DOCTORATE THESIS

Symmetry-protected topological phases: From Floquet theory to machine learning

OLEKSANDR BALABANOV

Akademisk avhandling för avläggande av doktorsexamen i fysik vid Göteborgs universitet. Avhandlingen försvaras vid ett offentligt seminarium fredagen den 11 september 2020, kl 15:15 i PJ-salen, Institutionen för fysik, Fysikgården 2, Göteborg. Avhandlingen försvaras på engelska.

Fakultetsopponent	Prof. Eun-Ah Kim, Cornell University
Betygskommitté	Assoc. Prof. Anne Nielsen, MPlPKS, Dresden
	Prof. Teemu Ojanen, Tampere University
	Prof. Mark Rudner, Köpenhamns universitet
Handledare	Prof. Henrik Johannesson, Göteborgs universitet
Examinator	Prof. Stellan Östlund, Göteborgs universitet

UNIVERSITY OF GOTHENBURG

Symmetry-protected topological phases: From Floquet theory to machine learning

OLEKSANDR BALABANOV Department of Physics University of Gothenburg

It is by now a well known fact that boundary states in conventional time-independent topological insulators are protected against perturbations that preserve relevant symmetries. In the first part of this thesis, accompanying Papers A - C, we study how this robustness extends to time-periodic (Floquet) topological insulators. Floquet theory allows us to go beyond ordinary time-independent perturbations and study also periodically-driven perturbations of the boundary states. The time-dependence here opens up an extra lever of control and helps to establish the robustness to a much broader class of perturbations. In Paper A, a general idea behind the topological protection of the boundary states against time-periodic perturbations is presented. In Paper B we address the experimental detection of the proposed robustness and suggest that signatures of it can be seen in the measurements of linear conductance. Our idea is explicitly illustrated on a case study: A topologically nontrivial array of dimers weakly attached to external leads. The discussed features are described analytically and confirmed numerically. All computations are performed by employing a convenient methodology developed in Paper C. The idea is to combine Landauer-Büttiker theory with the so-called Floquet-Sambe formalism. It is shown that in this way all formulas for currents and densities essentially replicate well known expressions from time-independent theory.

To find closed mathematical expressions for topological indices is in general a nontrivial task, especially in presence of various symmetries and/or interactions. The second part of the thesis introduces a computational protocol, based on artificial neural networks and a novel topological augmentation procedure, capable of finding topological indices with minimal external supervision. In Paper D the protocol is presented and explicitly exemplified on two simple classes of topological insulators in 1d and 2d. In Paper E we significantly advance the protocol to the classification of a more general type of systems. Our method applies powerful machine-learning algorithms to topological classification, with a potential to be extended to more complicated classes where known analytical methods may become inapplicable.

The thesis is meant to serve as a supplement to the work contained in Papers A-E. Here we provide an extensive introduction to Floquet theory, focused on developing the machinery for describing time-periodic topological insulators. The basic theory of artificial neural nets is also presented.

ISBN 978-91-8009-014-8 (PRINT)

ISBN 978-91-8009-015-5 (PDF)

Keywords: Topological quantum matter, neural networks, Floquet theory