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Abstract
A new pharmaceutical drug needs to be shown to be safe and effective before it can
be used to treat patients. Adverse events (AEs) are potential side-effects that are
recorded during clinical trials, in which a new drug is tested in humans, and may
or may not be related to the drug under study. The large diversity of AEs and
the often low incidence of each AE reported during clinical trials makes traditional
statistical testing challenging due to problems with multiple testing and insufficient
power. Therefore, analysis of AEs from clinical trials currently relies mainly on
manual review of descriptive statistics. The aim of this thesis was to develop an
exploratory machine learning approach for the objective analysis of AEs in two
steps, where possibly drug-related AEs are identified in the first step and patient
subgroups potentially having an increased risk of experiencing a particular drug side-
effect are identified in the second step. Using clinical trial data from a drug with
a well-characterized safety profile, the machine learning methodology demonstrated
high sensitivity in identifying drug-related AEs and correctly classified several AEs
as being linked to the underlying disease. Furthermore, in the second step of the
analysis, the model suggested factors that could be associated with an increased risk
of experiencing a particular side-effect, however a number of these factors appeared
to be general risk factors for developing the AE independent of treatment. As the
method only identifies associations, the results should be considered hypothesis-
generating. The exploratory machine learning workflow developed in this thesis
could serve as a complementary tool which could help guide subsequent manual
analysis of AEs, but requires further validation before being put into practice.

Keywords: Machine learning; Adverse events; Clinical trials; Data mining.
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1
Introduction

Before a new pharmaceutical drug can be used to treat patients it needs to be shown
to be safe and effective. The analysis of a drug’s safety aims to establish whether a
drug has any side-effects of concern. Information about possible side-effects, known
as adverse events, is collected during the testing of a new drug in humans and con-
tinues throughout the life cycle of a drug [1]. An AE is defined as

"any untoward medical occurrence in a patient or clinical investigation
subject administered a pharmaceutical product and which does not nec-
essarily have to have a causal relationship with this treatment..."

and include

"...any unfavourable and unintended sign (including an abnormal labo-
ratory finding, for example), symptom, or disease temporally associated
with the use of a medicinal product, whether or not considered related to
the medicinal product" [2].

Thus, it must be determined whether an AE is possibly related to the drug or not,
i.e. if it may be a side-effect. Unfortunately, traditional statistical testing is gener-
ally unsuitable for this purpose, mainly due to insufficient power and problems with
multiple testing [3, 4, 5]. Therefore, analysis of AEs largely depends on descriptive
statistics and requires substantial expertise to interpret.

The analysis of a drug’s safety can be defined as a number of pattern finding tasks.
For example, we may wish to understand which AEs are associated with a drug, as
such AEs could be possible side-effects. Furthermore, being able to identify patient
subgroups in which the risk of experiencing a particular drug side-effect is higher
could be a step towards personalized treatment, whereby the treatment of patients
experiencing specific side-effects could be adapted or steps could be taken to reduce
the side-effect risk, if possible. Currently such analyses involve the manual review
of a wide range of patient information.

Machine learning methods automatically learn to associate patterns in data with an
outcome. Such methods could allow for a data-driven, comprehensive and objective
analysis of AEs which could help guide subsequent manual analysis. The aim of
this thesis is to develop an exploratory machine learning approach for the objective
identification of drug-related AEs as well as the identification of patient subgroups
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1. Introduction

potentially having an increased risk of developing a particular drug side-effect. This
is achieved using data from studies of a well-characterized drug where the true side-
effects are considered to be known.

A background to the field is provided in Section 1.1 followed by a refined statement
of the aim in Section 1.2. An outline of this report is found in Section 1.3.

1.1 Background
The goal of drug development is to develop an effective treatment with as few side-
effects as possible. For this we need to study the efficacy (how well the drug is able
to treat a specific condition) and safety of the drug. Such testing needs to occur
before a drug can be placed on the market and be accessed by patients.

The drug development process proceeds in a number of stages, where the last stage
of drug development, in which the drug is tested in human subjects, is known as
clinical development. Clinical development is further divided into phase I, II, III
and IV [6]. Studies performed as a part of these phases are known as clinical trials.
Phase III clinical trials will be described in general in Section 1.1.1. Thereafter,
different sources of safety data in phase III clinical trials, with an emphasis on AEs,
are covered in Section 1.1.2. The reasons why analysis of safety data from such
clinical trials is challenging is explained in Section 1.1.3. Lastly, Section 1.1.4 covers
current practices in the analysis of AEs.

1.1.1 Phase III clinical trials
In a phase III clinical trial of a novel drug, the drug will commonly be compared to
placebo, a compound that lacks biological activity but that has an appearance that
resembles the drug. The different treatment regimens that a study subject can be
assigned to in a clinical trial are known as arms. A study that contains a placebo
arm is referred to as a placebo-controlled trial. The goal of a placebo-controlled
phase III clinical trial is generally to show that the drug shows superior efficacy
compared to placebo in treating a specific disease [6].

Typically subjects are randomly assigned to one arm, a process known as random-
ization, with an approximately equal number of subjects being assigned to each arm.
Randomization helps ensure that study subjects in the treatment arms are roughly
similar with respect to, for example, demographics, disease stage, medical history,
concomitant medications and other baseline variables (variables that are known or
measured before the first dose of treatment is administered) [6].

Furthermore, studies may be blinded, whereby subjects do not know which arm
they were assigned to. In a double-blinded trial, neither the study subject nor the
investigator or medical staff knows to which arm the patient belongs until after the
trial [6]. Phase III trials are often performed as multi-center studies where patients
from a number of hospitals across different countries are included.
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1. Introduction

1.1.2 Sources of safety data in clinical trials
There are several different types of safety data that are collected during a clinical
trial. In fact, 70-80% of the information recorded during a clinical trial is estimated
to relate to safety [7]. This information ranges from results of laboratory tests, to
various clinical examinations, patient-reported outcomes and AEs [1, 3].

In a trial, AEs are generally recorded at regular intervals at a study visit, where the
patient visits the study site. These include both AEs that the patient reports having
experienced since that last study visit and AEs identified by a clinician during the
study visit [3].

AEs are typically encoded using the Medical Dictionary for Regulatory Activities
(MedDRA) [8]. This is a medical dictionary for classification of AEs that was devel-
oped in the 1990s and has since been widely adopted throughout the industry and
by regulatory authorities [3]. In MedDRA, each AE is classified according to a 5-
level hierarchy that from the highest level to the lowest level includes: System Organ
Class (SOC), High Level Group Term (HLGT), High Level Term (HLT), Preferred
Term (PT) and Lowest Level Term (LLT). Often only the PT and SOC of an AE
are considered when summarizing or analyzing AEs. As of March 2020, MedDRA
contains 24,289 different PTs belonging to 27 SOCs [9].

During a clinical trial, additional information is generally recorded in conjunction
with each AE that is reported by a subject. These include, for example, the time of
onset of the AE, the duration that the subject experienced the AE and the intensity
of the AE (i.e. if it was a mild, moderate or severe case). Note that if a subject
reported the same AE multiple times during the study, this may be recorded as
separate events, although it will typically be presented as a single event in the final
reporting. Furthermore, any events that have serious consequences for the patient
will be characterized as serious adverse events (SAEs). AEs that are flagged as
SAEs are given special attention when evaluating the safety of a treatment.

1.1.3 Why is analysis of safety in clinical trials challenging?
The analysis of safety signals from clinical trials is complicated due to a number of
reasons which are outlined in this section. Firstly, for ethical and financial reasons,
the size of trials should be kept small and their duration should be minimized. This
makes it challenging to detect very rare AEs or AEs that take longer time to develop.
However, a rare event or an event that occurs after some time may be severe and
enough reason to withdraw the drug from the market [3]. A rule of thumb for the
number of subjects who need to be enrolled to detect a single case of a drug-related
AE with a certain incidence is the so called rule of three. According to this rule, if
the incidence of a drug side-effect is 1 in n, 3×n subjects must be enrolled in order
to detect a single case [10].

Secondly, trials are commonly designed around an efficacy endpoint [1, 3], meaning
that they are sized and powered in order to be able to test a hypothesis relating
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1. Introduction

to the efficacy of the drug in treating a certain aspect of the disease under study.
One way in which possible side-effects of a drug may be identified is to compare the
frequency of each AE between subjects receiving the drug and subjects receiving
placebo, as a drug-related AE should be more common in subjects receiving the
drug. However, since only a few patients usually experience each AE in a study,
comparing the frequencies of AEs between treatment arms using statistical testing
will not have sufficient power [1, 3].

The focus on efficacy also means that, in order to keep the trial size small and du-
ration short, we want to observe a large effect in the group receiving the drug and
to reduce the variance of this effect. For this reason, the subjects selected for a
trial should preferably be a homogeneous group and we may choose to enroll only
subjects who have a severe form of the disease. For example, we could exclude any
patient who is taking a certain medication [3]. However, this could lead to the trial
subjects not being representative of the patient population and could limit our abil-
ity to identify AEs that are possibly drug-related during clinical trials.

There is also the possibility that AEs are missed or misclassified during the study.
For example, AEs that are experienced by patients in-between study visits, may end
up not being recorded [3]. In addition, the way that the event should be encoded
may be subject to interpretation and could therefore differ between study sites. For
example, the same event could belong to multiple PTs.

Further complicating the analysis of AEs is that subjects may choose to drop out
at any point during the study. Clearly, if a patient has spent a longer time in the
study, there are more opportunities to report AEs [3]. Another possibility is that
the subject dropped out due to an AE [3] which would normally be recorded along
with the AE.

In a clinical trial there can be hundreds of different AEs that are reported and the
total number may even exceed the number of subjects in the study [4]. Perform-
ing traditional statistical testing to determine whether the incidence of each AE
is significantly over-represented in subjects receiving the drug compared to those
receiving placebo leads to problems with multiple testing. Ignoring the problem
of multiple testing will lead to false positive results, where AEs are identified as
being treatment-associated where no such association exists [1, 4]. One alternative
is to perform this hypothesis testing on a limited set of pre-specified AEs, but this
instead suffers from a risk of false negatives as any treatment-related AEs that are
not among the pre-specified AEs will be missed [1]. Identifying which hypotheses to
test is a subjective task and can be challenging based on e.g. animal studies, as the
behavior of the drug in humans may differ compared to animals [1, 4]. It is also un-
clear how to include information about the duration and intensity of the AEs, which
may hold important clues about differences between treatment arms, in the analysis.

Lastly, the interpretation of AEs is context-dependent. Whether a particular AE is
serious enough to stop the drug development will depend on the prognosis of the
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patients without having received the treatment [3].

1.1.4 Analysis of adverse events
For the reasons mentioned above, safety evaluations in clinical trials mainly rely on
descriptive statistics. These include a number of tables that summarize the frequen-
cies and percentages of subjects per treatment arm who have experienced an AE
[3, 11]. These are usually reported on the PT and SOC levels, as well as via separate
reporting per treatment arm for SAEs and deaths. Interpreting these descriptive
statistics requires considerable expertise and is subjective. To aid the analysis, var-
ious visualizations of the data may also be generated [3, 1, 11, 12]. Depending on
the drug, AEs in different pre-defined subgroups, e.g. pediatric patients, may be
studied. It can also be valuable to identify risk factors that are associated with a
drug-related AE. Currently, such analyses are generally performed manually and ad
hoc, although the use of data mining techniques has been suggested [3].

Machine learning is increasingly being used to analyze drug safety data, particularly
in the post-marketing setting, when the drug has already been approved. Studies of
the safety of a marketed drug is an important means to capture drug-related AEs
that are uncommon, are the result of long-term drug use or those that only become
apparent when the drug is released to the general patient population rather than
the narrowly defined study population of a clinical trial [3]. Such data is published
in large public pharmacovigilance databases and relies on spontaneous reporting
[1, 13]. In the European Economic Area this database is called EudraVigilance [14]
while the US counterpart is the FDA Adverse Event Reporting System (FAERS) [15].
The drawbacks of such databases include the under-reporting of AEs, the limited
information available about the patient and the generally low quality of the data.
As an alternative to these databases the use of machine learning to extract AEs from
electronic healthcare records (EHRs) has been suggested, but this approach suffers
from data privacy issues [16, 17].

Data collected during clinical trials is often available for selected research purposes
that are unrelated to the original trial. Such datasets are typically in a tabular for-
mat, of high-quality and detailed, making them analysis-ready for machine learning
methods.

1.2 Aim
The aim of this thesis is to develop an exploratory machine learning workflow that
analyzes AEs at PT level from multiple placebo-controlled phase III clinical trials
in two steps:

1. identification of AEs that are possibly drug-related;
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2. identification of patient subgroups in which the risk of developing a particular
drug side-effect is potentially increased.

1.3 Outline
This thesis is organized as follows. Section 2 introduces the data that will be used,
originating from two phase III clinical trials of the drug Symbicort for the treat-
ment of chronic obstructive pulmonary disease. Symbicort is considered to have a
well-characterized safety profile. Section 3 provides a theoretical foundation of the
tree-based supervised machine learning method as well as the model evaluation and
interpretability methods that are used. In Section 4 it is explained how these meth-
ods can be combined into two different exploratory data mining methodologies, one
for each aim. Results are presented in Section 5, followed by a discussion of the
results and suggestions for further research in Section 6 and a conclusion in Section
7.
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2
Data Description and Exploratory

Data Analysis

This thesis is based on data from two randomized, double-blind, multi-center, placebo-
controlled phase III clinical trials where the efficacy and safety of different therapies
for chronic obstructive pulmonary disease (COPD) were evaluated.

COPD is a respiratory disease that is associated with long-term cigarette smoking,
exposure to air pollution or recurrent lung infections [18], although these likely inter-
act with other risk factors [19]. It is characterized by a range of symptoms including,
but not limited to, progressive and irreversible airflow limitation causing shortness
of breath and an increased inflammatory response in the lungs [20]. An estimated
174-384 million people have the disease worldwide and it accounts for over three
million deaths annually [19].

Worsening of COPD symptoms is known as a COPD exacerbation and patients
who experience frequent exacerbations have been found to have an accelerated dis-
ease progression [20]. Symbicort is an inhaled drug that can be used to reduce
the risk of COPD exacerbations. Originally developed and approved for the treat-
ment of asthma, the drug consists of two compounds, budesonide and formoterol.
Budesonide is an inhaled corticosteroid which acts locally to reduce inflammation
while formoterol is a so called long-acting β2-agonist and is a bronchodilator. Both
budesonide and formoterol reduce the risk of COPD exacerbations and this effect is
enhanced when they are combined [20, 21, 22].

Symbicort has been on the market for the treatment of asthma since 2000 and for
COPD since 2003. The safety profile of this drug is therefore considered to be well-
characterized. Appendix A lists the currently recognized side-effects of Symbicort.
As one of the aims of this thesis is to develop a method to identify possibly drug-
related AEs, a comparison to the known drug side-effects can act as a validation of
the results. For this reason, Symbicort will be the drug under study in this thesis.

The studies from which the data in this thesis is obtained are described in Section
2.1. The coding of the AEs present in this data is then explained in Section 2.2.
Finally section 2.3 presents descriptive statistics based on the coded AEs, with
section 2.3.1 discussing the consequences of excluding AEs experienced by only one
subject on the descriptive statistics.
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2. Data Description and Exploratory Data Analysis

2.1 Origin of the data
The data in this thesis originates from the studies by Tashkin et al. (2008) [21] and
Rennard et al. (2009) [22], henceforth referred to as SHINE and SUN. SHINE was
a 6-month trial that was conducted across 194 sites in the US, Czech Republic, the
Netherlands, Poland and South Africa between 2005 and 2006 [21], while SUN was
a trial that followed patients during a 12-month period across 237 sites in Europe,
the US, and Mexico between 2005 and 2007 [22].

Both studies consist of a number of treatment arms. Two of the arms that are com-
mon between both studies is a Symbicort arm (budesonide/formoterol pressurized
metered-dose inhaler 160/4.5 µg × 2 inhalations) and a placebo arm. Data belong-
ing to these arms were pooled across SUN and SHINE. Subjects who received at
least one dose of Symbicort or placebo were included in the analysis. Furthermore,
only subjects where special permission had been granted to allow for reuse of data
for other research purposes were included. This resulted in a dataset with a total of
723 subjects in the Symbicort arm (453 from SUN and 270 from SHINE) and 677 in
the placebo arm (404 from SUN and 273 from SHINE) and an overall total of 1400
subjects.

2.2 Coding of adverse events
AEs were coded in a binary format at the PT level of the MedDRA hierarchy, where
a 1 represented that the subject had experienced the event at any point during the
study and 0 that the subject had not experienced the event. This binary encoding
of AEs disregards any repeated occurrence of an event in the same subject, the
duration of the event, as well as the intensity of the event (i.e. if it was considered
to be a mild, moderate or severe case of the AE).

2.3 Exploratory data analysis
The number and percentage of subjects who reported at least one AE during SUN
and SHINE is summarized by treatment arm in Table 2.1. Note that the numbers
presented in this table may deviate from the numbers reported in the original studies
as only a subset of data from SUN and SHINE is available for reuse in this thesis.
Overall, 63% of subjects in the Symbicort arm had an AE while 58% in the placebo
arm had an AE. The percentage of subjects with an AE is consistently somewhat
higher in the Symbicort arm than in the placebo arm across both SUN and SHINE.

The longer study duration of SUN (12 months) compared to SHINE (6 months) is
reflected in the higher percentage of subjects having any AE in SUN than in SHINE.
Overall, 64% of subjects had an AE in SUN while only 55% had an AE in SHINE.

Among the subjects who experienced an AE, the median number of different AEs
experienced by a subject was two in both the Symbicort and placebo arms. The
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Table 2.1: Number and percentage of subjects who reported at least one AE by
treatment arm and study. The studies SUN and SHINE refer to the subset of data
from the original clinical trials that is available for reuse in this thesis. The numbers
presented below can therefore deviate from the original studies.

Symbicort Placebo Total

454 (63%) 392 (58%) 846 (60%)
SUN 297 (66%) 248 (61%) 545 (64%)

SHINE 157 (58%) 144 (53%) 301 (55%)

frequency distributions of the number of different AEs per subject are shown in Fig.
2.1. These plots exclude the subjects who experienced no AE. The maximum num-
ber of different AEs observed in a subject was 17 in both the Symbicort and placebo
arms. While the number of subjects who had 1 or 2 different AEs was similar across
treatment arms, there were more subjects with over 2 different AEs in the Symbicort
group.
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Figure 2.1: The frequency distribution of the number of different AEs per subject,
after exclusion of subjects without any AE. The dashed vertical line indicates the
median value.

The number of subjects who had a particular AE was generally low (Table 2.2).
In both treatment arms, approximately 60% of AEs were only experienced by one
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subject and 20% by two subjects. Thus only about 20% of AEs were experienced
by more than two subjects in both treatment arms. Appendix B contains a list of
the ten most common AEs.

Table 2.2: Percent of adverse events experienced by one, two or more than two
subjects in the Symbicort and placebo arms.

Percent of different AEs
Number of subjects
experiencing the AE

Symbicort Placebo

1 61% 63%

2 17% 18%

> 2 22% 19%

2.3.1 Exclusion of uncommon adverse events
AEs that occur only once across both treatment arms are likely of limited significance
when determining whether an AE is drug-related or not. Table 2.3 presents the
effect of removing such AEs. After removal of these 306 different AEs, the number
of subjects in the Symbicort arm with at least one AE was 433 which corresponded
to 60% (compared to 63% previously). In the placebo arm the corresponding value
was 372 or 55% (previously 58%). The total number of AEs decreased from 1174
to 993 in the Symbicort arm and from 882 to 757 in the placebo arm. The total
number of different AEs decreased by over half from 532 to 226, where 221 of these
AEs were found in the Symbicort group and 196 in the Placebo group. Frequency
distributions per treatment arm of the number of different AEs per subject after
removal of the uncommon AEs are included in Appendix B.
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Table 2.3: Number of subjects with at least one AE, total number of AEs expe-
rienced by subjects and the number of different AEs by treatment arm before and
after removal of AEs occurring only once across both studies.

Symbicort Placebo Total

Before removal of AEs occurring only once

No. subjects with AE 454 392 846
Total no. AEs 1174 882 2056
No. different AEs 392 321 532

After removal of AEs occurring only once

No. subjects with AE 433 372 805
Total no. AEs 993 757 1750
No. different AEs 211 196 226
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3
Theory

A machine learning method can be thought of as a set of instructions for how a
computer automatically learns from data [23]. The data could be, for example,
a set of images or text segments. For simplicity we here assume that the data x
is in a tabular format where each observation i = 1, 2, . . . N is represented by a
row, each column j = 1, 2, . . . p represents some feature of the data and the values
xij, i = 1, 2, . . . N , for each feature j are either numeric or categorical. The process
of learning from data is referred to as training or fitting a model [24]. Based on
the instructions provided by the chosen machine learning method, a function f(x)
is fitted to the data. Specifically, the values of a number of parameters that are
specified by the method are determined based on the data.

There are two principal ways in which this learning occurs: supervised or unsu-
pervised [24]. In supervised learning, information about an outcome or target yi is
available along with the feature values xi for each observation. The aim of a super-
vised learning task is to construct a model f that, given an observation xi, can be
used to predict its target value yi, i.e. ŷi = f(xi). By comparing ŷi and yi we can
measure how well the model fits to the data. This type of learning can further be
subdivided into classification and regression problems, depending on whether the
target values are categorical or numeric, respectively [24]. In contrast, no informa-
tion about target values is available in unsupervised learning. This type of learning,
which includes different data clustering methods, is largely concerned with discov-
ering structure in data rather than making predictions. Unsupervised learning is
therefore often used for exploratory purposes [25].

When training a supervised learning model we want it not only to generate predic-
tions that closely resemble the true target values of the data used for training it, but
more importantly we want it to be able to generalize to new data. It is therefore
crucial that the model only learns about the signal in the training data rather than
about any random noise that may be present, since the same random noise will
likely not be present in new data. When a model starts learning about the noise in
the training data it is said to overfit [24]. Often models that are more complex, i.e.
contain more parameters that are determined from the data, have a higher tendency
to overfit. This results in high variance in the predictions when such a model is ap-
plied to new data. On the other hand, the model must be sufficiently complex to be
able to capture the signal in the data, otherwise the resulting model will have high
bias. We must therefore balance both bias and variance when building the model in
order to reduce the prediction error. This is known as the bias-variance trade-off [25].
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One way in which we can control model complexity and other aspects of model fit-
ting is through the choice of hyperparameters. A hyperparameter is a user-defined
parameter in a machine learning method. The optimal value or setting of a hyper-
parameter depends on the data and is often determined using the training data in
a process called hyperparameter tuning, described in Section 3.2.1. In addition, we
can simultaneously monitor the goodness-of-fit and complexity of the model during
training by defining a suitable objective function that is optimized throughout the
training process (see e.g. Section 3.1.4).

The remainder of this chapter is organized into four parts. Section 3.1 describes dif-
ferent tree-based machine learning methods for classification and regression. Section
3.2 explains different choices for evaluating model performance. Model interpretabil-
ity, being able to explain the predictions of a model or what the model has learned
from the data, is covered in Section 3.3. Lastly, statistical testing, with a focus on
categorical data analysis, is briefly described in Section 3.4.

3.1 Tree-based methods
This section focuses on tree-based methods for supervised learning. Variants of
these methods such as extreme gradient boosting have been shown to produce models
that in many cases outperform other types of machine learning methods, including
neural networks, when applied to tabular data [26]. Extreme gradient boosting is
the machine learning method that is used in this thesis. The theoretical foundation
of this method is explained in several steps. Firstly, the basis for all tree-based
methods, the decision tree, is described in Section 3.1.1. Thereafter, various ways of
combining several decision tree models into one model are outlined in Section 3.1.2.
Section 3.1.3 further explains one of these methods, gradient tree boosting. Finally,
Section 3.1.4 details a modified version of gradient tree boosting, extreme gradient
boosting.

3.1.1 Decision trees
A decision tree model consists of a hierarchically organized set of rules that splits
the p-dimensional feature space of the data into regions Rj, j = 1, 2, . . . , J called
leaves. The feature space consists of all possible values of the p features. Each of
these regions is associated with a constant sj which corresponds to the prediction ŷi
of the decision tree for all observations i that fall in the region Rj [24]. A schematic
illustration of a decision tree is shown in Figure 3.1.

Each rule in the decision tree is commonly referred to as a node and at each node
the data is split into two parts, a so called binary split. A node consists of a feature
and a splitting point or criterion [24]. If the feature is numeric, then the splitting
point can be viewed as a threshold. For a binary categorical feature the splitting
criterion can instead be interpreted as the presence or absence of the feature.
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A decision tree model should, by successively dividing the feature space into smaller
regions, produce regions Rj that group together observations that have a similar
target value. A decision tree that is used for a classification problem, a classification
tree, will assign new observations to either the majority class of the training obser-
vations that ended up in the same leaf Rj or alternatively use the proportions of
training observations belonging to the different classes to assign class probabilities
to the new observations [24]. In contrast, a regression tree, may assign the mean of
the training observations in a leaf Rj to any new observation that belongs to the
same leaf in the regression problem [24].
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Figure 3.1: Schematic illustration of a decision tree for classification. The two
classes are black squares and gray triangles. (a) Nodes are represented as boxes and
leaves as circles. At the top node, feature x1 is split at constant c1. At the second
node, observations with x1 > c1 are split on feature x2 at constant c2. Each leaf
Rj, j = 1, . . . , 3 is defined by a number of splitting criteria. The majority class
of each leaf observed in the training data sj, j = 1, . . . , 3 is used to classify new
observations. (b) The feature space upon which the decision tree in (a) is based,
with the thresholds c1 and c2 shown as dashed lines. The data points originate from
the training data.

When training a decision tree model we want to find the hierarchical set of rules
that in the least number of splits possible divides the data with respect to the target
values. Ideally we would test all possible trees that could be constructed. However,
this is too computationally expensive. Instead a process called recursive binary par-
titioning is used to fit the tree to the training data in a top-down and greedy manner
[24].

We start at the top node of the tree, the root, and identify the feature and splitting
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point based on all observations in the training data that result in the best separa-
tion of the target values. This produces two child nodes and in each of these we
again attempt to find the best feature and splitting point. The difference compared
to the initial node is that only the observations that were assigned to the child
node can be used to determine the optimal split, rather than all training observa-
tions. The node splitting is repeated until some stopping criterion is encountered.
This tree growing procedure is greedy since it only considers the optimal split at
a node rather than the split that will result in the globally optimal decision tree [24].

The best split at a node is determined by identifying the feature and splitting point
that minimize some loss function. The choice of loss function is yet another way in
which classification and regression trees differ. A common choice of loss function in
a node Rn in regression trees is the residual sum of squares

∑
i:xi∈Rn

(yi − sn)2, (3.1)

where we want to minimize
∑

i:xi∈Rl

(yi − sl)2 +
∑

i:xi∈Rr

(yi − sr)2 (3.2)

at each node R0 that is split into Rl and Rr [24].

For classification the most common loss function is the Gini index, defined as

K∑
k=1

p̂mk(1− p̂mk) (3.3)

with p̂mk being the probability of class k in node Rm given by the training observa-
tions and K the number of classes. The Gini index corresponds to the sum of the
variance over the K classes [24]. The total loss of the child nodes is calculated by
weighting the Gini index of each child node by the proportion of training observa-
tions that ended up in the nodes after the split [25].

Several different loss functions can be used for classification and regression problems.
Another choice that has to be made is the size of the decision tree. Since decision
trees are prone to overfit to the training data, a risk that increases with tree size,
different hyperparameters are available that limit the size of the tree that is grown.
These include, but are not limited to, the maximum depth of the tree, the minimum
number of observations that must be available in a node in order for a split to occur
and the minimum number of observations in a leaf [27].

Decision trees have several advantages. Firstly, the models are generally quick to
construct [25]. Another benefit is that the models are intuitive and easily inter-
pretable by humans, at least when the number of nodes is small [24, 28]. The
manner in which the splitting of the data is performed means that decision trees
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can handle mixtures of numeric and categorical features, as well as features of differ-
ent scale [25]. These models are also relatively robust with respect to outliers [25].
By selecting the most relevant feature in every split, decision tree models perform
feature selection and are thereby not as influenced by irrelevant features as other
types of models may be [25]. Finally, decision tree models can express non-linear
relationships between features and target as well as interactions between features
[25].

The main drawback of decision trees is their tendency to overfit, meaning that they
will not generalize well to new data. Part of the instability of decision trees is due
to their hierarchical structure since a suboptimal early split will affect all onward
splits [25]. The greedy construction of trees means that the locally optimal split at
a node is chosen rather than the split that yields the globally optimal tree. Another
drawback is that these models are unstable when they are too complex given the
underlying true structure of the data. For example, if the relationship between the
features and target is linear, a decision tree model may result in a more complex
model with greater risk of overfitting than if a linear model had been fitted to the
data [24]. Regardless of the underlying relationship between features and target, a
fully grown decision tree will likely fit not only to the signal in the data, but also to
the noise [29].

Two common ways to minimize the overfitting of decision trees are pruning and
ensembles. Pruning involves reducing the size of the decision tree after it has been
constructed by defining a number of subtrees and choosing the subtree that produces
the best balance between goodness-of-fit and complexity as the final model [24, 25].
Decision tree ensembles are described in the next Section.

3.1.2 Tree ensembles
While decision trees result in versatile models for performing classification and re-
gression, they have a tendency to overfit to the data they were trained with. One
solution to this problem is to combine several decision trees into a so called ensemble
model. The idea behind ensemble models is that each of the component models has
learnt about slightly different aspects of the data [30]. Together these models can
likely make a better prediction than any one model alone could.

In order to construct an ensemble model using a number of decision trees, a tree
ensemble, we must construct a set of different decision trees. To make each decision
tree different, we must train each tree using a different set of data. How the training
data for each tree in the ensemble is selected and how each tree is subsequently
trained are the principal ways in which tree ensemble methods differ.

The two most common ensemble methods that are used for decision trees are bagging
and boosting [24]. Bagging is short for bootstrap aggregating. In this method each
model is constructed from a bootstrap sample. The final predictions are commonly
produced by either averaging the predictions of the individual models or, in the
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case of classification, the final class assignment can be determined by majority vote.
Random forest is an example of a bagging method [29].

In bagging each of the trees is trained independently. In contrast, boosting models
are trained sequentially, whereby the model that is constructed depends not only
on the data but also on the models in the ensemble that have already been con-
structed. Boosting relies on training a sequence of so called "weak" learners [29].
Each tree is usually small which makes the training process slow as each tree only
captures limited information about the training data. However, models that learn
incrementally often outperform models that attempt to learn everything at once [24].

A popular boosting algorithm that was originally developed for classification prob-
lems is AdaBoost [31]. In AdaBoost, observations that were previously misclassified
by the ensemble are given a higher weight when training the next classification tree
to add to the ensemble. When combining the classification trees into the ensemble,
trees that were more accurate are given a higher weight. The final prediction of the
ensemble is determined using a weighted majority vote.

We can also consider the training of boosting models from the perspective of mini-
mizing a loss function in each step. Here, each model that is added leads to a further
reduction of the loss. This is one of the main ideas behind gradient tree boosting, a
generalization of tree boosting that can be used for both classification and regression
problems [32].

3.1.3 Gradient tree boosting
Gradient tree boosting [32] is a machine learning method in which several decision
trees are trained sequentially [24]. Letting bm(xi) be an individual gradient boosted
tree model constructed in step m and fm−1(xi) be an ensemble of m − 1 gradient
boosted trees, we can express model fm(xi) as

fm(xi) = fm−1(xi) + bm(xi) (3.4)

where

fm−1(xi) =
m−1∑
τ=1

bτ (xi). (3.5)

Thus the final prediction is a sum of the predictions of all m models in the ensemble
[25, 30].

During the training of a gradient tree boosting model, a loss function L is minimized
in each step [25]. For binary classification problems (where f is the logit transform
of the predicted probability) it is common to use the binomial deviance (or cross-
entropy) as a loss function [25]
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L(yi, f(xi)) = log
(
1 + e−2yif(xi)

)
(3.6)

while for regression problems the squared-error loss [25] is generally used

L(yi, f(xi)) = (yi − f(xi))2 . (3.7)

Algorithm 1 presents the pseudocode for gradient tree boosting. The initial model
f0 consists of a tree with just a single terminal node, i.e. the model predicts the same
value for all observations and this value is optimal given the chosen loss function
[25]. For example, if the loss function is the squared error loss, f0 would predict the
mean target value of the training data for all observations.

Each model that is added to the current ensemble fm−1 is trained using the pseudo
residuals rim rather than the original targets yi in the training set. The pseudo
residuals correspond to the negative gradient of the loss function with respect to the
current prediction of fm−1 evaluated for each observation xi in the training set, i.e.
rim = −∂fm−1(xi)L(yi, fm−1(xi)). Note that the residuals will be continuous-valued
for both regression and classification problems, which only differ by the loss function
used [25]. This means that for both regression and classification problems we can
use the pseudo residuals rim to fit a regression tree. The only differences between
regression and (binary) classification models are the loss function used and the need
to convert the final prediction to a predictive probability via the logistic function [25].

Given the mth regression tree, we calculate the score sjm for each terminal node
j = 1, 2, . . . , Jm defined by the terminal region Rjm that results in the smallest
overall loss when added to the current predictions for observations xi in the node.
These optimal scores sjm are then added to the current predictions for observations
xi ∈ Rjm.

The final model f̂(x) thus consists of an initial prediction by f0 that has been incre-
mentally adjusted such that the prediction for each observation increasingly reflects
the true target value in each step. By using small trees, the learning of each tree
will be limited. However, by fitting each new tree to pseudo residuals, which can be
thought to represent what the current ensemble still has to learn about the data,
each tree gets an opportunity to learn about different aspects of the data. Together
these trees constitute a powerful ensemble model.
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Algorithm 1: Gradient Tree Boosting
1) Initialize f0(x) = arg min

s

∑N
i=1 L(yi, s);

2) for m = 1, . . . ,M do
a) for i = 1, 2, . . . , N do

rim = −∂fm−1(xi)L(yi, fm−1(xi))
end
b) Fit a regression tree to the targets rim giving terminal regions Rjm,
j = 1, 2, . . . , Jm.
c) for j = 1, 2, . . . , Jm do

sjm = arg min
s

∑
xi∈Rjm

L(yi, fm−1(xi) + s)
end
d) Update fm(x) = fm−1(x) +∑Jm

j=1 sjmI(x ∈ Rjm)
end
3) Output f̂(x) = fM(x).

Gradient boosted trees can be tuned in several ways. Firstly, there is the choice of
loss function, which is dictated by the type of task (classification or regression) and
by data-specific factors. Secondly the size and number of trees to construct must be
adapted to the data [24]. For example, the size of a decision tree determines the or-
der of interactions between features that can be expressed by the model. A decision
tree with only a single splitting node, a so called decision stump, can only capture
main effects, while a tree with two splits in the hierarchy before the terminal node
is reached can also capture interactions between two features [25]. Another factor
to consider when choosing the size of the decision tree is that smaller trees have a
smaller risk of overfitting and are therefore preferable over larger trees [25]. Usually
all trees are set to be the same size and the choice of tree size is determined by
cross-validation (see Section 3.2.1) [25]. Similarly, fitting too many trees to the data
can cause the gradient boosted tree model to overfit. Again, the optimal number of
trees should be determined by cross-validation.

To prevent overfitting of the model regularization can be performed. A common
technique is called shrinkage [24] whereby the contribution of each tree in the en-
semble is reduced by scaling it by some constant c ∈ (0, 1), often referred to as the
learning rate. A smaller learning rate will require a larger number of trees to be
trained in order to achieve comparable performance on the training set [25].

3.1.4 Extreme Gradient Boosting
Extreme Gradient Boosting (XGBoost) is an implementation of the gradient tree
boosting method with several enhancements [33]. Instead of minimizing a loss func-
tion, XGBoost minimizes an objective function Lm that in addition to the loss
function also includes a regularization term Ω(bm) which limits the complexity of
the model
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Lm =
N∑
i=1

L (yi, fm−1(xi) + bm(xi)) + Ω(bm) (3.8)

where

Ω(bm) = γT + 1
2λ ‖s‖

2 , (3.9)

T is the number of leaves and s is a vector of leaf values of the newly added gradient
boosted tree bm and where γ and λ are constants.

Apart from the inclusion of a regularization term, XGBoost differs from regular gra-
dient tree boosting through a number of improvements in computational efficiency
[33], some of which are described below. These computational improvements allow
for the training time of XGBoost to be reduced and enable handling of larger data
sets.

Take for example the problem of finding the best split in a tree. This could be solved
using an exact greedy algorithm that evaluates all possible splits. If the feature is
continuous, this involves first sorting the data by feature value, then checking all
split points and subsequently repeating this for all features. An alternative to this
computationally expensive approach is to use an approximate method, where only a
number of candidate split points are evaluated. One of the contributions of XGBoost
is how to identify these candidate split points. XGBoost also has the ability to handle
sparse data well, which arises e.g. through one-hot-encoding of categorical features.
XGBoost has the additional benefit of performing the sorting of the data, which is
necessary both in the exact greedy and approximate split finding algorithms, in a
parallelized manner. This further helps to speed up the computations.

3.2 Model performance evaluation
When constructing a model we may use a loss function to monitor how well the
model fits to the training data in order to prevent underfitting and regularization
to control the complexity of the model and thereby avoid overfitting. However, no
information is provided regarding how well the model has captured the true sig-
nal in the data and how well it will generalize to new data. For this purpose it
is essential to have the model to generate predictions based on a new, previously
unseen, dataset. By comparing the model prediction with the true target for each
observation in the new dataset, a measure of the performance of the model can be
computed [24].

There are two main purposes for evaluating the performance. The first is model
selection, i.e. choosing the best model for the data. The models may be based on
different machine learning methods or different choices of hyperparameters for the
same type of machine learning method. In this setting the new dataset is often
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referred to as the validation set [25]. The second purpose is model evaluation, to
understand how well the trained model will perform when deployed. Here, the new
dataset is called the test set [25].

The subdivision of the available data into training, validation and test sets means
that less data will be available for fitting the model. If the dataset is small, making
the random division of data into these three parts representative poses an additional
challenge [24]. We may counteract these effects in low-data situations by using k-
fold cross-validation (Section 3.2.1) for model selection or evaluation. Different
performance metrics that can be used to compare or evaluate models are described
in Section 3.2.2.

3.2.1 K-fold cross-validation
In k-fold cross-validation the available data is randomly divided into k roughly equal-
sized parts or folds. One of the folds is used for validation or testing, depending
on the purpose of the performance evaluation. The observations in the remaining
folds are then used for training the model. Once the model has been fitted it is
evaluated on the fold that was held out for validation or testing using a suitable
metric. By repeating this model training and evaluation so that each fold acts as a
validation or test set exactly once, we obtain k trained models and k measures of
model performance. Usually the average of these k performance measures are used
as an estimate of the model’s performance [24].

When the aim of performing k-fold cross-validation is model selection, the model
that achieves the best model performance rather than the model performance per
se, is of primary interest [24]. When the compared models differ only with respect
to the choice of hyperparameters, model selection is referred to as hyperparameter
tuning. The hyperparameters that result in the best model performance are chosen
as the final hyperparameters in the model.

The most common choice for k is either k = 5 or k = 10 [24]. Choosing a smaller
k may lead to a biased estimate of the true model performance as less data will be
available for fitting the model than if k had been large. A larger k, on the other hand,
risks increasing the variance of the model performance measure as all models are
trained on approximately the same dataset and the performance measures become
correlated. This causes the mean performance of the models to have high variance.

3.2.2 Performance metrics
In this section, performance metrics for binary classification models are first de-
scribed, followed by a metric used for regression models.

In binary classification the data is divided into two classes, which are typically re-
ferred to as the positive and negative class. The positive class is considered to be the
class of particular interest. In order to define the classification metrics it is helpful

22



3. Theory

to consider the confusion matrix in table 3.1.

Table 3.1: Confusion matrix showing possible outcomes of a binary classification
model. Rows are true classification, columns are predicted classification. TP = true
positive, FN = false negative, FP = false positive, TN = true negative.

Predicted
+ -

Actual + TP FN
- FP TN

This matrix presents the four different outcomes that can result when we perform
binary classification. TP is the number of true positives, i.e. the number of observa-
tions with a positive target label that the model classified as positive. Similarly, TN,
represents the number of actually negative observations that the model classified as
negative (true negative). The sum of TP and TN are the number of accurately
classified observations. FN is the number of false negatives, the positive observa-
tions that were missed by the model, while FP is the number of false positives, the
negative observations that were incorrectly called positive by the model. FN and
FP represent misclassified observations.

A common classification metric is accuracy [30], defined by

accuracy = TP + TN

TP + TN + FN + FP
. (3.10)

This metric represents the proportion of correctly classified observations. If we
are instead interested in the proportion of actual positives that were classified as
positives, then sensitivity, or equivalently recall or true positive rate (TPR) [30] is
the metric of choice

sensitivity = TP

TP + FN
. (3.11)

Specificity is the analogous metric for the negative class [30] and is defined as

specificity = TN

TN + FP
. (3.12)

We may also be interested in the proportion of actually negative observations that
are incorrectly classified as positive, the false positive rate (FPR). This corresponds
to 1-specificity [24].

Many binary classification methods result in models that produce a probability that
an observation belongs to the positive class. This probability can be converted into
a prediction label, i.e. "positive" or "negative" using a threshold. Typically, this
threshold is set at 0.5, such that observations receiving a probability higher than
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0.5 are classified as positive, and otherwise as negative. However, the choice of a 0.5
threshold may not be optimal for the data [24].

The receiver operating characteristics (ROC) curve presents a way to visualize the
performance of a model for all choices of thresholds [24]. It plots the TPR versus
the FPR and can be thought of as the proportion of true negatives identified as false
positives that we must tolerate in order to detect a proportion of the true positives.
A ROC curve that passes through the point (0,1) is a perfect classifier with TPR
= 1 and FPR = 0. A diagonal ROC curve suggests that the classifier is no better
than a random prediction.

For easier comparisons between classifiers, the area under the ROC curve (AUC), is
often calculated [30]. A perfect classifier has AUC=1 while a random classifier will
receive a value close to 0.5. The AUC is a more expressive performance metric than
accuracy as it takes all thresholds into account and thereby gives a more complete
picture of how well the model captures the signal of the positive class in the data.

The coefficient of determination or R2 is a commonly used metric for evaluating
regression models. It is defined as

R2 = 1−
∑N
i=1(yi − f(xi))2∑N
i=1(yi − ȳ)2 , (3.13)

where ȳ is the mean outcome value of the validation or test data [34]. A regression
model which perfectly fits the data has a R2 value equal to 1.

3.3 Model interpretability
While model performance is an important consideration when deploying a model,
the interpretability of models has recently received increasing attention [35, 36, 37].
Some types of models are generally more interpretable than others [28]. For example,
in decision tree models a prediction can be explained by a set of rules. Unless the
tree is large, such a model will be interpretable. In contrast, a model like XGBoost
is a black box model as its predictions may be generated by contributions of several
hundreds of decision trees. Black box models often outperform simpler models, so
they are therefore frequently used in practice. In many cases there is a trade-off
between interpretability and model performance [35].

There are several reasons why model interpretability matters. Firstly, understand-
ing the prediction made by the model offers insight into what the model has learned
about the data [35, 38]. Secondly, understanding which features a model relies on
when making a prediction can help us to discover possible flaws and biases in the
data and thereby lead to the construction of better and more fair models [35, 28, 39].
As the adage goes: "garbage in, garbage out". Lastly, model interpretability is an
important means for gaining trust in the models, as models and algorithms are in-
creasingly integrated into different aspects of our daily lives [28, 39].
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Recent advances in model interpretability allow us to begin to understand what high-
performing models have learned. One of the most significant recent contributions
to the model interpretability field has been the application of Shapley values [40],
that originate from cooperative game theory, to explain model predictions [41]. The
Shapley value is described in Section 3.3.1, an efficient way to exactly compute it for
tree-based models is presented schematically in Section 3.3.2 and how Shapley values
can be combined to provide a global understanding of model behavior is explained
in Section 3.3.3.

3.3.1 Shapley value
Additive feature attribution methods calculate the contribution of each feature i to
the model prediction. These are so called local methods of model interpretability,
that explain the prediction for a single observation x [41]. The presence of a feature
in a model can either lead to an increase in the value predicted by the model (have
a positive contribution) or lead to a decrease in the predicted value (have a negative
contribution). By summing over the contributions of all p features we obtain a value
that expresses by how much the information contained in the features of observation
x causes the prediction to shift relative to a model prediction φ0, which is the average
model prediction E[f(X)] based on the entire dataset [42]. Ideally, we want the sum
of φ0 and the individual feature contributions φi(f,x), i = 1, 2, . . . , p to equal the
model prediction, i.e.

f(x) = φ0(f,x) +
p∑
i=1

φi(f,x). (3.14)

This property is called local accuracy. Additional desirable properties for addi-
tive feature attribution methods are consistency and missingness [41]. Consistency
means that if a change in the model causes the true importance of a feature in the
model to increase, then the calculated feature contribution should either stay the
same or increase, regardless of which other features are present. Missingness states
that a feature which has no impact on the prediction should be assigned a contri-
bution of zero. For example, if an additive feature attribution method were to be
applied to a decision tree where feature i was not present in any of the nodes, we
want φi(f,x) = 0 to hold.

The Shapley value is the only additive feature attribution method that satisfies all
three properties [41]. This value is obtained by calculating how the model prediction
changes on average when feature i is added to all possible groups of ordered features
(including the empty set). Letting R be the set of all feature orderings, R a feature
ordering and PR

i the set of all features that appeared before feature i in ordering R,
the Shapley value for feature i given the model f and the observation x is

φi(f,x) = 1
p!
∑
R∈R

[
fx(PR

i ∪ {i})− fx(PR
i )
]
. (3.15)
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Since the prediction is not affected by the order in which features are added, e.g.
fx({a, b}) = fx({b, a}) for two features a and b, we can instead redefine Eq. 3.15
using sets of features [43]. Letting S be a subset of all features F excluding feature
i, the Shapley value for feature i is

φi(f,x) =
∑

S⊂F\{i}

|S|!(|F | − |S| − 1)!
|F |! [fx(S ∪ {i})− fx(S)] . (3.16)

Here |S|! is the number of permutations of the features in set S, (|F | − |S| − 1)! the
number of permutations of the features appearing after set S and feature i and |F |!
is the number of permutations of all features. The factor

|S|!(|F | − |S| − 1)!
|F |! (3.17)

weights the sum in Eq. 3.16 to convert the calculations over sets of features into
calculations over all feature orderings. This alternative formulation simplifies the
computation of the Shapley value and is therefore used in practice.

When computing fx(T ) for some subset T of features for observation x we must
take into account the subset of T̄ of features that are dropped from observation x
[42]. This is expressed by the marginal expectation

fx(T ) = E [f(xT , XT̄ )] (3.18)

where XT̄ is the distribution of the dropped features, T ∩ T̄ = ∅ and T ∪ T̄ = F . It
was previously argued [41] that the conditional expectation, E [f(xT , XT̄ )|XT = xT ]
should be used to calculate fx(T ), however [42] showed that using the conditional
expectation can lead to irrelevant features being assigned non-zero Shapley values,
i.e. a violation of the missingness property.

Fortunately, initial implementations of Shapley values for model interpretability,
such as SHapley Additive ExPlanations (SHAP), used the marginal expectation
rather than the conditional expectation for easier computations [41]. The use of the
marginal expectation was initially motivated by the fact that it is the same as the
conditional expectation if the features are independent [41]. Since SHAP already
implemented the marginal expectation, the modified theoretical rationale for the
computation of fx(T ) did not necessitate any change to the algorithm used in SHAP.

The Shapley value represents the difference between the average prediction E[f(X)]
and the prediction f(x) for observation x that can be explained by feature i [42]. To
explain a prediction, the Shapley value must be calculated for all p features, which is
computationally expensive. Different approaches have been developed to calculate
approximate Shapley values, such as the Shapley sampling values method [43]. These
methods can be used to explain the predictions of any machine learning model.
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Methods for exact low-complexity computation of Shapley values have also been
developed for explaining predictions of certain types of machine learning models,
such as TreeExplainer for tree-based models.

3.3.2 TreeExplainer
TreeExplainer is a computationally efficient method for the exact computation of
Shapley values for tree-based models [26]. As was explained in Section 3.1.1, the
predictions made by a decision tree are determined by a set of rules that together
define a leaf. Instead of performing computations for each subset of features, Tree-
Explainer performs calculations per leaf [26]. TreeExplainer can also do this for
sums of trees and can thereby be used to calculate Shapley values for black-box
tree-based models like XGBoost in an efficient manner.

3.3.3 Global feature attribution
Shapley values are local and only express feature attributions of a single observation
x. While this helps us to understand why the model makes a specific prediction, it
does not provide a global understanding of how the model behaves. To gain a global
understanding we could repeat the calculation of Shapley values for all observations
and features in the dataset [26]. With tools such as TreeExplainer, this approach
has become computationally feasible in practice [26].

3.4 Statistical testing
This section covers statistical testing of categorical data, where data can be rep-
resented as a contingency table of counts (Table 3.2). For example, we may wish
to know whether subjects from a certain population are more likely to belong to a
category A than subjects from another particular population are. To test this hy-
pothesis we may use Fisher’s exact test, which is especially suitable for small sample
sizes [44].

Table 3.2: A contingency table of two populations showing the number of belonging
to category A and B as well as category and population totals.

Population 1 Population 2 Total
Category A nA1 nA2 nA.
Category B nB1 nB2 nB.
Total n.1 n.2 n..

3.4.1 Fisher’s exact test
The null hypothesis of Fisher’s exact test is that the probability of belonging to a
category A is independent of the population,

H0 : πA|1 = πA|2, (3.19)
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where the categories and populations are defined as in Table 3.2, πA|1 is the proba-
bility of subjects from population 1 belonging to category A and πA|2 is the corre-
sponding probability for subjects from population 2.

Given that the population and category totals n.1, n.2, nA., and nB. are fixed, nA1 has
a hypergeometric distribution [44] and the probability that nA1 assumes a particular
value k is

P (nA1 = k) =

(
nA.

k

)(
nB.

n.1−k

)
(
n..
n.1

) . (3.20)

For the one-tailed alternative hypothesis HA : πA|1 > πA|2, the p-value is the sum
of the probability of the observed value of nA1 and the probabilities of observing all
possible values for which k is larger than this value.
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Machine learning models learn to associate patterns of input features with an out-
come. Both aims of this thesis can be expressed as such learning tasks: the first
aim, to identify possibly drug-related AEs, involves finding AEs that are associated
with a treatment arm; while the second aim, to identify patient subgroups in which
the risk of a particular drug side-effect is potentially increased, concerns elucidating
which patient characteristics that are associated with an increased risk of developing
a specific drug side-effect.

The objective is thus to use modelling as an exploratory data mining tool, instead
of producing a model for predictive purposes. Put differently, we focus primarily on
what the model has learned rather than how well the model has learned. Recent
developments in model interpretability (Section 3.3), such as the Shapley value and
its implementation, SHAP, has given us tools to understand what the model has
learned.

A challenge when performing exploratory analysis is the validation of the results.
For this reason we have chosen to analyze the AEs from clinical trials of a well-
characterized drug, Symbicort. Any suspected drug-related AEs identified can
thereby be compared to the currently recognized side-effects of this drug. How-
ever, the possible risk factors for developing a particular drug side-effects have been
less explored and the findings of the second aim of this thesis should therefore be
considered hypothesis-generating.

The method for the identification of possible drug-related AEs is outlined in Section
4.1 and is followed by the method used to identify variables potentially associated
with an increased risk of having a particular drug side-effect (Section 4.2).

4.1 Identification of possibly drug-related adverse
events

The method that is described here is an adaptation of the inside-out data mining
method described by Southworth & O’Connell (2009) [5]. The principle of this
method is to first construct a model to predict the treatment a subject received
based on the AEs they experienced during the study and then inspect what the
model has learned. In this manner the model can help us to understand which AEs
or patterns of AEs that are possibly associated with a drug.
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While we recognize that in reality it is not the case that AEs determine treatment,
we must remind ourselves that a model does not represent a causal relationship but
rather a correlation between the features and the outcome. As correlation, unlike
causation, is bidirectional, we are free to use the AEs to predict which treatment
the subject received.

The subjects in the data used for this thesis have either received Symbicort (encoded
as 1) or placebo (encoded as 0), thus the problem is a binary classification task. As
described previously (Section 2.2), the AEs are encoded in binary format. AEs
that occur only once across both treatment arms are excluded as it is not possible
to evaluate the relevance of such AEs and they likely have limited impact in the
model. The consequences of removing these AEs is discussed in Section 2.3. Table
4.1 contains a schematic view of the data, where each row represents a different
subject.

Table 4.1: Schematic view of the data used to identify drug-related adverse events.
Each subject is represented on a separate row, while the columns indicate whether
the subject had different adverse events (1=yes, 0=no) and which treatment the
subject received (1=Symbicort, 0=placebo).

Subject AE 1 AE 2 AE 3 Treatment

Subj 1 1 1 0 1
Subj 2 1 0 1 1
Subj 3 0 0 0 1
Subj 4 0 1 0 0
Subj 5 0 0 0 0

With this data an XGBoost classification model with a cross-entropy loss function
is tuned using 5-fold cross-validation with AUC as metric. Table C.1 in Appendix C
lists the hyperparameters and the respective values that are investigated using grid
search, whereby models are constructed using all combinations of hyperparameter
values. The model that achieves the highest average AUC is selected and re-trained
using all the data. The trained model and all data are then used to calculate a
SHAP value for each subject-AE pair, which differs from the original inside-out
data mining method in which permutation importances are calculated for each AE.
One advantage of using the SHAP value over permutation importance is that the
SHAP value allows for the feature importance to be calculated on a subject level,
in addition to on a global level.

The SHAP value represents the contribution of the AE to the treatment prediction
for a specific subject, compared to the average prediction, which in this case is the
probability that a subject belongs to the Symbicort arm of the study. If the SHAP
values for an AE are further away from zero (either in the positive or negative di-
rection), it means that that AE is more informative to the model and impacts the
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prediction of the model more than an AE where the SHAP values of all subjects
are close to zero. Thus, if we take the absolute value of the SHAP values for all
subject-AE pairs and then average these by AE, we expect AEs with a higher mean
absolute SHAP value to be more important for the prediction than AEs where the
mean is close to zero.

Sorting the AEs from highest to lowest mean absolute SHAP value we obtain a
ranking of the AEs from highest to lowest importance in predicting any treatment.
Boxplots of the raw SHAP values are then used to understand which treatment the
highest ranking AEs are associated with. Any high-ranking AEs where the presence
of the AE is generally associated with a positive SHAP value, will be considered
as possible drug-related AEs, i.e. possibly related to Symbicort. The findings are
validated by comparing them to the currently recognized side-effects of Symbicort
(Appendix A). Since there are 723 subjects who received Symbicort in the dataset,
being able to detect side-effects with an incidence < 0.1% is considered unlikely.
AEs which are associated with a negative SHAP value are related to the placebo
treatment, according to the model.

Tree-based models such as XGBoost can capture interactions between features. In
order to understand what patterns of AEs the model has learned to associate with a
treatment, the SHAP values of each subject are transformed into a two-dimensional
space using t-distributed Stochastic Neighbor Embedding (t-SNE) with the default
hyperparameters and then plotted as a scatter plot, with each dot representing a
subject. t-SNE is a non-deterministic non-linear dimensionality reduction method
that can be used for producing lower dimensional representations of data for visual-
ization purposes [45]. By highlighting the plot by the highest-ranking AEs, we can
investigate which treatment-related AEs co-occur.

4.2 Identification of subgroups potentially having
an increased side-effect risk

Typically, drug side-effects only occur in a subset of patients. It is therefore of inter-
est to understand which factors are associated with an increased risk of developing a
particular side-effect. A similar analysis is commonly performed using efficacy end-
points, where the aim is to identify subgroups of patients with differential treatment
effect, and is known as subgroup analysis. While the use of subgroup analysis for
safety data has been suggested [3], these methods have generally not been developed
for this purpose.

In this section a method is described that is based on the Virtual Twins (VT) sub-
group analysis method proposed by Foster et al. (2011) [46]. This method was
initially developed with the aim of identifying subgroups of subjects in placebo-
controlled clinical trials who experience an enhanced effect when treated with a
drug. Here an adaptation of the VT method is used to identify risk groups of pa-
tients at an increased risk of developing the Symbicort side-effects oral candidiasis
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(a fungal infection in the mouth) and dysphonia (hoarse voice).

Section 4.2.1 introduces the application of the adapted VT method to the charac-
terization of drug side-effects. The variables that are considered in the subgroup
analysis are briefly described in Section 4.2.2 and the classification and regression
models that form the basis of the adapted VT method are presented in Section 4.2.3.

4.2.1 Adapted Virtual Twins method
When applying the adapted VT method to the analysis of suspected drug side-effects
we are interested in identifying patient characteristics that are associated with an
increased risk of having the particular AE when treated with the drug. However,
AEs that are drug-related may also be present in subjects not receiving the drug.
Thus, in order to understand which variables are linked to the drug, we must cor-
rect for variables that are associated with the development of the AE in general,
regardless of treatment. This is what the adapted VT method aims to achieve.

The adapted VT method (Fig. 4.1) involves the construction of three models, where
the two models that are initially developed are used as a basis for the construction
of the third model. As a first step, data from subjects who received the drug treat-
ment is used to train a model to predict the probability of a subject experiencing
a particular drug side-effect. A second model is subsequently trained for the same
prediction task, but instead using data from subjects who received the placebo treat-
ment. We will hereafter refer to these models as the drug model and placebo model,
respectively.

These two models are then used to generate a prediction for each subject, i.e. each
subject receives two probabilities of getting the AE: one based on the model for the
treatment they received and one based on the treatment they did not receive. The
latter prediction is referred to as the virtual twin. The method described hereafter
differs from the original VT method.

The next step in the adapted VT method involves subtracting the predictions of
the placebo model from the predictions of the drug model, following a logit trans-
formation of the probabilities into scores. The differences in scores are then used as
outcomes in a regression model that is trained using all data (i.e. input variables
from all subjects). By calculating the SHAP values of the trained regression model
and computing the mean absolute SHAP value by variable, we can learn which vari-
ables are most informative to the model when explaining any differences in scores
between the drug and placebo models, as these will have the highest mean absolute
SHAP value.

Variables that can explain differences in the risk of experiencing the side-effect un-
der different treatments in the same subject are the result of an association between
the variable and the side-effect risk that has been picked up by either the drug or
placebo models or by both models. Therefore, the identified most informative vari-
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ables are used as a starting point to explore which variables may be risk factors for
the development of the drug-related AE, rather than general risk factors for devel-
oping the AE or noise stemming from the placebo model.
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Figure 4.1: (a) Data consisting of a number of variables measured at baseline
(before first dose of treatment is administered) as well as information regarding
whether a subject had a specific adverse event is divided according to which treat-
ment each subject received. For subjects who received drug treatment, a model (the
drug model) is trained to predict the probability of a subject having a particular
adverse event based on the baseline variables. A second model (the placebo model)
is trained for the same prediction task, but instead using data from subjects who
received placebo treatment. (b) The trained drug and placebo models are then ap-
plied to all subjects, such that each subject gets two predictions: one based on the
treatment they received and one based on the treatment they didn’t receive (the
virtual twin). Predictions from the placebo model are subtracted from the drug
model. A regression model is then trained using the baseline variables as features
and the difference in predicted probabilities as outcomes. (c) The mean absolute
SHAP values of the baseline variables in the regression models are calculated, allow-
ing for variables that are most informative to the regression model when explaining
any differences in model predictions to be identified. Such variables are associated
with an increased risk of having the AE according to the drug model, placebo model
or both models.

In order to understand the nature of the identified signal, we again use SHAP values
but now from the drug and placebo models. SHAP values for the drug model are
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Figure 4.2: Illustration of a plot of the SHAP values versus observed baseline
variable values for the drug (yellow) and placebo (blue) models. Each point repre-
sents a different subject. A positive SHAP value indicates an increased risk of the
drug side-effect, while a negative SHAP value indicates a decreased risk, according
to the model. In this particular example the placebo model does not identify any
association between the variable and the risk of experiencing the side-effect. In the
drug model the risk is increased for higher values of the variable. By fitting a curve
through the points and calculating the value at which the SHAP value is zero (hor-
izontal dashed line), a cut-off (vertical dashed line) can be calculated which can be
used to define the subgroup of patients potentially having an increased risk of the
side-effect.

computed based on subjects who received the drug and SHAP values for the placebo
model are similarly computed based on subjects who received placebo. We can then
inspect the SHAP values of these two models for each of the identified informative
variables by plotting the SHAP values against the observed baseline variable values
(Fig. 4.2). Here a positive SHAP value represents that the model has learned that
a variable confers an increased risk of having the side-effect in a particular subject,
while a negative SHAP value represents a decreased risk. A SHAP value of zero
means that the variable does not influence the model prediction for a subject and is
neither associated with an increased nor decreased risk of having the side-effect.

Thus, if the SHAP values of a model are zero for all subjects we can conclude that
this model does not identify any association between the variable and the risk of
the side-effect. For a drug-specific risk factor of the AE we expect the drug model
to have non-zero SHAP values while the SHAP values of the placebo model are all
zero, as is illustrated in Figure 4.2. A general risk factor, on the other hand, will
result in non-zero SHAP values in both the drug and placebo models.

The plots of the SHAP values against variable values will also inform us for which
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variable values the risk of the AE is higher and for which values the model assigns
a lower risk. This information is used to define cut-off values where the risk of
the side-effect is higher and thereby define the subgroup of patients who are at an
increased risk of the side-effect (Fig. 4.2). Specifically, for continuous variables a
LOESS (locally estimated scatterplot smoothing) curve is fitted per treatment arm
and the value at which this curve has a SHAP value of zero is used as the cut-off. In
case the cut-off cannot be established for one of the treatments, the same cut-off is
used for both treatments. Validation of the identified subgroups is performed using
Fisher’s exact test.

4.2.2 Variables included in the subgroup analysis
A range of variables that were either known or measured at the beginning of the
study, before the first dose of the treatment was administered, are considered in
the subgroup analysis. These include variables related to demographics, laboratory
data, results from various medical examinations, medical history, patient-reported
outcomes and concomitant medication. In addition, the study the subject belongs
to is included as a variable.

Categorical variables are encoded as dummy variables with one level removed to re-
duce correlation between variables. Levels of categorical variables that only contain
one subject are removed and any missing values in the remaining levels are replaced
by the respective modes. Ordinal variables are recoded as integer values. Any miss-
ing numeric values are imputed using k-nearest neighbors with k = 5, whereby the
mean variable value of the k closest subjects (by Euclidean distance following nor-
malization) is used. Finally, one variable is removed in each pair of highly correlated
variables.

4.2.3 Classification and regression models
For each studied side-effect, two XGBoost classification models with cross-entropy
loss functions are constructed that use the variables mentioned in Section 4.2.2 to
predict the side-effect; one using data from subjects who received Symbicort and the
other using data from subjects who received placebo. These models are tuned using
grid search and 5-fold cross-validation with AUC as metric. Per treatment arm,
the model having the highest cross-validation AUC is selected and re-trained with
all the data from subjects receiving the particular treatment. All hyperparameter
values which are investigated are listed in Table C.2 in Appendix C.

The regression model that builds on the pair of drug and placebo models is an
XGBoost regression model with a squared-error loss function that is tuned and
trained in an analogous manner, using R2 as metric. The model with the highest
cross-validation R2 is selected and re-trained using all data. Table C.1 in Appendix
C contains the hyperparameter values that are searched during the tuning of this
model.
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Results

Results of the analyses aiming to find possible Symbicort-related AEs and variables
associated with an increased risk of developing specific side-effects when treated
with Symbicort are presented in Section 5.1 and 5.2, respectively.

5.1 Identification of possibly drug-related adverse
events

A description of the selected model is found in Appendix D.1. This model achieved
a mean AUC of 0.56, as can be seen from the ROC curve in Figure 5.1, and performs
only slightly better than a random classifier (red dashed line).

Figure 5.1: Receiver operating characteristics (ROC) curves following 5-fold cross-
validation of the selected classification model for assigning subjects to a treatment
arm based on their experienced adverse events. The blue line indicates the mean
ROC curve, the dashed red line the expected ROC curve for random classification
and the shaded gray area represents ± 1 standard deviation of the mean ROC curve.
The mean area under the ROC curve (AUC) is 0.56.

The ten AEs with the highest mean absolute SHAP values in the model are shown in
Figure 5.2. These AEs, will hereafter be referred to as the highest-ranking AEs and
represent the AEs that are most informative in the model when predicting treat-
ment arm. The most important AEs according to the model are oral candidiasis (a
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fungal infection in the mouth), COPD and dysphonia (hoarse voice). While COPD
is a disease that all subjects in the study suffer from it can also occur as an AE.
The criteria for this include that the COPD symptoms are serious, that the subject
manifests new symptoms of the disease or that the COPD symptoms cause the sub-
ject to discontinue the study [21].

The known side-effects of Symbicort that are identified by the method are high-
lighted in yellow in Figure 5.2 and include oral candidiasis, dysphonia, dizziness,
muscle spasms and anxiety. Oral candidiasis corresponds to "candida infections
in oropharynx" and dysphonia is included in the side-effect "mild irritation in the
throat, coughing, hoarseness". Both of these side-effects occur in approximately 1%
to 10% of patients, while dizziness, muscle spasms ("muscle cramps") and anxiety
("agitation, restlessness, nervousness, sleep disturbances") occur in 0.1% to 1% of
patients, according to Appendix A. COPD, nasopharyngitis, dyspnoea, pneumonia
and sinusitis are related to some treatment (either Symbicort or placebo) according
to the model, but are not known drug side-effects and are shown in gray in Figure 5.2.

ORAL CANDIDIASIS

COPD

DYSPHONIA

NASOPHARYNGITIS

DYSPNOEA

PNEUMONIA

SINUSITIS

DIZZINESS

MUSCLE SPASMS

ANXIETY

0.00 0.02 0.04 0.06

Mean(|SHAP value|)

Known side−effect

No

Yes

AEs with highest mean(|SHAP value|)

Figure 5.2: The ten adverse events with the highest mean absolute SHAP values,
representing AEs that are most informative in the model when predicting treatment
arm. Known Symbicort side-effects are highlighted in yellow, while other AEs are
shown in gray.

In order to determine which treatment the model associates with each AE, we in-
spect the SHAP values of the highest-ranking AEs. In Figure 5.3, the SHAP values
of all subjects have been grouped by AE and whether they had the AE or not; yel-
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ORAL CANDIDIASIS

COPD

DYSPHONIA

NASOPHARYNGITIS

DYSPNOEA

PNEUMONIA

SINUSITIS

DIZZINESS

MUSCLE SPASMS

ANXIETY

−0.5 0.0 0.5 1.0 1.5

SHAP value

Had AE

No

Yes

SHAP values of highest−ranking AEs

Figure 5.3: Boxplots of SHAP values for the highest-ranking AEs, grouped by if
subject had AE (yellow) or not (gray). Adverse events for which the yellow boxplots
appear to the right of the dashed line are to be considered as suspected drug side-
effects.

low boxplots represent subjects who had the AE and gray boxplots subjects who did
not have the AE. In this context a positive SHAP value corresponds to an increased
probability that the subject received Symbicort according to the model, while a neg-
ative SHAP value that the model assigns a decreased probability that the subject
received Symbicort.

As expected, the absence of an AE (gray boxplot in Figure 5.3) is generally associ-
ated with a SHAP value close to zero. Since most AEs are uncommon, the absence
of an AE is not considered informative to the model. On the contrary, the presence
of an AE (yellow boxplot) is more informative to the model when predicting treat-
ment arm and may result in a non-zero SHAP value.

According to the model, oral candidiasis, dysphonia, nasopharyngitis, sinusitis, dizzi-
ness, muscle spasms and anxiety are possible side-effects of Symbicort while COPD,
dyspnoea (shortness of breath) and pneumonia are associated with placebo treat-
ment. In addition, these findings are even supported by the data, as the incidence
of these AEs is consistently higher in the respective treatment arm that the model
associates the AEs with (Appendix E).

Out of the seven possible drug-related AEs identified by the method, five are known
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Figure 5.4: t-SNE plot of the SHAP values for all subjects. Yellow dots indicate
subjects who had at least one adverse event, while gray dots represent subjects who
did not experience an adverse event.

side-effects of Symbicort: oral candidiasis, dysphonia, dizziness, muscle spasms and
anxiety. All of these AEs except anxiety are significantly over-represented in the
Symbicort arm by Fisher’s exact test at a significance level of 0.05 (Appendix E).
The lack of a statistically significant result for the AE anxiety would have led to
this AE not being identified as a possible side-effect if traditional statistical testing
alone would have been employed.

The three AEs that the model associates with placebo treatment are not consid-
ered to be side-effects of Symbicort (Appendix 2.3). In addition, both COPD and
dyspnoea (shortness of breath) are expected complications in COPD patients not
receiving active treatment.

The model thus correctly classifies eight out of the ten highest-ranking AEs. Na-
sopharyngitis and sinusitis were both incorrectly classified as possible Symbicort
side-effects. However, these results are not statistically significant (Appendix E)
and may be due to the limited amount of data available for analysis.

The remainder of this section explores the patterns of AEs that are learned by the
model by using a two-dimensional representation of the SHAP values of each sub-
ject (Figure 5.4), where each dot represents a subject. This can be thought of as a
simplified view of what the model has learned and does not necessarily correspond
to reality. In Figure 5.4 subjects without any AE are displayed as gray dots and are
clustered together, while subjects with at least one AE are displayed as yellow dots.
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Some of the subjects with some AE are interspersed with the gray dots and are thus
indistinguishable from subjects with no AE according to the model. Other subjects
with some AE are represented as clusters at various distances from the cluster of
subjects with no AE.

Highlighting the t-SNE plot by some of the highest-ranking AEs (Fig. 5.5) allows
us the see which patterns of AEs the model has learned to associate with treat-
ment. This allows general co-occurrences of AEs to be identified. In addition, this
visualization can also reveal whether the model has learned that an AE belongs to
one pattern (represented as a distinct cluster in the t-SNE plot) or several patterns
(where the AE is present in multiple clusters).

Figure 5.5 shows that oral candidiasis and dysphonia are largely distinct clusters far
away from the cluster of subjects with no AE. According to the model, the patients
who are affected by oral candidiasis are different from the patients who are affected
by dysphonia. Nasopharyngitis, on the other hand, is spread out across several
clusters. This AE, which is also known as the common cold, affects a wide range of
subjects and this is reflected in its more complex pattern of occurrence in Figure 5.5.

For the AEs most related to placebo, the AEs dyspnoea and pneumonia are mainly
represented as distinct clusters (Fig. 5.6). COPD forms a large cluster, but also oc-
curs in several other clusters. This is unsurprising since all subjects have a diagnosis
as COPD and are at risk of COPD complications. Noteworthy in both Figure 5.5
and 5.6 is that the highest-ranking AEs appear as clusters that are farthest away
from the cluster of subjects having no AE.
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Figure 5.5: t-SNE plots of the
SHAP values for all subjects, with
subjects who experienced the three
most important identified possibly
drug-related adverse events high-
lighted in yellow: oral candidiasis
(top), dysphonia (middle) and na-
sopharyngitis (bottom).
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Figure 5.6: t-SNE plots of the
SHAP values for all subjects, with
subjects who experienced the three
most important identified placebo-
related adverse events highlighted
in yellow: chronic obstructive pul-
monary disease (top), dyspnoea
(middle) and pneumonia (bottom).
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5.2 Identification of subgroups potentially having
an increased side-effect risk

The analyses aiming to identify variables associated with an increased risk of having
the side-effects oral candidiasis and dysphonia when treated with Symbicort are
presented separately in Section 5.2.1 and 5.2.2, respectively. Each analysis includes
607 variables that were measured or known prior to each subject receiving the first
dose of the study treatment.

5.2.1 Oral candidiasis
The selected Symbicort, placebo and regression models that form the basis of this
analysis are described in Appendix D.2.1. In the Symbicort arm 44 out of 723
subjects reported experiencing oral candidiasis, while 13 out of 677 subjects reported
the event in the placebo arm. Figure 5.7 displays the corresponding ROC curves of
the Symbicort and placebo models. The ROC curve of the Symbicort model shows
that this model is clearly better than a random classification (mean AUC 0.78).
In comparison, the ROC curve of the placebo model indicates a somewhat poorer
performance of this model (mean AUC 0.72), which may be a consequence of the
small number of subjects who reported having oral candidiasis in this treatment arm.
The regression model achieved a mean 5-fold cross-validation R2 of 0.97, meaning
that the model fits very well to the data. However, as this model is based on the
predictions of the Symbicort and placebo models, any weaknesses in the underlying
models may be transferred to the regression model.

Figure 5.7: Receiver operating characteristics (ROC) curves following 5-fold cross-
validation of the selected Symbicort model (left) and placebo model (right) for oral
candidiasis. The blue line indicates the mean ROC curve, the dashed red line the
expected ROC curve for random classification and the shaded gray area represents
± 1 standard deviation of the mean ROC curve. The mean area under the ROC
curve (AUC) for the Symbicort and placebo models is 0.78 and 0.72, respectively.
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The five variables with the highest mean absolute SHAP values in the oral candidia-
sis regression model are presented in Figure 5.8 and include: country US, antibiotics
use, the concentration of neutrophils (a type of cell which is a part of the immune
system) in the blood, smoking status and whether the patient suffered from anxiety
at the initial study visit.

Country US

Antibiotics use

Neutrophils, particle concentration

Smoking status

Current anxiety disorders and symptoms

0.0 0.2 0.4 0.6

Mean(|SHAP value|)

Variables with highest mean(|SHAP value|)

Oral candidiasis

Figure 5.8: The five variables with the highest mean absolute SHAP values in the
oral candidiasis regression model.

According to Figure 5.9, the Symbicort model associates subjects based in the US,
antibiotics use, low neutrophil concentration and habitual smoking with in an in-
creased risk of oral candidiasis. The placebo model identifies no such associations,
but has instead learned that anxiety is related to an increased risk of oral candidiasis.

Performing statistical analysis based on these findings shows that US subjects and
subjects taking antibiotics have a significantly increased risk of having oral can-
didiasis in both treatment arms by Fisher’s exact test (Table E.2 in Appendix E).
However, the over-representation of oral candidiasis in these patient subgroups is
more pronounced in subjects taking Symbicort than subjects taking placebo.

A low neutrophil concentration exhibits a significantly higher risk of developing oral
candidiasis in subjects receiving Symbicort (9.5% at lower neutrophil concentration
versus 3.9% at higher neutrophil concentration, p<0.01), but not in subjects receiv-
ing placebo (Table E.2). Similarly, regular smoking appears to increase the risk of
having oral candidiasis in subjects receiving Symbicort but not in subjects receiving
placebo, although the raw p-value is close to 0.05 in the Symbicort arm and would
likely not be significant after multiplicity adjustment. Anxiety was significantly re-
lated to an increased risk of oral candidiasis in the placebo arm only.

In sum, based on the models and available data, a low neutrophil concentration
and smoking status are variables that are potentially linked to an increased risk of
experiencing oral candidiasis in patients treated with Symbicort. Country US and
antibiotics use are general risk factors of oral candidiasis, as they confer a higher
risk independent of treatment.
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Figure 5.9: SHAP values of the Symbicort and placebo models plotted against
variable values for the variables (a) country US, (b) antibiotics use, (c) neutrophil
concentration, (d) smoking status and (e) current anxiety disorders and symptoms.
The dashed horizontal line represents a SHAP value of zero, i.e. no impact on
the model prediction. In (c) a LOESS curve has been fitted to the SHAP values
from each model. According to plots (a)-(d) the Symbicort model associates these
variables to the risk of oral candidiasis, while plot (e) shows that anxiety is linked
to oral candidiasis by only the placebo model.
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5.2.2 Dysphonia
The Symbicort, placebo and regression models used for this analysis are described
in Appendix D.2.2. There were 21 out of 723 subjects who experienced dysphonia
in the Symbicort arm, while only 5 subjects out of 677 had dysphonia in the placebo
arm. The mean AUC of the Symbicort and placebo models is 0.72 and 0.81, sug-
gesting that the placebo model performs better than the Symbicort model (Figure
5.10). However, the ROC curves of both models exhibit high variance, especially
the placebo model. The R2 of the corresponding regression model was 0.84.

Figure 5.10: Receiver operating characteristics (ROC) curves following 5-fold
cross-validation of the selected Symbicort model (left) and placebo model (right)
for dysphonia. The blue line indicates the mean ROC curve, the dashed red line the
expected ROC curve for random classification and the shaded gray area represents
± 1 standard deviation of the mean ROC curve. The mean area under the ROC
curve (AUC) for the Symbicort and placebo models is 0.72 and 0.81, respectively.

The five variables with the highest mean absolute SHAP values in the regression
model are displayed in Figure 5.11 and these are: pre-bronchodilator forced vital
capacity (FVC; the volume of air that the patient can exhale after taking a deep
breath), FEV1 reversibility (the percent increase in air volume that the patient can
exhale in one second following treatment with a bronchodilator), platelet concentra-
tion (components of the blood essential for blood clotting), sitting diastolic blood
pressure and months since first COPD symptoms.

High FEV1 reversibility and low platelet concentration are related to an increased
risk of dysphonia according to the Symbicort model, but not according to the placebo
model (Figure 5.12). A lower sitting diastolic blood pressure is linked to an increased
risk in both models, suggesting that this is an independent risk factor for develop-
ment of dysphonia. Interestingly, the associations learned by the Symbicort and
placebo models exhibit opposite trends for the variables pre-bronchodilator FVC
and months since first COPD symptoms.
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Figure 5.11: The five variables with the highest mean absolute SHAP values in
the dysphonia regression model.

Statistical testing of these results (Table E.3 in Appendix E) shows that FEV1 re-
versibility is not a significant risk factor of dysphonia in either treatment arm, but
recent onset of COPD symptoms is a significant risk factor in the Symbicort arm.
The raw p-value is, however, close to 0.05. In addition, both high FVC and low
platelet concentration are significantly associated with dysphonia in the Symbicort
arm whereas low diastolic blood pressure is significantly associated with dysphonia
independent of treatment.

From these results we can conclude that low platelet concentration, high FVC and
possibly also recent onset of COPD symptoms are potential factors associated with
an increased risk of dysphonia in patients treated with Symbicort and that low
diastolic blood pressure is likely an independent risk factor for the development of
dysphonia.
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Figure 5.12: SHAP values of the Symbicort and placebo models plotted against
variable values for the variables (a) pre-bronchodilator FVC, (b) FEV1 reversibility,
(c) platelet concentration, (d) sitting diastolic blood pressure and (e) months since
first COPD symptoms. The dashed horizontal line represents a SHAP value of zero,
i.e. no impact on the model prediction. A LOESS curve has been fitted to the
SHAP values from each model. According to plots (b) and (c) the Symbicort model
associates these to the risk of dysphonia, plot (d) shows that both the Symbicort and
placebo models identify a similar pattern, while plots (a) and (e) that the models
identify opposite patterns with respect to dysphonia risk.
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6
Discussion

In this thesis machine learning was used as an exploratory data mining tool to an-
alyze adverse events from clinical trials. This enabled known drug-related adverse
events to be identified in a data-driven manner as well as hundreds of different
variables to be searched with the aim of identifying potential patient risk factors
associated with an increased risk of developing a specific drug side-effect.

Using data from two phase III clinical trials of Symbicort for the treatment of COPD,
the adapted inside-out data mining model in combination with statistical testing
identified four true side-effects of Symbicort: oral candidiasis, dysphonia, dizziness
and muscle spasms. The results for oral candidiasis and dysphonia were highly statis-
tically significant and these side-effects have a higher expected frequency (1%-10%)
than dizziness and muscle spasms (0.1%-1%) according to Appendix A. Anxiety, a
known side-effect of Symbicort was identified as a potential drug-related AE by the
model, but the result was not statistically significant. This is likely a consequence
of the limited number of subjects included in the analysis.

Nasopharyngitis (the common cold) and sinusitis were also flagged as potential drug-
side effects by the model and appeared more frequently in the Symbicort arm than
in the placebo arm, but these differences were not statistically significant. Both na-
sopharyngitis and sinusitis are not considered side-effects of Symbicort and should
be regarded as false positive findings by the method. The fact that these AEs were
not statistically significant demonstrates the value of performing statistical testing
in this setting to reduce the risk of false positive findings. However, false positive
findings may still arise due to multiple testing. Given the limited number of obser-
vations, false negative findings may also result from such testing, as was seen with
the AE anxiety. Thus, the initial results generated by the machine learning model
provide a highly sensitive early indication of the possibly drug-related AEs.

Certain known common Symbicort side-effects, such as palpitations, were not identi-
fied by the method. However, these events were not frequently reported in the data
(Fig. B.1). The low frequency of these AEs in the data may have several explana-
tions. Firstly, these AEs may take a longer time to develop, and would therefore not
be detectable within the limited duration of the clinical trials. Secondly, the homo-
geneous patient population included in the clinical trials may not be representative
of the true patient population.

The adapted inside-out data mining method aims to identify possible drug side-
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6. Discussion

effects by finding AEs that are over-represented in subjects receiving the drug com-
pared to subjects receiving placebo. However, the over-representation of AEs in
subjects receiving the drug is not sufficient in order for an AE to be classified as
a side-effect. For example, it needs to be determined whether it is reasonable to
assume that the drug caused the AE. The Bradford Hill Criteria is one method
for how to perform such an investigation [47]. In addition, certain serious AEs are
known to often be drug side-effects, and may be considered side-effects even when
just reported by a single subject. Lists of such AEs, known as Designated Medi-
cal Events, are published by regulatory authorities, e.g. the European Medicines
Agency [48]. Therefore, the adapted inside-out data mining method should be con-
sidered as complementary to other established methods for AE analysis.

The AEs in this thesis were coded in binary format. This ignores the intensity, time
of onset, duration as well as repeated occurrences of an event and thereby fails to
capture differences in burden of the AE between treatment arms. Depending on
the patient population and drug under study, differences in the burden of AEs may
be an important way in which AE profiles differ between drug and placebo arms.
Such differences would not be captured by the current method. Instead, the current
method relies on a different spectrum of AEs arising in the drug arm compared to
the placebo arm.

Machine learning methods generally perform better when more data is available.
Pooling of data from different sources is a common way of increasing the amount
of data. However, if the patient populations from which the data originates are
different, this may result in findings that are artefacts of the pooling rather than
the signal in the individual datasets. This is known as Simpson’s paradox. In this
project data was pooled from two different studies. While the inclusion and exclu-
sion criteria of these studies are similar, the patient populations may have been dif-
ferent. For example, the set of countries from which patients were recruited differed.

Another important factor that may have influenced the AEs that were observed is the
differing exposure of subjects to treatment, which had two principal causes. Firstly,
the duration of the included studies differed, with SHINE following subjects during
6-months while SUN was a 12-month study. This may have caused AEs that take a
longer time to develop to be observed only in SUN but not in SHINE. However, for
events with a short time to onset the expected impact of the longer study duration in
SUN would likely have been minimal. The binary coding of events also meant that
repeated occurrences of events, which would have been more likely in the 12-month
study, were ignored. Secondly, subjects who discontinued the study were included
in the analysis. One reason why subjects choose to discontinue is if they experience
an AE. Since the subjects in this study were COPD patients, one can hypothesize
that subjects who received placebo treatment experienced complications of their
COPD disease which could have been serious enough to cause discontinuation. This
may explain why a slightly lower number of events were observed in the placebo arm.

The original paper describing the inside-out data mining method reported a classi-
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6. Discussion

fication error of 0.25 and 0.39 for data from two clinical trials to which the method
was applied [5]. In contrast the model constructed here had a mean AUC of 0.56.
The poor performance of the model may be a consequence of the large number of
subjects reporting no AE during the studies. In each arm approximately 40% of
subjects did not report any AE. Considering also events where the incidence was
similar in both arms, the model would be expected to not perform better than ran-
domly guessing for these subjects. How well the model must perform in order to
yield trustworthy results is a valid question.

The mean absolute SHAP value was used as a crude measure of ranking the AEs
according to being most likely to be possibly related to any treatment. Interestingly,
in the t-SNE plot of the SHAP values, the mean absolute SHAP value appeared to
be positively correlated with the distance to the cluster of subjects with no AE.
However, one must exercise caution when interpreting t-SNE plots as only neigh-
borhoods but not distances and densities are preserved [49]. The algorithm is also
stochastic and will therefore yield somewhat different results each time it is run
[45]. In spite of the stochastic nature of t-SNE, the positive correlation between the
highest-ranking AEs and the distance to the main cluster of subjects having no AE
still held upon re-running the t-SNE algorithm.

The t-SNE plot indicated that the model had learned that the oral candidiasis and
dysphonia AEs affect different sub-populations of patients. This is consistent with
the finding by the adapted VT method that very different risk factors were associ-
ated with developing these AEs when treated with Symbicort.

The adapted VTmethod identified both independent and possibly Symbicort-specific
risk factors. Due to the limited availability of data and in particular the low event
rate, these results should be interpreted with caution. It should also be noted that
the identified variables only show an association with the AE and any causal link
cannot be established based on this data, thus the findings should be considered as
hypothesis-generating. In addition, the true factors driving the development of the
AE may not have been measured.

Subjects in the US and subjects taking antibiotics were found to be at a higher risk
of developing oral candidiasis independent of treatment. In SHINE it was reported
that subjects in the US had a higher incidence of AEs overall compared to subjects
in non-US regions (63.6% versus 46.8%) and that this held also after adjustment for
differences in exposure [21]. The increased risk of oral candidiasis in US subjects
could be an effect of differences in reporting practices or different practices when
administering the medication. For example, it is known that rinsing the mouth after
using an inhaler with an inhaled corticosteroid (such as budesonide, one of the com-
ponents of Symbicort) can help reduce the risk of developing oral candidiasis [50].
The increased risk of oral candidiasis in patients taking antibiotics is considered to
be an effect of changes to the microbiome in the mouth caused by the antibiotic [51].

A low neutrophil concentration was identified as a possible risk factor of oral can-
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6. Discussion

didiasis in patients taking Symbicort, but did not show any significant association
to the condition in the placebo arm. Neutrophils are part of the innate immune
system and form an integral part in the defense against opportunistic infections
[52], such as Candida albicans, the yeast that overgrows in oral candidiasis. The
inhaled corticosteroid component of Symbicort has an anti-inflammatory action and
one can speculate that it may interact with neutrophils. This finding is however
only an association and is based on relatively few events.

Associations between smoking and an increased risk of development of oral can-
didiasis have been found in other studies [53]. The lack of a significant association
between smoking and oral candidiasis risk in the placebo arm in this thesis may be
the result of the limited amount of data that the analysis is based on, as only 13
subjects in the placebo arm experienced oral candidiasis.

Dysphonia was associated with a low diastolic blood pressure irregardless of treat-
ment and with a low platelet concentration, a high FVC and possibly also recent
onset of COPD symptoms in patients taking Symbicort. Studies in patients under-
going hemodialysis have found that a low systolic blood pressure was linked to an
increased incidence of dysphonia, but this was not the case for diastolic blood pres-
sure [54]. As a low platelet concentration, a high FVC and recent onset of COPD
symptoms only exhibit an association with an increased risk of dysphonia in subjects
treated with Symbicort, these variables may be a proxy for other underlying factors
which are driving the development of dysphonia. These findings are also based on
a limited set of subjects.

A challenge when applying the adapted VT method to search for risk factors of side-
effect development is the need for placebo data and a sufficient incidence of the AE
in the placebo arm. The availability of placebo data may be limited due to ethical
concerns, especially when depriving study subjects of active treatment can have se-
rious consequences for the patient. Even when placebo data is available, the number
of events in the placebo arm must be sufficient in order to build a trustworthy model.
As the AEs that are selected for this analysis (oral candidiasis and dysphonia) are
drug side-effects, they will be expected to have a lower incidence in the placebo arm.

Simulation studies could aid our understanding of the characteristics of the adapted
inside-out data mining and adapted VT methods. Of particular interest will be how
well the models need to perform in order to provide reliable guidance.
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7
Conclusion

The exploratory machine learning workflow developed in this thesis offers an objec-
tive means of analyzing AEs from clinical trials that is complementary to current
practice. In addition, the comprehensive analysis of subgroups could be a step to-
wards personalized treatment. Future studies should aim to validate the workflow
in order to establish the necessary performance characteristics of the models.
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A
Symbicort side-effects

Table A.1 lists descriptions of the side-effects of Symbicort and is adapted from the
Investigator’s Brochure (version 10, 28 June 2019) of this drug. This document rep-
resents the current state of knowledge of the safety and efficacy of Symbicort. It is
revised regularly and is based on data collected during drug development as well as
post-marketing clinical trials and spontaneous reporting.

Table A.1: Frequencies and descriptions of the known side-effects of Symbicort.

Frequency Description

Common (1% to 10%) Palpitations
Candida infections in oropharynx
Headache, tremor
Mild irritation in the throat, coughing, hoarseness

Uncommon (0.1% to 1%) Tachycardia
Nausea
Muscle cramps
Dizziness
Agitation, restlessness, nervousness, sleep distur-
bances

Rare (0.01% to 0.1%) Cardiac arrhythmias, e.g., atrial fibrillation,
supraventricular tachycardia, extrasystoles
Immediate and delayed hypersensitivity reactions,
e.g., dermatitis, exanthema, urticaria, pruritus,
angioedema and anaphylactic reaction
Bronchospasm
Skin bruising

Very rare (<0.01%) Angina pectoris
Signs or symptoms of systemic glucocorticosteroid
effects, e.g., hypofunction of the adrenal gland
Hyperglycemia
Depression, behavioral disturbances
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B
Exploratory data analysis
supplementary material

Figure B.1 displays the ten most common AEs in the data. The most common AE
was COPD, followed by nasopharyngitis and oral candidiasis.
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Figure B.1: The ten most common adverse events across the Symbicort and
placebo arms.

The frequency distribution of the number of different AEs per subject, after removal
of AEs that were experienced by only one subject, by treatment is shown in Figure
B.2.
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Figure B.2: Frequency distribution of the number of different adverse events per
subject by treatment, after exclusion of adverse events that were experienced by
only one subject. The dashed line represents the median number of adverse events
per subject, which was two in the Symbicort arm and one in the placebo arm.
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C
XGBoost hyperparameters

The hyperparameters investigated during the tuning of the XGBoost models are
presented in Table C.1 and C.2.

Table C.1: Hyperparameter values investigated in the XGBoost classification
model for predicting treatment arm from adverse events as well as in the XGBoost
regression model for predicting the difference in scores between the drug and placebo
models.

Hyperparameter Description Values investigated

n_estimators The number of trees to construct 100, 200, 300, 400
max_depth Maximum depth of the tree 2, 3, 4, 5
learning_rate Learning rate 0.01, 0.05, 0.1, 0.2, 0.3
lambda L2 regularization 0.5, 1, 2
min_split_loss Minimum loss reduction to split

at node
0, 1, 5, 10

min_child_weight Minimum sum of instance weight
needed in a child

1, 2, 3

Table C.2: Hyperparameter values investigated in XGBoost classification models
for predicting the probability of a subject experiencing a particular adverse event.

Hyperparameter Description Values investigated

n_estimators The number of trees to construct 100, 200, 300, 400
max_depth Maximum depth of the tree 2, 3
learning_rate Learning rate 0.01, 0.05, 0.1, 0.2, 0.3
lambda L2 regularization 0.5, 1, 2
min_split_loss Minimum loss reduction to split

at node
0, 1, 5

min_child_weight Minimum sum of instance weight
needed in a child

1, 2

max_delta_step Maximum update of any leaf 1, 3, 5, 7, 9
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D
The selected models

Descriptions of the selected models are presented here.

D.1 Model for identification of possibly drug-related
adverse events

The hyperparameters of the XGBoost model that achieved the highest mean cross-
validation AUC is shown in Table D.1

Table D.1: Hyperparameter values of the selected XGBoost model for predicting
treatment arm from adverse events.

Hyperparameter values

n_estimators = 200
max_depth = 4
learning_rate = 0.05
lambda = 0.5
min_split_loss = 0
min_child_weight = 1

D.2 Models for characterization of drug side-effects

The Symbicort, placebo and regression models that are used in characterizing the
AEs oral candidiasis and dysphonia are presented here.

D.2.1 Oral candidiasis

The hyperparameters of the selected Symbicort and placebo models for oral can-
didiasis are shown in Table D.2. while Table D.3 shows the hyperparameters of the
corresponding regression model.
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D. The selected models

Table D.2: Hyperparameter values of the selected XGBoost models for classifying
subjects receiving Symbicort (left) and placebo (right) according to their probability
of experiencing the adverse event oral candidiasis.

Symbicort model
hyperparameter values

n_estimators = 100
max_depth = 2
learning_rate = 0.1
lambda = 0.5
min_split_loss = 5
min_child_weight = 2
max_delta_step = 3

Placebo model
hyperparameter values

n_estimators = 200
max_depth = 2
learning_rate = 0.01
lambda = 0.5
min_split_loss = 0
min_child_weight = 2
max_delta_step = 1

Table D.3: Hyperparameter values of the selected regression model for oral can-
didiasis.

Hyperparameter values

n_estimators = 400
max_depth = 3
learning_rate = 0.1
lambda = 0.5
min_split_loss = 0
min_child_weight = 3

D.2.2 Dysphonia
The selected Symbicort and placebo models are presented in Table D.4 and the
corresponding regression model in Table D.5.

Table D.4: Hyperparameter values of the selected XGBoost models for classifying
subjects receiving Symbicort (left) and placebo (right) according to their probability
of experiencing the adverse event dysphonia.

Symbicort model
hyperparameter values

n_estimators = 200
max_depth = 3
learning_rate = 0.3
lambda = 0.5
min_split_loss = 0
min_child_weight = 2
max_delta_step = 3

Placebo model
hyperparameter values

n_estimators = 100
max_depth = 2
learning_rate = 0.3
lambda = 0.5
min_split_loss = 1
min_child_weight = 1
max_delta_step = 3
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D. The selected models

Table D.5: Hyperparameter values of the selected regression model for dysphonia.

Hyperparameter values

n_estimators = 400
max_depth = 2
learning_rate = 0.2
lambda = 0.5
min_split_loss = 0
min_child_weight = 3
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E
Statistical analyses

The results from statistical analyses using Fisher’s exact test are presented here.
Note that the p-values that are reported have not been adjusted for multiplicity.
The percent and frequency of the ten highest-ranking AEs identified in Section 5.1,
including results from Fisher’s exact test, are shown by treatment in Table E.1.
Similarly, variables identified as potential risk factors for developing oral candidiasis
(Section 5.2.1) and dysphonia (Section 5.2.2) are presented in Table E.2 and E.3,
respectively.

Table E.1: Percent and frequency of the ten highest-ranking adverse events by
treatment.

AE Symbicort Placebo p-value
(n=723) (n=677) (Fisher’s

%
with
AE

No.
with
AE

%
with
AE

No.
with
AE

exact
test)

Oral candidiasis 6.1 44 1.9 13 <0.01

Chronic obstructive
pulmonary disease

13.4 97 15.5 105 0.29

Dysphonia 2.9 21 0.7 5 <0.01

Nasopharyngitis 7.6 55 5.2 35 0.06

Dyspnoea 1.4 10 2.8 19 0.09

Pneumonia 2.4 17 3.7 25 0.16

Sinusitis 3.5 25 1.9 13 0.10

Dizziness 1.4 10 0.3 2 0.04

Muscle spasms 2.4 17 0.7 5 0.02

Anxiety 1.5 11 0.6 4 0.12
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E. Statistical analyses

Table E.2: Percent and frequency of subjects with oral candidiasis by treatment
arm for the five most important variables identified. P-values are computed by
Fisher’s exact test.

Variable Symbicort Placebo
(Reference range) %

with
AE

No.
with
AE
/total

p-value %
with
AE

No.
with
AE
/total

p-value

Country US No 1.2 5/416 < 0.01 0.8 3/397 0.01
Yes 12.7 39/307 3.6 10/280

Antibiotics use No 2.0 8/399 <0.01 0.8 3/379 0.02
Yes 11.1 36/324 3.4 10/298

Neutrophils, < 4.18 9.5 27/284 <0.01 1.5 4/266 0.58
particle
concentration
(1.8-8 GI/L)

≥ 4.18 3.9 17/439 2.2 9/411

Smoking status Ex-
Smoker

4.2 18/428 0.03 1.0 4/385 0.09

Occasional
Smoker

6.7 2/30 3.7 1/27

Habitual
Smoker

9.1 24/265 3.0 8/265

Current anxiety No 5.6 37/656 0.17 1.0 6/626 < 0.01
disorders and
symptoms

Yes 10.4 7/67 13.7 7/51
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Table E.3: Percent and frequency of subjects with dysphonia by treatment arm
for the five most important variables identified. P-values are computed by Fisher’s
exact test.

Variable Symbicort Placebo
(Reference range) %

with
AE

No.
with
AE
/total

p-value %
with
AE

No.
with
AE
/total

p-value

FVC, < 2.60 1.7 9/523 <0.01
pre- ≥ 2.60 6.0 12/200
bronchodilator < 2.07 1.4 4/280 0.17

≥ 2.07 0.3 1/397

FEV1, < 19.09 2.0 9/452 0.07 0.9 4/423 0.66
reversibility ≥ 19.09 4.4 12/271 0.4 1/254

Platelets, < 265.58 5.0 20/398 <0.01 1.1 4/375 0.39
particle
concentration
(130-400 GI/L)

≥ 265.58 0.3 1/325 0.3 1/302

Diastolic blood < 71.420 5.9 12/203 <0.01
pressure, sitting ≥ 71.420 1.7 9/520

< 69.30 3.4 3/88 0.02
≥ 69.30 0.3 2/589

Months since first < 108.39 4.3 16/376 0.03
COPD symptoms ≥ 108.39 1.4 5/347

< 122.24 0.8 3/390 1.00
≥ 122.24 0.7 2/287
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