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Abstract
Sentinel-2, with high spatial resolution bands and increased number of spectral chan-
nels, has provided increased capabilities for vegetation mapping. Cropland masks within
heterogeneous areas such as the Sudano-Sahel zone have become useful for monitoring
landscapes. The objectives of this study were to assess the utility of Sentinel-2 data in
classification of cropland for the purpose of creating a cropland mask, and estimation of
tree cover. An assessment of the cloud-free, wet season satellite images from 2017 and
2018 (15 in total), from the Saponé agroforestry parkland landscape in Burkina Faso was
conducted. The random forest machine learning algorithm is applied to images to perform
classification with field-based data as training data, tree crown cover estimation with high
resolution Pléiades image and to assess variable importance. The results reveal that due
to the dynamic cropping practices, the cropland mask needed to be produced for a single
year at a time, and high model accuracy was indicated for 2017 with overall accuracy of
94.7%, yet lower for 2018 (90.9%), even though similar acquisition image dates were used.
The best result for 2017 was produced using multi-temporal images from October 7 and
22, while the best result for 2018 was obtained using a single image from October 22.
Variable importance measures revealed that the green, NNIR, red, NIR and vegetation
red edge5 bands were most important in both 2017 and 2018 analysis. The percent of tree
crown cover was estimated for 2017 using Sentinel-2 images from June 29 and October
22 and a random forest regression algorithm. The R2 of the best regression equation was
0.42 with a RMSE of 15.1. The RF prediction had values ranging from 0.52% to 85% tree
cover. The relationship between observed and predicted tree cover was linear, however,
there was an underestimation of higher percentage tree cover values and an overestimation
of very sparse tree cover. Based on the results, Sentinel-2 may be useful for monitoring
cropland at landscape level and identifying tree crown cover. However, this study would
have benefited from using more discriminating field-based training data (i.e.crop types
and harvested fields) to identify active cropland. In conclusion, the Sentinel-2 data, with
its 10 m pixels and range of spectral bands in particular the red and vegetation red edge
produced good quality cropland masks. The use of high resolution supplementary image
(Pléiades) is also recommended as a source of training data for producing cropland masks
and tree cover data. The results presented here will contribute to an ongoing research
project on the role of trees on agroforestry landscape productivity.

Keywords: Sentinel-2, Cropland mask, Tree cover estimation, Burkina Faso,
Agroforestry, Random Forest
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1
Introduction

In the past decades, methods have evolved concerning landscape mapping and assess-
ment. The development is seen from aerial photography to satellite imagery, while each
is still relevant on its own. Remote sensing methods have developed more with increasing
pressure to become freely available, making use of machine learning algorithms (Yang et
al., 2019), and automated algorithms for selecting agricultural fields for monitoring. The
freely available satellite data from Sentinel-2 with frequent images since 2017 is contribut-
ing to agricultural monitoring. The United Nations Sustainable Development Goals (UN
SDGs), such as Zero hunger, Life on land and No poverty are key goals that can be mon-
itored with agricultural data collected from earth observation technology (satellites and
remote sensing). Using remote sensing data with machine/deep learning algorithms and
artificial intelligence enhances agricultural monitoring at different temporal and spatial
scales (Fritz et al., 2013).

This project explores the capabilities of Sentinel-2 in relation to creating cropland masks
and estimating tree cover within a heterogeneous Sudano-Sahelian agroforestry landscape.
Cropland masks and tree cover are an important component towards landscape produc-
tivity and land cover/use mapping. Accurate landscape level cropland masks and tree
cover estimation leads to accurate national and global monitoring of cropland and tree
cover.

1.1 Global agricultural monitoring
Agricultural monitoring is currently a major contributor to food security and sustainable
food systems (Waldner et al., 2015). West Africa is currently under great threat from
climate change, and outbreaks that target crops, affecting food security. Hence, there is
a pivotal nature of accurate and timely landscape monitoring and mapping in the region.
The Sudano-Sahelian Zone (SSZ), part of West Africa, has land use change on top of
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1. Introduction

climate change as a driving force of landscape change (Maranz, 2009). Climate change
and livelihood vulnerability are some of the defining characteristics of the region. Taking
this into account, agriculture is the largest contributor to livelihoods and economic growth
in many developing countries which fall within the SSZ. In the recent decade, the growing
need to reliably estimate yield and ensure food secure countries globally has increased
(Fritz et al., 2019). Increased concerns on how to go about accurate and timely monitoring
of landscapes outside of traditional, on the ground landscape monitoring descended into
integration of fields such as remote sensing. A perfect example for this integration is the
Sen2Agri system developed by the European Space Agency (ESA) Sentinel-2 mission. The
system aims to provide high resolution products for crop monitoring from local to national
scale (ESA, 2019). Thus, highlighting the critical need for agricultural field mapping for
accurate management and policy interventions for many countries within the SSZ.

Cropland mapping can be implemented from a global to a landscape perspective. Global
mapping has advantages of a general dissemination of information and knowledge shar-
ing approach for global and national corporation (Fritz et al., 2013), whereas landscape
level cropland monitoring, may include high detail information coupled with extensive
field work. Remote sensing provides an added advantage and alternative with less time
consuming and more repeatable results. Remote sensing has challenges, like many other
methods, such as the inability to determine indirect causes of land use/cover change causes
such as agricultural practises, land tenure, governance and management (Maranz, 2009).
At the same time, remote sensing methods have become an integral part of landscape
level vegetation studies.

The areas found within the SSZ zone are defined as parklands due to the integration
of agroforestry practices, cropland fields, plantations and grasslands (Maranz, 2009).The
SSZ region is heavily researched due to desertification and climate change, which can be
directly measured with vegetation studies. The complex variety of agro-ecosystems in the
SSZ results in misclassification/identification of agricultural plots in global mapping, and
even regional mapping (Defourny et al., 2019). Recently, machine learning and artificial
intelligence has proven to provide strong tools for global agriculture, environmental, and
vegetation research (Fritz et al., 2019). The way technology is currently used to monitor
agriculture includes; automatic crop monitoring with drones, food security apps, and
satellite imagery-based global crop health monitoring (Matton et al., 2015;Waldner et al.,
2015). Hence, the importance for continued mapping and assessment of satellite based
imagery and machine learning from global agricultural monitoring to landscape levels.

2



1. Introduction

1.2 The Sudano-Sahelian Zone
The vast Sudano-Sahelian zone, mainly characterised by a semi-arid climate, parklands
and agroforestry has become one of the important areas for food security concerns due
to environmental changes. This region has gained interest in terms of environmental
research that involves the debate of desertification and due to its sensitive nature towards
vegetation dynamics, climate change, land-use systems and its location to the south and
as a border of the great Sahara desert. Karlson et al., 2016, explores the use of remote
sensing in the region for the benefit of vegetation and land use change research. The
number of papers published has increased where they make use of remote sensing for
observing vegetation in the Sudano-Sahel zone (Karlson & Ostwald, 2016). The region is
called the Sudano-Sahel due to the positioning of the area within the African continent.
The area represents the transitioning of the dry Sahel region into the wet Sudano region
of the equator. The zone is characterised by woody vegetation with patches of grassland,
shrubs and agricultural fields.

Burkina Faso lies on the West end of the SSZ zone which stretches from the East to the
West of Africa. Though there is uniformity within this latitude, huge differences still
exist among different borders. The parklands found within Burkina Faso are a priority
area for cropland mapping (Waldner et al., 2015), due to the increasing threats on the
landscape. Some of these threats involve a reduction in tree density through cutting
down of non-productive trees. Trees are considered an essential part of the SSZ parklands
(Waldner et al., 2015), thus taking away essential vegetation within a landscape could
lead to breakdown of an ecosystem. Research suggests that due to the trees in the SSZ
parklands, their removal could interfere with crops and groundwater. Bargués Tobella et
al., 2014 points out the impact trees have in groundwater recharge in dryland areas due to
better soil hydraulics in areas with trees. Research such as Waldner et al., 2015 suggests
the understanding of tree-crop interactions as critical for management of agroforestry
parklands, as they face a decline in area and productivity as a landscape, is rightfully
mentioned. Tree cover has become important in terms of climate change and for this
particular landscape, for livelihoods and the production of the landscape, it has also
become a key variable in vegetation mapping (Karlson et al., 2015).

The region as a whole has a number of challenges. In this regard, Tong et al., 2020 points
out the importance of fallow fields in the Sudano-Sahel ecotone and how the fallow fields
are often overlooked in studies mapping land cover. These fallow fields are cropland areas
which are left fallow, due to tenure and livelihood access (Tong et al., 2020; Knauer et al.,
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2017. Ilstedt et al., 2016 and Bargués Tobella et al., 2014, looks at how moderate tree
cover in dry or semi-dry regions are important for groundwater recharge. Which can
be one of the things that shows how critical research on the role of trees is for dryland
landscapes such as the Sudano-Sahel region. In addition, one of the most common tree
species in Burkina Faso parklands, Parkia biglobosa (African locust bean), is found to
have an effect on soil moisture within a parkland in Burkina Faso. Thus, landscape
level vegetation studies reinforce natural resource management which heavily relies on
cropland harvest forecasts, tree cover estimations, and vegetation health, especially in
parkland landscapes.

1.3 Capabilities of Sentinel-2
The first Sentinel-2 satellite (2A) was commissioned in 2015 with the second (2B) launched
in 2017, and offers essential spectral data for classification of landscapes, leading to land
cover/use maps. The Multi-Spectral Instrument (MSI) on board Sentinel-2 offers a huge
range of the spectral bands important for vegetation studies especially in the short wave
infrared and vegetation red edge spectral bands (Immitzer et al., 2016). A number of stud-
ies are riding the wave of machine learning and remote sensing for assessment of vegetation
and productivity of landscapes/land use systems. The launch of the Sentinel-2 MSI pro-
vides high spatial-resolution images and high revisit time (temporal resolution; Immitzer
et al., 2016). Spatial resolution is at 10 m, 20 m and 60 m and has improved spectral
configuration with 13 spectral bands in the Visible, Near Infrared (NIR) and Short Wave
Infrared (SWIR) regions. Thus, assessing vegetation transition over time, from harvesting
to sowing of crop and to cropland plots left fallow, is backed by enough coverage. This
revisit time, high spatial resolution and open/free data strengthens decision-making and
management in terms of socioeconomic impact of food security, income generation, and
to the focus of this paper, land cover classifications and tree cover estimations in relation
to parkland practices. Remote sensing in this sense provides a way in which the dynamics
of tree-crop interaction becomes adequately evaluated and assessed. Considering the het-
erogeneity and complexity of the parkland landscapes in the SSZ, it may be challenging
for lower resolution satellite imagery, making Sentinel-2 data beneficial (Immitzer et al.,
2016).

Xiong et al., 2017 uses Sentinel-2 imagery to address the limitations of remote sensing
in the region that encompasses Burkina Faso. Limitations such as the overall accuracy
of classification results from different classification methods such as, Pixel-Based and
different Object-Based methods. Further, the limitations demonstrated by the Xiong et
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al., 2017 study included the presence of clouds within the region and the limited in-situ
training data was highlighted for Burkina Faso. Tong et al., 2020 also suggests mapping
crops with a per pixel approach. Previous research has established that the capability of
Sentinel-2 in the interest of vegetation mapping is the ability to utilise higher resolution
10 m bands for classifications (Frampton et al., 2013 and Immitzer et al., 2016). In
addition, the short time of five days Sentinel-2 MSI returns and observes a point on the
earths surface speaks to the capability of improving the classification results, especially
when using multi-temporal images (Weinmann & Weidner, 2018). However, it has been
demonstrated that significant accuracy differences do exist in using multi-temporal versus
single images for classifications. Multi-temporal images show better use for classification
studies (Weinmann and Weidner, 2018; Karlson et al., 2016; Cetin et al., 2004. Amongst
most of the continental region the temporal revisit time for the Sentinel-2 MSI is five
days. Thus, without other atmospheric interference such as cloud cover, which is a major
contributing factor in the SSZ Xiong et al., 2017, images can be acquired every five days.
An increasing number of remote sensing research on land cover classification encourages
the use of multi-temporal imagery (Karlson et al., 2014).

The added advantage from Sentinel-2 is the additions in the Short wave infrared (SWIR)
and the vegetation red edge (Immitzer et al., 2016). According to Weinmann and Weidner,
2018 spectral channels differ in power for discrimination of vegetation, considering vege-
tation ecosystem. For example, the Narrow Near Infrared (NNIR), Band 8a on the MSI is
much wider with less characteristic nature, therefore the ability to use it for classification
diminishes. On the other hand, the red edge bands have confirmed their effectiveness in
land classification studies, being a top variable selected for a number of studies within
land use and land cover (LULC) vegetation studies (Immitzer et al., 2016;Forkuor et al.,
2018; Liu et al., 2016).

In terms of classification methods results using the Sentinel-2 MSI, Valero et al., 2016
obtained, less noisy results visually in the Object-Based with a Post-filtering task classi-
fication method. At the same time factors such as the lack of detection of small cropland
fields at 20m spatial resolution in SPOT5 Imagery in comparison to Sentinel-2 in conjunc-
tion with the 10 m are highlighted as disadvantageous. Several lines of evidence suggest
the varying advantages and disadvantages on object based versus pixel based classifica-
tion, pixel based mapping is said to be more classical than the object based approach
(Valero et al., 2016 and Immitzer et al., 2016).
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1.4 Land cover/use mapping with Remote Sensing
Land Use Land Cover definitions have been a long standing debate, especially when it
comes to mapping and reference given to specific LULC. The FAO defines land cover
as the observed (bio)physical cover on the earth’s surface (Di Gregorio, 2005). On the
other hand, land use is the characteristics of the activities pursued within a land cover
(Di Gregorio, 2005). Land Use Land Cover (LULC) is important information regarding
the landscape, and is a first step towards creating cropland masks. Land cover can be
characterised by temporal and spatial differences (Sekertekin et al., 2017).

Present challenges within remote sensing and vegetation mapping include the representa-
tion of land cover classes within national and local mapping. For instance, Knauer et al.,
2017 points out the challenges of reference data collection in Burkina Faso, where it is
difficult to tell the difference between active-cropland and fallow land area due to aban-
donment or as part of agricultural practices. At the same time unique spectral signatures
and developments with season can determine the accuracy of LULC classifications. Due
to the nature of the landscape and agricultural practices in Burkina Faso, several land
cover classes might be misclassified. However, Foody and Mathur, 2006 explores the ac-
curacy of classifications with spectral mixing and how these might not affect the overall
classification of the land cover classifications.

1.4.1 Crop land mapping

The main motivation of mapping agricultural landscape is the uncertainty in food security
issues globally and especially regionally. It is no doubt that agricultural systems are
different around the world, thus making it complex to monitor croplands due to the
varying nature of the croplands in terms of management and practices that includes
field sizes and crop types (Xiong et al., 2017). High resolution satellite imagery such
as the Sentinel-2 provides a tool for better vegetation mapping with the presence of the
vegetation red edge bands (Frampton et al., 2013; Forkuor et al., 2018).

A number of discrepancies have been raised concerning the definition of what qualifies
as cropland. Due to its importance, cropland is integrated in all existing land cover
typologies. The general definition adopted in a remote sensing perspective is

“...a piece of land of a minimum 0.25 ha (minimum width of 30 m) that is
sowed/planted and harvestable at least once within the 12 months after the
sowing/planting date. The annual cropland produces an herbaceous cover
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and is sometimes combined with some tree or woody vegetation...” - Joint
Experiment of Crop Assessment and Monitoring (JECAM, 2018).

The definition is widely used among cropland research studies. Valero et al., 2016, also
created a cropland mask using a plot size minimum of 0.25 ha, thus in line with the
JECAM guidelines definition.

Taking into consideration the complexities of the agro-ecosystem found within parklands,
a cropland definition with the 0,25ha size definition may be limiting for Burkina Faso
parklands. The nature of the landscape comprises of tree cover and tree shadows limiting
the coverage of crop plots which may fall under large tree canopies (Valero et al., 2016).
Considering that this paper has a study area in a similar landscape, identifying a minimum
size of 0.25 ha will be a large limitation for the current project using Sentinel-2 data.
However, the use of higher spatial resolution imagery would mitigate this problem in the
technical sense but a large disadvantage of that approach is that high-resolution imagery
is costly.

A recent study by Tong et al., 2020 puts emphasis on the importance of fallow land cover
within cropland mapping. The dynamic nature of practices and landscape within the
Sudano-Sahelian region results in land left fallow as a form of leaving the land to recover
from previous harvest. The spectral signature of fallow classes can be very different to
cropland fields. Tong et al., 2020 suggests that fallow fields among the Sahel croplands is
generally greener than the crop field, due to the encroachment of herbaceous vegetation.
Previous studies have reported on challenges with cropland mapping on SSZ agrosystems,
for example Lambert et al., 2016 and Vintrou et al., 2012. These studies show how exten-
sive the underlying practices in terms of cropping practices is important for the general
mapping. The extent of fallow fields within cropland, there seems to be an increasing
percentage of fallow fields compared to croplands within the Sahel region. Which for
Tong et al., 2020 study is based mainly on the methods and the accuracy of the initial
global cropland map used. There is also a suggestion that the fields left fallow, in terms
of cropland are alternatively used for grazing, even though generally, research has mostly
highlighted the leaving of cropland fallow due to agricultural practice for regenerating the
soil. In contrast, Vintrou et al., 2012 looks at cropland mapping with links from food
security systems and importance of remote sensing metrics like the Normalized Differ-
ence Vegetation Index (NDVI). A similar study Knauer et al., 2017 also explores the ties
of agricultural expansion with population growth in Burkina Faso, urging the need for
accurate approaches in establishing land use land cover maps in the country.

Further, Tong et al., 2020 showed results of some of the mapped croplands within their
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results did not result in crop yields. This point makes it imperative to consider active
cropland mapping with yields and so forth due to food security concerns. While a previous
study Lambert et al., 2016 produces a cropland map for the SSZ at 100 km using a
different sensor, but recommends the use of the Sentinel-2 as an upcoming sensor with
great potential at a spatial resolution of 10 m, but does not mention the importance of
active agricultural fields. Thus, in essence the use of fallow fields could result in what
could be an agricultural field, being included in maps as fallow for different years.

The creation of cropland mask involve land classifications. The Sen2Agri system creates
cropland mask from multi-temporal images within a season which are processed with
weighted average. The method approach does not rely on ground truth data. However,
Fritz et al., 2013 discusses the need for higher quality of validation data for many African
countries in current cropland mask products. Valero et al., 2016 uses a range of methods to
create a dynamic cropland mask. The approaches by Valero et al., 2016 involved feature
extraction of temporal and statistics of spectral data from the Sentinel-2 and spectral
indices. The similarity in these approaches is the increased accuracy of the cropland
mask with increased input of images that capture the growth of crops. In another study,
Vancutsem et al., 2013 uses existing Land Use Land Cover (LULC) datatset to create a
harmonized cropland mask at an African continent scale with resolution at 250 m. In
essence, this study reiterates that multiple spatial products can create more accurate
cropland masks from the continental to landscape level.

1.4.2 Algorithms and data input for vegetation mapping

In the recent decade, several studies have made use of machine learning methods for
extracting land cover information in multi-spectral and multi-temporal images (Cetin et
al., 2004 and Yang et al., 2019). Machine learning algorithms such as random forest proves
to be robust with limitations in both regression and classification. The random forest
algorithm is given training samples acquired through field visits or from high resolution
images and these are used to train the random forest classifier. There is evidence of
increasing multi-sensor analysis for the benefit of vegetation analysis (Cetin et al., 2004),
thus strengthening higher temporal resolution for producing cropland maps. For instance,
Karlson et al., 2015 was able to get an overall classification accuracy of 83.4% using multi-
seasonal data input for agroforestry tree species classification. Additionally, Weinmann
and Weidner, 2018 also proves the effectiveness of the RF algorithm with input from
multi-temporal Sentinel-2 data.

In general, the uses of cropland mapping, tree cover estimations and land cover classifica-

8



1. Introduction

tions include inputs from crop models, management decision making as well as economic
statistics (Immitzer et al., 2016). Therefore, satellite imagery like the Sentinel-2 can pro-
duce much needed cropland products for the monitoring of landscapes within developing
countries in the SSZ.

1.5 Aim and Objectives
The aim of this thesis is to determine the capabilities of Sentinel-2 imagery for creating a
cropland mask and estimating tree crown cover in Saponé parkland, Burkina Faso. The
aim is explored with the following objectives:

1. Test the capability of Sentinel-2 MSI data (spectral bands as variables and differ-
ent satellite image dates) for accurate land cover classification in an agroforestry
parkland landscape, with the end-product being a cropland mask.

2. Investigate the potential of Sentinel-2 MSI data for estimating percent tree cover by
upscaling from high-resolution Pléiades data, in an agroforestry parkland landscape
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Methods and Materials

This section will present the study area information with a visual map of the Sudano-
Sahel and the location of the Saponé landscape in Burkina Faso, satellite and ancillary
data collection, data analysis workflow, tree cover estimation and accuracy assessment
approaches.

2.1 Study area
The 10 km x 10 km Saponé parkland study area (Figure 2.1) is located 35 km south
of Ouagadougou, the Burkina Faso capital, and lies at N 12◦04.48′, W 01◦34.00′, with
an average elevation of 200 m. The area is landlocked within the Sudano-Sahelian zone
(SSZ) of West Africa, which is characterised by a semi-arid climate and scattered woody
vegetation. The SSZ is formally referred to as an agro-ecological zone, which lies in the
transition zone of the wet region towards the equator (Sudano) and dry Sahara to the
north (Sahel; Karlson and Ostwald, 2016).

The rainfall patterns of the SSZ which the study area is within, vary spatio-temporally.
The relatively short rainy season, where about 80% of the annual precipitation falls be-
tween 600-900 mm/year rain occur between June and September (1901-2016 time period;
WorldBank, 2020). The rainfall level and soil properties are a major factor on the struc-
ture of the dryland vegetation parklands, which is composed of woody vegetation (trees
and shrubs), grasslands and cropland. The landscape vegetation is dominated by two
common tree species within SSZ parklands and agroforestry landscapes, the V itellaria

paradoxa (shea tee) and Parkia biglobosa (African locust bean). Prolonged human influ-
ence and activities on the landscape is also a major contributor to the landscape structure
and vegetation distribution (Maranz, 2009; Knauer et al., 2017).

The total land area of Burkina Faso is 273,600 Km2 with 61000 Km2 of cropland area
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(FAO, 2016). Food and Agriculture Organisation(FAO) reports that in 2016 Burkina Faso
had 44.23% of the land area as agricultural land and cropland at 0.4% of the land area.
The study area consists of rain-fed agricultural fields, agricultural fields left fallow, tree
plantations, riparian woodlands, and patches of settlements (Karlson et al., 2014). The
cultivated crops include mainly millet, sorghum, maize and legumes. The active versus
fallow agricultural field practices have been a distinct characteristic for the local landscape
due to climate variability and livelihood factors (Maranz, 2009).

Figure 2.1: Location of the study area in Burkina Faso. Location of Saponé land-
scape (outlined in red). A-Sudano Sahel Zone, B-Burkina Faso, C-Saponé landscape from
Burkina Faso capital, Ouagadougou. The large red square represents the satellite image
covering the 10 x 10 km study area, and is shown in Figure 2.2.

2.2 Satellite and ancillary data

2.2.1 Field data

Land cover reference data for this project were previously manually delineated from a
2017 Pléiades image. The reference polygons included land cover attributes and GPS
coordinates. The field data contained 488 plots with a size range of 395 to 6769 square
metres (m2), which identified land cover attributes, only 210 plots were within the borders
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of the Saponé 10x10km study area boundary. Tree reference data was requested from the
authors of Karlson et al., 2014 and Karlson et al., 2016 where they had tree crown reference
data containing GPS points collected during a 2012 field-inventory with tree species, tree
height and tree crown diameter attributes. The GPS points were further used to manually
delineate 1148 tree crowns from a WorldView-2 satellite image (from 2012-10-21) with a
pixel size of 2m. In this study we used the tree crown data where possible, but also
supplemented it with tree crowns digitized from a Pléiades satellite image (from 2017-10-
12) with 0.5 m pixel size. The need to supplement with the current Pléiades image was
due to the change between 2012 and 2017, where trees present in 2012 were no longer
standing in 2017. Each location point is measured using WGS_1984_UTM_Zone_30N
coordinate system.

Figure 2.2: Location of reference data, with land cover plots and delineated tree crowns
in the Saponé landscape. Latitude and Longitude points displayed on true colour Pléiades
image.
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From the field data points the following are the number of polygons for each land cover
class used for training data.

Table 2.1: Number of reference polygons and pixels used for training the land cover
classifications (Excluding delineated trees).

Class Number of polygons Number of pixels

Agricultural fields 54 572,274
Tree cover 38 56,274
Bare land 46 30,284
Water 6 3,005
Fallow 46 354,223

2.2.2 Sentinel-2 MSI data

The Sentinel-2 multi-spectral instrument (MSI) provides 13 spectral bands at 10, 20, and
60 meter spatial resolution and a high revisit time of five days at the Equator (see Table
2.2).
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Table 2.2: Characteristics of Sentinel-2 and Pléiades bands used in this study. Adopted
from the European Space Agency (ESA), Sentinel-2 technical report.

Sentinel-2 bands Central wavelength (µm) Resolution (m)

Band 1* - Coastal aerosol 0.443 60
Band 2 - Blue 0.490 10
Band 3 - Green 0.560 10
Band 4 - Red 0.665 10
Band 5 - Vegetation red edge 0.705 20
Band 6 - Vegetation red edge 0.740 20
Band 7 - Vegetation red edge 0.783 20
Band 8 - NIR 0.842 10
Band 8A - NIR Narrow 0.865 20
Band 9* - Water vapour 0.945 60
Band 10* - SWIR-Cirrius 1.375 60
Band 11 - SWIR 1.610 20
Band 12 - SWIR 2.190 20

All Sentinel-2 images between May to October for the years 2017 and 2018 were considered
for this study, with the condition that each image should have less than 10% cloud cover.
Cloud cover is a major factor when acquiring satellite imagery. Weinmann and Weidner,
2018, suggests that acquisition at different times of the year should cover phenological
variance of the vegetation within a study area. The study area has the image tile identifier
of “T30PXU”, covering an area of 100x100 km in UTM/WGS84 projection. In total, 15
images from 2017 and 2018 were downloaded from the SciHub platform (see Table 2.3).

Table 2.3: Dates of Sentinel-2 images used in this study, with less than 10% cloud cover.

Year May June July September October

2017 10 09 and 29 19 and 29 07 07 and 22
2018 - 14 14 and 24 17 and 27 07 and 22

The images were processed at the L1C level, meaning that they have been ortho-rectified
and have Top-of-Atmosphere reflectance. Level L2A images were not available via SciHub
for this area, and therefore the L1C images were further processed using Sen2cor for
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atmospheric and geometric correction (ESA, 2019). ERDAS Imagine software was then
used to resample the pixel sizes of the 20 m bands to 10 m using nearest neighbor re-
sampling. The 60 m bands (Bands 1, 9 and 10) were removed for the analysis of this
study, as they are commonly used for atmospheric correction.

In addition to the spectral band combinations, the Normalized Difference Vegetation
Index (NDVI) vegetation index is used as a vegetation phenology parameter (Rouse Jr
et al., 1974; Equation 2.1). The NDVI values range from -1 to +1 and vegetation values
are generally greater than 0.4 within the NDVI range (Rouse Jr et al., 1974).

NDV I =
NIR − Red

NIR + Red
(2.1)

The second index used is the Simple Ratio index (SR), which uses the ratio of the NIR and
Red bands (Equation 2.2). The simple ratio has a minimum value of 1, which generally
represents bare soils. The ratio has no bounds with the increase in green vegetation within
a pixel. It can result in values greater than 15 (Birth & McVey, 1968).

SR =
NIR

Red
(2.2)

2.2.3 Pléiades data

A Pléiades image with an acquisition date of 12 October 2017 was used for both accuracy
assessment in the case of the cropland mask, and training data for tree cover estimation.
The Pléiades image has a 0.5 m spatial resolution, and gives higher spatial detail of the
landscape. However, it is a commercial satellite, and was not a practical choice of data
for operational use over larger areas due to the expense of acquiring more than one image.
Pléiades has four spectral bands: Red, Green, Blue and Near-Infrared (Table 2.4). Ground
control points from the field and a third order polynomial were used to georeference the
image using ArcMap v10.6 software (ESRI, 2020).
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Table 2.4: Characteristics of Pléiades bands.

Pléiades bands Wavelength (nm) Resolution (m)

Panchromatic 480-830 0.5
Band - Blue 430-550 0.5
Band - Green 490-610 0.5
Band - Red 600-720 0.5
Band - NIR 750-950 0.5

2.3 Data analysis
The thesis investigates the utility of Sentinel-2 data for mapping of two different char-
acteristics, namely, a thematic land cover map which will lead to the creation of a crop
mask, and estimation of tree cover percent as a continuous variable. The objective is to
assess the accuracy of using Sentinel-2 data for these purposes, to identify the best image
dates and bands of Sentinel-2 data to achieve higher accuracy, and to create usable maps.
Mapping of land cover will be accomplished through classification of the satellite data,
while tree cover percent will be done using a prediction model. In both cases, a Random
Forest algorithm will be applied.

2.3.1 The Random Forest algorithm

The random forest algorithm is a non-parametric technique that uses a bootstrap sample
from training data to grow decision trees. Decision trees are the foundation of the random
forest model. The decision tree operates as an ensemble independently, therefore it is not
correlated with other trees and each tree casts a vote/prediction for the most popular
class (Breiman, 1998). While the bootstrap aggregation (sometimes called bagging) is
sensitive to the quality of training data, the random forest classifier allows for individual
trees to be built from a random sample from the dataset resulting in accurate predic-
tions (Breiman, 1998). It can be used for both thematic classification and prediction of
continuous variables.

For classification, Random Forest tends to be more robust and faster. The classifier uses
a set number of trees where a subset of the tree is used at random at each iteration
(Breiman, 1998). The algorithm has two parameters to function, the number of decision
trees (ntree) and the number of variables tested at each split (mtry). The ntree does
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not have a limit, but previous studies such as Bolyn et al., 2018, Liu et al., 2016 and
Belgiu and Drăguţ, 2016 accept the use of ntree=500 and upwards. The mtry is normally
the square root of the number of variables, however, in some instances the mtry can be
set to the exact number of variables which could drastically increase computational time
(Belgiu & Drăguţ, 2016). One of the capabilities of the RF algorithm is the recursive
feature selection based on the leave-one-out cross validation.

Regression can also be implemented using the random forest algorithm to create a con-
tinuous data output. The RF regression is popular for the advantage of being able to
circumvent overfitting and multicollinearity unlike multiple linear regression (Belgiu &
Drăguţ, 2016). Breiman, 1998 states that the random forest for regression, merely grows
the decision trees on numerical values instead of class, at the same time random feature
selection is used on top of the bagging. Interestingly, the difference in the regression algo-
rithm is the slow increase of collinearity with increased number of features. However, the
Random Forest algorithm does not go without limitations, such as the black-box nature
of the model or the influence of imbalanced training data (Reese et al., 2014). In this
study, the Random Forest algorithm was implemented using the R software R Core Team,
2017 and randomForest package Liaw and Wiener, 2002.

2.3.2 Predictor Variables, Variable Importance, and Optimal
band combinations

.
Determining variable importance is critical for understanding the input data. The vari-
able importance can be interpreted using the Out of Bag (OOB) error, where the most
important variables for the model are chosen due to being the most useful for predict-
ing the most accurate results (Belgiu & Drăguţ, 2016). The random forest algorithm
calculates variable importance through prediction error increase when each variables is
tested by leaving other variables unchanged (Liaw & Wiener, 2002). Variable importance
is capable of selecting the fewest number of predictors that provide the best predictive
power. Belgiu and Drăguţ, 2016, reviews the use of RF in remote sensing images, and
points out the additional advantage of the internal measurements of variable importance
for selecting the best variables for accurate classifications. Variable importance is complex
in relation to interaction among variables.

The R software (R Core Team, 2017) is used to check for variable importance ranking given
by the package ‘varSelRF’ (Diaz-Uriarte, 2007). The package does a variable selection
from random forests using both backwards variable elimination and selection based on
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the importance spectrum. Variable importance can be performed for both classification
and regression (using Variable Importance or Variables Selected). Variable importance
from the RF algorithm ranks variables according to the mean decrease in accuracy and
mean decrease in gini for classification. Different from the RF classifier the regression
algorithm produces variable importance as percent of Increase in Mean Squared Error
(%IncMSE) and %Increase in Node purity (%IncNodePurity). The %IncMSE is measured
from randomly permuted variables resulting in increase in MSE of predictions for each
variable. This is considered a robust measure for the RF regression (Freeman et al., 2016).
The %IncNodePurity relates to how each split in the decision tree reduces node impurity,
the impurity is MSE for regression and gini-impurity for classification. All these measures
assess the decision tree purity and accuracy of the variables. For this study, different
Sentinel-2 bands are analyzed for variable importance in single and multi-temporal image
models. After determining the images which had the best model performances, variable
importance was determined.

2.3.3 Land cover classification

. The first goal was to make a thematic classification that can be used as an annual
crop mask, with five main classes, namely agricultural land, forest, bare land, water and
fallow. The land cover classes were kept to a coarse five classes as these were adequate
for creating a crop mask, and also due to the field and reference data available. Defourny
et al., 2019 argues that keeping the diversity of classes within training data keeps the
accuracy of cropland maps fair. Hence, five classes in this study were considered to be
diverse enough.

The Saponé 10x10 km boundary is used to clip all images for further analysis, using the
clip function on ArcMap. The Sample function in Spatial Analyst is used to extract the
spectral values on all bands from all images for 2017 (Table 2.3), and then for 2018, for
each point from the training data GPS points. Two radiometric indices were also included:
NDVI and SR (Equation 2.1 and 2.2). This results in two tables with all the spectral
values for all bands in each year. Figure 2.3 depicts the flow diagram for the methods
and detail of image processing.
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Figure 2.3: Overview/Workflow chart of pixel-based classification and validation
methodology for land cover mapping

The random forest (RF) algorithm was used to classify land cover using different combi-
nations of the images listed in Table 2.5. It was an objective to determine the best image
dates and bands, and therefore the RF algorithm was applied to all images acquired to
evaluate and select the images and bands leading to the highest classification accuracies.
This was assessed using the OOB error and variable importance from the R software R
Core Team, 2017, using the randomForest (Liaw & Wiener, 2002) and varSelRF Diaz-
Uriarte, 2007 packages. The following parameters were selected for the RF model: ntree
= 2000 and mtry varied with date combinations, using the maximum number of variables
available at each run.
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Table 2.5: List of different image combinations for 2017 and 2018.

Year Combined Image dates Abbreviation

2017 July19_Sept07_ Oct7 JSO
June29_Oct07_Oct22 JOO
Oct07_Oct22 OO
June9_June29_Oct07_Oct22 JJOO

2018 Sept27_Oct7_Oct22 SOO
Sept27_Oct22 SO

The cropland mask is generated from the land cover classification results which extracted
land cover classes based on spectral data. The best land cover classification is used to
create the cropland mask from both the 2017 and 2018 classifications. This required the
following: (i) reclassification of the land cover into two classes (cropland and non-cropland)
on ArcMap (ii) combination of the tree cover, bare land, water and fallow classes as one..
Furthermore, the importance of definitions was highlighted in the introduction, specifically
in terms of cropland. Table 2.6 gives an overview of the definitions of the different classes
and other land cover types.

Table 2.6: Definition of the different land cover classes used in text and classification.

Class name Description

Forest Dry forest, including woodland
(Woody vegetation cover including trees and big shrubs)

Agricultural fields Rain-fed vegetation, including plantations and cropland.
(JECAM guidelines(2013) definition of 0.25ha minimum size)

Fallow Shrub/grassland like areas not currently used for agriculture
(less than five years; FAO, 2015)

Bare land Little to no vegetation, might include buildings
Water Area covered with water

2.3.4 Estimation of percent tree crown cover

The aim of this objective is to determine the role of Sentinel-2 spectral variables in pre-
dicting tree crown cover percentage for the 2017 data only. Figure 2.4 depicts the overall
steps taken to estimate tree crown cover percentage and area.
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Reference data came from manually delineated individual crowns from using a high res-
olution (2 m) World-View-2 image from 2012 and reference data from a previous study
(Karlson et al., 2015). A mismatch of the 2012 tree crown polygons seen against the high
resolution Pléiades image from 2017 led to rectification of the World-View-2 delineated
polygons, using the Pléiades image. However, due to frequent removal of trees, the de-
lineated polygons were modified by delineating more polygons from the Pléiades image
from 2017, which was closer in time to the Sentinel-2 data. Only visually interpretable
tree crowns were selected for delineation (Karlson et al., 2015).

There exist multiple ways to estimate tree cover percentage, i.e., multiple linear regression
and neural networks. Regression trees are also an appropriate method to determine
percent tree cover and have the advantage of being easily interpreted with variables that
are continuous (0-100% tree crown cover) and useful for non-linear data relationships
(Rokhmatuloh et al., 2005). For these reasons, the Random Forest regression algorithm
is used in this study to estimate tree cover. June and October 2017 images are chosen
for the tree cover in due to their good classification results. Different variables and
models are tested for the optimal model. The algorithm is implemented in the open
source R software (R Core Team, 2017), to produce the regression model and variable
importance. The same with the RF classifier, the RF regression algorithm also produces
internal variable importance. Varsel (varSelRF; Diaz-Uriarte, 2007), is used to test the
optimal bands important for predicting tree cover. The selected variables are used for the
prediction as optimal variables in an optimal model.

The models were fitted using parameters ntree=2000, mtry varied with date combinations,
using the square root of the number of variables. The response and predictor variables for
tree cover estimation are summarised, which considered all bands, SR and NDVI for the
different image acquisitions and combinations. The random forest regression algorithm
modelled the relationship between tree cover percentage as determined by high resolution
Pléiades data as the response and spectral reflectance from Sentinel-2 as the predictor.
The best models are selected and using the selected variables from the varSelRF results
on predictor variables importance, a final predicted tree cover map is produced using
the optimal conditions. The resulting map gives a continuous variable which can be
interpreted as the percentage of area covered by tree canopy per unit area (one Sentinel-2
10 × 10 m pixel).
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Figure 2.4: Workflow for tree cover estimation using Pléiades 0.5m image and Sentinel-2
spectral variables.

2.4 Accuracy Assessment
Accuracy assessment is an important step when utilizing remote sensing data. The random
forest algorithm produces an out-of-bag (OOB) estimate of error that relates to the model
fitness for classification and regression performed. This is an advantage of the random
forest algorithm, that it provides a measure of model sensitivity. The OOB error is based
on an error of estimate based on training data. The error rate is calculated by prediction
of data not found within the bootstrap iteration sample (“out-of-bag” data) and the OOB
predictions are combined to give an OOB estimate of the model (Liaw & Wiener, 2002).
The OOB error estimate is suggested to be accurate, however, studies utilizing random
forest classification and regression do not always report only the OOB error but might
also include a k-fold or leave-one-out-cross-validation.

This study uses a permutation test cross-validation for the best Random Forest models
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created. Both classification and regression models are run with the rf.crossValidation
package. Validation requires high quality reference data independent of training data.
Firstly, as a form of assessing the accuracy of the classification, the kappa coefficient
is calculated in R Software. The kappa statistic is a popular approach for accuracy
assessment in classification studies. In addition, error matrices that include the Overall
Accuracy (OA) and Producer’s and User’s Accuracy (PA and UA) are produced. The
cropland mask is assessed with random points on the Pléiades image and Cropland mask,
creating a confusion matrix of cropland and non-cropland.

This study will also make use of global cropland cover reports and a dataset to assess if
the cropland extent results at the landscape level fits with the national (Burkina Faso)
cropland and tree cover extent. One of the reports used is the Climate Change Initiative
(CCI) annual land cover maps as final percentages are assessed and discussed (ESA, 2017).
Some of the discrepancies experienced involve, different reference year of data, cropland
definition (as described in the Introduction, Chapter 1), methods used and resolution of
data used to create the national coverage. Most of the cropland and tree cover reported
is also derived from global datasets and methods.
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3
Results

The results are presented in order of the methods section. This means, the classification
results are presented, followed by results for the tree cover estimation. Each result from
the objectives is presented, including variable importance, accuracy assessment of models
and overall predicted classifications, cropland and tree covers.

3.1 Land cover classification

3.1.1 Variable Importance

Figure 3.1 shows the model accuracies for each single date images for 2017 (n=8) and
2018 (n=7), as well as a multi-temporal combination of images. For 2017, the single
image dates from 2017 with lowest Out-of-bag (OOB) estimate of error rate were June 29
(13.9%,), October 7 (10.16%) and October 22 (8.56%). By combining the two October
images as the best single performing images (in terms of model accuracy), into a multi-
temporal input for 2017 (OO_2017), a more accurate model could be obtained, yielding
an OOB error rate estimate of 5.35%. Adding the third best performing image June 29
on the October images combination (JOO_2017) result in an OOB of 6.95%.

For 2018, the single image dates from 2018 with lowest Out-of-bag (OOB) estimate of
error rate were September 27 (13.33%), October 7 (15.24%), and October 22 (8.57%).
The best multi-temporal input for 2018 was September 27 and October 22 (SO) and
September 27, October 7 and October 22 (SOO), both combinations yielding an OOB
error rate estimate of 9.05%. However, as a single date model, October 22 shows a slightly
lower OOB error as the multi-temporal combinations for 2018.
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Figure 3.1: Out-of-Bag (OOB) error estimate of single and multi-temporal image com-
binations for 2017 (right) and 2018 (left). Lower OOB error % indicates a more accurate
model

Variable importance was inspected for the four single date images with the lowest OOB
error, namely June 9 and 29, and October 7 and 22, 2017. The variables in the June
images having the largest mean decrease in accuracy (i.e., most influential or important)
are the red, narrow near infrared and the shortwave infrared (SWIR) bands, while for the
October single date images a higher mean decrease in accuracy is seen for the red, green,
near infrared and the red edge bands (see Figure 3.2).
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Figure 3.2: 2017 Variable importance for the images with the lowest OOB error in the
model.

The same variable ranking can be done for the combination of images (multi-temporal
models). In the JSO (July19, September7 and October7) combination for 2017, the
importance of the October image is clear, with the three highest ranked bands from the
October 7 bands having a higher rate of importance than the other bands (Figure 3.3
and 3.4). In the JOO (June 29, October 7, October 22) combination, the June 29 image
variables of SWIR and red bands become important in combination with the October
images, while the red, green and SWIR bands were important from the October images.
For the OO (October 7 and 22) multi-temporal combination with the lowest OOB error,
the red, vegetation red edge, and green bands from both dates stick out as important.
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Figure 3.3: Variable importance for different combinations of the satellite images ac-
cording to the variable importance measure from the Random Forest. OO=Oct7 and
Oct22; JOO=June29 Oct7 and Oct22
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Figure 3.4: Variable importance for different combinations of the satellite images ac-
cording to the variable importance measure from the Random Forest. JSO=July19, Sept7
and Oct22; JJOO=June9 and 29, October7 and 22.

The 2018 image models had a different OOB error compared to 2017. We can see the
importance of the October data in the 2018 models. Variable importance within the single
date images shows importance with the Red, Green, SWIR and the vegetation red edge
bands. Interestingly the Blue band becomes important in the September 27 model, while
the NIR bands stands out as an important variable on the October 22 image.
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Figure 3.5: Variable importance for multi-temporal images. The combinations are
SO=September 27 and October22; SOO=September27, October7, October22

In the combination image date models, namely September 27 and October 22 (SO) and
Sept27_Oct7_Oct22 (SOO) the variables which are important include the Red band
from both September and October. The green band from October 22 also seems rel-
atively important as well. The vegetation red edge and SWIR band from both im-
ages also have some importance in the Sept27_Oct22 image date combination model.
The Sept27_Oct7_Oct22 image combination might show the same OOB error with the
Sept27_Oct22 images combination but with less variable showing importance in the
model.
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Figure 3.6: 2018 Variable importance for single date images out of the best model
images.

3.1.2 Classification

The October 22 date showed relative importance model performance for both 2017 and
2018. Figure 3.7 shows the Saponé landscape in false color infrared before image classifi-
cation.
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Figure 3.7: Sentinel-2 image from 22 October 2017 displayed in false color Infrared over
the Saponé landscape.

3.1.2.1 Classification of 2017 and 2018 images

The final classification model is selected based on the parameters from the most accurate
model (lowest OOB error). In the case for 2017, the RF model (mtry=30, ntree=2000)
using all bands from the October 7 and October 22 2017 images was used. The landcover
map is shown in Figure 3.8.
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Figure 3.8: Land cover classification using the best predictive model from random forest
with the October 7 and October 22 2017 images (OO).

For 2018, the RF classifier used only the October 22 image, as multi-temporal imagery for
2018 did not result in a lower OOB error. Figure 3.9 depicts the land cover classification
for the 2018 model.
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Figure 3.9: Land cover classification using the best predictive model from random forest
with the single date October 22, 2018 image.

The classification accuracy assessment using cross-validation shows that the OO 2017
model gives an overall accuracy of 94.7%, and a Kappa coefficient of 0.93 (Table 3.1).
While, 22 October 2018 model shows an overall accuracy of 90.9%, and a Kappa coefficient
of 0.89 (Table 3.2).The confusion matrices provided for the 2017 and 2018 classifications
show varying class errors. The producer’s and Users’s accuracy for Agricultural fields
(Agric. Fields) in 2017 show 96%, 93% and 2018 model are 91% and 90% respectively.
Agricultural fields were confused with fallow and bare land, while fallow was also confused
with tree cover. Looking at the Producers and Users Accuracy on Table 3.1 and 3.2, it
is clear the confusion between the agricultural fields, fallow and bare land within the
landscape.
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Table 3.1: Confusion matrix from all bands of October 7 and October 22 2017 (OO)
random forest classification with Producer’s and User’s accuracy (PA, UA) for each class.

Agric. fields Tree cover Fallow Water Bare land UA(%)
Agric. fields 51 0 1 0 3 93
Tree cover 0 31 0 0 1 97
Fallow 1 0 46 0 1 96
Water 0 0 0 6 0 100
Bare land 1 1 1 0 43 93
PA(%) 96 97 98 100 88 94.7

Table 3.2: Confusion matrix from 22 October 2018 random forest classification with
Producer’s and User’s accuracy (PA,UA) for each class.

Agric. fields Tree cover Fallow Water Bare land UA(%)
Agric. fields 52 0 2 0 4 90
Tree cover 0 38 0 0 2 93
Fallow 2 1 47 0 2 91
Water 0 0 0 6 0 100
Bare land 3 2 0 0 49 91
PA 91 93 96 100 86 90.9

The Producer’s and User’s accuracy in each class depict class error variations. Figure 3.10
below shows the spectral signatures of the different Sentinel-2 bands on the best model
October images in 2017 and 2018 (OO_2017 and October 22 2018). Spectral responses
show the distinct spectral signatures for water, while fallow and agricultural fields, show
a similar pattern.
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Figure 3.10: Mean spectral signatures of five land cover classes of interest at the study
area from Sentinel-2 October imagery in 2017 and 2018.

3.1.3 Cropland Mask

The land cover classification results for 2017 and 2018 having the best overall classification
accuracy were used to create cropland masks for each year. Figures 3.11 and 3.13. The
cropland mask for 2017 had 57.3% of cropland area while for 2018 it was 40.8%.
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Figure 3.11: Cropland mask from random forest classification with best model from
2017, OO_2017. White areas represent cropland area.

Figure 3.12: Visual close up on 2017 products, from left to right; Pléiades image, land
cover classification and cropland mask.
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Figure 3.13: Cropland mask from random forest classification with best model. White
areas represent the cropland area in 2018.

The accuracy of the 2017 cropland mask is much lower at OA= 0.70, than the classification
results. While producer’s and user’s accuracy for the cropland and non-cropland class is
presented in Table 3.3.

Table 3.3: Confusion matrix between Cropland mask and Pléiades image with randomly
sampled points.

Cropland non-Cropland Total UA(%)
Cropland 54 17 71 76
non-Cropland 16 25 41 39
Total 70 42 112
PA(%) 77 40 OA = 70.5%

In Figure 3.11 (2017) and 3.13 (2018), the cropland mask is overlaid on the high-resolution
Pléiades images obtained for this study. The black represents the other land cover, while
the visible part of the Pléiades image is the cropland area within the landscape. There
are differences compared to the 2017 cropland mask.
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Figure 3.14: Cropland mask/Agricultural field land cover overlaid on Pléiades (0.5 m)
image for visualisation of the cropland area.

38



3. Results

Figure 3.15: Cropland mask/Agricultural field land cover overlaid on NIR,R,G Pléiades
(0.5 m) image for visualisation of the cropland area.

3.2 Tree Cover estimation

3.2.1 Variable Importance

Figure 3.16 depicts the variable importance based on the percent Mean Squared Error
(MSE) from the random forest regression algorithm, different from the RF classifier. The
vegetation index NDVI showed importance in the October 22 model tested. The June
image NDVI is not as important as the Green, vegetation red edge and SWIR bands for
the June model it ranks lowest with the other vegetation index SR. The SR vegetation
index ranks low in percent MSE for both June 29 and October 22 model. The vegetation
red edge bands in both June and October models show high importance in %MSE.
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Figure 3.16: Predictor variable importance for the tree cover estimation models using
a single date 2017 June 29 and single date October 22 image.

The bands ranked differently when in a multi-temporal model (June 29 and October
22 2017). Figure 3.17 presents the importance of the October 22 NDVI variable. The
highest ranked bands are from the October 22 image. The June 29 NIR band ranks
fourth, surpassing the October 22 red-edge bands.
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Figure 3.17: Predictor variable importance for the tree cover estimation using multi-
temporal June 29 and October 22 images model.

Percent of variance explained (R2) and Root mean Squared Error (RMSE) was used to
evaluate the regression performance. The images tested for single date models, June 29
and October 22, 2017 had the lowest OOB error with 13.9% and 8.56%, respectively.
Predictive abilities of the single date images were less significant than the multi-temporal
predictive abilities, where the combination of July and October images provided the better
model with percent variance explained of 41.6% (Table 3.4). Bands used in the models
were selected according to the variable importance cross selected with varselRF. The
variable importance for regression selected the best bands for the model prediction. The
selected variables to fit for the multi-temporal model were 12 out of 24. Namely: (i) Blue
- October 22 (ii) SWIR2 - June29 and October22 (iii) Green - June29 and October22
(iv) Red - October22 (v) NIR - October22 (vi) VREdge6 - October22 (vii) VREdge7 -
October22 (viii) NNIR - October22 (ix) SWIR1 - June29 (x) NDVI - October22.
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Table 3.4: Results of Random Forest regression model performance for tree cover esti-
mation.

mtry % variance explained RMSE MSR
June 29 2 0.21 23.54 294.5
October 22 3 0.39 24.88 228.7
June29 and October22 6 0.42 24.89 218.8

3.2.2 Predicted Tree Cover

The three different models when used to predict tree crown cover resulted in different R2

values. The June_October model produces a slightly higher tree estimate with a 0.92 R2.
Table 3.5 presents the regression equation for the tree crown cover estimates using the
tree crown observed and tree crown predicted.

Table 3.5: Relationship of tree crown cover observed and predicted for the tree cover
prediction models. RSE-Residual standard error.

R2 RSE Regression Equation
June 29 0.89 4.13 ∼9.04+0.63x
October 22 0.91 4.35 ∼6.66+0.73x
June29 and October22 0.92 4.19 ∼6.43+0.74x

The best RF model was applied to the raster data, resulting in a full coverage map (Figure
3.18). The predicted tree crown cover ranges from 0.52% to 84.6%, while the observed
tree crown cover ranges from 0% to 100%. A scatter plot depicting the observed tree
crown cover against the predicted tree crown cover is in presented in Figure 3.19. The
predicted tree crown cover agrees well to a certain degree with the observed tree crown
cover with R2 value equal to 0.92.

The best fit regression model resulted from parameters used of ntree= 2000, mtry (number
of variables tried at each split)= 6. This resulted in a Mean of squared residuals(MSR)=
219 and percentage of variance explained= 42%. The cross-validated regression model
resulted in median permuted percent variance explained= 39.51% and cross-validation
RMSE= 15.1. The results were also assessed visually in comparison to the Pléiades
image, and the results appear reasonable. The significance of the multi-temporal image is
visible in the predicted tree crown cover map produced from the random forest regression.
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Figure 3.18: Percent tree cover result map. A)percent tree cover within Saponé land-
scape with more detailed area (black square) shown in B and C, where B) shows Pléiades
data in true color with trees visible in cropland landscape, and C) Percent tree cover
result.
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Figure 3.19: Relationship between observed and predicted tree canopy cover using the
combined June and October (multi-temporal images) model.
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4
Discussion

The discussion of the results begin with the land cover classification, exploring the re-
lationship Sentinel-2 bands have with acquisition date of images, highlighting the im-
portance of the different bands for classification with the present and previous studies.
Further, I discuss the role Sentinel-2 bands can take in making estimates for tree cover in
the Saponé parkland landscape of Burkina Faso. Finally, the different approaches taken
in the study and implications to the accuracy of the results are discussed. The results
show that discrepancies exist and will be discussed. Implications of the results and future
research directions are also presented.

4.1 Land cover classification and cropland mask
The cropland mask visually shows an accurate mask with agricultural fields. Although
the end goal of most cropland masks is for use in estimating yields for food security
purposes within a region and country (Defourny et al., 2019). The ability to identify
agricultural fields in satellite imagery is becoming more and more important in managing
and monitoring landscapes. It is also interesting to observe that landscape heterogeneity
might become a major factor in choice of acquisition dates, when knowledge of vegetation
senescence is best for estimating tree cover versus land cover when classifying the land-
scape with remote sensing. Diversity of spectral properties for croplands especially the
inclusion of fallow within the landscape is also mentioned in (Xiong et al., 2017). Xiong
et al., 2017 also mentions that being able to discriminate between cropland and seasonal
grasses within the landscape is important. The result from this study agree, where the
confusion of fallow and cropland is clearly seen in Table 3.1 and 3.2.

A more striking suggestion by Jain et al., 2019 from a fairly commercial study finds that
the use of micro-satellite (commercial and costly imagery) data to map smallholder yields
detecting the most important active fields for yield calculation and making agricultural
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interventions using satellite imagery can be achieved at ’low-cost’ with quantified yield
gain. Meaning the results (quantified yield estimates) of the approach outweighs the
initial investment on the combined imagery costs. At the same time, Jain et al., 2019 also
reiterates the use efficiency of satellite imagery in comparison to traditional landscape
productivity methods of manually measuring yields, and nitrogen, etc. In a broader
perspective, Xiong et al., 2017 created a cropland extent map at 30 m spatial resolution
using Sentinel-2 and Landsat-8, for the whole African continent. In addition, cropland
definition with the 0.25 ha size proves to be limiting for the Saponé landscape, the resulting
cropland mask depicts how small field sizes were not able to be masked due to having either
tree pixels or fallow. This spectral mixing at 10 m spatial resolution pixels can sometimes
be problem (Weinmann & Weidner, 2018), similar to this current study. This result
suggests that object-based classifications might have an advantage in this regard. Amini
et al., 2018 reports on object-based classification being an option for LULC classifications,
with the right segmentation measures taken for each class.

The best land cover classification came from combining the two October 2017 images.
Individually, these images already had a low OOB error. This is due to vegetation detail
reaching peak senescence during this time (end of wet season) and spectral response is
heightened. This reflects the findings of a study in southern Burkina Faso by Liu et
al., 2016, which concluded that cropland was not showing well enough (NDVI values)
in a wet season image compared to a dry season image with less vegetation. Although,
the Liu et al., 2016 study results in single image classifications for the dry season image
(November) performing better than the rainy season image (June). It is worth mentioning
that this study did not use a multi-year cropland mask because from the initial results of
image OOB error assessment, the landscape discrepancies in 2017 and 2018 were apparent
enough to affect the multi-year classification and in turn cropland mask results.

The final model with the lowest OOB error used in 2018 was the single-date image for Oc-
tober 22 which had the same model accuracy as the multi-temporal image combinations.
This is an example of multi-temporal images sometimes producing more noise rather than
increasing the overall accuracy of the classification. This is also shown by the 2017 clas-
sification, where the JJOO (June and October images) had 1.56% more error than the
JOO. Also, the OO image shows less error than the JOO, while in JOO, the June 29
image variables had more contribution for class discrimination. Additional images can
cause noise due to temporal disagreement Matton et al., 2015 and class errors, especially
with detailed vegetation reaching peak senescence. Thus, strategic timely acquisition of
images is also important and not just the multi-temporally. Liu et al., 2016 show in their
study the importance of seasonal features over single date rainy or dry season images.
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Although using Landsat time series they suggest integration with Sentinel-2, the study is
conducted in a similar landscape in southern Burkina Faso and the results of the current
study are consistent with Liu et al., 2016.

The choice of dates and the model performance of the different dates highlights the rel-
evance of image dates choices in accordance with the vegetation cycles (Immitzer et al.,
2016). We can see in the OOB error of the images where one of the 2018 September
image gives a 13.3% OOB error while the other gives a 28.6% OOB error. The one with
less OOB error we can see the cloud effects, thus the differences in these images is due to
the weather conditions. Since we have established the importance of the October image,
we can interestingly see the latest September image behaving like the October images.
Multi-temporal models are evidently beneficial for land cover classifications and tree cover
estimations.

The influence of training data samples and their influence on the model is apparent in this
study results. The bias that can be introduced by training samples is strong especially
within the random forest algorithm (Reese et al., 2014). This study decided not to have
the same amount of training samples for water because of the distinct spectral character
of water within the landscape. Although, distribution and the number of samples is
important in building a model. However, over representation of classes was kept at a
minimum with the rest of the classes using the same amount of training samples. Due to
the nature of the landscape and agricultural practices, these five major land cover classes
are prone to misclassification. Mixed fields, trees, and big changes in fields occur from
one year to the next. Mapping of agricultural fields will provide much more information
on cropland area within the Saponé landscape.

4.1.1 Variable Importance

The overall variable importance measures highlighted the SWIR, Vegetation red edge,
green and red bands as important bands for the models. The finding of the present
study suggests that different Sentinel-2 bands as variables have different importance for
model building in different single and multi-temporal image dates. The findings suggest
that the red spectral channels are important for model building in both the regression
and classification models. This finding provides evidence that Immitzer et al., 2016 and
Valero et al., 2016 have mentioned on the suitability of the Red and SWIR spectral bands
in agricultural mapping of agricultural areas more specifically cropland. Further, the 10
m NIR is surpassed in importance by the resampled 20 m bands SWIR and the vegetation
red edge bands. For instance some remarks about the spectral channel for B8 (NIR, 10
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m) include how it is much wider than B8A (NIR, 20 m) with less characteristic nature,
therefore the ability to use it for classification diminishes, which is similar to Immitzer
et al., 2016 with results on both the Sentinel-2 NIR bands ranking low in importance for
classification of crop type and tree species.

The more surprising correlation is with the Blue bands in the 2018 classification model
showing importance. Similar to Liu et al., 2016 who mentions that the Blue band is an
important variable within their model at the same time re-iterating greater importance
of the SWIR and vegetation red edge bands over the NIR in Savannah ecosystems (a
similar variation of agroforestry parkland definition of landscape type that includes scat-
tered woody vegetation and grassland). The Red Edge and Short Wave Infrared bands
are highly important variables for vegetation monitoring (Frampton et al., 2013), and
most previous studies have used the SWIR and RedEdge bands for agriculturally related
vegetation studies Matton et al., 2015, at the same time highlighting the limitations of
the bands spatial resolution at 20 m.

4.2 Tree cover estimation
The R2 value of 0.42 shows that the relationship between the Sentinel-2 data and the
tree crown coverage as measured in high-resolution images was imperfect and cannot be
used to estimate tree crown cover. However, it could be used to identify trees rather
than estimate tree crown cover percentage over the larger Sentinel-2 data area. From the
results in Figure 3.19 it is apparent that the model overestimated 0% tree crown cover,
and under-estimated 100% tree crown cover. Figure 3.18 clearly shows how the individual
tree crown can be seen in the prediction map with the red pixels. However, there is also
tree crown cover where there are no trees.

One assumption on the use of spectral data for tree crown cover percentage is that tree
crowns have higher values in the red, green and near-infrared bands, while the surround-
ing area has lower values (Yang et al., 2019). Thus, tree crown percentage within a
woodland and parkland ecosystems can be detected due to mature individual trees within
the landscape, unlike plantations and forested areas. Interestingly, Brandt et al., 2016
reports on woody vegetation still having prominent NDVI values even after the rainy
season compared to herbaceous vegetation, thus, explains the importance of vegetation
phenology. Bolyn et al., 2018 suggests the use of high spatial resolution data in combina-
tion with Sentinel-2 for a better spatial precision combined with the discrimination power
of Sentinel-2 spectral data. In relation to this study, obtaining reference data from the
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strategically acquired 11 October 2017 (end of wet season), 0.5 m spatial resolution Pléi-
ades image greatly contributed to the agreement of the predicted and observed tree crown
cover (R2=0.92) even though the variance explained from the random forest regression
was very poor. This was an interesting result as a poor variance will normally result in
poor predicted values. FAOSTAT reports 20790 km2 for tree covered area in Burkina Faso
from the Climate Change Initiative (CCI) annual land cover maps, in relation to 2480
km2 of woody crops (these are separated from herbaceous crops which are related to the
current studies cropland area). This study did not separate the tree cover in this way, but
acknowledges the extent different tree species have for detection in satellite imagery and
landscape interactions, as mentioned in studies in this area (Karlson et al., 2014; Karlson
and Ostwald, 2016).

In a similar study on the same landscape, Karlson et al., 2015 mapped tree canopy cover
using five predictor variables from a Landsat-8 image and supplemented field data with
World View-2 imagery, achieving a 0.77 R2. The Karlson et al., 2015 study also tests
use of multi-temporal imagery from dry season imagery October 2013 to March, 2014. In
this regard, the present study using Sentinel-2 data achieves a poor result for tree cover
estimation, achieving a 0.42 R2. This shows how the heterogeneous nature of the Burkina
Faso landscape can be complicated for the mapping of the landscape with the different
seasons and sensors. Similarity of this study and Karlson et al., 2015 though is the
importance of the vegetation red edge bands, highlighting spectral separation of parkland
tree species due to leaf pigment content. Regarding limitations, the RF regression trees
rely extensively on the data range of training data provided, and do not extrapolate
beyond the input data values. It is possible that a linear regression may be a more
effective method to estimate tree crown cover.

Percentage increase in mean square error (%IncMSE) for the tree crown cover estimation
variable importance, highly rank NDVI, SWIR and surprisingly NNIR Sentinel-2 bands.
Furthermore, the spectral indices used for tree cover estimation (SR, NDVI), showed
that NDVI was more important for the models, yet showing varying importance in all
models. When combined in the multi-temporal model, the October 22 NDVI was the most
important variable for the model. The October model as the best model, shows a limited
number of variables being selected as important. One red edge band, SWIR, Green and
Red band are the only bands highlighted as important. Therefore, the importance of the
NDVI is similar to previous studies using vegetation indices for tree cover estimations
(Karlson et al., 2015; Yang et al., 2019). Additionally, the importance of the NDVI might
be influenced by the calculation from the original Sentinel-2 10 m spatial resolution bands
(Red and NIR).
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4.3 Relevance for the Saponé landscape
The production of crop masks and tree cover estimation was part of a larger research
project which will analyze geospatial data on tree cover and crop production to uncover
the role of trees in the agroforestry landscape of Burkina Faso. It is important that free
satellite data, such as Sentinel-2, are of sufficient quality to provide this information. This
study looks at an area of 10x10km landscape whereby the total land area of Burkina Faso
is 273,600 km2 with 61,000 km2 of cropland area and monitoring of these cropland areas
is of paramount importance.

Interestingly, a study by Félix et al., 2018, which is unrelated to use of satellite imagery,
gives insight in future project work which will involve productivity of the landscape. The
Félix et al., 2018 study concludes on improved soil carbon, millet and sorghum yields
in parklands with shrubs and trees as we see in the Saponé landscape of this study.
Our findings revealed that cropland masks at 10 m over most of the countries in West
Africa within the SSZ are a new thing. For instance, Defourny et al., 2019 states only
in 2016, Mali had the first 10 m cropland mask product delivered. While, Defourny
et al., 2019 explores how the Sen2-Agri tool developed for cropland monitoring by the
European Space Agency can be beneficial for national monitoring and enhancing national
agricultural statistics.

Importantly, Defourny et al., 2019 mentions that the system will definitely have glitches in
agricultural areas frequently covered by clouds and with mixed cropping system, which is
highly relevant for the current study area limitations in Burkina Faso. However, Sen2-Agri
proves the relevance of the 10 m resolution capability of the Sentinel-2 images for high
resolution cropland monitoring at national scale. In addition, Forkuor et al., 2018 with
several other research papers suggest the complimentary use of Sentinel-2 with Landsat-8
satellite data, considering the temporal resolution that is spanned when using both sen-
sors. Overall, multi-sensor land use and land cover studies have produced more accurate
LULC maps (Forkuor et al., 2018; Xiong et al., 2017), and complimentary availability of
free images among sensors is also something to explore further.

Finally, the results have shown the power of Sentinel-2 spectral data. Vegetation map-
ping, especially in the direction of cropland masks, can be achieved using the Sentinel-2
10 m resolution and discrimination power of the 20 m vegetation red edge bands. There-
fore, more powerful than not is the open access of such high-resolution imagery for the
monitoring of landscapes which are under pressure due to climate change which affects
food security and landscape productivity.
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5
Conclusion and Future work

This study has explored the capabilities of Sentinel-2 bands in creating a cropland mask
and tree cover estimation. Variable importance is explored in Sentinel-2 bands for land
classification and tree cover estimation. Two years were set apart to assess the multi-
temporal and yearly capabilities, in wet season images (May to October). Data was
classified and predicted using the Random Forest algorithm. Field data and Pléiades
image were used for training data and accuracy assessment respectively.
This study produced two (2017 and 2018) landscape level cropland masks at 10 m. Accu-
racy of 2017 cropland mask was 71%. From initial land cover classification which had an
overall accuracy of 95% and 91%, respectively. Additionally, Sentinel-2 underestimated
tree cover of higher percentage and overestimated sparse tree cover, with the range of
predicted tree crown cover from 0.59% to 85.4%.
Main sources of error in this study range from the resampling of the 20m bands, training
data to mapping an agroforestry parkland, where inter-cropping and cropping practices
are diverse. Based on the robust use of the Random Forest algorithm, we recommend
using Sentinel-2 for cropland masks. Based on the results of this study, the Sen2-Agri
algorithm might be an extensive and advantageous tool creating landscape level cropland
mask as we have done. This will allow for better comparison with global cropland cover
maps already existing, with JECAM, CCI_LC and GEOGLAM, which are main sources
of reference for cropland mapping globally and within this study. With this, future work
can increase tree identification by using a threshold of 70% upwards creating a "tree mask".
Overall this study has shown the capabilities of Sentinel-2 are limited to vegetation moni-
toring studies that do not need estimation of yield and maybe extensive crop identification
especially in heterogeneous landscapes. Further research on the assessment of capabili-
ties of Sentinel-2 in agroforestry parklands can include the assessment of the sizes of
agricultural fields.
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