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Abstract                                                                                                                                   

Evolutionary conserved natural behaviors, such as foraging and sexual 
behaviors, are strongly associated with reward processes. Brain areas 
important for reward processes include, but are not limited to, the nucleus 
accumbens (NAc) shell, the ventral tegmental area (VTA), the laterodorsal 
tegmental area (LDTg) and the nucleus of the solitary tract (NTS). The 
mechanisms that control natural rewards are complex, and appetite-regulating 
peptides, such as ghrelin and glucagon-like peptide-1 (GLP-1), have recently 
been identified as substrates involved in reward processes. The aim of the 
present thesis is therefore to elucidate the involvement of ghrelin and GLP-1 
in natural rewards, by assessing how they mediate two different natural 
rewards, i.e. skilled reach foraging from the feeding-related domain and sexual 
behaviors from the social behavior domain, in preclinical behavioral models. 

We showed in paper I that repeated treatment with a ghrelin receptor 
antagonist decreases the motivation of skilled reach foraging in rats with an 
acquired skilled reach performance tentatively through suppression of ghrelin 
receptors within the NAc shell. Repeated ghrelin increases, whereas a ghrelin 
receptor antagonist reduces, the motivation and learning of skilled reach 
foraging in rats during acquisition of this behavior. In paper II, we further 
established that GLP-1, as ghrelin, modulates the motivation and learning of 
skilled reach foraging. Indeed, the GLP-1 receptor (GLP-1R) agonists, 

 

exendin-4 and liraglutide, decrease the motivation of skilled reach foraging in 
rats with an acquired skilled reach performance whereas another GLP-1R 
agonist, dulaglutide, increases the learning of this complex behavior. When it 
comes to GLP-1 and sexual behaviors we demonstrated in paper III that a 
systemic exendin-4 injection decreases social behaviors, mounting behaviors 
and self-grooming behaviors but does not influence preference for females or 
female odors in sexually naïve male mice. We also identified that activation of 
GLP-1R within the NTS suppresses social behaviors, mounting behaviors and 
self-grooming behaviors in sexually naïve male mice. In addition, in paper IV 
we further identified that activation of GLP-1R within the LDTg or the 
posterior VTA suppresses social behaviors and mounting behaviors whereas 
activation of GLP-1R within the NAc shell only reduces social behaviors, but 
not mounting behaviors, in sexually naïve male mice.                                                                                                                            

Collectively, these data support the emerging literature suggesting that ghrelin 
increases whereas GLP-1 decreases natural rewards, by showing that these 
peptides via reward-related areas modulate natural rewards from both the 
feeding-related and the social behavior domains of natural rewards. 

Keywords: Reward, Gut-brain axis, Sexual behaviors, Skilled reach foraging  
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Populärvetenskaplig sammanfattning 

Aptitreglerande hormoner och                      
naturliga belöningar:                                                               

fokus på ghrelin och glukagonlik peptid-1  

Drogberoende innebär ett stort lidande och hög risk för förtidig död för den 
drabbade. På senare år har beroende begreppet vidgats, och det inkluderar idag 
också beteenden som har beroendeliknande uttryck såsom hetsätning och 
sexberoende. Det neurobiologiska forskningsfältet har föreslagit att beroende 
till droger och beteenden till stor del drivs av maladaptiva 
belöningsmekanismer i hjärnan. Naturliga belöningar, såsom mat och sex, 
samt beroendeframkallande droger aktiverar belöningskretsar. Förmågan hos 
belöningarna att aktivera dessa kretsar påverkas av många olika mekanismer, 
och studier har visat att aptitreglerande hormoner som produceras i mag-
tarmkanalen påverkar upplevelsen av belöningarna. Genom att kommunicera 
med hjärnan, har tidigare studier visat att dessa aptitreglerande hormoner 
kontrollerar energi- och matintag. Exempel på sådana aptitreglerande 
hormoner är ghrelin och glukagonlik peptid-1 (GLP-1). GLP-1 reglerar också 
blodglukosnivåerna, och substanser som liknar GLP-1 används därför vid 
behandling av diabetes typ II. Även om initiala studier pekar på att ghrelin och 
GLP-1 är involverade i belöningsreglering är det fortfarande inte helt klarlagt 
om och hur ghrelin och GLP-1 påverkar naturliga belöningar såsom 
motivationen att konsumera socker, samt sexuella beteenden. Denna 
avhandling syftar till att ytterligare klarlägga om och hur ghrelin och GLP-1 
påverkar dessa naturliga belöningar med hjälp av etablerade djurmodeller.          

I vår första studie i råttor visade vi att upprepad ghrelin behandling ökar 
motivationen och inlärningen att konsumera socker. Vidare visade vi att 
farmakologisk blockad av ghrelin signalering minskar detta belönings-
relaterade beteende. Vi visade också att ghrelin genom att påverka ett område 
mycket centralt för belöning, dvs accumbenskärnan, minskar motivationen till 
att konsumera socker.  I den andra motivationsstudien jämförde vi tre stycken 
olika GLP-1 verkande diabetesläkemedel, nämligen exendin-4, liraglutid och 
dulaglutid. Vi visade att upprepad behandling med exendin-4 eller liraglutid 
minskar motivationen att konsumera socker, medan dulaglutid ökar 
inlärningen av beteendet. I den tredje och fjärde studien visade vi att 
behandling med exendin-4 minskar hanens sexuella interaktion med en hona 
via områden som är associerade med belöning.  

 

Sammanfattningsvis visar dessa studier att aptitreglerande hormoner reglerar 
naturliga belöningar från både den mat-relaterade och den sociala domänen. Vi 
anser därför att farmakologiska substanser som antingen blockerar ghrelin 
signalering eller aktiverar GLP-1 signalering har möjlig potential att testas 
kliniskt vid behandling av beroende-liknande beteenden såsom hetsätning och 
sexberoende. 
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GLP-1            glucagon-like peptide-1 

GABA            gamma-aminobutyric acid 

LDTg              laterodorsal tegmental area 

VTA                ventral tegmental area 
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NTS                 nucleus of the solitary tract 

mPOA              medial preoptic area 

aVTA               anterior ventral tegmental area 

pVTA               posterior ventral tegmental area 
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PPG neurons     preproglucagon neurons 

GHSR-1A         growth hormone secretagogue receptor 1A 

GLP-1R             glucagon-like peptide-1 receptor 
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1 INTRODUCTION  
1.1 Natural rewards and compulsive behaviors  
The initial and continued reward from a behavior is necessary for animal 
survival (for review see 1,2). These evolutionary conserved behaviors activate 
the reward systems of the brain 2-13 and are thus referred to as natural rewards. 
There are different domains of natural rewards including food-related 
behaviors, social behaviors, exercise behaviors and novelty-seeking behaviors 
(for review see 14). Social behaviors are further sub-divided into behaviors such 
as pro-social behaviors, aggression behaviors, sexual behaviors, maternal 
behaviors, paternal behaviors and social play (for review see 15,16).  

These reward systems are also mediating reward from addictive drugs (for 
review 17). Excessive use of addictive drugs causes neuroplasticity changes in 
these reward systems thereby causing drug addiction, a brain state 
characterized by compulsive drug-seeking and loss of control over intake (for 
review 17). Interestingly, excessive use of natural rewards is also causing 
similar neuroplasticity changes as addictive drugs thereby causing them to 
become compulsive 18-21. Example of these compulsive behaviors are binge 
eating disorder, internet addiction, gambling disorder, compulsive buying and 
compulsive sexual behaviors (for review see 22,23). However, the development 
of these addictive disorders is complex and both inherited genetic 
predisposition and environmental factors contribute (for reviews see 24-26). To 
date, cognitive behavioral therapy, serotonin-reuptake inhibitors and 
naltrexone are used for treatment of binge eating disorder, internet addiction, 
gambling disorder, compulsive buying and compulsive sexual behaviors with 
modest effects (for review see 23,27-29). In addition, lisdexamfetamine is also 
used to treat binge eating disorder with modest effect (for review see 27). These 
compulsive behaviors are largely understudied and more insight into the 
underlying neurobiological mechanisms driving these natural rewards to 
become compulsive could lead to improved pharmacotherapy.  To understand 
the mechanisms driving natural rewards to become compulsive, we need to 
pinpoint neurocircuits and neuromodulators which guide these mechanisms. 
We have therefore focused on two different natural rewards, i.e. skilled reach 
foraging from the feeding-related domain and sexual behaviors from the social 
behavior domain, in preclinical behavioral models.   
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There are different domains of natural rewards including food-related 
behaviors, social behaviors, exercise behaviors and novelty-seeking behaviors 
(for review see 14). Social behaviors are further sub-divided into behaviors such 
as pro-social behaviors, aggression behaviors, sexual behaviors, maternal 
behaviors, paternal behaviors and social play (for review see 15,16).  

These reward systems are also mediating reward from addictive drugs (for 
review 17). Excessive use of addictive drugs causes neuroplasticity changes in 
these reward systems thereby causing drug addiction, a brain state 
characterized by compulsive drug-seeking and loss of control over intake (for 
review 17). Interestingly, excessive use of natural rewards is also causing 
similar neuroplasticity changes as addictive drugs thereby causing them to 
become compulsive 18-21. Example of these compulsive behaviors are binge 
eating disorder, internet addiction, gambling disorder, compulsive buying and 
compulsive sexual behaviors (for review see 22,23). However, the development 
of these addictive disorders is complex and both inherited genetic 
predisposition and environmental factors contribute (for reviews see 24-26). To 
date, cognitive behavioral therapy, serotonin-reuptake inhibitors and 
naltrexone are used for treatment of binge eating disorder, internet addiction, 
gambling disorder, compulsive buying and compulsive sexual behaviors with 
modest effects (for review see 23,27-29). In addition, lisdexamfetamine is also 
used to treat binge eating disorder with modest effect (for review see 27). These 
compulsive behaviors are largely understudied and more insight into the 
underlying neurobiological mechanisms driving these natural rewards to 
become compulsive could lead to improved pharmacotherapy.  To understand 
the mechanisms driving natural rewards to become compulsive, we need to 
pinpoint neurocircuits and neuromodulators which guide these mechanisms. 
We have therefore focused on two different natural rewards, i.e. skilled reach 
foraging from the feeding-related domain and sexual behaviors from the social 
behavior domain, in preclinical behavioral models.   
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1.1.1 Foraging behaviors 

Maintaining energy homeostasis is necessary for survival and animals invest a 
major part of their day to seek and consume nutrients (for reviews see 30,31). 
Feeding is guided by homeostatic and hedonic signals (for reviews see 30,31). 
Homeostatic signals affect brain areas such as the hypothalamus, and are 
responsible to maintain energy balance by influencing regular food intake (for 
reviews see 30,31). Appetite-regulating peptides, such as ghrelin, glucagon-like 
peptide-1 (GLP-1), neuromedin U, amylin, leptin, insulin and peptide YY, are 
well known for their ability to guide homeostatic feeding (for review see 32). 
Hedonic signals drive the animal to overeat by giving food incentive salience 
(for reviews see 30,31). Albeit the neurocircuits regulating homeostatic and 
hedonic feeding often are considered as dissociable, recent findings suggest 
that these overlap to some extent (for review see 33).  

Hedonic feeding, driven by the reward systems, is typically divided into two 
components: “liking” and “wanting” 34. Liking is associated with the 
palatability of the food, and the immediate response to their consumption, 
while wanting is associated with the drive to obtain certain types of foods 34. 
Different nutrients, internal states and the context where they are consumed 
affect the processes of reward and consequently modulate the hedonic feeding 
35-40. Hedonic feeding is divided into motivational hedonic feeding and 
consummatory hedonic feeding which are assessed with different animal 
models (for review see 41). The consummatory aspects are assessed by 
measuring palatable food intake while the motivational aspects are evaluated 
by using operant self-administration models for palatable foods (for review see 
41). There are different types of palatable foods that are rewarding in rodents, 
such as sucrose, chocolate, peanut-butter, high-fat diet, high sucrose/high fat 
diet and western-style cafeteria diet, which are causing overeating 42-45. 
Interestingly after a period of palatable food extinction rodents’ relapse to 
operant self-administration for palatable food seeking in response to palatable-
food priming, food-associated cues or stress, sharing similarities with addictive 
drugs (for review see 46).  The Montoya staircase paradigm, classical used for 
evaluating motor learning and performance 47,48, utilize sucrose pellets, as a 
palatable food source, to motivate the rodent to learn this complex 
progressively more difficult motor task 47,48. This test is therefore used to assess 
motivation and learning of skilled reach foraging by measuring the 
consumption of sucrose pellets and the success rate.    

Hedonic feeding behaviors are complex but are modulated by various appetite-
regulating peptides that originates in neurons, in the periphery (i.e. gut-brain 
peptides) or both (for review see 32). Appetite-regulating peptides that increase 
hedonic feeding are ghrelin (for review see 49) orexin 50 and neuropeptide Y 
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51,52. On the other side appetite-regulating peptides that decrease hedonic 
feeding are GLP-1 (for review see 53), neuromedin U 54-56, insulin 57, leptin 57,58, 
amylin 59,60 and peptide YY 61. In addition to appetite-regulating peptides 
various neurotransmitters, such as dopamine, enkephalin, serotonin, 
acetylcholine, gamma-aminobutyric acid (GABA) and glutamate, modulate 
hedonic feeding 62-71. These appetite-regulating peptides and neurotransmitters 
act in various brain regions of the reward systems to modulate hedonic feeding 
such as classical reward areas including the laterodorsal tegmental area 
(LDTg), ventral tegmental area (VTA) and nucleus accumbens (NAc) 63-71 and 
areas which have previously not been associated with reward such as the 
nucleus of the solitary tract (NTS) 50,72,73 lateral parabrachial nucleus 74, 
paraventricular thalamic nucleus 75, supramammillary nucleus 76, ventral 
hippocampus 37, lateral septum 77 and lateral hypothalamus 78,79.   

 

1.1.2 Sexual behaviors    

Procreation is a necessary process for the survival of the species (for reviews 
see 80). Sexual behaviors are to a large extent innate, and these behaviors are 
evoked in response to environmental cues (for reviews see 80,81). Sexual 
behaviors are considered sexually dimorphic, as the behavior motor pattern 
differs to a high extent between the sexes (for review see 82,83). First, during the 
pre-sexual interaction phase, males and females express sex-specific social 
behaviors where females attract males by emitting pheromones and males 
respond with sniffing, following and attending the females causing the females 
to engage in proceptive behaviors (for review see 81,82,84). Secondly, during the 
sexual interaction phase, males engage in mounting behaviors which ends in 
ejaculation, while the females engage in lordosis behaviors to facilitate 
semination (for review see 81,82,84). Finally, during the post-sexual interaction 
phase, both males and females rest and engage in self-grooming behaviors (for 
review see 81,82,84). However, in contrast to the difference in behavioral motor 
pattern, the underlying reward processing of these behaviors, most likely, do 
not differ as both male and female behaviors during the pre-sexual interaction 
phase and the sexual interaction phase activate the reward systems (for review 
see 85). However, the data presented in this thesis focuses on male sexual 
behaviors and all the references are about male sexual behaviors unless stated 
otherwise.       

Sexual behaviors are divided into two components: motivational sexual 
behaviors and consummatory sexual behaviors (for review see 80,81,84). 
Motivational sexual behaviors describe the urge to seek after a potential mate 
(for review see 80,81,84) and can be further subdivided into sexual incentive 
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motivation and sexual conditioned motivation. The sexual incentive 
motivation describes the innate urge to seek a partner without prior experience 
and the preference for female test 86 and the straight-arm runway test 87 are 
used to asses sexual incentive motivation (for review see 84). The sexual 
conditioned motivation describes the learned motivation that emerge from 
prior experience and the level searching paradigm 88,89 and the lever-pressing 
paradigms 90 are used to assess sexual conditioned motivation (for review see 
84). Consummatory sexual behaviors describe the behavior pattern of 
copulation (for reviews see 80,81,84). These behaviors are assessed by measuring 
the interaction between a male rodent and a female rodent in estrus in an arena.  

Sexual behaviors are complex and are influenced by hormones such as 
corticosterone and testosterone 81,91-96 and neurotransmitters including 
dopamine, serotonin, noradrenaline, acetylcholine, glutamate, GABA and 
oxytocin 4-6,97-106. In addition, appetite-regulating peptides such as the 
orexigenic peptide orexin and neuropeptide Y inhibit sexual interaction 
behaviors 107-110 and anorexigenic peptides such as leptin or α-melanocyte 
stimulating hormone promote sexual interaction behaviors 110-113. To modulate 
sexual behaviors, these hormones, peptides and neurotransmitters act at 
various brain areas including the medial preoptic area (mPOA) 89,114,115, 
ventromedial hypothalamus 116, lateral hypothalamus 107,117,118, paraventricular 
nucleus 119 amygdala 120,121, bed nucleus of stria terminalis 115, periaqueductal 
gray 122, central tegmental field 123 and dorsal raphe 124,125. In addition, these 
signals also act in the LDTg, VTA and NAc to modulate sexual behaviors 3-

8,118,126,127. 

 

1.2 Brain regions associated with reward  
The reward systems consist of brain regions and neurocircuits that processes 
incentive salience (motivation and desire for a reward) and associative learning 
(positive reinforcing and condition) of rewarding stimuli 1,128,129. The VTA,  
NAc and LDTg are some of the brain regions which are part of the reward 
systems (for review see 130,131).  
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1.2.1 Ventral tegmental area 

The mesocorticolimibic dopamine system is an important part of the reward 
systems and processes both natural rewards and addictive drugs (for review 
see 130,131). The origin of this dopamine system is the VTA, where high density 
of dopamine cell bodies are located 132. The activity of dopamine neurons in 
the VTA are influenced by afferents including serotonin 71, noradrenalin 133, 
GABA 134,135, glutamate 136,137, acetylcholine 138,139, orexin 140 and GABA 
interneurons 141. The VTA is a heterogenous brain structure and its subparts 
receive different inputs and have different outputs 142-144. The VTA is 
commonly divided into the anterior (aVTA) and posterior VTA (pVTA) 142-144. 
Both the aVTA and pVTA are involved in reward processing, but they also 
process negative valence from aversive stimuli 136,142,145. A simplified 
schematic representation of afferents to and efferents from the VTA is 
summarized in Figure 1.    

 

 

 

 

 

Figure 1. Schematic illustration of some of the afferents/efferents to the ventral 
tegmental area (VTA)                                                                                               
NAc=nucleus accumbens; PFC=prefrontal cortex; LH=lateral hypothalamus; DR=dorsal 
raphe; LDTg=laterodorsal tegmental area; PPTg=pedunculopontine tegmental nucleus; 
NTS=nucleus of the solitary tract; LC=locus coeruleus; VP=ventral pallidum. Blue line = 
dopamine; Yellow line = serotonin; Green line = acetylcholine; Red line = GLP-1; 
Orange line = Orexin; Purple line = noradrenaline; Black line = glutamate; Grey line = 
GABA 
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The VTA dopamine neurons project to the prefrontal cortex which are referred 
to as the mesocortical dopamine system and are associated with the 
motivational and cognitive aspects of reward (for review see 146). The VTA 
dopamine neurons also project to limbic areas including the NAc, amygdala 
and hippocampus which is referred to as the mesolimbic dopamine system. 
This mesolimbic dopamine system is associated with pleasure, euphoria, 
positive emotional memories, stimulation, motivation and positive 
reinforcement (for review see 131,147,148). The mesolimbic system can be further 
subdivided into the mesoamygdaloid dopamine projection (VTA-amygdala), a 
neurocircuit associated with emotional learning 149,150 and the 
mesohippocampal dopamine projection (VTA-Hippocampus) a neurocircuit 
associated with spatial working memories and reward-dependent memories 151-

154 and the mesoaccumbal dopamine projection (VTA-NAc), a neurocircuit 
intimately associated with euphoria, stimulation, positive reinforcement, 
reward learning and motivational properties of rewards (for reviews see 
130,147,155) 

  

1.2.2 Nucleus accumbens  

NAc (also called ventral striatum) is subdivided into two distinct structures; 
the NAc core and the NAc shell. These different subparts of the NAc have 
different inputs and outputs, and thus modulate different processes 156.  The 
NAc core modulates reward learning, while NAc shell is associated with 
reward processing 157. The output neurons of the NAc are GABAergic medium 
spiny neurons (MSN). These MSN project to the VTA and ventral pallidum 
controlling reinforcement, motivation and movement initiation 158-161. The 
MSN are divided into dopamine D1 receptor expressing MSN which when 
activated stimulate, whereas dopamine D2 receptor expressing MSN which 
when activated suppresses, reward from addictive drugs and natural rewards 
162-164. Besides dopamine, the activity of output neurons in the NAc are 
modulated by afferents including serotonin 97,165, glutamate 67,68,166-168, and 
GABA 169. Moreover, the activity of these MSN is also modulated by 
cholinergic interneurons 170,171 and GABAergic interneurons 172,173.  A 
simplified schematic representation of afferents to and efferents from the NAc 
is summarized in Figure 2.     

Appetite-regulating peptides and natural rewards: emphasis on ghrelin and glucagon-like peptide-1 

7 
 

 

 

 

 

1.2.3 Dorsal striatum 

The nigrostriatal dopamine projection from substantia nigra pars compacta to 
the dorsal striatum mediates motor function and learning of motor skills 174,175. 
Dorsal striatum consists of two subregions, i.e. the dorsolateral striatum (DLS) 
and the dorsomedial striatum (DMS) (for review see 176-178). The DMS 
modulates goal-directed behaviors and the neuronal activity in this area is 
regulated by glutamatergic projections originated from the prefrontal cortex 
179-181. The DLS is associated with habitual behaviors, and excitability in this 
area is driven by glutamatergic projections from the sensory motor cortex 
182,183. The shift from goal-directed behaviors to habitual behaviors are, at least 
in part, guided by decreased activity in projections from the orbitofrontal 
cortex to DMS 184. The dorsal part of striatum is therefore of interest when 
studying acquisition and consolidation of behaviors. Albeit glutamate is a 

Figure 2. Schematic illustration of some of the afferents/efferents to the nucleus 
accumbens (NAc).                                                                                                                          
VTA=ventral tegmental area; PFC=prefrontal cortex; DR=dorsal raphe; LDTg=laterodorsal 
tegmental area; NTS=nucleus of the solitary tract; VP=ventral pallidum. Blue line = 
dopamine; Yellow line = serotonin; Green line = acetylcholine; Red line = GLP-1; Black line 
= glutamate; Grey line = GABA 
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cholinergic interneurons 170,171 and GABAergic interneurons 172,173.  A 
simplified schematic representation of afferents to and efferents from the NAc 
is summarized in Figure 2.     
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1.2.3 Dorsal striatum 

The nigrostriatal dopamine projection from substantia nigra pars compacta to 
the dorsal striatum mediates motor function and learning of motor skills 174,175. 
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Figure 2. Schematic illustration of some of the afferents/efferents to the nucleus 
accumbens (NAc).                                                                                                                          
VTA=ventral tegmental area; PFC=prefrontal cortex; DR=dorsal raphe; LDTg=laterodorsal 
tegmental area; NTS=nucleus of the solitary tract; VP=ventral pallidum. Blue line = 
dopamine; Yellow line = serotonin; Green line = acetylcholine; Red line = GLP-1; Black line 
= glutamate; Grey line = GABA 
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major regulator of the activity of these areas, also serotonin from dorsal raphe, 
and GABAergic and cholinergic interneurons are important 185,186.   

  

1.2.4 Laterodorsal tegmental area 

As mention above the activity of the mesoaccumbal dopamine system is 
regulated by various inputs to the VTA. One crucial afferent is the cholinergic 
projection from the laterodorsal tegmental area (LDTg) (for review see 187-189). 
Activation of the cholinergic projection from the LDTg causes an 
acetylcholine release, followed by an activation of nicotinic acetylcholine 
receptors on dopamine neurons in the VTA thus leading to a subsequent 
dopamine release in the NAc shell 138,139. Optogenetic activation of these LDTg 
cholinergic neurons induces expression of conditioned place preference in 
mice and induces operant responding in rats 190,191. Recent advances also 
detected that the cholinergic projections of the LDTg target the NAc and that 
this link is associated with reward 192. These projections that links the LDTg to 
the NAc are visualized in Figure 3.  

Albeit various studies have established that this cholinergic projection to the 
VTA is central for intake of food and addictive drugs 193-197, glutamatergic and 
GABAergic projections from the LDTg to the VTA also exist 190,198. In 
addition, GABAergic interneurons exist and they mediate food intake 199. 
These projections and interneurons may also have a role in reward processing 
190,198,199, however this has been studied to a lesser extent.   

 

 

 

 

Figure 3. Projections linking the laterodorsal tegmental area (LDTg) with the nucleus 
accumbens (NAc) shell.                                                                                                                                          
VTA=ventral tegmental area; Green line=Acetylcholine (Ach); Blue line=Dopamine (DA) 
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1.2.5 Nucleus of the solitary tract  

The NTS is located in the brainstem and it receives innervation from vagal and 
splanchnic afferents from the gut (for review see 200). The NTS is ideally 
located to integrate endocrine and mechanical signals from the periphery and 
transmit signals throughout the brain (for reviews see 53,200). It is therefore 
considered as a central area for mediating homeostatic feeding (for reviews see 
53,200). Albeit historically not seen as a brain region involved in reward, recent 
advances have shown that peptides such as leptin, orexin and GLP-1 alter 
reward-related behaviors by acting in this brain region. Leptin infused into the 
NTS reduces hedonic feeding and infusion of a GLP-1 receptor (GLP-1R) 
agonist into NTS decreases reward from alcohol and palatable food 72,73,201. 
Moreover, orexin infusion into the NTS increases hedonic feeding 50. In 
addition, sexual interaction behaviors induce c-Fos expression in the NTS of 
male rodents 202,203 and noradrenergic signaling in the NTS is required for 
morphine reward 204. The preproglucagon (PPG) neurons of the NTS project 
throughout the brain including to multiple brain areas processing reward such 
as the LDTg, VTA and NAc 205-207, and these projections are visualized in 
Figure 4. In further relevance for reward processing are the findings showing 
that noradrenergic neurons of the NTS project to the NAc shell 208,209. These 
primary findings suggest that the NTS may be closely associated with reward 
processing, however this remains to be studied in detail.    

 

 

 

 

 

Figure 4. Projections linking the nucleus of the solitary tract with reward related areas 
such as the nucleus accumbens (NAc) shell, the ventral tegmental area (VTA) and the 
laterodorsal tegmental area (LDTg).                                                                                                                                                  
Green line=Acetylcholine (Ach); Blue line=Dopamine (DA); Red line=GLP-1   

Figure 3. 
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1.3 Appetite-regulating peptides and reward 
Reward from natural rewards and addictive drugs share common 
neurobiological mechanisms, which mainly involve the mesolimbic dopamine 
system 1,128,129. The mechanisms regulating the activity of the mesolimbic 
dopamine system are complex, but over the last decade extensive research has 
identified that appetite-regulating peptides, with origin in the gut, are important 
modulators of this system (for reviews see 210,211).  Indeed, appetite-regulating 
peptides, like ghrelin, GLP-1, neuromedin U, leptin and amylin, have all been 
shown to modulate reward for addictive drugs and natural rewards (for review 
see 210,211). Additional research on the role of these appetite-regulating peptides 
on natural rewards will thus contribute to a further neurobiological 
understanding of these complex behaviors.        

 

1.3.1 Ghrelin  

The orexigenic peptide, ghrelin, is a 28-amino acid peptide with a post-
translational octanoyl group at the third amino acid 212,213. This acylated version 
of ghrelin, is often referred to active ghrelin or as herein; ghrelin (for review 
see 214). Preproghrelin is encoded by the preproghrelin gene. Preproghrelin is 
cleaved into des-acyl ghrelin, and subsequently acylated by ghrelin-o-acyl 
transferase (GOAT) into ghrelin 212,213. Ghrelin is hydrolyzed by esterases into 
des-acyl ghrelin 215-217. Interestingly, one enzyme that hydrolyze ghrelin into 
des-acyl ghrelin is butyrylcholine esterase, and increased activity of this 
enzyme decreases ghrelin levels in plasma and subsequently suppresses 
aggression in male mice 215 and prevents re-bound obesity after caloric 
restriction in obese mice 217. The synthesis and degradation of ghrelin are 
visualized in Figure 5.      
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Ghrelin is mainly produced and secreted from the stomach 218 and possibly in 
some parts of the brain 219-221. Studies have shown that ghrelin in the periphery 
is released pre-prandially 222, however the plausible release in the brain has not 
been studied.  Ghrelin circulating in the blood-stream may pass through the 
blood-brain barrier 223 and reach some, but not all, areas of the brain 224,225. 
Ghrelin has multiple physiological effects in the body (for review see 214) and 
these are to some extent summarized in Figure 6.  

Figure 5. Schematic illustration of the synthesis and degradation of ghrelin. 
GOAT=ghrelin-o-acyl transferase 
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The most well-known effect of ghrelin is its orexigenic properties. Indeed, 
ghrelin regulates homeostatic feeding behavior and appetite via ghrelin 
receptor (growth hormone secretagogue receptor 1A, GHSR-1A) in brain areas 
within the hypothalamus 222,226-229 and the brainstem 230-232. Moreover, ghrelin 
infused into reward-related areas including the VTA and NAc increases 
homeostatic feeding 126,233-236.  

 

1.3.2 Ghrelin, reward processing and drugs of abuse 

Ghrelin has been elucidated as a potential mediator of reward processing. 
Indeed, both peripheral or central infusion of ghrelin activate the cholinergic-
dopaminergic reward link as measured by increased accumbal dopamine 
release or increased locomotor stimulation 195,237-240. The findings that GHSR-
1A are expressed on dopaminergic neurons in the VTA 233, on cholinergic 
neurons in the LDTg 194 and densely expressed in the NAc 241,242, provide 
possible ghrelin sites of action. Indeed, local infusion of ghrelin into the VTA 
or LDTg causes robust locomotor stimulation and increases dopamine release 
in the NAc shell 233,239,243,244 but not core 239. Although still loosely studied, the 

Figure 6. Some of the physiological effects of ghrelin.                                                                      
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underlying mechanisms through which ghrelin activates the mesoaccumbal 
dopamine system involve nicotinic acetylcholine receptors and N-methyl-D-
aspartate receptors within the VTA, as pharmacological blockade of these 
receptors within the VTA suppresses ghrelin-induced NAc dopamine release 
195,245. Research over the last decade have shown that ghrelin signaling 
mediates various alcohol-mediated behaviors (for review see 210). For instance, 
GHSR-1A antagonists reduce the intake of, preference for and motivation to 
consume alcohol 246-252. In addition, genetical suppression of the GHSR-1A 
decreases alcohol consumption, alcohol preference and prevents alcohol-
induced reward 253-255. In addition to alcohol, suppression of the GHSR-1A 
attenuates reward induced by cocaine, amphetamine, morphine and nicotine 
256-265 suggesting a general role of ghrelin in the regulation of reward induced 
by drugs of abuse.  

 

1.3.3 Ghrelin and hedonic feeding 

Substantial reports show that ghrelin signaling mediates hedonic feeding for 
palatable foods such as sucrose, chocolate, peanut-butter, high-fat diet, high 
sucrose/high fat diet and western-style cafeteria diet and thereby contributes to 
obesity (for review see 49). When it comes to sucrose, an acute systemic 
injection of ghrelin increases, while a GHSR-1A antagonist decreases, sucrose 
intake in the two-bottle choice paradigm 266. Furthermore, acute systemic 
injection of ghrelin increases, whereas a GHSR-1A antagonist decreases, 
operant progressive ratio self-administration of sucrose 266,267. Acute 
intracerebroventricular injection of ghrelin increases, whereas a GHSR-1A 
antagonist decreases, operant progressive ratio self-administration of sucrose 
267,268.  Interestingly dopamine receptors within the NAc and opioid receptors, 
GLP-1R and serotonin  receptors within the VTA have been suggested as 
mediators of this ghrelin-enhanced operant progressive ratio self-
administration of sucrose 268-270. One area central for this ghrelin-sucrose link 
is the VTA. Indeed, intra-VTA ghrelin increases, whereas a GHSR-1A 
antagonist decreases, operant progressive ratio self-administration of sucrose 
268-270. Recent advances also suggest that GHSR-1A within lateral 
hypothalamus, ventral hippocampus and lateral septum are involved in sucrose 
motivation as infusion of ghrelin into these areas increase operant progressive 
ratio self-administration of sucrose 37,77,79. Albeit these studies show that acute 
ghrelin signaling modulates the motivation to consume sucrose assessed in a 
simpler motor task, the role of repeated ghrelin on motivation and learning of 
skilled reach foraging for sucrose in a complex motor model has not been 
investigated. Initial studies shows that direct infusion of a GHSR-1A 

Figure 6. 
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antagonist into the NAc shell decreases intake of chow and peanut-butter 126,236, 
but the role of NAc shell-GHSR-1A for sucrose consumption is unknown. 

     

1.3.4 Ghrelin and social behaviors  

Initial studies have investigated the role of ghrelin in social behaviors with 
some conflicting data. The first study showed that systemic injection of ghrelin 
increases latency to attack another male mouse 271. On the contrary, a second 
study showed that increasing the activity of the butyrylcholine esterase in 
plasma (which hydrolyze ghrelin) decreases, while knock-out of the enzyme 
enhances, spontaneous fighting in male mice 215. In line are the data showing 
that systemic injection of a GHSR-1A antagonist decreases, whereas 
intracerebroventricular ghrelin enhances, aggressive behaviors in the resident-
intruder paradigm in male mice 272. Ghrelin increases, whereas a GHSR-1A 
antagonist decreases, social interaction induced place preference, but only in 
the heavier male rat in a social pair 273. In line, sub-chronic GHSR-1A 
antagonist treatment with osmotic pumps increases latency to approach a 
stranger in an open field in male mice 274. In addition, GHSR-1A knock-out 
mice, in comparison to wild-type, display enhanced social avoidance in 
response to repeated social defeat stress 275.   

When it comes to sexual behaviors, one study suggested that 
intracerebroventricular ghrelin inhibits sexual interaction behaviors in sexually 
naïve male rats 276. On the contrary, others showed that systemic ghrelin 
increases, whereas a GHSR-1A antagonist decreases, preference for female 
mice and sexual interaction behaviors in sexually naïve male mice 277. In 
addition, infusion of a GHSR-1A antagonist into either the LDTg or the VTA 
decreases preference for female mice and suppresses sexual interaction 
behaviors in sexually naïve male mice 126. Another group showed that genetic 
suppression of GHSR-1A decreases level changes in the level searching 
paradigm in sexually experienced male rats 89. These rats also display decrease 
in sexual interaction behaviors when they are sexually inexperienced compared 
to wild-type, and these differences disappears when they acquire sexual 
experience 89. In addition, infusion of a GHSR-1A antagonist decreases level 
changes in the level searching paradigm in sexually experienced male rats, 
whereas infusion of ghrelin into the mPOA decreases level changes in the level 
searching paradigm in sexually experienced male rats 89.  
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1.3.5 GLP-1  

The anorexigenic peptide, GLP-1, is a 30-amino acid peptide encoded by the 
PPG gene 278-280. GLP-1 is mainly produced and secreted in the intestinal L-
cells after enzymatic cleavage of PPG in response to food intake 278-280. GLP-
1 is also produced in the PPG containing neurons originating in the NTS 207. 
GLP-1 is foremost known for its ability to regulate blood-glucose by 
stimulating insulin release and inhibiting glucagon secretion 281,282. The 
glucoregulatory ability of GLP-1 has led to the development of synthetic GLP-
1R agonists for the treatment of diabetes type II (for review see 283). GLP-1 
also decreases both homeostatic and hedonic feeding (for review see 53). GLP-
1R agonists decrease homeostatic feeding via activation of GLP-1R in the 
hypothalamus, NTS, LDTg, VTA and NAc 205,206,284-291. In addition, GLP-1R 
agonists also reduce body weight in rodents and in humans (for review see 
53,292). GLP-1 has in addition to glucoregulation and energy homeostasis 
pluripotent physiological roles in the body (for review see 293) and these are to 
some extent summarized in Figure 7. 

 

 

 

 Figure 7. Some of the physiological effects of glucagon-like peptide-1 (GLP-1).                         
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1.3.5 GLP-1  

The anorexigenic peptide, GLP-1, is a 30-amino acid peptide encoded by the 
PPG gene 278-280. GLP-1 is mainly produced and secreted in the intestinal L-
cells after enzymatic cleavage of PPG in response to food intake 278-280. GLP-
1 is also produced in the PPG containing neurons originating in the NTS 207. 
GLP-1 is foremost known for its ability to regulate blood-glucose by 
stimulating insulin release and inhibiting glucagon secretion 281,282. The 
glucoregulatory ability of GLP-1 has led to the development of synthetic GLP-
1R agonists for the treatment of diabetes type II (for review see 283). GLP-1 
also decreases both homeostatic and hedonic feeding (for review see 53). GLP-
1R agonists decrease homeostatic feeding via activation of GLP-1R in the 
hypothalamus, NTS, LDTg, VTA and NAc 205,206,284-291. In addition, GLP-1R 
agonists also reduce body weight in rodents and in humans (for review see 
53,292). GLP-1 has in addition to glucoregulation and energy homeostasis 
pluripotent physiological roles in the body (for review see 293) and these are to 
some extent summarized in Figure 7. 

 

 

 

 Figure 7. Some of the physiological effects of glucagon-like peptide-1 (GLP-1).                         
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1.3.6 Clinically available GLP-1R agonists  

GLP-1R agonists are approved for treatment of diabetes type II in humans (for 
review see 283). These are divided into short-acting GLP-1R agonists such as 
exendin-4 (Ex4), and long acting such as liraglutide and dulaglutide (for 
review see 283). Ex4 has longer half-life in plasma than endogenous GLP-1 294 
and is subcutaneously administered twice daily one hour before eating a meal 
(for review see 283). This agonist has been extensively used preclinically to 
assess peripheral and central physiological functions following activation of 
the GLP-1R (for review see 53). Liraglutide is subcutaneously administered 
once daily and is in addition to its approval to treat diabetes type II also 
approved for treatment of obesity (for review see 283,295). Dulaglutide is 
subcutaneously administered once weekly (for review see 283) and has therefore 
higher patient adherence than liraglutide 296,297. Interestingly head-to head trial 
shows that liraglutide is superior to dulaglutide in weight loss in humans 298. 
Some notable side-effects of GLP-1R agonists are nausea, diarrhea, 
hypoglycemia, pancreatitis and injection-site reactions (for review see 283). On 
that note it is interesting that liraglutide-treated patients report lesser nausea 
than Ex4-treated patients 299.   

 

1.3.7 GLP-1 and addictive drugs 

Activation of GLP-1R have been found to attenuate reward induced by either 
alcohol or other drugs of abuse (for review see 210).  For instance, systemic 
injection of Ex4 decreases alcohol-induced reward, reduces alcohol intake and 
prevents relapse drinking 300,301. Liraglutide, decreases alcohol drinking 302 and 
attenuates alcohol-induced withdrawal symptom (i.e. anxiety) in rats 303. In 
addition, Ex4 or liraglutide decreases alcohol drinking in monkeys304. A 
general role of GLP-1R in reward processing is supported as peripheral Ex4 
blocks reward induced by amphetamine, cocaine and nicotine in rodents 305-308.  

 

1.3.8 GLP-1 and hedonic feeding  

GLP-1 signaling modulates hedonic feeding as acute peripheral Ex4 decreases 
operant progressive ratio and operant fixed ratio self-administration of 
sweetened high-fat diet 309. GLP-1R within various brain regions have been 
implicated in mediating motivation to palatable foods including NAc, VTA, 
NTS, lateral parabrachial nucleus, paraventricular thalamic nucleus, 
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supramammillary nucleus and lateral hypothalamus 72-76,78,205,310. Acute and 
systemic injection of Ex4 reduces operant progressive ratio self-administration 
of sucrose 310. When it comes to GLP-1 and sucrose have to date the NAc, 
VTA, NTS, paraventricular thalamic nucleus, supramammillary nucleus and 
lateral hypothalamus been implicated as infusion of Ex4 into these areas 
decreases operant progressive ratio self-administration of sucrose 72,75,76,78,310. 
However, the role of repeated GLP-1R signaling on motivation and learning 
of skilled reach foraging for sucrose in a complex motor model is to date 
unknown, furthermore the role of NAc shell for such behaviors remains to be 
evaluated.     

 

1.3.9 GLP-1 and social behaviors  

In contrast to ghrelin 89,126,215,271-273,275-277 has the tentative role of GLP-1 in 
social behaviors not been investigated. Intracerebroventricular injection of 
amylin, another anorexigenic peptide, inhibits sexual interaction behaviors in 
sexually experienced male rats and decreases apomorphine-induced increase 
in sexual interaction behaviors 311, which suggest that GLP-1 may also inhibit 
sexual interaction behaviors. Sexual interaction behaviors are mediated by 
signals acting in the LDTg, VTA, NAc shell and NTS 126,202,203,312-317, and these 
brain areas could potentially be involved in GLP-1R mediated sexual 
behaviors.     
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2 AIMS OF THE THESIS  
The overall aim of this thesis was to further investigate the role of ghrelin and 
GLP-1 in natural rewards in male rodents.   

Specific aims 

Paper I. To evaluate the effects of repeated ghrelin signaling on motivation and 
learning of skilled reach foraging in male rats. 

Paper II. To investigate the effects of repeated administration of Ex4, 
liraglutide and dulaglutide on the motivation and learning of skilled reach 
foraging in male rats. 

Paper III. To evaluate the effects of peripheral administration or NTS infusion 
of a GLP-1R agonist, Ex4, on sexual behaviors in sexually naïve male mice. 

Paper IV. To pinpoint the effects of infusion of a GLP-1R agonist, Ex4, into 
brain areas associated with reward including the LDTg, VTA and NAc shell 
on sexual interaction behaviors in sexually naïve male mice. 
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3 MATERIALS AND METHODS  
3.1 Animals  
Adult outbred post-pubertal age-matched male rats from the Wistar Rcc Han 
strain (Envigo, Horst, Netherlands) were used in paper I and II, as this strain 
robustly pick sucrose pellets in the Montoya staircase test 48.  Outbred post-
pubertal age-matched male mice from the NMRI strain (Charles River, 
Sulzfeld Germany) were used in paper III and IV. Sexually naïve male mice 
from this strain were selected since they display a robust and stable sexual 
behavior 126,277. The neurocircuits that control sexual behaviors in sexually 
naïve and experienced male mice diverge but overlap to some extent (for 
review see 84). The effects of Ex4 on sexual behavior in sexually experienced 
male mice falls outside the scope of the present thesis and are warranted for 
the future. In addition, we used estrus-induced post-pubertal ovariectomized 
sexually experienced female C57Bl/6N mice as stimuli mice in the sexual 
interaction paradigm (paper III-IV) and the preference for female paradigm 
(paper III). To ensure that stimuli females were receptive during sexual 
behavior experiments they were ovariectomized, and treated with estrogen and 
progesterone at defined time points before the interaction as extensively 
described in paper III-IV and in previously published articles 126,277.  
 
The animal experiments were approved by the Swedish Ethical Committee on 
Animal Research in Gothenburg. All experiments were conducted in a way to 
minimize animal suffering and the principles of replace, reduce and refine 
animal experiments were considered when designing the experiments. The 
present behavioral studies cannot be conducted in vitro and performing this 
type of experiments in humans are neither ethical or practical. An option would 
be to study foraging and sexual behaviors in non-mammalian species such as 
the zebrafish and drosophila melanogaster (for review see 15,318). Albeit 
intriguing to study behavior in these animal models, information about 
mammalian specific-behaviors which are shared between rodents and humans 
are lost when studying non-mammalian species (for review see 319). In order to 
reduce the number of animals’ a preliminary power calculation was performed 
based on data from previous studies 126,201,277. In addition, ex-vivo analyses on 
tissues and blood collected from animals in the behavioral experiments were 
collected to increase the data output from every animal.  In the sexual behavior 
experiments the stimuli ovariectomized female mice in artificial estrus were 
reused in multiple experiments to reduce the number of mice. The experiments 
were refined to mimic natural foraging behaviors and sexual behaviors as much 
as possible. The housing, handling, operations and injections were performed 
in a way to lower distress to the animals in accordance with the ethical permits.  
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3.2 Drugs and surgeries  
The full description of drugs and chemicals used are found in paper I-IV, and 
are shortly summarized in Table 1. The pharmacological agents were either 
administered intraperitoneal (IP), subcutaneous (SC) or locally into the brain.  

 

Table 1. Dose selection in Paper I-IV 

Paper Drug Mechanism of 
action 

Dose Animal Reason 

Paper I Rat ghrelin GHSR-1A agonist 0.33 mg/kg (IP) 
 

Rat This dose activates the 
reward pathway and 

increases sucrose 
intake in rats  237,266,267 

Paper I JMV2959 GHSR-1A 
antagonist 

3 mg/kg (IP) Rat This dose decreases 
alcohol intake in rats 

without affecting gross 
behavior in rats 

244,250,266 

Paper I JMV2959 GHSR-1A 
antagonist 

10 µg in 0.5 µl 
per side        

(NAc shell) 

Rat This dose reduces 
alcohol intake in rats 
320 and food intake in 
mice without altering 
locomotor activity per 

se in mice 126 

Paper II Ex4 GLP-1R agonist 1.2 µg/kg (IP) Rat This dose decreases 
alcohol intake and 

motivation to high-fat 
food without altering 
pica response or gross 
behavior in rats 300,309 

Paper II Liraglutide GLP-1R agonist 0.1 mg/kg (SC) Rat This dose decreases 
alcohol intake without 
altering gross behavior 

in rats 302 

Paper II Dulaglutide GLP-1R agonist 0.1 mg/kg (SC) Rat This dose decreases 
alcohol intake without 
altering gross behavior 

in rats321 
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Paper II Ex4 GLP-1R agonist 0.05 µg in 0.5 
µl per side 
(NAc shell) 

Rat This dose reduces the 
consumption of high-
fat diet, alcohol intake 
and cocaine-seeking 
behaviour, without 
affecting malaise or 

gross behaviour in rats  
205,320,322 

Paper 
III 

Ex4 GLP-1R agonist 2.4 µg/kg (IP) Mice This dose decreases 
alcohol-related 

behaviors without 
altering locomotor 

activity per se in mice 
300 

Paper 
III 

Ex4 GLP-1R agonist 0.05 µg in 0.5 
µl per side 

(NTS) 

Mice This dose decreases 
alcohol-related 

behaviors without 
altering locomotor 

activity per se in mice 
323 

Paper 
III 

Ex9 GLP-1R 
antagonist 

5 µg in 0.5 µl 
per side (NTS) 

Mice This dose does not alter 
locomotor activity per 

se in mice 323 

Paper 
IV 

Ex4 GLP-1R agonist 0.0025 µg in 
0.5 µl per side 

(NAc shell) 

Mice This dose decreases 
alcohol-related 

behaviors without 
altering locomotor 

activity per se in mice 
323 

Paper 
IV 

Ex4 GLP-1R agonist 0.0025 µg in 
0.5 µl per side 

(aVTA) 

Mice This dose does not alter 
locomotor activity per 

se in mice 323 

Paper 
IV 

Ex4 GLP-1R agonist 0.0025 µg in 
0.5 µl per side 

(pVTA) 

Mice This dose decreases 
alcohol-related 

behaviors without 
altering locomotor 

activity per se in mice 
323 

Paper 
IV 

Ex4 GLP-1R agonist 0.0025 µg in 
0.5 µl per side 

(LDTg) 

Mice This dose reduces 
alcohol-related 

behaviors without 
altering locomotor 

activity per se in mice 
323 
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Brain surgeries were performed to allow local infusions of a pharmacological 
agent into a central brain nucleus (paper I-IV). Two guides were placed 1 mm 
below the skull surface and a cannula was at the experimental day inserted 
ventrally beyond the tip of the guide allowing local infusion. The stereotaxic 
surgery technique is old and has been extensively used in neuroscience since 
the 1970 324. A detailed description of the surgery technique is found in paper 
I-IV. The coordinates for surgery (Table 2) were based on a mouse and a rat 
brain atlas 325,326 and the drug infusions were always verified post mortem by 
gross observation 324. We always stated the number of animals excluded, as a 
meta-analysis showed that only 15% of publications reported that they 
excluded rats with off-target implants 324.    

Table 2. Coordinates for brain infusions in Paper I-IV 

Paper Paper I-II Paper III Paper IV Paper IV Paper IV Paper IV 
Brain region NAc shell 

(rat) 
NTS 

(mouse) 
LDTg 

(mouse) 
pVTA 

(mouse) 
aVTA 

(mouse) 
NAc shell 
(mouse) 

Anterior-
Posterior 

+1.85 mm -7.4 mm - 5.0 mm - 3.6 mm - 3.4 mm + 1.4 mm 

Lateral from 
Midline  

± 1.0 mm ± 0.5 mm ± 0.5 mm ± 0.5 mm ± 0.5 mm ± 0.6 mm 

Dorsal-
Ventral  

-7.8 mm -4.3 mm -3.2 mm - 4.2 mm - 4.3 mm - 4.7 mm 

Extension 
from guide 

6.8 mm 3.3 mm 2.2 mm 3.2 mm 3.3 mm 3.7 mm 

 

3.3 Behavioral, electrophysiological and 
biochemical experiments 

3.3.1 The Montoya staircase test 

A battery of behavioral assessments was set up to evaluate the effects of ghrelin 
signaling (paper I) and GLP-1R signaling (paper II) on skilled reach foraging 
in rats.  

The Montoya staircase paradigm investigates the ability of ipsilateral forelimbs 
to reach sucrose pellets (45 mg; BioServ, Frenchtown, NJ, USA) at a 
descending staircase with progressively more difficult reach. This rodent 
model was originally used to evaluate motor function, but has also been 
established as a model that measures the motivation and learning of skilled 
reach foraging as underlying processes to motor performance in the test 47,48. 
In rats without prior exposure to the Montoya staircase test, drug effects on 
alteration of pellets consumed and success rate provide insight into 
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motivational and learning processes during acquisition of the task. Whereas, in 
rats with an acquired skilled reach performance drug effects on alteration of 
pellets consumed and success rate provide insight into motivational processes. 
However, other underlying processes to motor performance such as motor 
coordination, gross motor performance, aversion processes and exploratory 
processes, which the drugs may alter, should also be taken into consideration 
when interpret the data. This test was performed in accordance with previous 
studies 47,48 and is described in detail in Paper I-II and Figure 8.  

 

3.3.2 The Rotarod test 

The rotarod test was used to stratify rats based on their learning and 
performance of gross motor behavior and to evaluate the effects of repeated 
drug treatment on gross motor performance. This test provides insight into the 
rat’s gross motor learning and performance by measuring the latency to fall of 
a rotating rod. The protocol was conducted in accordance with previous studies 
48,327 and is described in detail in Paper I-II and Figure 9.  

 

 

Figure 9. Rotarod test                                                      
During the test: The rat is placed on the rod and the rod is 
accelerated (4-40 rpm during 5 minutes). The latency to fall of 
the rod is recorded.                                                                   
Primary outcome: The mean latency to fall of the rod of four 
different trials per day.                                                      
Purpose: The mean latency to fall of the rod is used to stratify 
and divide rats into treatment groups for Montoya training. 
Gross motor behavior is recorded once per week to ensure that 
the drug regime does not alter gross motor behavior during the 
Montoya training. 

Figure 8. Montoya staircase                                                                                                          
Before test: The rat is exposed three times to 
sucrose to establish a liking for sucrose.                                         
During the test: The Montoya box (9x6x30 
cm) is placed inside a sound attenuating and 
ventilated cupboard. Three pellets are 
allocated to each well on both sides. The rat is 
placed in the box to forage for 15 minutes per 
session.                                                       
Primary outcomes: Consumed pellets; Success 
rate=(Consumed pellets/(Consumed 
pellets+Dropped pellets)*100) 
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Brain region NAc shell 

(rat) 
NTS 

(mouse) 
LDTg 

(mouse) 
pVTA 

(mouse) 
aVTA 

(mouse) 
NAc shell 
(mouse) 

Anterior-
Posterior 

+1.85 mm -7.4 mm - 5.0 mm - 3.6 mm - 3.4 mm + 1.4 mm 

Lateral from 
Midline  

± 1.0 mm ± 0.5 mm ± 0.5 mm ± 0.5 mm ± 0.5 mm ± 0.6 mm 

Dorsal-
Ventral  

-7.8 mm -4.3 mm -3.2 mm - 4.2 mm - 4.3 mm - 4.7 mm 

Extension 
from guide 

6.8 mm 3.3 mm 2.2 mm 3.2 mm 3.3 mm 3.7 mm 

 

3.3 Behavioral, electrophysiological and 
biochemical experiments 

3.3.1 The Montoya staircase test 

A battery of behavioral assessments was set up to evaluate the effects of ghrelin 
signaling (paper I) and GLP-1R signaling (paper II) on skilled reach foraging 
in rats.  

The Montoya staircase paradigm investigates the ability of ipsilateral forelimbs 
to reach sucrose pellets (45 mg; BioServ, Frenchtown, NJ, USA) at a 
descending staircase with progressively more difficult reach. This rodent 
model was originally used to evaluate motor function, but has also been 
established as a model that measures the motivation and learning of skilled 
reach foraging as underlying processes to motor performance in the test 47,48. 
In rats without prior exposure to the Montoya staircase test, drug effects on 
alteration of pellets consumed and success rate provide insight into 
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motivational and learning processes during acquisition of the task. Whereas, in 
rats with an acquired skilled reach performance drug effects on alteration of 
pellets consumed and success rate provide insight into motivational processes. 
However, other underlying processes to motor performance such as motor 
coordination, gross motor performance, aversion processes and exploratory 
processes, which the drugs may alter, should also be taken into consideration 
when interpret the data. This test was performed in accordance with previous 
studies 47,48 and is described in detail in Paper I-II and Figure 8.  

 

3.3.2 The Rotarod test 

The rotarod test was used to stratify rats based on their learning and 
performance of gross motor behavior and to evaluate the effects of repeated 
drug treatment on gross motor performance. This test provides insight into the 
rat’s gross motor learning and performance by measuring the latency to fall of 
a rotating rod. The protocol was conducted in accordance with previous studies 
48,327 and is described in detail in Paper I-II and Figure 9.  

 

 

Figure 9. Rotarod test                                                      
During the test: The rat is placed on the rod and the rod is 
accelerated (4-40 rpm during 5 minutes). The latency to fall of 
the rod is recorded.                                                                   
Primary outcome: The mean latency to fall of the rod of four 
different trials per day.                                                      
Purpose: The mean latency to fall of the rod is used to stratify 
and divide rats into treatment groups for Montoya training. 
Gross motor behavior is recorded once per week to ensure that 
the drug regime does not alter gross motor behavior during the 
Montoya training. 

Figure 8. Montoya staircase                                                                                                          
Before test: The rat is exposed three times to 
sucrose to establish a liking for sucrose.                                         
During the test: The Montoya box (9x6x30 
cm) is placed inside a sound attenuating and 
ventilated cupboard. Three pellets are 
allocated to each well on both sides. The rat is 
placed in the box to forage for 15 minutes per 
session.                                                       
Primary outcomes: Consumed pellets; Success 
rate=(Consumed pellets/(Consumed 
pellets+Dropped pellets)*100) 

Figure 8. 

Figure 9. 
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In addition, the 1-hour food-intake (paper I) and the body weight gain (paper 
II) were assessed to confirm previous known pharmacological effects of the 
drug.  

 

3.3.3 Field potential recordings and whole cell 
recordings 

These ex vivo electrophysiological recordings in brain slices from rats were 
conducted to study neurophysiological correlates underlying motivation and 
learning of skilled reach foraging (paper I and II). Ex-vivo electrophysiological 
methods are extensively used within neuroscience to evaluate the 
pharmacological effects of drugs on neuronal activity. In these methods some 
of the complexity of the intact brain is removed, thus allowing in-depth 
mechanistic studies within specific brain regions. Importantly, these 
mechanistical insight derived from brain slice electrophysiological studies 
should therefore not be directly translated into neuronal activity within the 
intact brain. For instance, population spikes are evoked by manually applied 
currents which may not or only partially reflect the true glutamatergic 
excitation pattern within the brain and substances which do not access a 
particular brain region in.vivo may still have receptors within that area and may 
thereby indicate findings which cannot be replicated in-vivo.     

Brain slices were prepared by standard procedure of brain removal into ice-
cold modified aCSF containing sucrose, followed by slice cutting and 
incubation in aCSF in 30°C for 30 minutes and thereafter stored in room 
temperature for the remainder of the day. The integrity of the neurons within 
the slice are dependent on these critical steps and variation in skills between 
researcher could biased the data. For detailed description see paper I and II and 
previous published studies describing the preparation in detail 328,329. 

Field potential recordings measure evoked population spike amplitudes in the 
brain area using electrodes in a recording chamber perfused with aCSF. This 
protocol has been described before 330, in detail in Paper I-II and is summarized 
in Figure 10.  
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Whole cell recordings measure transmitter-specific neuroadaptations within 
specific brain regions following acute perfusion of drug onto brain slices from 
rats with or without an acquired skilled reach performance (paper II) or after 
comparing slices from rats from different treatment groups which have 
acquired skilled reach behavior (paper I). Recording pipettes with internal 
solution with defined characteristics (Paper I and II) were used to detect 
currents. This protocol has been described before 329, in detail in Paper I-II and 
briefly in Figure 11.    

 

3.3.4 Sexual interaction test  

The sexual interaction test measures the full sexual encounter with an incentive 
ovariectomized female mouse in artificial estrus. This protocol has been 
described before 126,277,331,332, in detail in Paper III-IV and summarized in Figure 
12.  As mentioned in the introduction, the male sexual encounter with a female 
consists of three phases namely a pre-sexual interaction phase, a sexual 
interaction phase and a post-sexual interaction phase. All measured behaviors 
of this sexual interaction chain are described by duration (time invested in the 
behavior), frequency (the number of behavioral episodes) and latency (time to 
first behavioral episode). We scored social behaviors, such as sniffing, 
attending and following, as pre-sexual interaction behaviors, mounting and 
intromission i.e. mounting behaviors as sexual interaction behaviors and self-

Figure 10. Ex-vivo physiology; field potential recordings Paired pulse 
stimulation (50 ms interpulse interval; frequency of 0.05 Hz; Stimulus 
intensity of 0.01-0.04 mA) is used to evoke population spike amplitudes to 
half of the maximal response.                                                              
Outcomes: Population spike amplitudes. Paired pulse ratio= Population 
spike amplitude 2/ Population spike amplitude 1. Net synaptic output by 
increasing the stimulation strength (18-72 μA). 

  

Figure 11. Ex-vivo physiology; whole cell recordings            
Brain regions are identified using a 10x/0.30 objective attached to 
a Nikon FN-1 microscope. Medium spiny neurons (MSN) are 
localized using a 40x/0.80 water immersion objective. MSN are 
voltage clamped at -70 mV.                                               
Outcomes: Spontaneous inhibitory postsynaptic currents are 
recorded by blocking NMDA and AMPA receptor-mediated 
currents. Spontaneous excitatory postsynaptic currents are 
recorded by blocking GABA-mediated currents. 
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grooming as a post-sexual interaction behavior in line with a previous study 
333. This sexual interaction test should be combined with other assays which 
measure processes such as sexual reward, sexual incentive motivation, sexual 
conditioned motivation, sexual aversion, odor processing and locomotion to 
pinpoint drug alterations in underlying processes which could contribute to the 
behavioral outcomes in the sexual interaction test.  

 

 

 

 

 

 

3.3.5 The preference for female test 

The preference for female test was first described by Ågmo and is suggested 
to reflect sexual incentive motivation 86. A male mouse is allowed to freely 
investigate an arena where a male mouse and a female mouse in artificial estrus 
are located on opposite side of the arena. It is important to note that the straight-
arm runway test also reflects on sexual incentive motivation 87 and that the 
lever-pressing paradigm 90 and level searching paradigms 88,89 reflect on sexual 
conditioned motivation. In order to fully elucidate the drug effect on sexual 
motivation in rodents a battery of motivational test should therefore be used. 
The protocol for the preference for female test has been described before 
86,126,277,334, in detail in Paper III and summarized in Figure 13.  

Figure 12. Sexual interaction test                                                                                                                        
The male mouse is single-housed for seven days to build up territory that enhances the 
probability that the mouse will engage in sexual activity. Food and nesting materials are 
removed from the home-cage 10 minutes before the test to remove stimuli that may trigger 
competitive behaviors. The male mouse is allowed to interact with the ovariectomized 
female mouse in artificial estrus for 20 minutes in his home-cage. The interaction is 
recorded and social behaviors, mounting behaviors and self-grooming behaviors are 
scored. Nucleus Accumbens (NAc) shell, anterior ventral tegmental area (aVTA) posterior 
ventral tegmental area (pVTA), laterodorsal tegmental area (LDTg), nucleus of the 
solitary tract (NTS), intraperitoneal injection (IP), exendin-4 (Ex4). 
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3.3.6 The olfactory preference test 

The olfactory preference test measures preference to female odor by assessing 
how much time a mouse freely invest female soiled bedding or male soiled 
bedding as described previously 271,277,334, in Paper III and Figure 14. In our 
experiments this assay is used to evaluating one underlying process which 
might affect the behavioral outcomes in the sexual interaction test.    

   

 

 

 

3.3.7 High-pressure liquid chromatography with 
electrochemical detection 

High-pressure liquid chromatography with electrochemical detection (HPLC-
ECD) is a standard method to separate and detect molecules by their chemical 
and electrochemical properties 335. We used this technique to evaluate the 
effects of Ex4 into the NTS on monoamines, metabolites and turnover in the 

Figure 13. Preference for female test                                                                                   
The mouse is habituated to the arena three times before the preference test. An incentive 
female mouse and a male mouse are placed in cages on the opposite side of the arena 
behind metal meshes which creates two incentive zones. The mouse is placed on the midline 
and is allowed to investigate the cage for 15 minutes.                                                                               
Outcomes: Preference for female = (time in female zone /(time in female zone+time in male 
zone)); Total interaction time = (time in female zone+time in male zone) 

  

Figure 14. Olfactory preference test                                                                                
After 5 minutes of habituation to an empty cage with a metal mesh floor, male and female 
bedding are placed on the opposite side under the metal mesh floor. The mouse is placed 
on the midline and is allowed to investigate the cage for 10 minutes.                                                                        
Outcomes: Time on top of female bedding; Time on top of male bedding 
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NAc, VTA and LDTg tissues ex-vivo from mice exposed to the sexual 
interaction test. The samples were prepared and analyzed using a standard 
procedure as described before 126,272,336 and in paper III. In order to convert the 
observed currents to the concentration of monoamines and metabolites, the 
measured values were compared to standard samples with known 
concentrations. HPLC-ECD has several advantages by being automated, quick 
and highly accurate compared to other techniques. On the downside is that 
HPLC-ECD has low sensitivity for certain compound, however the sensitivity 
is high for monoamines and their metabolites. Another limitation is that the 
amines are measured ex-vivo which means that the levels are only measured at 
one timepoint directly after the sexual interaction assay. An alternative 
approach is to measure the monoamines in brain-regions with in.vivo 
microdialysis in male mice before, during and after the encounter with the 
incentive female.    

 

3.3.8 Enzyme-linked immunosorbent assay  

Enzyme-linked immunosorbent assay (ELISA) is a biochemical technique 
extensively used (for review see 337). In paper III and IV we used commercially 
available ELISA kits which utilizing the colorimetric and competitive 
approach (AH Diagnostics, Stockholm) to detect corticosterone or testosterone 
in plasma. A spectrophotometer (Multiskan Go, Thermo Fisher) was used to 
detect the optical density of the colorimetric signal at a defined wavelength 
(405nm).  In order to convert the observed optical density to the concentration 
of testosterone or corticosterone in the plasma samples, values were compared 
to a standard curve generated from standards with known concentrations. 
Colorimetric competitive ELISA has several advantages by being fast, 
standardized and commercially available. The test is highly specific and has 
high sensitivity, however on the downside is that other plasma constituents 
may affect the optical density.  

 

3.3.9 Statistical methods 

The statistical method was optimized to answer the research question. Thus, 
comparing behavior, electrophysiological and biochemical correlates from two 
treatment groups we used a two-tailed unpaired t-test. When assessing the 
effect of treatment on electrophysiological correlates before and after perfusion 
of substances we used a two-tailed paired t-test. To assess the treatment effect 
when using more than two treatments on behavior and biochemical correlates 
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we used a one-way analysis of variance (ANOVA) followed by Bonferroni 
post-hoc test. When evaluating the effects of drug on behavior at multiple 
sessions or electrophysiological recordings over time we used a two-way 
repeated ANOVA. All analyses were conducted in and all graphs were 
generated with the GraphPad Prism Software (GraphPad Software Inc; CA, 
USA). 
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4. RESULTS 
4.1 Paper I 
In this paper, we investigated the effects of repeated activation or attenuation 
of GHSR-1A on skilled reach foraging in the Montoya staircase test, and the 
main findings are summarized in Figure 15. We showed that repeated 
peripheral administration of the GHSR-1A antagonist, JMV2959, decreased 
consumption of sucrose pellets in rats with an acquired skilled reach 
performance, and that the effect was higher in rats with a higher acquired 
skilled reach performance. In addition, JMV2959 into NAc shell decreased 
sucrose pellet consumption in rats with an acquired skilled reach performance. 
On the contrary, repeated ghrelin to rats with an acquired skilled reach 
performance did not influence on the number of pellets consumed. Repeated 
ghrelin increased, while JMV2959 decreased, the consumption of sucrose 
pellets when administered to rats throughout the entire Montoya training. In 
addition, ghrelin did not, whereas JMV2959 decreased, the success rate in 
these rats.  Ex-vivo recordings in NAc shell from these rats showed that 
repeated ghrelin in combination with Montoya training decreased the NAc 
shell output via increased frequency of inhibitory post-synaptic currents. We 
also showed that neither ghrelin or JMV2959 did alter gross motor behaviors 
in the rotarod test. These data suggest that repeated suppression of the GHSR-
1A decreased the motivation of skilled reach foraging and pinpointed 
suppression of NAc shell-GHSR-1A as a contributing mechanism to this 
behavior. In addition, these data indicated that ghrelin increased, whereas 
JMV2959 decreased, the motivation and learning of skilled reach foraging 
during the acquisition of the behavior and that alteration in inhibitory 
neurotransmission within NAc shell may tentatively be an underlying 
mechanism.         

 

 

 

Figure 15. Schematic illustration of the main findings in Paper I.                                                                                                                 
Nucleus accumbens (NAc), sIPSC=spontaneous inhibitory post-synaptic currents, ⍭=no 
difference, ↓=decrease, ↑=increase    
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4.2 Paper II 
In the second paper, we investigated the effects of repeated activation of GLP-
1R on skilled reach foraging in the Montoya staircase test, and the outcomes 
are summarized in Figure 16. We found that, in opposed to ghrelin, systemic 
administration of Ex4 or liraglutide, but not dulaglutide, decreased the 
consumption of sucrose pellets in rats with an acquired skilled reach 
performance. Ex-vivo field potential recordings in slices from rats with an 
acquired skilled reach performance showed that acute perfusion of Ex4 or 
liraglutide, but not dulaglutide, onto NAc shell brain slices suppressed evoked 
population spike amplitudes. Infusion of Ex4 into NAc shell, to rats with an 
acquired skilled reach performance, reduced the consumption of sucrose 
pellets. Repeated dulaglutide, but not liraglutide or Ex4, to rats without prior 
Montoya experience, increased the success rate in this paradigm.  We also 
showed that neither Ex4, liraglutide or dulaglutide did alter gross motor 
behaviors in the rotarod test. These data highlighted that Ex4, liraglutide and 
dulaglutide provoked different responses on skilled reach foraging and 
neurotransmission. These data indicated that Ex4 or liraglutide decreased the 
motivation of skilled reach foraging in rats with an acquired skilled reach 
performance tentatively via NAc-shell-GLP-1R dependent mechanisms and 
that dulaglutide enhanced the learning of skilled reach performance during 
acquisition of the behavior.     

 

4.3 Paper III 
In the third paper, we investigated the role of GLP-1R activation on another 
domain of natural rewards namely social behaviors, more precisely sexual 
behaviors in sexually naïve male mice and the main findings are shown in 

Figure 16. Schematic illustration of the main findings in Paper II.                                                                                                                                    
Nucleus accumbens (NAc), exendin-4 (Ex4), ⍭=no difference, ↓=decrease, ↑=increase  

Figure 15.

Rats with an acquired skilled reach performance                                                                        Rats without prior exposure to the test

JMV2959 ↓ Sucrose consumption                                                                          JMV2959 ↓ Sucrose consumption
Ghrelin  ⍭ Sucrose consumption                                                                          JMV2959 ↓ Success rate          

JMV2959 into NAc shell ↓Sucrose consumption                                                                              Ghrelin ↑ Sucrose consumption
Ghrelin ⍭ Success rate

Ghrelin + training ↓ NAc synaptic output
Ghrelin + training ↑ frequency of sIPSC
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Figure 15. Schematic illustration of the main findings in Paper I.                                                                                                                 
Nucleus accumbens (NAc), sIPSC=spontaneous inhibitory post-synaptic currents, ⍭=no 
difference, ↓=decrease, ↑=increase    
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4.2 Paper II 
In the second paper, we investigated the effects of repeated activation of GLP-
1R on skilled reach foraging in the Montoya staircase test, and the outcomes 
are summarized in Figure 16. We found that, in opposed to ghrelin, systemic 
administration of Ex4 or liraglutide, but not dulaglutide, decreased the 
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4.3 Paper III 
In the third paper, we investigated the role of GLP-1R activation on another 
domain of natural rewards namely social behaviors, more precisely sexual 
behaviors in sexually naïve male mice and the main findings are shown in 

Figure 16. Schematic illustration of the main findings in Paper II.                                                                                                                                    
Nucleus accumbens (NAc), exendin-4 (Ex4), ⍭=no difference, ↓=decrease, ↑=increase  

Figure 16. 
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Dulaglutide ⍭ Population spike amplitudes
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Figure 17. An acute systemic injection of Ex4 reduced sexual interaction 
behaviors, but did not alter the preference for females or female bedding. More 
specifically, systemic Ex4 injection reduced social behaviors, mounting 
behaviors and self-grooming behaviors. On the contrary, six days of repeated 
treatment with Ex4 did not alter any of these sexual behaviors. In an attempt 
to define brain areas important for this GLP-1R mediated behavior, we found 
that local infusion of Ex4 into the NTS reduced social behaviors, mounting 
behaviors and self-grooming behaviors. Ex-vivo biochemical analysis from 
these mice showed that Ex4 into the NTS increased the serotonin levels and 
dopamine turnover in NAc. Furthermore, analysis of plasma from sexually 
exposed mice showed that NTS-Ex4 or systemic Ex4 increased the plasma 
levels of corticosterone, but not testosterone. To link the peripheral Ex4 effects 
with activation of GLP-1R in NTS, we showed that infusion of a GLP-1R 
antagonist, exendin-3 (9-39) amide (Ex9), into the NTS reversed some, but not 
all sexual behaviors, suppressed by peripheral Ex4. These data suggested for 
the first time that the GLP-1R system was involved in suppression of sexual 
interaction behaviors with a receptive female in sexually naïve male mice and 
pinpointed that NTS-GLP-1R were partly involved in this behavioral effect.    

 

 

 

4.4 Paper IV 
In this forth paper, we explored more brain-region specific GLP-1R 
populations that contributed to the suppression of sexual interaction behaviors 
in sexually naïve male mice, and the main findings are demonstrated in Figure 

Figure 17. Schematic illustration of the main findings in Paper III.                                                                                                            
Nucleus accumbens (NAc), nucleus of the solitary tract (NTS), intraperitoneal injection (IP)                                                         
serotonin (5-HT), dopamine (DA), exendin-4 (Ex4), ⍭=no difference, ↓=decrease, ↑=increase  
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18. We demonstrated that infusion of Ex4 into the LDTg decreased social 
behaviors and mounting behaviors in male mice. Infusion of Ex4 into the 
pVTA, but not the aVTA, reduced social behaviors and mounting behaviors in 
male mice.  Ex4 infused into the NAc shell decreased social behaviors, but not 
mounting behaviors, in male mice. In addition, self-grooming behaviors were 
not altered following infusion of Ex4 into any of these brain areas. These data 
pinpointed that activation of GLP-1R within reward related areas decreased 
sexual interaction behaviors in a brain site specific manner in sexually naïve 
male mice.   

 

 

 

 

 

 

 

 

 

 

 

Figure 18. Schematic illustration of the main findings in Paper IV.                                                                                                                        
Nucleus accumbens (NAc) shell, anterior ventral tegmental area (aVTA),                                                                         
posterior ventral tegmental area (pVTA), laterodorsal tegmental area (LDTg), exendin-4 (Ex4),           
⍭=no difference, ↓=decrease, ↑=increase  

Figure 17. 
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5. DISCUSSION  
The modulatory role of appetite-regulating peptides in reward processing have 
been described (for review see 210). The studies included in the present thesis 
extend on these prior findings as they show that repeated activation of GHSR-
1A or GLP-1R mediates the motivation and learning of skilled reach foraging 
in male rats and that activation of GLP-1R suppresses sexual interaction 
behaviors in sexually naïve male mice. 

 

5.1 Gut-brain axis and motivation of skilled reach 
foraging  
When the sucrose consumption and success rate of rats with an acquired skilled 
reach performance are monitored, the motivation to perform this behavior can 
be evaluated. We here identified that repeated systemic injections with 
JMV2959, Ex4 or liraglutide decrease the consumption of sucrose pellets in 
rats with an acquired skilled reach performance. These data indicate that both 
ghrelin and GLP-1 pathways modulate the motivation of skilled reach 
foraging. In support for this contention are the findings from operant motor 
models, showing that a single injection of either GHSR-1A antagonist 
249,250,266,267 or a GLP-1R agonist 302,309,310 reduces the lever pressing for 
palatable foods and alcohol. We further reveled that local infusion of either 
JMV2959 or Ex4 into the NAc shell of rats with an acquired skilled reach 
performance reduces the number of pellets consumed. Collectively, this 
suggests that the motivation of skilled reach foraging is partly mediated 
through NAc shell dependent mechanism. This is in line with previous studies 
showing that ghrelin signaling within NAc shell-GHSR-1A mediates the intake 
of chow, peanut butter and alcohol 126,236,320. When it comes to NAc shell-GLP-
1R, previous data pinpointed that an infusion of a GLP-1R agonist into the 
NAc shell decreases the intake of either sucrose 310 or high fat diet 205. In 
addition, activation of GLP-1R within NAc-shell attenuates other reward-
related behaviors including alcohol-related behaviors, alcohol drinking, 
cocaine-seeking behavior and oxycodone-seeking behavior 320,322,323,338. Our 
electrophysiological recordings further support that NAc shell is a target for 
Ex4 or liraglutide and provides a tentative insight into mechanisms that might 
modulate the consumption of sucrose pellets in rats with an acquired skilled 
reach performance. Indeed, Ex4 or liraglutide decrease the evoked population 
spike amplitudes in NAc shell slices from rats with an acquired skilled reach 
performance, tentatively through activation of putative GLP-1R located on 
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pre-synaptic glutamatergic inputs to the NAc shell 290 which are coupled to 
Gαi/O protein associated with decreased excitatory responses 339,340.  

We further found that both JMV2959 and Ex4 reduces the consumption of 
sucrose pellets more profoundly in high versus low performing rats, indicating 
that the outcomes of these appetite-regulating peptides depend on prior 
learning of the task. On a similar note, repeated ghrelin increases consumption 
of sucrose pellets in rats with low, but not high, acquired skilled reach 
performance, indicating a ceiling effect in this paradigm. Supportively for a 
pharmacological ceiling effect for exogenous ghrelin is the data, evaluating the 
role of ghrelin in sexual conditioned motivation, showing that ghrelin into the 
VTA does not further increase level changes, whereas pharmacological 
suppression of GHSR-1A within the VTA decreases level changes, in the level 
searching paradigm in sexually experienced male rats 89. Divergent effects of 
JMV2959 and Ex4 on low and high consumers are also evident when it comes 
to alcohol intake where JMV2959 or Ex4 reduces alcohol intake in high, but 
not low, alcohol consuming rats 250,302,341.  

 

5.2 Gut-brain axis and learning of skilled reach 
foraging  
With a different design of the Montoya staircase test, where rats are treated 
throughout the acquisition of the task, the learning of skilled reach foraging 
can be assessed by monitoring consumed pellets and success rate. Here, we 
found that repeated systemic injections of ghrelin increases, whereas JMV2959 
decreases, the consumption of sucrose pellets in rats without prior Montoya 
experience. In addition, in these rats JMV2959 decreases, whereas ghrelin does 
not alter, success rate.  As enhanced learning is hard to dissect from apparent 
motivation, we thus speculate that the ghrelin system both enhances motivation 
and learning of skilled reach foraging during acquisition of the task. Our ex-
vivo recordings from these rats show that ghrelin in combination with training 
reduces the NAc shell output by selectively increasing sIPSC frequency, 
indicating that repeated ghrelin during acquisition of the task causes 
neuroadaptations in the GABAergic system in the NAc shell. These 
neuroadaptations in the GABAergic system may influence the motivational 
aspects to consume sucrose pellets. This contention is supported by the data 
showing that infusion of a GABAA receptor agonist into NAc shell increases 
chow intake 342-344.  As ghrelin signaling interacts with learning and memory 
processes by acting in other brain regions including the hippocampus and 
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amygdala 39,345 our electrophysiological data elucidate one of many possible 
mechanisms involved in ghrelin-induced learning of skilled reach foraging.  

We also identified that repeated systemic injection with dulaglutide to rats 
without prior Montoya experience, increases the success rate during 
acquisition of the task. This improved performance driven by an increase in 
success rate may be linked to enhanced learning of skilled reach foraging. As 
GLP-1R agonists decrease operant self-administration of palatable foods 309,310 
and improve reference memory and enhance associative and spatial learning in 
other learning paradigms 346,347, thus supporting that dulaglutide enhances 
learning of skilled reach foraging rather than augments motivational processes. 
As GLP-1R within the hippocampus control learning processes and motivated 
behaviors 38,40,346,347, this area may contribute to the effects of dulaglutide on 
learning of complex behaviors and are a research directive for upcoming 
studies.   

 

5.3 Diverse pharmacological effects of GLP-1R 
agonists on skilled reach behavior 
The present findings revealed that the behavioral and electrophysiological 
outcomes of the tested GLP-1R agonists varies. These divergent findings of 
various clinical available GLP-1R agonists have potential implications and this 
needs to be discussed in the context of our study. Ex4, liraglutide and 
dulaglutide have different pharmacokinetic properties, such as difference in 
half-life and distribution volume, in patients 348-352. The difference in half-life 
was accounted for in the present study, and should always be accounted for, 
when selecting dose and dose interval of Ex4, liraglutide and dulaglutide. 
Preclinical studies support that Ex4 and liraglutide have discrete ability to 
penetrate and activate brain regions 353-355 whereas no study has assessed the 
distribution pattern of dulaglutide in the brain. The difference in distribution 
volume and distribution pattern in the brain may explain some variation in the 
behavioral effects of these drugs in the present study. These differences may 
also explain variation in efficacy and side-effects of these drugs in patients, 
where for example liraglutide-treated patients report lesser nausea than Ex4-
treated patients 299. Another mechanism that may explain the variation in 
effects on both behavior and neurotransmission are diverse ability of Ex4, 
liraglutide and dulaglutide to recruit different G-proteins coupled to 
intracellular pathways 340,356,357. Indeed, Ex4 recruits the Gαi/O pathway to a 
higher degree than liraglutide 340 and differences in the effect by these agonists 
on hippocampal neurotransmission exist 358,359. To this date, no study has 
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assessed the biased signaling of dulaglutide on the GLP-1R and in light of our 
data this is a tentative research directive.  

 

5.4 GLP-1R signaling and various sexual 
behaviors   
Different behavioral tests can be used to assess the effects of GLP-1R 
activation on various sexual behaviors. By means of these we showed that an 
acute systemic injection of Ex4 in a sexual interaction paradigm with an estrus 
female reduces social behaviors, mounting behaviors and self-grooming 
behavior in sexually naïve male mice, whereas it does not influence the 
preference for females or female odor in two different preference assays. 
Collectively, this indicate that peripheral Ex4 suppresses natural rewards. This 
contention is supported as Ex4 reduces other natural rewards such as sucrose 
and high-fat diet 309,310. In addition, Ex4 attenuates reward induced by addictive 
drugs 300,305. In addition to GLP-1, a role of appetite-regulating peptides in 
mediating sexual behaviors are supported as ghrelin, amylin, leptin, orexin and 
neuropeptide Y also regulate sexual behaviors 89,107,108,110,126,277,311,360. The GLP-
1 system affects sexual interaction behaviors and preference for female mice 
differently. Interestingly, endogenous orexin decreases sexual interaction 
behavior 107 but does not alter preference for female in sexually naïve male rats 
360 and neuropeptide Y reduces sexual interaction behaviors without altering 
the proportion of rats showing erection in sexually experienced rats 108. We 
thereby suggest that the GLP-1 system in sexually naïve male mice control 
neurocircuits that guides sexual interaction behaviors but not preference for 
female mice or female bedding. Interestingly, ghrelin increases, whereas 
JMV2959 decreases, both preference for females and sexual interaction 
behaviors in sexually naïve male mice 126,277 , indicating that the modulation of 
GLP-1 and ghrelin over sexual behaviors diverge to some extent.  

 

5.5 Tolerance effects following repeated 
treatment with GLP-1R agonists  
Interestingly, an acute injection of Ex4 reduces, whereas six days of repeated 
Ex4 injections do not alter sexual interaction behavior in sexually naïve male 
mice. This might indicate that there is a tolerance effect to some of the 
behavioral effects of Ex4. A tolerance pattern has also been observed when it 



Jesper Vestlund 

36 
 

amygdala 39,345 our electrophysiological data elucidate one of many possible 
mechanisms involved in ghrelin-induced learning of skilled reach foraging.  

We also identified that repeated systemic injection with dulaglutide to rats 
without prior Montoya experience, increases the success rate during 
acquisition of the task. This improved performance driven by an increase in 
success rate may be linked to enhanced learning of skilled reach foraging. As 
GLP-1R agonists decrease operant self-administration of palatable foods 309,310 
and improve reference memory and enhance associative and spatial learning in 
other learning paradigms 346,347, thus supporting that dulaglutide enhances 
learning of skilled reach foraging rather than augments motivational processes. 
As GLP-1R within the hippocampus control learning processes and motivated 
behaviors 38,40,346,347, this area may contribute to the effects of dulaglutide on 
learning of complex behaviors and are a research directive for upcoming 
studies.   

 

5.3 Diverse pharmacological effects of GLP-1R 
agonists on skilled reach behavior 
The present findings revealed that the behavioral and electrophysiological 
outcomes of the tested GLP-1R agonists varies. These divergent findings of 
various clinical available GLP-1R agonists have potential implications and this 
needs to be discussed in the context of our study. Ex4, liraglutide and 
dulaglutide have different pharmacokinetic properties, such as difference in 
half-life and distribution volume, in patients 348-352. The difference in half-life 
was accounted for in the present study, and should always be accounted for, 
when selecting dose and dose interval of Ex4, liraglutide and dulaglutide. 
Preclinical studies support that Ex4 and liraglutide have discrete ability to 
penetrate and activate brain regions 353-355 whereas no study has assessed the 
distribution pattern of dulaglutide in the brain. The difference in distribution 
volume and distribution pattern in the brain may explain some variation in the 
behavioral effects of these drugs in the present study. These differences may 
also explain variation in efficacy and side-effects of these drugs in patients, 
where for example liraglutide-treated patients report lesser nausea than Ex4-
treated patients 299. Another mechanism that may explain the variation in 
effects on both behavior and neurotransmission are diverse ability of Ex4, 
liraglutide and dulaglutide to recruit different G-proteins coupled to 
intracellular pathways 340,356,357. Indeed, Ex4 recruits the Gαi/O pathway to a 
higher degree than liraglutide 340 and differences in the effect by these agonists 
on hippocampal neurotransmission exist 358,359. To this date, no study has 

Appetite-regulating peptides and natural rewards: emphasis on ghrelin and glucagon-like peptide-1 

37 
 

assessed the biased signaling of dulaglutide on the GLP-1R and in light of our 
data this is a tentative research directive.  

 

5.4 GLP-1R signaling and various sexual 
behaviors   
Different behavioral tests can be used to assess the effects of GLP-1R 
activation on various sexual behaviors. By means of these we showed that an 
acute systemic injection of Ex4 in a sexual interaction paradigm with an estrus 
female reduces social behaviors, mounting behaviors and self-grooming 
behavior in sexually naïve male mice, whereas it does not influence the 
preference for females or female odor in two different preference assays. 
Collectively, this indicate that peripheral Ex4 suppresses natural rewards. This 
contention is supported as Ex4 reduces other natural rewards such as sucrose 
and high-fat diet 309,310. In addition, Ex4 attenuates reward induced by addictive 
drugs 300,305. In addition to GLP-1, a role of appetite-regulating peptides in 
mediating sexual behaviors are supported as ghrelin, amylin, leptin, orexin and 
neuropeptide Y also regulate sexual behaviors 89,107,108,110,126,277,311,360. The GLP-
1 system affects sexual interaction behaviors and preference for female mice 
differently. Interestingly, endogenous orexin decreases sexual interaction 
behavior 107 but does not alter preference for female in sexually naïve male rats 
360 and neuropeptide Y reduces sexual interaction behaviors without altering 
the proportion of rats showing erection in sexually experienced rats 108. We 
thereby suggest that the GLP-1 system in sexually naïve male mice control 
neurocircuits that guides sexual interaction behaviors but not preference for 
female mice or female bedding. Interestingly, ghrelin increases, whereas 
JMV2959 decreases, both preference for females and sexual interaction 
behaviors in sexually naïve male mice 126,277 , indicating that the modulation of 
GLP-1 and ghrelin over sexual behaviors diverge to some extent.  

 

5.5 Tolerance effects following repeated 
treatment with GLP-1R agonists  
Interestingly, an acute injection of Ex4 reduces, whereas six days of repeated 
Ex4 injections do not alter sexual interaction behavior in sexually naïve male 
mice. This might indicate that there is a tolerance effect to some of the 
behavioral effects of Ex4. A tolerance pattern has also been observed when it 



Jesper Vestlund 

38 
 

comes to Ex4’s ability to reduce alcohol intake in rats and monkeys 300,304 and 
induce anxiety-like behaviors in rats 361. However, this was not observed when 
it comes to the motivation and learning of skilled reach foraging (paper III) or 
to food-intake behavior (for review see 53) and to glucose-homeostasis 362. 
Experiments in cell culture have shown that repeated GLP-1R activation with 
pharmacological agents, such as Ex4, desensitize the GLP-1R in cell cultures 
362-365,  indicating one mechanism that may underly this tolerance pattern. A 
lower dose of Ex4 to mice decreases alcohol drinking without inducing a 
tolerance with repeated dosing 301, indicating that the tolerance effect in-vivo 
might be dose-dependent.  

 

5.6 Brain region specific modulation of sexual 
interaction behaviors 
By means of local injections of Ex4, we here found that activation of GLP-1R 
in a brain site specific manner suppresses various behaviors of the sexual 
interaction chain in sexually naïve male mice as visualized in Figure 19.  

 

 

 

5.6.1 Nucleus of the solitary tract 

Infusion of Ex4 into the NTS suppresses behaviors of the entire sexual 
interaction chain, namely social behaviors, mounting behaviors and self-
grooming behaviors. A role of the NTS in sexual behaviors are supported as 
sexual interaction behaviors increases c-Fos expression in the NTS in male 
prairie voles and male Syrian hamsters 202,203. A general role of GLP-1R within 

Figure 19. Exendin 4 (Ex4) decreases sexual interaction behaviors in a brain site specific manner                                                                                        
in sexually naïve male mice.                                                                                                                                                                              
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the NTS in reward processing might be suggested as Ex4 into the NTS 
suppresses reward from alcohol and palatable food 72,73,201. The location of 
GLP-1R within the NTS cannot be determined from the present study. 
However, as the GLP-1R are not directly expressed on post-synaptic PPG-
neurons 366 other GLP-1R populations located pre-synaptic on astrocytes 284, 
on vagus nerve afferents (for review see 367 or on collaterals of the PPG neurons 
368 might putatively mediate the effects of NTS-Ex4 on sexual interaction 
behaviors.  

Here we found that NTS-Ex4 induced alterations in monoamine systems in 
NAc tissues, indicating that the behavioral outcomes following activation of 
GLP-1R within the NTS might involve neurotransmission in the NAc. 
Supportively these alterations in the NAc, increased serotonin levels and 
dopamine turnover, have been associated with a decrease in sexual interaction 
behaviors in rodents 4-6,97,98. In addition, NTS-Ex4 increases corticosterone in 
plasma, but not testosterone, thus highlighting another underlying pathway that 
might contribute to the ability of Ex4 into the NTS to reduce sexual interaction 
behaviors.  Indeed, enhanced plasma levels of corticosterone is associated with 
a decrease in sexual interaction behaviors 91,92,94,96. As corticosterone levels in 
plasma are linked to an activated stress system (for review see 369) we speculate 
that a GLP-1R mediated activation of the stress system 370-373 may contribute 
to the decrease in sexual interaction behaviors.  

We further showed that Ex9 into the NTS blocks the decrease in social 
behaviors and self-grooming behaviors as well as the increase in corticosterone 
levels in plasma induced by systemic Ex4. On the contrary, Ex9 into the NTS 
does not reverse the decrease in mounting behaviors induced by systemic Ex4. 
Collectively, these findings suggest that activation of GLP-1R within the NTS 
only explain some of the ability of systemic Ex4 to reduce behaviors of the 
sexual interaction chain.  

 

5.6.2 Laterodorsal tegmental area 

GLP-1R activation within the LDTg decreases both social behaviors and 
mounting behaviors, but not self-grooming behaviors, in sexually naïve male 
mice. A role of the LDTg in sexual behaviors is supported as lesion of the 
LDTg suppresses sexual interaction behaviors 127 and JMV2959 into this area 
reduces, whereas ghrelin increases, mounting behaviors, in sexually naïve 
male mice 126. We speculate that activation of GLP-1R within the LDTg might 
reduce such behaviors via a reduced activity of projections to the NAc shell 
192,374 or indirectly via the VTA to NAc shell 190,191, thus activation of GLP-1R-
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comes to Ex4’s ability to reduce alcohol intake in rats and monkeys 300,304 and 
induce anxiety-like behaviors in rats 361. However, this was not observed when 
it comes to the motivation and learning of skilled reach foraging (paper III) or 
to food-intake behavior (for review see 53) and to glucose-homeostasis 362. 
Experiments in cell culture have shown that repeated GLP-1R activation with 
pharmacological agents, such as Ex4, desensitize the GLP-1R in cell cultures 
362-365,  indicating one mechanism that may underly this tolerance pattern. A 
lower dose of Ex4 to mice decreases alcohol drinking without inducing a 
tolerance with repeated dosing 301, indicating that the tolerance effect in-vivo 
might be dose-dependent.  
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LDTg 206,207 decreases sexual interaction via inhibition of these neurocircuits.  
In line are the data showing that Ex4 into the LDTg reduces, whereas Ex9 into 
the LDTg increases, food intake 206, suggesting a general role of LDTg-GLP-
1R in mediating natural rewards. As Ex4 into LDTg also decreases alcohol-
related behaviors 323 a general role of LDTg-GLP-1R in reward processing 
might be suggested. In support are the data showing that cholinergic neurons 
of the LDTg target both the VTA and the NAc shell and that the activity of 
these neurons control reward-related behaviors 190-192,374,375. Collectively, we 
showed for the first time that activation of GLP-1R within the LDTg 
suppresses social behaviors more precisely sexual interaction behaviors in 
sexually naïve male mice.  

 

5.6.3 Ventral tegmental area  

Ex4 infused into sub-regions of the heterogenous VTA 143,376 showed that 
activation of GLP-1R within pVTA, but not aVTA, suppresses both social 
behaviors and mounting behaviors in sexually naïve male mice. These data are 
supported by a previous study showing that Ex4 into pVTA, but not aVTA, 
suppresses alcohol-mediated behaviors in rodents 323. On the other hand, 
infusion of a GHSR-1A antagonist into aVTA decreases mounting behaviors 
in sexually naïve male mice 126.  A general role of the VTA in sexual interaction 
behaviors are extensively described in the literature (for review see 81). 
Activation of dopaminergic neurons of the VTA by sexual interaction 
behaviors 312-315 which are associated with dopamine release in the NAc shell 
and subsequently reward 3-6 are one pathway through which VTA dopamine 
controls sexual interaction behaviors. This study did not assess the exact 
location of the GLP-1R, however a previous study showed that both neurons 
and astrocytes within the VTA are Ex4-responsive 377 and an 
electrophysiological study has postulated that the GLP-1R is putatively located 
on presynaptic glutamatergic neurons within the pVTA that control dopamine 
neurons 289. We therefore speculate that GLP-1R activation prevents sexual 
activity to activate dopamine neurons projecting to the NAc shell. A general 
role of pVTA-GLP-1R in mediating natural rewards are supported as Ex4 
suppresses intake of sucrose, chow or high-fat diet 205,289,310,378. As Ex4 into 
pVTA also decreases seeking or self-administration of cocaine 377,379 and 
suppresses alcohol-mediated behaviors in rodents 323 a general role of pVTA-
GLP-1R in reward processing should be suggested. Collectively, we postulated 
for the first time that activation of GLP-1R within the pVTA decreases 
behaviors of the sexual interaction chain in sexually naïve male mice.  
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5.6.4 Nucleus accumbens shell  

Ex4 infusion into the NAc shell decreases social behaviors, but not mounting 
behaviors or self-grooming behaviors in sexually naïve male mice. As 
activation of NAc-GLP-1R reduces another natural reward, namely operant 
progressive ratio self-administration of sucrose 310 and skilled reach foraging 
for sucrose (Paper II), this indicates that NAc shell-GLP-1R suppresses natural 
rewards from various domains differently.  Interestingly, Ex4 into NAc shell 
also decreases alcohol and cocaine-related behaviors 56,320,322. In support of 
discrepancy between control of sexual interaction behaviors from other 
reinforcers within the NAc shell are the data showing that infusion of a GHSR-
1A antagonist into the NAc shell does not alter sexual interaction behavior in 
sexually naïve male mice 126, whereas a GHSR-1A antagonist into the NAc 
shell decreases intake of chow 236, peanut-butter 126, sucrose (Paper I) and 
alcohol 320 in rodents. It has been suggested that the dopamine system within 
the NAc controls anticipatory rather than consummatory aspects of sexual 
behavior 316,380. As our data showed that Ex4 into NAc shell decreases social 
behaviors, but not mounting behaviors, one might therefore speculate that NAc 
shell-GLP-1R mediates anticipatory rather than consummatory aspects of 
sexual behavior via interaction with dopamine. Collectively, we postulated for 
the first time that activation of GLP-1R within the NAc shell decreases social 
behaviors with an estrous female in sexually naïve male mice.  

 

5.7 Discussion about limitations with the current 
studies  
There are some general limitations in our studies evaluating skilled reach 
foraging and sexual behaviors that needs to be discussed. We argue that reward 
processes are the main construct involved in driving the behavioral outcomes. 
However other constructs such as anxiety-like behaviors, depression-like 
behaviors, impulsivity and stress that GLP-1R signaling and ghrelin signaling 
are influencing might also contribute to the behavioral outcomes 40,361,372,381-384. 
It is therefore interesting that systemic Ex4 or NTS-Ex4 increases 
corticosterone in plasma in male mice exposed to an estrous female whereas 
the same increase is not evident after infusion of Ex4 into the LDTg, VTA or 
NAc shell. This indicates that activation of stress pathways might have 
contributed to the behavioral suppression following systemic Ex4 and NTS-
Ex4, but not in the suppression of behaviors of the sexual interaction chain 
following activation of GLP-1R within the LDTg, pVTA and NAc shell. 
Likewise, drug-altered locomotor activity and gross motor behavior would 
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definitely alter behavioral outcomes. However, this appears very unlikely 
given that we showed that gross motor behaviors in rats are unaltered on the 
rotarod following JMV2959, ghrelin, liraglutide, dulaglutide and Ex4 
treatments and that the Ex4 doses, at any administration routes used, do not 
alter locomotor activity in mice 201,300,305,323,385. Factors such as sex would 
probably affect the outcomes in the behavioral assays 76,78,98,386-390 and that 
female animals were not included are a major limitation in the present studies. 
In addition, nausea may affect the behavioral outcomes of GLP-1R agonists 
391. However, this appears less likely since we use doses and treatment 
regimens to limit this confounder 72,73,206,300,302,309,321,322,377.    

 

5.8 Concluding remarks 
The data presented in this thesis arrived from experiments evaluating the role 
of ghrelin and GLP-1 in controlling natural rewards. Previous studies have 
shown that acute activation of the GHSR-1A or the GLP-1R mediates operant 
self-administration of sucrose. We herein showed for the first time that 
repeated activation of the ghrelin system or the GLP-1 system mediates the 
motivation and learning of skilled reach foraging in rats via tentative accumbal 
mechanisms. Our novel findings, that activation of the GLP-1 system 
suppresses behaviors of the sexual interaction chain in sexually naïve male 
mice via brain site specific mechanisms involving the NTS, LDTg, pVTA and 
NAc shell, support a role of the GLP-1R in social behaviors.  
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6 FUTURE DIRECTIVES  
The data in this thesis provide additional insight into how appetite-regulating 
peptides mediate natural rewards. GLP-1R agonists are used in the clinic for 
treatment of diabetes type II and obesity (for reveiew see 283,295). Thus, 
highlighting the value for the clinic to understand how these pharmacological 
agents alter neurobiological mechanisms and thereby causes various 
pharmacological effects in patients.   

The findings that repeated ghrelin signaling increases, while a repeated GLP-
1R agonist decreases, the motivation of skilled reach foraging via accumbal 
mechanisms should motivate research into repeated administration of GHSR-
1R antagonist, GLP-1R agonist or the combination on motivation in more 
established operant models of reinforcements for natural rewards (for review 
see 46). Interestingly, combining Ex4 with JMV2959 into the NAc shell 
decreases alcohol intake in female rats 320. The data from this thesis provide 
some mechanistical insight into NAc shell-GHSR-1A activation and NAc 
shell-GLP-1R activation, additional insight into the molecular mechanisms 
that drives the GLP-1R or GHSR-1A dependent modulation of reward from 
sucrose and other reinforcers are needed. Many regions including but not 
limited to the VTA and the LDTg have been implicated in feeding-related 
behaviors following activation of GLP-1R or activation of GHSR-1A 37,72-

79,242,310, upcoming studies should therefore focus on additional brain targets 
and how these brain targets are connected. In addition, more research into how 
the endogenous ghrelin system and the GLP-1 system, in opposed to 
exogenous administration of these peptides, are influencing natural rewards are 
needed.   

The data showing that ghrelin in combination with training putatively causes 
neuroadaptations in the GABAergic system within the NAc shell, provided one 
tentative mechanism underlying the ghrelin-induced increase in motivation 
and learning of skilled reach foraging. Future studies should also assess 
additional brain areas, such as the amygdala and the ventral hippocampus 39,345, 
that may mediate the learning of complex behaviors induced by ghrelin. The 
finding that dulaglutide enhances learning of skilled reach foraging needs to 
be replicated in other learning models. It is also warranted to study the 
mechanisms for this effect, a tentative site of action is the ventral hippocampal-
GLP-1R which are involved in learning processes and motivated behaviors 
38,40,346,347. It is also noteworthy that GLP-1R agonists and ghrelin are evaluated 
as potential treatments of neurodegenerative disorders such as Parkinson’s and 
Alzheimer’s diseases (for review see 392-394). In addition to the vast literature 
showing neuroprotective effects of GLP-1R agonists and ghrelin in rodents  
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346,347,395-399, a recent RCT study in humans showed that Ex4 indeed improves 
motor symptoms in Parkinson’s disease 400.  

The findings that various GLP-1R agonists affected behaviors differently 
depending on the context in the Montoya staircase, warrants further studies 
into the pharmacological effects of different GLP-1R agonists. As previous 
studies have shown that GLP-1R agonists exert biased agonism on the GLP-
1R this may be an underlying cause to the variability in pharmacological 
effects seen with different agonists 340,356,357. Interestingly, also agonists on the 
GHSR-1A exhibit biased agonism and recruit diverse intracellular pathways 
contributing to difference in cellular responses 401. The findings that liraglutide 
and Ex4 have different ability to access and activate brain regions 353-355 
emphasize that future studies need to assess the distribution pattern for 
dulaglutide. Interestingly, after systemic treatment with Ex4, the brain 
concentration of Ex4 are only 2-3% of the levels in plasma in both rats 402 and 
humans 400. As GLP-1R agonists have emerging therapeutic potential in 
various brain disorders there is thus a need to develop GLP-1R agonists with 
higher brain penetrance which could result in higher efficacy and fewer side-
effects. Future studies should also investigate where Ex4, liraglutide and 
dulaglutide act in the brain with use of immunofluorescence methods. Initial 
studies show that peripheral Ex4 reaches the NTS, LDTg, pVTA and NAc shell 
and localize and internalize in both neurons and astrocytes 206,284,322,377.        

Feeding-regulating peptides have previously been implicated in sexual 
behaviors. Indeed, both ghrelin and amylin mediate sexual behaviors 
89,126,277,311. This thesis shows for the first time that the GLP-1 system is 
involved in sexual behavior and the effect is specific to sexual interaction. 
Future studies should further pinpoint which brain pathways are shared and 
divergent in the control of different aspects of sexual behavior including odor 
preference, female preference, pre-sexual interaction behaviors, sexual 
interaction behaviors and post-sexual interaction behaviors. Upcoming studies 
should share additional insight into the molecular and neural mechanisms 
following GLP-1R-dependent suppression of sexual interaction behavior. 
Given that Ex4 increases serotonin and dopamine turnover in NAc ex-vivo, a 
tentative research directive is to use in-vivo microdialysis to measure how Ex4 
affects the levels of monoamines in NAc before, during and after the novel 
interaction with an incentive female. Previous studies have shown that Ex4 into 
the NAc core decreases natural rewards such as intake of palatable food and 
chow 205,291 indicating that NAc core-GLP-1R may be involved in sexual 
interaction behaviors, a future research directive. Additional brain areas such 
as the mPOA, ventromedial hypothalamus, lateral hypothalamus, 
paraventricular nucleus, amygdala, bed nucleus of stria terminalis, 
periaqueductal gray, central tegmental field and dorsal raphe (for review see 
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80,81,85), that might be associated with GLP-1R mediated suppression of sexual 
behaviors should also be investigated. Interestingly, ghrelin infused into the 
mPOA decreases level changes in the level searching paradigm whereas a 
GHSR-1A antagonist into the VTA decreases level changes in the same 
paradigm in sexually experienced male rats 89, indicating that appetite-
regulating peptides, at least ghrelin, have opposite roles on sexual behaviors 
depending on brain circuit modulated. If this is true for other appetite-
regulating peptides remains to be elucidated.   

Importantly, future studies need to investigate the potential role of GLP-1R 
agonists for mediating sexual behavior in sexually experienced male rodents, 
as the neural control over sexual behaviors in naïve and experienced rodents 
diverge to some extent 84. For instance, genetic suppression of the GHSR-1A 
suppresses sexual interaction behaviors in sexually naïve male rats, but this is 
not evident when they acquire sexual experience 89 and lesion of the LDTg 
decreases sexual interaction behaviors in sexually naïve male rats, but not in 
sexually experienced male rats 127. It is even more complex, as lesion of the 
NAc, before mating experience, produces deficits in sexual interaction 
behaviors that sustain after acquisition of the behavior 118, whereas lesion of 
the NAc in rats, with mating experience at the time of operation, show no 
deficit in sexual interaction behaviors 380. Future research directives are 
therefore to 1) evaluate the role of Ex4 on sexual conditioned motivation and 
sexual interaction behaviors in sexually experienced male rodents and 2) the 
effects of repeated Ex4 on sexual interaction behaviors on more than one 
sexual interaction session to study the effects of activation of the GLP-1R 
on the acquisition of sexual conditioned motivation and sexual interaction 
behaviors in male rodents.  

The effects of GLP-1R activation on female sexual incentive motivation, 
sexual conditioned motivation and sexual interaction behaviors need to be 
assessed in upcoming studies. Interestingly, ghrelin decreases duration of 
lordosis in sexually experienced female Syrian hamsters 403 and suppress 
receptivity in sexually experienced female mice 404, contrasting the data 
from male rodents suggesting that ghrelin enhances aspects of sexual 
behaviors in both sexually naïve and sexually experienced rodents 89,126,277. 
As female rodents invest more energy in maternal behaviors, whereas male 
rodents only invest energy in paternal behavior during the sexual act in 
promiscuous species such as the house mouse (Mus musculus) and the rat 
(Rattus norvegicus)(for review see 16), it is not surprising that a orexigenic 
signal, such as ghrelin, appears to influence sexual behaviors differently 
between sexes in promiscuous species. Future studies should therefore 
assess the effects of appetite-regulating peptides on sexual behaviors, 
paternal behaviors and maternal behaviors in monogamous rodents, such as 
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346,347,395-399, a recent RCT study in humans showed that Ex4 indeed improves 
motor symptoms in Parkinson’s disease 400.  

The findings that various GLP-1R agonists affected behaviors differently 
depending on the context in the Montoya staircase, warrants further studies 
into the pharmacological effects of different GLP-1R agonists. As previous 
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concentration of Ex4 are only 2-3% of the levels in plasma in both rats 402 and 
humans 400. As GLP-1R agonists have emerging therapeutic potential in 
various brain disorders there is thus a need to develop GLP-1R agonists with 
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and localize and internalize in both neurons and astrocytes 206,284,322,377.        

Feeding-regulating peptides have previously been implicated in sexual 
behaviors. Indeed, both ghrelin and amylin mediate sexual behaviors 
89,126,277,311. This thesis shows for the first time that the GLP-1 system is 
involved in sexual behavior and the effect is specific to sexual interaction. 
Future studies should further pinpoint which brain pathways are shared and 
divergent in the control of different aspects of sexual behavior including odor 
preference, female preference, pre-sexual interaction behaviors, sexual 
interaction behaviors and post-sexual interaction behaviors. Upcoming studies 
should share additional insight into the molecular and neural mechanisms 
following GLP-1R-dependent suppression of sexual interaction behavior. 
Given that Ex4 increases serotonin and dopamine turnover in NAc ex-vivo, a 
tentative research directive is to use in-vivo microdialysis to measure how Ex4 
affects the levels of monoamines in NAc before, during and after the novel 
interaction with an incentive female. Previous studies have shown that Ex4 into 
the NAc core decreases natural rewards such as intake of palatable food and 
chow 205,291 indicating that NAc core-GLP-1R may be involved in sexual 
interaction behaviors, a future research directive. Additional brain areas such 
as the mPOA, ventromedial hypothalamus, lateral hypothalamus, 
paraventricular nucleus, amygdala, bed nucleus of stria terminalis, 
periaqueductal gray, central tegmental field and dorsal raphe (for review see 

Appetite-regulating peptides and natural rewards: emphasis on ghrelin and glucagon-like peptide-1 

45 
 

80,81,85), that might be associated with GLP-1R mediated suppression of sexual 
behaviors should also be investigated. Interestingly, ghrelin infused into the 
mPOA decreases level changes in the level searching paradigm whereas a 
GHSR-1A antagonist into the VTA decreases level changes in the same 
paradigm in sexually experienced male rats 89, indicating that appetite-
regulating peptides, at least ghrelin, have opposite roles on sexual behaviors 
depending on brain circuit modulated. If this is true for other appetite-
regulating peptides remains to be elucidated.   

Importantly, future studies need to investigate the potential role of GLP-1R 
agonists for mediating sexual behavior in sexually experienced male rodents, 
as the neural control over sexual behaviors in naïve and experienced rodents 
diverge to some extent 84. For instance, genetic suppression of the GHSR-1A 
suppresses sexual interaction behaviors in sexually naïve male rats, but this is 
not evident when they acquire sexual experience 89 and lesion of the LDTg 
decreases sexual interaction behaviors in sexually naïve male rats, but not in 
sexually experienced male rats 127. It is even more complex, as lesion of the 
NAc, before mating experience, produces deficits in sexual interaction 
behaviors that sustain after acquisition of the behavior 118, whereas lesion of 
the NAc in rats, with mating experience at the time of operation, show no 
deficit in sexual interaction behaviors 380. Future research directives are 
therefore to 1) evaluate the role of Ex4 on sexual conditioned motivation and 
sexual interaction behaviors in sexually experienced male rodents and 2) the 
effects of repeated Ex4 on sexual interaction behaviors on more than one 
sexual interaction session to study the effects of activation of the GLP-1R 
on the acquisition of sexual conditioned motivation and sexual interaction 
behaviors in male rodents.  

The effects of GLP-1R activation on female sexual incentive motivation, 
sexual conditioned motivation and sexual interaction behaviors need to be 
assessed in upcoming studies. Interestingly, ghrelin decreases duration of 
lordosis in sexually experienced female Syrian hamsters 403 and suppress 
receptivity in sexually experienced female mice 404, contrasting the data 
from male rodents suggesting that ghrelin enhances aspects of sexual 
behaviors in both sexually naïve and sexually experienced rodents 89,126,277. 
As female rodents invest more energy in maternal behaviors, whereas male 
rodents only invest energy in paternal behavior during the sexual act in 
promiscuous species such as the house mouse (Mus musculus) and the rat 
(Rattus norvegicus)(for review see 16), it is not surprising that a orexigenic 
signal, such as ghrelin, appears to influence sexual behaviors differently 
between sexes in promiscuous species. Future studies should therefore 
assess the effects of appetite-regulating peptides on sexual behaviors, 
paternal behaviors and maternal behaviors in monogamous rodents, such as 



Jesper Vestlund 

46 
 

the prairie vole (Microtus ochrogaster) and the California mouse 
(Peromyscus californicus)(for review see 16). 

Ghrelin enhances both spontaneous aggression and isolation-induced 
aggression in male mice 215,272 and in-light of our findings that Ex4 decreases 
sexual interaction behaviors, future studies should evaluate the role of the 
GLP-1 system in various models of aggression in male mice. New evidence 
suggest that ghrelin is involved in various aspects of social behaviors 273-275. 
Taken together with our novel data showing that Ex4 decreases social 
behaviors with an estrous female in sexually naïve male mice, these data 
highlight the need to assess the potential role of appetite-regulating peptides in 
social reward, social exploration and social avoidance.  

Regarding other domains of natural rewards namely novelty seeking and 
exercise (for review see 14) the data are sparse when it comes to appetite-
regulating peptides. However, initial studies have showed that ghrelin 
enhances novelty-seeking behavior in rats 382 and ghrelin knock-out mice 
display less voluntary running than wild-type mice, whereas an acute injection 
of ghrelin increases voluntary running in the ghrelin knock-out to wild-type 
levels 405. Future studies should evaluate the effects of appetite-regulating 
peptides on these other domains of natural rewards.  

Previous studies investigating the role of appetite-regulating peptides in sexual 
behaviors have focused on normal sexual behavior, however GLP-1R agonists 
and GHSR-1A antagonists might possibly be beneficial for individuals with 
compulsive sexual behaviors as these patients have heighten activation in 
various reward-related areas including the NAc following pornographic cues 
compared to healthy controls 406,407. In addition, intravenous injection of 
ghrelin enhances the activity of both the VTA and the NAc in humans exposed 
to images of palatable foods 408. Indeed, manipulating appetite-regulating 
peptides to alter natural rewards constitute a tentative treatment prospective for 
various compulsive disorders such as binge eating disorder and sexual 
compulsive behaviors.         
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