

Financial Economics

Predicting Asset Prices with Machine Learning

 Bachelor thesis 15 credits

Authors: Adam Eklund & Valter Trollius

Supervisor: Marcin Zamojski

 Spring term 2020

Abstract

This study examines whether machine learning techniques such as neural networks contain

predictability when modeling asset prices and if they can improve on asset pricing prediction

compared to traditional OLS-regressions. This is analyzed through measuring and comparing

the out-of-sample R2 to find each models’ predictive power. Furthermore, we establish the

loss metrics of root mean squared error and mean bias error to assess model strength. A

sample of Swedish stocks ranging over a 40-year period is considered the dataset.

We provide an analysis of various models to find indications of which models perform better

from an economic viewpoint. Although we do not test for statistical significance, as

forecasting returns infrequently exert this, the economic gains can prove relevant. We find

that several neural networks outperform linear OLS regression in terms of out-of-sample R2.

We believe that this might not be enough information to profitably transact upon as a

considerable number of factors such as transaction costs are still unaccounted for. Our

conclusion is therefore that further studying is required to fully allow for all factors to be

considered.

Keywords: Machine learning, neural networks, OLS regression, asset pricing, financial

forecasting, out-of-sample, predictability.

JEL Classifications: C45, G12, G17

Acknowledgement

We would like to thank our supervisor Marcin for the continuous support and encouragement

during the writing stage as well as aiding us in learning of the concept of machine learning.

We also want to thank the students that have provided us with useful hints and guidance

through the period of constructing the thesis.

TABLE OF CONTENT

1 Introduction __ 1

1.1 Problem definition __ 2

1.2 Purpose of the thesis ___ 2

1.3 Research Questions __ 3

1.4 Thesis Structure __ 3

2 Literature review __ 4

2.1 The aim of research within the field ___ 4

2.2 Existing research __ 5

3 Method ___ 8

3.1 Machine learning ___ 8

3.2 Neural Networks __ 9

3.2.1 Architectures __ 10

3.2.2 Hyperparameters ___ 12

3.2.3 Overfitting __ 12

3.2.4 Regularization ___ 13

3.2.5 Data split ___ 13

3.3 Comparison of models __ 15

4 Data ___ 16

4.1 Valuation ratios __ 16

4.2 Technical variables ___ 17

4.3 The final dataset ___ 18

5 Result & Discussion __ 19

5.1 Base run ___ 20

5.2 Impact of dropout on model performance ______________________________________ 21

5.3 Impact of number of lags __ 22

5.4 Impact of changing lags and dropout ___ 24

5.5 Final Analysis ___ 25

5.6 Limitations and further extensions ___ 26

6 Conclusion ___ 28

7 References __ 29

8 Appendix ___ 31

8.1 The Data preperation code ___ 31

8.2 Building the different Machine Learning Models ________________________________ 33

Predicting Asset Prices using Machine Learning

1

1 INTRODUCTION

During the past decades, more advanced forecasting strategies have allowed for slight

economically and statistically significant out-of-sample gains (Rapach and Zhou, 2013).

Forecasting future returns on assets demands that the used methods are capable of modeling

complex patterns which can be difficult for traditional linear models. To predict future

events, data sets are analyzed with specialized models to determine a likely outcome.

Timmermann (2018) discusses the difficulties of forecasting asset prices, where sufficient

market efficiency leads to a low signal-to-noise ratio. This in turn contributes to low

predictive power of the models.

An area that can be used for prediction that has been researched in more detail in the past

decade is machine learning. The use of machine learning has spread throughout numerous

areas with its capabilities of pattern recognition and quick sorting of big data. Machine

learning applied on financial asset pricing models is something that is relatively new, albeit

successful in that it provides models that better predicts returns and have lower degree of

error (Gu, Kelly and Xiu, 2019b). Machine learning can supposedly improve on this using

complex structures and nonlinear conditional estimations of the factors (Gu, Kelly and Xiu,

2019a).

We contribute to the field by performing analysis of machine learning methods in new

environments which further strengthens the assumptions that machine learning methods

improve predictability of stock returns (Gu et al., 2019b). Our study also provides more

evidence to deepen the empirical understanding of asset pricing. We evaluate the current

literature to base our subsequent methodology on which enhances the comparability between

our study and existing studies.

Our findings are that several of the examined machine learning methods called neural

networks achieves predictability (positive out-of-sample R2) when predicting returns. We

also conclude that several of the examined neural networks outperform linear OLS regression

for all considered out-of-sample horizons. The prominent feature of this study is that it uses

Swedish-listed stocks as the dataset which serves to further expand and deepen the field.

Predicting Asset Prices using Machine Learning

2

1.1 PROBLEM DEFINITION

Asset pricing is notably difficult as it varies with unforeseeable events. The measurement of

an assets price is a fundamental financial problem since it requires prediction because the

price is a conditional expectation of a future realized excess return (Gu et al., 2019b). To

predict stock returns, it is required to have adequate information of the asset’s characteristics

as well as knowledge of various theoretical aspects that covers the topic. Linear models face

difficulty when the data follows complex or nonlinear patterns. This poses an even larger

problem when the number of variables becomes extremely high (high-dimensional). In recent

literature, machine learning has been utilized to improve on this with neural networks that

allows for more complex modeling (Gu et al., 2019b).

Predicting stock prices is hard because of high competition among the stakeholders which

leads to market efficiency (Timmermann, 2008). The different variables that explain the rate

of return of stocks are not only huge in numbers but are also difficult to measure because of

the physical, psychological, rational and irrational aspects of the stock market. It is therefore

of interest to evaluate the models applied by machine learning to determine whether there is

any benefit in using these when predicting stock returns. Studies of Gu et al. (2019b), Gu et

al. (2019a) and Chen et al. (2020) have been conducted on U.S. markets to determine the

comparative strength of machine learning models and which factors that are significant.

There is, however, a lack of studies done in a similar manner to that of Gu et al (2019b) and

Gu et al (2019a) done outside of the U.S.

1.2 PURPOSE OF THE THESIS

In this thesis we analyze whether the field of machine learning can be applied to financial

asset pricing and if the predictive abilities of nonlinear models can be an improvement over

other methods such as linear OLS-regression. The reason of our study is to further add

research to the field to increase understanding of asset pricing. We will proceed in a similar

manner to how previous studies such as Gu et al. (2019a) and Gu et al. (2019b) have been

performed with the exception that we focus on the Swedish stock market. To achieve better

predictive abilities of the models, we use neural networks from the field of machine learning.

Predicting Asset Prices using Machine Learning

3

1.3 RESEARCH QUESTIONS

The aim of the study is to examine whether machine learning techniques such as neural

networks can improve upon traditional linear OLS regression models. The research questions

that are set up are hence:

(I) Is it possible to achieve predictability on stock prices through the use of neural

networks?

(II) Can neural networks outperform linear regression when predicting stock prices?

The research questions will be answered by calculating the out-of-sample R2 for the neural

network models and if a positive sign is obtained then predictability is achieved. This

predictability will infer that it is possible to earn excess economic gains compared to the

benchmark, which in this case is the historical mean return for the used dataset. Measurement

metrics of mean bias error and root mean squared error will used to dissect the comparison

among neural networks and linear OLS regressions.

1.4 THESIS STRUCTURE

The remainder of the thesis is structured in distinctive sections. In section 2, we analyze the

current literature in the field of machine learning applied on asset pricing. In section 3, we

present key concepts of machine learning and, in detail, describe how we proceeded with the

comparison between the machine learning method of neural networks and linear OLS

regression. In section 4, we present the data, how it was handled and an illustration of the

explanatory variables. The fifth section covers the found results of our study as well as an

analysis of the impact of the explanatory variables and the hyperparameters. The sixth and

final section comprises of our thoughts and conclusions of the study.

Predicting Asset Prices using Machine Learning

4

2 LITERATURE REVIEW

The two strands of asset pricing and machine learning have their own respective fields of

studies. The literature that combines the two is relatively new and there is therefore a limit to

the amount of published literature that exists. In this section we present the combined strand

of machine learning applied on asset pricing, their supposed problems and incorporate

relevant articles to provide a foundation for which later sections builds upon.

Generally, forecasting problems are difficult to handle as the number of possible scenarios

often are very large. In financial theory this is likely even harder due to the competitive

nature of asset prices (Timmermann, 2018). Campbell and Thompson (2008) discuss the use

of out-of-sample measurements for the R2-statistic for financial problems. It is shown that by

using restrictions on the predictive regressions, the out-of-sample R2 can be improved which

could lead to investors profiting by using timing strategies. Meanwhile, Timmermann (2008)

discerns that any return predictability found is expected to deteriorate quickly.

2.1 THE AIM OF RESEARCH WITHIN THE FIELD

The main reason for the research of machine learning applied on asset pricing is to deepen the

understanding of asset pricing and to provide researchers and investors with tools to improve

navigation on financial markets. The general results from literature within the field is that

machine learning methods such as regression trees and neural networks enhance modeling

capabilities due to the incorporation of nonlinear functions and more efficient computing.

There are two branches that needs to be distinguished in the field of machine learning on

asset pricing. One uses predictive modeling in which forecasting techniques are used to find

patterns and infer future outcome while the other uses contemporaneous modeling in which

data mining tools are used to gain insight of past events. To conjoin the areas of machine

learning and asset pricing researchers have chosen models and methods that they believe will

address the issue at hand. There exists no consensus of how the different techniques and

models of machine learning should be used in the asset pricing spectrum. It has, however,

been determined that machine learning is particularly useful when assessing asset pricing due

to the problem being predictive by nature (Gu et al., 2019b). The predictive branch, which is

emphasized in this thesis, is concerned with what models and techniques to use to achieve

models that perform better compared to existing ones.

Predicting Asset Prices using Machine Learning

5

One of the core issues with modeling asset prices is the ability to handle model complexity

and the associated risk of overfitting (Gu et al., 2019b). The aim is to produce models that

generalize well and thus research focus on what tools to use to mitigate overfitting.

Additionally, some research focus on finding what variables explain return and to what

degree. This is done to give researchers and investors a better understanding of which stock

characteristics are the most important. The results within this area have improved due to the

implementation of machine learning techniques. This is because of the computational power

needed being substantial due to the high number of variables as well as the ability to model

when the variables are highly correlated (Gu et al., 2019b).

2.2 EXISTING RESEARCH

Compared to other machine learning fields such as medicine and image recognition, there

exists relatively few studies on the topic of asset pricing. Gu et al. (2019a) discuss how to

improve models by incorporating an unsupervised neural network that aims to reduce

dimensions and condition asset returns on the information of the stock characteristics. This is

done to estimate the exposure factors have towards stock characteristics. The authors criticize

the use of the linearity assumption when modeling asset prices and instead discuss how

nonlinear models are more flexible and therefore provide better mapping of the asset prices.

The authors conclude that their nonlinear autoencoder model outperforms linear Fama and

French and Principal Component Analysis (PCA) models in terms of Sharpe ratio.

Similarly, Gu et al. (2019b) analyzes the effect of using machine learning methods to

measure risk premia. The authors perform a comparative analysis among various methods to

evaluate differences and performance. An analysis of what variables are most dominant in

explaining return is also run. The authors present a benchmark for the accuracy of measuring

risk premia in the market and in individual stocks and this is ranked by high out-of-sample

R2. Gu et al. (2019b) demonstrates that machine learning forecasts can be used by investors

to extract economic gains. This is established by acquiring a higher annualized out-of-sample

Sharpe ratio compared to a buy-and-hold strategy.

Meanwhile, Chen et al. (2020) proposes a general nonlinear conditioning model called a long

short-term memory recurrent neural network to be used for modeling asset prices with a set

of stock characteristics and a sizeable number of macroeconomic variables. The authors

claim that the crucial innovation of the article is the usage of the condition of no-arbitrage

Predicting Asset Prices using Machine Learning

6

integrated into the neural network algorithm which supposedly improves risk premium

indication and explanation of individual stock returns.

The three articles mentioned above share similar features. The data used in Gu et al. (2019a)

and Gu et al. (2019b) is identical and uses U.S. listed firms from 1957 to 2016. The data in

Chen et al. (2020) is U.S. listed firms from 1967 to 2016. In the work of Chen et al. (2020),

the study of Gu et al. (2019b) is referenced many times and thus it is likely to believe that

they share similarities. What differs slightly is the explanatory variables where Gu et al.

(2019a) and Gu et al. (2019b) uses 94 stock characteristics and 8 macroeconomic variables

while Chen et al. (2020) uses 46 stock characteristics and considerably larger set of 178

macroeconomic variables. A technical detail that differentiates Gu et al. (2019a) and Gu et al.

(2019b) from Chen et al. (2020) is the structure of the neural network where Gu et al. (2019a)

and Gu et al. (2019b) choose to focus on the more basic “feedforward neural network” while

Chen et al. (2020) opts for the slightly more advanced “long short-term memory recurrent

neural network”.

Potential risks with the current literature of machine learning on asset pricing is that since the

topic is relatively new, there is limited number of available models and methods that are

proven to work. There is also a limited number of authors on the subject which could induce

a narrow point of view and group thinking. Transaction costs are not mentioned in the studies

of Gu et al. which could affect the credibility of their assumptions that machine learning

improves economic gains. While it might be appropriate to neglect transaction costs due to

the central aim of the studies being to provide understanding of asset pricing rather than

proving economic gains, it can still be of importance when, for instance, comparing market

timing Sharpe ratio gains.

The next field that we analyze is the theory of financial forecasting. The literature by

Timmerman (2018) describes important features that differentiates economic and financial

forecasting. The article demonstrates three features that needs to be considered when

discussing financial forecasting. First, the competitiveness and the market efficiency leads to

a low “signal-to-noise” ratio in many financial forecasting problems. This is particularly

problematic when predicting asset prices, as opposed to standard macroeconomic prediction

problems. The presence of weak predictors and parameter estimation errors are therefore

crucial to examine when dealing with financial forecasting. Second, model instability is

important in financial forecasting as the magnitude of the outcome is stronger in finance than

Predicting Asset Prices using Machine Learning

7

in other areas (Timmermann, 2018). According to Timmermann, this is because of the high

competition between asset managers and investors trying to exploit mispricing of assets. The

third features discussed by Timmermann are issues of overfitting and data mining. The

problem is to find a truly independent dataset on which to test the forecasting performance

on.

Furthermore, Timmermann (2018) discusses limitations and challenges in the area of

financial forecasting such as data-limitations, weak predictors, persistent predictors, model

instability and data mining. From the perspective of variable selection, inclusion of predictors

in regressions of return is considered to hold uncertainty that is not likely to be resolved by

model selection methods (Timmermann, 2018). Persistent predictors are a problem due to

some valuation ratios such as the dividend yield being highly persistent and correlated with

unexpected shocks to returns. The limitation of model instability is due to the predictors

changing during the timeframe of the gathered data. Asset returns depend on prices which in

turn reacts to expectations of future payoff. These limitations further explain why financial

forecasting is both challenging and fascinating. According to Timmermann (2018), the

financial payoff is what motivates researchers to uncover even small increases in predictive

power of models as this potentially yields large economic gains.

Predicting Asset Prices using Machine Learning

8

3 METHOD

Under this section we present key concepts of machine learning and relate to econometric

terminology to ease the understanding for those with a financial background. We present

machine learning concepts in a way that it can be understood without prior knowledge of the

subject. We will provide information of what methods and models we use as well as an

explanation of the comparison among them. Finally, the data and the data treatment will be

covered.

As discussed under the previous section, it is important to make the distinction between

predictive or contemporaneous models. In this research we construct a predictive model due

to the aim being to determine how much a machine learning model will influence the

prediction of stock prices. By looking at data points from the past and finding patterns and

key trends within the fixed variables, we expect that the model will give an estimate to how

well the machine learning method can perform.

We proceed in a similar manner to prior literature of Gu et al. (2019a) and Gu et al. (2019b)

and hence our choice of method will also overlap and be influenced by these studies. By

applying machine learning on complex nonlinear models, we expect to receive a higher

coefficient of determination, R2, and smaller mean bias errors and root squared mean

prediction errors for predicting future stock returns compared to the linear model. The

machine learning models will be constructed in Python. The package that is used for the

neural network is called Tensorflow. By using the high-level neural network API called

Keras on top of Tensorflow, it is possible to create the sequential model with its layers, which

will be discussed in detail further ahead. The package Tensorflow with the API Keras needs

input data that has been structured, reshaped and split by certain requirements.

3.1 MACHINE LEARNING

Machine learning uses computationally efficient algorithms to perform tasks without the need

for outside intervention. The concept is related to econometrics with a few key differences.

While econometrics is interested in finding causal correlations, machine learning instead

focus on finding the optimized fit for a model to induce predictions (Chen et al., 2020). Both

methods, however, utilize regression as the main tool to produce results. Machine learning

methods use training to learn from data sets. The models used in our study utilizes a training

Predicting Asset Prices using Machine Learning

9

method called supervised learning. When the model uses supervised learning, it will form

inferred assumptions based on input and output data. There is also unsupervised training, in

which the model will learn to infer assumptions of patterns only based on input data (Gu et

al., 2019a). There are certain models of neural networks that utilize unsupervised learning,

but this will not be considered further in this study.

3.2 NEURAL NETWORKS

The foundation of a neural network is the neuron. The neuron can be interpreted as a

univariate regression with a coefficient and an intercept. The intercept is known as the

neurons bias and the coefficient is called a weight. The neuron alters the information it

receives as input and yields this altered information as the output (Gu et al., 2019b).

𝑧𝑛 = ∑(𝑙𝑛 ∗ 𝑤𝑛) + 𝑏𝑛

𝑛

𝑖=1

In the equation, zn is neuron n, ∑ (𝑙𝑛 ∗ 𝑤𝑛)𝑛
𝑖=1 is the summation of the neurons in the previous

layer times the coefficient (weight) that connects it to neuron n. Finally, the bias bn for neuron

n is added.

The neurons reside within layers. There are three distinctive layers in a neural network which

are the input, hidden and output layers respectively. The layer can be represented as a

multivariate linear regression of the neurons where multiple variables are considered when

modeling return. Initially, input data is entered into the network via the input layer. In most

networks no computations are executed here, the input layer will only deliver the information

to the first hidden layer. Finally, an activation function, such as ReLU, Sigmoid or Gaussian,

is applied in each neuron to possibly add non-linearity to the process (Gu et al., 2019b). The

activation function normalizes each neuron between a range of values, usually between 0 and

1. The hidden layers vary by number and can generally be viewed as mathematical functions

that receives input from the prior layers and generates a new number through the activation

function (Gu et al., 2019b).

The specific activation function we emphasize is called the rectifier, or ReLU. The prominent

feature of ReLU is the threshold value that determines whether the neurons gets activated or

Predicting Asset Prices using Machine Learning

10

not. Because of the threshold value, only a certain combination of neurons are activated in the

output layer. This has advantages of decreasing the dependency of single neurons within the

network which increases the speed of the model as well as decreases the problem of

vanishing gradients.

A common learning technique that is initialized in the event of the process reaching the

wrong conclusion is backpropagation (Gu et al., 2019b). This follows the basic econometric

concept of optimizing a criterion function. Backpropagation will shift the coefficients and

biases slightly to increase its chances of being correct. This is usually done through gradient

descent which computes the derivative of the coefficient’s loss function at each step. If the

error term is not at a local minimum the error term will be lowered by taking a step in

direction where the slope is the steepest. The size of the gradient descent is called the

learning rate and it is selected as a hyperparameter by the input. The learning rate is further

optimized by empirical testing to determine which model optimizes the loss function the

quickest (Gu et al., 2019b). The calculations are executed starting from the output layer to

then proceeds into the hidden layer(s) and finally to the input layer. Problems that arise with

the use of backpropagation are vanishing gradients and exploding gradients. Backpropagation

calculates the partial derivative of the value received from the activation function, which

proves troublesome when the activation function values approach either the minimum or the

maximum. When this is the case, the partial derivative becomes very small or very large. If

multiple neurons partial derivatives of the activation function take on extreme values, early

layers will not receive correct tuning. Solutions to these problems include changing the

architecture or the activation function.

3.2.1 Architectures

The structures of neural networks are denoted as architectures. The most common type of

neural network is a feedforward neural network. This is also the simplest form of neural

network in that it follows a one-way flow of information and does not contain any loops or

cycles (Gu et al., 2019b). The information flows from the input layer to the hidden layer(s)

and subsequently to the output layer. The different layers are connected through various

coefficients (weights) which are random at first but will later variate as the model is refined

through backpropagation. The neurons bias functions similarly to the coefficient in that it is

refined over time to yield preferable results. The difference is that while the coefficients

functions as parameters that are multiplied by the input, the bias is as explained earlier, an

Predicting Asset Prices using Machine Learning

11

intercept. As time goes (or as training proceeds) the coefficients will be tuned to improve the

predictions made by the model (Gu et al., 2019b). This is the basics of how a feedforward

neural network is being optimized. The architecture will form a passage in which layers in

front will be a linear or nonlinear function of the layers in the back. When the neural network

contains more than one hidden layer it is considered deep which allows for more complex

modeling.

Figure 1: Feedforward neural network.

The figure shows a feedforward neural network with 1 hidden layer (non-deep),4 input neurons, 4 hidden

neurons and 4 output neurons, connected by coefficients.

A broader, more complex group of architectures are recurrent neural networks. This group is

more adept compared to feedforward neural networks in drawing conclusions of past events

due to a temporal dimension (Chen et al., 2020). This dimension is integrated by having a

feedback loop that attaches to the hidden layers and is often analogously considered a

memory. Because this network can draw inferences built on past data it excels in modeling

patterns of sequential data. A subgroup to the recurrent neural network is the long short-term

memory neural network (LSTM). The LSTM neural network contains gates which restricts

what values of the neurons can pass and therefore modifies the flow of information.

According to Chen et al. (2020), LSTM are among the most successful machine learning

methods for modeling sequences of data and thus ideal for predicting stock returns.

Predicting Asset Prices using Machine Learning

12

3.2.2 Hyperparameters

The optimal value for certain parameters in the model is not known beforehand. These are

called hyperparameters and are to be determined prior to running the models.

Hyperparameters define the architecture and are manually adjusted to find the optimal value

(Gu et al., 2019b). The optimal value for the hyperparameters are in most cases the one that

optimizes the measurement metrics, however, the speed of the convergence of the model can

also be of interest. The hyperparameters that we determine iteratively are the number of

hidden layers, the number of neurons in the hidden layers, the optimizer algorithm, the

learning rate of the gradient descent, the out-of-sample horizon, the dropout rate, the batch

normalization and the number of lagged days on the explanatory variables.

The number of hidden layers effect on model performance is often debated and recent studies

has found ambiguous results (Gu et al., 2019b). On one hand more layers lead to a level of

higher prediction with fewer regressors which improves results. This, however, comes with a

higher need for computational capacity and due to the exponential nature of neural networks,

it quickly becomes tough to accomplish. The primary distinction to make is between one and

multiple hidden layers as mentioned previously. The exact number of hidden layers that we

aim to use will be decided based on empirical testing on which models perform better and

converges to the minimum the fastest. Another similar issue that arises is how many neurons

should be within each hidden layer. The number of neurons depend on the type of layer (Gu

et al., 2019b). In the input layer the number of neurons should equal the number of

dependable variables in the data. The output layer should have as many neurons as there are

outputs. The challenging part is to decide how many neurons should be in the hidden layers.

As with the number of layers, the most common approach to evaluate how many neurons to

use include in the hidden layers is to systematically test what number of neurons perform

better (Gu et al., 2019b). The optimizer algorithm defines the model’s training attributes (Gu

et al., 2019b). Through empirical testing we conclude that the preferred optimizer algorithm

for us is the Stochastic Gradient Descent, or SGD, which is the most commonly used

optimizer in neural networks (Gu et al., 2019b).

3.2.3 Overfitting

When predicting asset prices, it is critical to understand the concepts of bias and variance.

The trade-off between the two shows the risk of having a too simple model (high bias) or a

too complex model (high variance). Bias and variance are a sign of the model over- or

Predicting Asset Prices using Machine Learning

13

underfitting. The most recurrent problem within machine learning is overfitting as the issues

at hand often contain complex structures which leads to high variance (Gu et al., 2019b). This

phenomenon occurs when the model puts too much emphasis on noise, or randomness, due to

high complexity in the underlying data. The main symptom of overfitting is when the model

performs adequately on the training data but performs considerably worse on the test data. To

circumvent this issue, one must either alter the data, alter the architecture or add

regularization (Ying, 2019). To reduce the problem of overfitting and further improve

predictability we introduce regularization techniques. Generally, regularization comes in the

form of penalizing certain unwanted characteristics in parameters or protect against outliers.

This is done to ensure that the model disregards extreme values that only fit the training data.

3.2.4 Regularization

To reduce the problem of overfitting and improve speed and performance of the model we

impose regularization techniques (Gu et al., 2019b). The regularization techniques we

implement are early stopping, batch normalization and dropout. The dropout rate defines a

percentage value of random neurons that will be ignored during the training stage. These

neurons impact will be removed for the duration of one iteration and the layers will hence

contain a different number of active neurons at each stage. This solves the issue of co-

adaptation which occurs when neurons become too reliant on the input values they receive

from neurons in prior layers (Srivastava, Krizhevsky, Hinton and Sutskever, 2014). The

model becomes less prone to the risk of specific weights of individual neurons having too

much importance. Early stopping is a technique that stops the process once the validation

error increases from an iteration to the next. Batch normalization normalizes the number

received from the activation function which makes the model converge to the early stopping

faster and relieves the issues of vanishing and exploding gradients. Batch normalization also

synergizes with dropout because it contains noise and thus less information will be dropped

by the dropout function (Gu et al., 2019b).

3.2.5 Data split

The data containing both the explanatory and the dependent variables must be split in three

distinctive parts. This is done to measure out-of-sample performance of the model as well as

to prevent overfitting (Xu and Goodacre, 2018). The three sets are the training dataset, the

validation dataset and the test dataset. The allocation is 15% as validation set, 70% as training

Predicting Asset Prices using Machine Learning

14

set and either 1%, 5% or 15% as test set. The test set varies to test predictive power of the

models on different test set sizes (out-of-sample horizons).

Figure 2: Splitting the dataset in different out-of-sample sizes

This figure shows how the data set is split and how different out-of-sample horizons effects the data-splitting.

The table demonstrates that the out-of-sample horizon is the size of the test data set.

The training dataset is the actual dataset that is used to train the program and the aim for this

is to make the model learn what input variables will induce a certain output variable. The

validation dataset is separate from the training dataset and is used to validate the model. The

validation process is defined by training the model to improve hyperparameters and

predictability independently from the training dataset (Xu and Goodacre, 2018). The major

difference between the training and the validation processes is that the validation does not

alter the coefficients or the biases of the neural connections. It instead aims to provide an

unbiased control that any increase in accuracy over the training data will have the similar

effect when used on data that has not yet been shown to the model. This aids in protecting the

model from overfitting. The third and final separate dataset is the test dataset. The objective

of the test dataset is to provide data that can be used to measure the models out-of-sample

performance. This is done at the end of the process to fully reflect what the model has

learned. The major difference between the training/validation data and the test data is that the

test data is not used for any tuning or training of the model. All datasets should also be

following the same probability distribution (Xu and Goodacre, 2018).

Predicting Asset Prices using Machine Learning

15

3.3 COMPARISON OF MODELS

To give a just estimation of how the neural networks perform, we analyze and compare them

with a more simplistic model. The model of comparison is the standard linear OLS regression

which follows standard OLS regression rules. We expect that the linear OLS model will

perform poorly when used to predict future stock returns, which is in line with previous

results in Gu et al. (2019b). This is likely due to the OLS becoming unstable when the

number of predictors in the model increases. The neural networks that we model differ with

regards to their hyperparameters which affects the out-of-sample predictive performance.

To evaluate model performance, two loss functions are measured on an in-sample and out-of-

sample basis. The coefficient of determination, R2, is measured on an out-of-sample basis on

test data for the neural networks and on an out-of-sample basis on training data for the OLS-

function as comparison. This is done to determine whether the model exhibits predictability.

Campbell and Thompson (2008) discuss the use of out-of-sample measurements for the R2-

statistic for financial problems. Improving out-of-sample R2 is shown to lead to investors

profiting by using timing strategies. If a positive out-of-sample R2 is found to be consistent

through time, then it can be concluded that the model outperforms the random walk (Gu et

al., 2019b). Any return predictability found however, is expected to deteriorate quickly

(Timmermann, 2008).

It is of high relevance for the neural networks to balance bias and variance in order to receive

a model that does not over- or underfit. The first loss function used is the root mean squared

error, RMSE, which is a commonly used evaluation of the quality of the estimator. The

RMSE is the root of the average of the squared differences between the predicted value and

mean value. It encompasses both by how far off the average data point is from the actual

value and by how much the data points are spread out from each other. The second measure

to evaluate model performance is the mean bias error, MBE. MBE is used to capture the

average bias in the model. A positive MBE indicates that the predicted values are larger than

the observations and vice versa. The bias is important to determine to find the optimal

structure of the neural network. The optimal neural network will hence minimize both RMSE

and MBE while having a positive out-of-sample R2 (Gu et al., 2019b). The measurement

metrics are calculated as follows:

𝑅𝑜𝑜𝑠
2 =

∑ (𝑦𝑖−𝑦̂𝑖)𝑇
𝑡=1

2

∑ (𝑦𝑖−𝑦̅𝑖)𝑇
𝑡=1

2 𝑀𝐵𝐸 =
1

𝑛
 ∑ (𝑦𝑖̂ − 𝑦𝑖)

2𝑛
𝑖=1 𝑅𝑀𝑆𝐸 = √(

1

𝑛
 ∑ (𝑦𝑖 − 𝑦̅𝑖)2𝑛

𝑖=1)

Predicting Asset Prices using Machine Learning

16

4 DATA

To receive as accurate models as possible we use the broad Swedish index together with a

wide time span. The data used is 40 years of individual stock returns gathered from the

Swedish House of Finance with a period ranging from January 1979 to January 2019. There

are 491 stocks in total that were all listed on the Swedish exchanges. Explanatory variables in

the form of stock characteristics are also part of the dataset. These are collected from the

same source and are chosen based on what previous studies have found to be the dominant

factors.

The descriptive variable in the dataset is the logarithmic value of the daily return. The

explanatory variables are lagged values of the predictors. The predictors chosen for our

model is categorized in two groups which are technical analysis variables and valuation

ratios. This stems from the conclusion made by (Gu et al., 2019a) that the most successful

predictors are price trends, liquidity, volatility and financial ratios.

4.1 VALUATION RATIOS

The valuation ratios that we apply as explanatory variables in the dataset are the market and

the book value rankings. These rankings will determine the relative size of companies and

also give signals of increases or decreases in the ranking between companies. A company's

market value, also known as market capitalization, is the total value of all the traded shares

on the market. The book value is defined as a company's tangible assets minus its liabilities.

The purpose of these ratios is to assist the neural network in finding relationships between

increases or decreases in the rankings and the stock return. The last valuation ratio is the

dividend yield. There have been many studies of the relationship between the dividend yield

and the stock return. Timmerman and Pesaran (1994) built a model that explained monthly

S&P 500 returns with lagged values of the dividend yield and showed that the variable is

significant for predicting stock returns. We consider these predictors in our dataset due to

previous research showing their predictive power (Gu et al. 2019a).

Predicting Asset Prices using Machine Learning

17

4.2 TECHNICAL VARIABLES

Apart from the valuation ratios, we also implement technical analysis variables and lags of

the logarithmic daily return in the dataset. We implement technical variables due to previous

literature showcasing their statistical significance when forecasting returns (Gu et al., 2019b)

In our dataset we include the Moving Average Convergence Divergence (MACD) which is a

metric used to find trends in momentum between the exponential moving average (EMA)

with a period of 26 days with the EMA of 12 days. The MACD is calculated by subtracting

the fast EMA with the slow EMA. The next technical metric we include is the relative

strength index (RSI) which determines whether a stock is overbought or oversold compared

to a rolling average of the last 14 days. The metric ranges from 0 to 100 where a number in

excess of 70 indicates an overbought stock and a number lower than 30 indicates an oversold

stock. These technical indicators have shown to work as predictors and could potentially

generate excess return for investors (Chong and Ng, 2008). Furthermore, a lagged variable of

Simple Moving Average (SMA) is implemented, which comprises of the average returns over

a certain period. The dataset also contains the SMA-crossover variable, which is defined as a

slow rolling window of 100 days and a fast rolling window of 20 days. The final technical

variable we add to the dataset is the bid-ask spread. The bid-ask-spread is the difference

between the ask price and the bid price and is an indicator of supply and demand of an asset.

Research have shown that higher spreads yield higher returns and is therefore interesting to

add to our model (Amihud & Mendelson ,1986)

Predicting Asset Prices using Machine Learning

18

4.3 THE FINAL DATASET

Table 1 demonstrates the numerical summary of the predictors that are included in the

dataset. Winsorization is conducted on each of the variables to reduce the effect of outliers.

This is done by choosing a certain threshold value of the distribution, in which the excess

gets replaced by a normalized percentile. In table 1, all variables range from 0 and 1 with the

exception of the return variable, which is only winsorized but not normalized. This is because

we do not want smaller standard deviations to suppress the effect of outliers in the case of

daily returns.

Table 1: Predictor summary

Variable count mean std min 0,25 0,5 0,75 max

Return 961319 1,000 0,022 0,885 0,990 1,000 1,010 1,128

Market value 961319 0,342 0,218 0,000 0,166 0,324 0,486 1,000

Book value 961319 0,341 0,219 0,000 0,162 0,323 0,487 1,000

Dividend yield 961319 0,030 0,071 0,000 0,005 0,010 0,026 1,000

SMA crossover 961319 0,272 0,445 0,000 0,000 0,000 1,000 1,000

Volatility 961319 0,025 0,013 0,000 0,017 0,022 0,029 0,655

RSI 961319 0,523 0,124 0,000 0,442 0,523 0,607 1,000

MACD 961319 0,045 0,012 0,000 0,045 0,045 0,046 1,000

Bid- Ask-Spread 961319 0,062 0,128 0,000 0,009 0,023 0,055 1,000

The table shows the summary statistics of the predictors implemented in the dataset after winsorization and

normalization.

Predicting Asset Prices using Machine Learning

19

5 RESULT & DISCUSSION

The result from the evaluation of each neural network after tuning hyperparameters and

constructing different architectures will be presented in this section. The following tables will

demonstrate the in-sample and out-of-sample metrics of the MBE, RMSE and the out-of-

sample R2. To demonstrate how the out-of-sample horizon changes the return predictability,

results with three different horizons of 1%, 5% and 15% of the test set will be shown. A

comparison between the OLS regression will also be demonstrated to showcase the relative

strengths or weaknesses of different neural networks.

To achieve a relatively well-performing neural network it is crucial to examine the results of

different setups and architectures. This section demonstrates ten different architectures that

we denote NN1 to NN10, ranging from shallow (non-deep) to very deep in ascending order.

The architectures are presented in table 2 and are defined as the number of neurons times the

layers. For instance, the first neural network, NN1, is made up of 32 neurons in the input

layer and 16 neurons in the hidden layer. The output neuron is always 1 due there being only

one output and is therefore not shown in the table. By using the same architectures

throughout the result section, we draw conclusions of correlation between the changes of the

hyperparameters and the performance metrics.

Table 2: The Neural Network Architectures

Network
Neurons in

input layer

Hidden Layers

(Neurons x Layers)
Type Optimizer Batchsize

NN1 32 16x1 Shallow SGD 500

NN2 64 32x1 Shallow SGD 500

NN3 128 64x1 Shallow SGD 500

NN4 256 128x1 Shallow SGD 500

NN5 512 256x1 Shallow SGD 500

NN6 128 64x2 Deep SGD 500

NN7 128 64x2, 32x2, 16x2 Deep SGD 500

NN8 256 128x3, 64x2 Deep SGD 500

NN9 256 128x3, 64x3, 32x3 Deep SGD 500

NN10 512

256x4, 128x4, 64x4, 32x4,

16x4, 8x4, 4x4, 2x4 Deep SGD 500

The table shows the architectures that are being tested in all subsequent runs. Each network has their

own structure with regards to how many neurons exist in the input and hidden layers as well as how

many hidden layers there are.

Predicting Asset Prices using Machine Learning

20

5.1 BASE RUN

This run will be used as our benchmark for tuning and analyzing the best setup for the neural

networks. The predictors in this setup are 20 days of lagged variables, a dropout rate of 0.5

together with batch normalization on each layer. The result is presented in the table below

where the performance metrics are displayed for the OLS and the neural networks. The

networks out-of-sample performance metrics MBE, RMSE and R2 were better than for the

OLS. Looking at the different out-of-sample horizon of 1%, 5% and 15% an interesting

finding can be noticed. When the out-of-sample horizon increases the deep neural networks

appears less stable which indicates that it might overfit. By looking at the out-of-sample

horizon of 1%, the best neural network is NN8 which shows the lowest mean bias error and

the highest out-of-sample R2. This is in line with results from previous studies of Gu et al.

(2019a), Gu et al. (2019b) and Chen et al (2020), that demonstrates a higher out-of-sample R2

for the neural networks and regression trees compared to the linear OLS regression.

However, when the out-of-sample horizon increases to 15% NN8 turns from a bias of -0.089

to 0.425 and receives the lowest out-of-sample R2 of all the networks. The effect occurs for

all of the deep neural networks, showing that when the out-of-sample horizon increases, the

shallow neural networks perform better. The best-performing model was NN5 with an out-of-

sample R2 of 0.276. This can be explained by studies of Gu et al. (2019b), where deeper

networks usually are more prone to overfitting as the data is likely to contain much noise.

Shallower networks are less affected by noise and could be the reasoning to their relative

outperformance.

The out-of-sample R2 might be statistically insignificant but could prove economically highly

relevant since our benchmark is random walk. (Timmerman, 2018) mentioned as a counter to

the difficulties with establishing return predictability, that even small amounts of return

predictability have the potential of translating into significant economic gains. This is not to

say that it would be a profitable to trade based on these results, since the model does not

account for transaction costs and still has a relatively poor performance. However, the setup

presented for the base run indicates that the neural network out-of-sample predictions are

stronger than linear regression (OLS) as is expected from studies of Gu et al. (2019b).

Predicting Asset Prices using Machine Learning

21

Table 3: The Base Run

 In-Sample Out-of-sample 1% Out-of-sample 5% Out-of-sample 15%

 Model Bias RMSE Bias RMSE

OOS-

R2 Bias RMSE

OOS-

R2 Bias RMSE

OOS-

R2

OLS 0,000 22,004 -1,698 16,983 -7,563 -0,444 16,653 -3,847 0,058 17,684 -3,135

S
h

al
lo

w

NN1 0,031 22,056 -1,487 16,915 0,558 -0,300 16,623 -0,181 0,190 17,657 0,030

NN2 0,068 22,055 -1,492 16,911 0,987 -0,315 16,622 -0,136 0,159 17,656 0,079

NN3 0,077 22,055 -1,532 16,914 0,705 -0,357 16,622 -0,159 0,125 17,656 0,133

NN4 0,036 22,053 -1,507 16,919 0,095 -0,349 16,624 -0,385 0,132 17,656 0,045

NN5 0,081 22,053 -1,546 16,914 0,597 -0,364 16,622 -0,046 0,130 17,654 0,276

D
ee

p

NN6 0,164 22,056 -1,403 16,904 1,838 -0,233 16,620 0,098 0,250 17,657 -0,010

NN7 0,127 22,058 -1,431 16,908 1,334 -0,221 16,619 0,254 0,297 17,658 -0,187

NN8 0,290 22,059 -1,292 16,896 2,748 -0,089 16,618 0,435 0,425 17,660 -0,414

NN9 0,150 22,058 -1,408 16,906 1,573 -0,199 16,619 0,292 0,319 17,659 -0,230

NN10 0,035 22,058 -1,525 16,916 0,374 -0,314 16,620 0,083 0,205 17,657 -0,042

 The table shows the setup for the first test where the different networks are compared by the metrics of MBE,

RMSE and OOS-R2 on an in-sample and an out-of-sample basis. The best performing network in the out-of-

sample size 15% is NN5 with a value of 0.276. All values are multiplied by 1000 for easier interpretation.

5.2 IMPACT OF DROPOUT ON MODEL PERFORMANCE

The purpose of this run is to determine the impact of decreasing the dropout rate relative to

the performance of the model. The dropout rate is therefore lowered to 0.2 instead of 0.5

while holding other parameters fixed. The result in table 4 shows that the R2 of the best

performing network in any of the out-of-sample horizons do not improve over the previous

run. The best model in this run is NN1 with an out-of-sample R2 of 0.178. We determine that

the deep neural networks NN6, NN7 and NN8 receives a lower mean bias error for the 15%

out-of-sample horizon compared to the base run. They also receive a positive out-of-sample

R2 for the out-of-sample horizon of 15%.

Predicting Asset Prices using Machine Learning

22

 Table 4: Decreasing the dropout

 In-Sample Out-of-sample 1% Out-of-sample 5% Out-of-sample 15%

 Model Bias RMSE Bias RMSE

OOS-

R2 Bias RMSE

OOS-

R2 Bias RMSE

OOS-

R2

OLS 0,000 22,004 -1,698 16,983 -7,563 -0,444 16,653 -3,847 0,058 17,684 -3,135

S
h

al
lo

w

NN1 0,017 22,056 -1,546 16,919 0,077 -0,370 16,624 -0,383 0,110 17,655 0,178

NN2 0,019 22,054 -1,566 16,918 0,182 -0,381 16,623 -0,244 0,102 17,655 0,147

NN3 0,028 22,052 -1,545 16,918 0,208 -0,370 16,624 -0,303 0,116 17,655 0,158

NN4 0,005 22,050 -1,652 16,928 -0,953 -0,449 16,625 -0,515 0,060 17,656 0,131

NN5 0,011 22,050 -1,636 16,923 -0,411 -0,412 16,624 -0,340 0,113 17,655 0,149

D
ee

p

NN6 0,029 22,054 -1,559 16,920 -0,115 -0,391 16,625 -0,409 0,102 17,656 0,120

NN7 0,079 22,057 -1,480 16,912 0,921 -0,274 16,620 0,098 0,234 17,657 0,005

NN8 0,105 22,055 -1,468 16,910 1,063 -0,291 16,622 -0,125 0,190 17,656 0,085

NN9 0,113 22,058 -1,451 16,910 1,163 -0,253 16,620 0,153 0,254 17,658 -0,107

NN10 0,396 22,062 -1,161 16,888 3,739 0,051 16,618 0,418 0,570 17,665 -0,967

 The table shows the comparison of the networks when the dropout rate has been lowered from 0.5 to 0.2.

Even though the performance of best performing network does not increase, we notice that

the overall performance, for both the deep and non-deep networks, increase. This shows that

changing the dropout rate is a feasible strategy to apply to impact the result.

5.3 IMPACT OF NUMBER OF LAGS

In this run, we analyze the impact of varying the number of lags. The dropout rate will be

held constant at 0.5. In this run we notice an increase in the out-of-sample R2 for the OLS and

a decrease in out-of-sample R2 for the neural networks when lowering the number of lags. As

we reduce the complexity of our dataset by reducing lagged variables from 20 to 10, we

notice an increase of the measurement’s metrics for the OLS and a decrease of the

measurement metrics for the neural networks. However, since there are still 10 lagged days of

variables, it might be too complex of a setup for the OLS to receive a positive out-of-sample

R2 like the neural networks does. Comparing the out-of-sample horizon of 15% out-of-

sample R2 from the previous run with table 5 we see that the out-of-sample R2 of the OLS

have increased from -3.135 to -1.201.

Predicting Asset Prices using Machine Learning

23

 Table 5: Decreasing the number of lags

 In-Sample Out-of-sample 1% Out-of-sample 5% Out-of-sample 15%

 Model Bias RMSE Bias RMSE OOS-R2 Bias RMSE OOS-R2 Bias RMSE OOS-R2

OLS 0,000 22,142 -1,651 17,146 -5,752 -0,475 16,788 -1,920 0,019 17,759 -1,201

S
h

al
lo

w

NN1 0,031 22,178 -1,441 17,095 0,167 -0,345 16,776 -0,444 0,117 17,749 -0,078

NN2 0,058 22,178 -1,443 17,093 0,389 -0,358 16,775 -0,356 0,106 17,748 0,079

NN3 0,095 22,177 -1,440 17,091 0,641 -0,340 16,773 -0,118 0,128 17,747 0,122

NN4 0,054 22,174 -1,526 17,096 0,110 -0,398 16,772 -0,064 0,089 17,745 0,317

NN5 0,066 22,175 -1,388 17,090 0,773 -0,245 16,774 -0,281 0,249 17,749 -0,096

D
ee

p

NN6 0,185 22,179 -1,326 17,084 1,510 -0,238 16,773 -0,123 0,222 17,749 -0,071

NN7 0,123 22,181 -1,376 17,087 1,165 -0,234 16,770 0,250 0,276 17,750 -0,157

NN8 0,323 22,182 -1,170 17,072 2,911 -0,038 16,769 0,391 0,463 17,753 -0,584

NN9 0,252 22,182 -1,240 17,076 2,366 -0,094 16,768 0,403 0,417 17,752 -0,479

NN10 0,035 22,181 -1,456 17,093 0,354 -0,314 16,771 0,083 0,195 17,749 -0,040

 The table shows the comparison of the networks when the amount of lagged days on the explanatory variables have

decreased from 20 to 10. All values are multiplied by 1000 for easier interpretation.

By increasing the number of lagged days from 20 to 30, we receive a stronger indication of

the previous statement that by increasing complexity, the OLS performs even worse relative

to the neural networks. We can again conclude that the shallow neural networks outperform

the deep neural networks. Looking at table 6 we notice that all the shallow networks receive a

positive out-of-sample R2 for an out-of-sample horizon of 15%, while the deep networks

receive negative numbers. We can once again observe that NN4 performs relatively well

compared to the other neural networks and the OLS.

Predicting Asset Prices using Machine Learning

24

 Table 6: Increasing the number of lags

 In-Sample Out-of-sample 1% Out-of-sample 5% Out-of-sample 15%

 Model Bias RMSE Bias RMSE OOS-R2 Bias RMSE OOS-R2 Bias RMSE OOS-R2

 OLS 0,000 21,926 -1,795 16,844 -7,783 -0,452 16,556 -5,396 0,078 17,632 -5,616

S
h

al
lo

w

NN1 0,024 21,996 -1,679 16,776 0,403 -0,373 16,512 -0,076 0,149 17,582 0,064

NN2 0,086 21,995 -1,666 16,775 0,453 -0,379 16,514 -0,251 0,118 17,582 0,075

NN3 0,099 21,995 -1,647 16,771 0,943 -0,370 16,514 -0,296 0,120 17,583 0,007

NN4 0,120 21,993 -1,659 16,772 0,818 -0,370 16,513 -0,147 0,125 17,581 0,134

NN5 0,134 21,993 -1,596 16,766 1,552 0,287 16,513 -0,106 0,223 17,582 0,079

D
ee

p

NN6 0,213 21,997 -1,577 16,763 1,900 -0,283 16,511 0,124 0,221 17,583 -0,086

NN7 0,097 21,998 -1,631 16,770 1,088 -0,302 16,510 0,229 0,233 17,584 -0,101

NN8 0,099 21,998 -1,696 16,778 1,051 -0,235 16,531 0,230 0,354 17,586 -0,275

NN9 0,177 21,998 -1,542 16,762 2,021 -0,214 16,509 0,387 0,322 17,585 -0,269

NN10 0,040 21,998 -1,677 16,775 0,486 -0,349 16,510 0,109 0,186 17,583 -0,043

 The table shows the comparison of the networks when the amount of lagged days on the explanatory variables have

increased from 20 to 30. All values are multiplied by 1000 for easier interpretation.

In the two runs of increasing and decreasing the number of lagged variables, we notice that

the performance of the deep networks does not change much, while the performance for the

shallow networks improves substantially. We will further discuss this founding in the final

analysis.

5.4 IMPACT OF CHANGING LAGS AND DROPOUT

In this run, we analyze the effect of changing both the number of lags and the dropout rate.

By decreasing the number of lags by 10 and the dropout rate to 0.2 we observe that the

shallow networks receives the lowest bias recorded so far as well as the highest out-of-sample

R2 for an out-of-sample horizon of 15%. We observe that the best performing network in this

run is the NN4 which has the architecture of one input layer of 256 neurons and one hidden

layer with 128 neurons. This neural network has improved its performance for each of the

previous runs made and is considered the best-performing setup for this study's dataset. This

run demonstrates the highest out-of-sample R2 for an out-of-sample horizon of 15% of all the

runs. We can conclude that by changing the number of lagged variables together with

hyperparameter tuning, it is possible to further strengthen a neural network, however, this

requires a lot of testing which becomes impractical. With these specifications of the

architecture, the dropout rate, the number of lags together with batch normalization, we

Predicting Asset Prices using Machine Learning

25

receive a model that have outperforming predicting power over the linear regression and

could with further optimization be valuable to investors.

 Table 7: Decrease in dropout rate and number of lags

 In-Sample Out-of-sample 1% Out-of-sample 5% Out-of-sample 15%

 Model Bias RMSE Bias RMSE OOS-R2 Bias RMSE OOS-R2 Bias RMSE OOS-R2

OLS 0,000 22,142 -1,651 17,146 -5,752 -0,475 16,788 -1,920 0,019 17,759 -1,201

S
h

al
lo

w

NN1 0,018 22,177 -1,427 17,095 0,149 -0,315 16,775 -0,389 0,156 17,749 -0,102

NN2 0,016 22,177 -1,511 17,097 -0,089 -0,406 16,775 -0,333 0,069 17,747 0,156

NN3 0,017 22,174 -1,533 17,102 -0,631 -0,446 16,777 -0,670 0,009 17,747 0,094

NN4 0,020 22,169 -1,542 17,096 0,064 -0,407 16,774 -0,215 0,079 17,744 0,476

NN5 -0,006 22,169 -1,648 17,101 -0,491 -0,488 16,776 -0,438 0,011 17,745 0,366

D
ee

p

NN6 0,077 22,176 -1,439 17,094 0,277 -0,328 16,775 -0,365 0,138 17,748 0,046

NN7 0,059 22,179 -1,460 17,093 0,466 -0,326 16,772 0,016 0,177 17,748 0,008

NN8 0,090 22,178 -1,427 17,092 0,516 -0,332 16,774 -0,225 0,136 17,748 0,075

NN9 0,144 22,181 -1,358 17,084 1,419 -0,226 16,770 0,215 0,275 17,750 -0,185

NN10 0,434 22,186 -1,052 17,065 3,699 0,090 16,770 0,255 0,599 17,759 -1,174

 The table shows the comparison of the networks when the dropout rate has decreased from 0.5 to 0.2 and the amount

of lagged days on the explanatory variables have decreased from 20 to 10. All values are multiplied by 1000 for

easier interpretation.

5.5 FINAL ANALYSIS

Our study is less complex in terms of the number of days and variables compared to the

studies of Gu et al. (2019b) and Gu et al. (2019a). However, we receive results that are

similar to these studies. Even with a smaller number of predictors the R2 for the OLS receives

negative numbers and shows a negative correlation between number of predictors and the

out-of-sample R2. The base run with 20 lagged variables as predictors demonstrates an out-

of-sample R2 that is -3.135 for the OLS with an out-of-sample horizon of 15%. When the

number of lagged variables decrease to 10 an out-of-sample R2 of -1.2 is received for the

OLS.

With many parameters to estimate, the efficiency of the OLS regression show the weakness

that we were expecting and therefore produces forecasts that are highly unstable out of

sample. Our neural networks, however, demonstrates an increase to the out-of-sample R2

when the number of lagged variables increases. As our comparison for the different runs are

analyzed, we can also draw the conclusion that shallow learning outperforms deep learning.

As Gu et al. (2019b) mention in their research this differs from the typical conclusion in other

Predicting Asset Prices using Machine Learning

26

fields such as computer vision and bioinformatics and that this is likely due to the absence of

large datasets and a low signal-to noise ratio.

Our findings are based on ten different architectures with different number of hidden layers

and number of neurons. The “universal approximation” as stated by (Gu et al., 2019a) is that

a model with a single hidden layer is most efficient, but recent literature have shown that this

might not always be the case. Deeper neural networks can often achieve the same accuracy

with substantially fewer parameters. In our case this was demonstrated by comparing model

performance when varying the number of lagged days between 10 and 30. When the

comparison was run, the deeper networks performance did not significantly change, however

they were stable across the different complexities. The shallow networks performed better

and by also decreasing the dropout we reached our best neural network with a relatively high

out-of-sample R2.

5.6 LIMITATIONS AND FURTHER EXTENSIONS

There are several limitations that affect the results of this study. Available data of stock

returns and explanatory variables are limited in timeframe and quantity. When handling the

dataset, we need to remove certain code with missing or invalid information. This further

reduces the amount of data while also creating gaps in the dataset that have to be accounted

for. While there is a plethora of machine learning methods available for image- and speech

recognition and medicinal purposes, there is a relatively short supply of available methods

and models that focus on the combined field of machine learning applied on asset pricing.

Previous literature of Gu et al. (2019b) discerns what machine learning cannot be used for.

While machine learning is adept at providing measurements of asset pricing, it does not

provide any information of the economic mechanisms that in reality are what dictates the

price of an asset. It also does not provide information of equilibrium of any kind.

A crucial limitation to this study is that no transaction costs are accounted for. This means

that even if predictability and subsequent profitability over random walk is achieved, it is

likely that in a real-world scenario, the predictability and the excess profitability vanishes in

part or completely. Chen et al. (2020) demonstrates this through the implementation of a no-

arbitrage condition being part of the neural network. Also, other financial obstacles such as

liquidity might pose a problem when testing the models in a real-world scenario. Our sample

Predicting Asset Prices using Machine Learning

27

size will be smaller than that of Gu et al. and there will be a considerable reduction in the

number of predicting variables due to constraints in time and computational power.

To improve results and relevance, the study can be further optimized through a variety of

methods. These methods have not been implemented due to limitations of time and

knowledge within the field as well as some being impractical. First, a different architecture,

such as the LSTM can be used to improve predictability as observed by Chen et al. (2020).

This would likely have further deepened the result but was cut short due to time constraints.

There are many stock characteristics that explain returns and in this study a few of the most

prominent have been considered. To further deepen the result and possibly receive a model

with higher predictability, more characteristics could have been analyzed.

In addition, this study does not analyze the statistical significance of the explanatory variables

or the received loss function metrics. Financial forecasting problems often deals with very

small out-of-sample R2 values which could imply that statistical significance is difficult to

achieve. The values could, however, be highly relevant to investors and speculators by

improving upon timing or trading strategies, as showcased by Campbell and Thompson

(2008). The examined literature often protrudes into studying portfolios in addition to

individual stocks. This enhances the measurability of return predictability for comparing

traditional investing strategies such as buy-and-hold and machine learning models (Gu et al.,

2019b).

To increase the predictive ability of the neural networks in this study, further optimization of

the hyperparameters can be done. The number of permutations of the hyperparameters are

quickly increasing as the number of hyperparameters increase and for this reason it is

impractical to build a network with every possible combination of parameters. A larger

dataset is likely to increase predictability due to the network having more data to train on. To

further increase comparability, more linear models with different penalization techniques

such as LASSO and elastic net as well as other machine learning techniques such as

regression trees could have been implemented.

Predicting Asset Prices using Machine Learning

28

6 CONCLUSION

To begin, predicting asset prices is a very tough objective. Even though the field has been

studied thoroughly since the inception of the traditional financial theories, the exists no

consensus of how asset prices fluctuate. This is not to say that the field is not relevant to

study since even a small increase in asset pricing accuracy can yield enormous economic

gains to their respective stakeholder.

Many authors within the field agree that machine learning has a powerful predictive ability

and can generate value to investors and researchers in the area of asset pricing. After having

built models of neural networks and having them put to the test against linear OLS

regression, we conclude that neural networks can improve on predictability of stock returns.

The measurement metrics are, however, very small and would therefore unlikely be of any

use to investors or speculators. Even if a substantial predictability could be found, it is also

unlikely to hold, as discussed by Timmermann (2008). The findings of our study show that

shallow networks generally outperform deep networks and that the best performing network

has one input layer of 256 neurons and one hidden layer with 128 neurons.

We also conclude that neural networks outperform linear OLS regression when predicting

stock prices. Our results indicate that OLS regression is too simple of a model to fully

account for all the complex features of a stock market, where factors from a variety of fields,

such as psychology, traditional finance and macroeconomics mix together. Even the complex

structures of a neural network struggle to model this complexity as other issues such as biases

arise. The overarching conclusion is therefore that further studying is required to fully allow

for all factors to be considered.

Predicting Asset Prices using Machine Learning

29

7 REFERENCES

Gu, S. and Kelly, B. and Xiu, D. (2019b). Empirical Asset Pricing via Machine Learning,

Chicago Booth Research Paper No. 18-04; 31st Australasian Finance and Banking

Conference 2018; Yale ICF Working Paper No. 2018-09,

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3159577

Gu, S. and Kelly, B. and Xiu, D. (2019a), Autoencoder Asset Pricing Models, Yale ICF

Working Paper No. 2019-04; Chicago Booth Research Paper No. 19-24,

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3335536

Timmermann, A. (2018), Forecasting methods in Finance, CEPR Discussion Paper No.

DP12692, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3122334

Chen, L. and Pelger, M. and Zhu, J. (2020), Deep Learning in Asset Pricing, SSRN

Electronic Journal. https://ssrn.com/abstract=3350138

Srivastava, N. and Krizhevsky, A. and Hinton, G. and Sutskever, I. (2014), Dropout: A

Simple Way to Prevent Neural Networks from Overfitting, Journal of Machine Learning

Research, http://jmlr.org/papers/v15/srivastava14a.html

Xu, Goodacre (2018), On Splitting Training and Validation Set: A Comparative Study of

Cross-Validation, Bootstrap and Systematic Sampling for Estimating the Generalization

Performance of Supervised Learning, Journal of analysis and testing,

https://doi.org/10.1007/s41664-018-0068-2

Timmerman, A. and Pesaran, H. M. (1994), Forecasting stock returns an examination of

stock market trading in the presence of transaction costs. Journal of forecasting, 13(4), pp.

335-367, https://onlinelibrary.wiley.com/doi/abs/10.1002/for.3980130402

Chong, T. and Ng, W-K. (2008), Technical analysis and the London stock exchange: Testing

the MACD and RSI rules using the FT30. Applied Economics letters, 15, 1111-1114.

https://www.researchgate.net/publication/23546661_Technical_analysis_and_the_London_st

ock_exchange_Testing_the_MACD_and_RSI_rules_using_the_FT30

Ying, X. (2019), An overview of overfitting and its solutions, Journal of physics, IOP

Publishing Ltd, https://iopscience.iop.org/article/10.1088/1742-6596/1168/2/022022

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3159577
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3335536
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3122334
https://ssrn.com/abstract=3350138
http://jmlr.org/papers/v15/srivastava14a.html
https://doi.org/10.1007/s41664-018-0068-2
https://onlinelibrary.wiley.com/doi/abs/10.1002/for.3980130402
https://www.researchgate.net/publication/23546661_Technical_analysis_and_the_London_stock_exchange_Testing_the_MACD_and_RSI_rules_using_the_FT30
https://www.researchgate.net/publication/23546661_Technical_analysis_and_the_London_stock_exchange_Testing_the_MACD_and_RSI_rules_using_the_FT30
https://iopscience.iop.org/article/10.1088/1742-6596/1168/2/022022

Predicting Asset Prices using Machine Learning

30

Timmermann, A. (2008), Elusive return predictability, International journal of forecasting,

Elsevier, vol. 24(1), pages 1-18, https://doi.org/10.1016/j.ijforecast.2007.07.008

Campbell, J. Y. and Thompson, S. B. (2008), Predicting Excess Stock Returns Out of

Sample: Can Anything Beat the Historical Average?, The Review of Financial Studies,

Volume 21, Issue 4, July 2008, Pages 1509–1531, https://doi.org/10.1093/rfs/hhm055

Rapach, D and Zhou, G. (2013), Forecasting Stock Returns, Handbook of economic

forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.

https://doi.org/10.1016/B978-0-444-53683-9.00006-2

Amihud, Y. and Mendelson, H. (1986). Asset pricing and the bid-ask spread, Journal of

Financial Economics 17(2), Pages 223–249.

https://www.sciencedirect.com/science/article/pii/0304405X86900656

Figure 1. https://en.wikipedia.org/wiki/Feedforward_neural_network

https://doi.org/10.1016/j.ijforecast.2007.07.008
https://doi.org/10.1093/rfs/hhm055
https://doi.org/10.1016/B978-0-444-53683-9.00006-2
https://www.sciencedirect.com/science/article/pii/0304405X86900656
https://en.wikipedia.org/wiki/Feedforward_neural_network

Predicting Asset Prices using Machine Learning

31

8 APPENDICES

8.1 THE DATA PREPARATION CODE

import matplotlib.pyplot as plt

import pandas as pd

import os

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import MinMaxScaler

from sklearn.model_selection import train_test_split

from tensorflow import keras

import numpy as np

#Structuring the necessary variables for the model

df_stock = pd.read_csv("./Big_data.csv",sep=';', parse_dates=['day'])

#Creating each div & bid-ask-spread

df_stock["divyield"] = df_stock['dividendyeld'] / df_stock["lastad"]

df_stock["bidaskspread"] = df_stock['askad'] - df_stock["bidad"]

df_stock.dropna(inplace=True)

#Creating a column to the final_dataset with y-variable = log(daily return)

final_datasets=[]

#Choosing predicting horizon, winsorization and number of lags in the dataset

predict_horizon = 1

max_lag_returns= 20

winsorize_returns=0.001

#Adding the return-variable

dft=pd.pivot_table(df_stock, index='day', columns='ticker', values='lastad')

dft=np.log(dft)-np.log(dft.shift(1))

df_returns=dft

dftmelt=pd.melt(df_returns.reset_index(), id_vars=['day'], value_name='return')

v_name='return'

l,h=dftmelt[v_name].quantile([winsorize_returns,1-winsorize_returns]).values.tolist()

dftmelt.loc[dftmelt[v_name]<l,v_name]=l

dftmelt.loc[dftmelt[v_name]>h,v_name]=h

final_datasets.append(dftmelt)

for i in range(0,max_lag_returns):

 final_datasets.append(pd.melt(df_returns.shift(i+predict_horizon).reset_index(), id_vars=['day'], value_name

='return_lag{}'.format(i+predict_horizon)))

def add_variable_final_dataset(variable_name, lags, shifter, scale=True, winsorise=0.0):

 #Create the pivottable and calculation dependent on which type of variable

 if shifter == False:

 if variable_name == "marketvalue":

 dft =pd.pivot_table(df_stock, index='ticker', columns='day', values='marketvalue')

 elif variable_name == "bookvalue":

 dft =pd.pivot_table(df_stock, index='ticker', columns='day', values='bookvalue')

 dft = dft.rank()

Predicting Asset Prices using Machine Learning

32

 #dft=pd.pivot_table(df_stock, index='day', columns='ticker', values=variable_name).apply(np.log)

 dftmelt=pd.melt(dft.reset_index(), id_vars=['ticker'], value_name='log_{}'.format(variable_name)).dropna()

 else:

 if variable_name == "SMA50":

 dft = pd.pivot_table(df_stock, index='day', columns='ticker', values="lastad")

 dft = dft.rolling(window=20).mean() < dft.rolling(window=100).mean()

 dft.astype(int)

 dftmelt=pd.melt(dft.reset_index(), id_vars=['day'], value_name='{}'.format(variable_name)).dropna()

 elif variable_name == 'MACD':

 dft = pd.pivot_table(df_stock, index='day', columns='ticker', values="lastad")

 dft = dft.ewm(span=12,adjust=False).mean() - dft.ewm(span=26,adjust=False).mean()

 dftmelt=pd.melt(dft.reset_index(), id_vars=['day'], value_name='{}'.format(variable_name)).dropna()

 elif variable_name == 'volatility':

 dft=pd.pivot_table(df_stock, index='day', columns='ticker', values='lastad')

 dft=np.log(dft)-np.log(dft.shift(1))

 dft*=100

 dft=np.power(dft,2)

 dft=dft.ewm(alpha=0.05).mean()

 dft=np.sqrt(dft)

 dftmelt=pd.melt(dft.reset_index(), id_vars=['day'], value_name='{}'.format(variable_name)).dropna()

 elif variable_name == 'RSI':

 dft=pd.pivot_table(df_stock, index='day', columns='ticker', values='lastad')

 dft=np.log(dft)-np.log(dft.shift(1))

 rsi_period = 14

 dft = 100 - (100/(1+abs(dft.mask(dft<0,0).ewm(com = rsi_period-1,min_periods=rsi_period).mean()/dft.

mask(dft>0,0).ewm(com = rsi_period-1,min_periods=rsi_period).mean())))

 dftmelt=pd.melt(dft.reset_index(), id_vars=['day'], value_name='{}'.format(variable_name)).dropna()

 else:

 dft=pd.pivot_table(df_stock, index='day', columns='ticker', values=variable_name)

 dftmelt=pd.melt(dft.reset_index(), id_vars=['day'], value_name=variable_name).dropna()

dft=np.log(dft)-np.log(dft.shift(1))

 #Transform

 v_name=dftmelt.columns[-1]

 if winsorise>0.0:

 l,h=dftmelt[v_name].quantile([winsorise,1-winsorise]).values.tolist()

 dftmelt.loc[dftmelt[v_name]<l,v_name]=l

 dftmelt.loc[dftmelt[v_name]>h,v_name]=h

 if scale==True:

 scaler = MinMaxScaler(feature_range = (0,1))

 dftmelt[v_name]=scaler.fit_transform(dftmelt[[v_name]])

 dft=pd.pivot_table(dftmelt, index='day', columns='ticker', values=v_name)

 #Add lags to final data

 for i in range(0,lags):

Predicting Asset Prices using Machine Learning

33

 final_datasets.append(pd.melt(dft.shift(i+predict_horizon).reset_index(), id_vars=['day'], value_name='{}_l

ag{}'.format(variable_name,i+predict_horizon)))

#We use the function to add log variables and lags for 5 days

max_lag=20

add_variable_final_dataset('marketvalue',max_lag,False, scale=True, winsorise=0.001)

add_variable_final_dataset('bookvalue',max_lag, False, scale=True, winsorise=0.001)

add_variable_final_dataset('divyield',max_lag, True, scale=True, winsorise=0.001)

add_variable_final_dataset('SMA50',max_lag,True, scale=True, winsorise=0.001)

add_variable_final_dataset('volatility',max_lag,True, scale=True, winsorise=0.001)

add_variable_final_dataset('RSI',max_lag,True, scale=True, winsorise=0.001)

add_variable_final_dataset('MACD',max_lag,True, scale=True, winsorise=0.001)

add_variable_final_dataset("bidaskspread",max_lag,True, scale=True, winsorise=0.01)

final_dataset=final_datasets[0]

for df in final_datasets[1:]:

 final_dataset=pd.merge(

 final_dataset,

 df,

 how='left',

 left_on=['day', 'ticker'],

 right_on=['day', 'ticker']

)

final_dataset.dropna(inplace=True)

final_dataset.head().T

#Save to a CSV-file

final_dataset.to_csv('d:/temp/final_dataset.csv')

8.2 BUILDING THE DIFFERENT MACHINE LEARNING MODELS

import matplotlib.pyplot as plt

import pandas as pd

import os

from sklearn.preprocessing import MinMaxScaler

import tensorflow as tf

from tensorflow import keras

import numpy as np

import os

gpus = tf.config.experimental.list_physical_devices('GPU')

Currently, memory growth needs to be the same across GPUs

for gpu in gpus:

 tf.config.experimental.set_memory_growth(gpu, True)

Predicting Asset Prices using Machine Learning

34

#Read the csv-file we created erlier

final_dataset=pd.read_csv('./final_dataset.csv')

final_dataset=final_dataset.iloc[:,1:]

final_dataset.dropna(inplace=True)

final_dataset.iloc[:,2:23]+=1

#determine the size of the splits and the out of sample horizon

splits=[0.15,0.75,0.15]

out_of_sample_horizon = 60

#Split the data according to the pre-determined splits

splits=np.cumsum(splits)

dates=sorted(final_dataset.day.unique())

ix_validation=int(len(dates)*splits[0])

date_validation_to_split_on=dates[ix_validation]

ix_train_test_start=int(len(dates)*splits[1])

for ix in range(ix_train_test_start,len(dates)-out_of_sample_horizon):

 date_to_split_on=dates[ix]

 final_oos_date=dates[ix+out_of_sample_horizon]

 df_val=final_dataset.query('day <= @date_validation_to_split_on')

 df_train=final_dataset.query('day > @date_validation_to_split_on and day <= @date_to_split_on')

 df_test=final_dataset.query('day > @date_to_split_on and day <= @final_oos_date')

 #df_valid=final_dataset.query('day > @date_to_split_on and <= @final_oos_date')

 # we want to split the data into 70% training and 15% validation and 15% testing

 #Fitting... #Help with validation and how it should be done?

 break

#create our x_train and y_train values of the dataset

def create_x_and_y(df):

 x_train=df.iloc[:,3:]

 y_train=df.iloc[:,2:3]

 return x_train, y_train

#declare the training-set, test-set & validation-set

x_train, y_train = map(np.array, create_x_and_y(df_train))

x_test, y_test = map(np.array, create_x_and_y(df_test))

x_val, y_val = map(np.array, create_x_and_y(df_val))

#Reshape so that the structure fit the model

def reshape_x(x_train):

 return np.reshape(x_train,(x_train.shape[0],1,x_train.shape[1]))

Predicting Asset Prices using Machine Learning

35

np.random.seed(1)

ix=sorted(np.random.randint(0,x_train.shape[0],100000).tolist())

x_train=x_train[ix,:]

y_train=y_train[ix,:]

reshape_x(x_train).shape

def get_ols(x_train, y_train):

 xx_train=np.hstack((np.ones((x_train.shape[0],1)), x_train))

 bb=np.dot(np.linalg.inv(np.dot(xx_train.T, xx_train)), np.dot(xx_train.T, y_train))

 bias=np.dot(xx_train,bb)-y_train

 return np.mean(bias), np.sqrt(np.mean(np.power(bias,2)))

get_ols(x_train,y_train)

from IPython.display import clear_output

class PlotLearning(keras.callbacks.Callback):

 def __init__(self, plot_every=1, logs={}, start_ploting=5):

 super(PlotLearning, self).__init__()

 self.df = pd.DataFrame()

 self.plot_every = plot_every

 self.start_ploting = start_ploting

 def on_epoch_end(self, epoch, logs={}):

 self.df=self.df.append(logs, ignore_index=True)

 if len(self.df)>self.start_ploting:

 if len(self.df) % self.plot_every == 0:

 measures=[i for i in self.df.columns if 'val' not in i]

 measures_val=["val_"+i for i in measures]

 f=plt.figure(figsize=(7*len(measures), 4))

 for i,m,mv in zip(range(len(measures)),measures,measures_val):

 # if m=='loss':

 # continue

 ax=plt.subplot(1,len(measures),i+1)

 self.df[[m,mv]].iloc[self.start_ploting:,:].plot(ax=ax).plot(ax=ax)

 plt.tight_layout()

 clear_output(wait=True)

 plt.show()

from time import time

class TerminateOnBaseline(keras.callbacks.Callback):

 """Callback that terminates training when either acc or val_acc reaches a specified baseline

 """

 def __init__(self, monitor='acc', baseline=0.9, mode='min'):

Predicting Asset Prices using Machine Learning

36

 super(TerminateOnBaseline, self).__init__()

 self.mode = mode

 self.monitor = monitor

 self.baseline = baseline

 def on_epoch_end(self, epoch, logs=None):

 logs = logs or {}

 acc = logs.get(self.monitor)

 if acc is not None:

 if self.mode=='max':

 if acc >= self.baseline:

 print('Epoch %d: Reached baseline, terminating training' % (epoch))

 self.model.stop_training = True

 if self.mode=='min':

clear_output(wait=True)

display([acc, self.baseline, acc/self.baseline])

 if acc <= self.baseline:

 print('Epoch %d: Reached baseline, terminating training' % (epoch))

 self.model.stop_training = True

class TerminateOnTime(keras.callbacks.Callback):

 """Callback that terminates training when either acc or val_acc reaches a specified baseline

 """

 def __init__(self, max_time=120):

 super(TerminateOnTime, self).__init__()

 self.t0 = time()

 self.max_time = max_time

 def on_epoch_end(self, epoch, logs=None):

 if time()-self.t0 >= self.max_time:

 print('Epoch %d: Reached max time, terminating training' % (epoch))

 self.model.stop_training = True

class ClearDisplay(keras.callbacks.Callback):

 """Callback that terminates training when either acc or val_acc reaches a specified baseline

 """

 def on_epoch_end(self, epoch, logs=None):

 clear_output(wait=True)

def fit_model(x_train, y_train, x_val, y_val, batch_size, optimizer, epochs, dropout, neural_network):

 clear_output(wait=True)

 np.random.seed(1)

 tf.random.set_seed(1)

 regressior = keras.Sequential()

 if neural_network == 1:

 regressior.add(keras.layers.Dense(units = 32, input_shape=(1, x_train.shape[1]), use_bias=True, kernel_ini

tializer='glorot_uniform', bias_initializer='zeros', activation = 'relu'))

Predicting Asset Prices using Machine Learning

37

 regressior.add(keras.layers.BatchNormalization())

 regressior.add(keras.layers.Dropout(dropout))

 for i in [16]:

 regressior.add(keras.layers.Dense(units = i, use_bias=True, kernel_initializer='glorot_uniform', bias_init

ializer='zeros', activation = 'relu'))

 regressior.add(keras.layers.BatchNormalization())

 regressior.add(keras.layers.Dropout(dropout))

 if neural_network == 2:

 regressior.add(keras.layers.Dense(units = 64, input_shape=(1, x_train.shape[1]), use_bias=True, kernel_ini

tializer='glorot_uniform', bias_initializer='zeros', activation = 'relu'))

 regressior.add(keras.layers.BatchNormalization())

 regressior.add(keras.layers.Dropout(dropout))

 for i in [32]:

 regressior.add(keras.layers.Dense(units = i, use_bias=True, kernel_initializer='glorot_uniform', bias_init

ializer='zeros', activation = 'relu'))

 regressior.add(keras.layers.BatchNormalization())

 regressior.add(keras.layers.Dropout(dropout))

 if neural_network == 3:

 regressior.add(keras.layers.Dense(units = 128, input_shape=(1, x_train.shape[1]), use_bias=True, kernel_i

nitializer='glorot_uniform', bias_initializer='zeros', activation = 'relu'))

 regressior.add(keras.layers.BatchNormalization())

 regressior.add(keras.layers.Dropout(dropout))

 for i in [64]:

 regressior.add(keras.layers.Dense(units = i, use_bias=True, kernel_initializer='glorot_uniform', bias_init

ializer='zeros', activation = 'relu'))

 regressior.add(keras.layers.BatchNormalization())

 regressior.add(keras.layers.Dropout(dropout))

 if neural_network == 4:

 regressior.add(keras.layers.Dense(units = 256, input_shape=(1, x_train.shape[1]), use_bias=True, kernel_i

nitializer='glorot_uniform', bias_initializer='zeros', activation = 'relu'))

 regressior.add(keras.layers.BatchNormalization())

 regressior.add(keras.layers.Dropout(dropout))

 for i in [128]:

 regressior.add(keras.layers.Dense(units = i, use_bias=True, kernel_initializer='glorot_uniform', bias_init

ializer='zeros', activation = 'relu'))

 regressior.add(keras.layers.BatchNormalization())

 regressior.add(keras.layers.Dropout(dropout))

 if neural_network == 5:

 regressior.add(keras.layers.Dense(units = 512, input_shape=(1, x_train.shape[1]), use_bias=True, kernel_i

nitializer='glorot_uniform', bias_initializer='zeros', activation = 'relu'))

 regressior.add(keras.layers.BatchNormalization())

 regressior.add(keras.layers.Dropout(dropout))

 for i in [256]:

Predicting Asset Prices using Machine Learning

38

 regressior.add(keras.layers.Dense(units = i, use_bias=True, kernel_initializer='glorot_uniform', bias_init

ializer='zeros', activation = 'relu'))

 regressior.add(keras.layers.BatchNormalization())

 regressior.add(keras.layers.Dropout(dropout))

 if neural_network == 6:

 regressior.add(keras.layers.Dense(units = 128, input_shape=(1, x_train.shape[1]), use_bias=True, kernel_i

nitializer='glorot_uniform', bias_initializer='zeros', activation = 'relu'))

 regressior.add(keras.layers.BatchNormalization())

 regressior.add(keras.layers.Dropout(dropout))

 for i in [64, 64]:

 regressior.add(keras.layers.Dense(units = i, use_bias=True, kernel_initializer='glorot_uniform', bias_init

ializer='zeros', activation = 'relu'))

 regressior.add(keras.layers.BatchNormalization())

 regressior.add(keras.layers.Dropout(dropout))

 if neural_network == 7:

 regressior.add(keras.layers.Dense(units = 128, input_shape=(1, x_train.shape[1]), use_bias=True, kernel_i

nitializer='glorot_uniform', bias_initializer='zeros', activation = 'relu'))

 regressior.add(keras.layers.BatchNormalization())

 regressior.add(keras.layers.Dropout(dropout))

 for i in [64, 64, 32, 32, 16, 16]:

 regressior.add(keras.layers.Dense(units = i, use_bias=True, kernel_initializer='glorot_uniform', bias_init

ializer='zeros', activation = 'relu'))

 regressior.add(keras.layers.BatchNormalization())

 regressior.add(keras.layers.Dropout(dropout))

 if neural_network == 8:

 regressior.add(keras.layers.Dense(units = 256, input_shape=(1, x_train.shape[1]), use_bias=True, kernel_i

nitializer='glorot_uniform', bias_initializer='zeros', activation = 'relu'))

 regressior.add(keras.layers.BatchNormalization())

 regressior.add(keras.layers.Dropout(dropout))

 for i in [128, 128, 64, 64]:

 regressior.add(keras.layers.Dense(units = i, use_bias=True, kernel_initializer='glorot_uniform', bias_init

ializer='zeros', activation = 'relu'))

 regressior.add(keras.layers.BatchNormalization())

 regressior.add(keras.layers.Dropout(dropout))

 if neural_network == 9:

 regressior.add(keras.layers.Dense(units = 256, input_shape=(1, x_train.shape[1]), use_bias=True, kernel_i

nitializer='glorot_uniform', bias_initializer='zeros', activation = 'relu'))

 regressior.add(keras.layers.BatchNormalization())

 regressior.add(keras.layers.Dropout(dropout))

 for i in [128, 128, 128, 64, 64, 64, 32, 32, 32]:

 regressior.add(keras.layers.Dense(units = i, use_bias=True, kernel_initializer='glorot_uniform', bias_init

ializer='zeros', activation = 'relu'))

 regressior.add(keras.layers.BatchNormalization())

Predicting Asset Prices using Machine Learning

39

 regressior.add(keras.layers.Dropout(dropout))

 if neural_network == 10:

 regressior.add(keras.layers.Dense(units = 512, input_shape=(1, x_train.shape[1]), use_bias=True, kernel_i

nitializer='glorot_uniform', bias_initializer='zeros', activation = 'relu'))

 regressior.add(keras.layers.BatchNormalization())

 regressior.add(keras.layers.Dropout(dropout))

 for i in [256, 256, 256, 256, 128, 128, 128, 128, 64, 64, 64, 64, 32, 32, 32, 32, 16, 16, 16, 16, 8, 8, 8, 8, 4, 4

, 4, 4, 2, 2, 2, 2]:

 regressior.add(keras.layers.Dense(units = i, use_bias=True, kernel_initializer='glorot_uniform', bias_init

ializer='zeros', activation = 'relu'))

 regressior.add(keras.layers.BatchNormalization())

 regressior.add(keras.layers.Dropout(dropout))

 regressior.add(keras.layers.Dense(units = 1, use_bias=True, kernel_initializer='glorot_uniform', bias_initializ

er='zeros', activation = 'linear',))

 regressior.compile(optimizer=optimizer, loss = 'mse', metrics=[

 keras.metrics.MeanSquaredError(name='0MSE'),

keras.metrics.KLDivergence(name='1KLD'),

keras.metrics.MeanAbsolutePercentageError(name='2MAPE'),

keras.metrics.MeanAbsoluteError(name='3MAD'),

])

 callbacks=[

PlotLearning(plot_every=2, start_ploting=2),

 TerminateOnTime(max_time=3600),

 keras.callbacks.EarlyStopping(monitor='val_loss', patience=100, min_delta=1e-12, restore_best_weights=

True),

 keras.callbacks.TensorBoard(

 log_dir=os.path.join(os.getcwd(),'logs','NN7'.format(optimizer,batch_size)),

 histogram_freq=1,

 write_graph=False,

 write_images=True,

 update_freq='epoch',

 profile_batch=0

),

 ClearDisplay()

]

 regressior.fit(

 reshape_x(x_train), reshape_x(y_train),

 validation_data=(reshape_x(x_val),reshape_x(y_val)),

 batch_size=batch_size,

 epochs=epochs, callbacks=callbacks ,verbose=1)

 return regressior

def get_R2_OOS(x_test, y_test, y_train, res):

Predicting Asset Prices using Machine Learning

40

 yhat_test = res.predict(reshape_x(x_test)) #predictions of returns in the test set

 SSE = np.sum(np.power(reshape_x(y_test)-yhat_test,2)) #sum(returns in the test set - predictions of returns i

n the test set)^2

 #R2_OOS = 1 - bias_test/ sum of (returns in the test set - mean of returns in training)^2

 SST = np.sum(np.power(y_test - np.mean(y_train),2))

 R2_OOS = 1 - (SSE / SST)

 return R2_OOS

def get_nn(x_train, y_train, res):

 yhat=res.predict(reshape_x(x_train))

 bias=yhat-reshape_x(y_train)

 return np.mean(bias), np.sqrt(np.mean(np.power(bias,2)))

def get_ols_test(x_train, y_train, x_test, y_test):

 xx_train=np.hstack((np.ones((x_train.shape[0],1)), x_train))

 bb=np.dot(np.linalg.inv(np.dot(xx_train.T, xx_train)), np.dot(xx_train.T, y_train))

 bias=np.dot(np.hstack((np.ones((x_test.shape[0],1)), x_test)),bb)-y_test

 SSE = np.sum(np.power(bias,2)) #sum(returns in the test set - predictions of returns in the test set)^2

 #R2_OOS = 1 - bias_test/ sum of (returns in the test set - mean of returns in training)^2

 SST = np.sum(np.power(y_test - np.mean(y_train),2))

 R2_OOS = 1 - (SSE / SST)

 return np.mean(bias), np.sqrt(np.mean(np.power(bias,2))), R2_OOS

def print_result(res):

 for s, x, y in [

 ('Train', x_train, y_train),

 ('Val', x_val, y_val),

 ('Test', x_test, y_test)

]:

 print('='*80)

 print(s)

 print('OLS')

 print(get_ols(x, y))

 print('OLS vs out-of-sample')

 print(get_ols_test(x, y, x_test, y_test))

 print('NN')

 print(get_nn(x, y, res))

 print("R2-OOS = {}".format(get_R2_OOS(x_test, y_test, y_train, res)))

#res = keras.models.load_model('./Neural network 1.h5')

#print_result(res)

%%time

neural_network = 1

Predicting Asset Prices using Machine Learning

41

res=fit_model(x_train, y_train, x_val, y_val, 500, 'sgd', 20000, 0.2, neural_network)

res.save('Neural Network {}.h5'.format(neural_network))

print_result(res)

%%time

neural_network = 2

res=fit_model(x_train, y_train, x_val, y_val, 500, 'sgd', 20000, 0.2, neural_network)

res.save('Neural Network {}.h5'.format(neural_network))

print_result(res)

%%time

neural_network = 3

res=fit_model(x_train, y_train, x_val, y_val, 500, 'sgd', 20000, 0.5, neural_network)

res.save('Neural Network {}.h5'.format(neural_network))

print_result(res)

%%time

neural_network = 4

res=fit_model(x_train, y_train, x_val, y_val, 500, 'sgd', 20000, 0.5, neural_network)

res.save('Neural Network {}.h5'.format(neural_network))

print_result(res)

%%time

neural_network = 5

res=fit_model(x_train, y_train, x_val, y_val, 500, 'sgd', 20000, 0.5, neural_network)

res.save('Neural Network {}.h5'.format(neural_network))

print_result(res)

%%time

neural_network = 6

res=fit_model(x_train, y_train, x_val, y_val, 500, 'sgd', 20000, 0.5, neural_network)

res.save('Neural Network {}.h5'.format(neural_network))

print_result(res)

%%time

neural_network = 7

res=fit_model(x_train, y_train, x_val, y_val, 500, 'sgd', 20000, 0.5, neural_network)

res.save('Neural Network {}.h5'.format(neural_network))

print_result(res)

%%time

neural_network = 8

res=fit_model(x_train, y_train, x_val, y_val, 500, 'sgd', 20000, 0.5, neural_network)

res.save('Neural Network {}.h5'.format(neural_network))

print_result(res)

%%time

neural_network = 9

res=fit_model(x_train, y_train, x_val, y_val, 500, 'sgd', 20000, 0.5, neural_network)

res.save('Neural Network {}.h5'.format(neural_network))

print_result(res)

Predicting Asset Prices using Machine Learning

42

%%time

neural_network = 10

res=fit_model(x_train, y_train, x_val, y_val, 500, 'sgd', 20000, 0.5, neural_network)

res.save('Neural Network {}.h5'.format(neural_network))

print_result(res)

