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Abstract  

This study examines whether machine learning techniques such as neural networks contain 

predictability when modeling asset prices and if they can improve on asset pricing prediction 

compared to traditional OLS-regressions. This is analyzed through measuring and comparing 

the out-of-sample R2 to find each models’ predictive power. Furthermore, we establish the 

loss metrics of root mean squared error and mean bias error to assess model strength. A 

sample of Swedish stocks ranging over a 40-year period is considered the dataset.  

We provide an analysis of various models to find indications of which models perform better 

from an economic viewpoint. Although we do not test for statistical significance, as 

forecasting returns infrequently exert this, the economic gains can prove relevant. We find 

that several neural networks outperform linear OLS regression in terms of out-of-sample R2. 

We believe that this might not be enough information to profitably transact upon as a 

considerable number of factors such as transaction costs are still unaccounted for. Our 

conclusion is therefore that further studying is required to fully allow for all factors to be 

considered.  

Keywords: Machine learning, neural networks, OLS regression, asset pricing, financial 

forecasting, out-of-sample, predictability. 
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1 INTRODUCTION 

During the past decades, more advanced forecasting strategies have allowed for slight 

economically and statistically significant out-of-sample gains (Rapach and Zhou, 2013). 

Forecasting future returns on assets demands that the used methods are capable of modeling 

complex patterns which can be difficult for traditional linear models. To predict future 

events, data sets are analyzed with specialized models to determine a likely outcome. 

Timmermann (2018) discusses the difficulties of forecasting asset prices, where sufficient 

market efficiency leads to a low signal-to-noise ratio. This in turn contributes to low 

predictive power of the models.  

An area that can be used for prediction that has been researched in more detail in the past 

decade is machine learning. The use of machine learning has spread throughout numerous 

areas with its capabilities of pattern recognition and quick sorting of big data. Machine 

learning applied on financial asset pricing models is something that is relatively new, albeit 

successful in that it provides models that better predicts returns and have lower degree of 

error (Gu, Kelly and Xiu, 2019b). Machine learning can supposedly improve on this using 

complex structures and nonlinear conditional estimations of the factors (Gu, Kelly and Xiu, 

2019a).  

We contribute to the field by performing analysis of machine learning methods in new 

environments which further strengthens the assumptions that machine learning methods 

improve predictability of stock returns (Gu et al., 2019b). Our study also provides more 

evidence to deepen the empirical understanding of asset pricing. We evaluate the current 

literature to base our subsequent methodology on which enhances the comparability between 

our study and existing studies.  

Our findings are that several of the examined machine learning methods called neural 

networks achieves predictability (positive out-of-sample R2) when predicting returns. We 

also conclude that several of the examined neural networks outperform linear OLS regression 

for all considered out-of-sample horizons. The prominent feature of this study is that it uses 

Swedish-listed stocks as the dataset which serves to further expand and deepen the field.  
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1.1 PROBLEM DEFINITION 

Asset pricing is notably difficult as it varies with unforeseeable events. The measurement of 

an assets price is a fundamental financial problem since it requires prediction because the 

price is a conditional expectation of a future realized excess return (Gu et al., 2019b). To 

predict stock returns, it is required to have adequate information of the asset’s characteristics 

as well as knowledge of various theoretical aspects that covers the topic. Linear models face 

difficulty when the data follows complex or nonlinear patterns. This poses an even larger 

problem when the number of variables becomes extremely high (high-dimensional). In recent 

literature, machine learning has been utilized to improve on this with neural networks that 

allows for more complex modeling (Gu et al., 2019b).  

Predicting stock prices is hard because of high competition among the stakeholders which 

leads to market efficiency (Timmermann, 2008). The different variables that explain the rate 

of return of stocks are not only huge in numbers but are also difficult to measure because of 

the physical, psychological, rational and irrational aspects of the stock market. It is therefore 

of interest to evaluate the models applied by machine learning to determine whether there is 

any benefit in using these when predicting stock returns. Studies of Gu et al. (2019b), Gu et 

al. (2019a) and Chen et al. (2020) have been conducted on U.S. markets to determine the 

comparative strength of machine learning models and which factors that are significant. 

There is, however, a lack of studies done in a similar manner to that of Gu et al (2019b) and 

Gu et al (2019a) done outside of the U.S. 

1.2 PURPOSE OF THE THESIS 

In this thesis we analyze whether the field of machine learning can be applied to financial 

asset pricing and if the predictive abilities of nonlinear models can be an improvement over 

other methods such as linear OLS-regression. The reason of our study is to further add 

research to the field to increase understanding of asset pricing. We will proceed in a similar 

manner to how previous studies such as Gu et al. (2019a) and Gu et al. (2019b) have been 

performed with the exception that we focus on the Swedish stock market. To achieve better 

predictive abilities of the models, we use neural networks from the field of machine learning.  
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1.3 RESEARCH QUESTIONS 

The aim of the study is to examine whether machine learning techniques such as neural 

networks can improve upon traditional linear OLS regression models. The research questions 

that are set up are hence:  

(I) Is it possible to achieve predictability on stock prices through the use of neural 

networks? 

(II) Can neural networks outperform linear regression when predicting stock prices? 

 

The research questions will be answered by calculating the out-of-sample R2 for the neural 

network models and if a positive sign is obtained then predictability is achieved. This 

predictability will infer that it is possible to earn excess economic gains compared to the 

benchmark, which in this case is the historical mean return for the used dataset. Measurement 

metrics of mean bias error and root mean squared error will used to dissect the comparison 

among neural networks and linear OLS regressions. 

1.4 THESIS STRUCTURE 

The remainder of the thesis is structured in distinctive sections. In section 2, we analyze the 

current literature in the field of machine learning applied on asset pricing. In section 3, we 

present key concepts of machine learning and, in detail, describe how we proceeded with the 

comparison between the machine learning method of neural networks and linear OLS 

regression. In section 4, we present the data, how it was handled and an illustration of the 

explanatory variables. The fifth section covers the found results of our study as well as an 

analysis of the impact of the explanatory variables and the hyperparameters. The sixth and 

final section comprises of our thoughts and conclusions of the study.  
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2 LITERATURE REVIEW 

The two strands of asset pricing and machine learning have their own respective fields of 

studies. The literature that combines the two is relatively new and there is therefore a limit to 

the amount of published literature that exists. In this section we present the combined strand 

of machine learning applied on asset pricing, their supposed problems and incorporate 

relevant articles to provide a foundation for which later sections builds upon.  

Generally, forecasting problems are difficult to handle as the number of possible scenarios 

often are very large. In financial theory this is likely even harder due to the competitive 

nature of asset prices (Timmermann, 2018). Campbell and Thompson (2008) discuss the use 

of out-of-sample measurements for the R2-statistic for financial problems. It is shown that by 

using restrictions on the predictive regressions, the out-of-sample R2 can be improved which 

could lead to investors profiting by using timing strategies. Meanwhile, Timmermann (2008) 

discerns that any return predictability found is expected to deteriorate quickly. 

2.1 THE AIM OF RESEARCH WITHIN THE FIELD 

The main reason for the research of machine learning applied on asset pricing is to deepen the 

understanding of asset pricing and to provide researchers and investors with tools to improve 

navigation on financial markets. The general results from literature within the field is that 

machine learning methods such as regression trees and neural networks enhance modeling 

capabilities due to the incorporation of nonlinear functions and more efficient computing. 

There are two branches that needs to be distinguished in the field of machine learning on 

asset pricing. One uses predictive modeling in which forecasting techniques are used to find 

patterns and infer future outcome while the other uses contemporaneous modeling in which 

data mining tools are used to gain insight of past events. To conjoin the areas of machine 

learning and asset pricing researchers have chosen models and methods that they believe will 

address the issue at hand. There exists no consensus of how the different techniques and 

models of machine learning should be used in the asset pricing spectrum. It has, however, 

been determined that machine learning is particularly useful when assessing asset pricing due 

to the problem being predictive by nature (Gu et al., 2019b). The predictive branch, which is 

emphasized in this thesis, is concerned with what models and techniques to use to achieve 

models that perform better compared to existing ones.  
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One of the core issues with modeling asset prices is the ability to handle model complexity 

and the associated risk of overfitting (Gu et al., 2019b). The aim is to produce models that 

generalize well and thus research focus on what tools to use to mitigate overfitting. 

Additionally, some research focus on finding what variables explain return and to what 

degree. This is done to give researchers and investors a better understanding of which stock 

characteristics are the most important. The results within this area have improved due to the 

implementation of machine learning techniques. This is because of the computational power 

needed being substantial due to the high number of variables as well as the ability to model 

when the variables are highly correlated (Gu et al., 2019b).  

2.2 EXISTING RESEARCH 

Compared to other machine learning fields such as medicine and image recognition, there 

exists relatively few studies on the topic of asset pricing. Gu et al. (2019a) discuss how to 

improve models by incorporating an unsupervised neural network that aims to reduce 

dimensions and condition asset returns on the information of the stock characteristics. This is 

done to estimate the exposure factors have towards stock characteristics. The authors criticize 

the use of the linearity assumption when modeling asset prices and instead discuss how 

nonlinear models are more flexible and therefore provide better mapping of the asset prices. 

The authors conclude that their nonlinear autoencoder model outperforms linear Fama and 

French and Principal Component Analysis (PCA) models in terms of Sharpe ratio.  

Similarly, Gu et al. (2019b) analyzes the effect of using machine learning methods to 

measure risk premia. The authors perform a comparative analysis among various methods to 

evaluate differences and performance. An analysis of what variables are most dominant in 

explaining return is also run. The authors present a benchmark for the accuracy of measuring 

risk premia in the market and in individual stocks and this is ranked by high out-of-sample 

R2. Gu et al. (2019b) demonstrates that machine learning forecasts can be used by investors 

to extract economic gains. This is established by acquiring a higher annualized out-of-sample 

Sharpe ratio compared to a buy-and-hold strategy.  

Meanwhile, Chen et al. (2020) proposes a general nonlinear conditioning model called a long 

short-term memory recurrent neural network to be used for modeling asset prices with a set 

of stock characteristics and a sizeable number of macroeconomic variables. The authors 

claim that the crucial innovation of the article is the usage of the condition of no-arbitrage 
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integrated into the neural network algorithm which supposedly improves risk premium 

indication and explanation of individual stock returns.  

The three articles mentioned above share similar features. The data used in Gu et al. (2019a) 

and Gu et al. (2019b) is identical and uses U.S. listed firms from 1957 to 2016. The data in 

Chen et al. (2020) is U.S. listed firms from 1967 to 2016. In the work of Chen et al. (2020), 

the study of Gu et al. (2019b) is referenced many times and thus it is likely to believe that 

they share similarities. What differs slightly is the explanatory variables where Gu et al. 

(2019a) and Gu et al. (2019b) uses 94 stock characteristics and 8 macroeconomic variables 

while Chen et al. (2020) uses 46 stock characteristics and considerably larger set of 178 

macroeconomic variables. A technical detail that differentiates Gu et al. (2019a) and Gu et al. 

(2019b) from Chen et al. (2020) is the structure of the neural network where Gu et al. (2019a) 

and Gu et al. (2019b) choose to focus on the more basic “feedforward neural network” while 

Chen et al. (2020) opts for the slightly more advanced “long short-term memory recurrent 

neural network”.  

Potential risks with the current literature of machine learning on asset pricing is that since the 

topic is relatively new, there is limited number of available models and methods that are 

proven to work. There is also a limited number of authors on the subject which could induce 

a narrow point of view and group thinking. Transaction costs are not mentioned in the studies 

of Gu et al. which could affect the credibility of their assumptions that machine learning 

improves economic gains. While it might be appropriate to neglect transaction costs due to 

the central aim of the studies being to provide understanding of asset pricing rather than 

proving economic gains, it can still be of importance when, for instance, comparing market 

timing Sharpe ratio gains. 

The next field that we analyze is the theory of financial forecasting. The literature by 

Timmerman (2018) describes important features that differentiates economic and financial 

forecasting. The article demonstrates three features that needs to be considered when 

discussing financial forecasting. First, the competitiveness and the market efficiency leads to 

a low “signal-to-noise” ratio in many financial forecasting problems. This is particularly 

problematic when predicting asset prices, as opposed to standard macroeconomic prediction 

problems. The presence of weak predictors and parameter estimation errors are therefore 

crucial to examine when dealing with financial forecasting. Second, model instability is 

important in financial forecasting as the magnitude of the outcome is stronger in finance than 
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in other areas (Timmermann, 2018). According to Timmermann, this is because of the high 

competition between asset managers and investors trying to exploit mispricing of assets. The 

third features discussed by Timmermann are issues of overfitting and data mining. The 

problem is to find a truly independent dataset on which to test the forecasting performance 

on.  

Furthermore, Timmermann (2018) discusses limitations and challenges in the area of 

financial forecasting such as data-limitations, weak predictors, persistent predictors, model 

instability and data mining. From the perspective of variable selection, inclusion of predictors 

in regressions of return is considered to hold uncertainty that is not likely to be resolved by 

model selection methods (Timmermann, 2018). Persistent predictors are a problem due to 

some valuation ratios such as the dividend yield being highly persistent and correlated with 

unexpected shocks to returns. The limitation of model instability is due to the predictors 

changing during the timeframe of the gathered data. Asset returns depend on prices which in 

turn reacts to expectations of future payoff. These limitations further explain why financial 

forecasting is both challenging and fascinating. According to Timmermann (2018), the 

financial payoff is what motivates researchers to uncover even small increases in predictive 

power of models as this potentially yields large economic gains.  
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3 METHOD 

Under this section we present key concepts of machine learning and relate to econometric 

terminology to ease the understanding for those with a financial background. We present 

machine learning concepts in a way that it can be understood without prior knowledge of the 

subject. We will provide information of what methods and models we use as well as an 

explanation of the comparison among them. Finally, the data and the data treatment will be 

covered.  

As discussed under the previous section, it is important to make the distinction between 

predictive or contemporaneous models. In this research we construct a predictive model due 

to the aim being to determine how much a machine learning model will influence the 

prediction of stock prices. By looking at data points from the past and finding patterns and 

key trends within the fixed variables, we expect that the model will give an estimate to how 

well the machine learning method can perform. 

We proceed in a similar manner to prior literature of Gu et al. (2019a) and Gu et al. (2019b) 

and hence our choice of method will also overlap and be influenced by these studies. By 

applying machine learning on complex nonlinear models, we expect to receive a higher 

coefficient of determination, R2, and smaller mean bias errors and root squared mean 

prediction errors for predicting future stock returns compared to the linear model. The 

machine learning models will be constructed in Python. The package that is used for the 

neural network is called Tensorflow. By using the high-level neural network API called 

Keras on top of Tensorflow, it is possible to create the sequential model with its layers, which 

will be discussed in detail further ahead. The package Tensorflow with the API Keras needs 

input data that has been structured, reshaped and split by certain requirements.  

3.1 MACHINE LEARNING  

Machine learning uses computationally efficient algorithms to perform tasks without the need 

for outside intervention. The concept is related to econometrics with a few key differences. 

While econometrics is interested in finding causal correlations, machine learning instead 

focus on finding the optimized fit for a model to induce predictions (Chen et al., 2020). Both 

methods, however, utilize regression as the main tool to produce results. Machine learning 

methods use training to learn from data sets. The models used in our study utilizes a training 
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method called supervised learning. When the model uses supervised learning, it will form 

inferred assumptions based on input and output data. There is also unsupervised training, in 

which the model will learn to infer assumptions of patterns only based on input data (Gu et 

al., 2019a). There are certain models of neural networks that utilize unsupervised learning, 

but this will not be considered further in this study. 

3.2 NEURAL NETWORKS 

The foundation of a neural network is the neuron. The neuron can be interpreted as a 

univariate regression with a coefficient and an intercept. The intercept is known as the 

neurons bias and the coefficient is called a weight. The neuron alters the information it 

receives as input and yields this altered information as the output (Gu et al., 2019b). 

𝑧𝑛 = ∑(𝑙𝑛 ∗ 𝑤𝑛) + 𝑏𝑛

𝑛

𝑖=1

 

In the equation, zn is neuron n, ∑ (𝑙𝑛 ∗ 𝑤𝑛)𝑛
𝑖=1  is the summation of the neurons in the previous 

layer times the coefficient (weight) that connects it to neuron n. Finally, the bias bn for neuron 

n is added.  

 

The neurons reside within layers. There are three distinctive layers in a neural network which 

are the input, hidden and output layers respectively. The layer can be represented as a 

multivariate linear regression of the neurons where multiple variables are considered when 

modeling return. Initially, input data is entered into the network via the input layer. In most 

networks no computations are executed here, the input layer will only deliver the information 

to the first hidden layer. Finally, an activation function, such as ReLU, Sigmoid or Gaussian, 

is applied in each neuron to possibly add non-linearity to the process (Gu et al., 2019b). The 

activation function normalizes each neuron between a range of values, usually between 0 and 

1. The hidden layers vary by number and can generally be viewed as mathematical functions 

that receives input from the prior layers and generates a new number through the activation 

function (Gu et al., 2019b).  

The specific activation function we emphasize is called the rectifier, or ReLU. The prominent 

feature of ReLU is the threshold value that determines whether the neurons gets activated or 
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not. Because of the threshold value, only a certain combination of neurons are activated in the 

output layer. This has advantages of decreasing the dependency of single neurons within the 

network which increases the speed of the model as well as decreases the problem of 

vanishing gradients.  

A common learning technique that is initialized in the event of the process reaching the 

wrong conclusion is backpropagation (Gu et al., 2019b). This follows the basic econometric 

concept of optimizing a criterion function. Backpropagation will shift the coefficients and 

biases slightly to increase its chances of being correct. This is usually done through gradient 

descent which computes the derivative of the coefficient’s loss function at each step. If the 

error term is not at a local minimum the error term will be lowered by taking a step in 

direction where the slope is the steepest. The size of the gradient descent is called the 

learning rate and it is selected as a hyperparameter by the input. The learning rate is further 

optimized by empirical testing to determine which model optimizes the loss function the 

quickest (Gu et al., 2019b). The calculations are executed starting from the output layer to 

then proceeds into the hidden layer(s) and finally to the input layer. Problems that arise with 

the use of backpropagation are vanishing gradients and exploding gradients. Backpropagation 

calculates the partial derivative of the value received from the activation function, which 

proves troublesome when the activation function values approach either the minimum or the 

maximum. When this is the case, the partial derivative becomes very small or very large. If 

multiple neurons partial derivatives of the activation function take on extreme values, early 

layers will not receive correct tuning. Solutions to these problems include changing the 

architecture or the activation function.  

3.2.1 Architectures 

The structures of neural networks are denoted as architectures. The most common type of 

neural network is a feedforward neural network. This is also the simplest form of neural 

network in that it follows a one-way flow of information and does not contain any loops or 

cycles (Gu et al., 2019b). The information flows from the input layer to the hidden layer(s) 

and subsequently to the output layer. The different layers are connected through various 

coefficients (weights) which are random at first but will later variate as the model is refined 

through backpropagation. The neurons bias functions similarly to the coefficient in that it is 

refined over time to yield preferable results. The difference is that while the coefficients 

functions as parameters that are multiplied by the input, the bias is as explained earlier, an 
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intercept. As time goes (or as training proceeds) the coefficients will be tuned to improve the 

predictions made by the model (Gu et al., 2019b). This is the basics of how a feedforward 

neural network is being optimized. The architecture will form a passage in which layers in 

front will be a linear or nonlinear function of the layers in the back. When the neural network 

contains more than one hidden layer it is considered deep which allows for more complex 

modeling. 

Figure 1: Feedforward neural network. 

The figure shows a feedforward neural network with 1 hidden layer (non-deep),4 input neurons, 4 hidden 

neurons and 4 output neurons, connected by coefficients. 

 

A broader, more complex group of architectures are recurrent neural networks. This group is 

more adept compared to feedforward neural networks in drawing conclusions of past events 

due to a temporal dimension (Chen et al., 2020). This dimension is integrated by having a 

feedback loop that attaches to the hidden layers and is often analogously considered a 

memory. Because this network can draw inferences built on past data it excels in modeling 

patterns of sequential data. A subgroup to the recurrent neural network is the long short-term 

memory neural network (LSTM). The LSTM neural network contains gates which restricts 

what values of the neurons can pass and therefore modifies the flow of information. 

According to Chen et al. (2020), LSTM are among the most successful machine learning 

methods for modeling sequences of data and thus ideal for predicting stock returns. 
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3.2.2 Hyperparameters 

The optimal value for certain parameters in the model is not known beforehand. These are 

called hyperparameters and are to be determined prior to running the models. 

Hyperparameters define the architecture and are manually adjusted to find the optimal value 

(Gu et al., 2019b). The optimal value for the hyperparameters are in most cases the one that 

optimizes the measurement metrics, however, the speed of the convergence of the model can 

also be of interest. The hyperparameters that we determine iteratively are the number of 

hidden layers, the number of neurons in the hidden layers, the optimizer algorithm, the 

learning rate of the gradient descent, the out-of-sample horizon, the dropout rate, the batch 

normalization and the number of lagged days on the explanatory variables.  

The number of hidden layers effect on model performance is often debated and recent studies 

has found ambiguous results (Gu et al., 2019b). On one hand more layers lead to a level of 

higher prediction with fewer regressors which improves results. This, however, comes with a 

higher need for computational capacity and due to the exponential nature of neural networks, 

it quickly becomes tough to accomplish. The primary distinction to make is between one and 

multiple hidden layers as mentioned previously. The exact number of hidden layers that we 

aim to use will be decided based on empirical testing on which models perform better and 

converges to the minimum the fastest. Another similar issue that arises is how many neurons 

should be within each hidden layer. The number of neurons depend on the type of layer (Gu 

et al., 2019b). In the input layer the number of neurons should equal the number of 

dependable variables in the data. The output layer should have as many neurons as there are 

outputs. The challenging part is to decide how many neurons should be in the hidden layers. 

As with the number of layers, the most common approach to evaluate how many neurons to 

use include in the hidden layers is to systematically test what number of neurons perform 

better (Gu et al., 2019b). The optimizer algorithm defines the model’s training attributes (Gu 

et al., 2019b). Through empirical testing we conclude that the preferred optimizer algorithm 

for us is the Stochastic Gradient Descent, or SGD, which is the most commonly used 

optimizer in neural networks (Gu et al., 2019b).  

3.2.3 Overfitting  

When predicting asset prices, it is critical to understand the concepts of bias and variance. 

The trade-off between the two shows the risk of having a too simple model (high bias) or a 

too complex model (high variance). Bias and variance are a sign of the model over- or 
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underfitting. The most recurrent problem within machine learning is overfitting as the issues 

at hand often contain complex structures which leads to high variance (Gu et al., 2019b). This 

phenomenon occurs when the model puts too much emphasis on noise, or randomness, due to 

high complexity in the underlying data. The main symptom of overfitting is when the model 

performs adequately on the training data but performs considerably worse on the test data. To 

circumvent this issue, one must either alter the data, alter the architecture or add 

regularization (Ying, 2019). To reduce the problem of overfitting and further improve 

predictability we introduce regularization techniques. Generally, regularization comes in the 

form of penalizing certain unwanted characteristics in parameters or protect against outliers. 

This is done to ensure that the model disregards extreme values that only fit the training data. 

3.2.4 Regularization  

To reduce the problem of overfitting and improve speed and performance of the model we 

impose regularization techniques (Gu et al., 2019b). The regularization techniques we 

implement are early stopping, batch normalization and dropout. The dropout rate defines a 

percentage value of random neurons that will be ignored during the training stage. These 

neurons impact will be removed for the duration of one iteration and the layers will hence 

contain a different number of active neurons at each stage. This solves the issue of co-

adaptation which occurs when neurons become too reliant on the input values they receive 

from neurons in prior layers (Srivastava, Krizhevsky, Hinton and Sutskever, 2014). The 

model becomes less prone to the risk of specific weights of individual neurons having too 

much importance. Early stopping is a technique that stops the process once the validation 

error increases from an iteration to the next. Batch normalization normalizes the number 

received from the activation function which makes the model converge to the early stopping 

faster and relieves the issues of vanishing and exploding gradients. Batch normalization also 

synergizes with dropout because it contains noise and thus less information will be dropped 

by the dropout function (Gu et al., 2019b). 

3.2.5 Data split 

The data containing both the explanatory and the dependent variables must be split in three 

distinctive parts. This is done to measure out-of-sample performance of the model as well as 

to prevent overfitting (Xu and Goodacre, 2018). The three sets are the training dataset, the 

validation dataset and the test dataset. The allocation is 15% as validation set, 70% as training 
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set and either 1%, 5% or 15% as test set. The test set varies to test predictive power of the 

models on different test set sizes (out-of-sample horizons). 

 

Figure 2: Splitting the dataset in different out-of-sample sizes 

 

This figure shows how the data set is split and how different out-of-sample horizons effects the data-splitting. 

The table demonstrates that the out-of-sample horizon is the size of the test data set. 

 

The training dataset is the actual dataset that is used to train the program and the aim for this 

is to make the model learn what input variables will induce a certain output variable. The 

validation dataset is separate from the training dataset and is used to validate the model. The 

validation process is defined by training the model to improve hyperparameters and 

predictability independently from the training dataset (Xu and Goodacre, 2018). The major 

difference between the training and the validation processes is that the validation does not 

alter the coefficients or the biases of the neural connections. It instead aims to provide an 

unbiased control that any increase in accuracy over the training data will have the similar 

effect when used on data that has not yet been shown to the model. This aids in protecting the 

model from overfitting. The third and final separate dataset is the test dataset. The objective 

of the test dataset is to provide data that can be used to measure the models out-of-sample 

performance. This is done at the end of the process to fully reflect what the model has 

learned. The major difference between the training/validation data and the test data is that the 

test data is not used for any tuning or training of the model. All datasets should also be 

following the same probability distribution (Xu and Goodacre, 2018).  
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3.3 COMPARISON OF MODELS 

To give a just estimation of how the neural networks perform, we analyze and compare them 

with a more simplistic model. The model of comparison is the standard linear OLS regression 

which follows standard OLS regression rules. We expect that the linear OLS model will 

perform poorly when used to predict future stock returns, which is in line with previous 

results in Gu et al. (2019b). This is likely due to the OLS becoming unstable when the 

number of predictors in the model increases. The neural networks that we model differ with 

regards to their hyperparameters which affects the out-of-sample predictive performance.  

To evaluate model performance, two loss functions are measured on an in-sample and out-of-

sample basis. The coefficient of determination, R2, is measured on an out-of-sample basis on 

test data for the neural networks and on an out-of-sample basis on training data for the OLS-

function as comparison. This is done to determine whether the model exhibits predictability. 

Campbell and Thompson (2008) discuss the use of out-of-sample measurements for the R2-

statistic for financial problems. Improving out-of-sample R2 is shown to lead to investors 

profiting by using timing strategies. If a positive out-of-sample R2 is found to be consistent 

through time, then it can be concluded that the model outperforms the random walk (Gu et 

al., 2019b). Any return predictability found however, is expected to deteriorate quickly 

(Timmermann, 2008). 

It is of high relevance for the neural networks to balance bias and variance in order to receive 

a model that does not over- or underfit. The first loss function used is the root mean squared 

error, RMSE, which is a commonly used evaluation of the quality of the estimator. The 

RMSE is the root of the average of the squared differences between the predicted value and 

mean value. It encompasses both by how far off the average data point is from the actual 

value and by how much the data points are spread out from each other. The second measure 

to evaluate model performance is the mean bias error, MBE. MBE is used to capture the 

average bias in the model. A positive MBE indicates that the predicted values are larger than 

the observations and vice versa. The bias is important to determine to find the optimal 

structure of the neural network. The optimal neural network will hence minimize both RMSE 

and MBE while having a positive out-of-sample R2 (Gu et al., 2019b). The measurement 

metrics are calculated as follows: 

𝑅𝑜𝑜𝑠 
2 =

∑ (𝑦𝑖−𝑦̂𝑖)𝑇
𝑡=1

2

∑ (𝑦𝑖−𝑦̅𝑖)𝑇
𝑡=1

2  𝑀𝐵𝐸 =  
1

𝑛
 ∑ (𝑦𝑖̂ − 𝑦𝑖)

2𝑛
𝑖=1  𝑅𝑀𝑆𝐸 = √(

1

𝑛
 ∑ (𝑦𝑖 − 𝑦̅𝑖)2𝑛

𝑖=1 ) 
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4 DATA 

To receive as accurate models as possible we use the broad Swedish index together with a 

wide time span. The data used is 40 years of individual stock returns gathered from the 

Swedish House of Finance with a period ranging from January 1979 to January 2019. There 

are 491 stocks in total that were all listed on the Swedish exchanges. Explanatory variables in 

the form of stock characteristics are also part of the dataset. These are collected from the 

same source and are chosen based on what previous studies have found to be the dominant 

factors.   

The descriptive variable in the dataset is the logarithmic value of the daily return. The 

explanatory variables are lagged values of the predictors. The predictors chosen for our 

model is categorized in two groups which are technical analysis variables and valuation 

ratios. This stems from the conclusion made by (Gu et al., 2019a) that the most successful 

predictors are price trends, liquidity, volatility and financial ratios.  

4.1 VALUATION RATIOS 

The valuation ratios that we apply as explanatory variables in the dataset are the market and 

the book value rankings. These rankings will determine the relative size of companies and 

also give signals of increases or decreases in the ranking between companies. A company's 

market value, also known as market capitalization, is the total value of all the traded shares 

on the market. The book value is defined as a company's tangible assets minus its liabilities. 

The purpose of these ratios is to assist the neural network in finding relationships between 

increases or decreases in the rankings and the stock return. The last valuation ratio is the 

dividend yield. There have been many studies of the relationship between the dividend yield 

and the stock return. Timmerman and Pesaran (1994) built a model that explained monthly 

S&P 500 returns with lagged values of the dividend yield and showed that the variable is 

significant for predicting stock returns. We consider these predictors in our dataset due to 

previous research showing their predictive power (Gu et al. 2019a). 
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4.2 TECHNICAL VARIABLES 

Apart from the valuation ratios, we also implement technical analysis variables and lags of 

the logarithmic daily return in the dataset. We implement technical variables due to previous 

literature showcasing their statistical significance when forecasting returns (Gu et al., 2019b) 

In our dataset we include the Moving Average Convergence Divergence (MACD) which is a 

metric used to find trends in momentum between the exponential moving average (EMA) 

with a period of 26 days with the EMA of 12 days. The MACD is calculated by subtracting 

the fast EMA with the slow EMA. The next technical metric we include is the relative 

strength index (RSI) which determines whether a stock is overbought or oversold compared 

to a rolling average of the last 14 days. The metric ranges from 0 to 100 where a number in 

excess of 70 indicates an overbought stock and a number lower than 30 indicates an oversold 

stock. These technical indicators have shown to work as predictors and could potentially 

generate excess return for investors (Chong and Ng, 2008). Furthermore, a lagged variable of 

Simple Moving Average (SMA) is implemented, which comprises of the average returns over 

a certain period. The dataset also contains the SMA-crossover variable, which is defined as a 

slow rolling window of 100 days and a fast rolling window of 20 days. The final technical 

variable we add to the dataset is the bid-ask spread. The bid-ask-spread is the difference 

between the ask price and the bid price and is an indicator of supply and demand of an asset. 

Research have shown that higher spreads yield higher returns and is therefore interesting to 

add to our model (Amihud & Mendelson ,1986) 
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4.3 THE FINAL DATASET 

Table 1 demonstrates the numerical summary of the predictors that are included in the 

dataset. Winsorization is conducted on each of the variables to reduce the effect of outliers.  

This is done by choosing a certain threshold value of the distribution, in which the excess 

gets replaced by a normalized percentile. In table 1, all variables range from 0 and 1 with the 

exception of the return variable, which is only winsorized but not normalized. This is because 

we do not want smaller standard deviations to suppress the effect of outliers in the case of 

daily returns.  

Table 1: Predictor summary 

Variable count mean std min 0,25 0,5 0,75 max 

Return 961319 1,000 0,022 0,885 0,990 1,000 1,010 1,128 

Market value 961319 0,342 0,218 0,000 0,166 0,324 0,486 1,000 

Book value 961319 0,341 0,219 0,000 0,162 0,323 0,487 1,000 

Dividend yield 961319 0,030 0,071 0,000 0,005 0,010 0,026 1,000 

SMA crossover 961319 0,272 0,445 0,000 0,000 0,000 1,000 1,000 

Volatility 961319 0,025 0,013 0,000 0,017 0,022 0,029 0,655 

RSI 961319 0,523 0,124 0,000 0,442 0,523 0,607 1,000 

MACD 961319 0,045 0,012 0,000 0,045 0,045 0,046 1,000 

Bid- Ask-Spread 961319 0,062 0,128 0,000 0,009 0,023 0,055 1,000 

The table shows the summary statistics of the predictors implemented in the dataset after winsorization and 

normalization. 
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5 RESULT & DISCUSSION 

The result from the evaluation of each neural network after tuning hyperparameters and 

constructing different architectures will be presented in this section. The following tables will 

demonstrate the in-sample and out-of-sample metrics of the MBE, RMSE and the out-of-

sample R2. To demonstrate how the out-of-sample horizon changes the return predictability, 

results with three different horizons of 1%, 5% and 15% of the test set will be shown. A 

comparison between the OLS regression will also be demonstrated to showcase the relative 

strengths or weaknesses of different neural networks.  

To achieve a relatively well-performing neural network it is crucial to examine the results of 

different setups and architectures. This section demonstrates ten different architectures that 

we denote NN1 to NN10, ranging from shallow (non-deep) to very deep in ascending order. 

The architectures are presented in table 2 and are defined as the number of neurons times the 

layers. For instance, the first neural network, NN1, is made up of 32 neurons in the input 

layer and 16 neurons in the hidden layer. The output neuron is always 1 due there being only 

one output and is therefore not shown in the table. By using the same architectures 

throughout the result section, we draw conclusions of correlation between the changes of the 

hyperparameters and the performance metrics.  

Table 2: The Neural Network Architectures 

Network 
Neurons in 

input layer 

Hidden Layers  

(Neurons x Layers) 
Type Optimizer Batchsize 

NN1 32 16x1 Shallow SGD 500 

NN2 64 32x1 Shallow SGD 500 

NN3 128 64x1 Shallow SGD 500 

NN4 256 128x1 Shallow SGD 500 

NN5 512 256x1 Shallow SGD 500 

NN6 128 64x2 Deep SGD 500 

NN7 128  64x2, 32x2, 16x2 Deep SGD 500 

NN8 256 128x3, 64x2 Deep SGD 500 

NN9 256 128x3, 64x3, 32x3 Deep SGD 500 

NN10 512 

256x4, 128x4, 64x4, 32x4,  

16x4, 8x4, 4x4, 2x4 Deep SGD 500 

The table shows the architectures that are being tested in all subsequent runs. Each network has their 

own structure with regards to how many neurons exist in the input and hidden layers as well as how 

many hidden layers there are. 
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5.1 BASE RUN 

This run will be used as our benchmark for tuning and analyzing the best setup for the neural 

networks. The predictors in this setup are 20 days of lagged variables, a dropout rate of 0.5 

together with batch normalization on each layer. The result is presented in the table below 

where the performance metrics are displayed for the OLS and the neural networks. The 

networks out-of-sample performance metrics MBE, RMSE and R2 were better than for the 

OLS. Looking at the different out-of-sample horizon of 1%, 5% and 15% an interesting 

finding can be noticed. When the out-of-sample horizon increases the deep neural networks 

appears less stable which indicates that it might overfit. By looking at the out-of-sample 

horizon of 1%, the best neural network is NN8 which shows the lowest mean bias error and 

the highest out-of-sample R2. This is in line with results from previous studies of Gu et al. 

(2019a), Gu et al. (2019b) and Chen et al (2020), that demonstrates a higher out-of-sample R2 

for the neural networks and regression trees compared to the linear OLS regression. 

However, when the out-of-sample horizon increases to 15% NN8 turns from a bias of -0.089 

to 0.425 and receives the lowest out-of-sample R2 of all the networks. The effect occurs for 

all of the deep neural networks, showing that when the out-of-sample horizon increases, the 

shallow neural networks perform better. The best-performing model was NN5 with an out-of-

sample R2 of 0.276. This can be explained by studies of Gu et al. (2019b), where deeper 

networks usually are more prone to overfitting as the data is likely to contain much noise. 

Shallower networks are less affected by noise and could be the reasoning to their relative 

outperformance.  

The out-of-sample R2 might be statistically insignificant but could prove economically highly 

relevant since our benchmark is random walk. (Timmerman, 2018) mentioned as a counter to 

the difficulties with establishing return predictability, that even small amounts of return 

predictability have the potential of translating into significant economic gains. This is not to 

say that it would be a profitable to trade based on these results, since the model does not 

account for transaction costs and still has a relatively poor performance. However, the setup 

presented for the base run indicates that the neural network out-of-sample predictions are 

stronger than linear regression (OLS) as is expected from studies of Gu et al. (2019b). 
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Table 3: The Base Run 

    In-Sample Out-of-sample 1% Out-of-sample 5% Out-of-sample 15% 

  Model Bias RMSE Bias RMSE 

OOS-

R2 Bias RMSE 

OOS-

R2 Bias RMSE 

OOS-

R2 

  

OLS 0,000 22,004 -1,698 16,983 -7,563 -0,444 16,653 -3,847 0,058 17,684 -3,135 

S
h

al
lo

w
 

NN1 0,031 22,056 -1,487 16,915 0,558 -0,300 16,623 -0,181 0,190 17,657 0,030 

NN2 0,068 22,055 -1,492 16,911 0,987 -0,315 16,622 -0,136 0,159 17,656 0,079 

NN3 0,077 22,055 -1,532 16,914 0,705 -0,357 16,622 -0,159 0,125 17,656 0,133 

NN4 0,036 22,053 -1,507 16,919 0,095 -0,349 16,624 -0,385 0,132 17,656 0,045 

NN5 0,081 22,053 -1,546 16,914 0,597 -0,364 16,622 -0,046 0,130 17,654 0,276 

D
ee

p
 

NN6 0,164 22,056 -1,403 16,904 1,838 -0,233 16,620 0,098 0,250 17,657 -0,010 

NN7 0,127 22,058 -1,431 16,908 1,334 -0,221 16,619 0,254 0,297 17,658 -0,187 

NN8 0,290 22,059 -1,292 16,896 2,748 -0,089 16,618 0,435 0,425 17,660 -0,414 

NN9 0,150 22,058 -1,408 16,906 1,573 -0,199 16,619 0,292 0,319 17,659 -0,230 

NN10 0,035 22,058 -1,525 16,916 0,374 -0,314 16,620 0,083 0,205 17,657 -0,042 

  The table shows the setup for the first test where the different networks are compared by the metrics of MBE, 

RMSE and OOS-R2 on an in-sample and an out-of-sample basis. The best performing network in the out-of-

sample size 15% is NN5 with a value of 0.276. All values are multiplied by 1000 for easier interpretation. 

  

 

5.2 IMPACT OF DROPOUT ON MODEL PERFORMANCE 

The purpose of this run is to determine the impact of decreasing the dropout rate relative to 

the performance of the model. The dropout rate is therefore lowered to 0.2 instead of 0.5 

while holding other parameters fixed. The result in table 4 shows that the R2 of the best 

performing network in any of the out-of-sample horizons do not improve over the previous 

run. The best model in this run is NN1 with an out-of-sample R2 of 0.178. We determine that 

the deep neural networks NN6, NN7 and NN8 receives a lower mean bias error for the 15% 

out-of-sample horizon compared to the base run. They also receive a positive out-of-sample 

R2 for the out-of-sample horizon of 15%.  
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  Table 4: Decreasing the dropout 

    In-Sample Out-of-sample 1% Out-of-sample 5% Out-of-sample 15% 

  Model Bias RMSE Bias RMSE 

OOS-

R2 Bias RMSE 

OOS-

R2 Bias RMSE 

OOS-

R2 

  

OLS 0,000 22,004 -1,698 16,983 -7,563 -0,444 16,653 -3,847 0,058 17,684 -3,135 

S
h

al
lo

w
 

NN1 0,017 22,056 -1,546 16,919 0,077 -0,370 16,624 -0,383 0,110 17,655 0,178 

NN2 0,019 22,054 -1,566 16,918 0,182 -0,381 16,623 -0,244 0,102 17,655 0,147 

NN3 0,028 22,052 -1,545 16,918 0,208 -0,370 16,624 -0,303 0,116 17,655 0,158 

NN4 0,005 22,050 -1,652 16,928 -0,953 -0,449 16,625 -0,515 0,060 17,656 0,131 

NN5 0,011 22,050 -1,636 16,923 -0,411 -0,412 16,624 -0,340 0,113 17,655 0,149 

D
ee

p
 

NN6 0,029 22,054 -1,559 16,920 -0,115 -0,391 16,625 -0,409 0,102 17,656 0,120 

NN7 0,079 22,057 -1,480 16,912 0,921 -0,274 16,620 0,098 0,234 17,657 0,005 

NN8 0,105 22,055 -1,468 16,910 1,063 -0,291 16,622 -0,125 0,190 17,656 0,085 

NN9 0,113 22,058 -1,451 16,910 1,163 -0,253 16,620 0,153 0,254 17,658 -0,107 

NN10 0,396 22,062 -1,161 16,888 3,739 0,051 16,618 0,418 0,570 17,665 -0,967 

  The table shows the comparison of the networks when the dropout rate has been lowered from 0.5 to 0.2.   

  

 

Even though the performance of best performing network does not increase, we notice that 

the overall performance, for both the deep and non-deep networks, increase. This shows that 

changing the dropout rate is a feasible strategy to apply to impact the result.  

5.3 IMPACT OF NUMBER OF LAGS 

In this run, we analyze the impact of varying the number of lags. The dropout rate will be 

held constant at 0.5. In this run we notice an increase in the out-of-sample R2 for the OLS and 

a decrease in out-of-sample R2 for the neural networks when lowering the number of lags. As 

we reduce the complexity of our dataset by reducing lagged variables from 20 to 10, we 

notice an increase of the measurement’s metrics for the OLS and a decrease of the 

measurement metrics for the neural networks. However, since there are still 10 lagged days of 

variables, it might be too complex of a setup for the OLS to receive a positive out-of-sample 

R2 like the neural networks does. Comparing the out-of-sample horizon of 15% out-of-

sample R2 from the previous run with table 5 we see that the out-of-sample R2 of the OLS 

have increased from -3.135 to -1.201.  
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  Table 5: Decreasing the number of lags 

    In-Sample Out-of-sample 1% Out-of-sample 5% Out-of-sample 15% 

  Model Bias RMSE Bias RMSE OOS-R2 Bias RMSE OOS-R2 Bias RMSE OOS-R2 

  

OLS 0,000 22,142 -1,651 17,146 -5,752 -0,475 16,788 -1,920 0,019 17,759 -1,201 

S
h

al
lo

w
 

NN1 0,031 22,178 -1,441 17,095 0,167 -0,345 16,776 -0,444 0,117 17,749 -0,078 

NN2 0,058 22,178 -1,443 17,093 0,389 -0,358 16,775 -0,356 0,106 17,748 0,079 

NN3 0,095 22,177 -1,440 17,091 0,641 -0,340 16,773 -0,118 0,128 17,747 0,122 

NN4 0,054 22,174 -1,526 17,096 0,110 -0,398 16,772 -0,064 0,089 17,745 0,317 

NN5 0,066 22,175 -1,388 17,090 0,773 -0,245 16,774 -0,281 0,249 17,749 -0,096 

D
ee

p
 

NN6 0,185 22,179 -1,326 17,084 1,510 -0,238 16,773 -0,123 0,222 17,749 -0,071 

NN7 0,123 22,181 -1,376 17,087 1,165 -0,234 16,770 0,250 0,276 17,750 -0,157 

NN8 0,323 22,182 -1,170 17,072 2,911 -0,038 16,769 0,391 0,463 17,753 -0,584 

NN9 0,252 22,182 -1,240 17,076 2,366 -0,094 16,768 0,403 0,417 17,752 -0,479 

NN10 0,035 22,181 -1,456 17,093 0,354 -0,314 16,771 0,083 0,195 17,749 -0,040 

  The table shows the comparison of the networks when the amount of lagged days on the explanatory variables have 

decreased from 20 to 10.  All values are multiplied by 1000 for easier interpretation.   

 
By increasing the number of lagged days from 20 to 30, we receive a stronger indication of 

the previous statement that by increasing complexity, the OLS performs even worse relative 

to the neural networks. We can again conclude that the shallow neural networks outperform 

the deep neural networks. Looking at table 6 we notice that all the shallow networks receive a 

positive out-of-sample R2 for an out-of-sample horizon of 15%, while the deep networks 

receive negative numbers. We can once again observe that NN4 performs relatively well 

compared to the other neural networks and the OLS. 
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  Table 6: Increasing the number of lags 

    In-Sample Out-of-sample 1% Out-of-sample 5% Out-of-sample 15% 

  Model Bias RMSE Bias RMSE OOS-R2 Bias RMSE OOS-R2 Bias RMSE OOS-R2 

  OLS 0,000 21,926 -1,795 16,844 -7,783 -0,452 16,556 -5,396 0,078 17,632 -5,616 

S
h

al
lo

w
 

NN1 0,024 21,996 -1,679 16,776 0,403 -0,373 16,512 -0,076 0,149 17,582 0,064 

NN2 0,086 21,995 -1,666 16,775 0,453 -0,379 16,514 -0,251 0,118 17,582 0,075 

NN3 0,099 21,995 -1,647 16,771 0,943 -0,370 16,514 -0,296 0,120 17,583 0,007 

NN4 0,120 21,993 -1,659 16,772 0,818 -0,370 16,513 -0,147 0,125 17,581 0,134 

NN5 0,134 21,993 -1,596 16,766 1,552 0,287 16,513 -0,106 0,223 17,582 0,079 

D
ee

p
 

NN6 0,213 21,997 -1,577 16,763 1,900 -0,283 16,511 0,124 0,221 17,583 -0,086 

NN7 0,097 21,998 -1,631 16,770 1,088 -0,302 16,510 0,229 0,233 17,584 -0,101 

NN8 0,099 21,998 -1,696 16,778 1,051 -0,235 16,531 0,230 0,354 17,586 -0,275 

NN9 0,177 21,998 -1,542 16,762 2,021 -0,214 16,509 0,387 0,322 17,585 -0,269 

NN10 0,040 21,998 -1,677 16,775 0,486 -0,349 16,510 0,109 0,186 17,583 -0,043 

  The table shows the comparison of the networks when the amount of lagged days on the explanatory variables have 

increased from 20 to 30. All values are multiplied by 1000 for easier interpretation.   

 
 

In the two runs of increasing and decreasing the number of lagged variables, we notice that 

the performance of the deep networks does not change much, while the performance for the 

shallow networks improves substantially. We will further discuss this founding in the final 

analysis. 

5.4 IMPACT OF CHANGING LAGS AND DROPOUT 

In this run, we analyze the effect of changing both the number of lags and the dropout rate. 

By decreasing the number of lags by 10 and the dropout rate to 0.2 we observe that the  

shallow networks receives the lowest bias recorded so far as well as the highest out-of-sample 

R2 for an out-of-sample horizon of 15%. We observe that the best performing network in this 

run is the NN4 which has the architecture of one input layer of 256 neurons and one hidden 

layer with 128 neurons. This neural network has improved its performance for each of the 

previous runs made and is considered the best-performing setup for this study's dataset. This 

run demonstrates the highest out-of-sample R2 for an out-of-sample horizon of 15% of all the 

runs. We can conclude that by changing the number of lagged variables together with 

hyperparameter tuning, it is possible to further strengthen a neural network, however, this 

requires a lot of testing which becomes impractical. With these specifications of the 

architecture, the dropout rate, the number of lags together with batch normalization, we 
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receive a model that have outperforming predicting power over the linear regression and 

could with further optimization be valuable to investors.  

  Table 7: Decrease in dropout rate and number of lags 

    In-Sample Out-of-sample 1% Out-of-sample 5% Out-of-sample 15% 

  Model Bias RMSE Bias RMSE OOS-R2 Bias RMSE OOS-R2 Bias RMSE OOS-R2 

  

OLS 0,000 22,142 -1,651 17,146 -5,752 -0,475 16,788 -1,920 0,019 17,759 -1,201 

S
h

al
lo

w
 

NN1 0,018 22,177 -1,427 17,095 0,149 -0,315 16,775 -0,389 0,156 17,749 -0,102 

NN2 0,016 22,177 -1,511 17,097 -0,089 -0,406 16,775 -0,333 0,069 17,747 0,156 

NN3 0,017 22,174 -1,533 17,102 -0,631 -0,446 16,777 -0,670 0,009 17,747 0,094 

NN4 0,020 22,169 -1,542 17,096 0,064 -0,407 16,774 -0,215 0,079 17,744 0,476 

NN5 -0,006 22,169 -1,648 17,101 -0,491 -0,488 16,776 -0,438 0,011 17,745 0,366 

D
ee

p
 

NN6 0,077 22,176 -1,439 17,094 0,277 -0,328 16,775 -0,365 0,138 17,748 0,046 

NN7 0,059 22,179 -1,460 17,093 0,466 -0,326 16,772 0,016 0,177 17,748 0,008 

NN8 0,090 22,178 -1,427 17,092 0,516 -0,332 16,774 -0,225 0,136 17,748 0,075 

NN9 0,144 22,181 -1,358 17,084 1,419 -0,226 16,770 0,215 0,275 17,750 -0,185 

NN10 0,434 22,186 -1,052 17,065 3,699 0,090 16,770 0,255 0,599 17,759 -1,174 

  The table shows the comparison of the networks when the dropout rate has decreased from 0.5 to 0.2 and the amount 

of lagged days on the explanatory variables have decreased from 20 to 10. All values are multiplied by 1000 for 

easier interpretation. 

  

 

5.5 FINAL ANALYSIS 

Our study is less complex in terms of the number of days and variables compared to the 

studies of Gu et al. (2019b) and Gu et al. (2019a). However, we receive results that are 

similar to these studies. Even with a smaller number of predictors the R2 for the OLS receives 

negative numbers and shows a negative correlation between number of predictors and the 

out-of-sample R2. The base run with 20 lagged variables as predictors demonstrates an out-

of-sample R2 that is -3.135 for the OLS with an out-of-sample horizon of 15%. When the 

number of lagged variables decrease to 10 an out-of-sample R2 of -1.2 is received for the 

OLS.  

With many parameters to estimate, the efficiency of the OLS regression show the weakness 

that we were expecting and therefore produces forecasts that are highly unstable out of 

sample. Our neural networks, however, demonstrates an increase to the out-of-sample R2 

when the number of lagged variables increases. As our comparison for the different runs are 

analyzed, we can also draw the conclusion that shallow learning outperforms deep learning. 

As Gu et al. (2019b) mention in their research this differs from the typical conclusion in other 
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fields such as computer vision and bioinformatics and that this is likely due to the absence of 

large datasets and a low signal-to noise ratio.  

Our findings are based on ten different architectures with different number of hidden layers 

and number of neurons. The “universal approximation” as stated by (Gu et al., 2019a) is that 

a model with a single hidden layer is most efficient, but recent literature have shown that this 

might not always be the case. Deeper neural networks can often achieve the same accuracy 

with substantially fewer parameters. In our case this was demonstrated by comparing model 

performance when varying the number of lagged days between 10 and 30. When the 

comparison was run, the deeper networks performance did not significantly change, however 

they were stable across the different complexities. The shallow networks performed better 

and by also decreasing the dropout we reached our best neural network with a relatively high 

out-of-sample R2.  

5.6 LIMITATIONS AND FURTHER EXTENSIONS 

There are several limitations that affect the results of this study. Available data of stock 

returns and explanatory variables are limited in timeframe and quantity. When handling the 

dataset, we need to remove certain code with missing or invalid information. This further 

reduces the amount of data while also creating gaps in the dataset that have to be accounted 

for. While there is a plethora of machine learning methods available for image- and speech 

recognition and medicinal purposes, there is a relatively short supply of available methods 

and models that focus on the combined field of machine learning applied on asset pricing. 

Previous literature of Gu et al. (2019b) discerns what machine learning cannot be used for. 

While machine learning is adept at providing measurements of asset pricing, it does not 

provide any information of the economic mechanisms that in reality are what dictates the 

price of an asset. It also does not provide information of equilibrium of any kind.  

A crucial limitation to this study is that no transaction costs are accounted for. This means 

that even if predictability and subsequent profitability over random walk is achieved, it is 

likely that in a real-world scenario, the predictability and the excess profitability vanishes in 

part or completely. Chen et al. (2020) demonstrates this through the implementation of a no-

arbitrage condition being part of the neural network. Also, other financial obstacles such as 

liquidity might pose a problem when testing the models in a real-world scenario. Our sample 
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size will be smaller than that of Gu et al. and there will be a considerable reduction in the 

number of predicting variables due to constraints in time and computational power.  

To improve results and relevance, the study can be further optimized through a variety of 

methods. These methods have not been implemented due to limitations of time and 

knowledge within the field as well as some being impractical. First, a different architecture, 

such as the LSTM can be used to improve predictability as observed by Chen et al. (2020). 

This would likely have further deepened the result but was cut short due to time constraints. 

There are many stock characteristics that explain returns and in this study a few of the most 

prominent have been considered. To further deepen the result and possibly receive a model 

with higher predictability, more characteristics could have been analyzed.  

In addition, this study does not analyze the statistical significance of the explanatory variables 

or the received loss function metrics. Financial forecasting problems often deals with very 

small out-of-sample R2 values which could imply that statistical significance is difficult to 

achieve. The values could, however, be highly relevant to investors and speculators by 

improving upon timing or trading strategies, as showcased by Campbell and Thompson 

(2008). The examined literature often protrudes into studying portfolios in addition to 

individual stocks. This enhances the measurability of return predictability for comparing 

traditional investing strategies such as buy-and-hold and machine learning models (Gu et al., 

2019b).  

To increase the predictive ability of the neural networks in this study, further optimization of 

the hyperparameters can be done. The number of permutations of the hyperparameters are 

quickly increasing as the number of hyperparameters increase and for this reason it is 

impractical to build a network with every possible combination of parameters. A larger 

dataset is likely to increase predictability due to the network having more data to train on. To 

further increase comparability, more linear models with different penalization techniques 

such as LASSO and elastic net as well as other machine learning techniques such as 

regression trees could have been implemented.  
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6 CONCLUSION 

To begin, predicting asset prices is a very tough objective. Even though the field has been 

studied thoroughly since the inception of the traditional financial theories, the exists no 

consensus of how asset prices fluctuate. This is not to say that the field is not relevant to 

study since even a small increase in asset pricing accuracy can yield enormous economic 

gains to their respective stakeholder.  

Many authors within the field agree that machine learning has a powerful predictive ability 

and can generate value to investors and researchers in the area of asset pricing. After having 

built models of neural networks and having them put to the test against linear OLS 

regression, we conclude that neural networks can improve on predictability of stock returns. 

The measurement metrics are, however, very small and would therefore unlikely be of any 

use to investors or speculators. Even if a substantial predictability could be found, it is also 

unlikely to hold, as discussed by Timmermann (2008). The findings of our study show that 

shallow networks generally outperform deep networks and that the best performing network 

has one input layer of 256 neurons and one hidden layer with 128 neurons. 

We also conclude that neural networks outperform linear OLS regression when predicting 

stock prices. Our results indicate that OLS regression is too simple of a model to fully 

account for all the complex features of a stock market, where factors from a variety of fields, 

such as psychology, traditional finance and macroeconomics mix together. Even the complex 

structures of a neural network struggle to model this complexity as other issues such as biases 

arise. The overarching conclusion is therefore that further studying is required to fully allow 

for all factors to be considered.  
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8 APPENDICES 

8.1 THE DATA PREPARATION CODE 

 
import matplotlib.pyplot as plt 

import pandas as pd 

import os 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import MinMaxScaler 

from sklearn.model_selection import train_test_split 

from tensorflow import keras 

import numpy as np 

 

#Structuring the necessary variables for the model 

df_stock = pd.read_csv("./Big_data.csv",sep=';', parse_dates=['day']) 

 

#Creating each div & bid-ask-spread 

df_stock["divyield"] = df_stock['dividendyeld'] / df_stock["lastad"] 

df_stock["bidaskspread"] = df_stock['askad'] - df_stock["bidad"] 

df_stock.dropna(inplace=True) 

 

#Creating a column to the final_dataset with y-variable = log(daily return) 

final_datasets=[] 

 

#Choosing predicting horizon, winsorization and number of lags in the dataset 

predict_horizon = 1 

max_lag_returns= 20 

winsorize_returns=0.001 

 

#Adding the return-variable 

dft=pd.pivot_table(df_stock, index='day', columns='ticker', values='lastad') 

dft=np.log(dft)-np.log(dft.shift(1)) 

df_returns=dft 

dftmelt=pd.melt(df_returns.reset_index(), id_vars=['day'], value_name='return') 

v_name='return' 

l,h=dftmelt[v_name].quantile([winsorize_returns,1-winsorize_returns]).values.tolist() 

dftmelt.loc[dftmelt[v_name]<l,v_name]=l 

dftmelt.loc[dftmelt[v_name]>h,v_name]=h 

final_datasets.append(dftmelt) 

for i in range(0,max_lag_returns): 

    final_datasets.append(pd.melt(df_returns.shift(i+predict_horizon).reset_index(), id_vars=['day'], value_name

='return_lag{}'.format(i+predict_horizon))) 

 

def add_variable_final_dataset(variable_name, lags, shifter, scale=True, winsorise=0.0): 

     

    #Create the pivottable and calculation dependent on which type of variable 

    if shifter == False: 

        if variable_name == "marketvalue": 

            dft =pd.pivot_table(df_stock, index='ticker', columns='day', values='marketvalue') 

        elif variable_name == "bookvalue": 

            dft =pd.pivot_table(df_stock, index='ticker', columns='day', values='bookvalue') 

        dft = dft.rank() 
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        #dft=pd.pivot_table(df_stock, index='day', columns='ticker', values=variable_name).apply(np.log) 

        dftmelt=pd.melt(dft.reset_index(), id_vars=['ticker'], value_name='log_{}'.format(variable_name)).dropna() 

    else: 

        if variable_name == "SMA50": 

            dft = pd.pivot_table(df_stock, index='day', columns='ticker', values="lastad") 

            dft = dft.rolling(window=20).mean() < dft.rolling(window=100).mean() 

            dft.astype(int) 

            dftmelt=pd.melt(dft.reset_index(), id_vars=['day'], value_name='{}'.format(variable_name)).dropna() 

        elif variable_name == 'MACD': 

            dft = pd.pivot_table(df_stock, index='day', columns='ticker', values="lastad") 

            dft = dft.ewm(span=12,adjust=False).mean() - dft.ewm(span=26,adjust=False).mean() 

            dftmelt=pd.melt(dft.reset_index(), id_vars=['day'], value_name='{}'.format(variable_name)).dropna() 

        elif variable_name == 'volatility': 

            dft=pd.pivot_table(df_stock, index='day', columns='ticker', values='lastad') 

            dft=np.log(dft)-np.log(dft.shift(1)) 

            dft*=100 

            dft=np.power(dft,2) 

            dft=dft.ewm(alpha=0.05).mean() 

            dft=np.sqrt(dft) 

            dftmelt=pd.melt(dft.reset_index(), id_vars=['day'], value_name='{}'.format(variable_name)).dropna() 

        elif variable_name == 'RSI': 

            dft=pd.pivot_table(df_stock, index='day', columns='ticker', values='lastad') 

            dft=np.log(dft)-np.log(dft.shift(1)) 

            rsi_period = 14 

            dft = 100 - (100/(1+abs(dft.mask(dft<0,0).ewm(com = rsi_period-1,min_periods=rsi_period).mean()/dft.

mask(dft>0,0).ewm(com = rsi_period-1,min_periods=rsi_period).mean()))) 

            dftmelt=pd.melt(dft.reset_index(), id_vars=['day'], value_name='{}'.format(variable_name)).dropna() 

        else: 

            dft=pd.pivot_table(df_stock, index='day', columns='ticker', values=variable_name) 

            dftmelt=pd.melt(dft.reset_index(), id_vars=['day'], value_name=variable_name).dropna() 

#             dft=np.log(dft)-np.log(dft.shift(1)) 

 

    #Transform 

    v_name=dftmelt.columns[-1] 

    if winsorise>0.0: 

        l,h=dftmelt[v_name].quantile([winsorise,1-winsorise]).values.tolist() 

        dftmelt.loc[dftmelt[v_name]<l,v_name]=l 

        dftmelt.loc[dftmelt[v_name]>h,v_name]=h 

 

    if scale==True: 

        scaler = MinMaxScaler(feature_range = (0,1)) 

        dftmelt[v_name]=scaler.fit_transform(dftmelt[[v_name]]) 

 

    dft=pd.pivot_table(dftmelt, index='day', columns='ticker', values=v_name) 

 

    #Add lags to final data 

    for i in range(0,lags): 
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        final_datasets.append(pd.melt(dft.shift(i+predict_horizon).reset_index(), id_vars=['day'], value_name='{}_l

ag{}'.format(variable_name,i+predict_horizon))) 

 

#We use the function to add log variables and lags for 5 days 

max_lag=20 

add_variable_final_dataset('marketvalue',max_lag,False, scale=True, winsorise=0.001) 

add_variable_final_dataset('bookvalue',max_lag, False, scale=True, winsorise=0.001) 

add_variable_final_dataset('divyield',max_lag, True, scale=True, winsorise=0.001) 

add_variable_final_dataset('SMA50',max_lag,True, scale=True, winsorise=0.001)  

add_variable_final_dataset('volatility',max_lag,True, scale=True, winsorise=0.001) 

add_variable_final_dataset('RSI',max_lag,True, scale=True, winsorise=0.001) 

add_variable_final_dataset('MACD',max_lag,True, scale=True, winsorise=0.001) 

add_variable_final_dataset("bidaskspread",max_lag,True, scale=True, winsorise=0.01) 

final_dataset=final_datasets[0] 

for df in final_datasets[1:]: 

    final_dataset=pd.merge( 

        final_dataset,  

        df,  

        how='left',  

        left_on=['day', 'ticker'], 

        right_on=['day', 'ticker'] 

    ) 

final_dataset.dropna(inplace=True) 

final_dataset.head().T 

 

#Save to a CSV-file 

final_dataset.to_csv('d:/temp/final_dataset.csv') 

8.2 BUILDING THE DIFFERENT MACHINE LEARNING MODELS 

 

import matplotlib.pyplot as plt 

import pandas as pd 

import os 

from sklearn.preprocessing import MinMaxScaler 

import tensorflow as tf 

from tensorflow import keras 

import numpy as np 

import os 

 

gpus = tf.config.experimental.list_physical_devices('GPU') 

# Currently, memory growth needs to be the same across GPUs 

for gpu in gpus: 

    tf.config.experimental.set_memory_growth(gpu, True) 
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#Read the csv-file we created erlier 

final_dataset=pd.read_csv('./final_dataset.csv') 

final_dataset=final_dataset.iloc[:,1:] 

final_dataset.dropna(inplace=True) 

final_dataset.iloc[:,2:23]+=1 

 

#determine the size of the splits and the out of sample horizon 

splits=[0.15,0.75,0.15] 

out_of_sample_horizon = 60 

 

#Split the data according to the pre-determined splits 

splits=np.cumsum(splits) 

dates=sorted(final_dataset.day.unique()) 

ix_validation=int(len(dates)*splits[0]) 

date_validation_to_split_on=dates[ix_validation] 

 

ix_train_test_start=int(len(dates)*splits[1]) 

 

for ix in range(ix_train_test_start,len(dates)-out_of_sample_horizon): 

    date_to_split_on=dates[ix] 

    final_oos_date=dates[ix+out_of_sample_horizon] 

    df_val=final_dataset.query('day <= @date_validation_to_split_on') 

    df_train=final_dataset.query('day > @date_validation_to_split_on and  day <= @date_to_split_on') 

    df_test=final_dataset.query('day > @date_to_split_on and day <= @final_oos_date') 

 

    #df_valid=final_dataset.query('day > @date_to_split_on and <= @final_oos_date') 

    # we want to split the data into 70% training and 15% validation and 15% testing 

    #Fitting... #Help with validation and how it should be done? 

 

    break 

 

#create our x_train and y_train values of the dataset 

def create_x_and_y(df): 

    x_train=df.iloc[:,3:] 

    y_train=df.iloc[:,2:3] 

    return x_train, y_train 

 

#declare the training-set, test-set & validation-set 

x_train, y_train = map(np.array, create_x_and_y(df_train)) 

x_test, y_test = map(np.array, create_x_and_y(df_test)) 

x_val, y_val = map(np.array, create_x_and_y(df_val)) 

 

#Reshape so that the structure fit the model 

def reshape_x(x_train): 

    return np.reshape(x_train,(x_train.shape[0],1,x_train.shape[1])) 
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np.random.seed(1) 

ix=sorted(np.random.randint(0,x_train.shape[0],100000).tolist()) 

x_train=x_train[ix,:] 

y_train=y_train[ix,:] 

 

reshape_x(x_train).shape 

 

def get_ols(x_train, y_train): 

    xx_train=np.hstack((np.ones((x_train.shape[0],1)), x_train)) 

    bb=np.dot(np.linalg.inv(np.dot(xx_train.T, xx_train)), np.dot(xx_train.T, y_train)) 

    bias=np.dot(xx_train,bb)-y_train 

    return np.mean(bias), np.sqrt(np.mean(np.power(bias,2))) 

get_ols(x_train,y_train) 

 

from IPython.display import clear_output 

class PlotLearning(keras.callbacks.Callback): 

    def __init__(self, plot_every=1, logs={}, start_ploting=5): 

        super(PlotLearning, self).__init__() 

        self.df = pd.DataFrame() 

        self.plot_every = plot_every 

        self.start_ploting = start_ploting 

 

 

    def on_epoch_end(self, epoch, logs={}): 

        self.df=self.df.append(logs, ignore_index=True) 

        if len(self.df)>self.start_ploting: 

            if len(self.df) % self.plot_every == 0: 

                measures=[i for i in self.df.columns if 'val' not in i] 

                measures_val=["val_"+i for i in measures] 

                f=plt.figure(figsize=(7*len(measures), 4)) 

                for i,m,mv in zip(range(len(measures)),measures,measures_val): 

    #                 if m=='loss': 

    #                     continue 

                    ax=plt.subplot(1,len(measures),i+1) 

                    self.df[[m,mv]].iloc[self.start_ploting:,:].plot(ax=ax).plot(ax=ax) 

                plt.tight_layout() 

                clear_output(wait=True) 

                plt.show() 

 

from time import time 

 

class TerminateOnBaseline(keras.callbacks.Callback): 

    """Callback that terminates training when either acc or val_acc reaches a specified baseline 

    """ 

    def __init__(self, monitor='acc', baseline=0.9, mode='min'): 
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        super(TerminateOnBaseline, self).__init__() 

        self.mode = mode 

        self.monitor = monitor 

        self.baseline = baseline 

 

    def on_epoch_end(self, epoch, logs=None): 

        logs = logs or {} 

        acc = logs.get(self.monitor) 

        if acc is not None: 

            if self.mode=='max': 

                if acc >= self.baseline: 

                    print('Epoch %d: Reached baseline, terminating training' % (epoch)) 

                    self.model.stop_training = True 

            if self.mode=='min': 

#                 clear_output(wait=True) 

#                 display([acc, self.baseline, acc/self.baseline]) 

                if acc <= self.baseline: 

                    print('Epoch %d: Reached baseline, terminating training' % (epoch)) 

                    self.model.stop_training = True 

class TerminateOnTime(keras.callbacks.Callback): 

    """Callback that terminates training when either acc or val_acc reaches a specified baseline 

    """ 

    def __init__(self, max_time=120): 

        super(TerminateOnTime, self).__init__() 

        self.t0 = time() 

        self.max_time = max_time 

 

    def on_epoch_end(self, epoch, logs=None): 

        if time()-self.t0 >= self.max_time: 

            print('Epoch %d: Reached max time, terminating training' % (epoch)) 

            self.model.stop_training = True 

 

class ClearDisplay(keras.callbacks.Callback): 

    """Callback that terminates training when either acc or val_acc reaches a specified baseline 

    """ 

    def on_epoch_end(self, epoch, logs=None): 

        clear_output(wait=True) 

 

def fit_model(x_train, y_train, x_val, y_val, batch_size, optimizer, epochs, dropout, neural_network): 

    clear_output(wait=True) 

    np.random.seed(1) 

    tf.random.set_seed(1) 

    regressior = keras.Sequential() 

     

    if neural_network == 1: 

        regressior.add(keras.layers.Dense(units = 32, input_shape=(1, x_train.shape[1]), use_bias=True, kernel_ini

tializer='glorot_uniform', bias_initializer='zeros', activation = 'relu')) 
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        regressior.add(keras.layers.BatchNormalization()) 

        regressior.add(keras.layers.Dropout(dropout)) 

        for i in [16]: 

            regressior.add(keras.layers.Dense(units = i, use_bias=True, kernel_initializer='glorot_uniform', bias_init

ializer='zeros', activation = 'relu')) 

            regressior.add(keras.layers.BatchNormalization()) 

            regressior.add(keras.layers.Dropout(dropout)) 

     

    if neural_network == 2: 

        regressior.add(keras.layers.Dense(units = 64, input_shape=(1, x_train.shape[1]), use_bias=True, kernel_ini

tializer='glorot_uniform', bias_initializer='zeros', activation = 'relu')) 

        regressior.add(keras.layers.BatchNormalization()) 

        regressior.add(keras.layers.Dropout(dropout)) 

        for i in [32]: 

            regressior.add(keras.layers.Dense(units = i, use_bias=True, kernel_initializer='glorot_uniform', bias_init

ializer='zeros', activation = 'relu')) 

            regressior.add(keras.layers.BatchNormalization()) 

            regressior.add(keras.layers.Dropout(dropout)) 

     

    if neural_network == 3: 

        regressior.add(keras.layers.Dense(units = 128, input_shape=(1, x_train.shape[1]), use_bias=True, kernel_i

nitializer='glorot_uniform', bias_initializer='zeros', activation = 'relu')) 

        regressior.add(keras.layers.BatchNormalization()) 

        regressior.add(keras.layers.Dropout(dropout)) 

        for i in [64]: 

            regressior.add(keras.layers.Dense(units = i, use_bias=True, kernel_initializer='glorot_uniform', bias_init

ializer='zeros', activation = 'relu')) 

            regressior.add(keras.layers.BatchNormalization()) 

            regressior.add(keras.layers.Dropout(dropout)) 

     

    if neural_network == 4: 

        regressior.add(keras.layers.Dense(units = 256, input_shape=(1, x_train.shape[1]), use_bias=True, kernel_i

nitializer='glorot_uniform', bias_initializer='zeros', activation = 'relu')) 

        regressior.add(keras.layers.BatchNormalization()) 

        regressior.add(keras.layers.Dropout(dropout)) 

        for i in [128]: 

            regressior.add(keras.layers.Dense(units = i, use_bias=True, kernel_initializer='glorot_uniform', bias_init

ializer='zeros', activation = 'relu')) 

            regressior.add(keras.layers.BatchNormalization()) 

            regressior.add(keras.layers.Dropout(dropout)) 

     

    if neural_network == 5: 

        regressior.add(keras.layers.Dense(units = 512, input_shape=(1, x_train.shape[1]), use_bias=True, kernel_i

nitializer='glorot_uniform', bias_initializer='zeros', activation = 'relu')) 

        regressior.add(keras.layers.BatchNormalization()) 

        regressior.add(keras.layers.Dropout(dropout)) 

        for i in [256]: 
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            regressior.add(keras.layers.Dense(units = i, use_bias=True, kernel_initializer='glorot_uniform', bias_init

ializer='zeros', activation = 'relu')) 

            regressior.add(keras.layers.BatchNormalization()) 

            regressior.add(keras.layers.Dropout(dropout)) 

             

    if neural_network == 6: 

        regressior.add(keras.layers.Dense(units = 128, input_shape=(1, x_train.shape[1]), use_bias=True, kernel_i

nitializer='glorot_uniform', bias_initializer='zeros', activation = 'relu')) 

        regressior.add(keras.layers.BatchNormalization()) 

        regressior.add(keras.layers.Dropout(dropout)) 

        for i in [64, 64]: 

            regressior.add(keras.layers.Dense(units = i, use_bias=True, kernel_initializer='glorot_uniform', bias_init

ializer='zeros', activation = 'relu')) 

            regressior.add(keras.layers.BatchNormalization()) 

            regressior.add(keras.layers.Dropout(dropout)) 

             

    if neural_network == 7: 

        regressior.add(keras.layers.Dense(units = 128, input_shape=(1, x_train.shape[1]), use_bias=True, kernel_i

nitializer='glorot_uniform', bias_initializer='zeros', activation = 'relu')) 

        regressior.add(keras.layers.BatchNormalization()) 

        regressior.add(keras.layers.Dropout(dropout)) 

        for i in [64, 64, 32, 32, 16, 16]: 

            regressior.add(keras.layers.Dense(units = i, use_bias=True, kernel_initializer='glorot_uniform', bias_init

ializer='zeros', activation = 'relu')) 

            regressior.add(keras.layers.BatchNormalization()) 

            regressior.add(keras.layers.Dropout(dropout)) 

             

    if neural_network == 8: 

        regressior.add(keras.layers.Dense(units = 256, input_shape=(1, x_train.shape[1]), use_bias=True, kernel_i

nitializer='glorot_uniform', bias_initializer='zeros', activation = 'relu')) 

        regressior.add(keras.layers.BatchNormalization()) 

        regressior.add(keras.layers.Dropout(dropout)) 

        for i in [128, 128, 64, 64]: 

            regressior.add(keras.layers.Dense(units = i, use_bias=True, kernel_initializer='glorot_uniform', bias_init

ializer='zeros', activation = 'relu')) 

            regressior.add(keras.layers.BatchNormalization()) 

            regressior.add(keras.layers.Dropout(dropout)) 

             

    if neural_network == 9: 

        regressior.add(keras.layers.Dense(units = 256, input_shape=(1, x_train.shape[1]), use_bias=True, kernel_i

nitializer='glorot_uniform', bias_initializer='zeros', activation = 'relu')) 

        regressior.add(keras.layers.BatchNormalization()) 

        regressior.add(keras.layers.Dropout(dropout)) 

        for i in [128, 128, 128, 64, 64, 64, 32, 32, 32]: 

            regressior.add(keras.layers.Dense(units = i, use_bias=True, kernel_initializer='glorot_uniform', bias_init

ializer='zeros', activation = 'relu')) 

            regressior.add(keras.layers.BatchNormalization()) 
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            regressior.add(keras.layers.Dropout(dropout)) 

             

    if neural_network == 10: 

        regressior.add(keras.layers.Dense(units = 512, input_shape=(1, x_train.shape[1]), use_bias=True, kernel_i

nitializer='glorot_uniform', bias_initializer='zeros', activation = 'relu')) 

        regressior.add(keras.layers.BatchNormalization()) 

        regressior.add(keras.layers.Dropout(dropout)) 

        for i in [256, 256, 256, 256, 128, 128, 128, 128, 64, 64, 64, 64, 32, 32, 32, 32, 16, 16, 16, 16, 8, 8, 8, 8, 4, 4

, 4, 4, 2, 2, 2, 2]: 

            regressior.add(keras.layers.Dense(units = i, use_bias=True, kernel_initializer='glorot_uniform', bias_init

ializer='zeros', activation = 'relu')) 

            regressior.add(keras.layers.BatchNormalization()) 

            regressior.add(keras.layers.Dropout(dropout)) 

 

     

    regressior.add(keras.layers.Dense(units = 1, use_bias=True, kernel_initializer='glorot_uniform', bias_initializ

er='zeros', activation = 'linear',) )     

    regressior.compile(optimizer=optimizer, loss = 'mse', metrics=[ 

        keras.metrics.MeanSquaredError(name='0MSE'), 

#         keras.metrics.KLDivergence(name='1KLD'), 

#         keras.metrics.MeanAbsolutePercentageError(name='2MAPE'), 

#         keras.metrics.MeanAbsoluteError(name='3MAD'), 

    ]) 

 

    callbacks=[ 

#         PlotLearning(plot_every=2, start_ploting=2), 

        TerminateOnTime(max_time=3600), 

        keras.callbacks.EarlyStopping(monitor='val_loss', patience=100, min_delta=1e-12, restore_best_weights=

True), 

        keras.callbacks.TensorBoard( 

            log_dir=os.path.join(os.getcwd(),'logs','NN7'.format(optimizer,batch_size)), 

            histogram_freq=1, 

            write_graph=False, 

            write_images=True, 

            update_freq='epoch', 

            profile_batch=0 

        ), 

        ClearDisplay() 

    ] 

    regressior.fit( 

        reshape_x(x_train), reshape_x(y_train), 

        validation_data=(reshape_x(x_val),reshape_x(y_val)), 

        batch_size=batch_size, 

        epochs=epochs, callbacks=callbacks ,verbose=1) 

    return regressior 

 

def get_R2_OOS(x_test, y_test, y_train, res): 
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    yhat_test = res.predict(reshape_x(x_test)) #predictions of returns in the test set             

    SSE = np.sum(np.power(reshape_x(y_test)-yhat_test,2)) #sum(returns in the test set - predictions of returns i

n the test set)^2   

    #R2_OOS = 1 - bias_test/ sum of (returns in the test set - mean of returns in training)^2 

    SST = np.sum(np.power(y_test - np.mean(y_train),2)) 

    R2_OOS = 1 - (SSE / SST) 

    return R2_OOS 

 

def get_nn(x_train, y_train, res): 

    yhat=res.predict(reshape_x(x_train)) 

    bias=yhat-reshape_x(y_train) 

    return np.mean(bias), np.sqrt(np.mean(np.power(bias,2))) 

 

def get_ols_test(x_train, y_train, x_test, y_test): 

    xx_train=np.hstack((np.ones((x_train.shape[0],1)), x_train)) 

    bb=np.dot(np.linalg.inv(np.dot(xx_train.T, xx_train)), np.dot(xx_train.T, y_train)) 

    bias=np.dot(np.hstack((np.ones((x_test.shape[0],1)), x_test)),bb)-y_test 

     

    SSE = np.sum(np.power(bias,2)) #sum(returns in the test set - predictions of returns in the test set)^2   

    #R2_OOS = 1 - bias_test/ sum of (returns in the test set - mean of returns in training)^2 

    SST = np.sum(np.power(y_test - np.mean(y_train),2)) 

    R2_OOS = 1 - (SSE / SST) 

     

    return np.mean(bias), np.sqrt(np.mean(np.power(bias,2))), R2_OOS 

 

def print_result(res): 

    for s, x, y in [ 

         

        ('Train', x_train, y_train), 

        ('Val', x_val, y_val), 

        ('Test', x_test, y_test) 

    ]: 

        print('='*80) 

        print(s) 

        print('OLS') 

        print(get_ols(x, y)) 

        print('OLS vs out-of-sample') 

        print(get_ols_test(x, y, x_test, y_test)) 

        print('NN') 

        print(get_nn(x, y, res)) 

    print("R2-OOS = {}".format(get_R2_OOS(x_test, y_test, y_train, res))) 

#res = keras.models.load_model('./Neural network 1.h5') 

#print_result(res) 

%%time 

neural_network = 1 
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res=fit_model(x_train, y_train, x_val, y_val, 500, 'sgd', 20000, 0.2, neural_network) 

res.save('Neural Network {}.h5'.format(neural_network)) 

print_result(res) 

%%time 

neural_network = 2 

res=fit_model(x_train, y_train, x_val, y_val, 500, 'sgd', 20000, 0.2, neural_network) 

res.save('Neural Network {}.h5'.format(neural_network)) 

print_result(res) 

%%time 

neural_network = 3 

res=fit_model(x_train, y_train, x_val, y_val, 500, 'sgd', 20000, 0.5, neural_network) 

res.save('Neural Network {}.h5'.format(neural_network)) 

print_result(res) 

%%time 

neural_network = 4 

res=fit_model(x_train, y_train, x_val, y_val, 500, 'sgd', 20000, 0.5, neural_network) 

res.save('Neural Network {}.h5'.format(neural_network)) 

print_result(res) 

%%time 

neural_network = 5 

res=fit_model(x_train, y_train, x_val, y_val, 500, 'sgd', 20000, 0.5, neural_network) 

res.save('Neural Network {}.h5'.format(neural_network)) 

print_result(res) 

%%time 

neural_network = 6 

res=fit_model(x_train, y_train, x_val, y_val, 500, 'sgd', 20000, 0.5, neural_network) 

res.save('Neural Network {}.h5'.format(neural_network)) 

print_result(res) 

%%time 

neural_network = 7 

res=fit_model(x_train, y_train, x_val, y_val, 500, 'sgd', 20000, 0.5, neural_network) 

res.save('Neural Network {}.h5'.format(neural_network)) 

print_result(res) 

%%time 

neural_network = 8 

res=fit_model(x_train, y_train, x_val, y_val, 500, 'sgd', 20000, 0.5, neural_network) 

res.save('Neural Network {}.h5'.format(neural_network)) 

print_result(res) 

 

%%time 

neural_network = 9 

res=fit_model(x_train, y_train, x_val, y_val, 500, 'sgd', 20000, 0.5, neural_network) 

res.save('Neural Network {}.h5'.format(neural_network)) 

print_result(res) 
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%%time 

neural_network = 10 

res=fit_model(x_train, y_train, x_val, y_val, 500, 'sgd', 20000, 0.5, neural_network) 

res.save('Neural Network {}.h5'.format(neural_network)) 

print_result(res) 

 


