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Abstract

Research by Burlig et al. (2020) has produced a formula for difference-in-differences power

calculation in the presence of serially correlated errors. While the preferred estimator in panel

experiments is often analysis-of-covariance (ANCOVA), a similar formula for that estimator

was found to yield incorrect power in real data with time shocks. This paper demonstrates

that the serial-correlation-robust ANCOVA formula is correct under time shocks as well.

Errors arise in Burlig et al. (2020) because time shocks remain unaccounted for in an in-

termediate procedure estimating residual-based variance parameters from pre-existing data.

When that procedure is adjusted accordingly, the serial-correlation-robust ANCOVA formula

can be accurately used for power calculation.

Keywords: power calculation, randomized experiments, experimental design, panel data,

ANCOVA

JEL classification: B4, C9, C23

1 Introduction

Economists are increasingly using randomized experiments to obtain causal estimates

of treatment effects (Duflo et al., 2007; Athey and Imbens, 2017). In an influential paper,

McKenzie (2012) provides the variance of some common panel estimators for use in ex-

ante power calculation, confirming that repeatedly measuring an experimental outcome may

substantially improve precision (Frison and Pocock, 1992). More recently, Burlig et al. (2020)

have extended those panel power formulas to allow for arbitrarily serially correlated errors.

Accounting for serial correlation is important, since it is likely to occur in many real-world

settings (Bertrand et al., 2004), e.g. whenever outcomes that occur close in time are more
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highly correlated than more distant ones. For the difference-in-differences estimator, Burlig

et al. (2020) show that the McKenzie (2012) power formulas typically yield incorrect power

when serial correlation is present in the data. By contrast, their novel serial-correlation-

robust power formula accurately predicts statistical power in simulated as well as actual

data. These results are likely to prove highly useful to any researcher planning experiments

with multiple measurements.

Burlig et al. (2020) focus on difference-in-differences rather than the regression analysis-

of-covariance (ANCOVA) estimator which replaces unit fixed effects (FE) with a covariate

for the pre-treatment outcome average of each unit. Like McKenzie (2012), they do note that

ANCOVA is the more efficient estimator, and thus that it is often preferred in randomized

settings where unit FE are not needed for identification. However, the authors are unable to

solve for the variance of ANCOVA in the realistic situation where time shocks are present

in the data generating process (DGP). Doing so requires the analyst to e.g. invert matrices

of arbitrary dimension; noting such difficulties, Burlig et al. (2020) instead consider a DGP

without time shocks and derive the corresponding small-sample ANCOVA variance formula
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given as equation A61 in Burlig et al. (2020) and approximated in large samples by equation

10 of the same paper. This formula is shown to be accurate for simulated panel data, again

without time shocks; however, when the authors use it to calibrate a minimum detectable

effect (MDE) on real-world data, it fails to predict realized power. Burlig et al. (2020)

attribute this outcome to the likely presence of time shocks in actual data and caution

against using ANCOVA power calculation formulas in practice.

The purpose of this paper is to provide all steps necessary for ANCOVA power calculation

in the presence of both time shocks and serially correlated errors. First, in Section 2 below,

I show that ANCOVA power formula (1) is in fact correct in the presence of time shocks as

well; or equivalently, that such effects do not affect ANCOVA precision. This is intuitive,

since ANCOVA is a convex combination of an ex-post means comparison and difference-in-

differences, both of which involve comparing means across treatment arms affected identically

by the time shocks. Then, in Section 3, I demonstrate that with only a few minor adjustments

to the procedures introduced by Burlig et al. (2020), formula (1) can be used to accurately
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perform power calculation for ANCOVA in the presence of both serial correlation and time

shocks, including for a real data set (Bloom et al., 2015). These findings should prove useful,

given that ANCOVA is arguably the estimator of choice in panel experimental settings.

Finally, Section 4 concludes the paper.

2 ANCOVA regression variance with serial correlation and time shocks

As a first indication that time shocks do not impact ANCOVA precision, consider Figure

1. Panel (i) of the figure replicates Figure 4 in Burlig et al. (2020), where the authors confirm

that formula (1) accurately predicts power in simulated data. The DGP underlying both the

original figure and panel (i) is

Yit = δ + τDit + vi + ωit (2)

where δ is a constant intercept term, Dit is a treatment indicator, vi is a unit intercept,

and ωit is a serially correlated error that is generated according to an AR(1) process, with

autoregressive parameter γ varying across simulation sets.

Panel (i) is based on the same set of assumptions, steps, and parameter values as the

original figure; these are described in detail in Appendix B.1 of Burlig et al. (2020). To

summarize, in each of the 10,000 simulation draws underlying the figure, a data set is con-

structed from (2), and a constant treatment effect is calibrated to imply nominal 80% power

according to either the McKenzie (2012) ANCOVA variance formula (left figure), or the

Burlig et al. (2020) formula (right figure), i.e. equation (1). The treatment effect is then

added to all units within a randomly drawn treatment group, and an ANCOVA regression is

run ex post, with standard errors clustered by unit. The figure reports rejection rates for the

regression treatment coefficient and for varying panel lengths, with treatment always occur-

ring throughout the latter half of the data period. Clearly, the McKenzie (2012) formula is

accurate only when γ = 0, while the Burlig et al. (2020) ‘serial-correlation-robust’ formula

implies very nearly nominal rejection rates in all cases.

In panel (ii) of Figure 1, I examine whether formula (1) is appropriate in the presence of

time shocks by making two very simple alterations to these procedures. First, panel (ii) is

based on the model

Yit = δt + τDit + vi + ωit (3)

which replaces the constant term with a set time shocks δt, distributed i.i.d. N (µδ, σ
2
δ ),

and drawn once per simulated data set. (Equivalently, we may view model (2) as imposing
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Figure 1: The power of regression ANCOVA is not affected by the presence of time shocks

Note: The figure depicts rejection rates for the regression ANCOVA estimator when time shocks are not
present in the data (panel i) as well as when they are (panel ii). All figures are based on 10,000 draws from
a population where idiosyncratic error term ωit follows an AR(1) process with autoregressive parameter
γ. All regressions cluster standard errors by unit ex post. In the subfigures labeled ‘McKenzie’, the size
of the MDEs are calibrated ex ante using the McKenzie (2012) power formula. In figures labeled ‘Serial-
Correlation-Robust’, the Burlig et al. (2020) serial-correlation-robust ANCOVA power formula (1) is used
instead. The DGP and all associated parameter values are as in Figure 4 and Appendix B.1 of Burlig et al.
(2020), with the single exception that in panel (ii), normally distributed time shocks with µδ = 20, σ2

δ = 10
are included. Despite this, the serial-correlation-robust ANCOVA formula yields appropriate rejection rates.
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σ2
δ = 0.) Specifically, in panel (ii), the δt have σ2

δ = 10, which may be compared with σ2
v = 80

and σ2
ω = 10. Second, for each simulated data set, I then estimate the ANCOVA regression

Yit = αt + τ̃Di + θȲ B
i + εit (4)

where Ȳ B
i = (1/m)

∑0
t=−m+1 Yit is the average of the outcome variable for unit i across all

m pre-experimental periods, and εit is the regression residual error term. This equation is

estimated only on post-treatment observations, allowing the t subscript of Dit to be dropped.

Regression (4) differs from the ANCOVA regressions run in panel (i) only in that time FE

αt are included in place of a constant term. Again, standard errors are clustered ex post at

the unit level.

Clearly, despite the addition of time shocks in panel (ii), rejection rates are practically

identical to panel (i) and thus to the original figure. In particular, rejection rates cor-

responding to serial-correlation-robust formula (1) remain approximately nominal. Using

other values of σ2
δ (including very large ones, such as σ2

δ = 1000) does not alter these results,

strongly suggesting that equation (1) can be used with data sets that include time shocks.

Indeed, in Appendix A of this note, I prove that this is the case: for DGP (3), ANCOVA

variance is exactly equal to equation (1).2 In fact, equation (1) applies both when time fixed

effects are included in the ANCOVA regression (as shown in Appendix A.1 of this note) and

when they are not (Appendix A.2), with the added implication that including such terms

in an ANCOVA regression does not improve precision. Running the ex-post regressions

underlying panel (ii) of Figure 1 with only a constant term confirms this point.

While somewhat technical and relying heavily on matrix partitioning, the proof has an

overall structure highly similar to that of Burlig et al. (2020). As in their analysis of the

model without time shocks, I find that calculating the variance of the ANCOVA estimator

involves evaluating the expression

Var(τ̂ |X) =
PJ∑
i=1

PJ∑
j=1

(
MT

ij

r∑
t=1

r∑
s=1

E[εitεjs|X]

)
+

PJ∑
i=1

J∑
j=PJ+1

(
MX

ij

r∑
t=1

r∑
s=1

E[εitεjs|X]

)

+
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i=PJ+1

J∑
j=PJ+1

(
MC

ij

r∑
t=1

r∑
s=1

E[εitεjs|X]

)

2Equation (3) admittedly differs slightly from the model stated as Assumption 1 in Burlig et al. (2020),
since that DGP includes both time shocks and a constant term. However, the discrepancy is innocuous,
since it can be reconciled simply by viewing each time shock in (3) as δt = µδ + δ′t, with δ′t having mean zero
and variance σ2

δ .
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which derives from a standard coefficient-variance sandwich formula. Here, J is the number

of units in the experiment, P proportion of which are treated; r is the number of post-

experimental periods in the data; factors MT
ij ,M

X
ij ,M

C
ij are all specific to each i and j; X is

the ANCOVA regressor matrix; and εit is again the regression residual for unit i and period

t.

The main difficulty in evaluating this expression concerns conditional means E[εitεjs|X].

In a constant-only model, conditioning on X amounts to conditioning only on the baseline

averages of units i and j, included as controls in the ANCOVA regression. No other baseline

averages need be considered, because they are uninformative regarding εitεjs, being composed

of average unit fixed effects and idiosyncratic errors that are assumed independent across

units. Burlig et al. (2020) show that, under such conditions,
∑r

t=1

∑r
s=1 E[εitεjs|X] = 0

whenever i 6= j; hence, the variance of ANCOVA is composed solely of those terms where

i = j. Combining the value of
∑r

t=1

∑r
s=1 E[εitεjs|X] when i = j with the variance expression

given above then produces equation (1).

By contrast, when time shocks are included in the DGP, not only must time fixed effects

α1, ..., αr be added as conditioning variables in E[εitεjs|X] = 0, but so must the baseline aver-

ages of all other units in the experiment. The reason is that these variables now provide addi-

tional information about the average pre-treatment time shock; and conditional on Ȳ B
i , those

pre-treatment shocks are themselves informative regarding the components of εit. However,

it turns out that, despite such differences, it remains the case that
∑r

t=1

∑r
s=1 E[εitεjs|X] = 0

when i 6= j. Furthermore, the value taken by
∑r

t=1

∑r
s=1 E[εitεjs|X] whenever i = j is exactly

equal to the quantity summed across i = j in Burlig et al. (2020). It follows that ANCOVA

variance is again (1), concluding the proof.

3 An adjusted serial-correlation-robust power calculation for ANCOVA

An obvious question remains: if the ANCOVA variance formula derived by Burlig et al.

(2020) is correct after all, what might account for the inaccurate rejection rates they obtain

using real data? The answer is the following.

With real data, the parameters of the DGP are unknown, and Burlig et al. (2020) con-

struct a useful procedure for calculating MDEs by first estimating a set of residual-based

variance parameters from pre-existing data. Formula (1) can then be accurately expressed

in terms of those estimated parameters, rather than the true parameters of the DGP. In a

reasonable attempt to remain consistent with their assumed time-shock free model (2), they

ignore the possibility of time shocks throughout the parameter estimation step as well.

6



Unfortunately however, when time shocks are ignored in estimation, the variation that

these cause in the data — which, as noted, does not affect ANCOVA precision — will instead

be attributed to variation in ωit which does impact power. As a result, the ANCOVA variance

calculated from residual-based parameter estimates will be biased upward; and the implied

MDE, as well as rejection rates, will likewise be too large. Fortunately, the problem has

a simple solution: one simply takes the presence of time shocks into account during the

estimation step as well. Indeed, Burlig et al. (2020) already do so when considering the

difference-in-difference estimator. The modified procedure is described in detail in Appendix

B of this paper.

In Figure 2, I compare the two approaches for simulated data. The figure is based on

the same model and parameters as panel (ii) of Figure 1; but instead of computing an MDE

directly from the parameters of the DGP, I use a set of residual-based parameters estimated

from each simulated data set. In the left-hand panel of Figure 2, I follow the estimation

procedure described for ANCOVA in Appendix E.3 of Burlig et al. (2020);3 as expected,

this procedure ignores the presence of time shocks and consequently yields excessively high

rejection rates. In the right-hand panel, I use the modified approach that correctly accounts

for time shocks, and attain nominal power.

Then, in Figure 3, the exercise is repeated for real data, specifically the Bloom et al.

(2015) data set used for Figure 7 of Burlig et al. (2020). Here, I retain all procedures

and steps used in Figure 2 except those for generating the data: in particular, I again

calibrate a constant treatment effect by combining power formula (1) with a set of residual-

based parameters estimated from the data, and the effect is then added to (and estimated

from) a randomly drawn set of ‘treated’ units. When not accounting for time shocks in the

parameter estimation step (dashed lines), I am able to closely replicate the original figure,

where rejection rates deviate from nominal levels. When instead I account for time shocks

in the proper way (solid lines), appropriate rejection rates are again achieved. Thus, the

modified estimation procedure also appears to work well with actual data.

3For each simulated data set, I estimate σ̃2
v̂,S , σ̃2

ω̂,S , ψ̃Aω̂,S , and ψ̃Bω̂,S only once, with estimation range S

and sample size I given by all periods and all units in the data, respectively. σ̃2
v̂,S is estimated as the sample

variance of the fitted unit fixed effects, v̂i. To obtain unbiased estimates of the residual-based parameters, I
then deflate σ̃2

ω̂,S by IT−1
IT (T being the panel length) and σ̃2

v̂,S by I−1
I but leave the ψ̃ estimates unadjusted,

in accordance with the discussion of e.g. E[ψ̃Bω̂ ] in Appendix E.3 of Burlig et al. (2020).
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Figure 2: Accounting for time shocks when estimating residual-based parameters:
simulated data

Note: The figure depicts rejection rates for the regression ANCOVA estimator when time shocks are present in
the data. Both panels are based on 10,000 draws from a population where idiosyncratic error term ωit follows
an AR(1) process with autoregressive parameter γ. The DGP and all associated parameter values are as in
panel (ii) of Figure 1. Both panels above calibrate an MDE appropriate for serial-correlation-robust power
calculation using estimates of residual-based parameters. In the left-hand panel, this procedure is based on
a regression of Yit on unit fixed effects only, in accordance with the approach described in Appendix E.3 of
Burlig et al. (2020). In the right-hand panel, the regression is on both unit and time FE; minor adjustments
are also made to the MDE calculation, as described in Appendix B of this paper. These adjustments result
in appropriate rejection rates. Both panels estimate ANCOVA ex post, clustering standard errors by unit;
however, the regressions include time FE only in the right-hand panel. Only the adjusted procedure attains
nominal power.

4 Conclusion

This short paper has demonstrated the feasibility, adding only minor modifications, of

using the Burlig et al. (2020) approach to perform an accurate ANCOVA power calculation

that is robust to time shocks as well as serial correlation. It seems likely that the Stata

packages introduced by the authors could be similarly modified, usefully expanding the

power-calculation toolkit available to experimenters even further.
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Figure 3: Accounting for time shocks when estimating residual-based parameters: real
data

Note: Each panel simulates experiments with a certain number of pre-treatment periods m ∈ {1, 5, 10}.
Horizontal axes vary the number of post-treatment periods (1 ≤ r ≤ 10). In each panel, both lines calibrate
an MDE using the serial-correlation-robust ANCOVA formula in combination with estimates of residual-
based parameters from the Bloom et al. (2015) data set. Lines labeled ‘Unadjusted for time shocks’ replicate
the original Burlig et al. (2020) approach where time shocks are ignored in the parameter-estimation step.
Lines labeled ‘Adjusted for time shocks’ follow the procedure outlined in Appendix B of this paper. Both
cases estimate ANCOVA ex post, clustering standard errors by unit; however, only the ‘Adjusted for time
shocks’ lines include time FE in the ANCOVA regression. Only the adjusted procedure attains nominal
power.
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Online Appendices for article “ANCOVA power

calculation in the presence of serial correlation and

time shocks”

Appendix A. Analysis of covariance (ANCOVA) variance formu-

las

This appendix derives the variance of the ANCOVA treatment estimator under the as-

sumption that time shocks are present in the data generating process and possibly in the

ANCOVA regression equation as well. All model assumptions in Burlig et al. (2020) are

retained as well as repeated below for convenience, with the exception of the parts of As-

sumption 1 and 2 related to time shocks, which have been updated accordingly.

There are J experimental units, P proportion of which are randomized into treatment.

The researcher collects outcome data Yit for each unit i, across m pre-treatment time periods

and r post-treatment time periods. For treated units, Dit = 0 in pre-treatment periods and

Dit = 1 in post-treatment periods; for control units, Dit = 0 in all periods.

Assumption 1 (Data generating process). The data are generated according to the fol-

lowing model:

Yit = δt + τDit + vi + ωit (A.1)

where Yit is the outcome of interest for unit i at time t; τ is the treatment effect that is

homogenous across all units and all time periods; Dit is a time-varying treatment indicator;

vi is a time-invariant unit effect distributed i.i.d. N (0, σ2
v); ωit is an idiosyncratic error term

distributed (not necessarily i.i.d.) N (0, σ2
ω). Finally, in a departure from the Burlig et al.

(2020) model, δt is a time shock specific to time t that is homogenous across all units and

distributed i.i.d. N (µδ, σ
2
δ ).

Assumption 2 (Strict exogeneity). E[ωit|Xr] = 0, where Xr is a full rank matrix of regres-

sors, including a constant, the treatment indicator D, J − 1 unit dummies, and (m+ r)− 1

time dummies. This follows from random assignment of Dit.

Assumption 3. (Balanced panel). The number of pre-treatment observations, m, and

post-treatment observations, r, is the same for each unit, and all units are observed in every
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time period.

Assumption 4 (Independence across units). E[ωitωjs|Xr] = 0,∀i 6= j,∀t, s.

Assumption 5 (Uniform covariance structures). Define:

ψBi ≡
2

m (m− 1)

−1∑
t=−m+1

0∑
s=t+1

Cov(ωit, ωis|Xr)

ψAi ≡
2

r (r − 1)

r−1∑
t=1

r∑
s=t+1

Cov(ωit, ωis|Xr)

ψXi ≡
1

mr

0∑
t=−m+1

r∑
s=1

Cov(ωit, ωis|Xr)

to be the average pre-treatment, post-treatment, and across-period covariance between dif-

ferent error terms of unit i, respectively. Using these definitions, assume that ψB = ψBi ,

ψA = ψAi , and ψX = ψXi ∀i.

We will derive the variance of the ANCOVA treatment-effect estimator for two different

regression specifications. First, in Appendix A.1, we consider the case when time shocks are

included in the regression equation; then, in Appendix A.2, we consider the case when they

are not. In both cases, the result will be equal to variance equation (1) in the main text,

calculated as equation A61 in Burlig et al. (2020).

A.1 Time shocks included in ANCOVA regression

Consider the following ANCOVA regression model

Yit = αt + τ̃Di + θȲ B
i + εit (A.2)

where Yit and Di are defined as above; Ȳ B
i = (1/m)

∑0
t=−m+1 Yit is the pre-period average

of the outcome variable for unit i; and εit is the regression residual error term. Finally, αt

is one of r time fixed effects replacing the constant term in Burlig et al. (2020). As usual

for ANCOVA regressions, equation (A.2) is estimated only on post-treatment observations,

allowing the t subscript of Dit to be dropped.

Regression (A.2) consistently estimates the coefficients of the linear projection of the

outcome as given by (A.1) on the set of regressors. As usual, the resulting projection error

will satisfy E[X′ε] = 0, where X is the regressor matrix in (A.2), and ε is the full vector of

12



residuals. This equation system4 includes the conditions εit = 0 for all i and t. Moreover, its

solution yields the set of projection parameters to which the ANCOVA (i.e. OLS) regression

estimator will converge.5 These coefficients are αt = δt − θδ̄B, where δ̄B = 1
m

∑0
p=−m+1 δp;

τ̃ = τ ; and

θ =
m
(
σ2
v + ψX

)
mσ2

v + σ2
ω + (m− 1)ψB

(A.3)

As a result, we also have

εit = vi + ωit − θ

(
vi +

1

m

0∑
p=−m+1

ωit

)
= vi + ωit − θ

(
vi + ω̄Bi

)
Our goal is now to derive the variance of the τ̂ coefficient estimate implied by the combination

of DGP (A.1) and regression (A.2). Denoting as β̂ the set of regression coefficients from OLS

estimation of (A.2) given (A.1), the coefficient covariance matrix is given by the sandwich

formula

Var(β̂|X) = (X′X)
−1

X′E[εε′|X]X (X′X)
−1

(A.4)

where, since β̂ contains r time fixed effects, Var(τ̂ |X) forms element (r + 1, r + 1).

As a first step in calculating this quantity, matrix multiplication yields

X′E[εε′|X]X =



J∑
i=1

J∑
j=1

E[εi1εj1|X] · · ·
J∑
i=1

J∑
j=1

E[εi1εjr|X]

...
. . .

...
J∑
i=1

J∑
j=1

E[εirεj1|X] · · ·
J∑
i=1

J∑
j=1

E[εirεjr|X]

PJ∑
i=1

J∑
j=1

r∑
t=1

E[εitεj1|X] · · ·
PJ∑
i=1

J∑
j=1

r∑
t=1

E[εitεjr|X]

J∑
i=1

J∑
j=1

r∑
t=1

Ȳ B
i E[εitεj1|X] · · ·

J∑
i=1

J∑
j=1

r∑
t=1

Ȳ B
i E[εitεjr|X]

4Under the alternative assumption that Di is a random variable with expected value P , we need consider
only the equations associated with a single unit i: E[X′iεi] = 0.

5OLS estimation occurs within data set, i.e. for a given draw of time shocks. Thus, in computing the
projection parameters, we need to treat the set of time shocks δt as nonstochastic; otherwise, for instance,
every αt will equal the same value. All other computations throughout this proof do treat the time shocks
as random.

13



PJ∑
i=1

J∑
j=1

r∑
t=1

E[εitεj1|X]
J∑
i=1

J∑
j=1

r∑
t=1

Ȳ B
i E[εitεj1|X]

...
...

PJ∑
i=1

J∑
j=1

r∑
t=1

E[εitεjr|X]
J∑
i=1

J∑
j=1

r∑
t=1

Ȳ B
i E[εitεjr|X]

PJ∑
i=1

PJ∑
j=1

r∑
t=1

r∑
s=1

E[εitεjs|X]
PJ∑
i=1

J∑
j=1

r∑
t=1

r∑
s=1

Ȳ B
j E[εitεjs|X]

PJ∑
i=1

J∑
j=1

r∑
t=1

r∑
s=1

Ȳ B
j E[εitεjs|X]

J∑
i=1

J∑
j=1

r∑
t=1

r∑
s=1

Ȳ B
i Ȳ

B
j E[εitεjs|X]


(A.5)

Next, consider inverting (1/J)X′X, i.e. the following symmetric square matrix of dimen-

sion r + 2:

1

J
X′X =



1 · · · 0 P Ȳ B

...
. . .

...
...

...

0 · · · 1 P Ȳ B

P · · · P rP rP Ȳ B
T

Ȳ B · · · Ȳ B rP Ȳ B
T

r
J

J∑
j=1

(
Ȳ B
i

)2


which we have partitioned into four submatrices according to the dashed lines, and where

Ȳ B =
1

mJ

J∑
i=1

0∑
t=−m+1

Yit

Ȳ B
T =

1

mPJ

PJ∑
i=1

0∑
t=−m+1

Yit

J∑
i=1

(
Ȳ B
i

)2
=

J∑
i=1

(
1

m

0∑
t=−m+1

Yit

)2

= Z + PJ
(
Ȳ B
T

)2
+ (1− P ) J

(
Ȳ B
C

)2

for Z =
∑PJ

k=1

(
Ȳ B
k − Ȳ B

T

)2
+
∑J

k=PJ+1

(
Ȳ B
k − Ȳ B

C

)2
. In general, for any partitioned matrix

G,

G−1 =

(
G11 G12

G21 G22

)−1

=

( (
G11 −G12G

−1
22 G21

)−1 −G−1
11 G12

(
G22 −G21G

−1
11 G12

)−1

−
(
G22 −G21G

−1
11 G12

)−1
G21G

−1
11

(
G22 −G21G

−1
11 G12

)−1

)
(A.6)
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where the top-right submatrix of G−1 is also equal to −
(
G11 −G12G

−1
22 G21

)−1
G12 (G22)−1.

For (1/J)X′X, due to the inclusion of time fixed effects in the regression, G11 is an

r× r identity matrix, simplifying the calculations. Indeed, all submatrices of ((1/J)X′X)−1

except the top-left one are straightforward to calculate. That final, top-left submatrix6 is

the inverse of 
1−

PZ
J

+(1−P )(Ȳ B
C )

2

r
(

Z
J

+(1−P )(Ȳ B
C )

2
) · · · −

PZ
J

+(1−P )(Ȳ B
C )

2

r
(

Z
J

+(1−P )(Ȳ B
C )

2
)

...
. . .

...

−
PZ
J

+(1−P )(Ȳ B
C )

2

r
(

Z
J

+(1−P )(Ȳ B
C )

2
) . . . 1−

PZ
J

+(1−P )(Ȳ B
C )

2

r
(

Z
J

+(1−P )(Ȳ B
C )

2
)

 (A.7)

which is a symmetric matrix where all (off)diagonal elements are equal to the same value;

note that Ȳ B
C = 1

m(1−P )J

∑J
i=PJ+1

∑0
t=−m+1 Yit. To invert this matrix, we use the following

lemma.

Lemma 1. Any n-dimensional square matrix of the form

Y1 =


x1 x2 · · · x2

x2 x1 · · · x2

...
...

. . .
...

x2 x2 · · · x1


has |Y1| = (x1 − x2)n−1 (x1 + (n− 1)x2), and any n-dimensional square matrix of the form

Y2 =


x2 x2 · · · x2

x2 x1 · · · x2

...
...

. . .
...

x2 x2 · · · x1


has |Y2| = x2 (x1 − x2)n−1.

Proof. Assuming the lemma holds for matrices of dimension n − 1, we have (note that the

second term is based on interchanging columns or rows to produce a submatrix of type Y2):

|Y1| = x1

[
(x1 − x2)n−2 (x1 + (n− 2)x2)

]
− (n− 1)x2

2 (x1 − x2)n−2

= (x1 − x2)n−1 (x1 + (n− 1)x2)

6Because we are interested in element (r+1, r+1) of Var(τ̂ |X), calculating this final submatrix is, strictly
speaking, unnecessary and is done for completeness only.
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and

|Y2| = x2 (x1 − x2)n−2 (x1 + (n− 2)x2)− (n− 1)x2
2 (x1 − x2)n−2

= x2(x1 − x2)n−1

Finally, it is simple to confirm that these expressions also hold for n = 2.

Lemma 1 may be immediately applied to invert submatrix (A.7), interchanging cofactor

columns and/or rows as needed for the result to apply. In summary, since (X′X)−1 =
1
J

(
1
J
X′X

)−1
, we have

(X′X)
−1

=
1

r(1− P )Z
×



(P+(1−P )r)Z
J

+ (1− P )
(
Ȳ B
C

)2 · · · PZ
J

+ (1− P )
(
Ȳ B
C

)2

...
. . .

...
PZ
J

+ (1− P )
(
Ȳ B
C

)2 · · · (P+(1−P )r)Z
J

+ (1− P )
(
Ȳ B
C

)2

−Z
J

+ (1− P )Ȳ B
C

(
Ȳ B
T − Ȳ B

C

)
· · · −Z

J
+ (1− P )Ȳ B

C

(
Ȳ B
T − Ȳ B

C

)
−(1− P )Ȳ B

C · · · −(1− P )Ȳ B
C

−Z
J

+ (1− P )Ȳ B
C

(
Ȳ B
T − Ȳ 2

C

)
−(1− P )Ȳ B

C
...

...

−Z
J

+ (1− P )Ȳ B
C

(
Ȳ B
T − Ȳ 2

C

)
−(1− P )Ȳ B

C

Z
PJ

+ (1− P )
(
Ȳ B
T − Ȳ B

C

)2 −(1− P )
(
Ȳ B
T − Ȳ B

C

)
−(1− P )

(
Ȳ B
T − Ȳ B

C

)
1− P


(A.8)

and may combine (A.8) with (A.5) to calculate element (r + 1, r + 1) of (A.4) as

Var(τ̂ |X) =
1

J2r2Z2

{
1

P 2

PJ∑
i=1

PJ∑
j=1

[(
Z − PJ

(
Ȳ B
T − Ȳ B

C

) (
Ȳ B
i − Ȳ B

T

) )
×
(
Z − PJ

(
Ȳ B
T − Ȳ B

C

) (
Ȳ B
j − Ȳ B

T

) )
×

(
r∑
t=1

r∑
s=1

E[εitεjs|X]

)]

+
2

P (1− P )

PJ∑
i=1

J∑
j=PJ+1

[(
Z − PJ

(
Ȳ B
T − Ȳ B

C

) (
Ȳ B
i − Ȳ B

T

) )
×
(
− Z − (1− P )J

(
Ȳ B
T − Ȳ B

C

) (
Ȳ B
j − Ȳ B

C

) )
×

(
r∑
t=1

r∑
s=1

E[εitεjs|X]

)]
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+
1

(1− P )2

J∑
i=PJ+1

J∑
j=PJ+1

[(
− Z − (1− P )J

(
Ȳ B
T − Ȳ B

C

) (
Ȳ B
i − Ȳ B

C

) )
×
(
− Z − (1− P )J

(
Ȳ B
T − Ȳ B

C

) (
Ȳ B
j − Ȳ B

C

) )
×

(
r∑
t=1

r∑
s=1

E[εitεjs|X]

)]
(A.9)

which, despite the inclusion of time FE, is identical to the corresponding expression (A51) in

Burlig et al. (2020). For the remainder of the derivation, we will be concerned with evaluating

this expression. To do so, we first need to compute the summed conditional means included

in each of the three terms in (A.9).

For a given single conditional mean with i 6= j,

E[εitεjs|X] = E[εjsE[εit|εjs,X]|X]

= E[εjsE[εit|εjs, Ȳ B
j , Ȳ

B
i , Ȳ

B
−i,−j, α1, ..., αr]|Ȳ B

j , Ȳ
B
i , Ȳ

B
−i,−j, α1, ..., αr]

where the first equality uses the law of iterated expectations, and Ȳ B
−i,−j is the set of all

baseline averages associated with units other than i and j. Thus, although (as we will see

below) εit is unconditionally uncorrelated with baseline averages other than Ȳ B
i , evaluating

the mean of εit conditional on X nevertheless implies conditioning on all baseline averages

in the experiment. The reason is somewhat subtle: each baseline average (as well as each

αt) provides additional information regarding the average pre-period time shocks δ̄B; but

conditional on Ȳ B
i , this is itself informative regarding vi and other components of εit.

When instead i = j, we have

E[εitεis|X] = E[εisE[εit|εis, Ȳ B
i , Ȳ

B
−i, α1, ..., αr]|Ȳ B

i , Ȳ
B
−i, α1, αr]

where Ȳ B
−i is the set of all baseline averages associated with units other than i.

Since the residuals as well as all conditioning variables are linear functions of normal

variables and thus themselves normally distributed, we may evaluate either of the above
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conditional means using the following formula:7

E[x|y] = µx + Σxy (Σyy)−1 (y − µy) (A.10)

where µx is the mean of the normal variable x; Σxy is a row vector collecting the covariances

between x and each element of the vector of normally distributed conditioning variables y;

Σyy is the variance-covariance matrix of y; and µy is the vector of means of y. In our

case, µx = 0, since all residuals have mean zero by the properties of linear projection. Also,

E(Ȳ B
i ) = µδ for all i, and E(αt) = (1− θ)µδ for all t.

Both when i 6= j and when i = j, the (1 + J + r)-dimensional covariance matrix corre-

sponding to the inner conditional expectation E[εit|εjs,X] is

Σyy =



as bs 0 · · · 0 0 0 · · · 0

bs c d · · · d −θd −θd · · · −θd
0 d c · · · d −θd −θd · · · −θd
...

...
...

. . .
...

...
...

...

0 d d · · · c −θd −θd · · · −θd
0 −θd −θd · · · −θd (m+ θ2)d θ2d · · · θ2d

0 −θd −θd · · · −θd θ2d (m+ θ2)d · · · θ2d
...

...
...

...
...

...
. . .

...

0 −θd −θd · · · −θd θ2d θ2d · · · (m+ θ2)d



≡

(
Σyy

11 Σyy
12

Σyy
21 Σyy

22

)
(A.11)

For convenience, the matrix uses the following definitions.

as = Var(εjs) = (1− θ)2 σ2
v +

(
1 +

θ2

m

)
σ2
ω − θCov

(
ωjs, ω̄

B
j

)
+
θ2 (m− 1)

m
ψB

bs = Cov
(
εjs, Ȳ

B
j

)
= Cov

(
ωjs, ω̄

B
j

)
− ψX

7If one assumes that all δt are fixed rather than random, then pre-treatment time shocks cease to be
informative regarding the residuals. Thus, E[εit|εjs,X] = E[εit|Ȳ Bi ] for i 6= j, E[εit|εis,X] = E[εit|εis, Ȳ Bi ] for
i = j, and moreover E[εis|X] = E[εis|Ȳ Bi ] while also E[ε2is|X] = E[ε2is|Ȳ Bi ]. It is reasonably simple to confirm
these statements using (A.10). As a result, one may essentially follow the proof of Burlig et al. (2020),
again leading to the same ANCOVA variance expression. Entirely analogous points apply to the model in
Appendix A.2.
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c = Var
(
Ȳ B
i

)
=

1

m

(
σ2
δ + σ2

ω +mσ2
v + (m− 1)ψB

)
d = Cov

(
Ȳ B
i , Ȳ

B
j

)
=
σ2
δ

m
, for i 6= j

with ω̄Bj = (1/m)
∑0

p=−m+1 ωjp. Notice that
∑r

s=1 bs = 0 for any s. Furthermore, when

i 6= j,

Σxy =
(

0 0 bt 0 · · · 0
)

(A.12)

where bt = Cov
(
εit, Ȳ

B
i

)
= Cov

(
ωit, ω̄

B
i

)
− ψX , so

∑r
t=1 bt = 0 for any t. For i = j, we

instead have

Σxy =
(
ets bt 0 · · · 0

)
(A.13)

where

ets = Cov (εit, εis)

= (1− θ)2 σ2
v +

θ2

m
σ2
ω +

θ2 (m− 1)

m
ψB + Cov (ωit, ωis)− θCov

(
ωit, ω̄

B
i

)
− θCov

(
ωis, ω̄

B
i

)
which we may also note implies

r∑
t=1

ets = r

(
(1− θ)2 σ2

v +

(
θ2

m
+

1

r

)
σ2
ω +

θ2(m− 1)

m
ψB +

∑
p 6=s Cov (ωip, ωis)

r

− θψX − θCov
(
ωis, ω̄

B
i

))
≡ rēs

Our next objective is to invert the matrix (A.11), again using partitioning result (A.6).

Note that because nearly all elements of covariance vectors (A.12) and (A.13) are zero, we

need calculate only the topmost three rows of (Σyy)−1.

First, we use Lemma 1 to calculate

(Σyy
22 )
−1

=
1

md (m+ rθ2)


m+ (r − 1)θ2 −θ2 · · · −θ2

−θ2 m+ (r − 1)θ2 · · · −θ2

...
...

. . .
...

−θ2 −θ2 · · · m+ (r − 1)θ2


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implying that the top-left partition of (Σyy)−1 is the inverse of

Σyy
11 −Σyy

12 (Σyy
22 )
−1

Σyy
21 =



as bs 0 · · · 0

bs c− rθ2d
m+rθ2

md
m+rθ2

· · · md
m+rθ2

0 md
m+rθ2

c− rθ2d
m+rθ2

· · · md
m+rθ2

...
...

...
. . .

...

0 md
m+rθ2

md
m+r+θ2

· · · c− rθ2d
m+rθ2


(A.14)

This matrix has determinant (use Lemma 1 to perform cofactor expansion e.g. along the

first row)

(c− d)J−2

[
as(c− d)

(
c− d+

Jmd

m+ rθ2

)
− b2

s

(
c− d+

(J − 1)md

m+ rθ2

)]
≡ |Σ| (A.15)

Notice that this determinant does not depend on t, a fact which will prove useful below.

Applying Lemma 1 once more, the inverse of Σyy
11 − Σyy

12 (Σyy
22 )
−1

Σyy
21 , i.e. the top-left

partition of (Σyy)−1, is

(
Σyy

11 −Σyy
12

(
Σyy

22

)−1
Σyy

21

)−1
=

(c− d)J−2

|Σ|



(c− d)
(
c− d+ Jmd

m+rθ2

)
−bs

(
c− d+ (J−1)md

m+rθ2

)
−bs

(
c− d+ (J−1)md

m+rθ2

)
as

(
c− d+ (J−1)md

m+rθ2

)
md

m+rθ2
bs − md

m+rθ2
as

...
...

md
m+rθ2

bs − md
m+rθ2

as

md
m+rθ2

bs · · · md
m+rθ2

bs

− md
m+rθ2

as · · · − md
m+rθ2

as

as

(
c− d+ (J−1)md

m+rθ2

)
− b2s

(
1 + (J−2)md

(c−d)(m+rθ2)

)
· · · md

m+rθ2

(
−as + b2s

c−d

)
...

. . .
...

md
m+rθ2

(
−as + b2s

c−d

)
· · · as

(
c− d+ (J−1)md

m+rθ2

)
− b2s

(
1 + (J−2)md

(c−d)(m+rθ2)

)


(A.16)

while the top-right partition of (Σyy)−1 may be calculated as

−
(
Σyy

11 −Σyy
12 (Σyy

22 )
−1

Σyy
21

)−1

Σyy
12 (Σyy

22 )
−1
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=
θ(c− d)J−2

(m+ rθ2) |Σ|
×



−bs(c− d) −bs(c− d) · · · −bs(c− d)

as(c− d) as(c− d) · · · as(c− d)

as(c− d)− b2
s as(c− d)− b2

s · · · as(c− d)− b2
s

...
...

...

as(c− d)− b2
s as(c− d)− b2

s · · · as(c− d)− b2
s


(A.17)

Combining expressions (A.16) and (A.17) with (A.12) in formula (A.10) now yields the inner

expectation as

E[εit|εjs,X] =
bt (c− d)J−2

|Σ|

[
mbsd

m+ rθ2
εjs −

masd

m+ rθ2

(
Ȳ B
j − µδ

)
+

[
as

(
c− d+

(J − 1)md

m+ rθ2

)
− b2

s

(
1 +

(J − 2)md

(c− d) (m+ rθ2)

)] (
Ȳ B
i − µδ

)
+

md

m+ rθ2

(
−as +

b2
s

c− d

)∑
k 6=i,j

(
Ȳ B
k − µδ

)
+
θ (as(c− d)− b2

s)

m+ rθ2

r∑
p=1

(αp − (1− θ)µδ)

]
= Ai 6=j1 εjs + Ai 6=j2

(
Ȳ B
j − µδ

)
+ Ai 6=j3

(
Ȳ B
i − µδ

)
+ Ai 6=j4

∑
k 6=i,j

(
Ȳ B
k − µδ

)
+ Ai 6=j5

r∑
p=1

(αp − (1− θ)µδ)

with Ai 6=j1 , ..., Ai 6=j5 defined accordingly. Since these factors are all functions only of model

parameters, it follows that the full expectation is

E[εitεjs|X] = Ai 6=j1 E[ε2js|X] +
[
Ai 6=j2

(
Ȳ B
j − µδ

)
+ Ai 6=j3

(
Ȳ B
i − µδ

)
+ Ai 6=j4

∑
k 6=i,j

(
Ȳ B
k − µδ

)
+ Ai 6=j5

r∑
p=1

(αp − (1− θ)µδ)
]
× E[εjs|X] (A.18)

However, as will become clear below, neither E[εjs|X] = E[εjs|Ȳ B
j , Ȳ

B
i , Ȳ

B
−i,−j, α1, ..., αr] nor

E[ε2js|X] = Var (εjs|X) + (E[εjs|X])2 depend on t; in (A.18), only bt does. Thus, because∑r
t=1 bt = 0,

r∑
t=1

r∑
s=1

E[εitεjs|X] =
r∑
s=1

(
r∑
t=1

E[εitεjs|X]

)
= 0

and the case of i 6= j will not contribute to Var(τ̂ |X) in (A.9). Moving on to the case of

i = j, we combine (A.16) and (A.17) with (A.13) in formula (A.10). This produces a different
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expression for the inner expectation, namely

E[εit|εis,X] =
(c− d)J−2

|Σ|

[ [
ets(c− d)

(
c− d+

Jmd

m+ rθ2

)
− btbs

(
c− d+

(J − 1)md

m+ rθ2

)]
εis

+

[
−etsbs

(
c− d+

(J − 1)md

m+ rθ2

)
+ asbt

(
c− d+

(J − 1)md

m+ rθ2

)] (
Ȳ B
i − µδ

)
+

md

m+ rθ2
(etsbs − asbt)

∑
k 6=i

(
Ȳ B
k − µδ

)
+
θ(c− d)

m+ rθ2
(−etsbs + asbt)

r∑
p=1

(αp − (1− θ)µδ)

]

which, similarly to the i 6= j case, implies that

r∑
t=1

E[εitεis|X] =
r(c− d)J−2

|Σ|

[
ēs(c− d)

(
c− d+

Jmd

m+ rθ2

)
E[ε2is|X]

+
[
− ēsbs

(
c− d+

(J − 1)md

m+ rθ2

)(
Ȳ B
i − µδ

)
+

md

m+ rθ2
ēsbs

∑
k 6=i

(
Ȳ B
k − µδ

)
− θ(c− d)

m+ rθ2
ēsbs

r∑
p=1

(αp − (1− θ)µδ)
]
E[εis|X]

]

= r

[
A1E[ε2is|X] +

[
A2

(
Ȳ B
i − µδ

)
+ A3

∑
k 6=i

(
Ȳ B
k − µδ

)
+ A4

r∑
p=1

(αp − (1− θ)µδ)
]
E[εis|X]

]
(A.19)

with A1, ..., A4 defined accordingly. The next step is to calculate the ‘outer’ expectation

E[εis|X] = E[εis|Ȳ B
i , Ȳ

B
−i, α1, ..., αr], and this may again be done using formula (A.10). Note

first that the appropriate covariance matrix of conditioning variables, which has dimension
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J + r, is now

Σ̂yy =



c d · · · d −θd −θd · · · −θd
d c · · · d −θd −θd · · · −θd
...

...
. . .

...
...

...
...

d d · · · c −θd −θd · · · −θd

−θd −θd · · · −θd (m+ θ2) d θ2d · · · θ2d

−θd −θd · · · −θd θ2d (m+ θ2) d · · · θ2d
...

...
...

...
...

. . .
...

−θd −θd · · · −θd θ2d θ2d · · · (m+ θ2) d



≡

 Σ̂yy
11 Σ̂yy

12

Σ̂yy
21 Σ̂yy

22



As was the case for Σyy, the dashed lines partition this matrix into four submatrices, and

result (A.6), along with Lemma 1, may be used to invert it. Since Σ̂xy =
(
bs 0 · · · 0

)
,

we will require only the first line of
(
Σ̂yy

)−1

. Now, since Σ̂yy
22 = Σyy

22 , we may directly

calculate

Σ̂yy
11 − Σ̂yy

12

(
Σ̂yy

22

)−1

Σ̂yy
21 =


c− rθ2d

m+rθ2
md

m+rθ2
· · · md

m+rθ2

md
m+rθ2

c− rθ2d
m+rθ2

· · · md
m+rθ2

...
...

. . .
...

md
m+rθ2

md
m+r+θ2

· · · c− rθ2d
m+rθ2

 (A.20)

which is identical to (A.14), except that the first row and column are not present. The

determinant of (A.20) is

(c− d)J−1

(
c− d+

Jmd

m+ rθ2

)
≡ |Σ̂| (A.21)

and application of Lemma 1 shows that its inverse, forming the top-left partition of
(
Σ̂yy

)−1

,

is

(
Σ̂yy

11 − Σ̂yy
12

(
Σ̂yy

22

)−1

Σ̂yy
21

)−1

=
(c− d)J−2

|Σ̂|


c− d+ (J−1)md

m+rθ2
· · · − md

m+rθ2

...
. . .

...

− md
m+rθ2

· · · c− d+ (J−1)md
m+rθ2


(A.22)

where, as usual, all (off)diagonal elements equal the same value. Finally, the top-right
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partition of
(
Σ̂yy

)−1

is

−
(

Σ̂yy
11 − Σ̂yy

12

(
Σ̂yy

22

)−1

Σ̂yy
21

)−1

Σ̂yy
12

(
Σ̂yy

22

)−1

=
θ(c− d)J−1

(m+ rθ2)|Σ̂|


1 1 · · · 1

1 1 · · · 1
...

...
...

1 1 · · · 1

 (A.23)

Application of formula (A.10) now yields

E[εis|X] =
bs(c− d)J−2

|Σ̂|

[(
c− d+

(J − 1)md

m+ rθ2

)(
Ȳ B
i − µδ

)
− md

m+ rθ2

∑
k 6=i

(
Ȳ B
k − µδ

)
+
θ(c− d)

m+ rθ2

r∑
p=1

(αp − (1− θ)µδ)

]

= B1

(
Ȳ B
i − µδ

)
+B2

∑
k 6=j

(
Ȳ B
k − µδ

)
+B3

r∑
p=1

(αp − (1− θ)µδ) (A.24)

where B1, B2 and B3 are defined accordingly. Note that no part of (A.24) depends on t.

Next, to evaluate E[ε2is|X] we need to calculate Var (εis|X) = Var
(
εis|Ȳ B

i , Ȳ
B
−i, α1, .., αr

)
as well. Again, because all variables involved are normally distributed, this may be done by

the following conditional-variance formula:

Var(x|y) = σ2
x −ΣxyΣ−1

yy (Σxy)′ (A.25)

where σ2
x is the unconditional variance of x and all other quantities are as defined in (A.10).

Here, σ2
x = as; combining this fact with Σ̂xy, (A.22) and (A.23) in accordance with the above

formula yields

Var (εis|X) =
|Σ|
|Σ̂|

(A.26)

which also does not depend on t. Finally, inserting (A.26) and (A.24) into (A.19) and

collecting terms, we find that the summed full expectation is

r∑
t=1

E[εitεis|X] = r

[
A1
|Σ|
|Σ̂|

+B1 (A1B1 + A2)
(
Ȳ B
i − µδ

)2
+B2 (A1B2 + A3)

(∑
k 6=i

(
Ȳ B
k − µδ

))2
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+B3 (A1B3 + A4)

(
r∑
p=1

(αp − (1− θ)µδ)

)2

+
(
B1 (A1B2 + A3) +B2 (A1B1 + A2)

) (
Ȳ B
i − µδ

)∑
k 6=i

(
Ȳ B
k − µδ

)
+
(
B1 (A1B3 + A4) +B3 (A1B1 + A2)

) (
Ȳ B
i − µδ

) r∑
p=1

(αp − (1− θ)µδ)

+
(
B2 (A1B3 + A4) +B3 (A1B2 + A3)

)∑
k 6=i

(
Ȳ B
k − µδ

) r∑
p=1

(αp − (1− θ)µδ)

]

The first term within the bracket is

A1
|Σ|
|Σ̂|

= ēs

and moreover A1B1 + A2 = A1B1 + A3 = A1B3 + A4 = 0, so the conditional expectation,

summed over all t and s, reduces to

r∑
t=1

r∑
s=1

E[εitεis|X] =
r∑
s=1

rēs

= r2

(
(1− θ)2 σ2

v +

(
θ2

m
+

1

r

)
σ2
ω +

θ2(m− 1)

m
ψB +

r − 1

r
ψA − 2θψX

)
≡ r2ē

As a result, equation (A.9) reduces to

Var (τ̂ |X) =
ē

J2Z2

{
1

P 2

PJ∑
i=1

(
Z − PJ

(
Ȳ B
T − Ȳ B

C

) (
Ȳ B
i − Ȳ B

T

) )2

+
1

(1− P )2

J∑
i=PJ+1

(
− Z − (1− P )J

(
Ȳ B
T − Ȳ B

C

) (
Ȳ B
i − Ȳ T

C

) )2
}

which may be further simplified to yield

Var (τ̂ |X) =

(
1

P (1− P )J
+

(
Ȳ B
T − Ȳ B

C

)2

Z

)

×
(

(1− θ)2 σ2
v +

(
θ2

m
+

1

r

)
σ2
ω +

θ2(m− 1)

m
ψB +

r − 1

r
ψA − 2θψX

)
This is the same small-sample ANCOVA variance formula as derived by Burlig et al. (2020).
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A.2 Time shocks not included in ANCOVA regression

Now, consider instead the ANCOVA regression model

Yit = α + τ̃Di + θȲ B
i + εit (A.27)

where α is an intercept term and all other variables and coefficients are defined as in (A.2);

this regression model, which does not account for time shocks, is identical to that analyzed

in Burlig et al. (2020); although, of course, the assumed DGP (A.1) is not.

Deriving the variance of the regression estimator τ̂ for model (A.27) follows much the

same steps as the analysis in Appendix A.1. First, projection of the outcome in (A.1)

on the regressor matrix X corresponding to regression (A.27) yields projection coefficients

α = δ̄A − θδ̄B, where δ̄A = (1/r)
∑r

t=1 δt; τ̃ = τ ; and θ again equal to (A.3). As a result,

residuals now are now a direct function of the time shocks, since

εit = δt − δ̄A + vi + ωit − θ
(
vi + ω̄Bi

)
However, this makes perhaps surprisingly little difference for the calculations: in particular,

note that εit is uncorrelated with α. Also notice that E[εit] = 0.

Next, we will again calculate the ANCOVA variance by sandwich formula (A.4). Since

X′X is now the 3-by-3 matrix considered in Burlig et al. (2020), we may simply follow their

initial calculation steps as far as equation (A.9) above. The next task, as in Appendix A.1,

is to evaluate conditional means E[εitεjs|X]. With time dummies no longer included in the

regression, we may write any such quantity for which i 6= j as

E[εitεjs|X] = E[εjsE[εit|εjs, Ȳ B
j , Ȳ

B
i , Ȳ

B
−i,−j, α]|Ȳ B

j , Ȳ
B
i , Ȳ

B
−i,−j, α]

with the conditional mean for i = j suitably adjusted. These means can again be calculated
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using formula (A.10). The covariance matrix associated with the inner (εit) expectation is

Σyy =



as + (r + 1)d bs 0 · · · 0 0

bs c d · · · d −θd
0 d c · · · d −θd
...

...
...

. . .
...

...

0 d d · · · c −θd

0 −θd −θd · · · −θd
(
m
r

+ θ2
)
d


(A.28)

where all parameters take the same values as in Appendix A.1 above, again implying
∑r

s=1 bs =

0 for any s. Note that under the partitioning used, Σyy
22 is just the scalar

(
m
r

+ θ2
)
d, making

that partition straightforward to invert. In any case, when i 6= j, the relevant covariance

vector is

Σxy =
(
ei 6=jts 0 bt 0 · · · 0

)
(A.29)

where ei 6=jts = Cov(δt, δs)− (σ2
δ/r), implying that

∑r
t=1 e

i 6=j
ts = 0. For i = j, the corresponding

vector is

Σxy =
(
ei 6=jts + ets bt 0 · · · 0

)
(A.30)

where ets = Cov(εit, εis) − ei 6=jts is as calculated in Appendix A.1. Clearly, again we need

consider only the first few rows of (Σyy)−1.

Now,

Σyy
11 −Σyy

12 (Σyy
22 )
−1

Σyy
21 =



as + (r + 1)d bs 0 · · · 0

bs c− rθ2d
m+rθ2

md
m+rθ2

· · · md
m+rθ2

0 md
m+rθ2

c− rθ2d
m+rθ2

· · · md
m+rθ2

...
...

...
. . .

...

0 md
m+rθ2

md
m+r+θ2

· · · c− rθ2d
m+rθ2


with determinant

(c− d)J−2

[
(as + (r + 1)d) (c− d)

(
c− d+

Jmd

m+ rθ2

)
− b2

s

(
c− d+

(J − 1)md

m+ rθ2

)]
≡ |Σ|
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and symmetric inverse

(
Σyy

11 −Σyy
12 (Σyy

22 )
−1

Σyy
21

)−1
=

(c− d)J−2

|Σ|



(c− d)
(
c− d+ Jmd

m+rθ2

)
−bs

(
c− d+ (J−1)md

m+rθ2

)
−bs

(
c− d+ (J−1)md

m+rθ2

)
(as + (r + 1)d)

(
c− d+ (J−1)md

m+rθ2

)
md

m+rθ2 bs − md
m+rθ2 (as + (r + 1)d)

...
...

md
m+rθ2 bs − md

m+rθ2 (as + (r + 1)d)

md
m+rθ2 bs · · ·

− md
m+rθ2 (as + (r + 1)d) · · ·

(as + (r + 1)d)
(
c− d+ (J−1)md

m+rθ2

)
− b2s

(
1 + (J−2)md

(c−d)(m+rθ2)

)
· · ·

...
. . .

md
m+rθ2

(
−as − (r + 1)d+

b2s
c−d

)
· · ·

md
m+rθ2 bs

− md
m+rθ2 (as + (r + 1)d)

md
m+rθ2

(
−as − (r + 1)d+

b2s
c−d

)
...

(as + (r + 1)d)
(
c− d+ (J−1)md

m+rθ2

)
− b2s

(
1 + (J−2)md

(c−d)(m+rθ2)

)


(A.31)

forming the top-left partition of (Σyy)−1; the top-right partition is

−
(
Σyy

11 −Σyy
12 (Σyy

22 )
−1

Σyy
21

)−1

Σyy
12 (Σyy

22 )
−1

=
rθ(c− d)J−2

(m+ rθ2) |Σ|
×



−bs(c− d)

(as + (r + 1)d) (c− d)

(as + (r + 1)d) (c− d)− b2
s

...

(as + (r + 1)d) (c− d)− b2
s


(A.32)

Combining these expressions with (A.29) produces

E[εit|εjs,X] =
(c− d)J−2

|Σ|

[[
(c− d)

(
c− d+

Jmd

m+ rθ2

)
ei 6=jts +

mbsd

m+ rθ2
bt

]
εjs

+

[
− bs

(
c− d+

(J − 1)md

m+ rθ2

)
ei 6=jts − (as + (r + 1)d)

md

m+ rθ2
bt

] (
Ȳ B
j − µδ

)
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+

[
mbsd

m+ rθ2
ei 6=jts +

[
(as + (r + 1)d)

(
c− d+

(J − 1)md

m+ rθ2

)
− b2

s

(
1 +

(J − 2)md

(c− d) (m+ rθ2)

)]
bt

]
×
(
Ȳ B
i − µδ

)
+

[
mbsd

m+ rθ2
ei 6=jts +

md

m+ rθ2

(
−as − (r + 1)d+

b2
s

c− d

)
bt

]∑
k 6=i,j

(
Ȳ B
k − µδ

)
+

[
− rθbsd(c− d)

m+ rθ2
ei 6=jts +

rθ

m+ rθ2

(
(as + (r + 1)d) (c− d)− b2

s

)]
(α− (1− θ)µδ)

]
= Ai 6=j1 εjs + Ai 6=j2

(
Ȳ B
j − µδ

)
+ Ai 6=j3

(
Ȳ B
i − µδ

)
+ Ai 6=j4

∑
k 6=i,j

(
Ȳ B
k − µδ

)
+ Ai 6=j5 (α− (1− θ)µδ)

with Ai 6=j1 , ..., Ai 6=j5 defined accordingly. It follows that

E[εitεjs|X] = Ai 6=j1 E[ε2js|X] +
[
Ai 6=j2

(
Ȳ B
j − µδ

)
+ Ai 6=j3

(
Ȳ B
i − µδ

)
+ Ai 6=j4

∑
k 6=i,j

(
Ȳ B
k − µδ

)
+ Ai 6=j5 (α− (1− θ)µδ)

]
× E[εjs|X]

but because only ei 6=jts and bt depend on t in these expressions, and because
∑r

t=1 e
i 6=j
ts =∑r

t=1 bt = 0, we have

r∑
t=1

r∑
s=1

E[εitεjs|X] =
r∑
s=1

(
r∑
t=1

E[εitεjs|X]

)
= 0

Thus, as in Appendix A.1, the case of i 6= j will not contribute to the variance of the

treatment estimator.

When instead i = j, combining (A.31) and (A.32) with (A.30) in formula (A.10) produces

E[εit|εjs,X] =
(c− d)J−2

|Σ|

×

[ [
(ets + ei 6=jts )(c− d)

(
c− d+

Jmd

m+ rθ2

)
− btbs

(
c− d+

(J − 1)md

m+ rθ2

)]
εis

+

[
−(ets + ei 6=jts )bs

(
c− d+

(J − 1)md

m+ rθ2

)
+ (as + (r + 1)d)bt

(
c− d+

(J − 1)md

m+ rθ2

)]
×
(
Ȳ B
i − µδ

)
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+

[
md

m+ rθ2

(
bs

(
ets + ei 6=jts

)
− (as + (r + 1)d)bt

)]∑
k 6=i

(
Ȳ B
k − µδ

)
+

[
rθ(c− d)

m+ rθ2

(
−bs

(
ets + ei 6=jts

)
+ (as + (r + 1)d) bt

)]
(α− (1− θ)µδ)

]

where, because
∑r

t=1 bt =
∑r

t=1 e
i 6=j
ts = 0,

r∑
t=1

E[εitεis|X] =
r(c− d)J−2

|Σ|

[
ēs(c− d)

(
c− d+

Jmd

m+ rθ2

)
E[ε2is|X]

+
[
− ēsbs

(
c− d+

(J − 1)md

m+ rθ2

)(
Ȳ B
i − µδ

)
+

md

m+ rθ2
ēsbs

∑
k 6=i

(
Ȳ B
i − µδ

)
− rθ(c− d)

m+ rθ2
ēsbs (α− (1− θ)µδ)

]
E[εis|X]

]

= r

[
A1E[ε2is|X] +

[
A2

(
Ȳ B
i − µδ

)
+ A3

(∑
k 6=i

(
Ȳ B
k − µδ

))
+ A4 (α− (1− θ)µδ)

]

× E[εis|X]

]
(A.33)

with A1, ..., A4 defined accordingly.

As for E[εis|X] = E[εis|Ȳ B
i , Ȳ

B
−i, α1, ..., αr], the covariance matrix of conditioning variables

has dimension J + 1 and is given by

Σ̂yy =



c d · · · d −θd

d c · · · d −θd
...

...
. . .

...
...

d d · · · c −θd

−θd −θd · · · −θd (m+ θ2) d


while the covariance vector is Σ̂xy =

(
bs 0 · · · 0

)
, so we need calculate only the upper

part (first line) of
(
Σ̂yy

)−1

.

Using partition result (A.6), we find that Σ̂yy
11 − Σ̂yy

12

(
Σ̂yy

22

)−1

Σ̂yy
21 is again equal to

(A.20). It follows that the determinant |Σ| of that matrix is given by (A.21); and its inverse,
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forming the top-left portion of
(
Σ̂yy

)−1

, is (A.22). The top-right partition is

−
(

Σ̂yy
11 − Σ̂yy

12

(
Σ̂yy

22

)−1

Σ̂yy
21

)−1

Σ̂yy
12

(
Σ̂yy

22

)−1

=
rθ(c− d)J−1

(m+ rθ2)|Σ̂|


1

1
...

1


Applying formula (A.10) then yields

E[εis|X] =
bs(c− d)J−2

|Σ̂|

[(
c− d+

(J − 1)md

m+ rθ2

)(
Ȳ B
i − µδ

)
− md

m+ rθ2

∑
k 6=i

(
Ȳ B
k − µδ

)
+
rθ(c− d)

m+ rθ2

r∑
p=1

(αp − (1− θ)µδ)

]

= B1

(
Ȳ B
i − µδ

)
+B2

∑
k 6=j

(
Ȳ B
k − µδ

)
+B3

r∑
p=1

(αp − (1− θ)µδ) (A.34)

where B1, B2 and B3 are defined accordingly.

In addition, we apply conditional-variance formula (A.25), with σ2
x = as + (r + 1)d, to

compute

Var (εis|X) =
|Σ|
|Σ̂|

Combining this with (A.34) and (A.33) yields the summed conditional expectation as

r∑
t=1

E[εitεis|X] = r

[
A1
|Σ|
|Σ̂|

+B1 (A1B1 + A2)
(
Ȳ B
i − µδ

)2
+B2 (A1B2 + A3)

(∑
k 6=i

(
Ȳ B
k − µδ

))2

+B3 (A1B3 + A4)

(
r∑
p=1

(αp − (1− θ)µδ)

)2

+
(
B1 (A1B2 + A3) +B2 (A1B1 + A2)

) (
Ȳ B
i − µδ

)∑
k 6=i

(
Ȳ B
k − µδ

)
+
(
B1 (A1B3 + A4) +B3 (A1B1 + A2)

) (
Ȳ B
i − µδ

) r∑
p=1

(αp − (1− θ)µδ)

+
(
B2 (A1B3 + A4) +B3 (A1B2 + A3)

)∑
k 6=i

(
Ȳ B
k − µδ

) r∑
p=1

(αp − (1− θ)µδ)

]
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which is the same expression as in Appendix A.1, although of course the factors included

differ somewhat. Nevertheless, the first term within the bracket remains

A1
|Σ|
|Σ̂|

= ēs

and moreover we again find that A1B1 + A2 = A1B1 + A3 = A1B3 + A4 = 0. Thus,

r∑
t=1

r∑
s=1

E[εitεis|X] =
r∑
s=1

rēs

= r2

(
(1− θ)2 σ2

v +

(
θ2

m
+

1

r

)
σ2
ω +

θ2(m− 1)

m
ψB +

r − 1

r
ψA − 2θψX

)
≡ r2ē

and all remaining steps are as in Appendix A.1, concluding the proof.

Appendix B. Estimating an ANCOVA MDE from pre-existing data

Throughout this section, we retain model assumptions 1-5 from Appendix A of this note;

this means, in particular, that time shocks remain included in the DGP. As a modification

of the algorithm proposed by Burlig et al. (2020) for estimating minimum detectable effects

(MDE) from a pre-existing data set, consider the following. (Notice that steps 1 and 3 remain

as originally proposed by the authors.)

1. Determine all feasible ranges of experiments with (m + r) periods, given the number

of time periods in the pre-existing data set.

2. For each feasible range S:

(a) Regress the outcome variable on unit and time-period fixed effects, Yit = vi + δt +

ωit, and store the residuals. This regression includes all I available cross-sectional

units, but only time periods with the specific range S.

(b) Calculate the variance of the fitted unit fixed effects v̂i, and store as σ̃2
v̂,S.

(c) Calculate the variance of the stored residuals, and save as σ̃2
ω̂,S.
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(d) For each pair of pre-treatment periods, (i.e. the first m periods in range S),

calculate the the covariance between these periods’ residuals. Take an unweighted

average of these m(m− 1)/2 covariances, and store as ψ̃Bω̂,S.

(e) For each pair of post-treatment periods, (i.e. the last r periods in range S),

calculate the the covariance between these periods’ residuals. Take an unweighted

average of these r(r − 1)/2 covariances, and store as ψ̃Aω̂,S.8

3. Calculate the average of σ̃2
v̂,S, σ̃2

ω̂,S, ψ̃Bω̂,S, and ψ̃Aω̂,S across all ranges S, deflating σ̃2
ω̂,S

by I(m+r)−1
I(m+r)

and σ̃2
v̂,S, ψ̃Bω̂,S, and ψ̃Aω̂,S by I−1

I
. These averages are equal in expectation

to σ2
v̂ ,σ

2
ω̂, ψBω̂ , and ψAω̂ .

4. To produce the estimated MDE, plug these values into

MDEest =
(
tJ1−κ − tJα/2

)
×

{(
1

P (1− P )J
+

(
Ȳ B
T − Ȳ B

C

)2

Z

)
×
(

I

I − 1

)
×
[
(1− θ2)σ2

v̂ +

(
m+ θr

2m2r2

)(
(m+ r) (m+ θr) + (1− θ)(mr2 −m2r)

)
σ2
ω̂

+

(
m+ θr

2mr2

)
(m− 1) (m+ θr − (1− θ)mr)ψBω̂

+

(
m+ θr

2m2r

)
(r − 1) (m+ θr + (1− θ)mr)ψAω̂

]}1/2

(A.35)

where tJ1−κ and tJα/2 are suitable critical values of the t distribution, and θ is expressed in

terms of the residual-based parameters as

θ =
m [4mrσ2

v̂ − (m (m− r + 2) + r(r −m+ 2))σ2
ω̂]

2r [2m2σ2
v̂ + (m(m+ 1)− r(m− 1))σ2

ω̂ + (m(m− 1)(m+ 1)ψBω̂ − r(m− 1)(r − 1)ψAω̂ ]

+
m
[
−m(m− 1)(m− r + 2)ψBω̂ − r(r − 1)(r −m+ 2)ψAω̂

]
2r [2m2σ2

v̂ + (m(m+ 1)− r(m− 1))σ2
ω̂ + (m(m− 1)(m+ 1)ψBω̂ − r(m− 1)(r − 1)ψAω̂ ]

(A.36)

8Burlig et al. (2020) add an additional step estimating the residual-based across-period covariance, ψ̃Xω̂,S .

However, that step turns out to be redundant, both here and in the original procedure, since ψ̃Xω̂,S is not
used when calculating the MDE.
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The remainder of this section of the appendix mirrors the calculations in Appendix E of

Burlig et al. (2020), showing that the above modified algorithm is appropriate.

First, we claim that steps 1-3 of the algorithm yield unbiased estimates of all residual-

based parameters. For all estimates except σ̃2
v̂ , the proof is identical to that provided in

Appendix E.2 of Burlig et al. (2020). Furthermore, in the estimating regression,

σ̃2
v̂ =

1

I

I∑
i=1

(
v̂i −

1

I

I∑
i=1

v̂i

)2

which is identical to the σ2
v̂ estimate obtained when time FE are not included in the estimating

regression of step 2a above. The proof that E[σ̃2
v̂ ] = σ2

v̂ will therefore be identical to that

provided in Appendix E.3 of Burlig et al. (2020).

Next, step 4 uses these estimates to calculate the MDE. To see why this works, we first

need to express each residual-based parameter as a function of the parameters of the DGP.

For σ2
v̂ , we note that

v̂i =
1

m+ r

r∑
t=−m+1

Yit −
1

I(m+ r)

I∑
i=1

r∑
t=−m+1

Yit

= vi −
1

I

I∑
i=1

vi +
1

m+ r

r∑
t=−m+1

ωit −
1

I(m+ r)

I∑
i=1

r∑
t=−m+1

ωit

which has variance

σ2
v̂ =

(
I − 1

I(m+ r)2

)(
(m+ r)2σ2

v + (m+ r)σ2
ω +m(m− 1)ψB + r(r − 1)ψA + 2mrψX

)
For all other parameters, we simply repeat the calculations in Appendix E.2 of Burlig et al.

(2020), yielding

σ2
ω̂ =

(
I − 1

I(m+ r)2

)(
(m+ r)(m+ r − 1)σ2

ω −m(m− 1)ψB − r(r − 1)ψA − 2mrψX
)

ψBω̂ =

(
I − 1

I(m+ r)2

)(
−(m+ r)σ2

ω + (r2 + 2r +m)ψB + r(r − 1)ψA − 2r2ψX
)

ψAω̂ =

(
I − 1

I(m+ r)2

)(
−(m+ r)σ2

ω +m(m− 1)ψB + (m2 + 2m+ r)ψA − 2m2ψX
)

34



ψXω̂ =

(
I − 1

I(m+ r)2

)(
−(m+ r)σ2

ω − r(m− 1)ψB −m(r − 1)ψA + 2mrψX
)

Comparing with the corresponding expressions in Appendix E.3 of Burlig et al. (2020), we

note the single difference that all residual-based parameters σ2
v̂ , σ

2
ω̂, ψ

B
ω̂ , ψ

A
ω̂ , and ψXω̂ are now

multiplied by I−1
I

, while this was true only for σ2
v̂ in the original procedure. In any case, we

now seek coefficients kv, kω, kB, kA, and kX that allow us to express the serial-correlation-

robust ANCOVA variance in terms of the residual-based parameters rather than the true

parameters. The coefficients will be given by any solution to the following equation:

kvσ
2
v̂ + kωσ

2
ω̂ + kBψ

B
ω̂ + kAψ

A
ω̂ + kXψ

X
ω̂

= (1− θ)2 σ2
v +

(
θ2

m
+

1

r

)
σ2
ω +

θ2(m− 1)

m
ψB +

r − 1

r
ψA − 2θψX

This implies the equation system

(
kv kω kB kA kX

)
Γ =

(
(1− θ)2 m+θ2r

mr
(m−1)θ2

m
r−1
r
−2θ

)
where

Γ =
I − 1

I(m+ r)2



(m+ r)2 m+ r m(m− 1) r(r − 1) 2mr

0 (m+ r)(m+ r − 1) −m(m− 1) −r(r − 1) −2mr

0 −(m+ r) r2 + 2r +m r(r − 1) −2r2

0 −(m+ r) m(m− 1) m2 + 2m+ r −2m2

0 −(m+ r) −r(m− 1) −m(r − 1) 2mr


Although the equation system has infinite solutions, we follow Burlig et al. (2020) in selecting

the one where kX = 0. This yields

kv =

(
I

I − 1

)
(1− θ)2

kω =

(
I

I − 1

)
m+ θr

2m2r2

(
(m+ r)(m+ θr) + (1− θ)(mr2 −m2r)

)
kB =

(
I

I − 1

)
m+ θr

2mr2
(m− 1)(m+ θr − (1− θ)mr)
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kA =

(
I

I − 1

)
m+ θr

2m2r
(r − 1)(m+ θr + (1− θ)mr)

kX = 0

which implies equation (A.35) may be used to compute the MDE. Similarly to above, the

only difference between this solution and that of the original procedure is that all coefficients

(rather than just kv) now include the factor I
I−1

.

Finally, we must also express θ in terms of the residual-based parameters. This requires

choosing coefficients kNv , k
N
ω , k

N
B , k

N
A , k

N
X (corresponding to the numerator of θ) as well as

kDv , k
D
ω , k

D
B , k

D
A , k

D
X (corresponding to the denominator) such that

θ =
mσ2

v +mψX

mσ2
v + σ2

ω + (m− 1)ψB
=
kNv σ

2
v̂ + kNω σ

2
ω̂ + kNBψ

B
ω̂ + kNAψ

A
ω̂ + kNXψ

X
ω̂

kDv σ
2
v̂ + kDω σ

2
ω̂ + kDBψ

B
ω̂ + kDAψ

A
ω̂ + kDXψ

X
ω̂

For the numerator, the solution where kNX = 0 is

kNv =

(
I

I − 1

)
m

kNω = −
(

I

I − 1

)
1

4r
(m(m− r + 2) + r(r −m+ 2))

kNB = −
(

I

I − 1

)
m

4r
(m− 1)(m− r + 2)

kNA = −
(

I

I − 1

)
1

4
(r − 1)(r −m+ 2)

kNX = 0

For the denominator, the solution where kDX = 0 is

kDv =

(
I

I − 1

)
m

kDω =

(
I

I − 1

)
1

2m
(m(m− 1)− r(m− 1))

kDB =

(
I

I − 1

)
1

2
(m+ 1)(m− 1)

kDA = −
(

I

I − 1

)
r

2m
(m− 1)(r − 1)
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kDX = 0

which gives θ as equation (A.36). Again, these solutions differ from the original results only

in that all coefficients (rather than just the kv coefficients) include I
I−1

.
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