp(−βW1(xc)) (A2)

and

δ̂FK (xc, pc)=
∫ ∫

dxdx� ��x�
〉 �x |
√

MΩ(xc)
π�α(xc)

exp(
i
�

pc(x� − x))

× exp(−MΩ(xc)
�α(xc)

(
x + x�

2
− xc)2 − MΩ(xc)α(xc)

4�
(x − x�)2). (A3)

In reference 7 it is shown how to determine the centroid potential W1(xc), the effective frequency
Ω(xc) and α(xc). Using Eq.A1 enables us to establish the following approximate identity:21

1
β�

1
Z

∫ β�

0
ds exp(−(β − s)Ĥ)x̂ exp(−sĤ)≈ 1

ZFK

∫ ∫
dxcdpcxcρFK (xc, pc)δ̂FK (xc, pc), (A4)

which would be exact if Eq.A1 were. By multiplying this equation with the Heisenberg operator
x̂(t) followed by taking the trace, we obtain an expression for the Kubo-transformed position auto
correlation function:

�xx(t)�Kubo = (A5)

1
β�

1
Z

∫ β�

0
dsTr{exp(−(β − s)Ĥ)x̂ exp(−sĤ)x̂(t)} (A6)

� 1
ZFK

∫ ∫
dxcdpcxcρFK (xc, pc)

1
2π�

×
∫ ∫

dqdp(exp(−itĤ/�)δ̂FK (xc, pc) exp(itĤ/�))W [q, p]q.
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We may explore the fact that δ̂FK (xc, pc) is an operator which has a Wigner-transform that is a
Gaussian function of pc. Hence we may integrate out pc:

�xx(t)�Kubo = (A7)

1
ZFK

∫
dxcxcρFK (xc) × 1

2π�

∫ ∫
dqdp ( exp(−itĤ/�)

×
∫

dpc exp(−β p2
c

2m
)δ̂FK (xc, pc) exp(itĤ/�) )W [q, p]q

=
1

ZFK

∫
dxcxcρFK (xc)

1
2π�

∫ ∫
dqdpq exp(tL)

×
∫

dpc(exp(−β p2
c

2m
)δ̂FK (xc, pc))W [q, p]

=
1

ZFK

∫
dxcxcρFK (xc) × 1

2π�

∫ ∫
dqdpq × exp(tL)

2

√
π2M tanh( �Ω(xc)β

2 )

βα(xc)
exp(−MΩ(xc)

�α(xc)
(q − xc)2) (A8)

× exp(− tanh( �Ω(xc)β
2 )

�MΩ(xc)
p2).

It is the last equation that can be evaluated using the varational method of Section II. It is calculated
by sampling xc by Monte Carlo and for each xc, we propagate the local Gaussian Wigner distribution

ρxc (q, p)= 2

√
tanh( �Ω(xc)β

2 )

α(xc)
exp(−MΩ(xc)

�α(xc)
(q − xc)2) exp(− tanh( �Ω(xc)β

2 )

�MΩ(xc)
p2). (A9)
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+�� ��-	 �� ���� ���� �� �� ������ ���-����� �� 
����� ��� ��
���������� '-���

��-� ,����� ���/����� �� �-�� �-/�� +�� ���
 �� ,����� ���/����� � ,�����

-/���� � ��		 .� �-��� -�

ρ(q, p; t) = ρ(q, p; ξ(t), q0(t), p0(t)) ���

= exp{iξ(t)} exp{−(
q − q0(t)
p− p0(t)

)T
(

α 0
0 β

)
(
q − q0(t)
p− p0(t)

)}

��

ρ(q, p; t) = ρ(q, p; q0(t), p0(t), α(t), γ(t), β(t)) ���

= exp{−(
q − q0(t)
p− p0(t)

)T
(

α(t) γ(t)
γ(t) β(t)

)
(
q − q0(t)
p− p0(t)

)}.

$		 �-��-����-	 -�-
����� -�� /��������� /�
	��� $ ��-	��-	��� ���
-	��-����

/����-��� N(t)� ��		 .� ��/	���� �� %���� N(t) �� ��� - �-��-����-	 -�-
����# ��

�� �����
���� .� ��������� ��-� ��� ,����� -/��� �� ���
-	���� ���� ����/�

�� - ���-�� ���
"

�ρ(q, p; t), ρ(q, p; t)� =
ˆ ˆ

dqdp

2π�
ρ∗(q, p; t)ρ(q, p; t)) = 1. � �

$ �����-	 �/-	-������/� .������ ��� ,����� ���/����� ��		 .� �����	"

�AW (q, p; t), BW (q, p; t)� =
ˆ ˆ

dqdp

2π�
A∗

W (q, p; t)BW (q, p; t)). �!�

)� �� -		�� q0 -�� p0 �� .� /�
	��� �� /-� .� ����� ��-� ��� ��� �� -/����

�� %��� �� /�
	���� ���� -�� ,����� ���/���� /-� .� ��-���� �� ���
� (��/��

�� �� ���� ��� �� ��-�-�� ����� -/����� �� /-� ��-�-�� ����� ,�����

���/����� *.����� ��� ����� ,����� -/���� ��� ��		����� ����� ���/� ��		 .�

/	�-� 	-���"

• +�� ��-	 -�� �� ξ(t)� ���� ��� �-�� ξr(t)� �� -	�-�� ���� �� ��� ,�����

-/��� /���������� -� ��-/� ��-�-����� (��/� �� �/�� � -� ���-���-	�

����� �� ��� 
����� �� ��
� ������ &�� - �����
 ���� - �-�
���/ ������-	�

ξr(t) �� -	�� ����� (��/�� ξr(t) �� - 
�-���� �� ��� -��-�
���/��� �� ���

��.	�
�

• +�� �-�� ξ(t) �� ��	� �������� ��� /�
	�� ��-��/������ q0(t) -�� p0(t)�

+�� �-/��� exp{iξ(t)} ��		 -		�� ����������/� ���/��� ���� ���-���� .-����� �� ���

,����� ���/���� �� ����	�� +��� �� ���� -� ��		���" &���� �
-���� ��-�����

��� �����-	 ,����� ������� �� ��� /�
	�� ��� F � +��� ��-�-�� ������ %-/�

,����� -/��� ��		 ����	� ��� ��� �-�� �-/��� -�� �� ��� ��� ���� ��		 ���������

���� ��� ��
 ���
 ���������

�
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*�
����� ���� ��� ����2�2���
 �� 1��
�� �24���� ����
 3� +� � 1� ���� ���


�
� ��� ����	�	 ��	� ��������
 �� ρ(q, p; q(t), p0(t), α(t), γ(t), β(t)) 3� �������
�

��� ��	������
��
� 24���
 ���
4����� )����� ���4����
�� �
�����4� ��� ������

�2
� 
��2���
'

�θ(t) = {q0(t), p0(t), α(t), γ(t), β(t)}� 0��
� ��� �2��2���
2� ���
�

4���� 42
 3� ����2�
�� 3� 4�
������
� ��� ��
4���
2�

J [�θ, �̇θ] =

ˆ t

0

ds

〈
ρ(q, p; �θ(s)), {L − ∂

∂s
}ρ(q, p; �θ(s))

〉
�"�

=

ˆ t

0

ds
〈
ρ(q, p; �θ(s)), {L − �̇θ · ∇�θ}ρ(q, p; �θ(s))

〉
.

-���� L �� ��� /��������2
� 0�� ��	� �
����2���
 ���� ���	 s = 0 �� s = t�

���4� �� ��� ��	����
��� �� �
������� 0�� 24���
 ���
4���� ��2��� ��2� J [�θ, �̇θ]

�� ��2���
2�� ���� �����4� �� 4�	���� �2��2���
� δ�θ(s) ���4��� 2� �
�����
��� ��

2
� �
�� ��

�θ(s) �� ��� ����	�	 ��2��� �
 2 ��2�� ��2��� ��
��� ���� �� ��2� ���

�����

Error =

〈
{L − ∂

∂s
}ρ(q, p; �θ(s)), {L − ∂

∂s
}ρ(q, p; �θ(s))

〉
�#�

�� 	�
�	���� 2��
� ��� �2��� 0� �
� ��� �2�� ��2� �����	���� ��� ��
4���
2��

�� ��� ��� +�����/2��2
�� ��2���
'

∂

∂s
{ ∂

∂θ̇i
}J [�θ, �̇θ] = ∂

∂θi
J [�θ, �̇θ], �$�

����� θ̇i �� ��� ��	�������2���� �� ��� i�th �
��� �� ��� θ ��4��� ��4� 1� 
���4�

��2� ��� ���
�� �24��� ������ 3� 2
 2
2����4 � ������
��23�� � ��
4���
 �� ���

4�	���� �2��2���
2� �2�2	������ ���������� ��� ����2��
4� 3�����
 +�" 2
�

+�# ���� 
�� �����

��� ��������� 	� ��� ������	��� 
�����
���

0���� �� 2
 �����4�� �������
 �� ��� +�����/2��2
�� ��2���
�� 
2	���

�̇θ =
〈
∇�θρ(q, p;

�θ),∇�θρ(q, p;
�θ)
〉−1 〈

∇�θρ(q, p;
�θ),Lρ(q, p; �θ)

〉
. �%�

0��� ��2���
 �� ��
�2� �
 L. ,��	 ���� �� ������� ��2� �� �� ����� L = L1 + L2

���
 ��� ����	�	 �������
 4�������
��
� �� L �� ��� ��	 �� ����	�	 �������
�

�� L1 2
� L2'
�̇θ = �̇θ1 + �̇θ2� -�� ���� ���� ���� ��( .� ��� �
23�� �� �� �
�

�̇θ ���

2 ��
��2� ����
��2� �
 2 ��	��� �2�� 0�� ���2���� �� 2� �������' 1� ��4�	����

��� ����
��2� �
 ,������ 4�	��
�
��'

V (x) =

ˆ +∞

−∞
dka(k) exp(ikx). �&�

!
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+	2��
� ��2� �� �2�� ����2�2��� ��� �2��23��� �� �� 2 ��	� t� �� ��2� �� �
��

�θ(t)� 0��
�

�θ(t) 2� �
��� �� ����� ��� ���42�� )�����,2��2
�� ��2���
� ��� Lk

���
�� 3�

Lk = V �
k(q)

∂

∂p
− �2

24
V ���
k (q)

∂3

∂p3
+ .., � ��

���� Vk(x) = exp(ikx) 2� ��	� t� (2�� ���� ���42�� �������
 �̇θ(k, t)� .� ��� ���42��

), � Jk� 	2� 3� ��
���� 3�

∂

∂s
{ ∂

∂θ̇(k)i
}Jk[�θ, �̇θ(k, t)] =

∂

∂θi
Jk[�θ, �̇θ(k, t)]. �  �

/��
 ��� �������
 �� ��� �����
2� ���3��	 ��

�̇θ(t) = �̇θ(free, t) +

ˆ +∞

−∞
dka(k)�̇θ(k, t), � !�

�����

�̇θ(free, t) �� ��� �������
 ��� L =− p
M

∂
∂q �

��� ���
	 ���	����� �
� � ����� ���	�� ������

*��� �� ���� ��� α(t)� β(t)� γ(t)� q0(t) 2
� p0(t) 3� �2��2���
2� �2�2	������ ����

�� 2�� 4�
������
� )�!� '� 2���2�� ��2���� �� ������ ���2�� ��� �2��2���
2�

�2�2	����� 2� 4�	���� �
��� ��� ��2�4� ��� ��� ����	�	 ��2���� 1� ���� 2����

��� 
��2���
 q0 = qr + iqi ��4 ���
 �����
� 4�	���� 
�	3���� '� ���� 3�

2��2�2
� �2���� �� ���� 
��� 
� ��2����24��� ξ(t)� /��� ��� �2��2���
2� 1��
��

�24��� ��

ρ(q, p; t) = N(t) exp{−(
q − q0(t)
p− p0(t)

)T
(

α(t) γ(t)
γ(t) β(t)

)
(
q − q0(t)
p− p0(t)

)}. � "�

/�� 
��	2���2���
 �24��� 42
 3� ��2��2��� �����4����&

N(t) = 2

√
�
Λ
(αrβr − γ2

r )
1/4

� #�

����

ln Λ =
1

2
{B∗

(
q∗0
p∗0

)
+ c.c.}TA−1{B∗

(
q∗0
p∗0

)
+ c.c.}

−
(

q∗0
p∗0

)T

B∗
(

q∗0
p∗0

)
−
(

q0
p0

)T

B

(
q0
p0

)
, � $�

����

A =

(
αr γr
γr βr

)
, B =

(
α γ
γ β

)
. � %�

-���4� ��2� Λ = 1 �� 3��� ��� ��� ���� {q0(t), p0(t)}� {α(t), β(t), γ(t)} 2�� ��2��

�2����� /�� 2���� ��2��� �2�� 3� 
�� 
���4�� ��2� � 2�2�� ���	 ��� N �24���

#
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� ρ(q, p; t) �� -
-����/ �
 ��� �-��-���
-� �-�-	������ '������� -� ����
 �
 $��

��
��� $� �
/����
� - 
�
�-
-����/-� ����������� ����� �
�� ��� ,��
�� ��
/�

���
 ���� 
�� /�-
�� ��� �������
 �� ��� %�����)-��-
�� ��-���
� �������� ���

�������
 �� - ��-���-���� �-�� ���� - /�
��-
� 
��	-���-���
 �-/��� �-� ���� .�

��� /-�� ������ *� �
 ���� /-��� �� �� ���	����.�� �� ���� ��� N �-/���� &��	 ���

�������� ��/���
� �� ������� ��-� �� ������ /�
����� ��� �-��-���
-� ���.��	

J [�θ, �̇θ] =

ˆ t

0

ds

〈
ρ(q, p; �θ(s)), {Lk − ∂

∂s
}ρ(q, p; �θ(s))

〉
, ��!�

���� Lk ���
�� �
 %���� (
�����
� %��� �
�� %��! ������

J [�θ, �̇θ] =

1

i�

ˆ t

0

ds exp(−k2

8

βr

αrβr − γ2
r

[�2γ2
i + 1]− �2k2

8

βi

αrβr − γ2
r

[αrβi − 2γrγi])

exp(−�2k2

8
βr) exp(ik(λq + qr))

×{exp(−�k2

4

γiβr − βiγr
αrβr − γ2

r

− i�k(qiγr + piβr − γiλq − βiλp))

− exp(+
�k2

4

γiβr − βiγr
αrβr − γ2

r

+ i�k(qiγr + piβr − γiλq − βiλp))} ��"�

+i

ˆ t

0

ds2αr q̇rqi + 2γr q̇rpi + 2βrṗrpi + 2γrṗrqi

+
1

4

β̇iαr + α̇iβr − 2γ̇iγr
αrβr − γ2

r

− 2λq{αr q̇i + α̇rqi + γ̇rpi + γrṗi}

−2λp{γr q̇i + β̇rpi + γ̇rqi + βrṗi}
−2q̇iαiqi − α̇iq

2
i − 2ṗiβipi − β̇ip

2
i − 2q̇iγipi − 2ṗiγiqi − 2piγ̇iqi.

+�� -������
-� �-
������� �-�� -���-��� �
 %��"�

(
λq

λp

)
=

−1

αrβr − γ2
r

(
βr −γr
−γr αr

)(
αi γi
γi βi

)(
qi
pi

)
. ��#�

%��" ����� ���� /�	���/-���� &����
-����� ���
�� ���� ��	����� ����/���� &����

�� 
��� ��-� ��� ����
 ���	� �
 ��� �-�� ��
� �� %��" /�������
�� �� - ���-�

��	�������-���� -
� ��������� �� 
�� /�
���.��� �� ��� �-��-���
 �� ��� �
����-�

-
� /-
 ��������� .� 
����/��� �
 ��� %) ��-���
��

,� ���� ���� ��-� - ��-���-���� �-��

�θ = {q0(t), p0(t), α(t), β(t), γ(t)} ��������
��� %�����)-��-
�� �%)� ��-���
� ��� ��� �	�� ���	
����� L �� ��� ���
�

�θ ��

��-� -� t = 0� +��� 	�-
� ��-� ��� �-�-	�����

�θ ��-� ��� ��/-� %) ��-���
 ��

�� .� ��-��-��� �
� ���
�� ������� %��� -�� �-��
 -� ��-�� ,� ����� -���� ���

- /�	���� ��	��/�-
�� �� ���� ���
� ���
 �����
� ��� ��/-� %���� ������� ���
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������������
 �� ����� �������
� ������� (�� ���� ��	0�
 ��0���0����� .�� �02�

��0� �� ��0��0�� ��� ��20� (+ ��0���
� �
 0 ��0���0���� ���
� ���� ��	����� ���

	0���	0��2�� *
 �02� � ��
2� ��� (+ ��0���
� �
�� �
����� �0��01�� ���� �����

������
��0���
�� 0
 �
���2���
 �� (��$ ����0�� ��0� 0�� ���	� �
 ���� ��0���


��0� 0�� �� ��2�
� ����� �� 	��� �
 �	0��
0�� �0��01��� 20
 1� ���20����� )��

��0	���� ������
� ���������� �����0����� �����
� �
 ��� λq �0��01�� �� ���� ���


0�����0��� ��0��0��� �
 0 ��0���0���� ���
�

�θ� -� �
���0� �� (��$ �� 0�� ����

���� ��� 	�2� ��	���� ���������
%

J [�θ, �̇θ] =
1

i�

ˆ t

0

ds exp(−k2

8

βr

αrβr − γ2
r

− �2k2

8
βr) exp(ikqr)

×{exp(−�k2

4

γiβr − βiγr
αrβr − γ2

r

− i�k(qiγr + piβr))

− exp(+
�k2

4

γiβr − βiγr
αrβr − γ2

r

+ i�k(qiγr + piβr))} � ��

+i

ˆ t

0

ds2αr q̇rqi + 2γr q̇rpi + 2βrṗrpi + 2γrṗrqi

+
1

4

β̇iαr + α̇iβr − 2γ̇iγr
αrβr − γ2

r

.

'�
����� 
�� ��� (�����+0��0
�� ��0���
�� )���� �� 2�
����� ��� �0��01��

qr� /� ��� ���	�	1�� �� �� ��0��0��� ��� 0 ��0� �0��� �� �
 ��� �
� 0�� 2�	����

���	� 0�� ��� �� �����%

∂

∂qr
J =

d

dt

∂

∂q̇r
J ⇔ 0 =

d

dt
[αrqi + γrpi]. � ��

.��� �� ��������� �� qi 0
� pi 0
� ����� ��	�������0����� 0�� ���� ��� 0�� ��	���

,��� �� 2�
����� pr� /� ���

∂

∂pr
J =

d

dt

∂

∂ṗr
J ⇔ 0 =

d

dt
[2βrpi + 2γrqi]. �  �

&�0�
 ���� �� �0������ �� qi 0
� pi 0
� ����� ��	�������0����� 0�� ����� /� 
���

���� 0� qi%
∂

∂qi
J =

d

dt

∂

∂q̇i
J ⇔

−2kγr exp(−
k2

8

βr

αrβr − γ2
r

− �2k2

8
βr) exp(ikqr) + 2iαr q̇r + 2iγrṗr = 0. � !�

,��� 2�
����� pi%
∂

∂pi
J =

d

dt

∂

∂ṗi
J ⇔

−2kβr exp(−
k2

8

βr

αrβr − γ2
r

− �2k2

8
βr) exp(ikqr) + i2γr q̇r + i2βrṗr = 0. � "�
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/�� �������
 �� )�� ���� ��$ q̇r = 0 1
� ṗr = −ik exp(−k2

8
βr

αrβr−γ2
r
−

�2k2

8 βr) exp(ikqr) = − d
dqr

exp(−k2

8
βr

αrβr−γ2
r
− �2k2

8 βr) exp(ikqr)� ��� �1���� ���3�

�1� ��� ���	 �� 1 ���3�� +��� �� ���	� ��1� �� ��
 �
�� ����2��$ (��1���� ���

��1���
 �� 	����
 ��� pr 1���1�� �� ���
 ���� �1��12�� �
�� 1 3�	���� �1
�����

���3� 1���1�� �� 3�
��1��3� ��1� ṗi = 0� '�� ��	�	2��$ 0�1� 	1����� �� ���

��1���
� �� 	����
 ��1� �� �2�1�
 ��� pr 1���� �1��
� ��		�� ���� 1�� *������

	���� �� ��� ����
��1� ���� ��� ���� �1���3�� ,��������1
� &
� ��1� ���� ���� pr
��1�� -��� �� 3�
����� αi� 0� �1��

∂

∂αi
J =

d

dt

∂

∂α̇i
J ⇔

0 =
d

dt

βr

αrβr − γ2
r

⇔ β̇r = 0, ��!�

����� �� �1�� 1���	�� ��1� αrβr − γ2
r �� �
����
��
� �� ��	�% 1 �13� ��1� ����

2� ����
 �� ���� ��� ��� ��1���
1�� �1��� *�� βi �� ���

∂

∂βi
J =

d

dt

∂

∂β̇i

J ⇔

1

i
exp(−k2

8

βr

αrβr − γ2
r

− �2k2

8
βr) exp(ikqr)

k2

2

γr
αrβr − γ2

r

=
i

4

d

dt

αr

αrβr − γ2
r

��

α̇r = 2γr ×
d2

dq2r
exp(−k2

8

βr

αrβr − γ2
r

− �2k2

8
βr) exp(ikqr) ��"�

*�� γi �� ���

∂

∂γi
J =

d

dt

∂

∂γ̇i
J ⇔

−1

i
exp(−k2

8

βr

αrβr − γ2
r

− �2k2

8
βr) exp(ikqr)

k2

2

βr

αrβr − γ2
r

= − i

2

d

dt

γr
αrβr − γ2

r

��

γ̇r = βr ×
d2

dq2r
exp(−k2

8

βr

αrβr − γ2
r

− �2k2

8
βr) exp(ikqr). ��#�

-��� �� ���� 1� αr� /�� ), ��1���
�

∂

∂αr
J =

d

dt

∂

∂α̇r
J

�� �������� ��
3� ��� ������1
� ���� �� ���� ��� 1 ��1� �1���� �1��1���
1� �1�1	������

1
� ��� �������1
� ���� �� �����1��� ����� /�� �1	� 3�		�
� 1������ �� βr 1
� γr
1
� �� ����� �1�� ����� ), ��1���
� 2��
� �� 
����
� 
��� .�� �� ��		1�����

�� �1�� ���
� 1 ��1���1���� �������
 �������� ��� �1��1���
1� �1�1	����� 1��

��1���1���� 1� t = 0� 0� 1�� 
�� ��1�� �� ��	�
���1�� ��1� ��� ��	� �����1����

�� αrβr − γ2
r �� ����$

d

dt
{αrβr − γ2

r}
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= α̇rβr + αrβ̇r − 2γrγ̇r

= 2γr ×
d2

dq2r
exp(−k2

8

βr

αrβr − γ2
r

− �2k2

8
βr) exp(ikqr)βr ��!�

+αr · 0− 2γrβr ×
d2

dq2r
exp(−k2

8

βr

αrβr − γ2
r

− �2k2

8
βr) exp(ikqr) = 0.

+� 
��� ���
 �� ��� ������,���.�� ���-��	� *�� �,��,���
,� ���-��	 ��

J [�θ, �̇θ] =

ˆ t

0

ds

〈
ρ(q, p; �θ(s)), {− p

M

∂

∂q
− ∂

∂s
}ρ(q, p; �θ(s))

〉
��"�

= i

ˆ t

0

ds2αr(q̇r −
pr
M

)qi + 2γr(q̇r −
pr
M

)pi + 2βrṗrpi + 2γrṗrqi

+
1

2M

γiαr − αiγr
αrβr − γ2

r

+
1

4

β̇iαr + α̇iβr − 2γ̇iγr
αrβr − γ2

r

.

'��� �� �,�� ,�,�
 ,���	�� ��,� ��� �������
 �� , ��,���,���� �,�� �� ��,�

��.�
������� �	,��
,�� ���	� .,
 -� ���.,����� ,� �
 %���� *�� %�����(,��,
��

�%(� ��,���
� ,�� ,�,�
 ��,��,���� &���� qr#

∂

∂qr
J =

d

dt

∂

∂q̇r
J ⇔ 0 =

d

dt
[αrqi + γrpi]. � ��

*��� �� ��������� �� qi ,
� pi ,
� ����� ��	�������,����� ,�� ���� ��� ,�� ��	���

)���� �� .�
����� pr#

∂

∂pr
J =

d

dt

∂

∂ṗr
J ⇔ 0 =

d

dt
[2βrpi + 2γrqi]. � ��

$�,�
 ���� �� �,������ �� qi ,
� pi ,
� ����� ��	�������,����� ,�� ����� +� 
���

���� ,� qi#
∂

∂qi
J =

d

dt

∂

∂q̇i
J ⇔

αr(q̇r −
pr
M

) + γrṗr = 0. � ��

*�� %( ��,���
� ��� pi ������

∂

∂pi
J =

d

dt

∂

∂ṗi
J ⇔

γr(q̇r −
pr
M

) + βrṗr = 0. �  �

*���� ��� ��,���
� ,�� ��������� �� q̇r − pr

M ,
� ṗr = 0� )��� �� .�
����� αi�

*�� %( ��,���
� ,��

∂

∂αi
J =

d

dt

∂

∂α̇i
J ⇔

!

II



II
− 1

2M

γr
αrβr − γ2

r

=
1

4

d

dt

βr

αrβr − γ2
r

⇔ β̇r = −2γr
M

, ����

�� �� ,�,�	 ,����� ��,� ��� ��	
��	,�
 �� ������	����	��	�� (
 βi �� 
-�,�	

∂

∂βi
J =

d

dt

∂

∂β̇i

J ⇔ α̇r = 0.

(�	,���� �� .
	���� γi$
∂

∂γi
J =

d

dt

∂

∂γ̇i
J ⇔

αr

2M
= −1

2
γ̇r ⇔ γ̇r = −αr

M
. ����

&�,�	� �
 ����� �
����
	�� �� �,� �,���� ����� ��,�

d
dt{αrβr − γ2

r} �� �	����

��
� )�� �� .
	���� αr� *�� ') ���,��
	 -�.
���

∂

∂αr
J =

d

dt

∂

∂α̇r
J




2(q̇r −
pr
M

)qi +
1

2M

∂

∂αr

γiαr − αiγr
αrβr − γ2

r

= 0, �� �

���.� �� ��������� �
 , �,���,���� �,��� *�� ') ���,��
	� �
 βr ,	� γr ,�

�����,% ���� ,� ��������� �
 �,���,���� �,����

+� .,	 	
� ���� �
 '���� ,	� �	� ��� ���,��
	� 
� �
��
	 �
 , ��	�,�

�
��	��,�� +� �,��

d

dt

⎛
⎜⎜⎜⎜⎝

qr
pr
αr

γr
βr

⎞
⎟⎟⎟⎟⎠

��!�

=

⎛
⎜⎜⎜⎜⎝

pr/M
0
0

−αr

M

− 2γr

M

⎞
⎟⎟⎟⎟⎠
+

ˆ +∞

−∞
dka(k)

⎛
⎜⎜⎜⎜⎜⎝

0

− d
dqr

exp(−k2

8
βr

αrβr−γ2
r
− �2k2

8 βr) exp(ikqr)

2γr × d2

dq2r
exp(−k2

8
βr

αrβr−γ2
r
− �2k2

8 βr) exp(ikqr)

βr × d2

dq2r
exp(−k2

8
βr

αrβr−γ2
r
− �2k2

8 βr) exp(ikqr)

0

⎞
⎟⎟⎟⎟⎟⎠

.

)�� �� ���� β�
r(t) =

βr

2 {1 + 1
�2(αrβr−γ2

r )
}� *��	 '���! -�.
���

d

dt

⎛
⎜⎜⎜⎜⎝

qr
pr
αr

γr
βr

⎞
⎟⎟⎟⎟⎠

��"�
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=

⎛
⎜⎜⎜⎜⎝

pr/M
0
0

−αr

M

− 2γr

M

⎞
⎟⎟⎟⎟⎠

+

ˆ +∞

−∞
dka(k) exp(−�2k2

4
β�
r)

⎛
⎜⎜⎜⎜⎜⎝

0
− d

dqr
exp(ikqr)

2γr × d2

dq2r
exp(ikqr)

βr × d2

dq2r
exp(ikqr)

0

⎞
⎟⎟⎟⎟⎟⎠

.

'�� ��+
	� �)� �)� *� ��)��)��� *� 	
��	� ��)� �a(k) = 1
2π

´ +∞
−∞ dyV (y) exp(−iky)�#

ˆ +∞

−∞
dka(k) exp(−�2k2

4
β�
r) exp(ikqr)

=

ˆ +∞

−∞
dk exp(−�2k2

4
β�
r) exp(ikqr)

1

2π

ˆ +∞

−∞
dyV (y) exp(−iky)

=
1

2π

ˆ +∞

−∞
dyV (y)

ˆ +∞

−∞
dk exp(−�2k2

4
β�
r + ik(qr − y))

=
1

2π

ˆ +∞

−∞
dyV (y)

ˆ +∞

−∞
dk exp(−β�

r

�2

4
(k − 2i

(qr − y)

β�
r�2

)2 − (qr − y)2

β�
r�2

)

=
1�

π�2β�
r

ˆ +∞

−∞
dyV (y) exp(− (qr − y)2

β�
r�2

)

≡ Vsm(qr). ��"�

%���! ���	 �	)��� �)� ) ��� ������ )���)��	� �
�#

d

dt

⎛
⎜⎜⎜⎜⎝

qr
pr
αr

γr
βr

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

pr/M
0
0

−αr

M
−2 γr

M

⎞
⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎝

0
− d

dqr
Vsm(qr)

2γr × d2

dq2r
Vsm(qr)

βr × d2

dq2r
Vsm(qr)

0

⎞
⎟⎟⎟⎟⎟⎠

, � ��




d

dt

⎛
⎜⎜⎜⎜⎝

qr
pr
αr

γr
βr

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

pr/M
− d

dqr
Vsm(qr)

2γr ×MΩ2(qr)
βr ×MΩ2(qr)− αr

M
−2 γr

M

⎞
⎟⎟⎟⎟⎠

, � ��

���� ��� ���+���� �����	+� Ω(qr) �)� *��	 ���	�� *�#

MΩ2(qr) =
d2

dq2r
Vsm(qr). � ��
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��1�� �� ���� ��	��� ��1���
� �� 	����
 ��� ��� .��
����13���% +
�� 1 �	�1���

����
��1� 1
� ��� ���� 1
� ��3�
�������1����� 1�� �������� *�� �� 1���� ��� ������

�� ��� ����
��1�

V (x) = −0.5x2 + 0.1x4. ����

'�� 1 	�
�	�	 �
3���1�
�� .��
�� �13���� ��� �	�1��� ����
��1� �
 &��$ ��

31�3��1��� ��

Vsm(x) = −0.5(x2 +
1

2
βr�2) + 0.1x4 + 0.1 ∗ 3βr�2x2 + 0.1 ∗ 3

4
(βr�2)2. ����

-�� ���3� ���� 2�3�	��

F (x) = −V �
sm(x) = x− 4 ∗ 0.1x3 − 0.1 ∗ 6βr�2x. �� �

)� �� ��� βr�2 = 1� ���
 �� ��3��
��� ���� ����
��1� 1� ��� �
� �� ���� �


,���/�0 � ����� �� 3�
������� ��

���
� �� 1 �1���3�� ������� ���� 21������ (����

�� �����3���� �������� &�#� (�
3� ��� 
�� ��
��1� �1� �� �����
� ��� �1��1���
1�

��1���
� �� 3�
�����
� ���� �������� ��������

'��	 &��$� �� ������� ��1� ��� �	�1��
� �� ��� 3�1���31� ����
��1� �
3��1���

1� βr�2 = �2/{2
〈
p2
〉
}� -��� ��� �1���� 	�	�
��	 �� ��� �1���3��� ��� 	���

3�1���31��� �� 2��1����

��� ������ 	
����	�� ��
 � ���	��� ��������

(��� �� 3�
����� ��� 1
�1�� �
 &��%

ρ(q, p; t) = 2 exp{iξ(t)− (
q − q0(t)
p− p0(t)

)T
(

α 0
0 β

)
(
q − q0(t)
p− p0(t)

)}. ��!�

-�� 
�	2�� �� 3�	���� �1��1���
1� �1�1	����� 1�� �����% q0(t)� p0(t) 1
� ξ(t)�
.� ����� ξ(t) = ξr(t)+ iξi(t) ��3� -�� .��
�� �13��� �� 1
1����3 �
 ��� �1��12���

2�� 
�� 
��	1����� ���� �����3� �� &��%

�ρ(q, p; t), ρ(q, p; t)� =
ˆ ˆ

dqdp

2π�
ρ∗(q, p; t)ρ(q, p; t)) = exp(2[αq2i + βp2i − ξi]).

��"�

)
�����
� &��! �
�� &��" �����

J [�θ, �̇θ] = ��#�

1

i�

ˆ t

0

ds exp(−�2k2

4
β�) exp(ikqr)

×{exp(−i�kpiβ)− exp(i�kpiβ)} × exp(2[αq2i + βp2i − ξi])

+i

ˆ t

0

ds[2αq̇rqi+2βṗrpi+2iαq̇iqi+2βiṗipi− iξ̇i− ξ̇r]× exp(2[αq2i +βp2i − ξi]).
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&�� β′ = 1

2α�2 + β
2 � #��� �+��	� ��
��� ���� -
���
	��	� �
 + �
�+�

���������+���� �� ���

J [�θ, �̇θ] = ��!�

1

i�

ˆ t

0

ds exp(−�2k2

4
β′) exp(ikqr)

×{exp(−i�kpiβ)− exp(i�kpiβ)} × exp(2[αq2i + βp2i − ξi])

+i

ˆ t

0

ds[2αq̇rqi + 2βṗrpi − ξ̇r]× exp(2[αq2i + βp2i − ξi]).

)�� $' ���+��
	� +� 	
� �
����� %��� �
 qi"

∂

∂qi
J =

d

dt

∂

∂q̇i
J ⇔

i2αq̇r × exp(2[αq2i +
p2i
α�2

− ξi]) � ��

+4αqi{
1

i�
exp(−�2k2

4
β′) exp(ikqr){exp(−i�kpiβ)− exp(i�kpiβ)}

+i[2αq̇rqi + 2βṗrpi − ξ̇r]} × exp(2[αq2i + βp2i − ξi]) = 0.

*� �
��� ���� ,� �����	� q̇r = 0 +	�

ξ̇r =

−1

�
exp(−�2k2

4
β′) exp(ikqr){exp(−i�kpiβ)− exp(i�kpiβ)}+ 2βṗrpi. � ��

(��� ���� ����-� �
 pi"

{− exp(−�2k2

4
β′) exp(ikqr)kβ{exp(−i�kpiβ) + exp(i�kpiβ)}+ 2iβṗr}

× exp(2[αq2i + βp2i − ξi]) � ��

+2βpi{
1

i�
exp(−�2k2

4
β′) exp(ikqr){exp(−i�kpiβ)− exp(i�kpiβ)}

+i[2αq̇rqi + 2βṗrpi − ξ̇r]} × exp(2[αq2i +
p2i
α�2

− ξi]) = 0.

*� ��+�� �
��� ���� ,� �	���	� ��+� ��� ��� +	� ��-
	� ���� �+	��� �+-�� ����

�� ���

ṗr = −ik exp(ikqr) exp(−
�2k2

4
β′)

exp(−i�kpiβ) + exp(i�kpiβ)
2

= − d

dqr

exp(ik(qr − �piβ)) + exp(ik(qr + �piβ))
2

exp(−�2k2

4
β′), � ��

��
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*
�

ξ̇r =

−1

�
exp(−�2k2

4
β′) exp(ikqr){exp(−i�kpiβ)− exp(i�kpiβ)}+ 2βṗrpi ����

= −1

�
exp(−�2k2

4
β′){exp(ik(qr − �piβ))− exp(ik(qr + �piβ)) + 2βṗrpi,
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∂ṗi
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ABSTRACT
The classical Wigner model is one way to approximate the quantum dynamics of atomic nuclei. Here, a newmethod is presented for sampling
the initial quantummechanical distribution that is required in the classicalWignermodel. The newmethod is tested for the position, position-
squared, momentum, and momentum-squared autocorrelation functions for a one-dimensional quartic oscillator and double well potential
as well as a quartic oscillator coupled to harmonic baths of different sizes. Two versions of the new method are tested and shown to possibly
be useful. Both versions always converge toward the classical Wigner limit. For the one-dimensional cases, some results that are essentially
converged to the classical Wigner limit are acquired and others are not far off. For the multi-dimensional systems, the convergence is slower,
but approximating the sampling of the harmonic bath with classical mechanics was found to greatly improve the numerical performance.
For the double well, the new method is noticeably better than the Feynman–Kleinert linearized path integral method at reproducing the exact
classicalWigner results, but they are equally good at reproducing exact quantummechanics. The newmethod is suggested as being interesting
for future tests on other correlation functions and systems.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5126183., s

I. INTRODUCTION

When studying molecular systems computationally, a prob-
lem that can arise is how to account for the quantum mechani-
cal behavior of the atomic nuclei without having to solve the time
dependent Schrödinger equation using wavefunctions and, instead,
work with, e.g., trajectories, which has the potential to be signif-
icantly cheaper computationally for many chemically interesting
problems. Several different methods exist, which can be used to
address this problem, such as centroid molecular dynamics (CMD)1
that has been well explained by Jang and Voth,2 ring polymer molec-
ular dynamics (RPMD),3 semi-classical initial value representation
(SC-IVR)4 that has been well explained by Miller,5 Matsubara
dynamics,6 and the classical Wigner (CW) method7,8 [also called
linearized semi-classical initial value representation (LSC-IVR), and
linearized path integral (LPI)]. A new implementation of the classi-
cal Wigner method is the topic of the present article.

The classical Wigner method starts with a quantum mechan-
ical phase space distribution, which is propagated forward in time
classically. Finding the initial distribution is typically problematic. In

this work, a new way to sample the initial phase space distribution is
presented and tested for some simple problems.

The classical Wigner method, CMD, and RPMD can all be seen
as approximations to Matsubara dynamics and give worse results
than Matsubara dynamics.6,9 However, for large systems, Mat-
subara dynamics would be too computationally demanding to be
practical.6

Comparing CMD and RPMD to the classical Wigner method,
one major advantage of the former two is that the quantummechan-
ical ensemble is conserved during the dynamics, while it is not in
the classical Wigner method. On the other hand, for a harmonic
oscillator, the classical Wigner method is exact for any correlation
function,7 while CMD can formally be done for non-linear oper-
ators,10 but it is a much more complicated process than for linear
operators, and RPMD is only exact for correlation functions where
at least one operator is linear.3

The classical Wigner method can be seen as an approximation
of the semi-classical initial value representation. In this approxima-
tion, quantum real time coherence is, however, lost, which may not
be very important in large or condensed phase systems since these

J. Chem. Phys. 152, 094111 (2020); doi: 10.1063/1.5126183 152, 094111-1
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typically decohere rapidly.11 An advantage with the approximation
is less oscillatory integrands to handle numerically.11

From the above comparisons, it can be seen that one of the
reasons for using the classical Wigner method is that it may better
handle non-linear correlation functions at a reasonable expense of
computational resources, compared to the other available methods.

In the new implementation of the classical Wigner method that
is presented in this paper, the initial phase space distribution is sam-
pled with an imaginary time path integral polymer similar to those
that can be found in CMD and RPMD, but in those cases, these
polymers are closed rings and in the present implementation of the
classical Wigner method, the polymer has an opening. The open
polymer presented here is more closely related to those that can be
found in the work of Bose and Makri12 and Bonella et al.13,14

In what follows, first, the classical Wigner method is explained
(Sec. II), and a new path integral open polymer implementation of it
is presented (Sec. III). After that, the computational details (Sec. IV)
and the results (Sec. V) are presented, and conclusions (Sec. VI) are
drawn.

II. CLASSICAL WIGNER METHOD
The classical Wigner method was in its first form introduced,

but not necessarily recommended by Heller.7 In its current more
general form, which is applicable to correlation functions, it was
introduced byWang, Sun, andMiller.8 The classical Wigner method
has as its basis the Wigner phase space distribution.15,16 In one
dimension, easily generalized to any number of dimensions, the
Wigner transform is

(Ω̂)W[x, p] = ∫
∞

−∞
dη e−iηp/h̵⟨x + η

2
∣Ω̂∣x − η

2
⟩, (1)

where Ω̂ is an arbitrary operator, x is the position, p is the momen-
tum, η is a variable with the dimension of the length, h̵ is the reduced
Planck constant, and i is the imaginary unit. The Wigner function is
the Wigner transform of the probability density operator 1

2πh̵ ∣Ψ⟩⟨Ψ∣,
where ∣Ψ⟩ is the ket of the state of the system. This distribution is an
exact quantummechanical quasi-probability distribution and can be
used to calculate expectation values,

⟨Ω̂⟩ = ∫
∞

−∞
dx ∫

∞

−∞
dp ( 1

2πh̵ ∣Ψ⟩⟨Ψ∣)W[x, p](Ω̂)W[x, p]. (2)

The classical Wigner method consists of taking the quantum
mechanical transformed quantity and propagating it forward in time
with classical mechanics (CM), i.e.,

( e iĤt
h̵ Ω̂ e−

iĤt
h̵ )

W
[x, p] ≃ (Ω̂)W[x(t), p(t)], (3)

where Ĥ is theHamiltonian operator and t is time. Thus, the classical
Wigner method works by initiating with a quantummechanical dis-
tribution and then propagating it classically, thereby taking account
of all equilibrium quantum effects e.g., zero-point energy, but over-
looking e.g., dynamic tunneling and quantum interference within
the dynamics. Themethod is exact for potentials up to and including
harmonic terms.7 For a detailed derivation of the classical Wigner
method, the review by Liu17 can be recommended.

The classical Wigner method has been applied successfully to,
e.g., calculating the kinetic energy and density fluctuation spectrum
in liquid neon18 and vibrational energy relaxation rate constants,19,20
but the classical Wigner method has also been found to have limita-
tions for calculating the self-diffusion coefficient of liquid water21 or
handling anisotropic materials.22

III. FEYNMAN PATH INTEGRAL OPEN POLYMER
Let us assume that the quantity of interest for a system is the

canonical time correlation function,

⟨ÂB̂(t)⟩ = 1
Z
Tr{Â e−βĤ e

iĤt
h̵ B̂ e−

iĤt
h̵ }, (4)

where Â and B̂ are arbitrary operators, β is the inverse of Boltz-
mann’s constant times the absolute temperature, Z is the partition
function, and Tr denotes a trace. The choice of placing the Boltz-
mann operator after Â, instead of before, is arbitrary and only deter-
mines the sign of the imaginary part of the correlation function,
since we have,

1
Z
Tr{ e−βĤÂ e

iĤt
h̵ B̂ e−

iĤt
h̵ } = 1

Z
( Tr{Â e−βĤ e

iĤt
h̵ B̂ e−

iĤt
h̵ })

∗
. (5)

The trace can be written as an integral over the position, x1,
eigenkets,

⟨ÂB̂(t)⟩ = 1
Z ∫

∞

−∞
dx1 ⟨x1∣Â e−βĤ e

iĤt
h̵ B̂ e−

iĤt
h̵ ∣x1⟩. (6)

By dividing the Boltzmann operator e−βĤ into N factors e−
β
N Ĥ

and inserting N − 1 identity operators, 1̂ = ∫∞−∞dxj ∣xj⟩⟨xj∣, the
correlation function can be written as

⟨ÂB̂(t)⟩ = 1
Z

⎧⎪⎪⎨⎪⎪⎩

N
∏
j=1
∫
∞

−∞
dxj
⎫⎪⎪⎬⎪⎪⎭
⟨x1∣Â e−

β
N Ĥ∣x2⟩

×⟨x2∣ e−
β
N Ĥ∣x3⟩ . . . ⟨xN−1∣ e−

β
N Ĥ∣xN⟩

×⟨xN ∣ e−
β
N Ĥ e

iĤt
h̵ B̂ e−

iĤt
h̵ ∣x1⟩, (7)

which can be recognized as a Feynman path integral23 in imag-
inary time (−ih̵β), and this in turn can be rewritten as Wigner
transforms,

⟨ÂB̂(t)⟩ = 1
Z

⎧⎪⎪⎨⎪⎪⎩

N
∏
j=1
∫
∞

−∞ ∫
∞

−∞
dxj dpj
2πh̵

⎫⎪⎪⎬⎪⎪⎭
e−

i
h̵ ∑N

j=1 pj(xj+1−xj)

×(Â e−
β
N Ĥ)

W
[x1 + x2

2
, p1]( e−

β
N Ĥ)

W
[x2 + x3

2
, p2]

. . .( e− β
N Ĥ)

W
[xN−1 + xN

2
, pN−1]

×( e− β
N Ĥ e

iĤt
h̵ B̂ e−

iĤt
h̵ )

W
[xN + x1

2
, pN], (8)

where xN+1 = x1 so that the coordinates make a loop.
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If β
N is approaching 0 and only finite temperatures are of inter-

est, i.e., N is approaching infinity, then the Wigner transform of
the Boltzmann operator is simply the classical Boltzmann factor. In
this same limit, the Boltzmann operators can be separated from the
transforms involving Â and B̂ and thus make up their own Wigner
transforms, without consequence,

⟨ÂB̂(t)⟩ = lim
N→∞

1
Z

⎧⎪⎪⎨⎪⎪⎩

N
∏
j=1
∫
∞

−∞ ∫
∞

−∞
dxj dpj
2πh̵

⎫⎪⎪⎬⎪⎪⎭
× e−

i
h̵ ∑N

j=1 pj(xj+1−xj)(Â)W[y1, p1]
× e−

β
N ∑N

j=1 H(yj ,pj)( e iĤt
h̵ B̂ e−

iĤt
h̵ )

W
[yN , pN], (9)

where yj = xj+xj+1
2 , yN = xN+x1

2 , and H(yj, pj) is the classical
Hamiltonian. Now, assuming that the potential energy V(yj) is
independent of momentum, whereby most of the momenta only
occur in the kinetic energy term of the classical Hamiltonians,
p2j
2m , and the symplectic area, ∑N

j=1 pj(xj+1 − xj), it is easy to inte-
grate those momenta out analytically. The momenta that occur in
other places in Eq. (9) are p1 and pN . p1 can occur within the
Wigner transform of Â. Depending on how (Â)W[y1, p1] depends
on p1, the integration over p1 will turn out differently. As long as
∫∞−∞dp1 (Â)W[y1, p1] e−

β
N H(y1,p1) e−

i
h̵ p1(x2−x1) can be evaluated ana-

lytically, e.g., for (Â)W[y1, p1] being any polynomial of p1 (see
Appendix A), all momenta except pN can be integrated out ana-
lytically. pN can usually not be integrated out analytically since if B̂
includes either position or momentum, then ( e iĤt

h̵ B̂ e−
iĤt
h̵ )

W
[yN , pN]

will depend on both, unless the potential is constant, and typically
this dependence will be such that the integral is not easily evaluated
analytically. Hence, these integrations lead to

⟨ÂB̂(t)⟩ = lim
N→∞

1
Z
(mN
2πβ
)

N
2
√

β
2πmN

h̵−N
⎧⎪⎪⎨⎪⎪⎩

N
∏
j=1
∫
∞

−∞
dxj
⎫⎪⎪⎬⎪⎪⎭

× ∫
∞

−∞
dpN e−

i
h̵ pN(x1−xN)A′(y1, x2 − x1)

× e−
mN
2h̵2β ∑

N−1
j=1 (xj+1−xj)2 e−

β
N ∑N

j=1 V(yj)

× e−
β
N

p2N
2m ( e iĤt

h̵ B̂ e−
iĤt
h̵ )

W
[yN , pN], (10)

where A′(y1, x2 − x1) is

A′(y1, x2 − x1) = ∫
∞
−∞ dp1 (Â)W[y1, p1] e−

β
N

p21
2m e−

i
h̵ p1(x2−x1)

∫ ∞−∞ dp1 e−
β
N

p21
2m e−

i
h̵ p1(x2−x1)

= ∫
∞
−∞ dp1 (Â)W[y1, p1] e−

β
N

p21
2m e−

i
h̵ p1(x2−x1)

√
2πmN

β e−
β
N

mN2(x2−x1)2
2h̵2β2

(11)

and may depend on y1 and/or x2 − x1.

Finally, the Wigner transform of the time-evolved oper-
ator B̂ can be very difficult to derive. This is where the
classical Wigner method comes in through the approximation
( e iĤt

h̵ B̂ e−
iĤt
h̵ )

W
[yN , pN] ≈ (B̂)W[x(yN , pN , t), p(yN , pN , t)] [as in

Eq. (3)] giving the final expression,

⟨ÂB̂(t)⟩ ≈ 1
Z
(mN
2πβ
)

N
2
√

β
2πmN

h̵−N
⎧⎪⎪⎨⎪⎪⎩

N
∏
j=1
∫
∞

−∞
dxj
⎫⎪⎪⎬⎪⎪⎭

× ∫
∞

−∞
dpN e−

i
h̵ pN(x1−xN)

× e−
β
N (

p2N
2m +∑N

j=1 V(yj)+ mN2
2h̵2β2 ∑

N−1
j=1 (xj+1−xj)2)

×A′(y1, x2 − x1)(B̂)W[x(yN , pN , t), p(yN , pN , t)], (12)

where x(yN , pN , t) and p(yN , pN , t) are the position and momen-
tum coordinates describing the classical trajectory starting with yN
and pN , and where also for practical reasons the limit of N → ∞
has been removed, thereby also making the value of the correlation
function at t = 0 approximate. When referring to this expression, it
will be called ⟨ÂB̂(t)⟩y1 . It is noted that Eq. (12) is closely related
to an expression recently published by Bose and Makri12 [Eq. (2.7)
in the reference], but not further explored by them. The main dif-
ference is that they use a Boltzmann operator that is symmetrized
around Â, i.e., e−

β
2 ĤÂ e−

β
2 Ĥ . Equation (12) is also related to the L = 1

version of the method published by Bonella et al.,13 more clearly
seen in the paper by Bonella and Ciccotti.14 This method also han-
dles symmetrized Boltzmann operators but uses sum and difference
variables for the polymer.

Apart from the asymmetric placement of the Boltzmann opera-
tor explored in this paper and the symmetric placement explored in
the cited papers, another common handling of the Boltzmann oper-
ator is the Kubo transform.24 This will not be further explored here;
however, the Kubo transform of the new method can be found in
Appendix B.

It can be noted that in Eq. (12), the effective equilibriumHamil-
tonian has terms mN2

2h̵2β2 (xj+1 − xj)2. These look exactly like the poten-
tial energy of harmonic springs and are, therefore, called “spring
terms.” This kind of model for a system is usually described as beads
on a necklace, with the beads placed at the positions of the xj:s and
connected by springs. The ends of this polymer are connected via the
imaginary exponential − i

h̵ pN(x1 − xN), thus making it “open” in the
sense that there is no force keeping the ends together, in contrast to
other path integral methods such as path integral molecular dynam-
ics,25 ring polymer molecular dynamics,3 or path integral Monte
Carlo.26 Even such a method as the open chain imaginary time path
integral of Cendagorta et al.27 would be considered a closed polymer
from this point of view. A graphical representation of the open poly-
mer in this work is shown in Fig. 1. This is the polymer advertised in
the title of this paper.

Looking back at Eq. (7), it can be seen that if Â only depends on
the position, thenÂ can operate to the left and transform into a func-
tion of x1, A(x1), thereby leaving a matrix element of the Boltzmann
operator. This operation removes the approximation of separating
the Wigner transforms of Â and e−

β
N Ĥ , making this derivation less

approximate than the previous one. This means that a new version
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FIG. 1. A drawing to exemplify a 7-bead open polymer, where the positions of
all the x:s and y:s have been marked. The springs represent the separations
that give a spring-term, and the line is the separation that gives the imagi-
nary exponential. y1 and y7 (in the circles) are where A′(y1, x2 − x1) and
(B̂)

W
[x(y7, p7, t), p(y7, p7, t)] are evaluated, respectively.

of Eq. (12) is

⟨ÂB̂(t)⟩ ≈ 1
Z
(mN
2πβ
)

N
2
√

β
2πmN

h̵−N
⎧⎪⎪⎨⎪⎪⎩

N
∏
j=1
∫
∞

−∞
dxj
⎫⎪⎪⎬⎪⎪⎭

× ∫
∞

−∞
dpN e−

i
h̵ pN(x1−xN)

× e−
β
N (

p2N
2m +∑N

j=1 V(yj)+ mN2
2h̵2β2 ∑

N−1
j=1 (xj+1−xj)2)

×A(x1)(B̂)W[x(yN , pN , t), p(yN , pN , t)], (13)

where the only change compared to before is that A′(y1, x2 − x1)
has been replaced by A(x1). This expression will be referred to as
⟨ÂB̂(t)⟩x1 . If Â depends on both position and momentum, it is in
many cases possible to reorder operators so that all position depen-
dence is to the left of all momentum dependence, and then let the
position dependent parts operate to the left in Eq. (7), keeping the
momentum dependent parts in the matrix element. Of course this
would lead to a more complicated expression than A(x1). Opera-
tors of both position and momentum will, however, not be further
discussed in this article

If Â depends only on momentum, then Eq. (12) will be equiva-
lent to Eq. (13) so that ⟨ÂB̂(t)⟩x1 = ⟨ÂB̂(t)⟩y1 . For this situation, the
notation ⟨ÂB̂(t)⟩y1,x1 will be used.

For simplicity of notation, the path integral open polymer
method will usually be called Open Polymer Classical Wigner, or
OPCW for short, in this paper.

For multidimensional systems, the path integral open polymer
method for sampling initial conditions can potentially get a severe
sign problem due to the factor e−

i
h̵ pN(x1−xN) appearing in each degree

of freedom. The way this problem will be tackled in this article is to
sample the initial distribution of the most quantum mechanical or
most important degrees of freedom by the path integral open poly-
mer method and the other degrees of freedom by classical mechan-
ics, coupling each bead in the quantum mechanical part(s) with the
single bead in the classical parts.

IV. COMPUTATIONAL DETAILS
Equations (12) and (13) were evaluated by Monte Carlo for the

integrals over xj and pN and with molecular dynamics for the time
propagation of (B̂)W[x(yN , pN , t), p(yN , pN , t)].

The correlation functions studied in this paper are autocor-
relation functions of position, position-squared, momentum, and
momentum-squared for a one-dimensional quartic potential. In
addition, a one-dimensional double well potential and a quartic
potential with many-dimensional harmonic baths were studied for
the position and position-squared autocorrelation functions.

A. Potentials and system parameters
The potentials studied in this work are a quartic potential, a

double well potential, and a quartic potential with various harmonic
baths.

The quartic potential was taken as

Vquartic(x) = m2ω3

4h̵
x4, (14)

where ω is a unit of angular frequency.
The double well potential was taken as

Vdouble well(x) = m2ω3

10h̵
x4 − 1

2
mω2x2. (15)

The multidimensional systems all use the quartic potential
together with the types of baths of Caldeira and Leggett.28 These
systems, thus, have one mostly quartic degree of freedom and sev-
eral harmonic degrees of freedom that form a bath. The harmonic
degrees of freedom in the bath are bilinearly coupled to the quar-
tic degree of freedom. The form of the bath is the one suggested
by Craig and Manolopoulos.29 The bath is a discretized version of
a bath with a linear spectral density with an exponential cutoff, and
the parameters chosen for the current work are a cutoff frequency
of ω and a system–bath coupling strength of mω. The complete
potential is

VFD(x1, x2, . . . , xF−1, xF) = m2ω3

4h̵
x41

+
F
∑
l=2

1
2
mω2(xl ln(

l − 3
2

F − 1) + x1
√

2
(F − 1)π)

2

, (16)

where F is the number of degrees of freedom.

B. Monte Carlo
The maximum stepsize, Δxmax, l, was individually set for all

degrees of freedom l, with an initial value of

Δxmax,l =
�
�����

2 ln 2

Fβ(∣∂2V
∂x2l
∣
xl=0

+ ml(N−1)N
h̵2β2 )

. (17)

This choice for stepsize is based on a harmonic approximation of
the potential energy, assuming the same average stepsize in xj and
yj, and aiming for 50% acceptance rate. The change in energy that
would give an acceptance likelihood of 50% for a Monte Carlo step
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is N ln 2/β. 1/F of this energy could then be assigned to each degree
of freedom. For each degree of freedom, the maximum stepsize is set
so that the total energy change resulting from a change in position of
Δxmax, l away from the minimum in the harmonically approximated
potential, weighted by N, and the path integral spring potential,
weighted by N − 1, would give this energy. This results in Eq. (17).
The above does not work for a situation where ∣∂2V

∂x2l
∣
xl=0
= 0 and at

the same time N = 1, and in such cases, the maximum stepsize was
set to the thermal de Broglie wavelength.

The maximal stepsizes were updated as a group every 50 000th
step according to the algorithm of Allen and Tildesley30 in order to
keep the acceptance rate close to 50%.

The momentum, pN , was sampled from a Maxwell–Boltzmann
distribution at the temperature N

kBβ , where kB is Boltzmann’s con-
stant. The pseudo-random number generator used was ran2 of Press
et al.31 Data were collected, i.e., a molecular dynamics trajectory was
run, each 100th Monte Carlo-step.

The Monte Carlo chain begun in a part of phase space that has
a low probability of occurring, i.e., far from the equilibrium distribu-
tion. It was, however, found that the number of Monte Carlo steps
it takes to come close to equilibrium for the various simulated sys-
tems is negligible compared to the total length of the Monte Carlo
simulation runs and was, therefore, not explicitly accounted for.

C. Molecular dynamics
The molecular dynamics was conducted using the velocity Ver-

let algorithm.32,33 The time step was 0.050 ω−1 for the quartic and
double well one-dimensional systems, and 0.035ω−1, 0.025ω−1, and
0.020ω−1 for the quartic potential with harmonic baths containing
3, 6, and 9 degrees of freedom, respectively. The total time length of
each molecular dynamics run was 10ω−1.

D. Statistical evaluation of data
The block average method, explained by, e.g., Friedberg and

Cameron34 and Flegal, Haran, and Jones,35 was used to calculate
the standard deviations of the correlation functions. The minimum
block size used was 106 Monte Carlo-steps. These standard devi-
ations were used as a measure of uncertainty and to determine
convergence.

E. Exact correlation functions
In order to have exact classical, quantum mechanical, and clas-

sical Wigner results to compare against, numerically exact results
were produced for the systems and correlation functions where this
was deemed doable.

For the quartic potential and double well potential, the classical
mechanics comparison was obtained by setting N = 1, in the same
program as was used to find the classical Wigner results, using 109
Monte Carlo steps.

The quantum mechanical autocorrelation functions for the
quartic potential were calculated with a numerically exact program
that uses the lowest 2000 particle in-the-box energy eigenfunc-
tions, with a box length of 40

√
h̵
mω , as a basis set to approximate

the 40 lowest energy eigenfunctions of the quartic oscillator. These

eigenfunctions were then used to evaluate the necessary matrix ele-
ments and could be propagated in time analytically. The quantum
mechanical autocorrelation functions for the double well potential
were calculated in a similar way, but the basis set was the 12 lowest
energy eigenfunctions of the harmonic oscillator, V(x) = 1

2mω2x2.
For the quartic potential with harmonic bath, just as without

the bath, a classical comparison was calculated with one bead, N = 1,
in the classical Wigner routine, using 109 Monte Carlo steps. The
quantum mechanical comparison at t = 0 for this case was a path
integral Monte Carlo simulation with 80 beads, N = 80, run with
the same Monte Carlo parameters as the classical Wigner runs.
64 × 109 Monte Carlo steps were used for 3 degrees of freedom in the
bath and 16 × 109 Monte Carlo steps for 6 and 9 degrees of freedom
in the bath.

The exact classicalWigner data were generated as follows: First,
the matrix elements of the Boltzmann operator were calculated
using the numerical matrix multiplication scheme.36 In this scheme,
N = 50 and N = 14 matrix multiplications of e−

β
N Ĥ were used for

βh̵ω = 8 and βh̵ω = 1, respectively. Afterward, a numerical Fourier
transform of these data was used for computing the Boltzmann
Wigner transform. Finally, this Boltzmann Wigner function was
represented on a grid for doing classical dynamics.

F. Feynman–Kleinert classical Wigner method
Many of the methods for acquiring an approximate initial dis-

tribution for a classical Wigner calculation use a harmonic approxi-
mation for the potential.19,37,38 However, for potentials with negative
curvature, these methods all encounter problems when the tem-
perature is too low. For these situations, a modified local Gaussian
approximation39 can be used instead. This is, however, not necessary
for the systems and temperatures in this paper.

The Feynman–Kleinert approximation40 is one of the harmonic
approximation methods, and its application to the classical Wigner
method is usually called Feynman–Kleinert linearized path integral
(FK-LPI).37 FK-LPI will be used as a comparison for OPCW.

G. Ring polymer molecular dynamics
Ring polymer molecular dynamics (RPMD)3 is a popu-

lar method for calculating approximate quantum dynamics. This
method was used as a comparison for the classical Wigner results.
The RPMD results were generated by using 32 and 5 beads for
βh̵ω = 8 and βh̵ω = 1, respectively, using a time step of 0.009ω−1 for
the quartic oscillator and a time step of 0.0125ω−1 for the double well
and quartic oscillator with harmonic baths. The Kubo-transformed
results acquired from the calculations were transformed into the
asymmetric placement of the Boltzmann operator through the
method by Braams, Miller, and Manolopoulos.41 The way to calcu-
late momentum-correlation functions with RPMD is through time
derivatives of position correlation functions.29,42 This was consid-
ered too complicated for ⟨p̂2p̂2(t)⟩ so that this function has not been
included.

V. RESULTS AND DISCUSSION
In this section, the results from the calculations of a few differ-

ent autocorrelation functions for a few model systems are presented.
Each correlation function is presented by three lines. The middle

J. Chem. Phys. 152, 094111 (2020); doi: 10.1063/1.5126183 152, 094111-5

Published under license by AIP Publishing

III



III

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 2. The position autocorrelation func-
tion for a quartic potential (βh̵ω = 8).
Comparison between different numbers
of beads for the two versions of OPCW
and numerically exact solutions for clas-
sical mechanics (CM), classical Wigner
(CW), and quantum mechanics (QM).
The number of Monte Carlo steps used
for each number of beads, N, is 1 × 109

for N = 10 and N = 40, and 16× 109 for N
= 160. The outer lines of each type show
the standard deviations for the results. If
the standard deviation is small enough,
the outer lines are not visible. (a) Real
part of ⟨x̂x̂(t)⟩y1 , (b) imaginary part of
⟨x̂x̂(t)⟩y1 , (c) real part of ⟨x̂x̂(t)⟩x1 ,
and (d) imaginary part of ⟨x̂x̂(t)⟩x1 .

line is the correlation function itself, and the upper and lower ones
show the standard deviation of the result. In most cases presented
here, the standard deviations are within the width of the middle
line.

A. Quartic potential βh̵ω = 8
When looking at the correlation functions for the quartic

potential calculated with the new method (Figs. 2–4) and numer-
ically exact classical Wigner (Figs. 2 and 3), it can be seen that
they flatten out and become constant at long times. This is due

to the fact that the classical Wigner method relies on classical
mechanics for propagation forward in time. For all systems with
potentials of higher order than harmonic, the classical trajecto-
ries do not give the correct coherence, meaning that the individ-
ual classical trajectories dephase against each other. Results for a
one-dimensional harmonic oscillator, where classical propagation
is exact, can be found in Appendix C. Analytic expressions for the
harmonic oscillator autocorrelation functions have been placed in
Appendix D.

In Fig. 2, it can be seen that at time t = 0, the correlation
functions calculated with the new method converge from classical

FIG. 3. The position and position-
squared autocorrelation functions for a
quartic potential (βh̵ω = 8). Comparison
between the two versions of OPCW and
numerically exact solutions for classical
mechanics (CM), classical Wigner (CW),
FK-LPI, RPMD, and quantum mechan-
ics (QM). The number of beads used in
the y1- and x1-calculations is N = 160,
and the number of Monte Carlo steps is
16 × 109. The outer lines of each type
show the standard deviations for the
results. If the standard deviation is small
enough, the outer lines are not visi-
ble. (a) Real part of ⟨x̂x̂(t)⟩, (b) imag-
inary part of ⟨x̂x̂(t)⟩, (c) real part of
⟨x̂2x̂2(t)⟩, and (d) imaginary part of
⟨x̂2x̂2(t)⟩.
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FIG. 4. The momentum and momentum-squared autocorrelation functions for a quartic potential (βh̵ω = 8). Comparison between OPCW [with ⟨p̂p̂(t)⟩y1 and ⟨p̂2p̂2(t)⟩y1
being identical to ⟨p̂p̂(t)⟩x1 and ⟨p̂2p̂2(t)⟩x1 , respectively] and numerically exact solutions for classical mechanics (CM), FK-LPI, RPMD, and quantum mechanics (QM).

The number of beads used in the calculations of ⟨p̂p̂(t)⟩y1 ,x1 is N = 160, and the number of Monte Carlo steps is 64 × 109. The number of beads used in the calculations of

⟨p̂2p̂2(t)⟩y1 ,x1 is N = 80, and the number of Monte Carlo steps is 128× 109. The outer lines of each type show the standard deviations for the results. If the standard deviation

is small enough, the outer lines are not visible. (a) Real part of ⟨p̂p̂(t)⟩, (b) imaginary part of ⟨p̂p̂(t)⟩, (c) real part of ⟨p̂2p̂2(t)⟩, and (d) imaginary part of ⟨p̂2p̂2(t)⟩.

FIG. 5. The position and position-
squared autocorrelation functions for a
quartic potential (βh̵ω = 1). Comparison
between the two versions of OPCW and
numerically exact solutions for classical
mechanics (CM), classical Wigner (CW),
FK-LPI, RPMD, and quantum mechan-
ics (QM). The number of beads used in
the y1- and x1-calculations of ⟨x̂x̂(t)⟩ is
N = 80, and the number of Monte Carlo
steps is 16 × 109. The number of beads
used in the y1- and x1-calculations of
⟨x̂2x̂2(t)⟩ is N = 80, and the number of
Monte Carlo steps is 64 × 109. The outer
lines of each type show the standard
deviations for the results. If the standard
deviation is small enough, the outer lines
are not visible. (a) Real part of ⟨x̂x̂(t)⟩,
(b) imaginary part of ⟨x̂x̂(t)⟩, (c) real
part of ⟨x̂2x̂2(t)⟩, and (d) imaginary part
of ⟨x̂2x̂2(t)⟩.
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FIG. 6. The momentum and momentum-squared autocorrelation functions for a quartic potential (βh̵ω = 1). Comparison between OPCW [with ⟨p̂p̂(t)⟩y1 and ⟨p̂2p̂2(t)⟩y1
being identical to ⟨p̂p̂(t)⟩x1 and ⟨p̂2p̂2(t)⟩x1 , respectively] and numerically exact solutions for classical mechanics (CM), FK-LPI, RPMD, and quantum mechanics (QM).

The number of beads used in the calculations of ⟨p̂p̂(t)⟩y1 ,x1 is N = 80, and the number of Monte Carlo steps is 128 × 109. The number of beads used in the calculations

of ⟨p̂2p̂2(t)⟩y1 ,x1 is N = 20, and the number of Monte Carlo steps is 256 × 109. The outer lines of each type show the standard deviations for the results. If the standard

deviation is small enough, the outer lines are not visible. (a) Real part of ⟨p̂p̂(t)⟩y1 ,x1 , (b) imaginary part of ⟨p̂p̂(t)⟩y1 ,x1 , (c) real part of ⟨p̂2p̂2(t)⟩y1 ,x1 , and (d) imaginary

part of ⟨p̂2p̂2(t)⟩y1 ,x1 .

FIG. 7. The position and position-
squared autocorrelation functions for a
double well potential (βh̵ω = 8). Com-
parison between the two versions of
OPCW and numerically exact solutions
for classical mechanics (CM), classical
Wigner (CW), FK-LPI, RPMD, and quan-
tum mechanics (QM). The number of
beads used in the y1- and x1-calculations
is N = 160, and the number of Monte
Carlo steps is 16 × 109. The outer lines
of each type show the standard devia-
tions for the results. If the standard devi-
ation is small enough, the outer lines are
not visible. (a) Real part of ⟨x̂x̂(t)⟩, (b)
imaginary part of ⟨x̂x̂(t)⟩, (c) real part
of ⟨x̂2x̂2(t)⟩, and (d) imaginary part of
⟨x̂2x̂2(t)⟩.
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mechanics toward quantum mechanics as the number of beads is
increased. For all times, the correlation functions calculated with the
new method converge toward the exact classical Wigner method. It
can also be seen that the x1-method converges faster than the y1-
method with respect to the number of beads. This is also the case for
the harmonic oscillator, see Appendix E, where an explanation for
this is also given.

Looking at the individual versions of the new method in Figs. 2
and 3, it can be seen that at least the real parts of ⟨x̂x̂(t)⟩x1 and
⟨x̂2x̂2(t)⟩x1 have converged essentially to within the thickness of the
line of the exact classical Wigner result for N = 160. ⟨x̂x̂(t)⟩y1 and
⟨x̂2x̂2(t)⟩y1 converge quite slowly in comparison, and the results for
N = 160 are not entirely converged to the exact classical Wigner
result, even if they are close. ⟨p̂p̂(t)⟩y1,x1 in Figs. 4(a) and 4(b) has
not converged all the way to exact quantum mechanics at t = 0 for
N = 160 but is close.

In Figs. 4(c) and 4(d), it stands out that ⟨p̂2p̂2(t)⟩y1,x1 is far from
converged to exact quantummechanics at t = 0, but this is a compli-
cated correlation function. Even though the result for N = 80 is not
very close to exact quantum mechanics at time t = 0, the shapes of
the curves have some qualitative agreement.

Correlation functions with p̂n in the first operator can be
expected to be more difficult to converge than correlation functions
with x̂n in the first operator, since (p̂n)W will be integrated into an
nth-order polynomial of a difference between positions, while (x̂n)W
will just be a position, or an average of positions, to the power of n
(see Appendix A).

In Fig. 3, it can be seen that FK-LPI gives results very close
to exact classical Wigner for ⟨x̂x̂(t)⟩ and the imaginary part of
⟨x̂2x̂2(t)⟩, while the real part of ⟨x̂2x̂2(t)⟩ is a little bit further off.
OPCW gives as good, or slightly better, results as FK-LPI, except y1
for Im⟨x̂2x̂2(t)⟩.

In Figs. 4(a) and 4(b), it can be seen that FK-LPI gives a bet-
ter starting value for ⟨p̂p̂(t)⟩ than the calculations with the new
method. The oscillations are, however, qualitatively similar. For
⟨p̂2p̂2(t)⟩ in Figs. 4(c) and 4(d), the results acquired with the new
method have a better value at t = 0 and has more qualitative agree-
ment with the exact quantum mechanical result than the FK-LPI
result.

It is shown in Figs. 3, 4(a), and 4(b) that the classical Wigner
method gives worse amplitudes than RPMD for the linear auto-
correlation functions, ⟨x̂x̂(t)⟩ and ⟨p̂p̂(t)⟩. It can, however, also
be seen that the classical Wigner method gives better amplitude
at short times and better phase overall than RPMD does for the
non-linear autocorrelation function ⟨x̂2x̂2(t)⟩. This is not surpris-
ing as it is known that for RPMD to be exact for the harmonic
oscillator at least one of the operators in a correlation function has
to be linear.3

B. Quartic potential βh̵ω = 1
When, for the quartic potential, the temperature is increased so

that βh̵ω = 1, instead of βh̵ω = 8, it is shown in Fig. 5 that ⟨x̂x̂(t)⟩
and ⟨x̂2x̂2(t)⟩ for both versions of the new method are almost per-
fectly converged to the exact classical Wigner result for N = 80. This
is fewer beads than what seems necessary to achieve a similar con-
vergence at βh̵ω = 8. This is hardly surprising as the classical and
quantum mechanical correlation functions are much more similar
at βh̵ω = 1 than at βh̵ω = 8.

In Fig. 6, it can be seen that ⟨p̂p̂(t)⟩y1,x1 is rather well con-
verged toward exact quantummechanics at t = 0. ⟨p̂2p̂2(t)⟩y1,x1 does
not reach the limit of the exact quantum mechanics for the N = 20
calculation presented here but shows a qualitative agreement with
quantum mechanics up to t = 4ω−1

FIG. 8. The position autocorrelation func-
tion for a quartic potential with a har-
monic bath with 3 degrees of freedom
(βh̵ω = 8). Comparison between differ-
ent numbers of beads for the two ver-
sions of OPCW and numerically exact
solutions for classical mechanics (CM),
at all times and quantum mechanics
(QM), at time t = 0. The number of Monte
Carlo steps used for each number of
beads, N, is 1× 109 for N = 5 and N = 10,
16 × 109 for N = 20, and 64 × 109 for N
= 40. The outer lines of each type show
the standard deviations for the results. If
the standard deviation is small enough,
the outer lines are not visible. (a) Real
part of ⟨x̂x̂(t)⟩y1 , (b) imaginary part of
⟨x̂x̂(t)⟩y1 , (c) real part of ⟨x̂x̂(t)⟩x1 ,
and (d) imaginary part of ⟨x̂x̂(t)⟩x1 .
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Generally, even for a lower number of beads the convergence
with respect to the number ofMonte Carlo steps is worse for βh̵ω = 1
compared to βh̵ω = 8. This is, however, not a problem in practice as
fewer beads are required to converge the result to the exact classical
Wigner result at the higher temperature.

For ⟨x̂x̂(t)⟩ and ⟨x̂2x̂2(t)⟩, FK-LPI results are essentially the
same as the exact classical Wigner results. For ⟨p̂p̂(t)⟩, the results
from the new method and the FK-LPI results are very similar.
However, for ⟨p̂2p̂2(t)⟩, the FK-LPI results are somewhat closer
to the quantum mechanical result than the results produced with
OPCW.

For ⟨x̂x̂(t)⟩, the classical Wigner method gives worse ampli-
tudes than RPMD. For ⟨x̂2x̂2(t)⟩, the classical Wigner method pos-
sibly gets a somewhat worse amplitude than RPMD. For ⟨p̂p̂(t)⟩,
it is not obvious if one of the methods performs better than the
other.

C. Double well potential βh̵ω = 8
In Fig. 7, it can be seen that all the approximate methods quite

early become very different from exact quantum mechanics. This is
because dynamical tunneling is important for describing the dynam-
ics of a system like this, which is not taken into account at all in the
classical Wigner method and not properly in RPMD. For ⟨x̂x̂(t)⟩,
the y1- and x1-versions of the open polymer method have converged
to the exact classicalWigner result by using 160 beads. For ⟨x̂2x̂2(t)⟩,

the open polymermethod has almost converged to the exact classical
Wigner result using 160 beads.

The FK-LPI results can be seen to essentially agree with the
exact classical Wigner result for the real part of ⟨x̂x̂(t)⟩ and to
be close to it for the imaginary part of ⟨x̂2x̂2(t)⟩. For the other
cases, FK-LPI is further off. For the real part of ⟨x̂2x̂2(t)⟩, FK-LPI
is substantially off compared to exact classical Wigner. The FK-LPI
results do, however, stay almost equal to the exact quantum
mechanical results for as long as the exact classical Wigner
results do.

The classical Wigner method gives significantly better results
than RPMD for the real part of ⟨x̂x̂(t)⟩ and the imaginary part of
⟨x̂2x̂2(t)⟩, and slightly better results for the real part of ⟨x̂2x̂2(t)⟩.
For the imaginary part of ⟨x̂x̂(t)⟩, the classical Wigner method and
RPMD perform equally well.

D. Quartic potential in harmonic bath βh̵ω = 8
In Figs. 8 and 9, the position and position-squared autocor-

relation functions are shown for the quartic oscillator with a har-
monic bath of 3 degrees of freedom. The numerically exact quan-
tum mechanical comparison is only available for time t = 0 due
to the method used for its calculation (see Sec. IV E). It can,
in these figures, be seen that the new method converges from
classical mechanics toward quantum mechanics at t = 0 as the
number of beads is increased. The possible exception is for low

FIG. 9. The position-squared autocorrelation function for a quartic potential with a harmonic bath with 3 degrees of freedom (βh̵ω = 8). Comparison between different numbers
of beads for the two versions of OPCW and numerically exact solutions for classical mechanics (CM), at all times and quantum mechanics (QM), at time t = 0. The number of
Monte Carlo steps used for each number of beads, N, is 1 × 109 for N = 5 and N = 10, 16 × 109 for N = 20, and 64 × 109 for N = 40. The outer lines of each type show the
standard deviations for the results. If the standard deviation is small enough, the outer lines are not visible. The value in parentheses gives the number of Monte Carlo steps.
(a) Real part of ⟨x̂2x̂2(t)⟩y1 , (b) imaginary part of ⟨x̂2x̂2(t)⟩y1 , (c) real part of ⟨x̂2x̂2(t)⟩x1 , and (d) imaginary part of ⟨x̂2x̂2(t)⟩x1 .
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numbers of beads for y1, as forN = 5 Re⟨x̂x̂(t)⟩y1 is further from the
quantum mechanical result than classical mechanics is.

In Figs. 10–12, the position and position-squared autocorrela-
tion functions are shown for the quartic oscillator with a harmonic
bath of 3, 6, and 9 degrees of freedom, respectively.

In Figs. 8, 9, 11, and 12, it can be seen that the x1-results are
significantly closer to quantummechanics at t = 0 than the y1-results
are.

For the case with 3 degrees of freedom in the bath, results are
shown that are not entirely converged with respect to the number of
Monte Carlo steps used, and it is visible that the x1-version of the
method converges better with respect to the number of Monte Carlo
steps than the y1-version.

Overall, the calculations for the larger numbers of degrees of
freedom are fairly computationally intensive and have, therefore, not
been numerically converged with respect to the number of beads.
However, it is shown in Figs. 10–12 that when the harmonic bath
is sampled from a classical distribution, much larger numbers of
beads can be used in the quartic oscillator degree of freedom and
the number of Monte Carlo steps used is still the same or smaller
than used for a one-dimensional quartic potential with a lower num-
ber of beads. Making the bath classical, thus, improves the overall
convergence drastically. The classical bath calculations are so well
converged with regard to both numbers of beads and Monte Carlo
steps that the difference between y1 and x1 is almost unnoticeable
for the correlation functions shown here, and therefore, only the
x1-version is shown. The difference in numerical performance

between the full OPCW calculations and the calculations with clas-
sical bath can be seen to increase when the size of the bath is
increased.

At time t = 0, the calculations employing a classical bath give
better values than those using the open polymer for all degrees
of freedom. However, even if the quartic oscillator part of a clas-
sical bath calculation were to be sampled with an infinite num-
ber of beads in the polymer, the classical mechanics of the bath
would still mean that the initial value of the correlation func-
tions would not necessarily be the exact quantum mechanical value.
The correlation functions for t > 0 for the classical bath calcula-
tions are qualitatively similar to but have higher amplitudes than
the full OPCW calculations. This is the behavior that would be
expected from a full OPCW calculation with a larger number of
beads.

For the real part of ⟨x̂2x̂2(t)⟩, the long time value given by the
classical bath calculations is lower than the corresponding result for
the full OPCW calculations, except y1 for 9 degrees of freedom in
the bath. From the full OPCW results for the quartic oscillator with a
harmonic bath with 3 degrees of freedom (Figs. 8 and 9) and the one-
dimensional quartic oscillator (Fig. 2), it can be expected that for the
same number of beads in the open polymer, x1 will be more con-
verged toward exact classical Wigner than y1 will be. For the quartic
oscillator with harmonic baths with 6 and 9 degrees of freedom,
Figs. 11 and 12, the results from calculations with classical baths
are closer to the y1-results than to the x1-results. This indicates that
the long time values of Re⟨x̂2x̂2(t)⟩ may not be very well described

FIG. 10. The position and position-squared autocorrelation functions for a quartic potential with a harmonic bath with 3 degrees of freedom (βh̵ω = 8). Comparison between
the x1-version of OPCW and numerically exact solutions for classical mechanics (CM), FK-LPI, and RPMD, at all times and quantum mechanics (QM), at time t = 0. Results
for the x1-version of OPCW with 320 beads in the quartic oscillator and a classical bath, CB, are also shown. The number of beads used in the y1- and x1-calculations is N =
40, and the number of Monte Carlo steps is 64 × 109. For the calculations with classical bath, the number of Monte Carlo steps used is 16 × 109. The outer lines of each type
show the standard deviations for the results. If the standard deviation is small enough, the outer lines are not visible. (a) Real part of ⟨x̂x̂(t)⟩, (b) imaginary part of ⟨x̂x̂(t)⟩,
(c) real part of ⟨x̂2x̂2(t)⟩, and (d) imaginary part of ⟨x̂2x̂2(t)⟩.

J. Chem. Phys. 152, 094111 (2020); doi: 10.1063/1.5126183 152, 094111-11

Published under license by AIP Publishing

III



III

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 11. The position and position-squared autocorrelation functions for a quartic potential with a harmonic bath with 6 degrees of freedom (βh̵ω = 8). Comparison between
the two versions of OPCW and numerically exact solutions for classical mechanics (CM), FK-LPI, and RPMD, at all times and quantum mechanics (QM), at time t = 0. Results
for the x1-version of OPCW with 320 beads in the quartic oscillator and a classical bath, CB, are also shown. The number of beads used in the y1- and x1-calculations is N =
10, and the number of Monte Carlo steps is 64 × 109. For the calculations with classical bath, the number of Monte Carlo steps used is 16 × 109. The outer lines of each type
show the standard deviations for the results. If the standard deviation is small enough, the outer lines are not visible. (a) Real part of ⟨x̂x̂(t)⟩, (b) imaginary part of ⟨x̂x̂(t)⟩,
(c) real part of ⟨x̂2x̂2(t)⟩, and (d) imaginary part of ⟨x̂2x̂2(t)⟩.

with the classical bath. This was to be expected as the zero point
energy leakage from the system into the bath should be consider-
able in this type of calculation, and the correlation function, even at
long times, is highly dependent on the magnitude of the oscillation
in the system degree of freedom.

It can be seen in Figs. 10–12 that the results from the classical
bath calculations and the FK-LPI results follow each other closely for
the first 2–4 ω−1. At t = 0, the classical bath results are as good as or
slightly worse than the FK-LPI results.

In Figs. 10(a), 10(b), 11(a), 11(b), 12(a), and 12(b), it can be seen
that the classical Wigner method with a classical bath gives slightly
worse than or equally good results as RPMD does for ⟨x̂x̂(t)⟩ at
t = 0. Looking at Figs. 10(c), 10(d), 11(c), 11(d), 12(c), and 12(d),
it can be seen that the classical Wigner method with a classical bath
gives slightly better results than RPMD does for ⟨x̂2x̂2(t)⟩ at t = 0.
RPMD, however, goes to higher values at long times for the real part
of ⟨x̂2x̂2(t)⟩, and this may be a better value as it follows ⟨x̂2x̂2(t)⟩x1 ,
which should be better converged than ⟨x̂2x̂2(t)⟩y1 .

E. Summary of results
For all the cases studied here, the results of the new method

converge toward exact quantummechanics at time t = 0 as the num-
ber of beads increases. Additionally, for all cases where the exact clas-
sical Wigner result is available, the new method converges toward
this result as the number of beads increases. These convergences are
what should be observed according to the derivation of the method.

Some of the results for the one-dimensional quartic oscillator and
double well have converged essentially to within the thickness of the
line of the exact classical Wigner result.

For the correlation functions where a comparison has been
made, the x1-version of the new method converges faster than the
y1-version with respect to the number of beads used. The x1-version
also converges better than the y1-version with respect to the num-
ber of Monte Carlo steps for these cases. Note also that for almost
every graph shown, it can be seen that for a larger number of
beads, more Monte Carlo steps have been used to converge the
results.

The results for the multidimensional systems using many beads
in the polymer for sampling the initial distribution of the quartic
oscillator degree of freedom and classical mechanics to sample the
initial distribution of the bath show a significant improvement in
convergence toward the exact result at t = 0 compared to the results
of using fewer beads for the full OPCW quartic oscillator with har-
monic bath. The long time values of Re⟨x̂2x̂2(t)⟩ may, however, be
significantly different from the exact classical Wigner result. This is
likely to be a result of increased zero point energy leakage when a
classical bath is used.

If looking at the one-dimensional andmultidimensional poten-
tials, using a classical bath for the multidimensional cases, the results
from the open polymer sampled classical Wigner method is about
as good as the results from FK-LPI. For the double well potential,
the newmethod clearly reproduces the exact classical Wigner results
better than FK-LPI, but the new method does not come closer to
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FIG. 12. The position and position-squared autocorrelation functions for a quartic potential with a harmonic bath with 9 degrees of freedom (βh̵ω = 8). Comparison between
the two versions of OPCW and numerically exact solutions for classical mechanics (CM), FK-LPI, and RPMD, at all times and quantum mechanics (QM), at time t = 0. Results
for the x1-version of OPCW with 320 beads in the quartic oscillator and a classical bath, CB, are also shown. The number of beads used in the y1- and x1-calculations is N =
5, and the number of Monte Carlo steps is 16 × 109. For the calculations with classical bath, the number of Monte Carlo steps used is 16 × 109. The outer lines of each type
show the standard deviations for the results. If the standard deviation is small enough, the outer lines are not visible. (a) Real part of ⟨x̂x̂(t)⟩, (b) imaginary part of ⟨x̂x̂(t)⟩,
(c) real part of ⟨x̂2x̂2(t)⟩, and (d) imaginary part of ⟨x̂2x̂2(t)⟩.

exact quantummechanics than FK-LPI. Comparing Figs. 3, 5, and 7,
it can be seen that the OPCWmethod works essentially equally well
independent of the potential involved, while in the case of FK-LPI, it
works worse for the double well, which contains a region of negative
curvature.

In comparison to RPMD, it can be seen that for the one-
dimensional quartic oscillator, the classical Wigner method and
thereby also the OPCW method perform worse than, or in a single
case equally well as, RPMD for autocorrelation functions of linear
operators. For the autocorrelation function ⟨x̂2x̂2(t)⟩, the classical
Wigner method gives better results than RPMD at the lower temper-
ature employed here and possibly worse results at the higher temper-
ature. For the one-dimensional double well potential, the classical
Wigner method is seen to give better results than RPMD for both
⟨x̂x̂(t)⟩ and ⟨x̂2x̂2(t)⟩. Comparing classical Wigner with a classical
bath to RPMD for the multidimensional systems, the classical bath
calculations tend to be as good as or better than RPMD, apart from
the long time values of ⟨x̂2x̂2(t)⟩.

VI. CONCLUSION
In this article, two versions of a new way of sampling the ini-

tial quantum distribution used in the classical Wigner method for
the calculation of correlation functions have been presented and
tested for the one-dimensional quartic oscillator and double well

and a quartic oscillator with linearly coupled harmonic baths. The
name used for the new method is Open Polymer Classical Wigner
(OPCW).

The newmethod will always converge toward the exact classical
Wigner result as the number of beads in the open polymer neck-
lace goes to infinity. For the y1-version of the new method and the
correlation functions and potentials tested here, this convergence
is mostly slow. For some cases, the x1-version of the new method
converges considerably faster.

Compared to FK-LPI, the open polymer sampling for the clas-
sical Wigner method can give better, worse, or equal results. The
double well potential is a case where the two methods give notice-
ably different results, with the ones from OPCW being closer to
exact classical Wigner. Both methods, however, follow exact quan-
tum mechanics equally well for the double well potential. For a well
behaved molecular potential, OPCW will always converge toward
the exact classical Wigner result as the calculation gets more refined.
A harmonic approximation method such as FK-LPI will not nec-
essarily converge toward the exact classical Wigner result for all
potential energy surfaces.

The way forward from this study would be to test the method
developed here on other potentials and correlation functions. One
set of correlation functions that are of chemical interest and that
possibly could be calculated by the presented method are the ones of
Miller, Schwartz, and Tromp43,44 that can be used to acquire reaction
rate constants. Potential energy surfaces in reaction rate calculations
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tend to have barriers, such as the one in the double well tested here,
and this is where the new method may be an improvement over
methods such as FK-LPI, since OPCW for the double well approxi-
mates the exact classicalWigner result noticeably better than FK-LPI
does.

Systems with many degrees of freedom are seen to be compu-
tationally demanding. Describing the harmonic baths studied with
classical mechanics improves the situation considerably. It would
thus be of interest to try this out on other multidimensional sys-
tems. This should be particularly useful when the coupling between
the system and the bath is weak. It would also be of interest to
try a less approximate simplification for the less quantum mechan-
ical degrees of freedom in a system, such as an open polymer
equivalent to the ring polymer contraction of Markland and
Manolopoulos.45 Another approach of interest for handling the
more computationally demanding systems would be to try to
enhance convergence using the techniques recently introduced by
Bose and Makri.12
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APPENDIX A: ANALYTIC FORMS OF A ′(y 1 , x 2 − x 1 )
FOR ( Â)W[y1 p1 ] BEING A POLYNOMIAL IN p 1

If (Â)W[y1, p1] is a polynomial with respect to p1, i.e.,

(Â)W[y1, p1] = knp
n
1 + kn−1pn−11 . . . k2p21 + k1p1 + k0, (A1)

where kn, . . ., k0 are constants, then the solution to Eq. (11) is
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∞
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where Hj(χ) is the Hermite polynomial defined by

Hj(χ) = (−1)je χ
2 d j

dχj
e−χ

2
, (A3)

where χ is a dummy variable.

APPENDIX B: KUBO TRANSFORM
One possible form of the Kubo transform24 of the open polymer expression presented in this article is

⟨ÂB̂(t)⟩Kubo =
1
Z
Tr{ 1

β ∫
β

0
dλ e−λĤÂ e−(β−λ)Ĥ B̂(t)}

≈ 1
Z
(mN
2πβ
)

N
2
√

β
2πmN

h̵−N
⎧⎪⎪⎨⎪⎪⎩

N
∏
j=1
∫
∞

−∞
dxj
⎫⎪⎪⎬⎪⎪⎭
∫
∞

−∞
dpN e−

i
h̵ pN(x1−xN)

× e
− β

N (
p2N
2m +∑N

j=1 V(yj)+ mN2
2h̵2β2 ∑

N−1
j=1 (xj+1−xj)2)(B̂)W[x(yN , pN , t), p(yN , pN , t)]

× 1
N
(1
2
A′(y1, x2 − x1) +

N−2
∑
k=1

A′(yk+1, xk+2 − xk+1) + 3
2
A′(yN−1, xN − xN−1)). (B1)
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It can be noted that the double counting of A′(yN−1, xN − xN−1) is due to the approximation (Ω̂ e−
β
N Ĥ)

W
[x, p] ≈ (Ω̂)W[x, p]( e−

β
N Ĥ)

W
[x, p]

≈ ( e− β
N ĤΩ̂)

W
[x, p]. This double counting leads to an asymmetry that means that the resulting correlation function may have an imaginary

part. If using the Kubo transform, this may be an unwanted property, so the mean of the above expression and its complex conjugate may be
used instead,

⟨ÂB̂(t)⟩Kubo ≈
1
Z
(mN
2πβ
)

N
2
√

β
2πmN

h̵−N
⎧⎪⎪⎨⎪⎪⎩

N
∏
j=1
∫
∞

−∞
dxj
⎫⎪⎪⎬⎪⎪⎭
∫
∞

−∞
dpN e

− β
N (

p2N
2m +∑N

j=1 V(yj)+ mN2
2h̵2β2 ∑

N−1
j=1 (xj+1−xj)2)(B̂)W[x(yN , pN , t), p(yN , pN , t)]

× 1
2N
( e− i

h̵ pN(x1−xN)(1
2
A′(y1, x2 − x1) +

N−1
∑
k=2

A′(yk, xk+1 − xk) + 3
2
A′(yN−1, xN − xN−1))

+ e
i
h̵ pN(x1−xN)(1

2
A′(yN−1, xN−1 − xN) +

N−2
∑
k=1

A′(yk, xk − xk+1) + 3
2
A′(y1, x1 − x2))), (B2)

which should not give an imaginary part. If A′(yj, xj+1 − xj) is either an even or odd function with regard to xj+1 − xj, the expression can be
simplified to

⟨ÂB̂(t)⟩Kubo, even ≈
1
Z
(mN
2πβ
)

N
2
√

β
2πmN

h̵−N
⎧⎪⎪⎨⎪⎪⎩

N
∏
j=1
∫
∞

−∞
dxj
⎫⎪⎪⎬⎪⎪⎭
∫
∞

−∞
dpN e

− β
N (

p2N
2m +∑N

j=1 V(yj)+ mN2
2h̵2β2 ∑

N−1
j=1 (xj+1−xj)2)(B̂)W[x(yN , pN , t), p(yN , pN , t)]

× 1
N
(cos(pN(x1 − xN)

h̵
)(1

2
A′(y1, x2 − x1) +

N−2
∑
k=2

A′(yk, xk+1 − xk) + 1
2
A′(yN−1, xN − xN−1))

+ e
i
h̵ pN(x1−xN)A′(y1, x2 − x1) + e−

i
h̵ pN(x1−xN)A′(yN−1, xN − xN−1)) (B3)

for even A′ and

⟨ÂB̂(t)⟩Kubo, odd ≈
1
Z
(mN
2πβ
)

N
2
√

β
2πmN

h̵−N
⎧⎪⎪⎨⎪⎪⎩

N
∏
j=1
∫
∞

−∞
dxj
⎫⎪⎪⎬⎪⎪⎭
∫
∞

−∞
dpN e

− β
N (

p2N
2m +∑N

j=1 V(yj)+ mN2
2h̵2β2 ∑

N−1
j=1 (xj+1−xj)2)

×(B̂)W[x(yN , pN , t), p(yN , pN , t)]

× 1
N
(−i sin(pN(x1 − xN)

h̵
)(1

2
A′(y1, x2 − x1) +

N−2
∑
k=2

A′(yk, xk+1 − xk) + 1
2
A′(yN−1, xN − xN−1))

− e
i
h̵ pN(x1−xN)A′(y1, x2 − x1) + e−

i
h̵ pN(x1−xN)A′(yN−1, xN − xN−1)) (B4)

for odd A′.

APPENDIX C: RESULTS FOR HARMONIC
POTENTIAL βh̵ω = 8

Apart from the calculations shown in themain body of this arti-
cle, the four autocorrelation functions position, position-squared,
momentum, and momentum-squared were also calculated for a
one-dimensional harmonic oscillator.

The harmonic potential was taken as

Vharmonic(x) = 1
2
mω2x2, (C1)

where ω is the angular frequency of the harmonic oscillation.

TheMonte Carlo procedure andmolecular dynamics were con-
ducted as for the other systems. The time step used in the molecular
dynamics was 0.050ω−1.

In order to have exact values to compare our calculated
results against, anaytical classical and quantum mechanical cor-
relation functions were used. These functions are collected in
Appendix D.

As shown in Fig. 13 for both versions of the new method,
the real and imaginary parts of the position autocorrelation func-
tion converge from exact classical mechanics toward exact quan-
tum mechanics as the number of beads increases. ⟨x̂x̂(t)⟩x1 con-
verges toward quantum mechanics, with respect to the number of
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FIG. 13. The position autocorrelation
function for a harmonic potential (βh̵ω
= 8). Comparison between different num-
bers of beads for the two versions of
OPCW and exact solutions for classical
mechanics (CM) and quantum mechan-
ics (QM). The number of Monte Carlo
steps used for each number of beads,
N, is 1 × 109 for N = 5, N = 10, and
N = 40, and 64 × 109 for N = 160.
The standard deviations are in all cases
small enough not to be visible. (a) Real
part of ⟨x̂x̂(t)⟩y1 , (b) imaginary part of
⟨x̂x̂(t)⟩y1 , (c) real part of ⟨x̂x̂(t)⟩x1 ,
and (d) imaginary part of ⟨x̂x̂(t)⟩x1 .

beads, noticeably faster than ⟨x̂x̂(t)⟩y1 . This ordering of speed of
convergence with regard to the number of beads,N, is what could be
expected since ⟨x̂x̂(t)⟩x1 requires the positions of neighboring beads
to converge to the same value, while ⟨x̂x̂(t)⟩y1 also requires the posi-
tions of next neighboring beads to converge to the same value (see
Appendix E 1).

In Fig. 14, the position-squared autocorrelation function can
be seen for both versions of the method studied. Both versions
of the method, just as for the previous correlation function, con-
verge from classical toward quantum mechanics as the number

of beads increases. Similar to the previous correlation function,
⟨x̂2x̂2(t)⟩x1 converges faster with respect to the number of beads
than ⟨x̂2x̂2(t)⟩y1 , as could be expected (see Appendix E 2).

In Fig. 15, the position and position-squared autocorrelation
functions from the two versions of the open polymer method can
be compared to each other, exact classical mechanics, exact quan-
tum mechanics, and RPMD. FK-LPI is always exact for a harmonic
potential, so it is equivalent to exact quantum mechanics. As RPMD
is exact for correlation functions with at least one linear operator
in a harmonic potential,3 the exact RPMD result is also equivalent

FIG. 14. The position-squared autocor-
relation function for a harmonic potential
(βh̵ω = 8). Comparison between differ-
ent numbers of beads for the two ver-
sions of OPCW and exact solutions for
classical mechanics (CM) and quantum
mechanics (QM). The number of Monte
Carlo steps used for each number of
beads, N, is 1× 109 for N = 5 and N = 10,
4 × 109 for N = 40, and 64 × 109

for N = 160. The outer lines of each
type show the standard deviations for the
results. If the standard deviation is small
enough, the outer lines are not visible.
(a) Real part of ⟨x̂2x̂2(t)⟩y1 , (b) imagi-

nary part of ⟨x̂2x̂2(t)⟩y1 , (c) real part of

⟨x̂2x̂2(t)⟩x1 , and (d) imaginary part of

⟨x̂2x̂2(t)⟩x1 .
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FIG. 15. The position and position-
squared autocorrelation functions for a
harmonic potential (βh̵ω = 8). Compar-
ison between the two versions of OPCW
and numerically exact solutions for clas-
sical mechanics (CM), classical Wigner
(CW), RPMD, and quantum mechanics
(QM). The number of beads used in
the y1- and x1-calculations is N = 160,
and the number of Monte Carlo steps is
64 × 109. The outer lines of each type
show the standard deviations for the
results. If the standard deviation is small
enough, the outer lines are not visi-
ble. (a) Real part of ⟨x̂x̂(t)⟩, (b) imag-
inary part of ⟨x̂x̂(t)⟩, (c) real part of
⟨x̂2x̂2(t)⟩, and (d) imaginary part of
⟨x̂2x̂2(t)⟩.

to exact quantum mechanics for ⟨x̂x̂(t)⟩. For ⟨x̂2x̂2(t)⟩, it can be
seen that the classical Wigner method gives better results than
RPMD. This is to be expected as the classical Wigner method is
exact for any correlation function for a harmonic potential, while

RPMD is not exact when both operators in the correlation function
are non-linear.

In Fig. 16, the momentum and momentum-squared autocor-
relation functions are shown. For these correlation functions, the

FIG. 16. The momentum and momentum-squared autocorrelation functions for a harmonic potential (βh̵ω = 8). Comparison between different numbers of beads for OPCW
[with ⟨p̂p̂(t)⟩y1 and ⟨p̂2p̂2(t)⟩y1 being identical to ⟨p̂p̂(t)⟩x1 and ⟨p̂2p̂2(t)⟩x1 , respectively] and exact solutions for classical mechanics (CM) and quantum mechanics

(QM). The number of Monte Carlo steps used for each number of beads, N, for the calculation of ⟨p̂p̂(t)⟩y1 ,x1 is 1 × 109 for N = 5 and N = 10, 4 × 109 for N = 40, and

64 × 109 for N = 160. The number of Monte Carlo steps used for each number of beads for the calculation of ⟨p̂2p̂2(t)⟩y1 ,x1 is 1 × 109 for N = 5, 4 × 109 for N = 20, and

128 × 109 for N = 80. The outer lines of each type show the standard deviations for the results. If the standard deviation is small enough, the outer lines are not visible. (a)
Real part of ⟨p̂p̂(t)⟩y1 ,x1 , (b) imaginary part of ⟨p̂p̂(t)⟩y1 ,x1 , (c) real part of ⟨p̂2p̂2(t)⟩y1 ,x1 , and (d) imaginary part of ⟨p̂2p̂2(t)⟩y1 ,x1 .

J. Chem. Phys. 152, 094111 (2020); doi: 10.1063/1.5126183 152, 094111-17

Published under license by AIP Publishing

III



III

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

two versions of the method are identical. ⟨p̂p̂(t)⟩y1,x1 converges in a
similar way as ⟨x̂x̂(t)⟩y1 does with respect to the number of beads.
⟨p̂2p̂2(t)⟩y1,x1 , as all the other correlation functions, converges with
respect to the number of beads from classical toward quantum
mechanics. In this work, ⟨p̂2p̂2(t)⟩y1,x1 is the most difficult corre-
lation function to converge with respect to the number of Monte
Carlo steps. That is why no results from calculations with N = 160
are shown, and why the standard deviations are visible in the results
for N = 80.

APPENDIX D: ANALYTIC CORRELATION FUNCTIONS
FOR THE HARMONIC OSCILLATOR

For the harmonic oscillator described in Appendix C, correla-
tion functions can be calculated analytically. ⟨x̂x̂(t)⟩ and ⟨p̂p̂(t)⟩ are
straightforward to derive. ⟨x̂2x̂2(t)⟩ and ⟨p̂2p̂2(t)⟩ can be acquired
from the simpler correlation functions by using the cumulant expan-
sion of Cao and Voth.46 The correlation functions are, for classical
mechanics,

⟨x̂x̂(t)⟩ = 1
βmω2 cos(ωt), (D1)

⟨x̂2x̂2(t)⟩ = 1
β2m2ω4 (1 + 2 cos2(ωt)), (D2)

⟨p̂p̂(t)⟩ = m
β
cos(ωt), (D3)

⟨p̂2p̂2(t)⟩ = m2

β2
(1 + 2 cos2(ωt)), (D4)

and, for quantum mechanics,

⟨x̂x̂(t)⟩ = h̵
2mω

( eβh̵ω

eβh̵ω − 1 e−iωt + 1
eβh̵ω − 1 eiωt), (D5)

⟨x̂2x̂2(t)⟩ = h̵2

4m2ω2
⎛
⎝(

eβh̵ω + 1
eβh̵ω − 1)

2

+ 2( eβh̵ω

eβh̵ω − 1 e−iωt + 1
eβh̵ω − 1 eiωt)

2⎞
⎠, (D6)

⟨p̂p̂(t)⟩ = mh̵ω
2
( eβh̵ω

eβh̵ω − 1 e−iωt + 1
eβh̵ω − 1 eiωt), (D7)

⟨p̂2p̂2(t)⟩ = m2h̵2ω2

4
⎛
⎝(

eβh̵ω + 1
eβh̵ω − 1)

2

+ 2( eβh̵ω

eβh̵ω − 1 e−iωt + 1
eβh̵ω − 1 eiωt)

2⎞
⎠. (D8)

APPENDIX E: COMPARISON OF THE REAL
AND IMAGINARY PARTS OF CORRELATION
FUNCTIONS FOR THE HARMONIC POTENTIAL

For the harmonic oscillator, the analytical equations of
motion can be put into (B̂)W[x(yN , pN , t), p(yN , pN , t)] and

(B̂)W[x(xN , pN , t), p(xN , pN , t)] in Eqs. (12) and (13). This appendix
shows how some autocorrelation functions behave for the two
versions of the method presented in this paper.

1 . Position autocorrelation function, ⟨ x̂x̂( t) ⟩
For the case of ⟨x̂x̂(t)⟩, entering the analytical equations of

motion into Eqs. (12) and (13) leads to

⟨x̂x̂(t)⟩y1 =
1
Z
(mN
2πβ
)

N
2
√

β
2πmN

h̵−N
⎧⎪⎪⎨⎪⎪⎩

N
∏
j=1
∫
∞

−∞
dxj
⎫⎪⎪⎬⎪⎪⎭

× ∫
∞

−∞
dpN e−

i
h̵ pN(x1−xN)

× e
− β

N (
p2N
2m +∑N

j=1 V(yj)+ mN2
2h̵2β2 ∑

N−1
j=1 (xj+1−xj)2)

× y1(yN cos(ωt) + pN
mω

sin(ωt)), (E1)

⟨x̂x̂(t)⟩x1 =
1
Z
(mN
2πβ
)

N
2
√

β
2πmN

h̵−N
⎧⎪⎪⎨⎪⎪⎩

N
∏
j=1
∫
∞

−∞
dxj
⎫⎪⎪⎬⎪⎪⎭

× ∫
∞

−∞
dpN e−

i
h̵ pN(x1−xN)

× e−
β
N (

p2N
2m +∑N

j=1 V(yj)+ mN2
2h̵2β2 ∑

N−1
j=1 (xj+1−xj)2)

× x1(yN cos(ωt) + pN
mω

sin(ωt)). (E2)

To simplify, pN can be integrated out and all constants that are
identical in both cases can be collected into a single constant, C,

⟨x̂x̂(t)⟩y1 = C
⎧⎪⎪⎨⎪⎪⎩

N
∏
j=1
∫
∞

−∞
dxj
⎫⎪⎪⎬⎪⎪⎭
e−

β
N (∑N

j=1 V(yj)+ mN2
2h̵2β2 ∑

N
j=1(xj+1−xj)2)

× y1(yN cos(ωt) − iN
βh̵ω
(x1 − xN) sin(ωt)), (E3)

⟨x̂x̂(t)⟩x1 = C
⎧⎪⎪⎨⎪⎪⎩

N
∏
j=1
∫
∞

−∞
dxj
⎫⎪⎪⎬⎪⎪⎭
e−

β
N (∑N

j=1 V(yj)+ mN2
2h̵2β2 ∑

N
j=1(xj+1−xj)2)

× x1(yN cos(ωt) − iN
βh̵ω
(x1 − xN) sin(ωt)). (E4)

These correlation functions are Boltzmann-weighted averages,
which can be simplified to

⟨x̂x̂(t)⟩y1 = ⟨y1(yN cos(ωt) − iN
βh̵ω
(x1 − xN) sin(ωt))⟩, (E5)

⟨x̂x̂(t)⟩x1 = ⟨x1(yN cos(ωt) − iN
βh̵ω
(x1 − xN) sin(ωt))⟩. (E6)

Now, the correlation functions can be separated into the real
parts,

Re⟨x̂x̂(t)⟩y1 = cos(ωt)⟨y1yN⟩

= cos(ωt)
4
(⟨x21⟩ + ⟨x1xN⟩ + ⟨x1x2⟩ + ⟨x2xN⟩)

= cos(ωt)
4
(⟨x21⟩ + 2⟨x1xN⟩ + ⟨x2xN⟩), (E7)
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Re⟨x̂x̂(t)⟩x1 = cos(ωt)⟨x1yN⟩

= cos(ωt)
2
(⟨x21⟩ + ⟨x1xN⟩), (E8)

and the imaginary parts,

Im⟨x̂x̂(t)⟩y1 = −
N
βh̵ω

sin(ωt)⟨y1(x1 − xN)⟩

= − N
2βh̵ω

sin(ωt)(⟨x21⟩ + ⟨x1x2⟩ − ⟨x1xN⟩ − ⟨x2xN⟩)

= − N
2βh̵ω

sin(ωt)(⟨x21⟩ − ⟨x2xN⟩), (E9)

Im⟨x̂x̂(t)⟩x1 = −
N
βh̵ω

sin(ωt)⟨x1(x1 − xN)⟩

= − N
βh̵ω

sin(ωt)(⟨x21⟩ − ⟨x1xN⟩), (E10)

where it has been used that all beads are equivalent after the
last momentum was integrated out, so, e.g., ⟨x2N⟩ = ⟨x21⟩ and
⟨x1xN⟩ = ⟨x1x2⟩.

For the real part, ⟨x21⟩ cos(ωt) is the exact quantum mechan-
ics, apart from that the Boltzmann weighting factor in the average
is approximate as long as N is finite. Re⟨x̂x̂(t)⟩x1 consists to a larger
degree of ⟨x21⟩ cos(ωt) than Re⟨x̂x̂(t)⟩y1 does. When N → ∞ and
the distance between beads becomes smaller both ⟨x1xN⟩ and ⟨x2xN⟩
will converge toward ⟨x21⟩. ⟨x2xN⟩ will most likely converge more
slowly than ⟨x1xN⟩ as it depends on next neighboring beads instead
of immediately neighboring beads. This means that Re⟨x̂x̂(t)⟩x1
could be expected to convergence toward exact quantum mechanics
faster than Re⟨x̂x̂(t)⟩y1 with respect to the number of beads. With
the same kind of reasoning, Im⟨x̂x̂(t)⟩x1 could be expected to con-
verge faster with respect to the number of beads than Im⟨x̂x̂(t)⟩y1 ,
since the former depends on ⟨x1xN⟩ and the latter depends
on ⟨x2xN⟩.

2. Comparison of real and imaginary parts
of ⟨ x̂2x̂2( t) ⟩ for the harmonic potential

For ⟨x̂2x̂2(t)⟩, the equivalent of Eqs. (E5) and (E6) is

⟨x̂2x̂2(t)⟩y1 = ⟨y
2
1(y2N cos2(ωt) − iN

βh̵ω
(x1 − xN)yN sin(ωt) cos(ωt) − N2

β2h̵2ω2 (x1 − xN)
2 sin2(ωt) + N

βω2m
sin2(ωt))⟩, (E11)

⟨x̂2x̂2(t)⟩x1 = ⟨x
2
1(y2N cos2(ωt) − iN

βh̵ω
(x1 − xN)yN sin(ωt) cos(ωt) − N2

β2h̵2ω2 (x1 − xN)
2 sin2(ωt) + N

βω2m
sin2(ωt))⟩. (E12)

Separating into real parts

Re⟨x̂2x̂2(t)⟩y1 = ⟨y
2
1y2N cos2(ωt) − y21 N2

β2h̵2ω2 (x1 − xN)
2 sin2(ωt) + y21

N
βω2m

sin2(ωt)⟩

= cos2(ωt)
16

⟨x41 + 2x31x2 + 2x31xN + x21x22 + 4x21x2xN + x21x2N + 2x1x22xN + 2x1x2x2N + x22x2N⟩

− N2 sin2(ωt)
4β2h̵2ω2 ⟨x

4
1 + 2x31x2 − 2x31xN + x21x22 − 4x21x2xN + x21x2N − 2x1x22xN + 2x1x2x2N + x22x2N⟩

+ N sin2(ωt)
4βω2m

⟨x21 + 2x1x2 + x22⟩

= cos2(ωt)
16

(⟨x41⟩ + 4⟨x31xN⟩ + 2⟨x21x2N⟩ + 4⟨x21x2xN⟩ + 4⟨x1x2x2N⟩ + ⟨x22x2N⟩)

− N2 sin2(ωt)
4β2h̵2ω2 (⟨x

4
1⟩ + 2⟨x21x2N⟩ − 4⟨x21x2xN⟩ + ⟨x22x2N⟩) + N sin2(ωt)

2βω2m
(⟨x21⟩ + ⟨x1xN⟩), (E13)

Re⟨x̂2x̂2(t)⟩x1 = ⟨x
2
1y2N cos2(ωt) − x21 N2

β2h̵2ω2 (x1 − xN)
2 sin2(ωt) + x21

N
βω2m

sin2(ωt)⟩

= cos2(ωt)
4

(⟨x41⟩ + 2⟨x31xN⟩ + ⟨x21x2N⟩) − N2 sin2(ωt)
β2h̵2ω2 (⟨x41⟩ − 2⟨x31xN⟩ + ⟨x21x2N⟩) + N sin2(ωt)

βω2m
⟨x21⟩ (E14)

and imaginary parts
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Im⟨x̂2x̂2(t)⟩y1 = −
N
βh̵ω

sin(ωt) cos(ωt)⟨y21(x1 − xN)yN⟩

= − N
8βh̵ω

sin(ωt) cos(ωt)(⟨x41⟩ + 2⟨x31x2⟩

+ ⟨x21x22⟩ − ⟨x21x2N⟩ − 2⟨x1x2x2N⟩ − ⟨x22x2N⟩)
= − N

8βh̵ω
sin(ωt) cos(ωt)(⟨x41⟩ + 2⟨x31x2⟩

− 2⟨x1x2x2N⟩ − ⟨x22x2N⟩), (E15)

Im⟨x̂2x̂2(t)⟩x1 = −
N
βh̵ω

sin(ωt) cos(ωt)⟨x21(x1 − xN)yN⟩

= − N
2βh̵ω

sin(ωt) cos(ωt)(⟨x41⟩ − ⟨x21x2N⟩). (E16)

From these expressions, it can be seen that ⟨x̂2x̂2(t)⟩x1 for both
the real and imaginary parts is a combination of fewer and less
complex averages than ⟨x̂2x̂2(t)⟩y1 . Less complex in this case means
averages of fewer different positions and of positions closer to each
other. Thus, it can be expected that ⟨x̂2x̂2(t)⟩x1 converges faster with
regard to the number of beads than ⟨x̂2x̂2(t)⟩y1 does.
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Calculation of Reaction Rate Constants From a Classical Wigner Model
Based on a Feynman Path Integral Open Polymer
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Department of Chemistry and Molecular Biology, University of Gothenburg, SE 405 30 Gothenburg,
Sweden

(Dated: 3 May 2020)

The Open Polymer Classical Wigner (OPCW) method [J. Chem. Phys. 152, 094111 (2020)] is applied to a
flux-Heaviside correlation function used to calculate reaction rate constants. The obtained expression is tested
on a parabolic barrier and a symmetric Eckart potential. The OPCW method is shown to converge toward
the exact classical Wigner result. The OPCW method shows some promise for rate constant calculations and
suggestions for future tests are made.

I. INTRODUCTION

Reaction rates are of central importance in chemistry
and methods to calculate reaction rate constants are
therefore of interest. In many cases classical mechanics is
enough to calculate a rate constant, but for light atoms
such as hydrogen or cold low density situations quantum
mechanics can be essential.
Methods to acquire reaction rate constants from

a Wigner distribution include, to some extent, the
transition state theory with quantum partition func-
tions of Wigner1 and Eyring2, the quantum transi-
tion state theory of Pollak and Liao3, and the classical
Wigner method4,5, with alternatives such as FK-LPI6

(Feynman-Kleinert Linearized Path Integral) and LGA-
LSC-IVR7 (Local Gaussian Approximation Linearized
Semi-Classical Initial Value Representation). Other no-
table approximate quantum mechanical methods to cal-
culate reaction rate constants are e.g. instanton reaction
rate theory8–10 and Ring Polymer Molecular Dynamics
(RPMD)11.
This article presents one way to calculate reaction rate

constants with a recent implementation of the classical
Wigner method by the same authors12. Section II is an
introduction to a general formulation of chemical reac-
tion rates, then section III combines this theory with
the OPCW method. Section IV notes some important
corrections to factor in when running the calculations.
Sections V, VI, and VII respectively declare the details
of the computations that have been run, show the results
of these computations, and contain the conclusions that
have been drawn.

II. REACTION RATE CONSTANTS

Miller and coworkers published13,14 three quantum me-
chanical traces that can be used to acquire bimolecular

a)Electronic mail: jens72@chem.gu.se
b)Electronic mail: nyman@chem.gu.se

reaction rate constants. These traces are

Css(t) = Tr
{
e−

β
2 Ĥ h (−x̂) e−

β
2 Ĥ e

iĤt
� h (x̂) e−

iĤt
�
}

(1)

Cfs(t) = Tr
{
e−

β
2 Ĥ F̂ e−

β
2 Ĥ e

iĤt
� h (x̂) e−

iĤt
�
}

(2)

Cff(t) = Tr
{
e−

β
2 Ĥ F̂ e−

β
2 Ĥ e

iĤt
� F̂ e−

iĤt
�
}

(3)

where h(x) is the heaviside function, x̂ is the position op-
erator, β = (kBT )

−1, where kB is Boltzmann’s constant

and T is the absolute temperature, Ĥ is the Hamiltonian
operator of the system, i is the imaginary unit, t is time,
� is the reduced Planck constant, and F̂ is the probabil-
ity density flux operator. These functions can be used to
obtain reaction rate constants, kr, through the relations

krQR = lim
t→∞

d

dt
Css(t) (4)

= lim
t→∞Cfs(t) (5)

=

∫ ∞

0

dt Cff(t) =
1

2

∫ ∞

−∞
dt Cff(t) (6)

where QR is the canonical partition function per unit
volume of the reactants.
It can be noted that the traces presented here have a

symmetrized Boltzmann operator15, i.e. e−
β
2 Ĥ on both

sides of the first operator in each trace. The relations
4-6 are just as valid for the real part of the trace with an
asymmetrically placed Boltzmann operator13. Important
to notice is that these relations are defined for potentials
where the reactants start infinitely far from each other
and the products end up infinitely far from each other.
This requires the potential to be unbound. This restric-
tion applies to the potentials employed in this article.
In the computations presented in this article the trace

used for the calculation of rate constants is Cfs(t).

III. REACTION RATE CALCULATION WITH THE
OPEN POLYMER CLASSICAL WIGNER METHOD

The quantity of interest in this work is the sym-
metrized trace Cfs(t) in equation 2.
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2

In this section expressions for calculating this quantity
with OPCWwill be derived. These derivations will follow
the ones in the original OPCW article12 quite closely, but
will be using the symmetrized Boltzmann operator and
will be specialized for the flux-side trace.
Initially Cfs(t) is written as the integral over position,

x1, of a matrix element.

Cfs(t) =

� ∞

−∞
dx1

�
x1

���e−
β
2 Ĥ F̂ e−

β
2 Ĥ e

iĤt
� h (x̂) e−

iĤt
�
���x1

�

(7)

The Boltzmann operators are each divided into N
2 fac-

tors of e−
β
N Ĥ , where N must be an even number. N − 1

identity operators are inserted between these operators.

Cfs(t) =

⎧
⎨
⎩

N�

j=1

� ∞

−∞
dxj

⎫
⎬
⎭

�
x1

���e−
β
N Ĥ

���x2

��
x2

���e−
β
N Ĥ

���x3

�
. . .

�
xN

2

���e−
β
N Ĥ F̂

���xN
2 +1

�

. . .
�
xN−1

���e−
β
N Ĥ

���xN

��
xN

���e−
β
N Ĥ e

iĤt
� h(x̂) e−

iĤt
�
���x1

�
(8)

This is an imaginary time, −i�β, Feynman path integral16, which can be expressed with Wigner transforms instead
of matrix elements,

Cfs(t) =

⎧
⎨
⎩

N�

j=1

�� ∞

−∞

dxj dpj
2π�

⎫
⎬
⎭ e−

i
�
∑N

j=1 pj(x(j mod N)+1−xj)
�
e−

β
N Ĥ

�
W

�
x1 + x2

2
, p1

� �
e−

β
N Ĥ

�
W

�
x2 + x3

2
, p2

�

. . .
�
e−

β
N Ĥ F̂

�
W

�
xN

2
+ xN

2 +1

2
, pN

2

�
. . .

�
e−

β
N Ĥ

�
W

�
xN−1 + xN

2
, pN−1

�

×
�
e−

β
N Ĥ e

iĤt
� h(x̂) e−

iĤt
�
�
W

�
xN + x1

2
, pN

�
. (9)

In the limit of N → ∞ the Wigner transform of the Boltzmann operator simplifies to the classical Boltzmann
factor. Also the Boltzmann operators can be separated from the flux and Heaviside operators in this limit.

Cfs(t) = lim
N→∞

⎧
⎨
⎩

N�

j=1

�� ∞

−∞

dxj dpj
2π�

⎫
⎬
⎭ e−

i
�
∑N

j=1 pj(x(j mod N)+1−xj) e−
β
N

∑N
j=1 H(yj ,pj)

�
F̂
�
W

�
yN

2
, pN

2

�

×
�
e

iĤt
� h(x̂) e−

iĤt
�
�
W

[yN , pN ] (10)

where yj =
xj+x(j mod N)+1

2 and H (yj, pj) is the classical Hamiltonian. For a V (yj) that is independent of momentum

all momenta except pN
2
and pN can be integrated out analytically as done in the original derivation of OPCW12.

Cfs(t) = lim
N→∞

�
mN

2πβ

�N
2 β

2πmN
�−2N

⎧
⎨
⎩

N�

j=1

� ∞

−∞
dxj

⎫
⎬
⎭

�� ∞

−∞
dpN

2
dpN e−

β
N

∑N
j=1 V (yj)

× e
− mN

2�2β

(∑N
2

−1

j=1 (xj+1−xj)
2+

∑N−1

j=N
2

+1
(xj+1−xj)

2

)

e
− i

�pN
2

(
xN

2
+1

−xN
2

)

e−
β
N

p2N
2

2m

�
F̂
�
W

�
yN

2
, pN

2

�

× e−
i
�pN (x1−xN ) e−

β
N

p2N
2m

�
e

iĤt
� B̂ e−

iĤt
�
�
W

[yN , pN ] (11)

For the flux operator F̂ = 1
2m (δ(x̂)p̂+ p̂δ(x̂)) the Wigner transform is

�
F̂
�
W

[x, p] =
p

m
δ(x). (12)

IV



IV

3

Using the momentum integrals of appendix A in our pre-

vious article12 a quantity F �
�
yN

2
, xN

2 +1 − xN
2

�
can be

defined as

F �
�
yN

2
, xN

2 +1 − xN
2

�
=

�∞
−∞ dpN

2

�
F̂
�
W

�
yN

2
, pN

2

�
e−

β
N

p2N
2

2m e
− i

�pN
2

(
xN

2
+1

−xN
2

)

�∞
−∞ dpN

2
e−

β
N

p2
N
2

2m e
− i

�pN
2

(
xN

2
+1

−xN
2

)

=

�∞
−∞ dpN

2

pN
2

m δ
�
yN

2

�
e−

β
N

p2N
2

2m e
− i

�pN
2

(
xN

2
+1

−xN
2

)

�
2πmN

β e
− β

N

mN2

(
xN

2
+1

−xN
2

)2

2�2β2

= − iN

�β

�
xN

2 +1 − xN
2

�
δ
�
yN

2

�
. (13)

This can be put into equation 11, giving

Cfs(t) = lim
N→∞

�
mN

2πβ

�N
2

�
β

2πmN
�−N

⎧
⎨
⎩

N�

j=1

� ∞

−∞
dxj

⎫
⎬
⎭

� ∞

−∞
dpN e−

β
N

∑N
j=1 V (yj)

× e
− mN

2�2β

∑N−1
j=1 (xj+1−xj)

2 iN

�β

�
xN

2
− xN

2 +1

�
δ
�
yN

2

�

× e−
i
�pN (x1−xN ) e−

β
N

p2N
2m

�
e

iĤt
� h(x̂) e−

iĤt
�
�
W

[yN , pN ] . (14)

Applying the classical Wigner approximation,

�
e

iĤt
� h(x̂) e−

iĤt
�
�
W

[yN , pN ] ≈ (h(x̂))W [x (yN , pN , t) , p (yN , pN , t)] = h (x (yN , pN , t)) , (15)

and assuming finite N results in

Cfs,y(t) ≈
�
mN

2πβ

�N
2

�
β

2πmN
�−N

⎧
⎨
⎩

N�

j=1

� ∞

−∞
dxj

⎫
⎬
⎭

� ∞

−∞
dpN e−

i
�pN (x1−xN )

× e
− β

N

(
p2N
2m +

∑N
j=1 V (yj)+

mN2

2�2β2

∑N−1
j=1 (xj+1−xj)

2

)
iN

�β

�
xN

2
− xN

2 +1

�
δ
�
yN

2

�
h (x (yN , pN , t)) , (16)

which is the expression corresponding to the y1-version
of OPCW for the flux-Heaviside trace. Due to the sym-
metrization of the Boltzmann operator, yN

2
rather than

y1 is used. This trace will be called Cfs,y(t).

To get an expression corresponding to the x1-version
of OPCW we start over from equation 8. There the x̂-
dependent parts of F̂ has to operate to the right in the
matrix element before rewriting as Wigner transforms.

To be able to operate to the right, the flux operator
has to be rearranged into a form where all x̂-dependence
is to the right of all p̂-dependence. Using that p̂ = −i� d

dx
this can be achieved as

F̂ =
1

2m
(δ(x̂)p̂+ p̂δ(x̂)) =

1

2m
([δ(x̂), p̂] + p̂δ(x̂) + p̂δ(x̂))

=
1

2m

�
−i�

�
δ(x̂)

d

dx
− d

dx
δ(x̂)

�
+ 2p̂δ(x̂)

�

=
1

2m

�
−i�

�
δ(x̂)

d

dx
− dδ(x̂)

dx
− δ(x̂)

d

dx

�
+ 2p̂δ(x̂)

�

=
1

2m

�
i�

dδ(x̂)

dx
+ 2p̂δ(x̂)

�
, (17)

where the square brackets denote a commutator. Using
this new form of the flux operator and operating x̂ to the
right we acquire
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Cfs(t) =

⎧
⎨
⎩

N�

j=1

� ∞

−∞
dxj

⎫
⎬
⎭

�
x1

���e−
β
N Ĥ

���x2

��
x2

���e−
β
N Ĥ

���x3

�
. . .

⎛
⎝
�
xN

2

���e−
β
N Ĥ p̂

���xN
2 +1

� 1

m
δ
�
xN

2 +1

�

+
�
xN

2

���e−
β
N Ĥ

���xN
2 +1

� i�
2m

dδ
�
xN

2 +1

�

dxN
2 +1

⎞
⎠

. . .
�
xN−1

���e−
β
N Ĥ

���xN

��
xN

���e−
β
N Ĥ e

iĤt
� h(x̂) e−

iĤt
�
���x1

�
. (18)

Rewriting as Wigner transforms, taking the limit where the Wigner transform of the Boltzmann operator is the
classical Boltzmann factor, and assuming that V (yj) is independent of momentum, a new way to write equation 11
can be obtained:

Cfs(t) = lim
N→∞

�
mN

2πβ

�N
2 β

2πmN
�−2N

⎧
⎨
⎩

N�

j=1

� ∞

−∞
dxj

⎫
⎬
⎭

�� ∞

−∞
dpN

2
dpN e−

β
N

∑N
j=1 V (yj)

× e
− mN

2�2β

(∑N
2

−1

j=1 (xj+1−xj)
2+

∑N−1

j= N
2

+1
(xj+1−xj)

2

)

e
− i

�pN
2

(
xN

2
+1

−xN
2

)

e−
β
N

p2N
2

2m

×

⎛
⎝(p̂)W

�
yN

2
, pN

2

� 1

m
δ
�
xN

2 +1

�
+

i�
2m

dδ
�
xN

2 +1

�

dxN
2 +1

⎞
⎠

× e−
i
�pN (x1−xN ) e−

β
N

p2N
2m

�
e

iĤt
� h(x̂) e−

iĤt
�
�
W

[yN , pN ] . (19)

Knowing that (p̂)W [x, p] = p, pN
2
can be integrated out.

�∞
−∞ dpN

2
(p̂)W

�
yN

2
, pN

2

�
e−

β
N

p2N
2

2m e
− i

�pN
2

(
xN

2
+1

−xN
2

)

�∞
−∞ dpN

2
e−

β
N

p2
N
2

2m e
− i

�pN
2

(
xN

2
+1

−xN
2

)

=

�∞
−∞ dpN

2
pN

2
e−

β
N

p2N
2

2m e
− i

�pN
2

(
xN

2
+1

−xN
2

)

�
2πmN

β e
− β

N

mN2

(
xN

2
+1

−xN
2

)2

2�2β2

= − iNm

�β

�
xN

2 +1 − xN
2

�
(20)

Cfs(t) = lim
N→∞

�
mN

2πβ

�N
2

�
β

2πmN
�−N

⎧
⎨
⎩

N�

j=1

� ∞

−∞
dxj

⎫
⎬
⎭

� ∞

−∞
dpN e−

β
N

∑N
j=1 V (yj)

× e
− mN

2�2β

∑N−1
j=1 (xj+1−xj)

2

⎛
⎝− iN

�β

�
xN

2 +1 − xN
2

�
δ
�
xN

2 +1

�
+

i�
2m

dδ
�
xN

2 +1

�

dxN
2 +1

⎞
⎠

× e−
i
�pN (x1−xN ) e−

β
N

p2N
2m

�
e

iĤt
� h(x̂) e−

iĤt
�
�
W

[yN , pN ] (21)

If f(x) is a function of x then
�∞
−∞ dx f(x)dδ(x)dx =

�∞
−∞ dx

�
−df(x)

dx

�
δ(x). This can be used to eliminate the
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derivative of the delta function through

� ∞

−∞
dxN

2
e
− β

N

(
V

(
yN

2

)
+V

(
yN

2
+1

))

e
− mN

2�2β

((
xN

2
+1

−xN
2

)2

+

(
xN

2
+2

−xN
2

+1

)2)
i�
2m

dδ
�
xN

2 +1

�

dxN
2 +1

=

� ∞

−∞
dxN

2
(−1)

⎛
⎝− β

N

⎛
⎝1

2

dV
�
yN

2

�

dyN
2

+
1

2

dV
�
yN

2 +1

�

dyN
2 +1

⎞
⎠− mN

2�2β

�
2
�
xN

2 +1 − xN
2

�
− 2

�
xN

2 +2 − xN
2 +1

��
⎞
⎠

× e
− β

N

(
V

(
yN

2

)
+V

(
yN

2
+1

))

e
− mN

2�2β

((
xN

2
+1

−xN
2

)2

+

(
xN

2
+2

−xN
2

+1

)2)
i�
2m

δ
�
xN

2 +1

�

=

� ∞

−∞
dxN

2
e
− β

N

(
V

(
yN

2

)
+V

(
yN

2
+1

))

e
− mN

2�2β

((
xN

2
+1

−xN
2

)2

+

(
xN

2
+2

−xN
2

+1

)2)

×

⎛
⎝ i�β
4Nm

⎛
⎝
dV

�
yN

2

�

dyN
2

+
dV

�
yN

2 +1

�

dyN
2 +1

⎞
⎠+

iN

2�β

�
2xN

2 +1 − xN
2
− xN

2 +2

�
⎞
⎠ δ

�
xN

2 +1

�
(22)

leading to

Cfs(t) = lim
N→∞

�
mN

2πβ

�N
2

�
β

2πmN
�−N

⎧
⎨
⎩

N�

j=1

� ∞

−∞
dxj

⎫
⎬
⎭

� ∞

−∞
dpN e−

β
N

∑N
j=1 V (yj) e

− mN
2�2β

∑N−1
j=1 (xj+1−xj)

2

×

⎛
⎝− iN

�β

�
xN

2 +1 − xN
2

�
δ
�
xN

2 +1

�

+

⎛
⎝ i�β
4Nm

⎛
⎝
dV

�
yN

2

�

dyN
2

+
dV

�
yN

2 +1

�

dyN
2 +1

⎞
⎠+

iN

2�β

�
2xN

2 +1 − xN
2
− xN

2 +2

�
⎞
⎠ δ

�
xN

2 +1

�
⎞
⎠

× e−
i
�pN (x1−xN ) e−

β
N

p2N
2m

�
e

iĤt
� h(x̂) e−

iĤt
�
�
W

[yN , pN ]

= lim
N→∞

�
mN

2πβ

�N
2

�
β

2πmN
�−N

⎧
⎨
⎩

N�

j=1

� ∞

−∞
dxj

⎫
⎬
⎭

� ∞

−∞
dpN e−

β
N

∑N
j=1 V (yj) e

− mN
2�2β

∑N−1
j=1 (xj+1−xj)

2

×

⎛
⎝ i�β
4Nm

⎛
⎝
dV

�
yN

2

�

dyN
2

+
dV

�
yN

2 +1

�

dyN
2 +1

⎞
⎠+

iN

2�β

�
2xN

2 +1 − xN
2
− xN

2 +2 − 2xN
2 +1 + 2xN

2

�
⎞
⎠ δ

�
xN

2 +1

�

× e−
i
�pN (x1−xN ) e−

β
N

p2N
2m

�
e

iĤt
� h(x̂) e−

iĤt
�
�
W

[yN , pN ]

= lim
N→∞

�
mN

2πβ

�N
2

�
β

2πmN
�−N

⎧
⎨
⎩

N�

j=1

� ∞

−∞
dxj

⎫
⎬
⎭

� ∞

−∞
dpN e−

β
N

∑N
j=1 V (yj) e

− mN
2�2β

∑N−1
j=1 (xj+1−xj)

2

×

⎛
⎝ i�β
4Nm

⎛
⎝
dV

�
yN

2

�

dyN
2

+
dV

�
yN

2 +1

�

dyN
2 +1

⎞
⎠+

iN

2�β

�
xN

2
− xN

2 +2

�
⎞
⎠ δ

�
xN

2 +1

�

× e−
i
�pN (x1−xN ) e−

β
N

p2N
2m

�
e

iĤt
� h(x̂) e−

iĤt
�
�
W

[yN , pN ] . (23)

Up to this point the new derivation is equivalent to what was previously done up to equation 14. However, once
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the expression is approximated through classical Wigner and the assumption of finite N , giving

Cfs,x(t) ≈
�
mN

2πβ

�N
2

�
β

2πmN
�−N

⎧
⎨
⎩

N�

j=1

� ∞

−∞
dxj

⎫
⎬
⎭

� ∞

−∞
dpN e−

i
�pN (x1−xN )

× e
− β

N

(
p2N
2m +

∑N
j=1 V (yj)+

mN2

2�2β2

∑N−1
j=1 (xj+1−xj)

2

)

×

⎛
⎝ i�β
4Nm

⎛
⎝
dV

�
yN

2

�

dyN
2

+
dV

�
yN

2 +1

�

dyN
2 +1

⎞
⎠+

iN

2�β

�
xN

2
− xN

2 +2

�
⎞
⎠ δ

�
xN

2 +1

�

× h (x (yN , pN , t)) , (24)

this is not the case anymore. Equation 24 is the expres-
sion corresponding to the x1-version of OPCW for the
flux-Heaviside trace. Due to the symmetrization of the
correlation function xN

2 +1 rather than x1 is used. This

trace will be called Cfs,x(t).

IV. CORRECTION FACTORS FOR EVALUATION OF
TRACES WITH MONTE CARLO

In this work the position integrals in equations 16 and
24 were evaluated with Metropolis Monte Carlo17.

Compared to calculating a correlation function, cal-
culating a trace with Monte Carlo can be a bit more
complicated. The flux-Heaviside correlation function is

�
F̂ e

iĤt
� h(x̂) e−

iĤt
�
�
=

1

Z
Tr

�
F̂ e−βĤ e

iĤt
� h(x̂) e−

iĤt
�
�
,

(25)

where the angular brackets denote a thermal average and
Z is the canonical partition function

Z = Tr
�
e−βĤ

�
. (26)

In Monte Carlo sampling a weight function is needed.
The delta functions in equation 16 and 24 complicate
things somewhat, since it is impossible to integrate them
numerically. The weight function used is

�
mN

2πβ

�N
2

�
β

2πmN
�−N

× e
− β

N

(
p2N
2m +

∑N
j=1 V (yj)+

mN2

2�2β2

∑N−1
j=1 (xj+1−xj)

2

)

δ (yy,x) ,
(27)

where yy,x is either yN
2
or xN

2 +1. The integrand is thus

e−
i
�pN (x1−xN ) iN

�β

�
xN

2
− xN

2 +1

�
h (x (yN , pN , t)) (28)

for the y-version of OPCW and

e−
i
�pN (x1−xN )

×

⎛
⎝ i�β
4Nm

⎛
⎝
dV

�
yN

2

�

dyN
2

+
dV

�
yN

2 +1

�

dyN
2 +1

⎞
⎠+

iN

2�β

�
xN

2
− xN

2 +2

�
⎞
⎠

× h (x (yN , pN , t)) (29)

for the x-version of OPCW. This means that the quantity

actually calculated is Cfs(t)
Z�

δ
, where Z �

δ is

Z �
δ =

�
mN

2πβ

�N
2

�
β

2πmN
�−N

⎧
⎨
⎩

N�

j=1

� ∞

−∞
dxj

⎫
⎬
⎭

� ∞

−∞
dpN

× e
− β

N

(
p2N
2m +

∑N
j=1 V (yj)+

mN2

2�2β2

∑N−1
j=1 (xj+1−xj)

2

)

× δ (yy,x) , (30)

and is something similar to a partition function, but the
integrand includes a delta function and lacks a factor of

e−
i
�pN (x1−xN ). By sampling the integrand e−

i
�pN (x1−xN )

in the same Monte Carlo run as Cfs(t)
Z�

δ
a correction factor

Zδ

Z�
δ
can be acquired, where

Zδ =

�
mN

2πβ

�N
2

�
β

2πmN
�−N

⎧
⎨
⎩

N�

j=1

� ∞

−∞
dxj

⎫
⎬
⎭

� ∞

−∞
dpN

× e
− β

N

(
p2N
2m +

∑N
j=1 V (yj)+

mN2

2�2β2

∑N−1
j=1 (xj+1−xj)

2

)

× e−
i
�pN (x1−xN) δ (yy,x) . (31)

Zδ is very similar to Z �
δ, but it has e

− i
�pN (x1−xN ) in the

integrand, and is thus a partition function with a delta
function in it. For a parabolic barrier Zδ can be calcu-
lated analytically for the exact quantum mechanical case,
N → ∞. It is

Zδ =

�
mω

2π� sin(β�ω)
. (32)

For the classical case it is

Zδ =

�
m

2πβ
�−1. (33)
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For the Eckart potential and other potentials without
an analytic solution, the correction factor has to be cal-
culated numerically.
The quantity obtained from the Monte Carlo integra-

tion is thus Cfs(t)
Z′

δ
. A correction factor of Zδ

Z′
δ
can likewise

be obtained from the Monte Carlo run, but an additional
correction factor Zδ has to the computed.

Cfs(t) =
Cfs(t)

Z �
δ

× Z �
δ

Zδ
× Zδ (34)

V. COMPUTATIONAL DETAILS

In this work, the integrals in Eqs. 16 and 24 were
evaluated by Monte Carlo and the time propagation was
conducted with molecular dynamics.

A. Potentials and system parameters

Two different potentials are studied in this work: a
parabolic barrier and a symmetric Eckart barrier.
The parabolic barrier has the potential

Vparabolic(x) = −1

2
mω2x2, (35)

where ω is the absolute value of the angular frequency of
the system.
The symmetric Eckart barrier used is of the form

VEckart(x) =
6�ω
π

sech2
(√

πmω

12�
x

)
, (36)

where ω is the absolute value of the angular frequency at
the top of the barrier, i.e. at the transition state.

B. Traces

The Monte Carlo integration was conducted through
the Metropolis Monte Carlo method17. The maximum
stepsize for the Monte Carlo was choosen and updated
according to the procedure in the original OPCWwork12.
A Maxwell–Boltzmann distribution of the inverse tem-
perature β/N was used to sample the momentum, pN .
For the sampling, the ran2 pseudo-random number gen-
erator of Press et al.18 was used.
A molecular dynamics trajectory was run for each 10th

Monte Carlo step. The dynamics were run with the ve-
locity Verlet algorithm19,20, with a timestep of 0.05 ω−1

and a total time of 10 ω−1.
The standard deviations of the results where calculated

with the block average method, as explained in e.g.21,22,
using a minimum block size of 106 Monte Carlo steps.
To get the correction factor Zδ for the Eckart potential

the numerical matrix multiplication scheme23 was used to
calculate the matrix elements of the Boltzmann operator.

C. Exact comparisons

The exact classical (CM) and quantum mechanical13

(QM) flux-Heaviside traces for the parabolic barrier can
be acquired as analytic functions,

Cfs,CM(t) =
1

2π�β
(37)

Cfs,QM(t) =
1

2π�β

β�ω
2

sin
(

β�ω
2

) sinh(ωt)√
sinh2(ωt) + sin2

(
β�ω
2

) .

(38)

For the Eckart barrier the classical result is the same
analytic function as for the parabolic barrier, apart from
a Boltzmann factor that accounts for the height of the
barrier compared to the reactant energy,

kr,CMQR =
1

2π�β
e−βV (0) . (39)

The corresponding quantum mechanical result can be
calculated from an analytic transmission coefficient24,

κEckart(E) =
cosh

(
24

√
πE
6�ω

)
− 1

cosh
(
24

√
πE
6�ω

)
+ cosh

(√
576− π2

) ,

(40)

but has to be numerically integrated,

kr,QMQR =
1

2π�

∫ ∞

0

dE e−βE κEckart(E) (41)

. (42)

In this work the integral is performed by Romberg
integration25, using an integration interval from 0 to 100
�ω and a convergence criterion of 10−10.

In the case of the Eckart potential, the reactants are
represented as a free particle, which has the partition
function per unit of length

QR =

√
m

2πβ
�−1. (43)

This partition function is the same in the classical and
quantum mechanical cases. The parabolic barrier is in-
finitely high and the partition function for the reactants
is therefore infinite, and can not be calculated. The quan-
tity krQR is, however, a finite calculable quantity, as the
rate constant is infinitely small and compensates for the
infinite reactant partition function.
To obtain exact classical Wigner flux-Heaviside traces

for the Eckart potential the numerical matrix multiplica-
tion scheme23 was used to calculate the matrix elements
of the Boltzmann operator.
An RPMD comparison was calculated for the

Eckart barrier, using the formulation of Craig and
Manolopoulos26.
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FIG. 1. Cfs(t) for a parabolic barrier with β�ω = 1. The
traces are calculated with the y-version of OPCW for differ-
ent N , exact Classical Mechanics (CM), and exact Quantum
Mechanics (QM). The numbers in parenthesis are the number
of Monte Carlo steps used. The top and bottom lines of each
type show the standard deviation of the results.
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FIG. 2. Cfs(t) for a parabolic barrier with β�ω = 1. The
traces are calculated with the x-version of OPCW for differ-
ent N , exact Classical Mechanics (CM), and exact Quantum
Mechanics (QM). The numbers in parenthesis are the number
of Monte Carlo steps used. The top and bottom lines of each
type show the standard deviation of the results.

VI. RESULTS AND DISCUSSION

For the parabolic barrier the results of the case β�ω =
1 can be seen in Figs. 1 and 2. The classical Wigner
method is exact for harmonic potentials4, so the OPCW
results converge toward the exact quantum mechanical
result as N is increased. It can be seen that the y-version
of OPCW needs more beads than the x-version to con-
verge to the exact quantum mechanical result. The x-
version of OPCW has excellent convergence with respect
to the number of beads. It almost gives the exact result
for N = 6.
For the parabolic barrier the results of the case β�ω =

0.5 can be seen in Figs. 3 and 4. The standard deviations
are visible around the OPCW-results for this temper-

0.30
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0 1 2 3 4 5 6 7 8 9 10

C f
s(t

) /
 (− h1/2

ω
1/2

m-1/
2 )
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N= 6 ( 64E9)
N=10 (128E9)
N=20 (128E9)

QM

FIG. 3. Cfs(t) for a parabolic barrier with β�ω = 0.5. The
traces are calculated with the y-version of OPCW for differ-
ent N , exact Classical Mechanics (CM), and exact Quantum
Mechanics (QM). The numbers in parenthesis are the number
of Monte Carlo steps used. The top and bottom lines of each
type show the standard deviation of the results.
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C f
s(t

) /
 (− h1/2

ω
1/2

m-1/
2 )
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N= 6 ( 64E9)
N=10 (128E9)
N=20 (128E9)

QM

FIG. 4. Cfs(t) for a parabolic barrier with β�ω = 0.5. The
traces are calculated with the x-version of OPCW for differ-
ent N , exact Classical Mechanics (CM), and exact Quantum
Mechanics (QM). The numbers in parenthesis are the number
of Monte Carlo steps used. The top and bottom lines of each
type show the standard deviation of the results.

ature. Thus these higher temperature calculations are
visibly more difficult than those with β�ω = 1. The
sampling of the initial conditions in OPCW is known to
become more difficult when raising the temperature but
keeping the same N12. Generally, however, fewer beads
are needed for a calculation at higher temperature. The
x-version of OPCW converges toward the exact quantum
mechanical result significantly faster than the y-version
also at β�ω = 0.5, when the number of beads is increased.
Particularly for β�ω = 0.5 it can be seen that Cfs,y(t)

converges toward exact quantum mechanics from above
and Cfs,x(t) converges toward exact quantum mechanics
from below.
In Figs. 5-10 Cfs(t) for the Eckart barrier at β�ω = 1,

3, and 6 are shown. The rate constants and tunneling
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FIG. 5. Cfs(t) for an Eckart potential with β�ω = 1. The
traces are calculated with the y-version of OPCW for different
N , exact Classical Mechanics (CM), exact Classical Wigner
(CW), and exact Quantum Mechanics (QM). The QM-line
shows the long time result, not the time dependent function.
The numbers in parenthesis are the number of Monte Carlo
steps used. The top and bottom lines of each type show the
standard deviation of the results.
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FIG. 6. Cfs(t) for an Eckart potential with β�ω = 1. The
traces are calculated with the x-version of OPCW for different
N , exact Classical Mechanics (CM), exact Classical Wigner
(CW), and exact Quantum Mechanics (QM). The QM-line
shows the long time result, not the time dependent function.
The numbers in parenthesis are the number of Monte Carlo
steps used. The top and bottom lines of each type show the
standard deviation of the results.

factors, Γ = kr,QM/kr,CM, are presented in Tabs. I and
II. For the Eckart potential at β�ω = 1 there is only
∼ 6% difference between the quantum mechanical and
classical results. For the lower temperatures the differ-
ence is significantly bigger, i.e. ∼ 50% for β�ω = 3 and
a factor ∼ 5 for β�ω = 6.

The classical Wigner method, as could be expected,
gives results that are intermediate between classical me-
chanics and quantum mechanics.

The OPCW results, for the Eckart potential, converge
to the exact classical Wigner result as the number of
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FIG. 7. Cfs(t) for an Eckart potential with β�ω = 3. The
traces are calculated with the y-version of OPCW for different
N , exact Classical Mechanics (CM), exact Classical Wigner
(CW), and exact Quantum Mechanics (QM). The QM-line
shows the long time result, not the time dependent function.
The numbers in parenthesis are the number of Monte Carlo
steps used. The top and bottom lines of each type show the
standard deviation of the results.
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FIG. 8. Cfs(t) for an Eckart potential with β�ω = 3. The
traces are calculated with the x-version of OPCW for different
N , exact Classical Mechanics (CM), exact Classical Wigner
(CW), and exact Quantum Mechanics (QM). The QM-line
shows the long time result, not the time dependent function.
The numbers in parenthesis are the number of Monte Carlo
steps used. The top and bottom lines of each type show the
standard deviation of the results.

TABLE I. Rate constants (kr) for different inverse tempera-
tures (β) for the Eckart barrier described in Eq. 36. Compari-
sion of OPCWa, Ring Polymer Molecular Dynamics (RPMD),
classical mechanics (CM), exact Classical Wigner (CW), and
quantum mechanics (QM).

kr/(�
1
2ω

1
2m− 1

2 )
β�ω OPCW RPMD CM CW QM
1 6.10E-2 6.17E-2 5.9084E-2 6.0986E-2 6.2856E-2
3 1.009E-3 1.07E-3 7.4821E-4 1.0087E-3 1.1409E-3
6 7.391E-6 7.55E-6 1.7186E-6 7.5092E-6 8.9347E-6

a x-version, N = 40
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FIG. 9. Cfs(t) for an Eckart potential with β�ω = 6. The
traces are calculated with the y-version of OPCW for different
N , exact Classical Mechanics (CM), exact Classical Wigner
(CW), and exact Quantum Mechanics (QM). The QM-line
shows the long time result, not the time dependent function.
The numbers in parenthesis are the number of Monte Carlo
steps used. The top and bottom lines of each type show the
standard deviation of the results.
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FIG. 10. Cfs(t) for an Eckart potential with β�ω = 6. The
traces are calculated with the x-version of OPCW for different
N , exact Classical Mechanics (CM), exact Classical Wigner
(CW), and exact Quantum Mechanics (QM). The QM-line
shows the long time result, not the time dependent function.
The numbers in parenthesis are the number of Monte Carlo
steps used. The top and bottom lines of each type show the
standard deviation of the results.

TABLE II. Tunneling factors (Γ) for different inverse tem-
peratures (β) for the Eckart barrier described in Eq. 36.
Comparision of OPCWa, Ring Polymer Molecular Dynamics
(RPMD), exact Classical Wigner (CW), and exact results.

β�ω ΓOPCW ΓRPMD ΓCW ΓExact

1 1.03 1.04 1.0322 1.0638
3 1.349 1.43 1.3481 1.5249
6 4.300 4.39 4.3693 5.1987

a x-version, N = 40

beads is increased. The x-version converges faster than
the y-version. As for the parabolic barrier, Cfs,y(t) con-
verge from above and Cfs,x(t) converge from below. This
is an interesting occurrence, but too few potentials have
been studied here to draw conclusions from it.
For both potentials and all temperatures the x-version

of OPCW gives results that are very close to the exact
classical Wigner result. Particularly for the Eckart po-
tential at β�ω = 3 and 6 the classical Wigner method
can be seen to be a significant improvement over classi-
cal mechanics.
Compared to RPMD the classical Wigner method gives

slightly worse results. However, in the perspective of
trying to approximate the quantum mechanical reaction
rates, the differences between the rate constants calcu-
lated by the classical Wigner method and RPMD, at the
lowest temperatures, is insignificant compared to the dif-
ference between those rate constants from the the exact
quantum mechanical result. Results from a single sym-
metric one-dimensional potential is, however, not enough
to draw general conclusions.

VII. CONCLUSION

In this work the recently developed Open Polymer
Classical Wigner (OPCW) method12 is extended to the
flux-Heaviside correlation function of Miller14 and ap-
plied to a parabolic barrier and a symmetric Eckart po-
tential, for a few different temperatures. The OPCW
method is shown to converge to the exact classical
Wigner result as the number of beads in the path in-
tegral polymer is increased. Particularly the x-version of
OPCW shows promise for further tests.
In the future, it would be of interest to apply the

OPCW reaction rate constant calculations to multidime-
sional systems, such as the double well potential of
Topaler and Makri27 coupled to the harmonic bath of
Caldeira and Leggett28. For such a system modifying
OPCW by making the bath classical, as introduced in the
preceding article12, would be of interest. It would also be
of interest to try the method on asymmetric potentials,
as both potentials tried thus far have been symmetric.
For systems where the reactants are bound it could

be of interest to use the Heaviside-Heaviside correlation
function of Miller et al.13 instead of the flux-Heaviside
correlation function.
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