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Neurosurgery is the cornerstone in the treatment of a majority of brain tumors. 
Surgery can sometimes cure or delay tumor progression. However, surgery is 
associated with risks, and adequate information about the anticipated peri- and 
postoperative course is important for informed consent. The identification of 
tumor markers in a preoperative setting is beneficial in lower-grade gliomas, a 
heterogeneous group in terms of biological behavior where molecular markers 
play an important role in diagnosis and treatment. We investigated the role of 
the non-invasive radiological marker T2-FLAIR mismatch by means of a 
population-based study. The mismatch sign is highly specific for IDH-mutated 
1p/19q non-codeleted gliomas and thus useful in the preoperative setting. We 
examined how age affects lower-grade glioma treatment, in addition to short-
term postoperative complications. Older patients (≥60 years) seem to tolerate 
neurosurgery compared with younger patients (<60 years), although a higher 
rate of neurological deficit occurred postoperatively. Meningioma is the most 
common intracranial tumor and surgery is the main treatment modality. The 
short-term postoperative risk for complications after meningioma surgery, both 
in symptomatic and asymptomatic, was studied. The complication rate in the 
short-term (30-day) postoperative period in Sweden lies in line with the 
relevant literature. Through a registry-based approach we studied the return to 
work long-term (up to two years) after meningioma surgery. The sick leave 
pattern after meningioma surgery revealed that surgery is associated with 
considerable risk of long-term sick leave two years after the operation as 57% 
in meningioma patients returned to work compared with 84% of matched 
controls. Risk factors for long-term sick leave were history of depression, 
surgical neurological deficit and higher tumor grade. The present work 
contributes with elucidating on a promising non-invasive radiological marker 
and the role of age in lower-grade gliomas, and in patients with meningioma 
data on the current postoperative risk after meningioma surgery and novel data 
with regard to return to work. 
 
Keywords: Lower-grade gliomas; biomarkers; neurosurgery; segmentation; 
population-based; registry-based
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Neurokirurgi är en hörnsten i behandlingen av majoriteten av hjärntumörer. 
Som med all kirurgi är neurokirurgi förenad med risker, relaterade dels till 
själva kirurgin såsom neurologiska bortfall och blödning, dels till medicinska 
komplikationer såsom tromboser och infektioner. Syftet med denna 
avhandling är att kartlägga neurokirurgisk behandling hos patienter med 
meningiom och låggradiga gliom (LGG) i en pre-, peri- och postoperativ fas. 
 
LGG är en grupp intraaxiala tumörer som uppstår från hjärnans stödjeceller. 
Under det senaste decenniet har molekylära markörer, främst mutation i genen 
isocitrat dehydrogenas (IDH) och kodeletion av kromosom 1p och 19q, hos 
LGG gjort sitt genombrott i prognostiseringen och klassificeringen av dessa 
gliom. I artikel I utförde vi en kartläggning av den icke-invasiva radiologiska 
markören T2-FLAIR mismatch hos patienter med LGG och dess association 
med de molekylära markörerna IDH-mutation och 1p/19q kodeletion, samt 
biologiska och kliniska faktorer i relation till kliniskt utfall i en 
populationsbaserad studie med både retrospektiv och prospektiv inklusion. 
Den icke-invasiva markören T2-FLAIR mismatch har hög specificitet för IDH-
muterade 1p/19q icke-kodeleterade gliom (astrocytom) och kan vara av värde 
preoperativt. För att studera hur ålder påverkar kirurgiskt utfall hos patienter 
med låggradigt gliom (WHO grad II), samt behandling och kliniska faktorer i 
olika ålderskategorier genomförde vi i artikel II en registerstudie med data från 
Svenska Hjärntumörregistret. Neurokirurgisk behandling av LGG hos äldre 
patienter (≥60 år) bedöms jämförbart med yngre patienter (<60 år), dock med 
högre grad av neurologiska bortfall postoperativt hos äldre patienter. 
 
Meningiom är, å andra sidan, en extraaxial tumör som uppstår från 
hjärnhinnorna och kirurgi är den främsta behandlingsmetoden. I artikel III hade 
vi som mål att kartlägga de kortsiktiga riskerna postoperativt efter 
meningiomkirurgi på en nationell nivå, samt jämföra utfall för asymptomatiska 
och symptomatiska meningiompatienter genom en registerstudie med data från 
Svenska Hjärntumörregistret. Kartläggning av de kortsiktiga riskerna efter 
meningiomkirurgi på nationell nivå påvisade att resultaten i Sverige ligger i 
linje med relevant litteratur. För att undersöka hur återgång till arbete på längre 
sikt ser ut efter meningiomkirurgi jämförde vi i artikel IV patienter med 
meningiom med fem matchade unika kontroller genom data från multipla 
register. Patienter efter meningiomkirurgi har betydande risk för långsiktig 
sjukskrivning; två år efter kirurgi var 57% patienterna åter i arbete jämfört med 
84% hos unika matchade kontroller. Negativa prediktorer för återgång till 
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arbete var anamnes på depression, högre tumörgrad, sjukfrånvaro under året 
innan kirurgi och postoperativa neurologiska bortfall.   
 
Sammanfattningsvis bidrar studierna i denna avhandling till forskningen om 
gliom och meningiom genom att undersöka icke-invasiv markör hos LGG, 
kartlägga de aktuella postoperativa riskerna på kort sikt efter 
meningiomkirurgi och i olika åldersgrupper med låggradigt gliom (WHO grad 
II), utfall och behandlingsmönster hos äldre patienter med låggradigt gliom 
och utfall på sikt efter meningiomkirurgi avseende återgång till arbete.  
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1D  One dimensional 
1p/19q Short arm chromosome 1/Long arm chromosome 19 
2D  Two dimensional 
AI Artificial intelligence 
CBF  Cerebral blood-flow 
CBV  Cerebral blood volume 
cfDNA  Cell-free DNA 
CNS Central nervous system 
CSF  Cerebrospinal fluid 
CT Computer tomography 
ctDNA  Circulating tumor DNA 
DIPG  Diffuse intrinsic pontine glioma 
DNA  Deoxyribonucleic acid 
DVT  Deep venous thromboembolism 
EANO  European Association of Neuro-Oncology 
EGFR  Epidermal growth factor receptor 
EOR Extent of resection  
FLAIR Fluid-attenuated inversion recovery 
fMRI Functional magnetic resonance imaging 
GBM Glioblastoma (astrocytoma WHO grade IV) 
GIC  Glioma initiating cell  
GTR Gross total resection  
HGG High grade glioma 
HPF High-power field  
HRQoL Health-related quality of life 
IDH1 Isocitrate dehydrogenase 1 gene 
IDH2 Isocitrate dehydrogenase 2 gene 
LGG  Lower-grade glioma WHO grade II and III  
MDT Multidisciplinary team  
MGMT O6-methylguanine-DNA-methyltransferase 
MRI  Magnetic resonance imaging 
MRS  Magnetic resonance spectrometry 
NCR  National cancer registry 
NF2  Neurofibromatosis type 2 
PCV  Combination of procarbazine, lomustine and vincristine 

 

PET  Positron emission tomography 
RANO  Response Assessment in Neuro-Oncology 
RTW  Return to work 
SBTR  Swedish Brain Tumor Registry  
SEER  The Surveillance, Epidemiology and End Results program  
SNOMED  Systematized Nomenclature of Medicine 
SNP  Single nucleotide polymorphism  
STR Subtotal resection  
T1W T1-weighted 
T2W T2-weighted 
TERT Telomerase reverse transcriptase 
VTE Venous tromboembolism 
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Tumors of the central nervous system make up approximately 2.5% of all 
cancers diagnosed annually and are categorized in accordance with the World 
Health Organization (WHO) classification based on origin [1, 2]. The most 
common brain tumors include glioma and meningioma, with the most common 
primary malignant tumor being glioblastoma (i.e. astrocytoma WHO grade IV, 
GBM) [3]. Pediatric brain tumors, in contrast to adult ones, are in 50-70% of 
cases located in the posterior fossa, the most common being astrocytomas, 
ependymoma, medulloblastoma and craniopharyngioma [4, 5]. The annual 
incidence of pediatric brain tumor is 4.2 per 100,000 children, making it the 
second most common form of childhood cancer [6]. Treatment protocols exist 
for some primary adult brain tumors, such as GBM, where maximal safe 
resection followed by adjuvant chemo- and radiotherapy in according with the 
Stupp regimen is widely accepted today [7]. However, in biological slower 
diseases, such as lower-grade gliomas (i.e. WHO grade II and III astrocytoma 
and oligodendroglioma, hereafter LGG) and meningioma the timing of 
management can be more difficult, hence understanding risk of treatment in 
addition to identify risk groups is motivated. Therefore, this thesis will focus 
on the clinical course of these tumor types, from diagnostics in a preoperative 
and perioperative setting to both short-term and long-term follow-up.   
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In Sweden, around 1,300 patients are diagnosed with a primary brain tumor 
every year [1]. Meningioma is the most common primary intracranial lesion 
termed and reported to have an incidence rate from 1.3-8.33 per 100,000 
individuals with a slight increase during recent decades [8-11]. The incidence 
of grade II glioma is traditionally reported at 1.05 per 100,000 persons per year 
[12, 13]. The exact incidence of LGG is difficult to estimate for various 
reasons. One is the removal of the mixed oligoastrocytic subclass of gliomas 
and another the recent transition from the term low-grade gliomas which 
included WHO grade II astrocytoma, oligoastrocytoma and oligodendroglioma 
to lower-grade gliomas which include both WHO grade II and III astrocytoma 
and oligodendroglioma (see Figure 1 as an example of an LGG on magnetic 
resonance imaging (MRI) scan). LGG account for approximately 15% of all 
glial brain tumors in the adult population [1, 9, 14]. LGG typically have an 
infiltrating growth pattern into the surrounding brain tissue, limiting more 
extensive and possibly curative surgery due to the risk of neurological deficit 
[15, 16]. The growth rate of LGG is typically slow at approximately 4-6 mm 
per year and higher growth rates are related to malignant transformation [17-
19]. However, at some point the glioma will undergo malignant 
transformation, although the timing varies. This leads to questions regarding 
the optimal choice and timing of treatment for the individual patient with LGG.  
 
Although the majority of LGG are thought to be caused by random, sporadic 
mutations, a family history has been identified in around 5% of cases, 
suggesting a possible genetic predisposition in some of the patients [20]. 
Studies have shown increased risk among first-degree relatives of patients with 
glioma [20, 21]. Established risk factors for glioma include high-dose radiation 
(not diagnostic radiation), hereditary syndromes and increasing age, while 
mutagen sensitivity, allergies and asthma are probable risks [22]. Hereditary 
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There is a wide spectrum of brain tumor symptoms that vary in accordance 
with the tumor location, type, growth rate and age of the patient [37]. General 
symptoms due to an increased intracranial pressure caused by the tumor or the 
surrounding edema include headache, nausea and/or vomiting and altered 
consciousness, while focal symptoms depend on location of the tumor [38, 39]. 
The lesion can also cause displacement of structures leading to obstruction of 
cerebrospinal fluid (CSF) and vascular compromise [40]. Parietally located 
lesions cause disturbances in coordinating sensory information, perception and 
spatial awareness [41]. Symptoms such as cognitive changes, personality 
change, impulse control and lack of concentration may arise from lesions 
affecting the frontal lobes [42]. In a similar way occipital lesions may cause 
disturbances of visual fields [43], while lesions in the dominant 
temporoparietal and frontal region can cause dysphasia. CSF obstruction 
usually leads to obstructive hydrocephalus, which in turn may be symptomatic. 
Seizures may also be a symptom in patients suffering from brain tumors, which 
is the most common symptom in patients with LGG, but may also be a present 
in those with meningioma [44, 45]. Tumors with a slower growth rate allow 
the brain to adapt to the lesion, which more often causes seizures than focal 
symptomatology or symptoms related to increased intracranial pressure [46, 
47].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Brain tumors in the central nervous system have been categorized according to 
the WHO classification system since 1979 [48]. The most recent revised 
version was published in 2016 and, compared to its predecessor from 2007, 
contains additional molecular markers as a complement to the previous 
histological definitions [2]. There have been major changes in the field of 
diagnosing and classifying LGG. From a traditional point of view, histology 
has been the basis of diagnosing LGG, but this method is associated with 
interrater variability that has caused major concerns both in clinical 
management and research settings [49, 50]. The nomenclature “lower-grade 
glioma” include astrocytoma and oligodendroglioma with histological 
classification of grade II and III [2, 51] and has recently been implemented 
following molecular diagnosis.  
 
Histological techniques include staining the sample with hematoxylin and 
eosin. Astrocytomas consist of well-differentiated fibrillary or gemistocytic 
neoplastic astrocytes on a loose matrix. Oligodendrogliomas contain cells with 
uniform-appearing nuclei and perinuclear clearing in a honeycomb pattern, 
sometimes referred to as having the appearance of “fried egg” [2, 52, 53].  
 
According to the WHO 2016 classification, LGG form a group that includes 
astrocytoma and oligodendroglioma grades II and III [2, 51]. The term 
oligoastrocytoma was included in the previous WHO classification from 2007 
and described as a mixed LGG, but that term was removed from the revised 
classification, and LGG are now divided into astrocytoma and 
oligodendroglioma according to their molecular status [2, 53].   
 
During the last decade advances have been made in the molecular genetic field. 
In the area of LGG, two markers have been of particular interest; the presence 
or absence of mutation in gene isocitrate dehydrogenase (IDH) I and II, and 
codeletion or lack of codeletion in the short arm of chromosome 1 and in the 
long arm of chromosome 19 (1p/19q) [51, 54, 55]. These markers have been 
associated with prognosis, where patients with IDH-mutation with 1p/19q 
codeletion (referred to as oligodendroglioma in WHO 2016 classification) 
have the best prognosis, while patients without IDH-mutation (referred to as 
IDH wild-type) have the worst [55-57]. Additional methylation analysis of 
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IDH-mutant astrocytomas has revealed another possible grading system for 
this subgroup [58]. Patients with IDH wild-type have a more aggressive 
disease course with impaired survival, similar to patients with GBM [51, 57]. 
IDH wild-type is, however, not pathognomonic for gliomas with a more 
aggressive biology. Other tumor of glial origin such as pediatric low-grade 
gliomas and pleomorphic xanthoastrocytoma also lack the IDH-mutation and 
are classify as IDH wild-type [59, 60]. Consequently, absence of IDH-mutation 
is not sufficient to classify a glioma as WHO grade IV, as molecular 
glioblastomas are identified by other molecular features including 
amplification of the epidermal growth factor receptor (EGFR), combined 
chromosome 7 gains and chromosome 10 losses (whole chromosome, or loss 
of long or short arm), or telomerase reverse transcriptase (TERT) promotor 
mutation [61, 62]. The cIMPACT-NOW group concluded that the minimal 
molecular criterion for identifying the aggressive IDH wild-type glioma 
histologically classified as WHO grades II or III was at least one of the 
previously mentioned molecular genetic findings [63]. This further 
stratification will support decision-making about adjuvant treatment in the 
clinical setting and inclusion of this subgroup in clinical trials.  
 
In the recently revised WHO classification, the grading of meningiomas has 
not undergone any revision and are still classified as grades I – III [2]. 
Traditional histological features of benign meningioma include lack of 
infiltration, absence of cell atypia and a mitotic index of less than 4 mitoses 
per 10 high-power field (HPF). Atypical and malignant meningiomas show 
increased mitotic activity and cell atypia [64]. In the latest revision of the WHO 
classification of tumors in the central nervous system brain invasion of 
meningioma is classified as a criterion of WHO grade II, in contrast to the 2007 
version where brain invasion was a hallmark of WHO grade I meningiomas [2, 
53]. The new classification will lead to more meningiomas being classified as 
WHO grade II and possibly receiving adjuvant postoperative radiotherapy, 
despite the fact that on a group level they are likely to have a more benign 
course [65, 66]. Recent advances have taken place in the molecular genetic 
landscape of meningiomas, where clinically relevant subgroups have been 
identified using methylation analysis [67]. This will probably further stratify 
clinically relevant meningioma patient subgroups to optimize treatment for 
individual patients.  
 

 
The definite diagnosis of intracranial lesions is histopathological in nature, 
although advances in the radiological field have improved the non-invasive 
recognition and possible diagnosis of brain tumors [68]. Furthermore, the 
introduction of molecular parameters into the glioma field in the 2016 WHO 
classification has made further categorization possible [2]. When the patients 
present to either their primary health center or the emergency ward, a 
computerized tomography (CT) scan is usually the primary investigation of 
choice due to its availability, which is later supplemented by an MRI scan with 
and without contrast enhancement to confirm the suspected lesion, see Figure 
2a-b as example of LGG on MRI scan.  
 
 

 
 
Figure 2a-b. MRI of lower-grade glioma located in the right frontal lobe. 2a: T1 
weighted sequence. 2b: FLAIR sequence. 
 
After the initial diagnostic procedures with CT and MRI, further investigations 
can be performed. MRI provides further non-invasive techniques such as 
cerebral blood volume (CBV) and measurement of the choline/N-acetyl 
aspartate ratio on MR spectroscopy (MRS) which can be useful in the 
diagnosis of LGG [69]. Typically, LGG exhibit reduced CBV compared to 
high-grade gliomas and on MRS increased choline and a lower level of N-
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acetyl aspartate compared to the normal brain [70]. However, not all LGG 
show this pattern, but MRS can help to detect areas with more aggressive 
behavior which can be suitable for biopsy or valuable during resection [71, 72]. 
The detection of high levels of 2-HG by MRS has been shown to correlate with 
IDH-mutation in glioma, which can be used in a non-invasive setting to 
differentiate IDH-mutated gliomas from IDH wild-type gliomas [73, 74].  
 
Non-invasive diagnostic methods have been of interests since the dawn of 
molecular markers in the field of LGG, especially the status of IDH and the 
presence of absence of 1p19 codeletion. After surgical resection, the prognosis 
and recurrence are highly correlated with these markers [51, 75]. Positron 
emission tomography (PET) with tracers such as 18F-FET  has been found 
valuable in a preoperative setting with machine-learning for non-invasive 
information regarding molecular subtypes and the malignant transformation of 
the tumor as well as for revelation of possible “hot-spots”, which could be of 
interest in e.g. biopsy and in a postoperative setting to detect recurrence or 
progression [76-78].  
 
The radiological marker T2-FLAIR mismatch sign, which is characterized by 
a hyperintense signal on a T2-weighted sequence (T2W) on MRI scans and 
hypointense signal on a fluid attenuation inversion recovery (FLAIR) sequence 
with the exception of a hyperintense ring (see Figure 3a-b), has gained interest 
in recent years after demonstrating high specificity for IDH-mutated 
astrocytomas [79]. Since the initial study by Patel et al. (2017), this finding has 
been validated and a high specificity has been presented in multiple studies 
[80-83]. The unique characteristic of the mismatch sign raises questions about 
the underlying biology, although investigation of methylation analysis showed 
no specific clustering of the IDH-mutated astrocytomas harboring the 
mismatch sign [82].  
 
 
 
 
 
 
 

 
Figure 3a-b. MRI scan of IDH-mutated astrocytoma with the T2-FLAIR mismatch 
sign. 3a: FLAIR sequence with hyperintense peripheral ring and hypointense center. 
3b: T2W sequence showing a homogeneous hyperintense signal. From Corell and 
colleagues, The clinical significance of the T2-FLAIR mismatch sign in grade II and 
III gliomas: a population-based study, Supplementary material, BMC Cancer 2020.  
 
On the other hand, invasive diagnostics include methods for obtaining tissue 
samples for the pathologist to analyze and classify according to the cell 
characteristics, such as cell nuclei atypia, mitosis, necrosis and vascular 
proliferation [84]. The methylation analysis does as well require tumor tissue 
for DNA extraction [85]. As surgical intervention is associated with the risk of 
complications, less invasive methods for obtaining diagnostic material are 
desirable. Methods to obtain so-called circulating tumor DNA (ctDNA) in 
blood samples have been examined, although evidence of clinical validity is 
lacking [86]. However, CSF, which only requires a minor procedure in contrast 
to invasive neurosurgery, has been of interest due to the possibility of detecting 
ctDNA of glioma both for disease classification and for monitoring the 
progression of glioma over time [87, 88].
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The European Association of Neuro-Oncology (EANO) has established 
guidelines to serve as a recommendation for diagnosis and treatment of lower- 
and high-grade gliomas [89, 90]. The treatment strategy of early, safe surgery 
in patients with suspected LGG followed by adjuvant treatment based on 
molecular markers is in line with the literature.  
 
EANO has also formulated guidelines for treatment of patients with 
meningioma, where the recommendations support the combination of surgical 
and radiosurgical treatment with adjuvant radiotherapy in malignant 
meningiomas or incompletely resected atypical meningiomas [91]. The role of 
adjuvant radiotherapy in completely resected atypical meningiomas is still not 
clear, and shared decision-making with the patient is recommended. The 
recommendation for asymptomatic meningiomas is an initial wait-and-see 
approach with follow up by MRI and clinical evaluation.  
 
Guidelines for the treatment of tumors in brain and spinal cord have also been 
established on a national level in Sweden and were last revised on 14/01/2020. 
The following is a link to the program: 
https://www.cancercentrum.se/globalassets/cancerdiagnoser/hjarna-
cns/vardprogram/nationellt-vardprogram-tumorer-hjarna-ryggmarg.pdf.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The clinical presentation of patients with brain tumor comprises a wide 
spectrum of possible symptoms. Both conservative and surgical treatment 
should be tailored to benefit patients. Conservative treatment includes 
symptom relief, where steroids and antiepileptic drugs play an important role. 
The aim of surgery is to establish a diagnosis, reduce tumor burden, to alleviate 
symptoms or, if possible, total removal of the tumor [92]. The decision 
regarding the extent of resection during surgery should benefit the patient and 
be weighed against the risks of postoperative deficit, i.e. do no harm [93]. 
Surgery plays an important role in the treatment of brain tumors and a maximal 
safe resection provides a superior point of departure for adjuvant treatment 
and, ultimately, improved survival in the long-term [94, 95].  
 
 

 
Neurosurgery is a cornerstone in the treatment of most intracranial tumors. It 
can provide a cure in patients with meningioma and prolong survival in those 
with gliomas [96, 97]. Nevertheless, neurosurgery is associated with risks and 
complications that could lead to devastating consequences including 
permanent neurological deficits and even death [98].  
 
Before the introduction of CT scan and MRI scan it was difficult to diagnose 
an intracranial neoplasm [99]. At the beginning of 20th century, 
ventriculography and pneumoencephalography were used to detect intracranial 
lesions with a mass effect causing midline shift. The introduction of the CT 
scan in the 1970s and MRI in the 1980s not only led to improved diagnostic 
possibilities of intracranial lesions but also laid the foundation for other 
methods, such as stereotactic neurosurgery [100]. Since then, CT and MRI 
scans have become more and more available, in even more remote locations. 
However, this wide access has led to more incidental findings, which can pose 
surgical dilemmas in asymptomatic patients [101-103].  
 
Extent of resection in the molecular era 
The extent of resection (EOR) in the field of malignant gliomas (i.e. GBM) has 
been well studied, and patients who underwent gross total resection (GTR) 
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Extent of resection in the molecular era 
The extent of resection (EOR) in the field of malignant gliomas (i.e. GBM) has 
been well studied, and patients who underwent gross total resection (GTR) 



instead of subtotal resection (STR) or biopsy showed improved in overall 
survival [97, 104]. Similarly, EOR has been associated with increased overall 
survival in previous studies in patients with LGG and maximal safe surgical 
resection is now considered a basis in the treatment strategy [95, 105-108]. 
 
After the introduction of molecular markers in the field of LGG, the question 
pertaining to the impact of surgery was raised. Historically, the diagnosis of 
LGG was based purely on histological features of the tumor sample, although 
with low interrater agreement in both type as well as grade [49]. With the 
introduction of the molecular markers, i.e. IDH-mutational status and 1p/19q 
codeletion, a more robust classification system was implemented, which is 
superior to the assessment of histological features in terms of performance 
[109]. Wijnenga et al. (2018) studied the influence of maximal safe surgery in 
patients with molecularly defined LGG in a retrospective setting and their 
findings revealed that postoperative volume is a prognostic factor for overall 
survival [110]. Additionally, it seems that the impact of smaller tumor residue 
is not as extensive in oligodendrogliomas, although in IDH-mutated 
astrocytomas an even smaller residue was shown to impact overall survival. 
Similar findings regarding GTR in IDH-mutated astrocytomas were 
demonstrated in the study by Delev and colleagues, where only GTR was 
associated with improved survival [14]. In addition, patients with IDH-
wildtype astrocytomas seem to benefit from more aggressive treatment such as 
GTR, repeated resections and postoperative oncological therapy. The role of 
surgical intervention in IDH-mutated 1p/19q codeleted LGG (i.e. 
oligodendrogliomas) is still not fully clear, although surgery is still assumed to 
be of importance but with less of an impact than is the case in IDH-mutated 
astrocytomas or IDH-wildtype LGG [14, 110-112]. 
 
Asymptomatic – when to treat?  
As the incidence of meningioma is rising due to the generally aging population 
and increasing availability of imaging scans, neurosurgeons are more 
frequently faced with the ethical medical dilemma of choosing a treatment 
plan. The recommended treatment plan for asymptomatic meningiomas 
according to the EANO guidelines for meningiomas is observation with 
repeated MRI scan after 6 months [91]. The recommendation for suggesting 
surgical treatment of asymptomatic meningiomas include radiologically 

confirmed growth, new-onset neurological symptoms or in those where 
exclusion of other diagnoses is needed, such as metastases.   
 
Role of the Simpson grade – is it still relevant?  
In 1957 Simpson published a paper presenting factors associated with the risk 
of recurrence in patients with intracranial meningiomas and summarized the 
findings into the Simpson grading system [113]. The grades extend from 
Simpson grade I through V with increasingly more incomplete resection of the 
meningioma; Simpson grade I include complete removal including affected 
dura and Simpson grade V is classified as simple decompression with or 
without biopsy. The extent of removal is classified by the neurosurgeon 
perioperatively. Many decades have now passed since his initial finding and, 
in the era of modern neurosurgery, the relevance of the Simpson grade has been 
questioned. In a paper published in 2010, Sughrue and colleagues investigated 
the relevance of Simpson grade I and II resection in WHO grade I 
meningiomas [114]. They found no statistically significant evidence of an 
association between Simpson grade and recurrence suggesting, suggesting that 
aggressive excision is of limited benefit in patients with WHO grade I 
meningioma, a surprising finding that contradicts the previously accepted 
neurosurgical belief of aiming for complete excision of meningiomas. 
However, many subsequent studies validated the initial findings by Simpson 
and demonstrated a significant association between Simpson grade and the rate 
of recurrence. For example, Nanda and colleagues presented data validating 
the Simpson grade as a significant predictor of recurrence of both skull base 
and convexity meningiomas [115-119].  
 
 

 
Anesthetic medications and the field of anesthesia revolutionized surgical 
medicine with the possibility to treat patients without sensation or awareness 
(anesthesia, from Greek, meaning “without sensation”) [120]. In the mid-19th 
century, a dentist called Morton applied chloric ether to the affected area, 
whereby the idea of using ether to influence the whole system was born [121]. 
During the 19th century, the microbiologist Pasteur proposed the germ theory 
of disease, which at the time was refuted by many, although nowadays his 
theory is widely accepted [122]. With Pasteur’s microbiological explanation 
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of infection, the British surgeon Joseph Lister developed the principles of 
antiseptic surgery [123]. Through his relentless work and interest in 
postoperative infections he discovered carbolic acid, which he used in both the 
treatment of surgical wounds and the sterilization of instrumentation, leading 
to a decrease in mortality [122]. Thanks to the collective contributions of 
Morton, Pasteur and Lister, the surgical field could advance further to where 
we are today.  
 
In 2004, it was estimated that 234.2 million major surgical procedures were 
performed worldwide [124], which in turn demand safe and antiseptic 
techniques. In 2009 the WHO released the Guidelines for safe surgery to 
improve the safety for patients undergoing surgical treatment, and since its 
introduction there has been a reduction of both mortality and morbidity 
worldwide [125, 126]. Prevention of surgical site infection includes 
preoperative scrub with antiseptic soap, preparation of the surgical site with 
antiseptic wash, appropriate hair removal and preoperative antibiotics, 
although which guidelines are the most effective guidelines is still being 
debated [127-130]. Regarding antiseptic preparation, the Cochrane 
Collaboration performed a review of preoperative bathing with skin antiseptic 
to prevent surgical site infection and found no clear evidence of chlorhexidine 
being superior to other wash products [131].  
 
After the introduction of CT scan and MRI, more precise diagnoses could be 
made, in addition to improved preoperative planning. Today, the preoperative 
radiological diagnosis provides important information regarding the suspected 
diagnosis. Physiologic imaging methods such as brain perfusion, metabolic 
information of lesions (e.g. MR spectroscopy and/or PET), the relationship 
between important fiber tracts with diffusion tensor imaging and functional 
areas (e.g. language laterality and motor cortex using functional MRI (fMRI) 
aid in the preoperative setting [132-136]. However, with the discovery and 
development of more non-invasive radiological markers an even more precise 
diagnosis could be made [137]. Improved diagnostics has had significant 
impact on neurosurgical practice panorama as patients present with smaller 
lesions thus leaving room for few intraoperative surprises.  
 
 
 

Tools in neurosurgery 
Neurosurgical techniques have increased with the introduction of more refined 
diagnostic possibilities in combination with improved radiological methods. 
Modern neurosurgeons have a well-equipped toolbox to perform challenging 
surgeries efficiently and safely, with the aim of minimal blood loss. 
Hemostasis is crucial in neurosurgery and minimal blood is best achieved by 
preventing bleeding in the first place by respecting vascular anatomy. 
Nevertheless, techniques such as the use of bipolar or hemostatic materials 
including oxidized cellulose are necessary to control bleeding [138]. The 
introduction of the microscope into the neurosurgical field in the late 1950s 
greatly improved microsurgical techniques, leading to the birth of modern 
neurosurgery [139]. Neurosurgeons adopted the ideas of the pioneers behind 
the operating microscope and integrated microneurosurgery into the field, 
which meant safer surgery for patients.  
 
Since the introduction of the operating microscope, a vast range of different 
tools has emerged, enabling individual neurosurgeons to optimize the 
treatment for their patients. In addition to the previously mentioned bipolar 
instrument, tools include the ultrasonic surgical system for resection of brain 
tumors [140], the neuronavigation system for visualization and targeted 
surgery [141], ultrasound for intraoperative assessment before and after 
resection [142], intraoperative angiography during neurovascular procedures 
[143] and fluorescence-guided surgery with the use of 5-aminolevulinic acid 
in resection of malignant gliomas [144], among many others. Recent advances 
in the field include operating theatres with intraoperative MRI scans and digital 
subtraction angiography equipment, making radiological examinations prior to 
wound closure possible and thus allowing the surgeons to continue the 
procedure if necessary [145, 146].  
 
 

 
Surgery in all fields is associated with risks and neurosurgical interventions are 
no exception. Comparing the rate of complications between different centers 
or time periods is difficult, if not impossible due to the lack of a standard 
reporting system. Nevertheless, there are factors associated with increased 
mortality and morbidity, such as multiple concomitant diseases [147]. Age, 



of infection, the British surgeon Joseph Lister developed the principles of 
antiseptic surgery [123]. Through his relentless work and interest in 
postoperative infections he discovered carbolic acid, which he used in both the 
treatment of surgical wounds and the sterilization of instrumentation, leading 
to a decrease in mortality [122]. Thanks to the collective contributions of 
Morton, Pasteur and Lister, the surgical field could advance further to where 
we are today.  
 
In 2004, it was estimated that 234.2 million major surgical procedures were 
performed worldwide [124], which in turn demand safe and antiseptic 
techniques. In 2009 the WHO released the Guidelines for safe surgery to 
improve the safety for patients undergoing surgical treatment, and since its 
introduction there has been a reduction of both mortality and morbidity 
worldwide [125, 126]. Prevention of surgical site infection includes 
preoperative scrub with antiseptic soap, preparation of the surgical site with 
antiseptic wash, appropriate hair removal and preoperative antibiotics, 
although which guidelines are the most effective guidelines is still being 
debated [127-130]. Regarding antiseptic preparation, the Cochrane 
Collaboration performed a review of preoperative bathing with skin antiseptic 
to prevent surgical site infection and found no clear evidence of chlorhexidine 
being superior to other wash products [131].  
 
After the introduction of CT scan and MRI, more precise diagnoses could be 
made, in addition to improved preoperative planning. Today, the preoperative 
radiological diagnosis provides important information regarding the suspected 
diagnosis. Physiologic imaging methods such as brain perfusion, metabolic 
information of lesions (e.g. MR spectroscopy and/or PET), the relationship 
between important fiber tracts with diffusion tensor imaging and functional 
areas (e.g. language laterality and motor cortex using functional MRI (fMRI) 
aid in the preoperative setting [132-136]. However, with the discovery and 
development of more non-invasive radiological markers an even more precise 
diagnosis could be made [137]. Improved diagnostics has had significant 
impact on neurosurgical practice panorama as patients present with smaller 
lesions thus leaving room for few intraoperative surprises.  
 
 
 

Tools in neurosurgery 
Neurosurgical techniques have increased with the introduction of more refined 
diagnostic possibilities in combination with improved radiological methods. 
Modern neurosurgeons have a well-equipped toolbox to perform challenging 
surgeries efficiently and safely, with the aim of minimal blood loss. 
Hemostasis is crucial in neurosurgery and minimal blood is best achieved by 
preventing bleeding in the first place by respecting vascular anatomy. 
Nevertheless, techniques such as the use of bipolar or hemostatic materials 
including oxidized cellulose are necessary to control bleeding [138]. The 
introduction of the microscope into the neurosurgical field in the late 1950s 
greatly improved microsurgical techniques, leading to the birth of modern 
neurosurgery [139]. Neurosurgeons adopted the ideas of the pioneers behind 
the operating microscope and integrated microneurosurgery into the field, 
which meant safer surgery for patients.  
 
Since the introduction of the operating microscope, a vast range of different 
tools has emerged, enabling individual neurosurgeons to optimize the 
treatment for their patients. In addition to the previously mentioned bipolar 
instrument, tools include the ultrasonic surgical system for resection of brain 
tumors [140], the neuronavigation system for visualization and targeted 
surgery [141], ultrasound for intraoperative assessment before and after 
resection [142], intraoperative angiography during neurovascular procedures 
[143] and fluorescence-guided surgery with the use of 5-aminolevulinic acid 
in resection of malignant gliomas [144], among many others. Recent advances 
in the field include operating theatres with intraoperative MRI scans and digital 
subtraction angiography equipment, making radiological examinations prior to 
wound closure possible and thus allowing the surgeons to continue the 
procedure if necessary [145, 146].  
 
 

 
Surgery in all fields is associated with risks and neurosurgical interventions are 
no exception. Comparing the rate of complications between different centers 
or time periods is difficult, if not impossible due to the lack of a standard 
reporting system. Nevertheless, there are factors associated with increased 
mortality and morbidity, such as multiple concomitant diseases [147]. Age, 



comorbidities and laboratory hyponatremia, -albuminemia and anemia 
increase the risk of readmission [148]. Ibanez et al. (2010) published a 
classification system suitable neurosurgical and spinal procedures, based on 
previously proposed classification systems by Clavien and Dindo [98, 149, 
150]. Postoperative data pertaining to complications are highly important in 
the preoperative setting for evaluating both the short-term risk and the long-
term benefit of surgery and, not least, for patient information about the 
postoperative period.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Patients with brain tumors present with a wide range of symptoms, and edema 
surrounding a brain lesion may be a contributory factor [151]. Dexamethasone, 
a corticosteroid discovered in 1958, is today considered the gold standard for 
treatment of tumor edema [152, 153]. Such treatment alleviates the symptoms 
related to increased intracranial pressure and brain tissue compression by the 
edema.  
 
Epileptic seizure is the most common presentation among patients with LGG, 
who are initially treated with more recently developed antiepileptic 
medications, such as levetiracetam or topiramate, although more than 50% of 
cases are resistant to pharmacological treatment [154]. The location of the 
tumor influence risk of developing epilepsy, with frontal, temporal and parietal 
lobes being associated with seizures and infratentorial lesions more rarely so 
[155]. Seizures are also common in meningiomas, observed in roughly a third 
of patients [45]. Two thirds of patients with meningioma and seizures prior to 
surgery experience relief, although some patients without any preoperative 
seizures may have new-onset seizures in the postoperative phase, both early 
and late [156]. The use of preoperative prophylactic antiepileptic medication 
has evoked interest due to the risk of onset of seizures after surgical treatment 
for meningioma. However, there is no clear evidence that preoperative 
administration if beneficial for preventing either early or late postoperative 
seizures [157-159].   
 
Treatment of patients with LGG does not only include the surgical perspective 
but also the adjuvant treatment. Historically, the management of LGG has been 
controversial. The decision regarding surgical treatment in otherwise healthy 
and younger individuals constitutes an ethical dilemma. Some have advocated 
a conservative approach with watchful waiting until progression was 
established [160]. Others have advocated early surgical intervention to delay 
malignant transformation [105, 161, 162]. In 2012, Jakola and colleagues 
published a study on the difference between watchful waiting and early 
surgical resection by comparing two different neurosurgical centers in 
Norway, where one had the preference of watchful waiting and the other 
favored early resection [95]. The authors concluded that patients treated in the 
center that favored early surgical resection had better overall survival in 
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comparison to those at the center where biopsy and watchful waiting were 
advocated.  
 
Even though the molecular biology of the tumor indicates its biological 
behavior, some aspects of the clinical assessment cannot be overlooked. The 
Karnofsky performance score is a widely used assessment of the patient’s 
functional ability and applied to select patients for oncological treatment [163, 
164]. Even in the molecular era, studies examining the impact of surgery still 
find that good clinical status is a factor that influences overall survival [14].   
 
 

 
The role of postoperative radio- and chemotherapy in the heterogeneous group 
of patients with LGG has been widely debated. Earlier studies in the field have 
shown that LGG are moderately sensitive to radiotherapy, although the 
appropriate dose and timing of radiation are still not fully known [165-167]. 
The dose-response of adjuvant postoperative radiotherapy in patients with 
LGG has been investigated in two large randomized trials; the EORTC 22844, 
which studied the outcome of lower and higher dose radiotherapy [168], and a 
prospective randomized study by Shaw et al. (2002) on low- versus high-dose 
radiation in patients with low-grade glioma [169]. The former found no 
difference in progression free or overall survival (lower dose of 45 Gy and 
higher dose of 59.4 Gy), while the latter found lower survival and a higher 
incidence of radiation necrosis in the cohort with higher radiotherapy dose 
(lower dose being 50.4 Gy in 28 fractions, and higher dose 64.8 Gy in 36 
fractions). In the EORTC study 22845, the timing of postoperative radiation 
was investigated and patients undergoing radiation were randomized into two 
groups; one group received 54 Gy over 6 weeks and in the other group radiation 
was postponed until signs of tumor progression (clinical deterioration or 
radiological progression) were observed [167]. The group undergoing early 
postoperative radiotherapy were found to have a longer time to progression 
compared to the cohort undergoing watchful waiting, although there was no 
difference in overall survival.  
 
Both the EORTC 22844 and 22845 were performed prior to the introduction 
of molecular markers. More recent research in the field suggests that subgroups 

divided by the molecular markers they harbor will be better stratified for 
further investigation [170].  
 
Brachytherapy, which employs iodine-125 seeds to treat inoperable brain 
tumors, has been used since the 1970s and recently gained more attention, 
particularly in relation to eloquent gliomas [171]. Studies of brachytherapy 
with iodine-125 seeds WHO grade II and III gliomas have shown to be a 
minimally invasive, local treatment for both adult and pediatric patients [171-
173]. When studying long-term survival in recurrent or progressive LGG after 
resection in eloquent areas, it was found that brachytherapy seems to prolong 
progression-free survival and can possibly postpone further radio- and/or 
chemotherapy [174].  
 
 

 
There is an ongoing debate about the efficacy of adjuvant postoperative radio- 
and chemotherapy. In the molecular era, further stratifications in patient 
cohorts will be useful for establishing the optimal treatment strategy for 
patients with LGG, such as in the 1608-EORTC-BTG study (NCT03763422), 
Trial in Low Grade Glioma Patients: Wait or Treat (IWOT). The study is 
investigating whether outcomes of IDH-mutated astrocytomas improve with 
early adjuvant radio- and chemotherapy (in form of temozolomide) and if the 
benefits of early treatment overcome the possible side effects, e.g. deterioration 
in seizure activity, neurocognitive function or quality of life.  
 
During 1970 two articles were published regarding the treatment of glioma 
with the chemotherapeutic agent 1,2-bis(2-chloroethyl)-1-nitrosourea (BCNU) 
[175, 176]. BCNU was mainly used in patients with high-grade glioma and 
studies regarding the use of BCNU compared to the combination of 
procarbazine, lomustine (CCNU) and vincristine (combined called PCV) 
suggested longer survival in patients treated with PCV in both patients with 
anaplastic and high-grade glioma [177]. The alkylating agent temozolomide 
was introduced as a part in the postoperative treatment strategy in GBM in the 
study by Stupp et al. (2005), which showed a significant prolonged survival in 
patients undergoing radiotherapy with addition of temozolomide compared 
with radiotherapy alone [7]. Numerous studies have been made regarding role 
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of chemotherapy in LGG. In the Baumert trial from 2016 patients with high-
risk low-grade glioma WHO grade II received either radiotherapy or 
temozolomide chemotherapy alone [164]. Findings suggest no significant 
difference in progression-free survival in patients with low-grade glioma 
undergoing treatment with either radiotherapy alone or chemotherapy 
(temozolomide) alone. The patients with IDH-mutated 1p/19q non-codeleted 
tumors treated with radiotherapy had a longer progression-free survival 
compared with those treated with chemotherapy alone, and patients with IDH 
wild-type gliomas had the worst prognosis independent of treatment modality. 
 
In the subgroup of IDH-mutated 1p/19q codeleted gliomas, i.e. 
oligodendrogliomas, the role of chemotherapy is more defined. The mainstay 
of chemotherapy treatment in oligodendrogliomas have traditionally been PCV 
[178-180], although challenged by temozolomide as a better tolerated 
treatment alternative and very good response rate [181]. Emerging data in the 
field suggests that primary single chemotherapy with temozolomide may be a 
valid alternative in patients with oligodendrogliomas [182], and further 
stratification in the EORTC 22033-26033 trial revealed a subgroup of 
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evaluated in clinical and preclinical trials, and have shown promising results 
[183, 184]. The pharmacokinetics behind the inhibitors include inhibition of 
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The anti-vascular endothelial growth factor-A antibody called bevacizumab 
have been shown to prolong progress-free survival in patients with progressive 
GBM, but not overall survival [188]. It is associated with potential side-effects, 
although showing success in the treatment of pediatric low-grade glioma [189-
191]. The role of bevacizumab in LGG is not completely clear, and there are 

currently scarce evidence supporting the choice of bevacizumab in early 
treatment of LGG [192, 193]. There are, however, a possibility that 
bevacizumab has a role in the LGG which has undergone transformation to 
histologically GBM, and may in those cases be used as a last-line treatment 
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In the latest revised version of histological diagnostic criteria for atypical 
meningiomas, i.e. WHO grade II meningiomas, brain invasion is considered a 
characteristic of atypia [2]. Atypical and malignant meningiomas are usually 
treated with both surgical excision or resection followed by adjuvant 
radiotherapy with photon beam therapy, proton beam therapy or a combination 
of both [195, 196]. While early radiotherapy is essential for obtaining long-
term control in the management of malignant meningioma [197], the role and 
timing of postoperative radiotherapy for atypical meningiomas after Simpson 
grade I or II remains controversial [198-202]. Some studies indicate lower 
recurrence rate in patients with atypical meningioma undergoing early 
postoperative radiotherapy [203]. After the recent revision of the WHO 
classification where brain invasion is considered a criterion for atypical 
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meningioma, more will classify as such with the risk of overtreatment in this 
subgroup.  
 
 

 
The role of chemotherapeutic agents has been investigated in the treatment 
protocol for meningiomas. A review by the Response Assessment in Neuro-
Oncology (RANO) working group in 2014 investigated 47 publications that 
included numerous agents such as hydroxyurea, temozolomide, irinotecan, 
interferon-alfa, mifepristone, bevacizumab, imatinib, and the study confirmed 
poor outcome of medical therapy in further inoperable or radiation-refractory 
meningioma [204]. One in vitro study investigated the effects of trabectedin, a 
tetrahydroisoquinoline, and observed a strong antimeningioma activity, and an 
EORTC phase 2 trial is currently investigating the efficacy of this drug 
(NCT02234050) [205]. In the EANO recommendations for meningioma, 
pharmacotherapy should be considered for further progression of atypical 
meningioma [91].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
In a heterogeneous group such as patients with LGG who experience different 
time periods to malignant transformation and survival, prognostic factors can 
provide support in the decision-making process [206]. Factors traditionally 
related to lower survival are older age (40 years or older), functional status, 
eloquency of tumor, presence of neurological deficit, tumor crossing the 
midline and large tumor size [206-209]. However, how these clinical 
prognostic factors have performed since the introduction of the molecular 
classification and the not frequent clustering of WHO grade II and III 
astrocytomas and oligodendrogliomas is less studied. It is known that age is 
related to unfavorable variables in LGG, such as higher frequency of IDH wild-
type gliomas and eloquent lesion location [210-213]. The impact of age on 
outcome in patients with LGG have been scarcely systemically studied, and 
the impact of surgery is largely unknown in the age group of patients 60 years 
and older.  
 
During the last decade important findings regarding molecular markers in LGG 
have emerged, highlighting the fact that LGG with different molecular profiles 
represent tumors with dissimilar disease courses and outcomes [56]. The 
mutational status of epigenetic modulator gene isocitrate dehydrogenase genes 
1 or 2 (IDH1/2) and the status of 1p/19q codeletion are now common markers 
in clinical practice and have revolutionized the diagnosis [2, 55]. Better 
survival is associated with IDH-mutation and 1p19 codeletion, today 
considered to be oligodendrogliomas, while IDH wild-type is related to the 
poorest survival [2, 51]. At present, surgical resection is an important part of 
LGG treatment and the extent of resection is associated with survival [57, 89, 
95, 214-216].  
 
 

 
According to the 2016 WHO classification, LGG are divided into astrocytoma 
and oligodendroglioma depending on the mutational status IDH1/2 and 
presence or absence of 1p/19q codeletion. However, further categorizations 
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can be made based on methylation data, as demonstrated by Shirahata and 
colleagues [58]. This raises thoughts of further possible subgroups in the field 
of LGG. Today, there is a wide range of different molecular markers, although 
for many of them the individual importance is not yet fully documented in 
patients with LGG [217]. 
 
IDH have been identified as an important molecular marker in the diagnosis 
and prognostication of LGG, which constitute heterogeneous group in terms 
of biological activity [51, 54, 55]. IDH enzymes are involved in the catalysis 
of the decarboxylation of isocitrate to generate α-ketoglutarate. IDH-mutations 
results in a reduction of α-ketoglutarate into D-2-hydroxyglutate which is an 
oncometabolite. This process is believed to create a malignant transformation 
due to alteration of the cellular epigenetics and blocking of the normal 
differentiation process [212, 218]. The status of IDH-mutation in either IDH1 
or IDH2 is clinically analyzed by either immunohistochemistry or DNA 
sequencing and further understanding of glioma biology has been made 
through DNA methylation [219]. Epigenetic changes do not involve the DNA 
sequence, instead, epigenetics is involved in alteration of activity in genes and 
gene expressions [220]. Examples of epigenetic mechanisms include DNA 
methylation and histone modification [221]. LGG with mutations in either 
IDH1 or IDH2 are associated with better overall survival [55, 57]. IDH-
mutation together with 1p/19q codeletion status constitute the main molecular 
subgroups of LGG where IDH-mutation with 1p/19q codeletion is considered 
oligodendrogliomas, IDH-mutation without 1p/19q codeletion is called IDH-
mutated astrocytomas, and lack of IDH-mutation is called IDH wild-type [2]. 
These subgroups have in multiple studies shown strong correlation to clinical 
outcome where the group of IDH-mutated oligodendrogliomas showed a mean 
survival of 8 years, IDH-mutated astrocytomas 6.3 years and the IDH wild-
type LGG having lowest survival at 1.7 years [51].  
 
Patients with LGG with IDH wild-type shows impaired survival similar to 
GBM patients [57]. There are also studies suggesting a heterogeneity among 
the patients with IDH wild-type LGG, and they often contain similar molecular 
alterations which are observed in GBM, including the combination of 
chromosome 7 gains and chromosome 10 deletion, EGFR amplification, TERT 
promotor mutation and cyclin-dependent kinase inhibitor (CDKN2A) deletion 
[61, 222]. These markers are of important for the individual prognosticating 

within this subgroup, as IDH wild-type LGG with EGFR amplification or 
TERT promotor mutation have impaired survival compared to those without 
[223].  
 
Since before the turn of the millennium, prior to the discovery of mutation in 
the isocitrate dehydrogenase gene, loss of the short arm of chromosome 1 and 
long arm of chromosome 19 (i.e. 1p/19q) has been associated with the 
oligodendroglial phenotype [224-226]. This important finding was later 
confirmed by multiple studies [227-230]. It is believed that this chromosomal 
aberration occur after the IDH-mutation since many of the LGG with 1p/19q 
codeletion shows IDH-mutation [51]. The loss of 1p/19q will promote cell 
migration, inhibit apoptosis and interfere with the citric acid regulation due to 
the association of mutation in CIC and FUBP1, which are located on the 
affected chromosomes [231].  
 
In GBM the methylation status of the DNA repair enzyme O(6)-
methylguanine-DNA methyltransferase (MGMT) promotor is a strong 
prognostic and predictive biomarker in response to alkylating 
chemotherapeutic agent such as temozolomide in patients with GBM [232]. A 
methylated MGMT promotor provides a survival benefit in patients treated 
with temozolomide by epigenetic silencing of this DNA repair enzyme; 23 
months overall survival in patients with methylated MGMT promotor 
compared to 16 months in patients with an unmethylated promotor [233]. DNA 
methylation in glioma research has led to important advances in diagnosis and 
classification [234, 235]. The role of MGMT in anaplastic gliomas with 
regards to IDH-mutation have been studied, and findings suggest MGMT 
promotor methylation status as a prognostic marker for patients with IDH-
mutated WHO grade III glioma and that IDH wild-type tumors with MGMT 
promotor methylation benefit from alkylating chemotherapeutics [236]. 
Methylation of MGMT promotor is found in the majority of both IDH-mutated 
1p/19q codeleted and non-codeleted and unmethylated in half of the IDH wild-
type gliomas [237]. Although, the role of MGMT in the clinical management 
WHO grade II gliomas is still controversial [89].  
 
Other molecular markers include glioma CpG island methylator phenotype (G-
CIMP), CDKN2A, TERT promotor mutation, mutation of the p53 gene and 
loss of alpha-thalassemia/mental retardation X-linked (ATRX) function.  
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G-CIMP is defined as hypermethylation of CpG islands (CGIs) through the 
whole genome [238, 239]. The identification of the relevant G-CIMP high and 
G-CIMP low subgroups constitutes a classification of glioma that is not based 
on the histopathology or grade of the tumor. Despite the fact that G-CIMP was 
first identified in GBM, it is mostly associated with IDH-mutated gliomas and 
G-CIMP has been further analyzed in LGG [240, 241]. In IDH-mutant LGG 
G-CIMP low show poor survival similar to IDH wild-type gliomas [237].  
 
Losses involving chromosome 9p21 has been detected in higher frequencies in 
infiltrating gliomas, with one consequence of this deletion being loss of 
CDKN2A which codes for the gene p16 [242-244]. The loss of CDKN2A 
results in cellular proliferation and dysregulation of pathways involved in pro-
apoptosis [245]. The loss of 9p21 and subsequent loss of CDKN2A/p16 have 
been associated with impaired survival in multiple studies [245-247]. The 
subgroup of IDH-mutated gliomas with loss of CDKN2A shows a strong 
association with poor overall survival, which may in provide further subgroups 
in the clinical practice.  
 
Mutations in the promotor region of TERT leads to an upregulation of the 
enzyme activity which causes increase in telomere length and bypasses a step 
in cell apoptosis and the mutation has been found to be associated with glioma 
[248]. Studies indicate that this mutation is associated with self-renewal in 
GBM cells as the TERT promotor mutation in patients with GBM has been 
shown to be associated with shorter survival [249, 250]. In LGG, TERT has 
mainly been identified in oligodendrogliomas and less frequent in 
astrocytomas, showing an inverse relationship with IDH-mutation [251]. 
Additionally, TERT mutations are strongly associated with 1p/19q codeletion 
and are also seen in IDH wild-type LGG  [51, 237, 252-254]. The impact of 
TERT promotor mutation on survival in patients with LGG has been studied 
and TERT promotor mutation was found to be associated with the worst 
prognosis when comparing the molecular groups of IDH-mutation, 1p/19q 
codeletion and TERT promotor mutation [57]. Subanalysis of IDH wild-type 
LGG showed that TERT promotor mutation without the combination of gain 
of chromosome 7 and loss of chromosome 10 may represent a molecular 
subgroup with close resemblance to GBM [255].  
 

The transcription factor p53 regulates the cell cycle to suppress oncogenic cell 
proliferation and is encoded by the TP53 gene [256, 257]. The status of TP53 
and p53 have been investigated in LGG, where increased cell differentiation 
have been shown to be associated with p53 immunopositivity [257]. A large, 
comprehensive genomic analysis of LGG found that the great majority of IDH-
mutated astrocytomas showed mutation in p53 and ATRX [217]. In several 
investigations, the gene TP53 and the transcription factor p53 have not been 
found to be related to prognosis [256, 258] 
 
The specific function of ATRX proteins, which coded by the ATRX enzyme, 
is unknown but these proteins play a crucial role due to their development and 
function as a regulator of chromatin remodeling and transcription [259]. Loss 
of the ATRX function has gained interest in the field of glioma, and studies 
point towards an improved prognosis in patients with gliomas characterized by 
such loss [260, 261]. ATRX mutations has rarely been shown in gliomas with 
1p/19q codeletion and occurring in majority of IDH-mutated 1p19 non-
codeleted gliomas [254].  
 
 

 
Meningiomas are believed to arise from the arachnoid cap cells in the 
arachnoidea [262]. The majority are histologically benign and slow-growing 
in nature but cause difficulties due to their intracranial or intraspinal location 
[263, 264]. The main diagnostic procedure for meningiomas is MRI, mainly a 
T1-weighted sequence with and without intravenous contrast (see Figure 4a-
b), although advances in other modalities such as positron emission 
tomography (PET) are valuable in the cases of recurrence [265].  
 
Despite the emergence of molecular markers in meningiomas, diagnosis is 
based on histological features [266]. The categorization criteria for 
meningioma were revised in the WHO classification of tumors in central 
nervous system from 2016 and brain invasion is now considered a criterion for 
meningioma grade II, also called atypical meningioma [2]. Further 
investigation by means of DNA methylation analysis of meningiomas has 
revealed six distinct methylation classes associated with expression patterns 
[67]. The study by Sahm et al. (2017) revealed that meningiomas could be 
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[263, 264]. The main diagnostic procedure for meningiomas is MRI, mainly a 
T1-weighted sequence with and without intravenous contrast (see Figure 4a-
b), although advances in other modalities such as positron emission 
tomography (PET) are valuable in the cases of recurrence [265].  
 
Despite the emergence of molecular markers in meningiomas, diagnosis is 
based on histological features [266]. The categorization criteria for 
meningioma were revised in the WHO classification of tumors in central 
nervous system from 2016 and brain invasion is now considered a criterion for 
meningioma grade II, also called atypical meningioma [2]. Further 
investigation by means of DNA methylation analysis of meningiomas has 
revealed six distinct methylation classes associated with expression patterns 
[67]. The study by Sahm et al. (2017) revealed that meningiomas could be 



classified with higher precision using DNA methylation profiling rather than 
the WHO classification, where the former was strongly correlated with 
outcome. Other studies in the field of meningioma have revealed genomic 
subgroups and molecular mechanisms associated with tumor location, grade 
and histopathology [267, 268]. TERT promotor mutation have been assessed 
in meningiomas as well and is similarly associated with shorter time to 
progression [269]. TERT promotor mutation and CDKN2A gene alternations 
are possible molecular markers for diagnosing malignant meningiomas [270]. 
Surgery with excision is the main treatment modality, and the extent of 
resection is estimated perioperatively by the surgeon and classified in 
accordance with the previously mentioned Simpson grading system [113].  
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
Figure 4a-b. Meningioma in the right frontal region. 4a: T1-weighted sequence with 
contrast enhancement. 4b: T1-weighted sequence without contrast enhancement.  
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Complications in the neurosurgical field suffer from lack of a unanimous 
reporting system, making comparisons difficult. The rate of postoperative 
complications in patients with intracranial neoplasms when studying the 
literature range from 9% to 40%, with deep venous thromboembolism (DVT) 
being the most common adverse event followed by new or worsened 
neurological deficit [271]. The risk of postoperative hematoma is highest the 
first 6 hours after surgery and the majority diagnosed without 24 hours of 
surgery [272-274].  
 
For patients with low-grade glioma (i.e. WHO grade II) in Sweden new short-
term (30-day) postoperative neurological deficit occur in approximately 18-
21% of cases, and new onset seizure in 2.4-3.1% [275, 276]. Furthermore, 
postoperative infection was reported at 2.5%, DVT in 2.5%, hematoma in 
5.0%, and reoperation due to any complication in 5.0%.   
 
Even though neurological deficits occur in the short-term a smaller part of the 
patients seem to suffer from permanent neurological deficit in the long-term 
[215, 277]. In contrary to their more malignant counterparts, low-grade 
gliomas are believed to involve perilesional functional reshaping where the 
glioma invades eloquent areas that are involved but not essential to the function 
[278]. Seizure is the most common presentation in patients with LGG [154] 
and the vast majority of patients with LGG experience partial or total 
alleviation of their epilepsy after surgical resection of the lesion [279].  
 
Return to work in patients with low-grade glioma have been studied and one 
year after surgery 52% of patients were working and 63% after two years [280]. 
Factors associated with not returning to work included older age, lower 
functional status and previous sick leave. The rate of return to work seems 
higher in studies with incidental low-grade gliomas; 91.2% returned to their 
employment within one year after surgery [281].  
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The main treatment modality for meningioma is surgery, and risks associated 
with surgery is hard to estimate due to multiple reasons; the lack of a 
standardized reporting system for complications makes comparison difficult 
and meningiomas have different risk profiles depending on location (such as 
skull base or convexity). Nevertheless, the rate of complications in Sweden 
after meningioma surgery is reported at an incidence of 14.8% new deficit, 
new-onset seizure in 4.5%, a symptomatic hematoma in 9.4%, reoperation due 
to any complication in 5.2%, infection in 6.4% and finally venous 
thromboembolism (VTE) in 3.0% [264]. When analyzing complication in the 
subgroup of patients with asymptomatic meningioma 8.3% suffered from new 
deficit postoperatively and 3.7% new-onset seizure.  
 
Deficit in patients with meningioma WHO grade I in the long-term was studied 
by Alkemade and colleagues and found that only a third reported not showing 
any long-term deficits [282]. Within one year after surgery two thirds of 
patients reported that symptom or sign had completely or partially been 
resolved.    
 
Seizure as presenting symptom is relatively common among patients with 
meningioma. A large part of the patients with preoperative seizures experience 
improvement postoperatively [45, 283, 284]. The use of antiepileptics in a 
prophylactic setting has been discussed, but there is no evidence supporting 
use of these in patients without seizures [157, 159]. Perilesional edema seems 
to be a risk factor for continued seizures in those with preoperative epilepsy 
[156]. New-onset epilepsy postoperatively is reported in the range 1.9-19.4% 
making this an important cause of postoperative morbidity [264, 285]. Risk 
factors for developing new-onset seizures postoperative include major surgical 
complications including infection in central nervous system, symptomatic 
intracranial hematoma, younger age and tumor progression [283, 286].  
 
Return to work (RTW) after surgery for meningioma is a scarcely studied area, 
although emerging data shows a considerable risk for sick leave 
postoperatively with 57% of meningioma patients at work two years after 
surgery compared with 84% of matched controls [287]. Patients unable to 
return to preoperative activity range from 17-33% and factors associated with 

increased risk are higher tumor grade, longer sick leave in the year prior to 
surgery and history of depression [287-290].  
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The principal aims of this research are to: 
 

I. Explore the non-invasive radiological marker T2-FLAIR mismatch in 
LGG and associated biological as well as clinical factors in relation 
to clinical outcome, evaluate the extent of resection connected to the 
mismatch sign and finally, to examine the interrater variability 
between neurosurgeons and neuroradiologist. In other words, what is 
the underlying biological and clinical implication of the mismatch 
sign – or is it simply an imaging marker? 

 
II. Study the impact of age on treatment, outcome and clinical 

characteristics of patients with low-grade glioma WHO grade II 
through a nationwide, register-based study.  

 
III. Benchmark the 30-day postoperative risks posed by meningioma 

surgery at national level, in addition to investigate the outcome in the 
relevant subgroups of asymptomatic and symptomatic patients.  

 
IV. Study the sick leave patterns in patients with meningioma 

preoperatively as well as return to work at one and two years after 
surgery compared to matched controls, in addition to investigate 
possible predictors for postoperative sick leave in patients 
undergoing surgery for meningioma.  

 
 
 
 
 
 
 
 

 
LGG are best depicted by means of T2-weighted (T2W) sequences. In Paper I 
both T2 and FLAIR sequences were used for tumor segmentation, depending 
on the sequence in which the tumor was most visible. The MRI examinations 
reviewed for this project were performed at different hospitals in the region as 
part of the clinical work-up prior to surgery. MRI systems included both 1.5 
and 3.0 Tesla scanners from different vendors, such as GE Healthcare (US), 
Phillips (The Netherlands) and Siemens Healthcare (Germany). Slices 5 mm 
or less were accepted.   
 
FLAIR is a T2W sequence that suppresses fluid, this highlighting white matter 
lesions. Hyperintense lesion can be better visualized by adding enhanced 
contrast to the image [291]. As a result, FLAIR is often used in preoperative 
MRI examinations. Due to surgically-induced artefacts that are sometimes are 
more pronounced in FLAIR images compared to T2 images, T2 is occasionally 
preferred for postoperative MRI and evaluation. However, this was done on a 
case-by-case basis and the selection was done in advance, thus we did not 
segment both T2 and FLAIR sequences in order to later select the more 
“beneficial” one.  
 
The tumor volume was evaluated by semi-automatic segmentation performed 
with the open-source software “3DSlicer”, version 4.6.2 [292]. For the 
segmentation of tumor volume, we used the “LevelTracingEffect”, 
“WandEffect”, “DrawEffect” and “PaintEffect” in the “Editor” module where 
appropriate. Tumor volumes were computed by the segmentation of 
hyperintense areas on the T2 or FLAIR sequence in MRI examinations. Areas 
mainly attributed to edema without convincing signs of tumor invasion were 
excluded, see Figure 5 as an example of the segmentation process.  
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Figure 5. Example of the segmentation process of an LGG in the “3D slicer” software, 
version 4.6.2.  
 
The extent of resection (EOR) was calculated as a percentage of the tumor 
resected with the formula: preoperative tumor volume minus remaining 
segmented tumor volume then divided by preoperative tumor volume and 
multiplied by 100 [105]. The area segmented was assessed as the remaining 
tumor compared with the preoperative MRI scan. The areas attributed to edema 
were excluded in the segmentation. All segmentations were discussed and 
validated with experienced neurosurgeon and an experienced neuroradiologist 
assisted in the more difficult segmentation cases.  
 
 
 

 
In Paper I we investigated gliomas with the T2-FLAIR mismatch sign and this 
sign raised questions regarding possible underlying biology. DNA methylation 
analysis is in the front line when it comes to diagnostic technology in the field 
of gliomas. The methylation analysis was performed in a laboratory setting 
with IDH-mutated astrocytomas from the retrospective cohort. Tissue samples 
were collected from the Department of Pathology at Sahlgrenska University 
Hospital.  
 
The DNA was extracted from the formalin-fixed paraffin embedded (FFPE) 
tumor specimens where the neuropathologist concluded that sufficient tissue 
was available and samples with a high tumor content of at least 70% were 
collected. DNA was then extracted from the FFPE tumors with a QIAamp® 
DNA FFPE kit (Qiagen, Hilden, Germany) in accordance with manufacturer’s 
instructions. The DNA concentration was measured with the Qubit 
Fluorometer (Life technologies™, Carlsbad, CA, USA) and from 500-1000 ng 
DNA used for bisulfite-conversion with an EZ DNA methylation kit (D5001, 
Zymo Research, Irvine, CA, USA). The methylation levels of converted DNA 
were analyzed with Infinium MethylationEPIC BeadChip (Illumina®, San 
Diego, CA, USA) in line with instructions.  
 
Employing the statistical software R (version 3.6.1), the methylation data were 
processed by means of the Minfi and ChAMP packages [293-295]. The status 
of IDH-mutational status was assessed by the use of a published DNA 
methylation-based classifier (MNP, version 11bb4) [85] and the status of 
1p/19q codeletion status was assessed through copy number variations profiles 
acquired from the methylation data. 
 
In order to analyze whether tumors with the T2-FLAIR mismatch sign differ 
in terms of underlying biology from those without the sign, the DNA-
methylation profiles were evaluated by unsupervised hierarchical clustering of 
the 5,000 most variable CpG sites, in which only included tumor tissue from 
gliomas with IDH-mutation but without 1p/19q codeletion (n=29).  
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The neurosurgical department of Sahlgrenska University Hospital in 
Gothenburg, Västra Götaland region, with a population of roughly 1.7 million, 
is one of six clinics in Sweden that provide neurosurgical care. Hence, all 
patients in the region with newly diagnosed suspected primary intracranial 
lesions are referred to this hospital.  
 
Data were collected retrospectively in the period 2010 – 2016 and 
prospectively between 2017 and 2018 where patients with a suspected LGG in 
a diagnostic MRI were included. The rationale was to test the T2-FLAIR 
mismatch sign in a prospective cohort where other diagnoses such as different 
types of tumor, or even non-neoplastic conditions, could occur.  
 
A total of 215 patients with available MRI examinations were identified in both 
the retrospective and the prospective cohort. Of these, 135 had a known status 
IDH mutational status and 1p/19q codeletion status; 82 in the retrospective 
cohort and 53 in the prospective one. DNA methylation analysis was 
performed in patients from the retrospective cohort with available tissue from 
IDH-mutated 1p/19q non-codeleted gliomas (n=29). 
 
Clinical parameters comprised gender, age, symptoms at diagnosis and 
functional status  [163]. Radiological variables included tumor border, 
eloquence and main lobe involvement, among others [209]. The patients in the 
clinical analyses included those with IDH-mutated, 1p/19q non-codeleted 
gliomas. They were divided into two groups, with and without the T2-FLAIR 
mismatch sign. 
 
 
 
 
 
 
 
 

 
The Swedish Brain Tumor Registry (SBTR) is a nation-wide registry-based 
register of adult patients (18 years and over) with a histological diagnosis of 
primary brain tumor. It was established in 1999 and covers the six regions in 
Sweden that provide neurosurgical care with one department per region. All 
regions report to the SBTR, although the coverage has varied over time. To 
ensure a population-based setting and reduce risk of selective reporting to be 
included regions needed a minimum of 80% in coverage rate for any given 
year to be included in our papers. Due to this minimum coverage level data 
from some regions was excluded during years with lower coverage. The 
overall coverage rate was compared to the compulsory National Cancer 
Registry (NCR).  
 
Multiple parameters are reported to the registry, including age, sex, presence 
and type of symptoms prior to surgery, WHO performance status (on a five-
graded scale), largest tumor diameter (<4 cm, 4-6 cm or >6cm), tumor location 
(central, bilateral, skull-base, posterior fossa, multifocal, convexity, right or 
left), type of surgery, extent of surgery (assessment by neurosurgeon or early 
postoperative radiology), diagnosis according to Systemized Nomenclature of 
Medicine (SNOMED) and WHO classification, and postoperative 
complications (infection, symptomatic hematoma, thromboembolism, 
neurological deficit, new-onset seizure and reoperation due to any 
complication) [1].  
 
With the use of the SBTR we could in paper II identify patients 18 years or 
older with a histologically confirmed low-grade glioma WHO grade II 
astrocytoma, oligoastrocytoma or oligodendroglioma between 2005–2015, 
totaling 548 patients [276]. We used the registry in a similar fashion in paper 
III where we identified 2,324 patients in the period from 2009 to 2015 with 
histological verified meningioma WHO grade I–III [264]. Finally, for Paper 
IV data on 965 patients aged 18-60 years with histologically verified 
meningioma WHO grade I – III between 2009–2015 were retrieved from the 
registry, in addition to the 4,765 unique controls matched through Statistics 
Sweden  [287].  
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In paper IV we used data from Statistics Sweden, the Swedish Social Insurance 
Agency and the National Board of Health and Welfare. The government 
agency Statistics Sweden is responsible for coordination of Sweden’s official 
statistics. Swedish Social Insurance Agency is the government agency 
responsible for administration of financial compensation for long-lasting 
illness and responsible for statistics on sick leave in Sweden. The official 
statistics of sick-leave, including temporary, longer-lasting and permanent 
illness, is registered by the agency. The National Board of Health and Welfare 
covers a range of responsibilities including social and health services and 
registries. One of these registries are the National Patient Registry which 
receives data from in- and outpatient visits from private and public hospitals, 
not including primary health care. In 2005 the National Prescription Registry 
was established to register drug prescriptions and registration is mandatory.  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Paper I 
Histologically verified LGG, WHO grade II and III astrocytoma, 
oligoastrocytoma and oligodendroglioma were retrospectively collected from 
adult patients 18 years or older between 2010 and 2016 in the Västra Götaland 
region of Sweden. In the period 2017-2018 patients with suspected radiological 
LGG were prospectively included. Clinical, radiological and molecular data 
were collected, in addition to DNA methylation profiles of IDH-mutated 
astrocytomas in the retrospective cohort in where sufficient tissue samples 
were available. The whole cohort were divided into those with and without the 
T2-FLAIR mismatch sign in relation to clinical factors, outcome and 
methylation profiles.  
 
Paper II 
Adults 18 years or older with a histological diagnosis of a supratentorial WHO 
grade II low-grade glioma, comprising astrocytoma, oligoastrocytoma and 
oligodendroglioma (SNOMED codes per entity), were included during the 
period 2005–2015. A total of 548 patients were identified from the SBTR. The 
cohort was divided into three different age groups; 18-39 years, 40-59 years 
and ≥60 years. 
 
Paper III 
To analyzed the short-term (30-day) postoperative complications we used data 
from the SBTR. 2,324 patients with histological diagnosis of intracranial 
meningioma WHO grade I – III (SNOMED codes) between 2009 and 2015 
were identified. The cohort was further divided into the subgroups of 
symptomatic and asymptomatic meningioma patients. 
 
Paper IV  
In this study we included 956 adult patients between 18 and 60 years from the 
SBTR with a histological diagnosis of meningioma between 2009 and 2015. 
To these patients we matched 4,765 unique controls through the Statistics 
Sweden, a state agency that compiles statistical data. In this way we matched 
the year of birth, place of residency, gender and level of education of each 
patient who underwent surgery for meningioma with those of five unique 
matched controls per meningioma patient. Further, patients undergoing 
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Paper I 
Histologically verified LGG, WHO grade II and III astrocytoma, 
oligoastrocytoma and oligodendroglioma were retrospectively collected from 
adult patients 18 years or older between 2010 and 2016 in the Västra Götaland 
region of Sweden. In the period 2017-2018 patients with suspected radiological 
LGG were prospectively included. Clinical, radiological and molecular data 
were collected, in addition to DNA methylation profiles of IDH-mutated 
astrocytomas in the retrospective cohort in where sufficient tissue samples 
were available. The whole cohort were divided into those with and without the 
T2-FLAIR mismatch sign in relation to clinical factors, outcome and 
methylation profiles.  
 
Paper II 
Adults 18 years or older with a histological diagnosis of a supratentorial WHO 
grade II low-grade glioma, comprising astrocytoma, oligoastrocytoma and 
oligodendroglioma (SNOMED codes per entity), were included during the 
period 2005–2015. A total of 548 patients were identified from the SBTR. The 
cohort was divided into three different age groups; 18-39 years, 40-59 years 
and ≥60 years. 
 
Paper III 
To analyzed the short-term (30-day) postoperative complications we used data 
from the SBTR. 2,324 patients with histological diagnosis of intracranial 
meningioma WHO grade I – III (SNOMED codes) between 2009 and 2015 
were identified. The cohort was further divided into the subgroups of 
symptomatic and asymptomatic meningioma patients. 
 
Paper IV  
In this study we included 956 adult patients between 18 and 60 years from the 
SBTR with a histological diagnosis of meningioma between 2009 and 2015. 
To these patients we matched 4,765 unique controls through the Statistics 
Sweden, a state agency that compiles statistical data. In this way we matched 
the year of birth, place of residency, gender and level of education of each 
patient who underwent surgery for meningioma with those of five unique 
matched controls per meningioma patient. Further, patients undergoing 



surgery for meningioma who were not on sick-leave on the index date (date of 
surgery) were excluded due to the indication that these patients were no in 
work related activity during the studied period.  
 
The National Board of Health and Welfare hold different registries including 
the National Prescription Registry and the National Patient registry. We used 
these registries to classify comorbidity according to the Elixhauser 
comorbidity index and information regarding drugs prescribed (for this study 
antiepileptics and antidepressants). We analyzed through the Swedish Social 
Insurance Agency absence from work in both patients and matched controls 
one year prior to the index date and both one and two years after.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Papers I-III - Statistical analysis was performed with the software SPSS, 
version 24.0 (Chicago, IL, USA). The level of statistical significance was set 
at <0.05, and the tests performed were two-sided. For central tendencies, 
means were used for presentation of plus/minus standard deviation (SD). 
Median and first quartile (Q1) to third quartile (Q3) (interquartile range) were 
applied for skewed data. Pearson’s Chi-Square test, independent sample t-test 
or the Mann-Whitney U-test was utilized for categorical data where 
appropriate, and Fishers exact test was applied in 2x2 tables with small 
samples. In the survival analysis we employed Kaplan-Meier curves and 
compared them with the log-rank test. The Cox multivariable model was 
applied for adjusted survival analysis. Uni- and multivariable logistic 
regression analyses were employed to identify possible predictors.  
 
Additionally, in Paper I we performed the analysis using Cohen’s kappa test 
(k) to assess interrater agreement. A value of >0.6 is considered to be 
substantial agreement, 0.41-0.6 moderate agreement, 0.21-0.4 fair agreement 
and  ≤0.2 slight agreement [296]. 
 
Paper IV – The statistical program R was employed for the statistical analysis. 
Index date and date of diagnosis were defined as date of surgery. The Mann-
Whitney U-test was used for continuous variables summarized and data 
summarized as median, first and third quartiles. The Fischer Exact test was 
applied for dichotomous categorical variables between cases and controls. 
 
The rates of sick leave and rates of mortality for both cases and controls were 
investigated for each day from the year before to two years after index date. 
Data extracted from the different registries were transferred into a mySQL 
database and sick leave compensation (level and duration) for each individual 
was combined from two sources with the use of Python. Return to work (RTW) 
was defined as any degree of work-related activity two years postoperatively. 
Predictors of RTW were examined by means of univariable logistic regression, 
while multivariable logistic regression was applied to investigate independent 
predictors of RTW. The covariates were chosen based on presumed relevance. 
Age and sex were included as demographic variables, in addition to other 
socio-economic and clinical variables.  
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The Ethics committee for Medical Research in the Västra Götaland Region of 
Sweden approved the projects included in Paper I to IV. Papers II-IV were 
retrospective in design without any individual patient participation and the 
medical risk was considered low. Although a part of Paper I was prospective 
in design, where patients were included when presenting to the neurosurgical 
clinic or to the multidisciplinary conference, it did not include participation by 
individual patients. Nor does the paper contain studies in which an intervention 
was performed on human participants by any of the authors. Individual patient 
consent was waived by the ethical committee.   
 
Study I - (DNR 1067-16), Study II - (DNR 702-16), Study III - (DNR 363-17), 
Study IV - (DNR 363-17). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The clinical significance of the T2-FLAIR mismatch sign in grade II and III 
gliomas: a population-based study 
Corell A, Ferreyra Vega S, Hoefling N, Carstam L, Smits A, Olsson Bontell 
T, Björkman-Burtscher IM, Carén H, Jakola AS 
BMC Cancer 2020 
 
In this paper, the aim was to investigate the T2-FLAIR mismatch sign (see 
Figure 6a-b as an example) in a population-based setting, both in a 
retrospective cohort with histologically confirmed LGG and in a prospective 
cohort in which other diagnoses than glioma could occur. Additionally, we 
wanted to examine possible underlying biological differences through 
methylation analysis in those with and without the mismatch sign. 215 patients 
were identified in two cohorts; one retrospective cohort with 157 histologically 
confirmed LGG and one prospective cohort with 58 radiologically suspected 
LGG, where other diagnoses could also occur. The mismatch sign was assessed 
by two independent neurosurgeons and one neuroradiologist. Another 
experienced neuroradiologist reviewed the discordant cases. The interrater 
agreement between neuroradiologists and clinical neurosurgeons for the T2-
FLAIR mismatch was tested by means of examining 215 MRI scans and a 
significant Cohen’s kappa value was found, κ = 0.77 (p<0.001).  
 
Out of the 215 patients, 135 had known IDH mutational status and status of 
1p/19q codeletion, while 50 patients of these had a molecular status of IDH-
mutated astrocytoma (IDH-mutation 1p/19q non-codeletion). In the latter 
group, 12 patients (24.0 %) had a glioma with the T2-FLAIR mismatch sign. 
The sensitivity of the mismatch sign in detecting IDH-mutated 1p/19q non-
codeleted gliomas was 26.4% and the specificity 97.6%. Further examinations 
were performed pertaining to baseline characteristics, clinical outcomes and 
methylation profiles. There were no differences between astrocytomas (IDH-
mutated 1p/19q non-codeleted) with or without the T2-FLAIR mismatch sign.  
 
In conclusion, we found no association of the mismatch sign with either the 
presentation or outcome. The methylation analysis indicated no clustering of 
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In conclusion, we found no association of the mismatch sign with either the 
presentation or outcome. The methylation analysis indicated no clustering of 



the mismatch group together, suggesting that gliomas showing the mismatch 
sign do not constitute a subentity. Further investigations into the underlying 
difference between gliomas with and without the mismatch sign are warranted.  
 

Figure 6a-b. A glioma in the left parietal region showing the T2-FLAIR mismatch sign. 
It was histologically diagnosed as a glioblastoma (i.e. astrocytoma WHO grade 
IV) IDH-mutated). 6a: FLAIR sequence demonstrating a relative hypointense signal 
with the exception of a hyperintense peripheral rim. 6b: T2W sequence demonstrating 
homogeneous hyperintensive signal with a conspicuous border. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Age and surgical outcome of low-grade glioma in Sweden 
Corell A, Carstam L, Smits A, Henriksson R, Jakola AS 
Acta Neurologica Scandinavica 2018 
 
LGG usually affects younger patients aged between 30 and 40 years, thus 
information regarding the treatment of LGG in the older population is lacking. 
To investigate this, we identified a total of 548 adult patients with low-grade 
(WHO grade II) glioma in the period 2005–2015 contained in the Swedish 
brain tumor registry (SBTR). Of these, 204 patients were aged 18–39 years 
(37.2%), 227 were 40–59 years (41.4%) and 117 were over 60 years of age or 
older (21.4%). We found that the older patients more often presented with 
neurological deficits when compared to the younger cohorts. The performance 
status was worse in the intermediate age group compared to the youngest 
cohort, while that of the older patients was more impaired than that of the 
intermediate cohort (p=0.002). Increased age was associated with unfavorable 
prognostic factors such as poorer functional status and neurological deficits 
(p<0.001). The overall survival differed between groups and was significantly 
lower in patients aged 60 years and older (p<0.001). When subanalyzing 
patients in the intermediate age group, we divided them into two groups; 40–
49 and 50–59 years. There was a clear separation of survival curves at 50 years, 
see Figure 7a-b. When comparing surgical techniques between groups, we 
found that biopsy was more common in the group of patients aged 60 years 
and older (p<0.001). A subgroup analysis of those who underwent tumor 
resection revealed a higher level of postoperative neurological deficit found in 
older patients (p=0.029).  
 
To conclude, older patients more often present with neurological deficit and 
worse performance status compared to their younger counterparts. A majority 
of the older cohort underwent biopsy rather than surgical resection and suffered 
from a new neurological deficit postoperatively to a larger extent than the 
younger cohorts. However, they appear to tolerate surgery in a similar fashion 
in relation to other postoperative complications such as infection, hematoma 
and new onset of seizures. Our findings showed reduced survival in patients 
aged 50–59 years and older compared to those between 40–49 years, 
suggesting 50 years as a cut-off to identify high-risk patients.  
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Figure 7a-b. 7a: Survival curves of patients undergoing resection according to age 
group, p<0.001. 7b: Survival curves of age groups with division of the 40–59 year 
group into 40–49 and 50–59 years, p<0.001. From Corell et al, Age and surgical 
outcome of low-grade glioma in Sweden, Acta Neurologica Scandinavica 2018, pp. 
359-368.
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Neurosurgical treatment and outcome patterns of meningioma in Sweden: a 
nationwide registry-based study 
Corell A, Thurin E, Skoglund T, Farahmand D, Henriksson R, Rydenhag B, 
Gulati S, Bartek J Jr, Jakola AS 
Acta Neurochirurgica 2019 
 
 
Meningiomas are the most common intracranial tumors and the overall 
incidence overall is rising, probably partly due to the increased availability of 
CT and MRI scans, which makes the identification of incidental meningiomas 
more frequent. The main form of treatment for meningiomas is surgery, which 
is inevitably associated with risks. We aimed to benchmark the current short-
term 30-day complication rate for patients undergoing neurosurgical treatment 
for intracranial meningioma, in addition to examining the short-term 
postoperative course for the subgroups of symptomatic and asymptomatic 
meningiomas. We identified 2,324 patients through the SBTR. The mean age 
of the cohort was 58.7 years (SD 13.5) and 14.1% were asymptomatic prior to 
neurosurgical treatment. A focal deficit was the most common symptom, 
affecting 1,450 patients (62.4%). Unfortunately, the indication for surgery was 
unknown in the group of asymptomatic patients, but possible indications could 
be radiological growth of the meningioma, large size upon discovery or the 
patient’s wish.  
 
In the short-term postoperative period reoperation due to any complication was 
performed in 120 patients (5.2%). Postoperative symptomatic hematoma was 
more common in the symptomatic group (p=0.001), as well as venous 
thromboembolism and a new postoperative neurological deficit. 344 patients 
of the cohort as a whole (14.8%) developed such a deficit postoperatively 
compared to 8.3% of the asymptomatic patients. In the asymptomatic cohort, 
3.7% developed new onset seizure in the short-term postoperative period 
(p=0.43). The overall 30-day mortality was 1.5%, but lower in the 
asymptomatic group (0.3%) compared to the symptomatic (1.7%) (p=0.06).  
 
In this study we present data on the incidence of postoperative complications 
and benchmarked the short-term postoperative outcome in patients undergoing 
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surgery for both symptomatic and asymptomatic meningioma. It seems that 
asymptomatic patients suffer less from postoperative complications compared 
to symptomatic ones, although 8.3% of asymptomatic patients suffered from 
neurological deficit postoperatively. The information regarding short-term 
risks is important for patients and caregivers when deciding about the treatment 
plan and for enabling patients to prepare for the possible postoperative course.     

 
Return to work following meningioma surgery: a Swedish nationwide registry-
based matched cohort study 
Thurin E, Corell A, Gulati S, Smits A, Henriksson R, Bartek J Jr, Salvesen Ø, 
Jakola AS 
Neuro-Oncology Practice 2020 
 
 
In the majority of cases meningiomas are characterized by benign biological 
activity and mainly considered an innocuous disease. However, surgical 
interventions are associated with risk of both physical and cognitive deficit. 
Studies have shown that employment is positive for patients with brain 
disorders, but in a more recent study, data revealed that a third of patients who 
underwent surgery for meningioma were unable to return to work after a mean 
follow up of 32 months. We aimed to investigate the rate of sick leave among 
patients with meningiomas compared to matched controls, both one year prior 
to and at one and two years after surgery (index date) in a population-based 
matched cohort study. A total of 956 patients were identified through the SBTR 
and 5 unique matched controls per meningioma patient were included from 
Statistics Sweden, totaling 4,765 controls. One year prior to surgery, 79% of 
meningioma patients and 86% of controls were working (p<0.001). The 
meningioma cohort had a higher rate of depression both one year prior to and 
on the index date compared to controls; one year prior to treatment 21.3% of 
meningioma patients compared to 16.5% of controls, and at the index date 
29.1% respectively 19.0% (p<0.001).  
 
When analyzing predictors for returning to work, high tumor grade (p=0.002), 
history of depression (p=0.03), days absent from work in the year prior to 
surgery (p<0.001) and postoperative neurological deficit (p=0.004) were 
negatively associated with RTW. Two years after index date, 57% of patients 
with meningioma had returned to work compared to 84% of the controls 
(p<0.001), see Figure 8a-b.  
 
In this study we concluded that patients undergoing surgery for intracranial 
meningioma are at a considerably higher risk of not returning to work two 
years after surgery compared to matched controls. Negatively associated 
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factors regarding RTW were presented, and the predictive potential of 
depressive symptoms indicates a possible area of preoperative interventions 
for patients undergoing surgery for meningioma with a history of depression.  
 

 
Figure 8a-b. Green represents rate without sick leave, yellow patients with partial sick 
leave and red those on full sick leave, from one year prior to index date (date of 
surgery) up to 730 days after. Deceased patients are represented as the grey stack at 
bottom. 8a: Controls, n=4767. 8b: Meningioma patients, n=965. From Thurin et al, 
Return to work following meningioma surgery, Neuro-Oncology Practice 2019, pp. 
320-328.  
 
 
 
 
 
 
 
  

 
During the last decade the field of LGG ranging from diagnostic properties and 
non-invasive diagnosis to surgical and adjuvant treatment has been 
revolutionized by the introduction of the molecular markers of IDH mutational 
status and presence or absence of 1p/19q codeletion [2]. As a result, previously 
accepted findings will need to be re-evaluated by means of this new 
classification system and ensuing stratification. The most recent WHO 
classification from 2016 provides us with a new basis for diagnosis with a 
reduced degree of interrater disagreement, and leading to safer decision-
making in terms of treatment plans for individual patients. Similarly, in the 
field of malignant melanoma, the discovery of genetic aberrations such as 
mutation in BRAF or NRAS has led to further stratification of patients with this 
condition and subsequently improving their treatment [297]. In this new era of 
molecular classification of LGG there is a need for re-evaluation of clinical 
prognostic factors, further investigation of the role of surgery in LGG 
subgroups and appropriate adjuvant treatment for these lesions.  
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to identify those at high risk of progression of their lesion [207]. However, at 
the dawn of the molecular marker era, risk assessment of LGG progression 
employing only clinical and radiological factors has been questioned. Pignatti 
and colleagues identified clinical prognostic factors to identify high-risk 
patients with LGG [207]. Their multivariate analysis demonstrated that age 
equal to or over 40 years, tumor diameter equal to or over 6 cm, bilateral tumor 
growth, astrocytoma subtype and preoperative neurological deficit were all 
associated with unfavorable prognosis. A few years later, Chang and 
colleagues revisited the area of prognostic factors in patients with LGG [209]. 
They presented a scoring system to preoperatively prognosticate the degree of 
resectability of the glioma, as well as progression-free and overall survival. 
Four factors were found to be associated with impaired overall survival; age 
older than 50 years, tumor diameter over 4 cm, tumor with eloquent location 
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and Karnofsky performance score of 80 points or lower [163, 209]. Presumed 
eloquency in the field of LGG has been associated with both lower 
progression-free survival and lower overall survival, although further 
preoperative mapping to specify the eloquency improved survival in those 
where the tumor spared eloquent areas [298, 299].  
 
Patients with LGG constitute a heterogeneous and multifaceted group with 
individual risk of malignant transformation and time to progression [300]. 
Even though molecular markers such as IDH mutational status and 1p/19q 
codeletion are now widely used in clinical practice and have a strong 
association with survival [51, 57], clinical factors such as age, performance 
score and tumor location still influence the treatment strategy [299]. In the 
study by Etxaniz et al. (2017), the findings point to IDH mutational status being 
a more important factor than clinical parameters in differentiating between 
high- and low-risk patients with LGG [56]. Although, other genetic alterations 
are present that stratifies the new subgroups further.  
 
It is largely accepted that LGG is today divided into three subgroups depending 
on the status of IDH mutational status and codeletion of 1p/19q; IDH-mutation 
with 1p/19q codeletion (oligodendroglioma), IDH-mutation without 1p/19q 
codeletion (IDH-mutated astrocytoma) and IDH wild-type LGG. The effect on 
survival of additional genetic mutations in these subgroups have been further 
evaluated, and in oligodendrogliomas incomplete resection and NOTCH1 
mutations were associated with impaired survival [301]. Further, in IDH-
mutated astrocytomas alteration of RB1, CDKN2A and CDK4 genes and 
PIK3R1 mutations were associated with shorter survival, and in the IDH wild-
type LGG WHO grade III histology, mutation in TERT promotor and the 
combination of gain of chromosome 7p and loss of chromosome 10q (+7p/-
10q) were all associated with poor survival. Further subgrouping provides 
possibility for more precise research to identify suitable treatment options for 
individual patients, depending on the genetic profile of their glioma.  
 
The EORTC study from 2011 examined prognostic factors for patients with 
LGG, where 1p/19q codeletion was found to be a prognostic factor, and 
histology and tumor size were strongly associated with the prognosis [208]. 
This finding still proves today, where patients with gliomas with IDH-mutation 

and 1p/19q codeletion have longer survival and are considered the 
chemosensitive glioma [302].  
 
 

 
Glioma subtypes differ over the age spectrum, with low-grade gliomas being 
more common than high-grade ones in the pediatric population in contrast to 
older patients, where malignant gliomas are more common [303, 304]. In the 
pediatric population, gliomas are divided into three categories, which include 
high-grade glioma, low-grade glioma and diffuse intrinsic pontine gliomas 
(DIPG) [305]. Even though the morphology of adult and pediatric gliomas is 
similar, there are important underlying biological differences in tumor biology 
[306]. The molecular biology of pediatric low-grade gliomas shares 
similarities with adult gliomas, although they differ in some respects such as 
lack of IDH-mutation in a majority of cases, suggesting that IDH-mutation is 
not involved in the onset or progress of pediatric glioma [303, 307, 308]. 
Instead, pediatric gliomas are characterized by rearrangements in other genes 
such as BRAF, FGRF1 and MYB [309].  
 
Thus, it is unclear how age per se contributes to prognosis with the improved 
classification. Age is of particular interesting in view of the Buckner trial, 
which used the historical age cut-off of 40 years to identify high-risk patients 
with LGG, similar to the study by Pignatti [207], resulting in premature 
treatment in some patients. Some studies indicate towards an age cut-off of 50 
years [276, 310], although in the molecular era there is a debate about whether 
IDH-mutation outweighs age as a clinical factor, which often influences 
clinical decision-making [56, 311]. In our study, we found that older patients 
(aged 60 years and over) seem to tolerate surgery in a similar fashion to their 
younger counterparts in terms of postoperative complications. However, they 
more often exhibit a neurological deficit postoperatively; 58.4% compared to 
26.3% in the 18–39 year age group and 36.8% in the 40–59 year age group 
(p<0.001). The short-term mortality within 30 days postoperatively was not 
statistically significant, although the 1-year mortality was much higher in the 
older age groups compared to younger patients (p<0.001). Previous studies 
have shown higher frequency of eloquent location and association of IDH 
wild-type in older patients with LGG, suggesting a more aggressive underlying 
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biology combined with a more inaccessible lesion location that leads to 
limitations in surgical treatment [210, 312-314]. As a larger proportion of the 
general population grows older, the health status among older citizens will vary 
to a greater degree. Therefore, glioma in the older population should not only 
be determined on chronological age but rather on biological age in relation to 
performance status, presence of comorbidities and tumor characteristics.  
 
 

 
The area of non-invasive diagnostics has evoked interest in numerous medical 
disciplines. Extensive analysis of radiomic features in relation to underlying 
gene expression was initially performed in datasets of patients with lung and 
head-and-neck cancer [315]. It was found that radiomics could identify 
prognostic phenotypes in these types of tumors, which triggered further 
research in the field of radiomics [316]. Radiomics is of great importance for 
many aspects in the course of oncological diseases. During the initial 
diagnostic course, radiomics provides important information regarding 
possible histological diagnosis, molecular characterization and biological 
behavior, all of which are important for both surgeons and patients in relation 
to informed consent to treatment. Furthermore, radiomics provides caregivers 
with important information about the progression of the disease both in cases 
selected for careful monitoring and those undergoing treatment. All 
information regarding the possible clinical course is of great importance for 
shared decision-making with the patient, an approach that has become more 
common during the last decade [317, 318]. Shared decision-making is 
important in patients with LGG due to the wide variety of possible treatment 
strategies, including possible surgical treatment, which involves the risk of 
complications, postoperative adjuvant radio- or chemotherapy, and the timing 
of the interventions.  
 
In the field of meningioma, simpler clinical imaging markers have been used 
to obtain non-invasive information regarding the possible course [319, 320]. 
The use of radiomics in the LGG group has been challenging. The LGG growth 
rate is related to the malignant potential of the glioma [17, 18], and recently 
information regarding molecular status has been called for [321]. In relation to 

molecular status in LGG, Patel et al. (2017) described the T2-FLAIR mismatch 
sign, which is a radiological marker in LGG where the lesion shows a 
hyperintense signal on T2W sequences and a hyperintense ring around a 
hypointense lesion on FLAIR sequences [79]. The authors found a very high 
specificity of the mismatch sign for IDH-mutated astrocytomas, a finding that 
was validated by Broen [79, 80]. Radiological signs with some similarities 
have also been previously investigated in relation to the histology of brain 
tumors. In 2007 a hyperintense ring on FLAIR sequences was investigated in 
patients with dysembryoplastic neuroepithelial tumor (DNET) and found in 9 
out of 11 cases [322]. This finding may correspond to peripheral loose 
neuroglial elements, although interestingly, the hyperintense ring was also 
found in two of the control cases; one astrocytoma and one ganglioglioma. 
Additionally, a more recent study investigated the T2-FLAIR mismatch sign 
in relation to DNET, there is was observed in more than half of included DNET 
cases [323].  
 
Further investigations regarding histological characteristics in relation to the 
mismatch sign have been performed. In a recent study by Deguchi el al. (2020) 
tumor samples from IDH-mutant astrocytomas were evaluated and microcysts 
were found in the lesions with the mismatch sign [324]. Additionally, when 
analyzing multiple samples from different locations in the same lesion 
microcysts were present in the T2-FLAIR mismatch region, but less so in the 
region of the lesion not showing the mismatch sign. Furthermore, all of the 
protoplasmic astrocytomas with IDH-mutation showed the T2-FLAIR 
mismatch sign, suggesting that it may reflect the formation of microcysts in 
these gliomas. Protoplasmic astrocytomas are a rare subtype of astrocytomas 
with histological characteristics of astrocytes with a background of microcysts 
[325, 326]. However, the protoplasmic astrocytoma classification was 
removed from the updated WHO classification of 2016 with the explanation 
that the diagnosis was defined in vague terms and that tumors with 
histopathological appearance are usually characterized as other, more narrowly 
defined lesions [2]. The T2-FLAIR mismatch sign possibly reflects a higher 
water content, a theory that is strengthened by the fact that DNET cases often 
present with cysts [327]. The mismatch sign probably does not represent a 
unique subentity due to the lack of clustering in methylation analysis, which 
reflects the underlying biology, and probably lacks in clinical importance [82].   
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Blood serum markers of cancer have gained interest since the wide availability 
of blood samples and to in a minimally invasive was diagnose and follow 
patients with oncological diagnosis under the course of the disease [328]. The 
tumor markers are released into the blood stream and produced as a response 
by the body (tumor-associated) or by the tumor cells (tumor-derived) [329]. 
Numerous markers use in clinical practice including, but not limited to, 
carcinoembryonic antigen (CEA), prostate-specific antigen (PSA), human 
chronic gonadotropins, cancer antigen 125 and mitochondrial markers [330, 
331]. However, there are factors that need to be taken into consideration when 
discussing blood serum markers, such as the lack of specificity and accuracy, 
consequences of false-positive samples and the discussion pertaining to 
screening and mass testing [332]. Circulating cell-free DNA (cfDNA) and 
circulating tumor DNA (ctDNA) have gained interest as possible markers of 
tumor activity and/or burden in patients with GBM, where concentrations of 
cfDNA varied during the course of the disease with highest concentrations 
during tumor progression [333]. The concentration of cfDNA has also been 
shown to be elevated in patients with traumatic brain injury, suggesting that 
cfDNA may be more related to brain injury than to the malignancy itself [334].  
 
Minimally invasive diagnostic methods are always of importance due to the 
risk profile associated with invasive diagnostic procedures, especially in 
neurosurgery. Liquid biopsies, such as examination of CSF obtained through 
lumbar puncture, have gained interest due to the possibility of obtaining 
biological information about a lesion with a less invasive method. Liquid 
biopsies are not only useful in diagnosis of a newly discovered lesion, but also 
in assessing treatment response, detect possible tumor relapse and monitoring. 
In a study examining liquid biopsies from patients with glioma, ctDNA was 
found in half of the patients (42 out of a total 85) and the genomic 
characteristics resembled those in the tumor biopsies [335]. Furthermore, the 
study also suggests that the detection of ctDNA in CSF may be an early 
indicator of glioma progression. Perhaps the combination of minimally 
invasive diagnostics such as liquid biopsies and non-invasive methods will 
improve the care of patients both with newly discovered lesions and those 
patients with known lesion during or after adjuvant oncological treatment.  
 
In addition to cfDNA and ctDNA, tumor-derived microRNA (miRNA) may be 
a potential biomarker in patients with malignant glioma [336]. MiRNA has 

been further evaluated and specific RNA strands, namely miR-210, miR-185, 
miR-5194 and miR-449, have been identified and analyzed in relation to GBM, 
low-grade astrocytoma and traumatic brain injury. The results suggest that 
these strands are promising for diagnosis and prognosis in glioma patients 
[337]. Other studies indicate that additional miRNA strands are able to 
differentiate GBM from LGG, which could be useful in the follow-up of 
glioma and for early detection of possible transformation [338]. Further 
investigations into specific miRNA strands are warranted before adopting this 
promising minimally invasive method in clinical practice.  
 
 

 
After the introduction of molecular markers in the 2016 WHO classification of 
tumors in the central nervous system (CNS) more objective tools for 
classification such as DNA methylation profiling has gained interest [85, 339, 
340]. Epigenetics includes numerous mechanisms of underlying embryonic 
development and cell identity [341]. These mechanisms of epigenetics include 
DNA methylation and histone modifications, and epigenetic alterations can 
lead to tumor initiation, uncontrolled cell division, growth, invasiveness and 
metastasis [342]. The epigenetic modifications are reversible alterations in 
gene expression without changing the primary DNA sequence [342]. A 
comprehensive study of DNA methylation patterns in 1,628 human samples 
including  424 normal tissue samples (including leucocytes and colon mucosa), 
1,054 tumorigenic samples (premalignant lesions, primary tumors and 
metastases) and 150 non-cancerous lesions such as brain tissue from 
Alzheimer’s disease, myopathies and autoimmune disorders, revealed 
progressive gain of CpG-island hypermethylation in promotor regions of tumor 
suppressor genes and loss of CpG methylation in non-CpG-island promoters 
during tumorigenesis [343].  
 
As mentioned, DNA methylation profiling have been shown to be highly 
robust and widely used tool to re- and subclassify CNS tumors [340, 344-346]. 
A comprehensive CNS tumor reference cohort was generated with genome-
wide DNA methylation profiles [85]. DNA methylation profiling have proven 
to be an important tool for tumor classification which not only can aid in the 
molecular refinement of tumors but also improve the diagnostic accuracy in 
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difficult cases [234, 347], resulting in an improved clinical management of 
patients who can receive appropriate treatment [348]. An example of DNA 
methylation profiling can be seen in Figure 9.  
 
 

 
 
Figure 9. DNA methylation profiling for IDH-mutated astrocytomas, n=29. 
Unsupervised hierarchical clustering analysis does not cluster IDH-mutated 
astrocytomas with the T2-FLAIR mismatch sign (red) together. From Corell et al, The 
clinical significance of the T2-FLAIR mismatch sign in grade II and III gliomas: a 
population-based study, BMC Cancer 2020.  
 
The Consortium to Inform Molecular and Practical Approaches to CNS Tumor 
Taxonomy (cIMPACT) was established in 2016 with a goal of a faster 
integration of the advances of brain tumor molecular pathogenesis [349, 350]. 
The third update included recommended diagnostic criteria for IDH wild-type 
astrocytoma WHO grade II and III with molecular features of GBM WHO 
grade IV [63]. They concluded the concluded that the minimal molecular 
criterion to be identified by one of the following molecular features; 
amplification of EGFR, combined chromosome 7 gains and chromosome 10 
losses (whole chromosome, or loss of long or short arm), or TERT promotor 
mutation [61, 62].
 
 
 
 

 

The main treatment modality for meningioma is surgery, which is associated 
with risks and neurological deterioration, as previously discussed. 
Meningiomas are in the majority of cases benign in histology, and considered 
to be a benign lesion, although studies show that not all patient are able to 
return to work after surgical treatment, even in the long-term perspective [288, 
289, 351]. When benchmarking the current short-term complication rate after 
meningioma surgery in Sweden, we found that 14.1% of the cohort was 
asymptomatic prior to their treatment, although reason for the surgical decision 
is unknown [264]. Interestingly, new deficit arose in 8.3% and new-onset 
seizure in 3.7% of the previously asymptomatic patients. Some of these 
patients may not have long-term deficit, since this data shows the 30-day 
postoperative course, although again confirms that no surgery goes without 
risk.  
 
Postoperative complications are often measured in robust numbers and values; 
hematoma, reoperation due to complications, rate of DVT, and further [98]. 
However, it is known that intracranial surgery may lead to mental fatigue and 
cognitive disturbances [352, 353]. During the past decade, health-related 
quality of life (HRQoL) have gained much important recognition in the field 
of brain tumor surgery and treatment. More data shows that patients after brain 
tumor surgery suffer from cognitive disabilities and as a consequence 
decreased quality of life [290, 354-356]. One study investigating the HRQoL 
in elderly patients that had received surgical treatment for meningioma 
suggests that the HRQoL were more significantly related to Karnofsky 
performance scale and comorbidities, perhaps due to decreased possibility of 
rehabilitation with a previous burden of disease [356].  
 
The decision-making process and surgical dilemma for asymptomatic 
meningiomas appears even more complicated in the light of these possible 
consequences. To be able for the individual patients to make an informed 
decision, information regarding possible both physical and cognitive 
impairment must be presented.  
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Figure 9. DNA methylation profiling for IDH-mutated astrocytomas, n=29. 
Unsupervised hierarchical clustering analysis does not cluster IDH-mutated 
astrocytomas with the T2-FLAIR mismatch sign (red) together. From Corell et al, The 
clinical significance of the T2-FLAIR mismatch sign in grade II and III gliomas: a 
population-based study, BMC Cancer 2020.  
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Meningioma is the most common intracranial tumor, and a more and more 
common incidental finding, possibly due to the increased age of the population 
in general and increase availability of CT and MRI scans [357-361]. The 
discovery of an incidental intracranial meningioma poses an ethical dilemma 
whether to treat actively with surgery or to continue with active surveillance 
with follow-up MRI scans [103]. Studies on follow-up on incidental 
meningiomas showed that approximately a third of the meningiomas grew 
[362, 363] and features associated with slow or no growth of meningioma 
includes calcification, low T2 MRI signal and higher age of patient [364, 365].  
 
Choosing the right treatment strategy for asymptomatic meningiomas can be 
challenging due to the possible risks with surgical intervention and in the 
majority of cases a slow growth, if none at all. The main recommendation by 
the EANO for asymptomatic meningiomas is observation with MRI with 
contrast 6 months after radiological diagnosis and if the patient remain 
asymptomatic continue with annual MRI scans, and surgery should be offered 
if symptoms arise or signs of radiological growth [91]. Although, some clinical 
and radiological factors have been shown to be associated with a higher 
proliferative potential which should be taken into consideration, such as male 
gender, recurrence, absence of calcification [320, 366]. This group should 
possibly be followed more closely or even be offered surgical treatment as 
some studies have showed that asymptomatic meningiomas have a lower rate 
of complication postoperatively [367].  
 
 

 
The use of radiotherapy is shown to be beneficial for patients with higher grade 
meningiomas, although there is an ongoing debate regarding the role of early 
radiotherapy in atypical meningiomas. Since the last revision of WHO 
classification system in 2016 the characteristic of brain invasion is now 
considered a hallmark of atypical (i.e. WHO grade II) meningioma [2]. Not 
only is there different approaches to the detection of brain invasion, the change 
in histological criteria will probably lead to increased amount of patients 

meningiomas diagnosed as atypical [66]. Further stratifications through DNA 
methylation and identification of molecular markers such as TERT promotor 
mutation can provide more robust classification to identify those with more 
aggressive biology despite benign histological evaluation [67].  
 
 

 
Having an employment is not only valuable for the society but plays an 
important role for the individual [368]. Both predictors for working capacity 
postoperatively and large-scale studies in the area have been lacking. It is 
estimated that 60% of adults survive their cancer, and that these survivors 
suffer from a range of problems such as fatigue, cognitive impairment and 
complications related to radio- and chemotherapy [369].  
 
A large population-based study from Germany studied the return to work in 
patients diagnosed with breast, colorectal, or prostate cancer [370]. 90% of the 
patients returned to work during the first two years. Furthermore, 17% reduced 
their working hours and 6% of the patients left their work due to their cancer 
diagnosis within five years of their RTW.  
 
When studying literature regarding RTW for patients with intracranial lesions 
frequency of return seems to vary depending on type. Patients after surgery for 
pituitary adenomas showed that the surgical technique (microsurgical or 
endoscopic) did not influence the work capacity in the long-term, as 72.3% of 
patients after microsurgery and 78.4% after endoscopic surgery returned to 
work after a median sick leave period of 6 weeks [371]. 10% of working age 
patients in microsurgery group went on permanent sick leave, compared to 
13% of the group undergoing endoscopy, majority of patients being female.   
 
Glioma patients show similar percentages as meningioma patients in regards 
to return to work; 52% of patients were working one year after surgery and 
63% after two years [280]. Lower functional status and previous sick leave 
does also seem to influence RTW, as in patients with meningioma. 
Interestingly, patients with incidental low-grade glioma return to work to a 
larger extent, 91.2% returned to their employment within one year after surgery 



 
Meningioma is the most common intracranial tumor, and a more and more 
common incidental finding, possibly due to the increased age of the population 
in general and increase availability of CT and MRI scans [357-361]. The 
discovery of an incidental intracranial meningioma poses an ethical dilemma 
whether to treat actively with surgery or to continue with active surveillance 
with follow-up MRI scans [103]. Studies on follow-up on incidental 
meningiomas showed that approximately a third of the meningiomas grew 
[362, 363] and features associated with slow or no growth of meningioma 
includes calcification, low T2 MRI signal and higher age of patient [364, 365].  
 
Choosing the right treatment strategy for asymptomatic meningiomas can be 
challenging due to the possible risks with surgical intervention and in the 
majority of cases a slow growth, if none at all. The main recommendation by 
the EANO for asymptomatic meningiomas is observation with MRI with 
contrast 6 months after radiological diagnosis and if the patient remain 
asymptomatic continue with annual MRI scans, and surgery should be offered 
if symptoms arise or signs of radiological growth [91]. Although, some clinical 
and radiological factors have been shown to be associated with a higher 
proliferative potential which should be taken into consideration, such as male 
gender, recurrence, absence of calcification [320, 366]. This group should 
possibly be followed more closely or even be offered surgical treatment as 
some studies have showed that asymptomatic meningiomas have a lower rate 
of complication postoperatively [367].  
 
 

 
The use of radiotherapy is shown to be beneficial for patients with higher grade 
meningiomas, although there is an ongoing debate regarding the role of early 
radiotherapy in atypical meningiomas. Since the last revision of WHO 
classification system in 2016 the characteristic of brain invasion is now 
considered a hallmark of atypical (i.e. WHO grade II) meningioma [2]. Not 
only is there different approaches to the detection of brain invasion, the change 
in histological criteria will probably lead to increased amount of patients 

meningiomas diagnosed as atypical [66]. Further stratifications through DNA 
methylation and identification of molecular markers such as TERT promotor 
mutation can provide more robust classification to identify those with more 
aggressive biology despite benign histological evaluation [67].  
 
 

 
Having an employment is not only valuable for the society but plays an 
important role for the individual [368]. Both predictors for working capacity 
postoperatively and large-scale studies in the area have been lacking. It is 
estimated that 60% of adults survive their cancer, and that these survivors 
suffer from a range of problems such as fatigue, cognitive impairment and 
complications related to radio- and chemotherapy [369].  
 
A large population-based study from Germany studied the return to work in 
patients diagnosed with breast, colorectal, or prostate cancer [370]. 90% of the 
patients returned to work during the first two years. Furthermore, 17% reduced 
their working hours and 6% of the patients left their work due to their cancer 
diagnosis within five years of their RTW.  
 
When studying literature regarding RTW for patients with intracranial lesions 
frequency of return seems to vary depending on type. Patients after surgery for 
pituitary adenomas showed that the surgical technique (microsurgical or 
endoscopic) did not influence the work capacity in the long-term, as 72.3% of 
patients after microsurgery and 78.4% after endoscopic surgery returned to 
work after a median sick leave period of 6 weeks [371]. 10% of working age 
patients in microsurgery group went on permanent sick leave, compared to 
13% of the group undergoing endoscopy, majority of patients being female.   
 
Glioma patients show similar percentages as meningioma patients in regards 
to return to work; 52% of patients were working one year after surgery and 
63% after two years [280]. Lower functional status and previous sick leave 
does also seem to influence RTW, as in patients with meningioma. 
Interestingly, patients with incidental low-grade glioma return to work to a 
larger extent, 91.2% returned to their employment within one year after surgery 



[281]. Perhaps due to lesser of tumor burden in patients with asymptomatic 
glioma and smaller tumor lesions [372].  
 
The RTW after meningioma surgery is impaired both one year after index date 
where 49.3% had returned to work and after two years where 57.3% of the 
patients had returned to work, compared to 84.3% of the unique, paired 
controls two years after index date [287]. Even with the limitations of not being 
a randomized study or that the controls were not patients with meningioma not 
undergoing surgery, it’s a comparative study which presents real-world and 
objective data regarding the ability to return to work for these patients. Since 
both retaining work and RTW has been shown to have a large impact on the 
quality of health, this should be considered in a preoperative setting, especially 
in asymptomatic patients with meningioma [373-375].  
 
The impact of rehabilitation is unknown in patients undergoing surgical 
treatment for intracranial lesions, but rehabilitation with focus on return to 
work would be optimal in younger patients with better long-term prognosis. 
For such patients to be able to regain work capacity would be of significant 
value [376]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Sweden as a country has a long history of national registries and a system of 
unique personal identify numbers which makes it possible to link data from 
different registries to a unique individual. There are a large number of different 
registries that can be used for clinical research. Registries with data from 
clinical and administrative databases are useful to be able to include large 
number of patients, which is useful in the neurosurgical field where patient 
cohorts tends to be smaller. In addition, registry-based research is especially 
important in the field of neurosurgery due to the fact that large variations in 
clinical practices exist [95, 377]. 
 
Not only does registries offer large patient samples and information regarding 
the surgical treatment, it also provides information regarding trends, costs and 
information regarding complications of surgical treatment. Although, the 
quality of the registries depends on what is reported to the registry, both how 
well the registry forms are answered and that the level of coverage is consistent 
and adequate. Limitations also include those inevitable related to registry-
based studies, such as limited details and that missing data is almost impossible 
to complete. The factor of subjective interpretation of variables (e.g. 
postoperative hematoma defined as symptomatic) is another caveat with 
registries, compared to more objective variables ch as VTE or reoperation. The 
lack of long-term data is another limitation in regards to neurological deficit 
postoperatively. The evaluation of postoperative deficit from surgeon may not 
be as sensitive as patient reported deficit some suggest [378].  
 
For follow-up other registries can be used to connect unique patients with 
registries, such as matching patients with registries for sick leave with 
prescriptions, e.g. antiepileptic medication. Ongoing work with linking 
registries to study prescription of medications would be helpful to validate the 
data in registries and provide real-world information with higher precision 
regarding individual patients.  
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Studies based on registries possesses strengths in the possibility to collect large 
number of patients with rare diagnosis, making research in these groups 
possible. Data to the SBTR is reported in a standardized and continuous 
fashion in a recent time period in a population-based setting. Due to the 
organization of regional health care, the patients who experience major 
postoperative complication in need of neurosurgical care are treated at the 
same department and therefore likely to be reported to the registry.  
 
Limitations of studies based on registries are typically related to lack of 
detailed clinical data, both related to radiology and biology (such as molecular 
markers), and no possibility to complete the missing data. In paper II 
radiological data regarding contrast enhancement, being a prognostic factor in 
low-grade gliomas, would have been useful in the analyses. The registry has 
also been lacking data on patients not undergoing surgery where a wait-and-
see approach is selected. In paper III we lacked long-term data regarding the 
neurological deficit, a variable not included in the registry. The variables of 
postoperative complications such as postoperative hematoma are subject to 
interpretation, creating possible discrepancies in the data reported to the 
registry.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The radiological marker T2-FLAIR mismatch sign is a non-invasive 
sign with seemingly good specificity for IDH-mutated astrocytomas, 
but with limited sensitivity. The main value seems to be as an imaging 
marker with only limited clinical importance beyond this, although 
microcystic content could be an explanation for the image pattern. 

 
Age in relation to treatment and outcome after surgery for LGG is 
scarcely studied in the older population. The findings suggest a cut-off 
age at 50 years to select high-risk patients. Additionally, elderly 
patients (60 years and older) seem to tolerate surgery in similar fashion 
to their younger counterparts, although shows increase in neurological 
deficit postoperatively and mortality one year after surgery compared 
to patients younger than 60 years.  

 
A substantial portion undergoing meningioma surgery experience a 
complication, even among the asymptomatic patients. When 
benchmarking the current postoperative risks after meningioma 
surgery in Sweden the risks are in line with relevant literature. 
Asymptomatic patients do not suffer from complication in similar 
extent, but a significant part of the asymptomatic patients suffer from 
neurological deficit in the short-term after surgery.   

 
Return to work after medical and surgical treatment is of great 
importance for the individuals and for the society as a whole. When 
studying the patterns of sick leave in patients undergoing surgery for 
intracranial meningioma data shows a significant reduced rate of RTW 
among patients after meningioma surgery compared with five unique 
matched controls. Factors associated with increased risk of sick leave 
included history of depression, higher tumor grade, neurological 
deficit postoperatively and sick leave in the year prior to the surgical 
treatment.   
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Assessment of molecular markers in a non-invasive way through artificial 
intelligence (AI) will aid in the further development in the area. AI is useful in 
both the field of radiology and pathology due to the possibility of pattern 
recognition, but can also be used to predict pure clinical outcome such as 
functional decline after surgery [379].  
 
Non- and minimally invasive markers are up-and-coming in the diagnosis of 
LGG. Although not yet implemented in clinical practice, further research in 
the field of radiomics and circulating tumor DNA and RNA in both blood 
plasma and CSF will probably result in the future implementation of these 
markers for diagnosis and follow-up of both response to therapy and to detect 
possible progression.  
 
The molecular markers of IDH mutational status and status of 1p/19q 
codeletion have revolutionized diagnosis and subsequent treatment patterns in 
patients with LGG. Other molecular markers such as TERT, AXTR, p53, EGFR 
and CDKN2A are probably involved in the gliomagenesis, although their 
clinical impact is not yet fully known. The rising importance of molecular 
markers and the genetic landscape of tumors, will lead to important 
stratification of patients. Future research will have to be based on more refined 
subgroups in order to better investigate response to treatment, and perhaps 
paving the way for newer targeted, individualized therapies. New therapeutic 
possibilities, such as drugs targeting IDH, show promise and at a later stage 
may constitute a much-needed supplement to the current options of the radio-, 
chemo-, and brachytherapy available today.  
 
DNA methylation is proven to be a robust, reliable tool revealing clinically 
relevant subgroups in a variety of tumor types, and this tool is expected to be 
better integrated with clinical practice, especially in diagnosing the more 
difficult and rare tumor types.  
 
The Swedish Brain Tumor Registry (SBTR) has undergone a change to the 
CNS-registry, which also includes patients diagnosed on radiological criteria 
after the date 2018-01-01, in addition to the patients undergoing surgery. The 
registry is including patients with tumors in both brain and spinal cord with 

pathological, cytological or radiological diagnosis. The register now contains 
richer diagnosis, specific clinical data, up to data molecular data, standardized 
data on complications, quality of life and adds data for each treatment (e.g. a 
reoperation for tumor recurrence) providing better longitudinal data. This 
revision will better serve its purpose as a quality registry, but will also improve 
research through the possibility to establish natural course and more. Linking 
registries with for instance information regarding medications from 
prescriptions and self-report system to improve follow-up data on health-
related quality of life to would improve research in a patient centered 
perspective.  
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