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ABSTRACT
Introduction: Patients with total hip arthroplasty (THA) due to osteoarthritis (OA) are

usually healthy, some with a remaining lifetime of several decades after surgery. Patients
with hip arthroplasty due to a femoral neck fracture (FNF) are often old and frail with 13 %
mortality within 90 days of surgery. To predict all-cause mortality for those groups has been
considered but no prediction model has so far been widely accepted.

Patients andmethods: We developed an R package to estimate comorbidity from large
data sets. Weused data from the SwedishHipArthroplasty Register (SHAR), theNational pa-
tient register (NPR), the national prescription register, the Longitudinal integrated database
for health insurance and labour market studies (LISA), the Swedish population register and
the National Joint Registry for England, Wales, Northern Ireland, the Isle of Man and the
States of Guernsey (NJR).We evaluated the discriminatory abilities of the Charlson and Elix-
hauser comorbidity indices to predict mortality for patients with hip arthroplasty due to OA
and FNF. We also developed a new statistical prediction model for 90-day mortality after
cemented THA due to OA using a bootstrap ranking procedure with logistic least absolute
shrinkage and selection operator (LASSO) regression. Themodel was validated internally, as
well as externally with patients from England and Wales. We built a web calculator for clin-
ical usage. Finally, association between the Elixhauser comorbidity index and the restricted
mean survival time (RMST) after surgery was assessed for patients with THA due to OA.

Results: The coderR-package provides a dynamic solution for patient classi�cation. Nei-
ther the Elixhauser, nor the Charlson comorbidity indices accurately predicted mortality af-
ter hip arthroplasty due to OA or FNF (area under the curve (AUC) < 0.6 and AUC < 0.7;
where 0.7 is a common lower threshold for an acceptable model). The new model, based
on age, sex, the American Society of Anesthesiologists (ASA) physical status class, and the
presence of cancer, disease of the central nervous system (CNS), kidney disease and obesity,
did predict 90-day mortality with good discriminatory ability (AUC > 0.7) and was well cali-
brated for predicted probabilities up to 5 %. Shortening of the RMST for 10 years after surgery
ranged from 315 days for patients with no comorbidity, to 1,193 days for patients with at least
3 comorbidities.

Conclusion: We found that the Charlson and Elixhauser comorbidity indices, although
associated with RMST, did not predict mortality after hip arthroplasty. Our parsimonious
model did predict 90-day mortality after THA due to OA.

Keywords: Hip arthroplasty, mortality, comorbidity, osteoarthritis, femoral neck fracture, pre-
diction, validation, web calculator, shared decision making, restricted mean survival time
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Sammanfattning på svenska

Introduktion: Majoriteten höftprotesoperationer föregås av antingen höftledsartros eller
en fraktur på lårbenshalsen. Artrospatienter är i regel friska individer, en del med en åter-
stående livslängd på �era decennier. Frakturpatienter å andra sidan är ofta gamla och sköra.
13 % av dem avlider inom 90 dagar efter operation. Det har länge varit önskvärt att predi-
cera överlevnad för respektive patientgrupp. Av be�ntliga modeller har dock ännu ingen
fått något bredare genomslag. Utvecklingen av tidigare modeller har ofta lidit av för små
patientunderlag eller användning av suboptimala statistiska metoder.

Patienter och metod: Programvara med öppen källkod (ett R-paket) utvecklades för
beräkning av samsjuklighet utifrån registrerade diagnoskoder i NPR. För de empiriska stu-
dierna inkluderade vi sedan patienter från det SvenskaHöftprotesregistret (SHPR). Vi länka-
de patienternas data med hjälp av personnummer till det Nationella patientregistret (NPR),
Läkemedelsregistret och den Longitudinella integrationsdatabasen för sjukförsäkrings- och
arbetsmarknadsstudier (LISA). Vi validerade sedan den prediktiva styrkan av två sam-
sjuklighetsindex, Charlson och Elixhauser, för prediktion av död avseende patienter med
dels artros, dels höftledsfraktur. Vi utvecklade därefter en egen prediktionsmodell för 90-
dagarsmortalitet efter höftprotesoperation till följd av artros. Vi nyttjade bootstrapping kom-
binerat med logistisk LASSO-regression. Modellen validerades internt och externt för pa-
tienter från England och Wales i samarbete med det brittiska nationella ledproesregistret
(NJR). Modellen kompletterades med en webbkalkylator för kliniskt bruk. Slutligen under-
sökte vi association på gruppnivå mellan Elixhausers samsjuklighetsindex och medelvärdet
för överlevnadstiden begränsad till tio år för protesopererade patienter med höftledsartros.

Resultat: R-paketet coder (https://eribul.github.io/coder/) bidrog till e�ektivare
datorberäkningar och erbjuder ett �exibelt ramverk för patientklassi�kation. Varken Elix-
hausers eller Charlsons samsjuklighetsindex möjliggjorde någon noggrannare prediktion av
död efter vare sig elektiv operation med totalprotes till följd av artros, eller akut operation
med halv- eller totalprotes efter fraktur på lårbenshalsen (AUC < 0,6 respektive AUC < 0,7;
där 0,7 är ett vanligt lägre gränsvärde för en acceptabel modell). Vår föreslagna modell ba-
serades på ålder, kön, hälsoklass enligt det Amerikanska Sällskapet för Anestesiologi (ASA)
samt förekomst av cancer, neurologisk sjukdom, njursjukdom och fetma. Modellen predice-
rade död inom 90 dagarmed ett AUC-värde på över 0,7. Modellen var också väl kalibrerad för
skattade sannolikheter upp till 5 %. Medelvärdet av den begränsade överlevnadstiden under
tio år efter operation var 315 dagar kortare än så för patienter utan samsjuklighet, jämfört
med 1 193 dagar för patienter med tre eller �er samtida diagnoser enligt Elixhauser.

Slutsats: Användning av samsjuklighetsindex som prediktor av död efter höftprotesope-
ration har tidigare rekommenderats. Vi fann denna rekommendation tveksam även om vi
också påvisade association mellan samsjuklighet och medelvärdet av den begränsade över-
levnadstiden under tio år efter operation. Istället föreslår vi en relativt enkel modell för pre-
diktion av död inom 90 dagar efter en höftprotesoperation till följd av artros. Denna modell
visade sig ha god prediktiv styrka. Vi erbjuder också en webbkalkylator för användning i
klinisk verksamhet (https://erikbulow.shinyapps.io/thamortpred).

https://eribul.github.io/coder/
https://erikbulow.shinyapps.io/thamortpred
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Glossary

Acetabulum Concave surface that makes
up the pelvic part of the hip
joint 1

Adverse event Complication after surgery, of-
ten within 30 or 90 days 3

Anatomy Science of form and structure
of the body 4

Big data No clear de�nition but often
described in terms of high vol-
ume, variety, velocity and ve-
racity 19, 21

Bootstrapping To resample with replacement
and to repeat relevant proce-
dures for each sample 16

Calibration Process to measure similar-
ity or dissimilarity between
observed and predicted out-
comes 16

Causality One event or condition lead-
ing to another, often hard (im-
possible) to establish in obser-
vational studies 3

Censoring Unknown (death) status of pa-
tients lost to follow-up 11, 18

Charlson Classi�cation of comorbidity
with 17 distinct conditions and
a weighted index sum 5

Charnley Patient classi�cation for
outcome assessment of low-
friction hip arthroplasties
5

Classi�cation Grouping of items according
to common characteristics 3

Coe�cient Multiplicative factor of inde-
pendent variable(s) in regres-
sion analysis 9

Comorbidity Morbidity co-existing with
main diagnose 2

Completeness Proportion of relevant pa-
tients/procedures reported to
the register 8

Concordance index Measure of rank correlation,
the ability to assign higher
probabilities to true events 17

Confusion matrix Error matrix with combina-
tions of observed and esti-
mated/predicted values 17

Covariate A variable that might be pre-
dictive of the outcome 12

Coverage Proportion of health care units
(hospitals) a�liated with the
register 8

Cox regression Semiparametric survival
model assuming proportional
hazards 5, 12, 13, 27, 39

Cross-validation To train a model on one parti-
tion, to evaluate it on another,
and then to repeat 16

Cumulative hazard Accumulated hazard up to a

certain point in time 11
Discrimination Ability to distinguish between

patients who do, or do not, ex-
perience the event of interest
(death at a certain time) 16

Double Legacy term for binary64, a
�oat number with double pre-
cision used by computers 19

E�ective sample size The number of cases with the
less probable outcome 15

Elixhauser Classi�cation of comorbidity
with 31 distinct conditions 6

Epidemiology Science of spread and control
of medical conditions within
populations 2

Etiology Underlying cause/origin of
disease 3, 4

External validation To assert transportability of a
model, by application to a dif-
ferent, yet comparable, popu-
lation 16, 17

Femur The large bone connecting the
pelvis to the knee 1

Float Computer approximation of
real numbers 19

Floppy disk Arcane magnetic storage
medium made of squared
plastic 20

Hazard Instant probability of death or
the force of mortality 11, 33

Hemiarthroplasty Prosthesis without acetab-
ulum component 2, 8, 26,
27

Hip joint The joint connecting the
pelvic acetabulum to the
femur 1

Hip arthroplasty Hip prosthesis v, 1, 8, 9, 11, 13,
15, 23, 25, 35, 38, 39, 42

In�x operator Programming operation simi-
lar to a function but with dif-
fernt syntyx, for example the
arithmetic operators (+, -, /
and *) 19

In-hospital Something occurring in a hos-
pital (i.e. e deaths among pa-
tients at the hospital) 5

Index disease Disease of main interest 3
Integer Whole number used by com-

puters where the range of
available numbers depends on
the operating system 19

Internal validation To assert reproducibility
of a model, usually with a
split-sample, cross-validation
or bootstrapping 16

Jackknife Cross validation with only one
sample used for validation 16,
30

Linear regression Regression analysis where a
weighted sum of independent



covariates are lineary related
to the dependent outcome 9

Logistic regression Model relating the probability
of a binary outcome to a linear
combination of covariates 6, 9,
10, 16, 18, 19, 28, 29, 36, 37

Millenium bug Also known as the
year 2000/Y2K prob-
lem/bug/glitch; a problem
caused by the two digit
abbrivation of years such that
year 2000 was not distinguised
from 1900 20

Morbidity Disease ormedical condition 4
Mortality Proportion of deaths within a

cohort during a certain period
2

Nomenclature A de�ned set of names and
terms 3

Null hypothesis The (often unrealistic)
assumption of no relation/as-
sociation/e�ect to be tested
against a (more interesting)
alternative hypothesis 12

Ockham’s razor A philosophy where simplic-
ity/parsimounious is preferred
if possible 15

Osteoporosis Abonemetabolic disease lead-
ing to reduced bone mineral
density 1

Out-of-bag Non-sampled data used for in-
ternal validation 17

Post-operatively Event happening after surgery
9

Predict To forsee a future event based
on baseline variables using a
statistical model 14

Pre-operatively Event happening before
surgery 9

Primary surgery The �rst insertion (not a re-
operation) of a prosthesis 8, 11

Prosthesis Arti�cial hip joint 1
R Statistical open source soft-

ware v, 16, 19, 20, 21, 22, 23,
25, 29, 30, 31, 33, 40

Regression analysis Statistical procedure to esti-
mate a relation between inde-
pendent and dependent vari-
ables 41

Relative risk Ratio of probabilities of an out-
come in an exposed versus an
unexposed group 12

Re-operation Any additional surgery per-
formed on a hip with privious
hip arthroplasty 8

Residual Di�erence between observed
and estimated/predicted out-
come 12

Revision Re-operation including re-
placement or extraction of any
part of the prosthesis 8

RxRisk V Classi�cation of comorbidity
based on medical codes 7

S Statistical open source soft-
ware (predecessor of R) 19, 20

Sensitivity Proportion of true positives,
observed events predicted as
such 17

Sigmoid Mathematical function de-
picted with s-shaped curve
9

Speci�city Proportion of true negatives,
observed non-events predicted
as such 17

Stratum Online IT-platform for collec-
tion, storage and presentation
of quality register data 8, 26

Syntactic suger Design elements of a program-
ming language not introduc-
ing any new functionality but
which improves clearity, con-
cistency orwhich introduce an
alternative programming style
19

Transportability If a model is generalizable to
another population 16

Trapezoid rule Numerical technique used to
approximate a de�nite integral
17



Acronyms

AE adverse event 6, 22, 23, 24, 26
AI arti�cial intelligence 15
AIC Akaike information criteria 15
AIDS/HIV acquired immunode�ciency syndrome/hu-

man immunode�ciency virus 5
ANCOVA analysis of covariance 30
API aplication programming interface 24
ASA American Society of Anesthesiologists v, 5,

27, 32, 35, 36, 38, 40
ATC Anatomic Therapeutic Chemical classi�ca-

tion system 4, 5, 7, 27
AUC area under the curve v, 17, 18, 27, 31, 32,

33, 34, 35, 36, 40
BIC Bayesian information criteria 15
BMI body mass index 5, 27, 38, 40
BOA Better management of patients with Os-

teoArthritis 39
CI con�dence interval 14, 16, 27, 35, 36, 38, 39
CNS central nervous system v, 32, 40
CPS Comorbidity-poly Pharmacy Score 7, 24
CRAN Central R Archive Network 21, 22, 24
DRG diagnose related group 6
DSL domain speci�c language 21
EPV events per variable 37, 38
FNF femoral neck fracture v, 1, 2, 9, 23, 27, 31,

33, 40
GDPR European General Data Protection Regula-

tion 26
GEE generalized estimating equation 10, 14, 30,

39
GNU GNU’s Not UNIX 20
GPL General Public License 20
HES Hospital Episodes Statistics 9
HGLM hierarchical generalized linear models 10,

38
HR hazard ratio 5, 12, 14, 34, 39
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1 INTRODUCTION
This thesis concerns statistical association
and prediction modeling of mortality1 and
comorbidity for patients with hip arthro-
plasty.

1.1 THE HIP JOINT

The hip joint is the biggest joint in the hu-
man body, next to the knee. It is the biggest
ball-and socket (spheroid) joint with six de-
grees of freedom (�exion/extension, inter-
nal/external rotation and adduction/abduc-
tion), thus with the possibility to move in
all directions. It makes us mobile and it
provides us with the possibility to escape
danger and to hunt for food. The large fe-
mur ends with a spherical slippery ball. It
moves almost without friction and �ts into
a hemispherical socket, the acetabulum as
part of the pelvis. Mobility is a very central
part of human freedom, although we might
not think about it if everything works as ex-
pected. Most of the time it does, but not for
everyone, and not forever.

Osteoarthritis (OA) is a degenerative dis-
ease, a�ecting the elastic hyaline cartilage,
which has an extremely low coe�cient of
friction and which lubricates the joint be-
tween the convex femoral head and the con-
cave acetabulum. In 2012, 27%of all Swedish
inhabitants, 45 years and older, were es-
timated to have OA, with 5.8 % a�ecting
the hip.2 Lifestyle factors as well as an ag-
ing population leads to an increased disease
burden.3 Themean ages at surgery are 67 and
69 years for Swedish males and females and
close to 60 % of the patients are female.4

The occurrence of a femoral neck frac-
ture (FNF) is a traumatic event, although ap-
proximately one third of the cases are pre-
deceased by con�rmed osteoporosis weaken-
ing the bone by reducing the bone mass and
thereby the density. Young individualsmight
break their bones due to high energy trauma,
but the old and frail dominates the cohort.

A broken bone of a young person might
heal easily due to a large proportion of elastic
collagen. An older bone is more fragile and

Figure 1.1: Hip prosthesis exposed in the Center
for hip surgery at the Wrightington Hospital out-
side Manchester in the UK. This is where Sir John
Charnley developed the low friction hip replace-
ment, a fascinating story described in “The man
and the hip” by WilliamWaugh.7

brittle. Impaired fracture healing is, how-
ever, not the main problem; immobilization
and comorbidity are. A non-displaced FNF
might be treated with internal �xation or by
hip arthroplasty, a treatment otherwise most
commonly applied to displaced fractures.5
Themean ages at surgery are 81 and 83 years
for Swedish males and females.4 Approxi-
mately three out of four patients are female,6
but the proportion ofmales is increasing over
time (20 % in year 2000 and 35 % in 2018).4

1.2 HIP ARTHROPLASTY

Hip arthroplasty (hip replacement/hip pros-
thesis; �gure 1.1) is used as treatment for sev-
eral diagnoses including tumors, childhood
diseases and in�ammatory hip diseases. The
two most common causes, however, are (pri-
mary) OA and FNFs.

Patients with OA are, if operated, treated
with total hip arthroplasty (THA), a prosthe-
sis with two main parts, a femoral stem with
a caput (head), and an acetabular cup. There
were 7,839 patients with primary hip OA,
constituting 77 % of all primary hip arthro-
plasty inserted in Sweden 1999. 13,006 surg-
eries were performed in 2012 and 14,773 in
2017 (Figure 1.2). There were 4,802 patients
with FNF treated with hip arthroplasty in
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Figure 1.2: Number of primary surgeries per-
formed 1999–2017. Hemiarthroplasties were not
recorded in the Swedish Hip Arthroplasty Regis-
ter (SHAR) before 2005.

2006 and 5,523 in 2017. Those patients were
treatedwith either THAor hemiarthroplasty,
essentially a femoral stemwith a large caput,
but without the acetabular cup.

1.3 MORTALITY

The Cambridge dictionary de�nes mortality
as both the condition of being mortal, as well
as the number of deaths within a society dur-
ing a speci�ed period. In epidemiology, mor-
tality refers to the number of deaths caused
by (or at least associated with) a speci�c con-
dition (disease). This is related, although dif-
ferent, from the proportion of deaths (regard-
less of cause) among individuals with the
condition, who dies during a speci�ed period
after an individual index date (such as the on-
set of a disease). This is termed “survival”
(Section 1.12). Both measures (along with
incidence and prevalence) are important for
example in cancer epidemiology where the
condition of interest is itself lethal. In other
�elds, such as orthopedics, mortality and
(the opposite/inverse of) survival are often
used interchangeable. We choose to follow
this tradition throughout the thesis, although
the use of “mortality” could sometimes be re-
expressed in terms of survival.8

The �rst organized registration of death

begun in northern Italy during a plague pan-
demic in the 15th century.9 A death certi�-
cate, issued by a physician, or a certi�ed
surgeon, was then necessary to regulate the
movement of corps and to secure sanitary
conditions before burial. The practice spread
temporary to France, Switzerland and the
Netherlands. A similar practice begun in
England; the Bills of mortality, a weekly list
of deaths and funeral dates established in
1603 and sold for 4 shillings annually.10,11

The birth of epidemiology, however, is at-
tributed to a book by Graunt in 1661.12,13 In
his foreword, he brie�y mentions that he op-
pose polygamy to increase population size.
The book is otherwise known for its aggre-
gated death statistics based on the bills of
mortality.

It took another 44 years until death
registration was systematically introduced
in Sweden, handled by the church from
1686. Priests recorded dates of births, bap-
tisms, con�rmations, deaths, immigrations,
emigrations and disappearances.14 Those
recordswere decentralized at each parish but
a national data aggregation was introduced
in 1749.15 The data collecting process was
regionalized at county-level from 1947 and
a computerized national population register
was introduced in 1967 by the Swedish tax
agency. It is available for research through
Statistics Sweden (SCB).16

Death dates are recorded exactly if known
(as formost cases). Approximate datesmight
be used for individuals who disappear or die
unnoticed. People who emigrate and die
abroad might be censored (lost to follow-
up). Emigration is probably more common
among patients with OA compared to pa-
tients with FNF, since those are generally
younger, healthier and more mobile. Cause
of death has been recorded in a separate reg-
ister since 1952 but were not used in the
thesis.17

1.4 COMORBIDITY

There is no strict and commonly agreed def-
inition of comorbidity. The term was coined
in 1970 by the clinician and epidemiologist
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Alvan Feinstein,18 one of the father �gures of
clinical epidemiology: “The term comorbid-
itywill refer to any distinct additional clinical
entity that has existed or that may occur dur-
ing the clinical course of a patient who has
the index disease under study”. He argued
that the concept was relevant to distinguish
patients with di�erent needs and prognosis,
in addition to age, sex and race. He also ar-
gued that comorbidity might in�uence the
risk of death more than the index disease it-
self. He was careful to distinguish between
comorbidity and adverse events (complica-
tions), where the �rst is pre-existing and the
other occurs after the index disease. Other
de�nitions of comorbidity highlights that it
must be independent of the index disease re-
garding etiology or causality, or less com-
monly, that it should be a signi�cant fac-
tor in�uencing mortality and resource use in
hospitals.19

1.5 CODES AND CLASSIFICATIONS

The history of medical coding is a his-
tory of international collaboration.9 It all
started by the bills of mortality. Those
records were, however, made without a stan-
dardized nomenclature of diseases. It was
noted in 1839 by William Farr, director of
the Registrar-General in England and Wales
that: “The advantages of a uniform nomen-
clature, however imperfect, are so obvious
[. . . ]. Each disease has, in many instances,
been denoted by three or four terms, and
each term has been applied to asmany di�er-
ent diseases [. . . This] should be settled with-
out delay.”

A delay of 30 years nevertheless occurred.
But then, the Nomenclature of Diseases, pre-
sented by the Royal College of Physicians
of London, was �nally published. Their
list was updated and maintained during ex-
actly one hundred years. A similar initia-
tive was taken by the Surgeon General in the
USA in the late 19th century, but this activ-
ity was soon discontinued. Multiple non-
standardized nomenclatures were then used
in the USA until 1919, when the Standard
Nomenclature of Diseases and Pathological

Conditions, Injuries and Poisonings for the
United States, was published. This initia-
tive did not last long, however. The Standard
Nomenclature of Diseases and Operations
was more successful, published 1930–1961.
It was succeeded by the Current Medical
Terminology used from 1963, and the Inter-
national Nomenclature of Diseases, a col-
laborated e�ort by the International organi-
zations of medical statistics and the World
Health Organisation (WHO).

Parallel to the development of detailed
nomenclatures, an additional approach was
made for statistical classi�cation. For this
purpose, groups of conditions were not
ordered alphabetically but hierarchically,
which made it possible to aggregate data
for summary statistics on di�erent levels.
Discussions started at the �rst statistical
congress in Brussels 1853. It was the percep-
tion by the time that: “a uniform list was im-
possible because of the di�erent training of
doctors and their tendency to call diseases by
whatever name they chose”.9

Florence Nightingale also took part in
later discussions and then, in 1893, Jacques
Bertillion, chief of statistics in Paris, pre-
sented the International List of Causes of
Death.

1.5.1 ICD

Bertillon’s classi�cation was later approved
by the American Public Health Association
in 1899 and revised to become the �rst ver-
sion of the International Classi�cation of
Diseases (ICD)-1. It was used internation-
ally 1900–1909 althoughBertillion noted that
“[European] countries want to be compara-
ble with each other but above all comparable
with themselves.”9 A second version, ICD-2,
was used 1910–1920. It included new medi-
cal conditions, as well as a new section con-
cerning stillbirths. The classi�cation was ac-
companied by an index section; a document
of 1,044 typewritten pages. Preparation of
ICD-3 (used 1921–1929) was delayed due to
world war I and because Bertillion got se-
riously ill. ICD-4 (used 1930–1938) was pre-
pared without him, by a commission includ-
ing representatives from a newly formed sta-
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tistical experts committee within the health
section of the League of Nations (LON).
Some attempts were made to put more fo-
cus on etiology, rather than anatomy. ICD-
5 (used 1939–1948) aimed to be more clini-
cally relevant than its predecessors, although
scienti�c issues were also considered. ICD-6
(used 1949–1957) was the �rst version to in-
clude morbidity, not only mortality. It was
a major revision undertaken by the WHO
(as part of the United Nations, the successor
of the LON). It was the �rst ICD version to
be adopted by the Swedish National Board
of Health and Welfare (NBHW), or more
formally its predecessor, the Royal Swedish
Medicines Agency, in 1951. Most of the
classi�cation was adapted as suggested, but
the sections on violence and poisoning, as
well as mental disorders, were modi�ed.20
ICD-7 (used 1958–1967) was a minor revi-
sion compared to ICD-6 but the support or-
ganization increased and the �rst WHO cen-
ter for Classi�cation of Diseases was estab-
lished as part of the General register o�ce
in England. ICD-7 was the �rst revision to
be used by the cancer register in Sweden, es-
tablished in 1958. A modi�ed version was
published in 1965 including additional sub-
classi�cation compared to the international
standard. One reason for revision was to
facilitate automatic computer processing.21
Sweden was not the only, although one of
themore prominent, countriesmaking semi-
o�cial modi�cations to the classi�cation.
This practice was acknowledged in ICD-8
(used 1968–1978), where additional codes
were included for diagnostic indexing of clin-
ical records. To reach total consensus was,
however, not possible. ICD-8 was therefore
also modi�ed before adaptation in Sweden
1969. The medical profession called for an
evenmore�ne grained classi�cation, but this
had to be compromised to maintain the orig-
inal purpose of a classi�cation used for data
aggregation.22 ICD-9 (used 1979–1994) was
planned as a minor revision, which became
substantial. It was decided to put more fo-
cus on medical manifestations rather than
on etiology, and to record some conditions
twice, once for etiology and once for mani-

festation. The clinical modi�cation (ICD-9-
CM) is still used for morbidity in the USA
(although no longer for mortality). A more
detailed oncological adaptation (ICD-O) was
also released for use by cancer centers, with
additional topographical and morphological
coding. ICD-9 was introduced in Sweden
1987.23 It was decided to make a throughout
translation into Swedish, decreasing the use
of Latin, which was more prominent in pre-
vious versions.

ICD-10 has been used since 1995 (1997 in
Sweden). It was once again a major revision
due to non-statistical needs. A new alphanu-
meric code structure was adopted. Codes
start with a letter followed by three dig-
its (possibly with a dot between the second
and third). Some codes have an additional
�fth letter for further sub-classi�cation in-
troduced in di�erent countries. ICD-10
has undergone annual revision since 1997.
A modi�ed version (ICD-10-SE) is used in
Swedish clinical settings since 2011. It con-
tains 33,547 codes whereof 2,800 concern na-
tional sub-classi�cation.24 The clinical adap-
tation used in the USA, ICD-10-CM, con-
tained 72,184 codes in 2020.25 ICD-11 is not
yet implemented but was released as an on-
line classi�cation tool in June 2018. It will be
used from January 2022.26

It should be noted that a one-to-one code
match is not guaranteed between di�erent
versions of ICD, although some cross-walk
algorithms exist.27 It is usually possible to
back-translate a newer code to an older ver-
sion, although some granularity might get
lost in the process. To translate an old code
to a new version might be more problematic.

The ICD-10 does not contain laterality as
part of the individual codes. This might be
distinguished by an additional speci�cation
of ZXA00 for right, ZXA05 for left and ZXA10
for bilateral conditions. This is less com-
monly used in practice, however.

1.5.2 ATC

The Anatomic Therapeutic Chemical classi-
�cation system (ATC) was developed by the
WHO Collaborating Centre for Drug Statis-
tics Methodology in 1976. Although an in-
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ternational standard, implementations dif-
fer between countries, partially due to dif-
ferent vetting processes before national/re-
gional introduction of new medications, as
controlled by the Dental and Pharmaceuti-
cal Bene�ts Agency in Sweden. The classi-
�cation is constantly updated as new com-
pounds are discovered and new drugs are
introduced. A Swedish version is updated
nightly and provided by the Swedishmedical
products agency.28

1.5.3 NOMESCO

The Nordic Medico-Statistical Committee
(NOMESCO) is a delegation with annual
meetings and an o�ce inCopenhagen.29 The
NOMESCO Classi�cation of Surgical Proce-
dures (NCSP) was �rst published in 1996.
It was implemented as NCSP-S in Sweden
1997.

1.6 COMORBIDITY DATA

All Swedish hospitals, private and public, are
obliged to report patient visits and hospital
admissions, to the National patient register
(NPR). This register consists of two parts:
the inpatient- and the outpatient registries.
Somatic diagnoses have been recorded in
the inpatient register (theHospital Discharge
Register), since 1964. Psychiatric care was
added in 1973 and outpatient visits can be
found in the outpatient register since 2001.
The diagnose coverage is up to 99 % but
varies between di�erent diagnoses.30 Diag-
noses are coded by ICD-10-SE whereas per-
formed medical and surgical procedures are
coded by NCSP-S, both since 1997.

ATC codes are recorded in the medi-
cal prescription register maintained by the
NBHW since 2005.

Some comorbidity data are also captured
explicitly by the Swedish Hip Arthroplasty
Register (SHAR) (Section 1.9): The Ameri-
can Society of Anesthesiologists (ASA) Phys-
ical Status classi�cation is evaluated by an
anesthesiologist on a scale of I–VI before
surgery: (I) healthy patient, (II) mild sys-
temic disease, (III) severe systemic disease,
(IV) severe systemic disease that is a con-

stant threat to life, (V) a moribund person
who is not expected to survive without the
operation, and (VI; not used by SHAR) a de-
clared brain-dead person whose organs are
being removed for donor purposes. Occur-
rence of dementia is recorded as none, prob-
able or obvious. Obesity (body mass index
(BMI) above 30 according to WHO) could be
estimated from height and weight, as either
supplied by the patient, or asmeasured at the
time of the hospital visit. Occurrence of bilat-
eral hip problems is captured by theCharnley
class.

1.7 COMORBIDITY INDICES

There are toomanymedical codes to be stud-
ied individually. It is therefore common to
categorize codes as meaningful conditions,
such as diabetes, cancer or drug abuse.31

1.7.1 CHARLSON

Charlson et al.32 developed a comorbidity in-
dex to predict in-hospital deaths and one-
year mortality for 559 patients hospitalized
in New York 1984. The cohort was screened
formedical history by the time of hospital ad-
mission.

The classi�cation entailed 19 categories,
although leukemia and lymphoma are often
grouped with malignancy, and acquired im-
munode�ciency syndrome/human immun-
ode�ciency virus (AIDS/HIV) is often omit-
ted since this condition is too rarely observed
(it was more prevalent in the 1980:s). Dia-
betes, cancer and liver disease are included
twice with sub-categories based on disease
severity.33

The unweighted sum of all comorbidi-
ties was associated with mortality. To sim-
ply count the number of comorbiditieswould
imply, however, that all conditions were con-
sidered to have an equal impact on mortal-
ity. This was considered unrealistic where-
fore a weighted index was suggested. Cox re-
gression (Section 1.12.3) was applied to esti-
mate hazard ratios (HRs) (Section 1.12.1) for
important comorbidities. Large enough val-
ues were rounded to integers and summed
to an index. A modi�cation of the index, a
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Combined Age-Charlson comorbidity index
(CA-CCI) was suggested for long-term mor-
tality by adding one extra point for each ad-
ditional ten years of age for patients 40 years
and older. This modi�cation has not been
widely used, however. It is more common to
include age as an additional covariate inmul-
tiple regression analysis.

The maximum Charlson score was 37,
although scores above 8 have rarely been
studied, since those are uncommon in most
cohorts.33 Thus, many studies truncate the
Charlson comorbidity index at a lower point.

A self-administrated version of the in-
dex was later evaluated on 170 patients by
comparing the recalled conditions tomedical
charts.34 The Spearman correlation compar-
ing the two measures was moderate (0.63),
and lower for patients with less formal ed-
ucation. This either re�ects that patients
were unaware of their diagnoses, or that their
medical records were inaccurate.

Multiple adaptations have been sug-
gested to translate the originally heuristic de-
scriptions for each disease, into formalized
code extraction algorithms based on admin-
istrative data.35

Deyo et al.36 were �rst to publish a coding
algorithm using ICD-9-CM in 1992. Their
coding algorithm was applied to a cohort of
27,111 patients with lumbar spine surgery.
Association between the derived index and
a number of outcomes, including mortality,
were evaluated by logistic regression.

Even though Deyo et al. were the �rst to
publish their adaption in 1992, Romano et
al.37 might have been the �rst to develop a
similar method (published in 1993). They
showed that: “the correspondence between
the Charlson comorbidity index and ICD-9-
CM is not intuitively obvious.” They based
their classi�cation on the same list of comor-
bidities asDeyo et al. but they identi�ed addi-
tional codes for each category. They advised
to avoid the use of previously suggested index
weights for surgically treated patients, since
those were developed on a too small and too
narrowly de�ned cohort.

D’Hoore et al. suggested a coding algo-
rithm for ICD-9 (in addition to ICD-9-CM) in

1993.38,39
In 1996, Ghali et al. suggested new index

weights to use with existing classi�cations.40
They studied 13,117 patients with coronary
artery bypass surgery and used logistic re-
gression with in-hospital deaths as outcome.
They found that only a subset of the orig-
inally proposed conditions was needed in
their model: recent myocardial infection,
cardiovascular disease, peripheral vascular
disease and congestive heart failure.

Ghali acted as senior author for a se-
ries of papers developing an adaptation for
ICD-10.41–43 A new version based on ICD-
9-CM was also suggested based on back-
translation. The same group of researchers
proposed their own index weights in 2011.44
More than 25 years had passed since the
original development of the Charlson index,
and new treatments, altering the relation be-
tween comorbidity and mortality, had been
introduced. Only 12 of the original comor-
bidities had stayed relevant.

In 2010, Armitage et al. suggested to con-
sider 14 conditions, and to not use any in-
dex weights, but to simply count the number
of comorbidities.45 They applied their model
on a cohort of 238,999 patients with elective
THA.

Two Swedish researchers, Nele Brusse-
laers and Jesper Lagergren introduced a
back-translated version to ICD-8 and ICD-9
in 2017.46

1.7.2 ELIXHAUSER

Elixhauser et al. proposed an alternative clas-
si�cation including 31 conditions, based on
ICD-9-CM, in 1998.19 They studied 1,779,167
patients, a considerably larger sample than
the 559 patients studied byCharlson et al.32 It
was their explicit aim to include some comor-
bidities not used by Charlson, such as men-
tal disorders, drug and alcohol abuse, obe-
sity, coagulopathy, weight loss and �uid and
electrolyte disorder. Potential comorbidi-
ties were distinguished from adverse events
(AEs) by excluding conditions from the same
diagnose related group (DRG) as the pri-
mary condition for each patient. Conditions
known as common complications after treat-
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ment were also excluded, such as pneumo-
nia, pleural e�usion, urinary tract infection,
cardiac arrest, cardiogenic shock and respi-
ratory failure. No weights were assigned to
individual comorbidities and it was recom-
mended not to use the classi�cation with any
standardized index, but to consider all condi-
tions as separate variables in any regression
model. This advice is reasonable for large co-
horts, studying common events. Tomodel 31
covariates in a small sample, or to estimate
coe�cients for rare events, is more di�cult.
It is therefore common to use an unweighted
sum of the identi�ed conditions as an aggre-
gated score.

Quan et al. adapted the ICD-9-CM clas-
si�cation to ICD-10 in 2005.43 Elixhauser et
al. have also regularly revised their own algo-
rithms. Later versions are based on ICD-10
but without cardiac arrhythmia.47

A set of index weights was suggested by
van Walraven et al. in 2009.48 Their version
was developed to predict in-hospital deaths
for 345,795 patients in a Canadian hospital.
Some conditions were not associated with
mortality and therefore excluded, some were
positively associated with death, and some
conditions had a protective e�ect on mortal-
ity (likely due to confoundingwith the reason
for hospitalization).

Thompson et al. performed a similar
study in 2015 with 228,365 patients in the
USA.49 They derived two new sets of index
weights, one with and one without cardiac
arrhythmia (complicated and uncomplicated
hypertension combined).

1.7.3 OTHER COMORBIDITY SCORES

The RxRisk score is based on medical pre-
scription data.50 The original version in-
cluded 39 medical conditions, but later ver-
sionwith 42,51 45,52 and 5053 conditions have
been considered as well. RxRisk V was de-
veloped for 126,075 military veterans (domi-
nantly men) in the USA. The index has been
used for patients with hip arthroplasty in
Australia.54,55 A version based on 46 condi-
tions coded by ATC was also developed for
Australian veterans.56

In addition to ICD- or ATC-based scoring

systems, there are alternatives including data
from multiple sources. The Comorbidity-
poly Pharmacy Score (CPS) is a relatively
simple score suggested for trauma patients;
a count of all pre-injury comorbid condi-
tions and medications.57 Comparisons have
showed that using this index is comparable
to the Charlson index, wherefore the need
of additional data might be questioned. An-
other comprehensive score includes 34 vari-
ables measured by inpatient diagnoses (ICD-
9-CM) and drug prescription (ATC).58

1.8 PERSONAL IDENTITY NUMBER

All Swedish inhabitants are assigned a per-
sonal identity number (PIN), either at birth
or at immigration.59 The system was intro-
duced in 1947, the same year as the county-
wise population registers (Section 1.3). The
number hadnine digits, although a tenthwas
added in 1967, the same year as the comput-
erization of the census register, for both new
and existing PINs. The system is governed by
the Swedish tax agency and was the �rst of
its kind in the world. The �rst six digits are
the date of birth given by two digits for year,
two formonth and two for day ofmonth. Un-
known birth dates might be approximated.
If too many people have the same (approx-
imate) date of birth, another date might be
chosen. This ismore common for some dates
than others, especially the �rst of January
and the �rst of July, which are used as prox-
ies formany immigrantswith unknownbirth
dates.

The seventh and eighth digits indi-
cates county of birth for inhabitants born
1947–1990 in Sweden, or the county of res-
idence by the �rst of January 1947 for peo-
ple born earlier (in Sweden or not). People
born later (in Sweden or not) receives a ran-
dom number. Immigrants born outside Swe-
den 1947–1989 had numbers between 93 and
99. Those numbers could also be used if too
many births occurred on the same day in the
same county. Digit number nine is odd for
male and even for females. The last digit is
a control number based on the Luhm Algo-
rithm (US patent 2950048).
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Some PINs might get re-used by immi-
grants with a birth date without an available
PIN. This is done after an incubation period
after the death of the previous PIN-owner.

1.9 SHAR

The Swedish Hip Arthroplasty Register
(SHAR) is a national quality register. As
such, it constitute an automated and struc-
tured collection of personal data that has
been set up speci�cally for the purpose of
systematically and continuously developing,
and ensuring the quality of care (the Patient
data act (PDL) 7:1). There are approximately
100 o�cially recognized national quality
registers in Sweden, covering di�erent
phases of care (latency, acute, investigation,
planning, intervention, follow-up and re-
habilitation). SHAR covers interventions
and follow-up regarding hip arthroplasty.
It is the second oldest quality register in
Sweden, preceded only by the Swedish Knee
Arthroplasty Register (SKAR). It is also the
oldest national hip arthroplasty register in
the world.60 In 2019, the register comprised
470,000 primary hip arthroplasties and
85,000 re-operations for 370,000 patients.60

PeterHerbertswas responsible for arthro-
plasty surgery at the Sahlgrenska hospital in
Gothenburg. In 1976, he initiated a national
register of re-operations after THA. It started
as a research project for 18 months. The
e�ort was well appreciated and the need to
study re-operations, especially revisions (Re-
operation including replacement or extrac-
tion of any part of the prosthesis), was well
acknowledged. The �rst of January 1979,
The National Register for Total Hip Arthro-
plasty saw the light of day (Figure 1.3), still as
a research project for the �rst ten years.61,62

Aggregated data for primary surgerywere
reported annually from each participating
hospital. Only re-operations were recorded
in detail for each patient identi�ed by their
PIN. Primary surgery has been recorded for
each patient since 1992 and detailed prosthe-
sis data since 1999. A web platform was re-
leased the same year, allowing participating
hospitals to report and access their own data

1979 1990 1992 1999 20022005 2017 2020

Figure 1.3: Timeline with important dates of
The SwedishHip Arthroplasty Register (SHAR).60
(SKAR = The Swedish Knee Arthroplasty Regis-
ter. SJAR = The Swedish Joint Arthroplasty Reg-
ister. Stratum = on-line IT-platform).

Table 1.1: Modules of the Swedish Hip Arthro-
plasty Register. (PROM = patient reported out-
come measures)

Table unit started

Primary surgery Hips 1992

Re-operations Re-operations 1979

Component data Components 1999

Environment data Hospital by year 1969*

PROM** Patients by date 2002/2008***
* Few registrations in early years.
** Pre-operative, 1-, 6-, and 10-year postoperative.
*** Some hospitals since 2002; national coverage since 2008.

through an on-line interface. THA has been
recorded from the start, and hemiarthro-
plasty since 2005. In 2017, the database was
migrated to its current IT-platform, Stratum,
maintained and develop by the Centre of reg-
isters (RC) in Region Vastra Gotaland (VGR).

All private and public hospitals perform-
ing hip arthroplasty surgery in Sweden par-
ticipate in the register, yielding 100 % cov-
erage. The completeness of primary surgery
was above 98 % for THA and 96 % for hemi-
arthroplasty in 2016.63 The register contains
several modules with di�erent units of inter-
est (Table 1.1). The data base is linked to the
national population register and therefore in-
cludes death dates for patients who are no
longer alive. Each re-operation is recorded
as either revision (some component replaced
or extracted), or as any other type of open
surgery performed to the hip. Each hip can
have multiple re-operations. An accompa-
nying component database is used to store
details of each prosthesis model such as di-
mensions, materials, producers and more.
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This is of interest to manufactures for post-
market surveillance. Environment data is
recorded annually, including data on oper-
ating facilities that are not changed between
surgeries. Patient reported outcome mea-
sure (PROM) are centered around each pa-
tient and has been collected nationally since
2008.64 Patients with elective surgery re-
spond pre-operatively, as well as one, six and
ten years post-operatively. Patientswith FNF
participate only post-operatively.

SHAR and the Swedish Knee Arthro-
plasty Register (SKAR) formally merged in
2020 to become the Swedish Joint Arthro-
plasty Register (SJAR). We still use the old
name in this thesis since most of the work
was performed prior to this merge.

1.10 NJR

The National Joint Registry for England,
Wales, Northern Ireland, the Isle of Man
and the States of Guernsey (NJR) was estab-
lished in 2002 and has published annual re-
ports since 2004. The registry holds more
than 2.8 million records for �ve joint re-
placement procedures: hips, knees, ankles,
shoulders and elbows. More than one mil-
lion records concern hip arthroplasty. It is
the largest arthroplasty register in the world.
Increased collaboration is planned between
NJR and other orthopedic registries in the
UK to form the National Musculoskeletal
Registry (NMR). The registry is part of the
National Health Service (NHS) and is led by
a steering committee.

Reporting to the register is mandatory for
all NHS trusts and foundation trusts within
NHS England, as well as for all NHS Wales
hospitals.65 The register coverage is thus
100 % for such hospitals, although privately
founded hip arthroplasty is not included. Pa-
tient participation in the register is based
on informed consent. Consent rates varies
slightly between years and regions but were
92.3 % in both England and Wales in 2018.66
This would constitute the completeness of
the register within the covered hospitals.

Research data from the register is pro-
vided through a data access portal after per-

mission by a research committee. Provided
data sets incorporate somepre-speci�ed link-
age by individual NHS-numbers, or by name,
age, sex and address. This includes the Hos-
pital Episodes Statistics (HES) registry (com-
parable to the Swedish NPR), as well as mor-
tality data linked from the O�ce of national
statistics.66

1.11 REGRESSION ANALYSIS

Assume that Y is an outcome observed as
y = y1, … , yn for patients i = 1, … , n with
additional k-dimensional baseline covariate
vectors Xi⋅ = (1, Xi1, … , Xik). The goal of re-
gression analysis is to relateX = [X1 … Xn]′
toY, involving some variable coe�cients� =
(�0, �1, … , �k)′ (where v′ is the transpose of
v), such that g(Y) = f(X� + ") for some
functions f, g∶ ℝ → ℝ where ℝ is the set
of real numbers, and where " is a random
noise vector " = ("1, … , "n) and "i ∼ N(0, �2)
with N representing the normal/Gaussian
distribution with some unknown variance
�2. The simplest formconcerns linear regres-
sion with Y ∈ ℝ and f = g = I, the identity
function: Y = X�+". Assume, however, that
Y ∈ {0, 1}. A linear relation between Y and
X� is then unreasonable, although a logistic
transformation, f(z) = 1∕(1−ez), might im-
ply a sigmoid relation between z = X� + "
and g(Y) = P(Y = 1) = p. This is logis-
tic regression, usually denoted by p = [1 −
exp(−(�X + ")]−1 . The fact that exp(") is in-
cluded as a multiplicative factor is di�erent
from linear regression, although commonly
neglected in the medical literature. Logistic
regression is often used for short-term mor-
tality where Y = 1 = death.

The logistic function is the inverse of
the logit function, the natural logarithm of
the odds of Y = 1 (Section 1.11.2), thus
logit(p) = ln [p∕(1 − p)] = X� + ". This
is one example of generalized linear regres-
sion where X� might be additionally trans-
formed by elementary functions, polynomi-
als, or splines. Further generalizations in-
clude generalized additive models, regular-
ized regression (Section 1.14), boosted re-
gression, and random/mixed e�ects models
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(Section 1.11.1), as well as various combina-
tions of those, such as fractional polynomials
and splines (piecewise polynomial functions
connected at certain coordinates/“knots”).

Coe�cients from linear regression are
collapsible, meaning that their implied as-
sociation, as measured by their magnitude
and direction, does not change in relation to
other variables in the same multivariable re-
gression model. This is rarely true for coe�-
cients of logistic regression with implicit de-
pendency on the baseline levels of all other
variables (the background/baseline cohort).
Hence, if certain levels of a categorical vari-
able are collapsed, this might change both
the direction and magnitude of other vari-
ables, since they all relate to the background,
which is no longer the same.67

Another generalization is piece-wise lin-
ear regression (segmented- or broken-stick
regression/interrupted time series), where
z = X� + " is partitioned into L segments
⋃L

l=1 �l where �l = (sl−1, sl] for some break
points {s0, … , sL} with s0 = min(z) and sL =
max(z). Individual slopes are �tted within
each segment �l and knots/breakpoints are
chosen so that all segments are connected
by one-degree splines. Optimal knots can
be identi�ed by numerical methods to max-
imize the likelihood of the model, given the
observed data.

1.11.1 CORRELATED DATA

Traditional regression techniques assume in-
dependency among samples. For corre-
lated data, the estimated e�ects can be ei-
ther marginal or conditional. The di�er-
ence is important, and the relevant frame-
work should be chosen based on the question
of study.

In marginal e�ects models, the coe�-
cients are estimated by their average e�ects
over intra-dependent clusters. This might be
performed by generalized estimating equa-
tion (GEE) based on a quasi-likelihood esti-
mation procedurewith di�erential equations
and numerical iterative methods. The co-
variance structure between samples is cen-
tral, and is often modeled as a robust co-

variance matrix using a “sandwich estima-
tor” (matrix notation BMB where B and M
represents the container bread and the sur-
rounded meat). It has been found in em-
pirical studies, however, that GEE is rather
insensitive to the exact matrix assumption.
A “working correlation” must nevertheless
be supplied by the modeler. This might be
rather subjective and a simple identity ma-
trixmight su�ce in absence ofmore intricate
assumptions.68

Alternatively, the cluster e�ects could be
explicitly modeled, although not necessar-
ily estimated, by hierarchical generalized lin-
ear models (HGLM), including �xed or ran-
dom intercepts, and/or possibly (but less
commonly) random slopes for each clus-
ter. A �xed e�ect is explicitly modeled by
a dummy variable in the statistical model.
Random e�ects are considered unknown but
with known distribution (usually normal). A
mixed e�ects model contains both �xed and
random e�ects. HGLM implies conditional
estimates, where a unit change of a covari-
ate will have the estimated e�ect of the coef-
�cient among individuals conditioned on the
remaining �xed e�ects.

Marginal e�ects are also called
“population-averaged models”. This is a
simpli�cation since marginal models are
equivalent to conditional models ignoring
some known or unknown cluster e�ects.69
It has therefore been argued that conditional
modeling should be considered the norm.70
GEE might, however, be preferred to HGLM
for computational reasons or to avoid ad-
ditional distributional assumptions of the
random e�ects.

In linear regression, the marginal and
conditional e�ects are the same. In log-linear
models such as Poisson regression, all pa-
rameters except the intercept, will also coin-
cide. In logistic regressionwith random clus-
ter e�ects r ∼ N(0, �2) and a conditional co-
e�cient vector �, the marginal equivalent is
approximately �m ≈ (1 + 0.35�2)−1∕2�.69

1.11.2 ODDS AND ODDS RATIOS

The coe�cients of logistic regression are of-
ten of less relevance. Their exponentiated
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form is usually of more interest since those
correspond to odds ratios (ORs), comparing
the odds of the outcome in groups with and
without certain conditions, or with a unit
change in continuous variables. Hence, X�
is regressed to the natural logarithm of the
odds of an event: OA = pA∕(1 − pA) where
pA = P(Y = 1|A) for some condition
A. The exponentiated variable coe�cients
are ORs, ratios of two such odds, for pa-
tients with mutually exclusive conditions A
and B (where B might equal AC , the com-
plement of A): OR = OA∕OB. Odds ra-
tios are di�erent from risk ratios (relative
risks): RR = pA∕pB, although commonly
approximated as such.71 Relative risks are of-
ten easier to interpret and the approxima-
tion is possible for rare events and ORs rel-
atively close to 1. A common prerequisite to
assume OR ≈ RR is for p̂ < 0.1 combined
with OR ∈ [0.5, 2.5].72,73 According to the
central limit theorem, the odds will be nor-
mally distributed as the sample size n → ∞.
With small sample sizes, the estimated odds
become biased and overestimated.74 This is
equally important for low e�ective sample
sizes, thus for rare events data.

A note of caution is that di�erent termi-
nology is sometimes used in what is called
“(clinical) epidemiology” and “mathemati-
cal epidemiology”. The “case fatality rate” for
example is used in (clinical) epidemiology,
de�ned as the proportion of deaths among
patients with a certain condition. This “rate”
is thus a mathematical probability.75

1.12 SURVIVAL ANALYSIS

The �rst recognized study on mortality
known to the western culture was performed
byGraunt (Section 1.3).12 It was a revolution-
ary study of its time, performed by a busi-
nessman interested in life tables and sum-
mary statistics. The theoretical foundation
of survival analysis has been developed since
then.

In this thesis, we measure survival time,
T, as the number of days from primary
surgery with hip arthroplasty until death.
The cumulative survival function, S(t) =

P(T > t), models the probability to survive
at least t days.

From now on, we will ignore the error
term, ", to simplify notation. A naive esti-
mate of S (on a population level) is Ŝ = 1 −
d∕n, where d is the number of deaths before
t and n is the total number of patients. Life
tables constructed this way have been used
since the days of Graunt and by actuarial sci-
ence thereafter. This estimator assumes that
we know the actual death dates for all pa-
tients. This was somehow true for Graunt,
since he only studied individuals who died
in retrospect. For prospective studies, it is al-
most never the case that all actual survival
times are known. It is common to include
patients with only partially known follow-up
times, who are still alive at the end of the
study. Such censoring makes the naive es-
timator naïve. Kaplan and Meier developed
a non-parametric theory for individuals fol-
lowed until either death or censoring (loss
to follow-up).76 Hence, the study of observed
survival time, from 0 to To = min(T, Tc)
where Tc is the time of possible censoring,
and To is the measure of observed time to
whatever comes �rst, as indicated by a com-
panying binary indicator variable � = 1 if
To = T and 0 otherwise.

1.12.1 HAZARDS

To study To and � is challenging consider-
ing variable adjustments. An alternative ap-
proach is to study the hazards, the probabil-
ity of death within a very short (in�nitesi-
mal) time dt after t: �(t)dt = P(t < T <
t + dt|To ≥ t). We thus state that To ≥
t, hence we only consider patients with a
follow-up time (until death or censoring) of
at least t. Those patients are still at risk at
time t, and their quantity, nt, is used as the
nominator when calculating the proportion
of patients surviving the short time interval
dt. We can thus estimate the hazard empir-
ically by: �̂(t) = dt∕nt where dt is the ob-
served number of deaths between t and t+dt
among the nt at risk.

We are often interested in the cumulative
hazard Λ, the sum of hazards estimated at
observed failure times t(1) < t(2) < … <
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t(d) < t, given by Λ(t) =
∑

t(i)<t
�(t(i)) ≈

∑
i ∶ t(i)<t

(di∕ni) = Λ̂(t), where di is the num-
ber of deaths between t(i) and t(i+1), and ni is
the number at risk at time t(i).

Hazards and cumulative hazards might
be interesting in their own rights, but our
main interest is the proportion of patients
who survive until time t, not the rate of pa-
tients who dies during a theoretically short
time interval dt. Fortunately, those concepts
are related: S(t) = exp[−Λ(t)]. The max-
imum likelihood estimator of S is Ŝ(t) =∏

i ∶ t(i)<t
(1 − di∕ni), the essentially unbi-

ased product-limit/Kaplan–Meier estimator
for the survival probability among patients
still at risk.76

1.12.2 PROPORTIONAL HAZARDS

Estimation of cohort survival or hazards is
one part of modeling survival. Another is
the ability to test di�erences or equivalences
between patients with di�erent conditions.
A null hypothesis for two groups of patients
would be H0 ∶ S1(t) = S0(t), where S0 and
S1 denote the survival of each group. Thus, if
H0 is true, there would be no survival di�er-
ences between those groups.

The corresponding default alternative hy-
pothesis H1 ∶ S1(t) ≠ S0(t) is generally
too broad, however. Alternative approaches
have been debated. One solution is based on
rank tests, the Lehmann alternatives.77 As-
sume that S1 is speci�ed by a function g(x) =
x' of S0. Thus S1(t) = S'0 (t), or equivalently
�1(t) = '�0(t) for some proportionality con-
stant '. The practice to compare two groups
could be generalized to include covariates by
assuming ' = exp(X�). Then, the HR indi-
cates the relative increase or decrease in haz-
ard comparing two groups, as di�erentiated
by X⋅j with associated �j: HR = �1∕�0 =
'�0∕�0 = exp(�jX⋅j)(�0∕�0) = exp(�jX⋅j).
There are three scenarios: (1) �j < 0 (HR <
1) means that patient i with xij = 1 have a
lower hazard than patients with x⋅j = 0, and
therefore better survival. X⋅j thus has a pro-
tective e�ect; (2)�j = 0 (HR = 1; as coherent
with H0) means that both groups are similar
with no excess hazard for any group and; (3)

�j > 0 (HR > 1) means that patient i with
xij = 1 have larger hazard and lower survival
compared to patients with x⋅j = 0; thus X⋅j
has an adverse e�ect. Similar reasoning ap-
plies to a unit change of a continous variable
X⋅j .

1.12.3 COX REGRESSION

Sir David Cox suggested to regress the haz-
ard to covariates on the form �(t) =
�0(t) exp(X�).78 He called it proportional
hazard regression, often referred to as Cox
regression. The e�ect of a change in the co-
variates is associated with the instantaneous
probability of death for patients who sur-
vived up to at least time t. The instanta-
neous death rate at any given time during
the follow-up is HR times higher (or lower)
among one group compared to another, if as-
suming proportional hazards. Note that HR
is a relative rate, HR = exp(�j), and not
a relative risk/probability, which would be
[1 − S0(t) exp(�j)]∕[1 − S0(t)], where S0(t)
is the baseline survivor function at time t
(the probability to survive at least until t
among the “controls”). HR and the relative
risk have similar directions but can di�er in
magnitude.71 An approximation of HRs as
relative risks might be acceptable for out-
comes with rare events and low HRs.

Hence, modeling � this way assumes pro-
portional hazards, hence that X� is con-
stant over time. If not, �̂ as the average ef-
fect, might be irrelevant, or even mislead-
ing, if it no longer corresponds to any ac-
tual value of � at any observed point in
time. David Schoenfeld took his PhD two
years after the Cox regression model was
proposed. Six years later, in 1980, he sug-
gested a Chi-square (�2) test to evaluate the
goodness-of-�t for the proportional hazards
assumption.79 Two years later, he also pro-
posed a graphical method later known as
Schoenfeld residuals.80 Such residuals are
asymptotically independent. Hence, if the
proportional hazards assumption holds, ex-
pected values for the residuals are 0 and plot-
ting the residuals versus time will depict ran-
dom noise scattered around 0. If this is
not the case, the proportional hazards as-
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sumptionmight not hold, andCox regression
might be inadequate.

1.12.4 EXTENDED COX REGRESSION

If proportional hazards cannot be assumed,
hence if X� is time dependent, alternatives
to the regular Cox regression model must be
considered. There are two alternatives: time-
dependent covariates, X = X(t), or time-
varying coe�cients � = �(t). The age of
a patient for example will inevitably change
and is therefore a time-varying covariate (the
age at surgery, however, will stay constant).
Time-dependent covariates are either inter-
nal or external/exogenous.81,82 An external
covariate is not directly related to the fail-
ure mechanism, such as age. Age is deter-
ministic based on date of birth and the time
passed since then. It is possible to calculate
hypothetical ages even for patients that are
no longer alive. Internal time-dependent co-
variates are harder to predict. They depend
on the individuals being studied. Blood pres-
sure or smoking status are classical exam-
ples.

Alternatively, the coe�cients might vary
with time, � = �(t). Even if the set of comor-
bidities are �xed before surgery, the e�ect
of those comorbidities on mortality might
change. This could happen for example if
new treatments make the presence of a cer-
tain comorbidity less severe over time. We
will assume that this time-dependent change
can be captured by a function ℎ, such that
ℎ = ℎ(�, t). This might not be true for
individual patients but could work reason-
ably well when aggregated to the population
level. We can thus rewrite the hazard as � =
�0 exp[Xℎ(�, t)]. Assume for example that
the e�ect of pre-surgery drug abuse dimin-
ishes (wash out) with time if the patient stops
using drugs. Thus, assume that ℎ(�j , t) =
�jt−1 which represents an interaction e�ect
between �j and a function ℎ of t. Hence,
� = �0 exp[Xℎ(�j , t)] = �0 exp(X�jt−1).

Another scenario is to assume constant
e�ects during limited time intervals. This
could be relevant for some comorbidities,
for example some cancer diagnosis, with ini-

tially highmortality. Patients survivingmore
than �ve years, however, might be consid-
ered “statistically cured”, thus with a lower
remaining risk of death. It is then reason-
able to assume that hazard ratios for two
groups are proportional within each interval,
although di�erent in di�erent intervals. We
can de�ne ℎ as for example ℎ(�j , t) = �j ⋅
[I(t < 5) + I(t ≥ 5)∕10] where I(t < 5) = 1
if t < 5 and 0 otherwise (vice versa for I(t ≥
5)). This is a Heaviside step function, assum-
ing that the association between cancer and
mortality will decrease to only 10 % after year
�ve. The number of intervals is arbitrary. In-
teraction modeling with discrete time inter-
vals is similar to strati�cation since no gen-
eral time- or covariate e�ects are assumed.

It is also common to represent the occur-
rence of death as a counting process.82,83 This
is mostly a data management tweak to trans-
form the data for easier calculation. It is done
by including each patient once per interval,
if he or she is still at risk (alive). A cancer
patient who dies after 7 years will then be in-
cluded once for the �rst �ve-year period, and
once again for a second period from year 5 to
7. In practice, cut points are set at each ob-
served time of death, {t(1), … t(d)}.

1.12.5 RMST

A basic summary of cohort survival is the
median survival time. Apart from censor-
ing, this value can be estimated as soon as
half of the cohort has died. It is a popular
measure in medical research. The mean on
the other hand: � = E[T] = ∫ ∞0 S(t)dt ≈
(1∕n)

∑n
i=1 ti = t̄ = �̂, can only be estimated

if all ti:s are known. This is unrealistic
even with a good population register, since
many patients with hip arthroplasty survive
decades after surgery. We would need to
wait until they all die before calculating
t̄. This estimate would thus be obsolete
even before calculated. The restricted mean
survival time (RMST) is a shortcut, where
we only consider the mean survival time up
to a time point �,* instead of∞ in theory or

*Also known as t-year mean survival time84, re-
strictedmean event time85 or restrictedmean lifetime.86
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t(d) in practice; �� = RMST� = ∫ �0 S(t)dt ≈
∫ �0 Ŝ(t)dt = �̂�.87 If, for example, � = 10, we
only need survival data for the �rst 10 years
after surgery. �10 would never exceed 10,
and it would most likely fall strictly below.
The restricted mean time lost (RMTL) is
� − ��, the remaining gap between RMST
and �. Both measures are asymptotically
normal: RMST�, RMTL� ∼ N(⋅, �2)
with variance �2 = 2 ∫ �0 S(t)dt −
[∫ �0 tS(t)dt]

2,88 estimated by Var(�̂�) =
n

n−1
[
∑n

i′=1

[∑n
i=i(t(i+1) − t(i)Ŝ(t(i))

]2 1
ni′ (ni′−1)

]

where t(i) is the ith smallest of the sorted
event times (possibly adjusted to separate
ties) and ni is the size of the risk set prior to
t(i).89

�� is easily estimated as the area under
the survival curve S ≈ Ŝ, where Ŝ can be
calculated by a method of choice, commonly
by the Kaplan–Meier estimator.76 The area
is then estimated by numerical integration,
i.e. by the trapezoid rule. Survival for two
groups, S0 and S1, can be subtracted and
compared without the need of the propor-
tional hazards assumption:84D = �̂1�−�̂0� =
∫ �0 [Ŝ1(t)−Ŝ0(t)]dtwithVar(D) = Var(�̂1�)+
Var(�̂0�).90 Hypothesis tests and con�dence
intervals (CIs) can be based on the normality
assumption, although the standardWald test
might be sub-optimal for small samples and
large censoring proportions.91

One way to adjust for covariate e�ects
is by pseudo-observations regressed by GEE.
First, each ti (including censored values
where � = 0) is replaced by pseudo-
observation: �̂�,i = n�̂� − (n − 1)�̂−i� =
∫ �0 [nŜ(t) − (n − 1)Ŝ(t)−i]dt for each pa-
tient i, where �̂−i� and S(t)−i are estimates
of �� and S(t) for all patients except the
ith.92 The pseudo-observations thus repre-
sents the contribution of each individual to
the overall aggregate (��) and transforms the
possibly censored data into a data set with-
out censoring.93 This is useful in many set-
tings, additional to RMST, considering sur-
vival analysis with censored data.94

Estimations of the pseudo-values largely
consider the same data, implying depen-

dency among observations. GEE is therefore
preferred to regress those on potential co-
variates and to model the marginal e�ects of
each covariate (Section 1.11.1). If assuming
a working correlation of 1 (the scalar version
of an identity matrix),92 the �-vector could
be estimated by partial di�erential equations
solving 0 =

∑
i
)
)�
(�′Xi)′(�

(
)
�,i − �′Xi) where

�(
)� represents the RMST among patients in
group 
 (i.e. patients with a certain comor-
bidity score).95 Such � is asymptotically nor-
mally distributed.94

1.13 PREDICTION

There are essentially two aims of statistical
modeling: to explain (describe/understand)
or to predict.96–98 Study II–IV were focused
on prediction, although some degree of un-
derstanding is always necessary. Prediction
modeling is the term used in statistics, but
terms like prognostic modeling, prediction
rules, risk score, forecasting or foreseeing
are also used in the medical �eld.99 Under-
standing a process usually involves estima-
tion of association and e�ect sizes, such as
�-coe�cients or HRs. Overly complicated
models and methods are not desirable since
those might lack a natural interpretation.
For predictions on the other hand, we might
accept the use of “black boxes” (opaquemod-
els). It is often less important exactly why
predictions work, as long as they do. It
is therefore sometimes recommended to in-
clude as much data and as many variables as
possible when building a predictive model.
However, complex models using administra-
tive data might not be feasible if this data
is not accessible in a clinical setting where
future predictions are supposed to be made.
This di�erentiate the clinical setting from
weather forecasting or �nancialmodel build-
ing, where super computers and specialists
work full-time.100

On a conceptual level, the goal of pre-
diction is to �nd a model M, which could
predict the relevant outcome Y from covari-
ates X, present at the time of prediction. We
can conceptualize M as a function f, esti-
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mated by f̂ using a training data set, with
patients for whom X = xd, and Y = yd
with d denoting the derivation/training co-
hort. The possibility of f̂ to approximate f
is then evaluated based on observed covari-
ates X = xv where v indicates an indepen-
det validation sample. Observed outcomes
Y = yv are compared to predicted f(X =
xv) = Ŷv. The better those values resemble
each other, the better approximation of f̂ to
f, and the higher predictive power we have.
The comparison is made by a loss function l
such as the root-mean-square error (RMSE):
l(yv, Ŷv) =

√
(1∕nv)

∑nv
i=1(yvi − Ŷvi)2 where

nv is the number of patients in the valida-
tion cohort. This is slightly di�erent from ex-
planatory modeling where f̂ relies on prede-
�ned theories and where the focus is on the
functional form of f. Also, the model �t is
usually assessed by the same sample as used
to estimate f̂.

For prediction modeling, we do not need
to accurately estimate each �j .101 We only
need Ŷ = f̂(x�̂). This is the reason why
a pre-calculated comorbidity score such as
Charlson or Elixhauser might work. This
is somehow similar to statistical techniques
such as principal component analysis (PCA),
aimed to reduce the dimensionality of the
model.

The model M could be based on com-
plex machine learning (ML) algorithms or
arti�cial intelligence (AI). We focus on tra-
ditional statistical regressionmodeling, how-
ever, since those models are generally eas-
ier to interpret and since earlier results have
shown limited or no bene�ts for more com-
plex models in settings similar to ours. Pre-
diction modeling has been applied to several
post-operative conditions after hip arthro-
plasty. Mortality is most commonly studied
within a relatively short period after surgery,
sometimes limited to in-hospital deaths in
countries without centralized PINs.102–105
Unfortunately, not all published predic-
tion models relies on sample sizes large
enough,106 or use the optimal statistical tech-
nics, to achieve unbiased and truly useful
models.107

1.14 VARIABLE SELECTION

It is common that patient data used for pre-
diction modeling include only a few strong
predictors and several weaker ones.108

It is then desirable to identify those im-
portant variables, not only to simplify the
model (Ockham’s Razor), but also to avoid
the risk of over-�tting and to exclude vari-
ables that are truly irrelevant for generaliza-
tions outside the training set. There are sev-
eral ways to perform variable selection. One
is to only consider potential predictors with a
known (or hypothesized) relation to the out-
come. This is not always possible, where-
fore statistical procedures might be consid-
ered. Traditional methods such as univari-
able screening is an easy �rst step, although
not generally recommended. Here, the an-
alyst uses separate univariable models, re-
gressing each potential predictor to the out-
come. A hypothesis test is performed with
H0 ∶ �j = 0 versus H1 ∶ �j ≠ 0 and all
variables with a p-value above a prede�ned
threshold are excluded before any multivari-
able regression. Such threshold is usually
higher than the traditional 0.05, for example
0.15 or 0.2, since the purpose is not to draw
conclusions of individual e�ects but only to
screen out variables that are truly irrelevant.

A more elaborate version is to �t
multiple multivariable models iteratively,
including and excluding variables based
on intermediate results. This process is
known as stepwise regression, including
forward selection or backward/bidirectional
elimination.109 Nested models are compared
by some criteria, for example the Akaike
information criteria (AIC) or the Bayesian
information criteria (BIC) ac − 2 ln L̂ where
aAIC = 2k, cBIC = k ln n, k is the number
of parameters estimated by the model (in-
cluding dummy variables and polynomial
coe�cients), n is the sample size, or better
the e�ective sample size (the number of
cases with the least probable outcome).110
L̂ is the maximum likelihood conditioned
on the observed data. A model with a low
AIC-/BIC-value is preferred to models with
higher values.
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Univariable screening and stepwise re-
gression are both criticized for the risk of
over-�tting the model to the data. An alter-
native approach is regularized/penalized re-
gression to shrink the estimated coe�cients
at the time of parameter �tting:111 � =
argmin�∈ℝk+1‖D(y, X�)‖22 + �‖�‖rr, where
ℝk+1 is the k + 1-dimensional real-valued
vector space containing the model parame-
ters (including the intercept). D is here the
deviance, a common loss function in logistic
regression with D(yi , �Xi) = 0 for yi = �Xi
and D > 0 otherwise. ‖z‖2 =

√∑n
i=1 z

2
i the

sum of squares based on the Euclidian- or L2-
norm, ‖z‖1 =

∑n
i=1 |zi|, the Manhattan- or

L1-norm, |zi| the absolute value of zi (|zi| =
zi if zi ≥ 0 or −zi if zi < 0). � ∈ ℝ+ is a posi-
tive tuning parameter used as a penalty/regu-
larization term, often chosen tominimize the
loss function based on v-fold cross validation
(Section 1.15).

Ridge regression, with r = 2, shrinks
the parameters closer to each other, thus
limiting the e�ects of individual parameters.
Least absolute shrinkage and selection op-
erator (LASSO)-regression, with r = 1, ex-
cludes seemingly irrelevant factors by faster
shrinkage to 0. Thus, LASSO is a method for
variable selection, while ridge regression can
be combined with LASSO in “elastic net” re-
gression to achieve the same goal. Iterative
numeric methods are used for parameter es-
timation. A method has been implemented
in the popular glmnet R-package, which
is computationally more e�cient than the
traditional numerical method by Newton–
Raphson.112

Even though the penalty term used in
LASSO will itself lower the risk of over-
�tting, an additional safety net is to simul-
taneously vary the underlying training data
by at least 100 bootstrap replicates (Sec-
tion 1.15).113–117

1.15 MODEL VALIDATION

Model validation is important for prediction
modeling, although often neglected.118–120
There are four important aspects when eval-

uating a predictionmodel:110,121 (1) discrimi-
nation, how good is the model to distinguish
between patients who do, or do not, experi-
ence the event of interest (rank-correlation);
(2) calibration, how similar or dissimilar are
the observed and predicted values; (3) trans-
portability, is the model generalizable to an-
other population; and (4) clinical usefulness,
is the predictionmodel useful as a shared de-
cision making tool in clinical practice?

There are three ways to evaluate 1-3: (1)
internal validation asserting reproducibility,
either to split the data to one part for training,
and one for evaluation, or preferable, to use
techniques such as cross-validation or boot-
strapping; (2) temporal validation, to train
the model on data from one period and to
evaluate it with data from a later period; and
(3) external validation asserting transporta-
bility: to train and validate the model on dif-
ferent, yet comparable, populations.

The focus of this thesis was internal and
external validation using cross-validation,
bootstrapping, and an external cohort.

For v-fold cross-validation, the sample
with n patients is partitioned into v groups
of approximately equal size. The model is
trained on v − 1 of the partitions and eval-
uated by a loss function using data from the
vth partition. This is repeated v times and the
results are averaged. The whole procedure
might be repeated several times with new v-
fold partitions. 10 × 10-fold cross validation
is a popular setting. If v = n (the sample
size), only one item is left out for validation
each time. This is known as Jackknife re-
sampling.

For bootstrapping, we repeatedly draw
new samples from the initial sample. The
sample size is retained using sampling with
replacement. Hence, the same patient can
be included more than once. A point esti-
mate of p, a parameter of interest, is given
by: p̂ = (1∕B)

∑B
l=1 p̂l where B is the num-

ber of re-samples (often multiples of 100 or
1,000) and p̂l is the parameter estimate from
re-sample l. Measures of uncertainty, such
as an empirical CI, is estimated by relevant
quantiles of p̂l, usually considering the range
after excluding the smallest and largest 2.5 %
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of all p̂l:s. Bootstrap validation is usually pre-
ferred to the othermethods due to stable esti-
mates with low bias.122,123 To increase B will
yield better estimates, but themethod is com-
puter intensive and potentially time consum-
ing.

Both cross-validation and bootstrapping
might be hampered by rare events data,
where one partition or re-sample might lack
events. Strati�ed versions have been pro-
posed to retain the initial proportions.

1.15.1 DISCRIMINATION

The discriminative ability of a prediction
model is measured by rank similarity be-
tween observed and predicted outcomes in a
sample other than the training set, either in
out-of-bag samples (Non-sampled data used
for internal validation), or in a di�erent co-
hort for external validation. Assume that the
observed outcome is binary (dead or alive),
while the predicted outcome is a probabil-
ity of such event. Certain thresholds could
then be applied to suggest that a patient will
die if the probability of death exceeds 0.5
(or any other value) given his or her covari-
ates. Then, a simple classi�cation of predic-
tions versus outcomes would consider four
distinct groups of patients: dead patients pre-
dicted to (1) die or (2) survive, as well as sur-
viving patients predicted to (3) survive or (4)
die.

All patients must fall in one of those cat-
egories. A better model will result in larger
proportions in category 1 and 3, indicat-
ing sensitivity and speci�city. All patients
must also fall in only one of those categories.
Thus, an increase in sensitivity might de-
crease speci�city (although rearrangements
using all four categories make this relation
less direct). The relation between those cat-
egories might be presented as a 2 × 2 con-
fusion matrix, and several measures of dis-
criminative ability might be derived from
it (true/false positive/negative rates, recall,
fall-out, probability of detection/false alarm
et cetera), each on the [0, 1] scale.

Instead of a �xed threshold, we might il-
lustrate the relation between sensitivity and
speci�city for all possible thresholds by a re-

ceiver operating characteristic (ROC) curve
where the x-axis marks the false positive
rate (1− speci�city), and the y-axis the
sensitivity/recall.124 Such curves are neces-
sarily monotone (non-decreasing). A model
without any discriminative ability will be
presented as a diagonal straight line from
origo to the upper right corner of the quad-
rant. A model with better discriminative
ability will yield a concave curve closer to the
upper left corner.

The ROC curve as a whole is a use-
ful measure of the relation between sen-
sitivity and speci�city, since the give-and-
take between the two is not necessarily
symmetrical.125 It is nevertheless common to
seek for a summary measure to convey all
information as dense as possible; the area
under the curve (AUC). The worst possi-
ble model (with a ROC-curve mimicking the
diagnoal line) yields AUC = 0.5, thus the
area of half the unit square. Better models
will cover larger areas, yielding a maximal
value of AUC = 1. Obviously, the area alone
cannot distinguish models with high sensi-
tivity but low speci�city from models with
low sensitivity but high speci�city for cer-
tain thresholds. If one of those measures
is more important than the other, di�erent
weighting schemes could apply. It is of-
ten recommended to present the full ROC
curve, and not only the summarized AUC
value, although the actual bene�ts have been
debated.126 The area is calculated by integra-
tion or estimated by numericalmethods such
as the trapezoid rule.

AUC is often used as a concordance in-
dex (C), interpreted as the probability that
given two patients, one survivor and one
who dies, the prediction model will assign a
higher probability of death to the latter.127 C-
indices from themedical �eld are often inter-
preted as moderate if C ∈ [0.5, 0.7), good if
C ∈ [0.7, 0.8), and excellent if C ∈ [0.8, 0.9).
C ∈ [0.9, 1.0] might be considered suspi-
cious and attributed to over-�tting in settings
with observational data and many unmea-
sured covariates.128 Such C-values are more
common in physics with data from carefully
controlled experiments. The AUC-value has
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become almost synonymous with a concor-
dance index for survival data, at least with lo-
gistic regression modeling in-hospital deaths
or short-termmortality, where AUC coincide
with Harrell’s concordance index c, and with
the Wilcoxon–Mann–Whitney–U-statistic.

Some additional complexity arise for sur-
vival data with censoring. Several gener-
alizations of sensitivity and speci�city ex-
ist in this case.129 Kaplan–Meier estimates
are generally insensitive to censoring, but
not for estimating sensitivity and speci�city.
Both measures might decrease simultane-
ously in the presence of censoring, implying
a non-monotonic ROC-curve with sudden
drops. Heagerty et al. repaired such curves
using estimates fromnear-by points (a kernel
function with a smoothing parameter based
on nearest-neighbors).129 A semiparametric
model with a bi-variate distribution consid-
ering covariates X and time t, was used for
ROC-curves of cumulative survival account-
ing for censoring. Five years later, the au-
thorsmodi�ed their proposal to an incidence
time-dependent ROC-curve.130 Hence, con-
sidering death at time t + dt for an in�nitesi-
mal time dt. This required an updated, dy-
namic, risk set of patients at time t (com-
pared to previous models using a static risk
set from time 0). Thus, each patient was
initially considered alive (a “control”), but
then transferred to a “case” at the moment
of death. This way, we can evaluate the dis-
criminative ability of the model for instant
death at time t by a value AUC(t) estimated
by numerical integration or weighted averag-
ing. Then, integrating oncemore over the di-
mension of time, yields a time averaged AUC
up to time �: C� = ∫ �0 AUC(t) ⋅ w

�(t)dt
where w�(t) are regularization weights such
that ∫ �0 w�(t)dt = 1. Heagerty et al. de-
scribed C� as the probability that the predic-
tions for a random pair of subjects are con-
cordant with their outcomes, given that the
smaller event time occurs in (0, �).130 Adap-
tations for non-parametric survival models
have been suggested as well.131 It has been
proven that the time-dependent AUC is a
proper concordance index for estimation of
mortality at �xed time points.132

1.15.2 CALIBRATION

Calibration is another important aspect of
model validation, indicating proximity be-
tween observed and predicted values. Dis-
crimination might in�uence calibration but
the relation is modi�ed by case mix, where-
fore both measures should be assessed in
tandem.133 Unfortunately, this is often ne-
glected; only one third (25 of 78) of medi-
cal prediction studies assessed calibration ac-
cording to a systematic review in 2014.119

An over-all heuristic for a binary re-
gressionmodel is “calibration-at-large”, com-
paring the observed and estimated event
rates. Calibration is otherwise most intu-
itive for linear regression, comparing the ob-
served y and the predicted ŷ. The resid-
uals, " = y − ŷ, should be as small as
possible, preferably independently and ran-
domly distributed with a normal distribution
N(0, �2) for some variance �2. There are con-
ceptual similarities with logistic regression,
although the observed values are always 0
or 1, and therefore not directly comparable
to the predicted probabilities p̂i ≈ P(Y =
1|Xi⋅) ∈ [0, 1]. Instead, predicted proba-
bilities might be ranked and partitioned into
deciles. The sum of observed events within
each decile l ∈ {1, … , 10} is o1l =

∑
i yi

which might be compared with the sum of
estimated/expected probabilities e1l =

∑
i p̂i

by X2 =
∑10

l=1(o1l − ell)2∕e1l. This is a
classic approach, later improved by Hosmer
and Lemeshow,134 who introduced the cor-
responding e0l =

∑
i(1 − p̂i) and o0l =∑

i(1 − yi) and who proposed two summary
measures: C∗ =

∑1
k=0

∑10
l=1(okl − ekl)2∕ekl

and H∗, a similar measure based on �xed
partitions of p rather than observed deciles
of p̂. C∗, H∗ ∼ �2g−1 where g is the num-
ber of groups (10 for deciles, which could
be generalized). Austin and Steyerberg pro-
vides a brief summary of several adaptations
and modi�cations (analytical and graphical)
based on those statistics.133 A simple hypoth-
esis would consider Ho ∶ C∗ = 0 versus
H1 ∶ C∗ ≠ 0. We could also plot o1 =
(o1,1, … , o1,10) versus e1 = (e1,1, … , e1,10) and
hope for a straight line assessed by linear
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regression* evaluated by its estimated slope
and intercept. A good model would have a
zero intercept and a unit slope. Deviating
lines would indicate miss-calibration. To �t
such a straight line is common, but it is only
an over-all assessment which is not informa-
tive considering alternative forms if the re-
lation between o1 and e1 is non-linear. It is
actually a measure of discrimination rather
than calibration.135 Analternative regression
model for external validation was proposed
by Finazzi et al.136 They suggested to com-
pare a �exible calibration curve based on a
parametric model with fractional polynomi-
als including terms up to a certain degree
chosen by forward selection. Proximity be-
tween such line and the theoretically pre-
ferred straight bisector would graphically in-
dicate good calibration. The graphical ap-
proach was later accompanied by an analyti-
cal test based on cumulative distributions,137
and the framework was later extended to in-
ternal validation as well (goodness-of-�t).138

Logistic regressionmodels applied to rare
events data often under-estimate the proba-
bilities in external validation data sets. Thus,
even if the discriminative ability persists, the
calibration curve often falls below the op-
timal bisector. Re-calibration of the inter-
cept and an over-all slope has been suggested
as a relatively simple solution, whereas
model revision might be necessary for larger
discrepancies.139 Such re-calibration might
also be necessary to adjust for population dif-
ferneces between populations used formodel
derivation and validation.140

1.16 STATISTICAL SOFTWARE

One (of many) de�nitions of big data consid-
ers volume: to analyze data larger than the
computers random access memory (RAM).
Intermediate processing steps for our co-
morbidity data (Section 1.6) reached this
limit. We used R as a computer environment
throughout the thesis and some background
might be of relevance for Study I, in which
we developed an R package to estimate co-
morbidity from large data sets.

*Logistic regression considering y and ŷ.

1.16.1 S AND S-PLUS

Before R, there was S. S was initially
developed by statisticians, most famously
John Chambers, at Bell Labs (currently
part of Nokia and previously of AT&T) in
1975–1976.141 Fortran, the �rst high level
programming language developed in 1954-
1957,142 was previously used for statistical
analysis within the company. S was less
declarative, did not require pre-compilation,
and was used interactively through a UNIX
prompt. It included graphical procedures
to enhance visualization. UNIX, as well as
the C programming language had been pre-
viously developed at the Bell Labs. It was
therefore natural to make S part of the same
eco-system. The name S itself also elude to
C. Functions and vectors were fundamental
parts of S and numerical vectors of length
one were used instead of scalars. A dimen-
sion attributewas used to emulatemore com-
plicated matrices, arrays, and general (possi-
bly nested) list objects. There were no dis-
tinctions between integers†, �oats‡ and dou-
bles,§ which were all considered “numeric”
(although whole numbers su�xed by Lwere
passed as integers to underlying layers). The
design was meant to be simple. Functions
were used for all sorts of data manipulation.
In�x operators¶ were added only as syntac-
tic suger.‖ Functions could have an arbi-
trary number of arguments and those could
also be left unspeci�ed by the user if default
values were already provided by the devel-
oper. Vector-subscription was very �exible,
both compared to mathematical notation, as
well as to other computer languages. It was
easy to import subroutines from Fortran, and
later C. Version 2 included routines for miss-

†Whole number used by computerswhere the range
of available numbers depends on the operating system.

‡Computer approximation of real numbers.
§Legacy term for binary64, a �oat numberwith dou-

ble precision used by computers.
¶Programming operation similar to a function but

with di�ernt syntyx, for example the arithmetic opera-
tors (+, -, / and *).

‖Design elements of a programming language not
introducing any new functionality but which improves
clearity, concistency or which introduce an alternative
programming style.



20 CHAPTER 1. INTRODUCTION

ing data, loops and character handling. Fac-
tor vectors were later introduced as numeri-
cal vectors with labels. Those details might
seem minor, but they were novel at the time,
and some of them still are, compared to other
computing environments used for data anal-
ysis.

Prior to 1984, S was distributed ad hoc
as open source software from the developers
themselves, to research facilities and univer-
sities. From 1984, the software got licensed
and o�cially adopted by the AT&T sales or-
ganization. Major changes occurred until
1988 when the New S was released. New S
made user de�ned functions �rst class ob-
jects, and later contained debug- and trace
functionality. A new object-oriented ap-
proach was also introduced. Objects (includ-
ing data structures and functions) could then
be modi�ed and re-allocated. This is slightly
di�erent from some other object-oriented
languages, which also allow in-place modi-
�cations of existing objects. The class system
also made object dispatch possible and more
abstract methods were easily applied to ob-
jects of di�erent classes. A minor detail was
the introduction of “<-” as assignment oper-
ator (due to a custom key on the Execuport
keyboard used to develop S).143 Another no-
tation detail, “~”, was introduced in 1993 for
formula objects.

S-plus was a commercial product sold by
Statistical Sciences from 1988. It enhanced
S as one of many possible implementations
of the language. In 1993, however, Bell Labs
sold an exclusive license of S to Statistical Sci-
ences. The open source language was still
developed at Bell Labs, but the only way to
get a commercial license was via S-plus. Af-
ter several acquisitions and merges, both S
and S-plus got owned by Insightful in 2004.
Tibco bought Insightful in 2008, one year
after their acquisition of Spot�re, wherein
S-plus was soon integrated. Version 8.2 of
Tibco Spot�re S+ had its latest update in
2012.144 Those details might be interesting
trivia since both Spot�re (founded in 1997
by Christopher Ahlberg)145 and the o�ce of
SHAR, are located close to Linnégatan in
Gothenburg.

1.16.2 R AND R-PACKAGES

Rwas created in 1992with its �rst binary beta
release in 1993 (the same year as the exclu-
sive license of S to S-plus), by Ross Ihaka and
Robert Gentleman at the university of Auck-
land, New Zealand. Thus, the history of S
ends close to SHAR, while the history of R
began as far away as ever possible. In 1995,
R was released as an open source software
under the GNU’s Not UNIX (GNU) Gen-
eral Public License (GPL). The R-language is
sometimes distinguished from this “GNU-R”
as one of several (possible and actual) imple-
mentations.* The language speci�cation is
notwell-de�ned, however, making theGNU-
implementation almost an integral part of
the language itself.146 The implementation
of R got very similar to S and most user-
written computer scripts could be executed
in both environments. Initial development
was made by e-mail exchange and by send-
ing �oppy disks. A group called the R De-
velopment core team was founded in 1997 to
formalize the development.

R version 1.0.0 was released 2000-02-
29.147 The date was chosen carefully. 2000-
01-01 was a dangerous date in software de-
velopment considering the Millenium bug.†
February 29was its less known sibling, a leap
day in a year divisible by 400, the second of
its kind since 1582, when the Gregorian cal-
endar established the current leap rules.

The R foundationwas established in 2003
to hold copyright and to provide a reference
point for further R development.148 The �rst
international user conference was held in
Vienna the following year. R was initially
used in academia, but several commercial
companies have later made large contribu-
tions to the R community. The R consor-
tiumwas therefore founded in 2015 to secure
the future of R and to support the R founda-
tion, as well as di�erent user initiatives. The
R foundation, supported by the R consor-

*Tibco Enterprise Runtime for R, the successor of
Tibco Spot�re S+, being one of them.

†Also known as the year 2000/Y2K prob-
lem/bug/glitch; a problem caused by the two digit
abbrivation of years such that year 2000 was not
distinguised from 1900
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tium, ensures that the R Development core
team develops and maintains GNU-R. The
popularity of R, however, could be largely
attributed to the large number of available
user-developed extensions, R packages. The
Central RArchiveNetwork (CRAN)was sug-
gested by Kurt Hornik in 1996. He and other
volunteers have since then maintained a li-
brary containingmore than 15,000 packages,
growing exponentially.149

There are several class systems imple-
mented in R, allowing methods dispatch and
generic functions for ad hoc polymorphism.
R3 was the �rst implementation and is still
the most popular.

Although R itself is a programming lan-
guage accessed by command-line tools, sev-
eral integrated development environments
have been developed over the years. The
most successful, provided by RStudio since
2011, has become almost synonymous with
R itself. RStudio is a certi�ed B corpo-
ration since December 2019. As such, it
holds responsibility not only to its share-
holders, but also to users and other stake
holders. Another software from RStudio
is the tidyverse package suite (initialy
hadleyverse after its creator Hadley Wick-
ham). It is a uni�ed framework with mul-
tiple packages for data management and
graphics. It has become almost its own
paradigm parallel to “base R”, with its own
domain speci�c language (DSL) and de-
sign philosophy. One signature feature of
tidyverse is the linear �ow of object mod-
i�cations using “verbs” that are chained, or
piped, by the operator %>%.150 The concept is
known from UNIX and relies on functional
composition, ◦, such that two functions f
and g are combined as: (f◦g)(x) = f[g(x)].
Thus, the outcome fromone function is auto-
matically passed as input to another function
without the need of repeated explicit inter-
mediate object assignments or deeply nested
function calls.

1.16.3 PERFORMANCE

In R, objects, including data sets, are loaded
into the RAM of the computer. This im-
plies a relatively hard threshold for working

with big data, although some redirection to
disk storage is possible. R data sets them-
selves, might be considerably smaller than
the RAM but re-sampling techniques such
as bootstrapping, or di�erent data manage-
ment steps might require substantial inter-
mediate data duplication. Other computer
applications running simultaneously might
also compete for the samememory and some
limitations might be imposed by the com-
puter’s operating system (OS) with 32 or 64
bits memory storage.151

A long-standing feature of R was to make
deep copies of all modi�ed objects prior
to any modi�cation (copy-on-modi�cation),
thus requiring at least twice the available
memory. This procedure has been relaxed
since R version 3.1 released in 2014. Multiple
pointers (object names) can now refer to the
same underlying object (pointing to the same
physical memory address), allowing shallow
copies where only the pointers are modi�ed.
Objects that are no longer needed (from in-
termediate computational steps or with all
user accessible pointers explicitly removed),
are automatically deleted by a garbage collec-
tor to increase the available memory.146 An
alternative approach is reference semantics
where individual data columns are changed
in place, while leaving unchanged columns
as is. Reference semantic is common in other
object-oriented programming languages, but
not in R. It was implemented through C in
the data.table package by Matt Dowle in
2006 with its own DSL.152 A third alterna-
tive is to use memory mapping where data
on disk is mapped to the RAM and treated as
such.153 A fourth option is to use R with an
open database connectivity (ODBC) driver
to perform some calculations remotely in
a database, before loading the pre-modi�ed
data into memory.

R was not built to maximize compu-
tational performance but rather to provide
an intuitive statistical user-interface com-
bined with a dynamic, lazy (avoiding pre-
mature and unnecessary evaluation), func-
tional, object-oriented language.154 The lan-
guage is quite unique in its �exibility in-
cluding computation “on the language” and
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non-standard evaluation (NSE). R was ini-
tially single-threaded but now includes sev-
eral implementations for multithreaded and
distributed computations. Iterative proce-
dures (for-loops) were long-time bottlenecks
in R, partially because objects assignments
are made with dynamic type declarations,
implying repeated methods dispatch for ev-
ery iteration. Instead, vectorized operations
(internally implemented by for-loops in C)
were recommended and is still the norm,
although the performance of for-loops has
signi�cantly improved in later versions of
R. High-performance R-packages often relies
on more e�cient compiled Fortran/C/C++
code under the hood. This has always been
possible, although cumbersome. This pro-
cess got simpli�ed by the introduction of
the Rcpp package by Dirk Eddelbuettel in
2008.155

1.16.4 CLASSIFICATION OF COMORBIDITY

Dr. Mary Charlson has been involved in
the development of a web-calculator that
“[p]redicts 10-year survival in patients with
multiple conditions”.156 Elixhauser et al. de-
veloped their own “Elixhauser Comorbidity
Software” (SAS macros).47

Several R-packages have also been de-
veloped to estimate both the Charlson and
the Elixhauser comorbidity indices based
on medical coding. At least three of those
packages are available through CRAN: icd
by Jack O. Wasey et al,157 comorbidity
by Alessandro Gasparini et al,158 and
medicalrisk by Patrick McCormick and
Thomas Joseph.159 At least two other
packages are freely and publicly available
through GitHub: comorbidities.icd10
by Max Gordon160 and icdcoder by Wade
Cooper.161

medicalrisk can be used with
ICD-9-CM codes but is not up to
date with the latest version of ICD-10.
comorbidities.icd10 and icdcoder are
no longer actively developed or maintained.
Both comorbidities.icd10 and icd were
previously very slow to use due to ine�cient
data structures and methods. icd has
drastically improved since the initiation of

the thesis. Current versions rely on e�cient
matrix algebra. comorbidity is a relatively
new package which was not available at the
beginning of the thesis project. As by now,
both icd and comorbidity are good pack-
ages for calculating prede�ned Charlson-
and Elixhauser comorbidity indices. All
packages, however, rely on internal and
static implementations of certain coding
versions and index weights. No package
implements algorithms for RxRisk V, or
can be used with diagnosis-speci�c coding
schemes for AEs et cetera.
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Figure 2.1: Schematic representation of the �ve
studies. (OA = osteoarthritis. FNF = Femoral
neck fracture.)

A long-term vision for SHAR has been to de-
velop a tool for shared decision making for
patients with hip arthroplasty. Hip arthro-
plasty should only be performed if the ben-
e�ts outweighs the risks. To describe such
risks, based on individual patient data, might
help potential patients and their surgeons to
make an informed decision whether to oper-
ate or not. The aim of this thesis was to pro-
vide some building blocks towards this goal.

Study I was a prerequisite to support
Study II–V. Study II and III were twin stud-
ies to evaluate current recommendations for
prediction modeling of mortality after hip
arthroplasty based on comorbidity. An im-
provedmodel was developed in Study IV and
a better use of existing comorbidity indices
was assessed in Study V.

2.1 STUDY I

We aimed to develop an e�cient R-package
for categorization of coded data based on
generic code schemes and current best prac-
tice for R package development. The imme-
diate rationale for such functionality was to
categorize pre-operative patient comorbidi-
ties based on medical code data, but to also
allow for easy extensions to post-surgery AEs
et cetera. We aimed for an intuitive user in-
terface with accessible documentation.

2.2 STUDY II

We aimed to investigate the long-term dis-
criminatory abilities of the Elixhauser and
Charlson comorbidity indices for patients
with THA due to OA. We hypothesized that
such indices would have limited predictive
power, despite common recommendations to
always include such measures in prediction
models of mortality.

2.3 STUDY III

Weaimed to investigate the same aspects and
hypothesis fromStudy II for patientswith hip
arthroplasty due to FNF.

2.4 STUDY IV

We aimed to develop and validate a new pre-
diction model for 90-day mortality after ce-
mented THA due to OA. We hypothesized
that such model would include some comor-
bidity, but not necessarily in the form of
a pre-speci�ed general-purpose comorbidity
index. A secondary aimwas to provide a web
calculator to aid clinical usage and shared de-
cision making prior to a decision whether to
operate or not.

2.5 STUDY V

We aimed to visualize the associative rela-
tion between the Elixhauser comorbidity in-
dex and post-operative mortality after THA
due to OA.We hypothesized that patients, on
average, would have longer restricted mean
survival time (RMST) if they had fewer pre-
operative comorbidities.



3 PATIENTS AND METHODS
Study I concerned software development
without patient data. Study II–V relied on
observational prospective register data from
Swedish and British health care, linked by
PINs. Study II–IV concerned prediction
modeling, Study II–III with the same vali-
dation techniques, and Study IV with essen-
tially three parts: (1) model derivation and
internal validation; (2) external validation
and; (3) building a web calculator. Study V
was based on inferential statistics and asso-
ciative measures.

3.1 STUDY I

We used data.table as back-end for the
coder package and decided to have no other
required dependencies, making the pack-
age update-cycle less vulnerable to exter-
nal dependencies and developers. Although
data.table was used internally, it was also
decided to adopt the design philosophy of
tidyverse for the aplication programming
interface (API).

We used S3 to implement a new class
called classcodes, holding classi�cation
schemes to categorize individual codes into
broader conditions (such as comorbidity).
We provided a function as.classcodes()
for the user to implement his or her own clas-
si�cation schemes.

We included default comorbidity
classcodes for Charlson, Elixhauser,
Rx Risk V and CPS. Additional classcodes
for AEs after hip or knee arthroplasty were
also provided. Each classcodes object
contained several named conditions, each
of them associated with possibly multiple
versions of regular expressions identifying
the relevant codes. For example, the �rst
Charlson32 condition “Myocardial infarc-
tion”, later interpreted as “Acute myocardial
infarction and old myocardial infarction”36
was codi�ed by ICD-9-CM as “410.x, 412.x”.
We interpreted this as all codes starting
with 410 and 412 (with “x” representing a
wildcard acting as a placeholder for any ad-
ditional characters). This was formulated as

a regular expression (ignoring the interme-
diate dot) as “ˆ41[02]” where “ˆ” denotes
the beginning of a character string, “41”
a literal continuation and “[02]” is either
0 or 2. Corresponding codes for ICD-10
are I21.x, I22.x and I25.2,43 formalized as
“ˆI2([12]|52)” where “|” act as a logical
“or” within the parentheses. This is a simple
example, although some conditions might
require more intricate coding, for example
“Ischemic heart disease: hypertension”
according to RxRisk V:56
C(0(7A(A(0[1-689]|[1-9][0-9])|
B0[0-3]|G01)|8(C[A-Z][0-9]2|
DB0[01])|9(BB(0[2-9]|10)|
D(B0[1-4]|X0[13])))|10BX03)

A summary() method* based on the
decoder package (a related CRAN-package
by the author)162 provides a more pedagog-
ical over-view of relevant codes. A func-
tion visualize() was provided for a graph-
ical representation with similar aim. The
classcodes objects also contain di�erent
weighting schemes to calculate combined in-
dex values. An additional hierarchical at-
tribute structure was imposed for the Elix-
hauser classcodes where “solid tumors”
are subordinate to “metastatic cancer”. A pa-
tient with both conditions will still be clas-
si�ed as such but a possible (weighted) in-
dex value will only account for metastatic
cancer. The same is true for “diabetes
uncomplicated” as subordinate of “diabetes
complicated”.19 Another optional attribute
concerns “conditions”, as used for example
by the default AE classcodes, where an AE
might be conditioned on the main diagnose
or the index hospitalization only.

The classcodes object is one of three re-
quired objects used for categorization by the
coder package. The other two must be sup-
plied by the user: (1) unit (patient) data with
unique element identi�cation (PIN or simi-

*A “method” acts like a sub-function called by a
“generic” function in R. Hence, if the user calls a func-
tion foo with argument baz as foo(baz), the call will
be dispatched to method foo.bar(baz) if baz is of S3-
class bar.
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lar) and a possible reference date for an in-
dex event (hip arthroplasty) and; (2) an addi-
tional code data set with corresponding iden-
ti�cation keys, aswell as relevant (diagnoses)
codes and optional dates (of recorded comor-
bidity). For Study II–V, (1) was taken from
SHAR and (2) from the NPR with ICD-10-
codes and dates of corresponding hospital
visits and admissions.

There are three important steps to cat-
egorize the data: (1) codi�cation of units
(patients) based on the additional coding
data, as implemented by the codify()
function; (2) classi�cation of the result-
ing data using the classcodes object, as
implemented by the classify() function
and; (3) to aggregate such outcome by
the proposed index, as implemented by
the index() function. Those steps could
either be performed sequentially, chained as
codify() %>% classify() %>% index()
or directly by the main function of the
package, categorize(), combining the
individual functions under the hood.

3.1.1 DEVELOPMENT

Di�erent versions of R and RStudio were
used during the process together with ded-
icated support packages for package de-
velopment (devtools, usethis, testthat,
roxygen2, pkgdown et cetera). The profvis
package was used for interactive visualiza-
tion for code-pro�ling and optimization. Git
was used for version control and the pack-
age was developed as open source software
publicly available through GitHub.* A web-
site with documentation was published with
vignettes and a reference manual.† A suite
of unit tests was developed to ensure func-
tionality and stable development. Continu-
ous integration tests were deployed to ensure
compatibility with Windows, Ubuntu, Red
Hat Linux, Mac OS and Solaris. Recommen-
dations and best practice from the rOpenSci
project were followed when possible.163

*https://github.com/eribul/coder (accessed
2020-08-02)

†https://eribul.github.io/coder/ (accessed
2020-08-02)

3.2 ETHICS AND LEGAL ASPECTS

None of the studies involved any patients di-
rectly, nor any medical journals or biologi-
cal samples. Study II–V, however, used ex-
tensive data sets with personal data of sen-
sitive nature. It was thus important to re-
spect and secure the integrity of all patients
indirectly involved. Inclusion in the NPR
and the Longitudinal integrated database for
health insurance and labour market stud-
ies (LISA) is mandated by national law (6 §.
Swedish code of statues (SFS) 2001:707 for
NPR and various sources for di�erent parts
of LISA, combined according to appendix 3 of
the o�cial report of the Swedish government
(SOU) 2003:13). Patients have no legal obli-
gation to participate in quality registers such
as SHAR, however. They can choose to opt-
out, or towithdraw earlier implicit consent at
any time without providing any explanation
(7 chap. 2 §. SFS 2008:355).

Retrieval of Swedish registry data is sub-
ject to the principle of public access to o�-
cial records, �rst introduced in 1677.15 The
current incarnation, the press act from 1949
(TF 2:1), grant every citizen (and others for
most parts), the right to access any pub-
lic document. Personal records concerning
health status are, however, also subject to
the personal protection data act (OSL 21:1),
which requires explicit approval from ethi-
cal authorities prior to any data sharing mo-
tivated by research (OSL 21:7 and 3 §. EPL).
Such approval was granted by regional re-
viewboards prior to 2019, and by the Swedish
Ethical Review Authority since then (24 §.
EPL). Ethical approval for the Swedish data
was granted by the Regional Ethical Re-
view Board in Gothenburg (reference num-
ber 271-14). This was a necessary but not
su�cient requirement. Each legal entity re-
sponsibility for a speci�c register must also
approve data sharing based on their own risk
assessment considering patient data protec-
tion and secrecy. Such assessments were
thus performed by the NBHW for the NPR
and the medical prescription register, and by
SCB for LISA. VGR is the legal entity respon-
sible for SHAR.

https://github.com/eribul/coder
https://eribul.github.io/coder/
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Data retrieval was performed prior to
the implementation of the European Gen-
eral Data Protection Regulation (GDPR), but
data was stored and treated according to cur-
rent laws and regulations. We made sure
that no patients could be identi�ed on an
individual level and that patients and other
interested parties were kept informed about
the research (through SHAR’s online project
database at www.shpr.se).

Study IV included additional data from
England and Wales for external model vali-
dation. This part of the study was performed
by the co-authors in England. Hence, this
data was treated separately and never left
the UK. Permission was granted by the NJR
(with reference number RSC2017/21). In-
formed patient consent was not mandatory
according to the UK law for pseudonymized
data.

Quality register data (as formally unveri-
�ed by the treating physician) cannot be used
for treatment decisions directly.164 We there-
fore provided a stand-alone web calculator in
Study IV, where patients and physicians can
choose to re-enter some data for a predicted
probability of 90-day mortality. This tool is
technically independent/separated from the
quality register and Stratum. The model is
static and is not automatically updated as
new patients appear in the registers.

3.3 PATIENT DATA

We used two versions of a large linkage data
base involving SHAR, NPR, LISA, the med-
ical prescription register and additional reg-
istries used for related research, although not
explicitly for this thesis. The �rst version
included patients with THA 1992–2012 and
hemiarthroplasty 2005–2012. This data set
was already available before the implemen-
tation of Study II.165 A new data base was
built prior to Study III–V. The process was
similar as described by Cnudde et al.165 but
for an extended time frame: (1) all patients
from SHAR, operated with primary THA
1992–February 2018 and hemiarthroplasty
2005–February 2018, were identi�ed by their
PINs and laterality (left or right hip); (2) this

SHAR

NBHW SCB

PIN

PINID

ID
ID

Figure 3.1: Schematic representation of data link-
age. PIN = Personal Identity Number. ID =
Anonymized patient ID. SHAR = The Swedish
HipArthroplasty Register. NBHW=TheNational
Board of Health and Welfare (Socialstyrelsen).
SCB = Statistics Sweden (Statistiska Central-
byrån).

data set was submitted to the NBHW who
identi�ed comorbidity data from the NPR for
the patients operated 1999–2015; (3) NBHW
returned thematched data to SHARwith PIN
replaced by an anonymous id; (4) NBHW
also sent PINs with corresponding id:s to
SCB and; (5) SCB linked those PINs to LISA,
removed the PINs and returned the data
to SHAR (Figure 3.1). Hence the updated
linkage data base included patients operated
1992–February 2018 but onlywith comorbid-
ity for patients operated 1999–2015. We built
a data base using the Structured Query Lan-
guage (SQL) and the SQLite software166 in-
dexed by the anonymized id, laterality and
date of surgery, re-operation and hospital vis-
its. We stored the data on a secure server
maintained by theUniversity of Gothenburg,
accessed only through a secure network with
trusted computers at RC in Gothenburg.

Pre-operative comorbidity were esti-
mated for both the �rst and second version
of the linkage data base. We used look-back
periods of 1, 2 and 5 years for each operated
hip, comparing dates of out-patient hospital
visits and in-hospital discharge, to dates
of primary surgery. Hence, only hospital
visits with out-patient visits or in-patient
discharges, prior to surgery, were included
to avoid that AEs were falsely classi�ed as
pre-existing comorbidity. Only the one-year
look-back period was later used, however,
since longer periods provided no improve-
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Figure 3.2: Study periods for Study II-V.

ment considering discriminatory ability
(supplementary Figure 4 in Study II). The
coder package (Study I) was used to iden-
tify individual comorbidities according to
Charlson and Elixhauser based on ICD-10.43
The number of identi�ed comorbidities
according to Elixhauser was summed as an
unweighted index score and two di�erent
weighing schemes were used for Charlson.
In Study II–III, we refer to those as the
“original”, as proposed by Charlson et al. in
198732 and the “updated”, as proposed by
Quan et al. in 2011.44 Patients with no
recorded hospital visits within the look-back
period were assumed to have no comorbid-
ity. Rx Risk V was calculated in a similar
way with ATC-codes from the medical pre-
scription register. Inclusion and exclusion
criteria di�ered for each study (Table 3.1).
Hemiarthroplasty has been reported to
SHAR since 2005, wherefore patients with
FNFs (Study III) were studied from this year
only (Figure 3.2). BMI and ASA have been
recorded with su�cient completeness in
SHAR since 2008, which was therefore the
�rst year included in Study V.

Survival times were calculated for each
patient from the day of primary surgery, to
the day of either death or censoring, what-
ever came �rst. Administrative censoring
was applied to all patients still alive at 2012-
12-31 (Study II) and 2017-12-31* (Study III–
V).

*This date could as well have been set to February
2018.

3.4 STUDY II

We used the �rst version of the linkage data
base,165 and included the �rst THA for each
patient operated 1999–2012 due to OA. We
excluded patients who died on the day of
surgery. We used univariable Cox-regression
to regress the Elixhauser as well as the “origi-
nal” and “updated”Charlson comorbidity in-
dices to mortality.

Schoenfeld residuals were used to eval-
uate if the proportional hazards assumption
was met. It was not in its entirely, but we did
have proportional hazards within shorter pe-
riods starting by year 0, 5 and 8. Those time
points were used as cut points for strati�ca-
tion used by the extended Cox model with
time dependent covariates. The same cut
points were used for all models except for a
base model with age and sex. We �tted 103
Cox regression models to the data: (1) 48
univariable models, one for each comorbid-
ity condition identi�ed by either Charlson or
Elixhauser; (2) the same 48 models adjusted
for age and sex; (3) 3 univariable models for
each comorbidity index; (4) the same 3 mod-
els adjusted for age and sex and; (5) a base
model with age and sex only.

Estimated coe�cients from each model
were used to predict survival for each pa-
tient of the sample. This was done repeat-
edly for each time point when at least one
death had occurred. Observed and predicted
values were compared to calculate sensitivity
and speci�city for each model at each time
point. A ROC curve was calculated for each
of those, and the AUC was estimated by nu-
merical integration. Numerical integration
was applied once more over a second dimen-
sion, time. We used 100 bootstrap replicates
to estimate 95 % CIs for each AUC.

3.5 STUDY III

Study III was methodologically similar to
Study II, applied to patients with FNF from
the updated linkage data base. Those pa-
tients were treated with either THA or hemi-
arthroplasty 2005–2015. The estimated cut-
points to receive proportional hazards within
sub-intervals were di�erent from Study II:
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Table 3.1: Patients and outcomes in Study II–V. OA = osteoarthritis. FNF = Femural neck fracture. n =
sample size. ECI = Elixhauser comorbidity index. CCI = Charlson comorbidity index. AUC = Area Under
the (Reciever Operating Characteristics) Curve. THA = Total Hip Arthroplasty. RMST = Restricted mean
survival time

Study Diag. Years Prosthesis n Comorbidity Mortality Outcome

II OA 1999–2012 THA 120,836 ECI /CCI up to 14 years AUC

III FNF 2005–2015 THA + hemi 43,224 ECI/CCI up to 7 years AUC

IV OA 2008–2015 cemented THA 53,099 + 125,428* new model 90 days AUC

V OA 1999–2015 THA 150,367 ECI up to 10 years RMST
* Two cohorts were included in Study IV with patients from SHAR and NJR.

160 days, as well as 1, 2 and 5 years after
surgery. We also applied the van Walraven
weights of the Elixhauser comorbidity index
for a sensitivity analysis.48

3.6 STUDY IV

There are two versions of Study IV. The �rst
was included in a thesis by Anne Garland.167
Data from the �rst linkage data base were
used with explorative multivariable logistic
regression and comorbidities acknowledged
by Charlson, Elixhauser and Rx Risk V. For
the second version, in this thesis, we used
data from the second linkage data base. We
used di�erent statistical methods and per-
formed an external validation with registry
data fromEngland andWales. Rx Risk Vwas
no longer used, however, since the required
data were not available for the external vali-
dation cohort from England and Wales.

3.6.1 LITERATURE REVIEW

We performed an initial ad hoc literature re-
view based on Google Scholar,168 personal
recommendations and relevant references, to
identify models similar to the one we aimed
to develop. We then used 2Dsearch169 to
build a search query for amore systematic re-
view.*

*(femur OR hip OR bone OR bones OR
osteoarthritis OR rheumatoid OR rheumatism)
AND (prognostic OR prediction OR forecast
OR forecasting OR forecasts OR predict
OR predicted OR predicting OR predictions
OR predicts OR projections) AND (death
OR mortality OR deaths OR survival OR
survive) AND (replacement OR replaced
OR replacements OR arthroplasty OR

We used no time or language constraints
and used this query in PubMed,170 where
we identi�ed 143 articles, whereof one was
a duplicate. We performed an article screen-
ing with Rayyan.171 131 articles were ex-
cluded based on titles, and an additional 6
after reading the abstracts. 5 articles re-
mained, whereof 3 were already considered
during the ad hoc review process. Research
on cadavers, canines, and patients with diag-
noses other than elective hip disorders (in-
cluding hip fractures) were excluded dur-
ing the screening process, as were prediction
models with outcomes other than mortality.
In addition, we used Open Grey with the
same query, as well as with a shorter simpler
query (hip AND prediction).172 We found
9 items, whereof none was considered rel-
evant. The same queries were used with
Epistemonikos.173 No items were found us-
ing the longer query, but 33 systematic re-
views based on the shorter. 30 were excluded
after title screening, and the remaining 3 af-
ter reading the abstracts.
"Arthroplasty, Replacement" OR prosthesis
OR implant OR prostheses OR prosthetic OR
prosthetics) AND (calibration OR calibrate
OR calibrated OR validation OR validate
OR validated OR validating OR validity OR
precision OR accuracy OR accurate OR precise
OR "external validation" OR evaluation
OR verification OR internal) AND (build
OR building OR construct OR create OR
develop OR establish OR train OR derive
OR derivation) AND (models OR modelling
OR "statistical model" OR modeling) AND
(comorbidity OR comorbid OR co-morbid OR
co-occurring OR diagnoses OR comorbidity
OR Elixhauser OR Charlson OR "comorbidity
index" OR "comorbidity score" OR "Rx Risk V"
OR ASA)
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Figure 3.3: Outer steps of the bootstrap rank-
ing procedure. All included patients (A) were
re-sampled with replacements 100 times (B). For
each bootstrap sample, the inner process (C; as
depicted in separate �gure) was applied. The �-
nal output was a table with all potential predic-
tors ranked by the number of times they got se-
lected (D). Potential predictors selected at least
once were included in the main model, and each
predictor selected at least 33 out of the 100 times,
were included in a reduced model as well.

In summary, we found that several pre-
dictionmodels had been developed for short-
term mortality in patients operated with
THA.Most of themwere based on small sam-
ple sizes, included predictors that were un-
available in a clinical setting, only consid-
ered in-hospital deaths, were inadequately
validated, or had no national population cov-
erage leading to biased samples. Only few
model descriptions included nomograms,
formulas or accompanying tools to aid clin-
ical usage. The relevant models were fur-
ther described and referenced in the study
manuscript.

3.6.2 STATISTICAL METHODS

The study underwent several iterations with
di�erent methods for variable selection. We
tried bootstrap aggregating (bagging) with
step-wise logistic regression, Bayesian mod-
eling averaging174 and Bolasso, a combina-
tion of bootstrapping and the LASSO.117 The

...

1

2

3

4 5 6

Figure 3.4: Inner steps of the bootstrap ranking
procedure. For each bootstrap sample (1), 100
new bootstrap samples were created (2). Logistic
LASSO-regression was applied within each sam-
ple (3). Absolute values of the estimated coef-
�cient values (whereof some shrunk to 0 by the
LASSO), were averaged as a measure of variable
importance (4). Variables with their estimated
variable importance above an estimated break-
point from linear piece-wise regression (5) were
kept as potential predictors (6).

�nal bootstrap ranking procedure was sim-
ilar to Bolasso,114 but with additional steps
of variable ranking and piece-wise linear
regression.115 Further details are provided in
the manuscript and visualized in Figure 3.3
and 3.4. R-scripts for the exact implementa-
tion are provided through an on-line reposi-
tory.*

3.7 STUDY V

We studied association between pre-
operative comorbidity and the RMST.
Details are provided in the manuscript and
by the R-scripts deposited online.†

A preliminary version of the paper con-
sidered both the Charlson and Elixhauser co-
morbidity indices. The results were similar
and Elixhauser was previously shown bene-
�cial for patients with OA (Study II). There-

*https://doi.org/10.5281/zenodo.3732852
(accessed 2020-06-02)

†https://doi.org/10.5281/zenodo.3458031
(accessed 2020-06-24)

https://doi.org/10.5281/zenodo.3732852
https://doi.org/10.5281/zenodo.3458031
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fore, only the Elixhauser index was kept in
the �nal version of the manuscript.

The use of RMST was introduced already
in 1949.87 A point estimate is easily esti-
mated as the area under a Kaplan–Meier
curve by most statistical software. Com-
bining RMST with regression is less com-
mon, however, although an increased inter-
est has been observed during recent years.91
The survRM2 R-package only includes func-
tionality for covariate adjustments based on
analysis of covariance (ANCOVA).175 There
is an R-package psuedo for regression
based on pseudo-values for censored data,
which we were not able to use due to high
computational burden and assumed sub-
optimal internal procedures.176 The prodlim
package,177 however, o�ered a fast imple-
mentation, which we combined with a Jack-
knife procedure to estimate pseudo-values.
There are several R-packages suited for
GEEs. We used geepack178 with a working
variance of 1.

The RMST is a time-speci�c value evalu-
ated for some � as the number of days since
THA due to OA. We repeatedly estimated ��
for � = 1,… , 3650, thus for every day during
approximately ten years after surgery, to esti-
mate a RMST curve with a time scale on the
y-axis instead of the traditional proportion
presented for standard survival curves.179
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4 RESULTS

4.1 STUDY I

The coder package has been released as
open source software under the MIT license,
granting permission for private and commer-
cial use, modi�cations and distribution (Fig-
ure 4.1). There are 8 default code schemes

Figure 4.1: Screenshot of package documentation
website (eribul.github.io/coder)

(classcodes objects) included in the pack-
age (Table 4.1). They comprise a total of 117
individual conditions, each formulated by up
to eight di�erent versions of regular expres-
sions (Figure 4.2).

Using the package reduced computa-
tion time from approximately 18 hours us-
ing iterative and non-optimized procedures
in base R, to around 30 seconds, for data
management in Study II. Initial benchmark-
ing showed that the package was around
400–600 times faster than comparable pack-
ages. This is no longer true, however, for
newer versions of the icd and comorbidity
R-packages, with signi�cantly improved per-
formance. The coder package is unique in
terms of �exibility and regarding the variety
of default classi�cation schemes.

4.2 STUDY II

We found that neither the Charlson, nor
the Elixhauser comorbidity indices were suf-
�cient to accurately predict mortality after
THA due to OA. The Elixhauser index was

Figure 4.2: Example output from visualize()
with regular expression for Ischemic heart dis-
ease with hypertension based on ATC codes in the
RxRisk V.56

the best candidate, however, with AUC 0.61,
0.60, 0.59, 0.58 and 0.56 for deaths within 90
days, as well as 1, 5, 8 and 14 years. The
simple baseline model with age and sex per-
formed better (AUC around 0.74 regardless
of period), and further improvements were
seen for a multivariable model with age, sex
and the Elixhauser comorbidity index com-
bined (AUC close to 0.76 for deaths within 5
years).

4.3 STUDY III

The Charlson comorbidity index was supe-
rior to Elixhauser for patients with FNF; the
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Table 4.1: Default classcode schemes with corresponding code matching and di�erent versions of regular
expressions (regex) and weighted index sums (indices). CPS = Comorbidity-poly pharmacy score. AE =
adverse event.

classcodes regex indices

charlson icd10, icd9cm_deyo, icd9cm_enhanced,
icd10_rcs, icd8_brusselaers, icd9_brusselaers

index_charlson, index_deyo_ramano,
index_dhoore, index_ghali,
index_quan_original, index_quan_updated

cps icd10 index_only_ordinary

elixhauser icd10, icd10_short, icd9cm, icd9cm_ahrqweb,
icd9cm_enhanced

index_sum_all, index_sum_all_ahrq,
index_walraven, index_sid29, index_sid30,
index_ahrq_mort, index_ahrq_readm

ex_carbrands

hip_ae icd10, kva, icd10_fracture

hip_ae_hailer icd10, kva

knee_ae icd10, kva

rxriskv pratt, caughey, garland index_pratt, index_sum_all

estimated AUCs were 0.60, 0.59 and 0.57 for
deaths within 90 days, as well as 1 and 5
years. The “updated”44 Charlson index per-
formed slightly better than the “original”32
version, but di�erences were small and clini-
cally irrelevant. The basemodelwith age and
sex was better than all of the comorbidity in-
dices, but not as good as for patients with OA
(AUC around 0.65 for all periods). Not even
the multivariable model combining age, sex
and the Charlson comorbidity index reached
the desired AUC of 0.7 (0.69 up to 2 years af-
ter surgery).

4.4 STUDY IV

An improved prediction model for 90-day
mortality for patients with cemented THA
due to OA combined age, sex, ASA class and
the presence of cancer, central nervous sys-
tem (CNS) disease, kidney disease and obe-
sity. The model had good discriminatory
ability, both internally and externally, with
AUC 0.78 and 0.75 for patients in the SHAR
and the NJR respectively. The model was
also well calibrated for predicted probabili-
ties up to 5 %. The web calculator is available
in both English and Swedish (Figure 4.3).

Figure 4.3: Screenshot of web calculator for
the developed prediction model from Study IV.
(https://erikbulow.shinyapps.io/thamortpred/)

4.5 STUDY V

Patients without comorbidity had a RMTL of
only about 3 hours within the �rst 90 days,
compared to 26 hours for patients with at
least four comorbidities. RMTL at ten years
increased to 0.93 and 3.3 years respectively,
a di�erence with clinical relevance. Regres-
sion modeling with and without adjustment
for age and sex led to similar results. The ef-
fect of age and sex increased by longer follow-
up. Being male had almost twice the e�ect
on RMTL as the di�erence between zero and
one comorbidity.
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5 DISCUSSION

5.1 STUDY I

We designed and built a unifying framework
for code categorization based on regular ex-
pressions. This method was more computa-
tionally e�cient compared to traditional pro-
cedures comparing each individual code by
a look-up-table. We used the default regex
engine in R, which in turn relies on Perl-
compatible regular expressions (PCRE) im-
plemented in C. The R adaptation was insuf-
�ciently implemented with a quadratic time
algorithm, O(n2), up to R version 3.5.2. A
faster implementation with a linear time al-
gorithm, O(n) is provided by Google as the
RE2 package written in C++ and wrapped by
the re2r package for R. This engine might
still be more e�cient than PCRE, but the dif-
ference is less relevant from R version 3.6.180

5.2 STUDY II–III

The results were as hypothesized; that pre-
speci�ed comorbidity indices had limited
predictive power, in spite of common rec-
ommendations to always include such mea-
sures in prediction of mortality. Our results
con�rmed a study by Armitage et al.45 and
were coherent with some previous concerns
regarding the usefulness of existing comor-
bidity indices.181

Observed AUC values for patients with
FNF were lower compared to patients with
OA. This indicated that mortality for those
patients were harder to predict based on pre-
existing comorbidity, age and sex. This indi-
cates that FNF is in itself a severe condition,
altering the remaining life trajectory.

The AUCs were higher for Elixhauser
compared to Charlson for patients with OA
(Study II), but the opposite was observed for
patients with FNF (Study III). This might
be partially explained by the methods used
to develop the Elixhauser index. Medical
conditions that were found among patients
in the original cohort, but without associ-
ation to length of stay, hospital charges or
in-hospital deaths, were not considered rel-

evant and therefore excluded. OA was one of
those conditions. This was in our favor for
Study II, since we could then use the classi�-
cationwithoutmodi�cation (the same condi-
tion should not be classi�ed as both the index
disease and comorbidity). Dementiawas also
excluded for the same reason. This is a disad-
vantage for Study III, however, since demen-
tia is an important comorbidity for patients
with FNFs. Patients discharged to other in-
stitutions after the hospitalization were also
excluded from the cohort used to develop the
index. Those patients likely resembles those
with FNF, who might therefore have been
less represented in the data set used by Elix-
hauser et al.19

The follow-up period was strati�ed with
cut-points at 5 and 8 years for Study II and
at 160 days as well as 1, 2 and 5 years for
Study III, to model the period speci�c haz-
ards over time. It might be questioned, how-
ever, whether predictions of mortality would
be clinically relevant for such long-time hori-
zons after surgery. Post-operative life trajec-
tories (introduction of additional comorbidi-
ties and other events) starts to in�uence the
remaining survival more and more, as time
pass by.

5.2.1 METHODOLOGICAL CONSIDERATIONS

The Elixhauser, and especially the Charlson
index, exist inmany versions.46Wewere only
able to use adaptations based on ICD-10 and
we choose to compare two versions of the
Charlson index, as well as the unweighted
Elixhauser score. Considering those ver-
sions, Elixhauser performed better in Study
II and Charlson performed better in Study
III. It seems reasonable to conclude, how-
ever, that the versions we used should be
representative for their respective comorbid-
ity index. The index weights also exist in
many versions. This might seem less moti-
vated from a theoretical perspective, since all
weights are necessarily cohort-speci�c and
might not be applied to patients who are dif-
ferent from the training data used for each in-
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dividual model. Pre-de�ned weights might
nevertheless be useful in a clinical setting for
patients who are similar to the training co-
hort, since new weights could not be esti-
mated based on single patients alone. In a
research setting such as ours, we do have ac-
cess to large amounts of data, whereforemost
weights could be re-calibrated. This is a rea-
sonable alternative to consider before devel-
oping a new predictive model from scratch.
Thus to update, revise or re-calibrate an ex-
isting model, before abandon it.108

We used a one-year look-back period for
comorbidity recorded in the NPR. This is
contrary to some suggestions to use all avail-
able data. We could have used a longer
look-back period based on the ICD-10 for
a marginal gain in predictive performance.
Theoretically, we could also include addi-
tional data based on ICD-8 and ICD-9 to
back-trace comorbidities since 1968.46 We
did not have access to such data, however,
but we did perform a sensitivity analysis us-
ing some alternative look-back periods (sup-
plementary material for Study II).

5.2.2 STATISTICAL CONSIDERATIONS

A summarized comorbidity index might be
su�cient if the weights are estimated cor-
rectly. Hence, no individual comorbidity
might be needed as long as aweighted sumof
all relevant conditions is provided.101 Thus,
knowledge of Z = X� is enough to predict
Y if Y = f(X�) = f(Z). Unfortunately,
the Charlson index score for patient i is not
zi =

∑
j �̂jxij but z

(c)
i =

∑
j r(exp(�̂jxij)),

where r(w) = 0 for w ≤ 1.2, otherwise a
function rounding real numbers to integers.
Hence, the estimated �̂-coe�cients are used
to estimate HRs.* Those HRs are then ig-
nored (set to zero) for point estimates smaller
than 1.2. Larger HRs are rounded to their
nearerst integer and summed. Thus, HRs are
summed and not multiplied, since Charlson
et al. assummed exp(

∑
l al) ≈

∑
l exp(al),

instead of exp(
∑

l al) =
∏

l exp(al). We
can illustrate the di�erences for a scoring

*Assumed to approximate relative risks by Charlson
et al.32

system with three conditions (presence of
three comorbidities). First, assume that �̂ =
(−0.15, 0, 0.15)′. A patient with all condi-
tions will thus have an index value of zi =∑

j �̂jxij = −0.15 ⋅ 1 + 0 ⋅ 1 + 0.15 ⋅ 1 = 0
(assuming a zero intercept, �0 = 0). Hence
the total e�ect would cancel out. Similarly,
since exp(.15) ≈ 1.16 < 1.2 ⇒ z(c)i = 0.
But if �̂ = (−0.6, 0, 0.6)′ we still have zi = 0
but z(c)i =

∑
j r(exp(�̂jxij)) = r(exp(−0.6))+

r(exp(0)) + r(exp(0.6)) = r(.55) + r(1) +
r(1.8) = 0 + 0 + 2 = 2. Hence, the pro-
tective e�ect would be ignored, and the in-
dex sum would indicate increased mortal-
ity. Admittedly, the original Charlson score
did not include any conditions with �̂j ≤ 0,
but other versions and comorbidity indices
do.48,56 The mistake has been noted several
times,40,182 and it was also acknowledged by
the editors of the Journal of Clinical Epi-
demiology (the successor of the Journal of
Chronically Diseases, which published the
original paper).184 Charlson et al, however,
have not con�rmed or corrected their mis-
take but have instead stated that “[t]he sim-
plicity of calculating the Charlson comorbid-
ity index and its interpretability has likely
propelled its widespread use”.185

The AUC was used as a concordance in-
dex as the sole entity for model validation. It
was estimated using sound methods for cen-
sored survival data, but it has been criticized
for its inability to sometimes detect mean-
ingful di�erences in discriminative ability
when adding new predictors to a model.186
This is especially true for rare events data
where large ORs are needed before any vis-
ible change of AUC might be detected. It
is therefore possible that the added value of
comorbidity to the base model with age and
sex, is underestimated. The Net reclassi�-
cation improvement (NRI) is an alternative
measure, which is more sensitive. It lacks
a natural interpretation, however, and the
value might lead to confusion if not care-
fully scrutinized.110 Another alternative as-
sessment tool is the coe�cient of determina-
tion, R2 ∈ [0, 1], as often used for internal
goodness-of-�t validation in inference stud-
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ies. It is an estimate of correlation, the ex-
plained variability, between observed and ex-
pected values in linear regression. R2 = 0
means no correlation, hence no predictive
ability. R2 = 1 implies a deterministic re-
lationship, which might seem suspicious in
most cases. Values between 0.2 and 0.3 are
common in medical prognostic settings (pre-
dictions of the future), although higher val-
ues might be expected for diagnostics (pre-
dictions of a current feature).110 There are
several generalizations of pseudo-R2 to gen-
eralized linearmodels (Nagelkerke’s,McFad-
den, Cox-Snell and others). Unfortunately,
there is no consensus ofwhich version to use.
The Brier Score is another measure, combin-
ing discrimination and calibration. Its scale
varies with the base incidence rate, how-
ever, wherefore comparisons between di�er-
ent models and cohorts are di�cult. A re-
scaled version from 0 to 1, the “index of pre-
diction accuracy”, has been proposed.187 The
Brier Score is popular but quite insensitive
in settings with very rare outcomes (such as
ours). The Lorenz-curve and the Gini index
(coe�cient) are two additionalmethods used
in economy, but rarely in medicine.110

The lack of discriminative ability also in-
dicates poor calibration and a lack of clini-
cal usefulnes, wherefore suchmeasures were
not explicitly assessed.

5.2.3 STRENGTHS AND LIMITATIONS

Observational register studies have the po-
tential to capture real world evidence (RWE)
to a larger extent than randomized clinical
trials (RCTs), although causal relationships
are harder to �nd. The use of Swedish PINs
and registers with high quality data and na-
tional coverage was bene�cial. The data
used, however, were collected for other pri-
mary purposes than research. This is one of
the criticism for ICD codes in general. They
were originally developed by, and for, the sta-
tistical community to allow for data aggrega-
tion and follow-up over time. It has become
more of an administrative tool, however,
with constant revisions, as well as false in-
centives for reporting some conditions more
than others.9,188

Only the �rst operated hip was included
for patients with bilateral hip arthroplasty.
This is a common practice in the orthopedic
literature. We have later showed, however,
that the second hip better resembles unilat-
eral hips, wherefore those were included in
Study IV–V.189

We choose to di�erentiate discriminative
ability for di�erent age groups in Study III.
Cut points for those age groups (70 and 90
years) were based on observed data. Such
data-driven approaches are often criticized,
and more clinically relevant age groups
might very well be preferred.

A limitation applicable to all empirical
studies (II-V) is the lack of multiplicity cor-
rection for p-values and CIs, where the un-
adjusted � = 0.05might be too liberal. This,
however, is a common setting in the medical
literature.

5.3 STUDY IV

We derived a model with some predictors of
interest. A relevant question is which pre-
dictors were the most important? This has
no clear answer in a prediction setting with
variable selection combined with ensemble
methods. Variable inclusion was based on
predictive power but potential exclusion of
one variable might lead to another variable
taking its place.98 If we nevertheless con-
sider the proposed model, the magnitudes
(absolute values) of the estimated ORs could
act as ad hoc measures of variable impor-
tance. This reveals a large e�ect forASAclass
III (patients with severe systematic disease),
compared to patients with ASA class I (nor-
mal healthy patients) as baseline. Compar-
ing two patients, one with ASA class I and
onewith ASA class III, it seems reasonable to
assign a higher probability of death to the lat-
ter. This would correspond to good discrim-
inative ability of the model (increasing the
AUC value) if the patient with ASA class III
dies, while the patient with ASA class I sur-
vives. The wide CI for the estimated OR for
ASA class III, however, indicated large un-
certainty and sub-optimal calibration. Male
sex might seem as a less important predic-
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tor, with only moderate OR compared to the
other predictors. This factor level is com-
mon, however, relevant for almost 40 % of
the patients, implying a relatively narrow CI.
The e�ect of kidney disease was larger in
magnitude but was only relevant for 1 % of
the patients in the Swedish cohort. It was
thus a useful predictor for this small portion
of patients, but it contributes less to the over-
all relevance of the model. The age-e�ect
might be transformed to a more meaningful
time scale, such as age in decades instead of
individual years. Alternatively, the normal-
ization (tomean 0 and variance 1), used prior
to variable selection might be retained. It is
otherwise hard to compare variable impor-
tance for this continuous variable to the fac-
tor variables. The CI was very narrow, how-
ever, since age is a relevant predictor for all
patients in the cohort. It should be noted
that ORs are relative measures which must
be interpreted in relation to the baseline co-
hort due to the non-collapsibility feature of
logistic regression.

As discussed in the manuscript, obe-
sity was included in the model although
its estimated OR was not statistically sig-
ni�cantly di�erent from 1. A model with-
out this predictor would yield worse perfor-
mance, however. The non-linear relation-
ship among predictors in logistic regression
is non-intuitive, due to its multiplicative er-
ror term a�ecting the interpretation of coef-
�cients in relation to non-included variables
as well. Possible correlation (non-modeled
interaction e�ects) might also a�ect the as-
sociation between predictors and outcome.
Obesity is a known risk factor for some di-
agnosis of cancer, as well as a causal ef-
fect increasing the ASA class. This is one
reason why the magnitude of the ORs is
often an ill-conceived measure of variable
importance.190–192 A better comparison of
variable importance would consider the dif-
ference in AUC for models with and without
each predictor. Unfortunately, the AUC, as a
measure of rank correlation, is rather insen-
sitive in this setting. The permutation test is
a possible alternative,192 where the variable
importance of predictor X⋅j is estimated by

comparing model M based on the observed
x⋅j = (x1j , … , xnj)′ and a scrambled/permu-
tated perm(x⋅j) where xij is no longer as-
signed to patient i but to another patient at
random. Thus, any possible association be-
tween perm(x⋅j) and y would be purely ran-
dom. Other methods compare pseudo R2-
values for models with or without the predic-
tor of interest,190 or uses dominance analysis
with similar methods extended to all nested
sub models.191 To formally assess variable
importance for logistic regression is, how-
ever, unusual, althoughmuchmore common
for linear regression or for ML techniques
such as random forest (a method combining
multiple decision trees).

5.3.1 METHODOLOGICAL CONSIDERATIONS

We preferred a model with logistic regres-
sion due to ease of interpretation and a
wish to present the result as transparent as
possible. It is possible that other model-
ing techniques, such as generalized boost-
ing models,193 would improve the discrimi-
native ability.194 A systematic review, how-
ever, found no bene�ts of ML compared to
logistic regression.195 Tree-models have also
performed worse than main e�ects regres-
sion models in some validation settings.114
However, very few patients die within 90
days of THA due to OA. Thus, the out-
come is rare, and the data unbalanced/im-
balanced. This is problematic for logistic re-
gression, which is often not recommended
for modeled probabilities p ∉ [0.2, 0.8],
for which p̂ might be too small, thus
under-estimating the true p.196 We therefore
tried, or at least considered, several meth-
ods to re-balance the data prior to further
analysis. This included traditional under-
and oversampling, random over-sampling
examples (ROSE),197 class-imbalanced sub-
sampling LASSO logistic regression,198 en-
semble methods with boosting, bagging and
hybrid-based approaches,199,200 as well as
strati�ed sampling for each bootstrap- and
cross-validation step. Such methods are pop-
ular with classi�cation and linear regression,
where distorted intercepts (due to di�erent
sampling schemes) might be compensated
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Figure 5.1: Schematic representation of variable
selection based on estimated coe�cient values
larger than a single break-point (left), versus the
second of possibly multiple break points (right).

for, by adjustments to the over-all incidence
rate.201 This is more di�cult for, a possibly
miss-speci�ed, logistic regression model due
to non-collapsibility. We therefore decided to
use logistic regression as is.

We used traditional LASSO regression,
but there are several versions which might
be considered. Especially the group LASSO
could be a relevant method in our case, to ei-
ther include or exclude all levels ofmultilevel
factors simultaneously. Adaptive LASSO, in-
troducing individual penalty terms for each
parameter, has showed promising results in
settings with high dimensional data, but
might be less relevant for lower dimensional
data sets such as ours.202 Firth regression
has also shown some bene�ts over LASSO
considering data with few events per vari-
able (EPV).203 LASSO however, is still con-
sidered the norm for variable selection us-
ing penalized regression in the medical �eld.
We used piece-wise linear regression to �nd
a breakpoint based on variable importance
measured as the mean of the absolute values
of the estimated coe�cients. Only variables
with coe�cients above this break-point were
further considered. This method was pro-
posed by Guo et al.115 and is fairly intuitive
in a classical “Pareto setting” where a few vi-
tal variables contribute to the majority of the
predictive power (Figure 5.1 left panel). Al-
ternative settings could apply where an in-
dividual breakpoint is less obvious or where
several consecutive breakpoints might apply
(Figure 5.1 right panel). To include all vari-
ables (relying on the LASSO penalty term
alone) could lead to theoretically better mod-

els, preferred outside clinical settings where
the trade-of between model parsimony and
accuracy is less important. Another alterna-
tive is to replace the current piecewise regres-
sion (splines with one knot and one degree
polynomials) with multiple linear, or even
non-linear, segments and breakpoints, possi-
bly identi�ed using Bayesian methods.204,205
A further generalization might consider al-
ternative ranking procedures in addition to
the absolute values of the mean estimated
coe�cients.116

We choose to assess calibration graph-
ically by a �exible calibration curve based
on a parametric model with fractional
polynomials.136 Several alternatives have
been suggested based on non-parametric
smoothers/loess-functions, for example the
integrated calibration index, described as the
“weighted di�erence between observed and
predicted probabilities, in which observa-
tions are weighted by the empirical density
function of the predicted probabilities”.206
This method is not restricted to logistic
regression and is therefore a good alternative
if comparing models derived by di�erent
statistical techniques such as random forest
or boosted regression.

5.3.2 STRENGTHS AND LIMITATIONS

Most predictivemodels suggested for clinical
use are never validated;207 only 25 % (32 of
127) according to a systematic review from
2015.208 Our external validation with patient
data from the largest arthroplasty register in
the world,66 is thus a strength of the study.
Even with our rare outcome, we still had
more than 650 deaths in the external valida-
tion cohort. This was 3.7 times as many as in
the Swedish derivation cohort, yielding a rea-
sonably large e�ective sample size, greater
than theminimal 100 cases as sometimes rec-
ommended as a rule-of-thumb for external
validation.140 We also consider the transpar-
ent reporting of the �nalmodel, aswell as the
provided web-calculator, as strengths of the
study.

The EPVwas low for individual variables,
however. It is recommended to only in-
clude potential predictor variables (includ-
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ing dummy variables and polynomial co-
e�cients) with at least 10–20 events.123,209
More conservative recommendations require
an EPV of 50.110We included all variables ex-
cept in the presence of full separation, where
no patients with a particular condition died.
This might lead to biased estimates of re-
gression coe�cients and ORs, an unfortu-
nate limitation of the study.74

We were not able to include any inter-
action terms in the �nal model, although
all second and third-order interactions were
considered, and discarded, in an earlier at-
tempt. We simply did not have enough
observed deaths to model such interaction
terms adequately.

The ASA class was modeled as an un-
ordered categorical variable for convenience,
although a proportional odds model assum-
ing an ordinal scale, might have been more
accurate.210

The complete case analysis might be an-
other limitation. Patients with missing data
on BMI, ASA class, educational level and
type of hospital were excluded from the
model derivation cohort. This is a common
but often criticized practice in medicine. It
decreases the sample size and increases the
risk of bias if data is missing not at ran-
dom (MNAR). The mechanism for missing
data is unknown but wemight speculate that
BMI is less well-recorded for patients with
lower values, since those might seem less
relevant to record. Patients with high val-
ues on the other hand, might be more re-
luctant to state their true weight if asked to,
wherefore their values might get underesti-
mated if self-reported. To exclude patients
with missing BMI is thus unfortunate but
more or less unavoidable. Educational level
is more commonly missing for patients ed-
ucated abroad, and possibly also for older
patients with their education dating back to
the pre-computer register era. We might hy-
pothesize that such data are more commonly
missing for lower educational levels (since
higher education was relatively less common
in the past). Hence, both BMI and educa-
tional level might be MNAR. ASA class and
type of hospital might be missing at ran-

dom (MAR), thus with missingness corre-
lated with other variables, but not with the
missing values themselves. They might even
be missing completely at random (MCAR),
thus without any conceivable patterns. Such
variables might be imputed, either “verti-
cally” by an estimate from the observed vari-
able values (its mean, median or mode), or
“horizontally” conditioning on non-missing
variables from the same patient, such as us-
ing a regression model to �nd the most prob-
able value. The latter is often preferred out-
side prediction modeling with the goal to
estimate variable coe�cients as accurate as
possible. Multiple imputation using chained
equations (MICE) is the preferred approach
to also capture the additional uncertainty in-
troduced by those non-observed values and
to impute several missing variables for each
patient. Simpler methods might be preferred
in prediction settings, however, where causal
assumptions are less relevant and where the
computational burden is already high.211 A
potential use of a separate missing data indi-
cator for categorical variables is more contro-
versial. It introduces bias for the estimated
model coe�cients, but the practice has been
advocated for models with a pure prediction
purpose,212 although such advice is also ill-
perceived by others.213

Possible heterogeneity among surgeons,
hospitals or counties might be of relevance
to the model, but was ignored in the study.
HGLM might have been used within the
modeling process, but administrative and or-
ganizational e�ects might be hard to explain
in clinical practice for patients considering
hip arthroplasty.

CIs for the estimated coe�cient values
did not incorporate any uncertainty imposed
by the variable selection procedure. The
width of those CIs thus underestimate the
true uncertainty of the model. It is rare
to provide accurate CIs under those circum-
stances, although a method combining boot-
strapping and the delta-method has been
proposed.202 It would also be desirable to
provide prediction intervals for individual
patients, but similar challenges apply, as well
as that observations are binary (dead or not;
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Y ∈ {0, 1}), whereas probabilities are esti-
mated on the interval scale from zero to one,
p̂ ∈ [0, 1].

We did not formally evaluate the clinical
usefulness of the prediction model as a tool
for shared decisionmaking. We believe how-
ever that the web-calculator is useful, mostly
to con�rm that the risk of short-term mor-
tality is minimal for most patients. Most in-
dividuals are likely aware that high age, sys-
tematic disease (ASA class III) and severe co-
morbidities are risk factors of death, but to
what extent might be less known.

We were not able to draw any causal con-
clusions regarding the potential e�ect of co-
morbidity onmortality after hip arthroplasty,
since we had no observed intervention and
no control group. To form such control group
fromobservational data seems di�cult, how-
ever. One possibility worth exploring might
be to include data from the registry of Better
management of patients with OsteoArthri-
tis (BOA), combined with some propensity
score method.

5.4 STUDY V

Individual patients’ predictions were the fo-
cus of the thesis, although some assessment
of aggregated population level dynamics is
also useful. It is possible to predict RMST on
a population level as well,85 but this would
be less useful for individual patients.

5.4.1 METHODOLOGICAL CONSIDERATIONS

We used linear regression with an iden-
tity link function and GEE, based on
pseudo-observations as a semi-parametric
method for covariate adjustment. Alterna-
tive link functions, such as the log-linear,
were not considered but might be equally
relevant85,94,214

An alternative modeling approach might
consider a �exible parametric model, yield-
ing smaller variance estimates and increased
statistical power.91 Cox regression is another
alternative. This would require proportional
hazards, however, which contradicts one
of the common rationales for using RMST.
It is nevertheless possible using the Bres-

low estimator for the cumulative baseline
hazard.215,216

Another parameter-free alternative to
GEE with pseudo-observations, is a Kaplan–
Meier curve with inverse probability weight-
ing (IPW) based on propensity scores. This
is a method used for causal inference with
intentional treatment groups. To estimate
“propensity scores” for groups based on the
Elixhauser comorbidity index, might seem
far-fetched, however.89,95

We illustrated uncertainty of the
RMST curves by pointwise 95 % CIs
(�� ± 1.96�∕

√
n). An alternative approach

with con�dence bands might also apply.179

5.4.2 STRENGTHS AND LIMITATIONS

We consider the intuitive results of RMST as
a strength of the study. Especially so with the
use of pseudo-observations and GEE, which
provided a natural time scale also for the
e�ect of covariate adjustment. Traditional
survival modeling based on HRs would be
less interpretable, and potentiallymisleading
without correct assumptions regarding the
observed non-proportionality, as recognized
in Study II–III.217

The applied methods assumed random
censoring, which we assumed without for-
mal assessment.* Administrative censoring
ismore common for patients with hip arthro-
plasty in later years. It is thus possible that
time trends, for example caused by increased
comorbidity coding, would be correlated
with the censoring process.214 A double-
robust alternative allowing for non-random
censoring patterns has been suggested.86 It
is, however, best suited for comparisons of
intentional treatment groups, and is thus less
applicable to our observedElixhauser comor-
bidity. It is a strength of our linkage data,
however, that we were not constrained to in-
hospital deaths. If so, there might have been
correlation between Elixhauser and censor-
ing, if we assume that patients with more co-
morbidity are more likely to die in hospitals,
whereas healthier patients might as well die
of unrelated causes in the society.85

*This is relevant also for Study II–III.
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We developed an R-package coder as a
generic tool for data classi�cation based on
external code data (Study I). The package is
released as open source software with online
documentation (https://eribul.github.
io/coder/).

It was not possible to accurately predict
mortality from neither the Charlson, nor the
Elixhauser comorbidity indices for patients
with neither OA (Study II), nor FNF (Study
III). A simple model with age and sex was
a better alternative in both cases. However,
if any comorbidity index should be used for
such predictions, we recommend to use Elix-
hauser for OA and Charlson for FNF.

We found an alternative model to predict
90-day mortality after cemented THA due
to OA (Study IV). The parsimonious main
e�ects model considering age, sex, BMI,
ASA class and the presence of cancer, CNS
disease, kidney disease and obesity had an
AUC statistically signi�cantly above 0.7
due to internal and external validation. We
hope that the supplementing web-calculator
(https://erikbulow.shinyapps.io/
thamortpred/) will aid shared decision
making in clinical practice.

Although the Elixhauser comorbidity in-
dex was not su�cient to accurately predict
mortality, it was associated with RMST after
THA due to OA (Study V).

https://eribul.github.io/coder/
https://eribul.github.io/coder/
https://erikbulow.shinyapps.io/thamortpred/
https://erikbulow.shinyapps.io/thamortpred/
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7 FUTURE PERSPECTIVE
Introducing new software, such as the coder
package (Study I) is a long-term commit-
ment. Software dependencies are often com-
plex and new updates might break existing
functionality. New versions of coder might
therefore be prompted regardless of poten-
tially new feature requests. New updates
based on ICD-11 might also be relevant. A
further improvement inspired by later ver-
sions of the icd package is also possible. icd
implements an alternative classi�cation ap-
proach using sparse matrix multiplications
and linear algebra.218 It would be relatively
easy to automatically translate our regular
expressions into such sparsematrices aswell,
using the related decoder package for inter-
mediate code translation. This might further
increase the computational e�ciency of the
package. If so, the regular expressions would
still be used for a compact representation, al-
though not for direct code comparisons for
each individual code.

We developed a prediction model trained
on patients operated with cemented THA
due to OA 2008–2015 (Study IV). The under-
lying population survival changes over time,
however. This, combined with possible case
mix shifts, modi�ed indications for surgery,
and changes made to surgical, as well as ad-
ministrative procedures, might lead to a po-
tential calibration drift over time. It might
therefore be necessary to re-calibrate the
model parameters every couple of years.219

7.1 MACHINE LEARNING

Regression analysis, as used in this thesis, is
a popular technique, even compared to mod-
ern ML algorithms. This is not only due to
historical reasons. (Semi)parametrical for-
mulations aid interpretation and generaliza-
tions as often required in the medical �eld.
ML, such as classi�cation, tree models (in-
cluding random forest), support-vector ma-
chines, neural nets and deep learning, can
perform equally well (or better), but their
outcomes are harder to interpret and the re-
quired data sets are larger, since many more

degrees of freedom are spent on �nding rela-
tional forms and tuning parameters without
a pre-speci�ed parametric model.110 To use
larger data sets, perhaps from international
collaboration, or to include images or other
types of data, could be of interest in a future
setting incorporating ML. A unifying frame-
work for international collaboration of pre-
diction modeling based on observational pa-
tient data has been initiated through Obser-
vational Health Data Sciences and Informat-
ics (OHDSI).220 A standardized data struc-
ture complemented by relevant open source
software makes it easier to derive and val-
idate models in di�erent countries.221 To
combine data from di�erent countries and
sources is di�cult, however, not only due
to technical issues. This was brought into
public attention during the initial phase of
the Covid-19 pandemic, whenmortality data
from di�erent countries were hard to com-
pare.

Modeling rare/extreme events (imbal-
anced/unbalanced data) is challenging. Sev-
eral compensatory methods have been pro-
posed and it would be of interest to explore
those inmore details. XGBoost, Catboost and
related methods are popular for prediction
modeling and might be of relevance.

ML models are relatively common in
the orthopedic literature, although the most
successful applications concern medical
imaging222 such as fracture classi�cation
based on X-rays,223 or kinetic skeletal
tracking.224 The results of such classi�-
cations are immediately recognized and
comparable by human assessment, where-
fore less interpretable models might be
accepted. This is di�erent from predictions
of future events.

7.2 ALTERNATIVE OUTCOMES

Death is probably the most studied end point
in medicine. It is the �nal outcome and it
is often well recorded. We studied all-cause
mortality since this information is most reli-
able. It should be possible, however, to more
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clearly distinguish only the relevant causes
of death. Accidental deaths due to tra�c ac-
cidents or violent crimes for example might
be excluded since those are unlikely related
to pre-surgery comorbidity before hip arthro-
plasty. This is possible through data linkage
with the cause of death register.17 This could
also strengthen the indication of a hypothet-
ical causal e�ect in Study IV.

Other important outcomes include reop-
eration or revision after surgery, as well as
PROMs. Those outcomes are also widely
studied in the orthopedic literature and we
plan to extend themodeling from Study IV to
prediction of prosthesis joint infection (PJI)
and dislocation after elective THA. There is
similar interest to include fracture patients as
well, and to build a comprehensive web cal-
culator combining those outcomes.

7.3 ADDITIONAL PATIENT GROUPS

We studied patients with hip arthroplasty.
To predict mortality for patients with OA
treated with physiotherapy might be less rel-
evant. There is no reason to believe that
those patients, without any severe disease or
any invasive treatment, should have a mor-
tality rate di�erent from the general popula-
tion. Patients with hip fractures treated with
internal �xation seems like a more relevant
cohort, however. To predict their mortality
is as relevant as for those patients treated
with hip arthroplasty and such procedures
are recorded in the Swedish Fracture Regis-
ter.

7.4 CLINICAL USEFULNESS

An important but often neglected discussion
concerns the clinical usefulness of a pro-
posed prediction model. A model estimat-
ing probabilities of an event (death) might
be most useful if this probability exceeds a
threshold leading to action (a decision to op-
erate or not).110,225 A default threshold for
p̂ > 0.5 could be assumed, thus to not op-
erate if the risk of death exceeds 50 %. Such
decision becomes irrelevant for rare but fatal
events, however. Instead, the overall 90-day
probability of death, 0.3 %, might be chosen

as an alternative threshold, implying a deci-
sion not to operate if the probability of death
exceeds this limit. This might seem overly
conservative, however, and such judgment is
subjective. It is more relevant tomake an ini-
tiated trade-of between risk and bene�t, such
that the risk and severity of death is balanced
against the possible bene�ts of the operation.
Such act of balance might include factors ex-
ternal to the statistical model, for example
the individual risk propensity for each pa-
tient. This has not been considered as part
of the thesis but might constitute a relevant
continuation.226
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